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We consider a repeated newsvendor problem in which the decision maker (DM) does not have access to 
the underlying demand distribution. The goal of this paper is to characterize the implications of demand 

censoring on performance. To that end, we compare the benchmark setting in which the DM has access to 
demand observations to a setting in which the DM may only rely on sales data. We measure performance in 
terms of regret: the difference between the cumulative costs of a policy and the optimal cumulative costs 
with knowledge of the demand distribution. Through upper and lower bounds, we characterize the optimal 
magnitude of the worst-case regret for the two settings, enabling one to isolate the implications of demand 
censoring. In particular, the results imply that the exploration–exploitation trade-off introduced by demand 
censoring is fundamentally different in the continuous and discrete demand cases, and that active exploration 
plays a much stronger role in the latter case. We further establish that in the discrete demand case, the need 
for active exploration almost disappears as soon as a lost sales indicator (that records whether demand was 
censored or not) becomes available, in addition to the censored demand samples. 
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1. Introduction
An important factor driving firms to hold inventories 
is uncertainty in demand. Consequently, a key input 
in any stochastic inventory model is a description of 
the demand process, most often given in the form of 
a probability distribution. In practice, such a demand 
distribution would need to be estimated from histor-
ical data, and in many instances these data might be 
influenced by past inventory decisions. For example 
in retail, it is common for the demand that exceeds the 
available inventory to be lost, and in most cases this 
excess demand is not observable by the firm. There-
fore, the firm may only have records of past sales, as 
opposed to actual demand. This restriction, commonly 
referred to as demand censoring, inevitably comes at 
a cost to the firm, and the purpose of this paper is 
to further one’s understanding of the implications of 
censoring. 

Inventory control with an unknown demand distri-
bution was first studied by Scarf (1959) in a Bayesian 
framework with observable demand, with many stud-
ies following to include censoring, in which case 
significant tractability issues may arise (Braden and 
Freimer 1991). In parallel, an increasing number of 
studies have focused on nonparametric representa-
tions of the unknown demand, and our study falls in 
the latter category. 

At a high level, the main contributions of the 
present paper are twofold. First, we show that the 
impact of censoring differs at a fundamental level 
as a function of demand being continuous or dis-
crete. In particular, the tension between exploration 
and exploitation introduced by censoring is more sig-
nificant for discrete distributions and impacts the type 
of experimentation that should be conducted. From a 
practical perspective, the distinction between discrete 
versus continuous distributions is a matter of granu-
larity, i.e., how large is a “demand unit” compared to 
typical demand. Second, we establish that collecting 
even minimal information about lost sales can yield 
significant value. In discrete demand settings with a 
high level of granularity, even knowing whether or 
not any sales were lost can greatly mitigate the impact 
of demand censoring. 

In more detail, we study a classical inventory sys-
tem, a repeated newsvendor problem. We assume that 
the demand distribution is unknown to the decision-
maker, and he or she has access only to data he or 
she collects over time. Demand censoring introduces 
a fundamental tension. One may select an action to 
minimize the current period cost (exploitation) given 
the current information, or explore by ordering more 
than this level, to reduce the extent of censoring and 
obtain more information for future periods. To isolate 
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the effects of censoring, we analyze different infor-
mational settings. We first consider the benchmark 
case in which demand is observable, and the decision 
maker may use past demand observations to deter-
mine her or his inventory decisions. We then focus 
on the case in which only sales are observable, as 
opposed to demand; this is the censored case. For 
example, if the inventory level in a given period is 
15 and demand turns out to be 20, then sales are 
equal to 15. In the observable case, the decision maker 
would observe the value of demand, 20 and in the 
censored case, the decision maker would only know 
that demand was greater than or equal to 15. The differ-
ence between the performance in both settings can be 
interpreted as the price in performance that one pays 
due to censoring. 

We measure performance of a policy through 
regret, the difference between the expected cost of 
the policy and that of an oracle with access to the 
true demand distribution acting optimally, and we 
set the objective of the decision maker to be one of 
minimizing the worst-case regret over a given class 
of demand distributions. Such a notion of minimax 
regret enables one to determine the performance level 
one should aim at given the specific information avail-
able. Although the framework is fairly general, we 
narrow down the analysis to a subclass of demand 
distributions to isolate cases in which censoring is a 
key driver of performance.1 We aim at understanding 
how the minimax regret varies given the information 
available and the implications on the exploration– 
exploitation trade-off faced by the decision maker. 

1.1. Summary of Main Results
When demand is continuous, we establish that the 
minimax regret grows logarithmically with the num-
ber of periods in both the observable and cen-
sored demand cases. This result is based on a lower 
bound for the minimax regret in the observable 
demand case (presented in Theorem 1) and the fact 
that some existing policies achieve the lower bound 
up to a multiplicative constant (see, e.g., Huh and 
Rusmevichientong 2009, §3.5). To achieve the best rate 
of growth of the minimax regret, one does not need 
to actively explore, because a stochastic direction of 
cost improvement is available even when the demand 
samples are censored, and as a result, one may apply 
stochastic gradient type algorithms such as the above 
mentioned policy. 

When demand is discrete, we establish that for the 
observable case, the decision maker can achieve a 
worst-case regret that is bounded, i.e., regret will not 
grow beyond a certain value as the number of peri-
ods increases, regardless of the underlying demand 

1 This subclass is detailed in §2. 

distribution in the class under consideration (Theo-
rem 2). On the other hand, when demand samples are 
censored, the minimax regret now grows logarithmi-
cally with the number of periods (Theorems 3 and 4). 
In contrast with the continuous distributions analysis, 
the minimax regret has a different order of magnitude 
depending on the demand samples being censored or 
not, and the exploration–exploitation trade-off comes 
to the foreground explicitly. Now, the decision maker 
no longer has access to a local (stochastic) direction 
of cost improvement. In the example above, if the 
ordering level is kept at 15, even an infinite num-
ber of sales observations would not allow the deci-
sion maker to systematically determine whether the 
optimal ordering quantity is strictly higher than 15 
or not. To achieve the growth rate of the minimax 
regret, a policy has to occasionally order more than 
the current best estimate, and our results imply that 
the policy would have to experiment over a number 
of periods that grows logarithmically with the total 
number of periods. 

The theoretical distinction between continuous and 
discrete cases should be interpreted carefully. The 
insights derived in our discrete demand setting should 
be valid in the presence of a high level of demand 
granularity (e.g., expected demand is low or demands 
are multiples of a large minimum order size), whereas 
situations with a low level of granularity should be 
closer to the continuous demand setting. As the gran-
ularity of demand decreases, the requirement of active 
exploration becomes less costly. We illustrate this pro-
gression with a numerical example in §5. 

Various nonparametric approaches for multiperiod 
inventory management have been proposed in 
the literature. Stochastic gradient algorithms were 
studied by Burnetas and Smith (2000), Huh and 
Rusmevichientong (2009), and Kunnumkal and 
Topaloglu (2008), and by van Ryzin and McGill (2000) 
and Kunnumkal and Topaloglu (2009) in the related 
setting of repeated capacity booking problems. An 
adaptive value estimation method was studied by 
Godfrey and Powell (2001) and Powell et al. (2004), 
a maximum-entropy approach was analyzed by Eren 
and Maglaras (2013), and an algorithm based on the 
Kaplan–Meier estimator was presented by Huh et al. 
(2011). The nonparametric studies above focus on pro-
viding prescriptions for potentially censored demand 
settings, and sometimes analyze the performance of 
these policies via upper bounds or convergence of 
the prescribed decisions. In contrast, we analyze each 
level of information from a fundamental perspective 
and compare and contrast informational settings, as 
opposed to policies. The resulting profile of mini-
max regrets highlights the implications of demand 
censoring in a nonparametric setting, bringing to the 
foreground the role of discreteness and its relation-
ship to active exploration. 
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To elucidate the impact of partial observations of 
lost sales, we study in the discrete case an inter-
mediate informational setting, “partial censoring,” in 
which the decision maker, in addition to observ-
ing sales, also observes whether demand exceeded 
(strictly) sales or not, i.e., observes whether any sales 
were lost.2 In the example above, this corresponds to a 
decision maker observing sales of 15 and, in addition, 
knowing that demand was strictly greater than 15. 
We establish that in this setting, the availability of 
the lost sales indicator enables a decision maker to 
recover bounded regret as in the case of observable 
demand (see Theorem 5). The availability of the lost 
sales indicator alters the minimax regret growth sig-
nificantly, highlighting its value. Intuitively, this result 
stems from the fact that the lost sales indicator pro-
vides the decision maker with “free experimentation,” 
and the need for active exploration essentially disap-
pears. Viewed differently, the availability of the indi-
cator enables the decision maker to obtain a noisy 
signal about the potential need for an upward cor-
rection, removing the necessity of active exploration. 
We further illustrate numerically in §5 that observ-
ing a small percentage of lost sales (as opposed to 
only the first one) can eliminate most of the impact of 
censoring. 

The availability of the lost sales indicator has 
been assumed, to the best of our knowledge, in all 
nonparametric studies that have appeared in the liter-
ature and that analyze newsvendor problems with an 
unknown discrete demand distribution (and inven-
tory levels). The analysis of this setting also enables 
one to understand the important implications of such 
an a priori innocuous assumption. 

1.2. Connection to Bayesian Formulations and
General Sequential Decision Problems

It is worthwhile to compare the results above with 
those typically obtained in the context of Bayesian 
formulations. We refer the reader to Chen (2010), 
Bensoussan et al. (2009b), Akcay et al. (2009), and 
Chen and Plambeck (2008) for some recent studies in 
this context. The focus of these studies is mainly on 
structural properties of the optimal ordering policy 
and its relationship to one in the absence of censor-
ing. The “stock more” result, namely, that it is optimal 
to order a higher level than the myopic optimal, and 
variants of it have been recurring; see Harpaz et al. 
(1982), Lariviere and Porteus (1999), and Ding et al. 
(2002) (and the related notes by Lu et al. 2008 and 
Bensoussan et al. 2009a). Such a stock-more property 
was absent from all nonparametric studies. By bring-
ing to the foreground how discreteness drives the 

2 Note that in the continuous demand setting, there is no distinction 
between censored versus partially censored settings. 

need to systematically stock more (active exploration), 
the present study closes a disconnect between the 
Bayesian approaches to demand censoring and the 
nonparametric ones. In addition, through the frequen-
tist approach taken, one obtains a characterization of 
the optimal frequency for such deviations. 

In the case of discrete distributions, the problem 
studied is one of finding the best possible inventory 
level among a finite number of possibilities and, as 
such, resembles at first sight a multiarmed bandit 
problem (see, e.g., Lai and Robbins 1985). However, 
the rewards of a given arm provide feedback about 
those of other arms, resulting in more information for 
the decision maker, and our analysis exploits this fact 
to obtain tight bounds as a function of the informa-
tional setting. The use of minimax regret objectives 
has also appeared in various streams of the eco-
nomics and computer science literatures to analyze 
dynamic adversarial environments. Early references 
include Blackwell (1956) and Hannan (1957), and a 
review of this line of work appears in Foster and 
Vohra (1999) and Cesa-Bianchi and Lugosi (2006). 

1.3. Measuring Lost Sales
Conrad (1976) observed that treating sales data as 
if they are equivalent to demand may lead to poor 
decisions. This is an example of model misspecifica-
tion, and in such situations, a host of phenomena can 
arise; see also Cooper et al. (2006) and Cachon and 
Kök (2007). Although the importance of distinguish-
ing between sales and demand data is well recognized 
by many practitioners, it is in many cases costly or 
simply impossible to keep track of the exact number 
of lost sales. The present study highlights the poten-
tial significant value associated with recording only a 
portion of those, and this can in general be done by 
means of procedures and/or information technology. 
For example, brick and mortar retailers that do not 
have all their stock on the shop floor may often post 
signs prompting customers to ask for a sales associate 
to check if the item is available. Whereas this ensures 
that demand is satisfied when possible, it also pro-
vides a means to measure stockouts.3 Sales people can 
be instructed to make a record of cases in which the 
customer accepted to substitute an out-of-stock item 
with another similar product. Another possibility is 
for firms to record when an item runs out of stock 
between ordering periods, which may be an indica-
tion of the existence of lost sales, even if it is not pos-
sible to accurately measure those. In the mail order 
catalog setting, Schleifer (1992) highlighted how LL 
Bean has gone through the process of modifying their 

3 Such a process may only ensure that one observes stockouts with 
some likelihood, because some customers might still decide not to 
communicate their needs if a product is not readily visible. 
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information technology system to record lost sales, 
and Anderson et al. (2006) studied the effectiveness of 
various innovative responses to mitigate the impact 
of stockouts, including the possibility of offering dis-
counts or free shipping to a subset of customers to 
convince them to wait. Besides having the potential of 
convincing a subset of customers to not cancel their 
order, such approaches could give the firm a possible 
means for recording some stockouts. In B2B settings, 
tracking lost sales may be somewhat easier, as estab-
lished relationships with some of the customers make 
it possible to know with relatively high confidence 
that one could have sold more. This can once again be 
supported with appropriate information technology; 
for example, add-on modules have been developed 
for SAP Business One to ensure that lost sales are 
documented. In online settings, it may be possible to 
ascertain with high likelihood that lost sales occurred, 
based on customer activity after the item is stocked 
out (e.g., a high number of clicks). 

2. Problem Formulation
We consider a multiperiod newsvendor problem, 
in which unmet demand is lost and leftover inven-
tory perishes at the end of each period. Let Dt denote 
the demand in period t. In what follows, we assume 
that {Dt: t = 1,2, . . .} are independent and identically 
distributed random variables with support Y ⊆ �+, 
finite expectation, and cumulative distribution F . Let 
xt denote the inventory decision in period t. The cost 
for period t is assumed to be given by 

C(F , x ) = h  (x − D )+ + b   (D − x )+ , (1)t t t t t

where b is the per unit underage cost, and h is the 
per unit overage cost; both are assumed to be posi-
tive. Throughout this paper, we assume zero leadtime. 
If one lets 

b 
/ = , (2)

h+ b 

a standard derivation yields that an optimal ordering 
quantity is given by 

xF 
∗ 
= min{x ∈ Y: F (x) ≥ /}. 

We will use the convention of calling xF 
∗ the /-quantile 

of the distribution F . We let C(F , xF 
∗) denote the opti-

mal per period newsvendor cost, and let t∗(F , T ) = 

T ·C(F , xF 
∗ ) denote the optimal cumulative cost over T 

periods, noting that both of these quantities can only 
be computed with knowledge of the distribution F . 
In this paper, we do not assume that the demand dis-
tribution F is known to the decision maker. We will 
only assume that F belongs to a class ', to be speci-
fied later. 

2.1. Informational Levels and Admissible Policies
Although the decision maker does not know the 
demand distribution F , he or she may use information 
collected over time to infer information about F and 
refine her/his decisions. We consider three settings 
corresponding to different data being available to the 
decision maker when ordering a quantity at time t. 
In the observable demand case, the decision maker has 
access to all past decisions xs and demands Ds , for s ≤ 

t − 1. The second setting we consider is one in which 
the firm has only access to past decisions xs and sales 
given by min{Ds, xs} for s ≤ t−1. We will refer to this 
setting as the censored demand case. In addition, when 
demand is discrete, we will also consider an interme-
diate setting referred to as partially censored demand 
case. In this setting, the decision maker, in addition to 
having access to the information available in the cen-
sored demand case, also observes whether demand 
strictly exceeded the ordering quantity in all past peri-
ods, 1{Ds > xs} for s ≤ t − 1 (where 1{ · } is the indi-
cator function). In other words, the decision maker 
observes whether any sales were lost. 

We will denote quantities with superscript a = u, c, 
pc to refer to the uncensored, censored, and partially 
censored, settings, respectively. For each of the set-
tings, a policy will be said to be nonanticipating if the 
quantity ordered in the tth period, xt , is determined 
by the available history.4 We will restrict attention to 
the set of nonanticipating policies denoted by 'a , a = 

u, c, pc, and for any policy 1 ∈ 'a, we denote the 
quantity ordered in the tth period by xt . 

2.2. Objective
We focus on the performance over a finite horizon T . 
Let 1 be an admissible policy for informational set-
ting a = u, c or pc, and let 

 T  

 

t1(F , T ) =  1 C(F , xt)
t=1 

denote the expected cost over the first T periods when 
using policy 1. In the three informational settings 
above, the decision maker does not know initially the 
distribution of the demand F , and as a result can-
not compute t1(F , T ) and a fortiori cannot set as an 
objective to maximize t1(F , T ). We adopt the follow-
ing minimax regret objective: select an admissible pol-
icy to minimize the worst-case difference between the 
cost5 incurred and the optimal cost one could have 

4 A formal description of the histories in each setting is presented 
in the preliminaries of Appendix A.
5 If one uses a standard profit maximization model with a constant
selling price p, unit purchase cost c, and salvage cost s, one can
show that the regret in terms of profit is equal to the regret in costs,
if one uses an overage cost of c − s and an underage cost of p− c.
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incurred with knowledge of F , supF ∈'{t1 (F , T ) − 

t ∗(F , T )}. We let 
  

fa(', T ) = inf sup t1 (F , T ) − t ∗ (F , T ) , (3)
1∈'a 

F ∈'

where a = u, p, or pc, depending on the informa-
tional setting studied. This objective is well posed and 
can be seen as a game between the decision maker 
and “nature.” The decision maker initially selects 
an admissible policy 1, and subsequently nature 
can choose any distribution in ' that would maxi-
mize the regret t1 (F , T ) − t ∗ (F , T ). Given that the 
sets of admissible policies satisfy 'c ⊆ 'pc ⊆ 'u, the 
minimax regret performances for the three informa-
tional settings are ordered as fu(', T ) ≤ fpc (', T ) ≤ 

fc(', T ). Because characterizing, in an exact man-
ner, each of the quantities fu(', T ), fpc (', T ), and 
fc(', T ) is likely to be a highly intractable problem, 
in the rest of this paper, we will focus on quantify-
ing these quantities through lower and upper bounds 
when the class ' is selected to appropriately isolate 
the demand censoring effects. 

2.3. Assumptions
The objective of the present study is to further one’s 
understanding of the implications of demand censor-
ing on performance and to provide insights on the 
exploration–exploitation trade-off resulting from cen-
soring. To crisply understand those, it is important 
to separate the implications of censoring from other 
drivers of performance. In general, when the demand 
distribution is unknown, there are various drivers of 
the minimax regret. In particular, it might be fun-
damentally difficult to estimate the optimal decision, 
and this might lead to a high regret, independently of 
the demand being censored or not. To avoid this, we 
will assume that the admissible cost function is not 
flat around the optimal quantity. In particular, we con-
sider the class ' of demand distributions with finite 
expectation that satisfy the following for some M > 0 
and 8 in (0, 1): 

(i) xF 
∗ ≤ M (bounded optimal order quantity); 

(ii) if demand is continuous, F ( · ) is differentiable, 
and F P(x) ≥ 8 for all x ≥ 0 (strictly convex cost 
function); 

(iii) if demand is discrete, �F (x) − /� ≥ 8 for x = 

xF 
∗ − 1, xF 

∗ (minimal separation around optimal 
quantity). 

The first condition is mild; in settings where 
demand is bounded, one could take M to be a bound 
on the maximal value that demand may take. The 
second condition ensures that the objective function 
is strictly convex in the case of continuous demands. 
Noting that F (xF 

∗ − 1) < / ≤ F (xF 
∗) by definition, 

the third condition implies that C (F , x) − C (F , x∗) > 
(h + b)8 for all x  = x ∗ , which precludes too much 

flatness of the objective function around the optimal 
quantity. To highlight some of the issues one faces 
when the assumptions above are not satisfied, con-
sider the following example with discrete demand. 

Example 1. Fix the time horizon T such that√ 
1/ T < min{/, 1 − /} and suppose that the class ' 
consists of only two distributions, Fa and Fb, defined 
as follows: 

  

/ + 8T if k = 0, / − 8T if k = 0,
(k) = (k) =Fa Fb1 if k ≥ 1; 1 if k ≥ 1. 

The optimal ordering quantity is 0 for F and 1 for Fb.√ a 

If 8T = 1/ T , it is possible to show that, in the 
case of observable demand, no policy can achieve a√ 
better worst-case regret than O( T ) (i.e., fu(', T ) ≥√ 
C T ),6 whereas if 8T = 80 is a positive constant, 
independent of the horizon, then the regret will be 
bounded (see §4.1). Intuitively, the difference in per-√ 
formance stems from the fact that when 8T = 1/ T , 
it is not possible to distinguish reliably between the 
two distributions Fa and Fb in T periods because the 
estimation noise will be of the same order as the sepa-
ration between the demand distributions. This implies 
in turn that it is not possible to determine the optimal 
ordering quantity reliably, and the order of magni-
tude of regret under both censored and uncensored √ 
demands would be dominated by the T term with-
out the minimum separation assumption. 

√ 
In the example above, the T loss in performance 

does not stem from demand censoring (demand sam-
ples are observable) but stems exclusively from the 
difficulty associated with identifying which of the dis-
tributions generates demand and the resulting chal-
lenge of estimating an optimal ordering quantity x ∗ . 
This situation arises due to the presence of a very 
small probability mass around x ∗ and the fact that the 
cost function can be very flat around this value. 

3. The Case of Continuous
Distributions

We discuss here the case in which there is a con-
tinuum of decisions and the demand distribution is 
continuous. The next result establishes a fundamen-
tal lower bound on achievable performance in the 
onservable demand setting. 

Theorem 1. Suppose T ≥ 2. Consider the setting in 
which demand is observable. For any policy 1 in 'u , 

sup{t1 (F , T ) − t ∗ (F , T )} ≥ Ku M + log T  , (4) 
F ∈' 

6 A close inspection of the proof of Lemma 4 in the online compan-√ 
ion provides the lower bound; in particular, replacing 8 by 1/ T 
in (C-8) yields the result. 
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where Ku is a positive constant that only depends on 8 and 
on the cost parameters b and h. 

This result states that, independently of the policy 
one selects, when demand samples are observable, 
it will never be possible to achieve a smaller regret 
than O(log T ) uniformly over all admissible distri-
butions. Whereas the above result is stated for the 
observable demand case, it also of course provides 
a lower bound on the performance for the case in 
which demand samples are censored. However, poli-
cies that can achieve a minimax regret of order log T 
in the censored case have been developed by, e.g., 
Huh and Rusmevichientong (2009, §3.5). Hence, when 
the demand distribution and decisions are continu-
ous, the minimax regret is of the same order of mag-
nitude for both the censored and observable cases. 

The policy of Huh and Rusmevichientong (2009) 
is based on constructing a stochastic gradient of the 
cost function, G = h1{x > D } − b1{x ≤ D }, which t t t t t 

has expectation Gt = C P(F , xt ), and the policy pre-
scribes to follow the resulting direction of improve-
ment with carefully designed steps. In other words, 
despite the fact that demand is censored, local infor-
mation is available to move in the “right” direction, 
and this enables one to achieve the same growth in 
the rate of regret as in the observable demand case. 
As we will see in the next section, the picture differs 
significantly in the case of discrete distributions. 

4. The Case of Discrete Distributions
We now assume that D has a discrete distribution and, 
without loss of generality, that it has support in the 
set of nonnegative integers. 

4.1. Observable Demand
In the case in which demand samples are observable, 
the decision maker ’s ordering decisions do not have 
any impact on the observations that are collected. 
We first analyze the performance of a natural candi-
date policy, the policy 1u, defined below. At every 
time t ≥ 2, it orders xt (the minimum of the empirical 
sample quantile) and M (the bound on the optimal 
ordering quantity), and orders an arbitrary quantity 
in the first period. Such empirical quantile policies 
have been used as a benchmark in numerical experi-
ments in the literature. 

Algorithm 1 (1u) 

Step 1. Initialization: Select x1 ∈ {0, . . . , M } arbi-
trarily 

Step 2. Ordering: For t ≥ 2 
  t−1 

Set qt = inf k: (t − 1)−1 1{Di ≤ k} ≥ /
i=1 

Theorem 2. The sample quantile policy 1u described 
in Algorithm 1 achieves a worst-case regret that satisfies 

¯sup{t1u 

(F , T ) −t ∗ (F , T )} ≤ KuM , (5) 
F ∈' 

¯where Ku is a positive constant that only depends on 8 and 
the cost parameters b and h. 

This result states that the difference between the 
expected cost under 1u and under an optimal policy 
that has access to the demand distribution is actu-
ally bounded by a number that does not depend on 
the length of the planning horizon T and thus will 
not grow indefinitely as T grows. We refer to this 
property as bounded regret. This result contrasts with 
the limit in performance derived in the continuous 
setting, highlighting the differing nature of the two 
problems, even in the observable demand case. When 
demand is observable, there is no interaction between 
observations and decisions, and the difference above 
stems from the fact that for a discrete support, one 
may identify the /-quantile exactly with very high 
probability as we detail below, whereas for a contin-
uous support, it is only possible to do so up to some 
correction factor. 

Proof Sketch. The analysis of the performance of 1u 

relies on the following key large deviations result, 
which is also a building block for Theorems 4 and 5 
in the coming sections. 

Lemma 1. Let y be an integer, and let Zi = min{y, Di}
 t−1for i ≥ 1. Let x̃t = inf{k: (t − 1)−1

i=1 1{Zi ≤ k} ≥ /} be 
the sample /-quantile based on the first t − 1 observations 
of Zi. Then x̃t satisfies 

I{x̃ ≤ j } ≤ at−1 for all j ≤ min{x ∗ , y} − 1, (6)t j F 

I{x̃ ≥ j } ≤ at−1 for all j ≥ x ∗ + 1, (7) t j−1 F 

for some nonnegative constant aj such that aj ≤ 1 − 

m/(F (j ) −/)2 ≤ 1 −m/8
2 for all j ≤ y, where m/ (defined 

in (A3)) is a positive constant that only depends on /. 

The result above is true for y = +o. In such a 
case, Lemma 1 bounds the probability of the sample 
/-quantile being away from the optimal newsvendor 
quantity xF 

∗ , and shows that this probability converges 
to zero exponentially fast as the number of observa-
tions grows. This fast convergence is the key factor 
leading to the performance guarantee of the sample 
quantile policy 1u . 

4.2. Censored Demand

4.2.1. A Lower Bound on Achievable Perfor-[sample /-quantile] 
mance. The next result provides a fundamental limit 

x = min{q , M } t t on the performance for the censored demand case. 
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Theorem 3. Suppose that 8 ≤ min{/, 1 − /}/2. Then 
for any policy 1 in 'c , 

sup{t1 (F , T ) − t ∗ (F , T )} ≥ Kc M + log T  , 
F ∈' 

for all T ≥ T0, (8) 

where Kc is a positive constant that only depends on 8 and 
the cost parameters b and h, and T0 is an integer that only 
depends on 8. 

This result, in conjunction with the upper bound 
provided in Theorem 2 for the observable demand 
case, highlights that the impact of having access to 
only censored demand observations leads to at least a 
degradation of order log T with respect to the worst-
case regret criterion. In particular, it is impossible to 
design policies with bounded worst-case regret when 
demand is censored. At an intuitive level, the lower 
bound (8) can be interpreted as follows: the factor of 
M is the loss that one must incur to “zoom in” on the 
neighborhood of the optimal ordering quantity x ∗ and 
the factor of log T represents the loss that one must 
incur to refine one’s estimate of x ∗ once one operates 
around x ∗ . 

Proof Sketch and Intuition. The necessary regret 
growth with the time horizon T stems from the fact 
that, when having access to sales only, one will not 
be able to refine one’s confidence about the current 
“best estimate” of the optimal ordering level while 
using it. Indeed, suppose a policy orders x̂, its current 
estimate of xF 

∗ , for some periods. For those periods, 
because of censoring, the inventory manager observes 
whether demand was greater than or equal to x̂
(which is equivalent to observing 1{Dt ≤ x̂ − 1}), but 
not whether demand was equal to x̂ (i.e., 1{Dt x}),= ˆ

and hence cannot use these observations to reliably 
refine his or I(Dt x). However, her estimate of ≤ ˆ

the optimal inventory level xF 
∗ is the first value x 

for which I{Dt ≤ x} ≥ /, and hence having access to 
a better estimate of I(Dt x) is in general needed ≤ ˆ

to improve the confidence in the estimate of xF 
∗ . As 

a result, when the decision maker uses the current 
best estimate of the optimal level, he or she cannot 
decrease the “risk” of having used the wrong level 
while using its best estimate. In turn, the decision 
maker needs to periodically order quantities that are 
strictly above x̂ to refine his or her estimate as time 
progresses. The proof of Theorem 3 formalizes the 
above intuition through information theoretical argu-
ments. In particular, we consider the case in which 
there are only two possible distributions, Fa and Fb, 
such that it is optimal not to order any units under 
Fa and to order one unit under Fb. In such a case, 
if one does not order any unit (the optimal decision 
under Fa), then one cannot infer any additional infor-
mation about the true distribution because demand is 

censored and one will only observe sales (which are 
equal to zero). To learn about the true distribution, 
one has to order a positive quantity. After T peri-
ods, if the decision maker wants to settle on ordering 
zero, they will need to have experimented with one 
for at least O(log T ) periods to ensure a small prob-
ability of error (which, roughly speaking, decreases 
exponentially with the number of periods when one 
orders one unit). It is this minimal amount of required 
experimentation that drives the fact that the worst-
case regret has to grow at least at a rate of log T . 

It is interesting to contrast the result above with that 
of continuous demand. In the latter case, local infor-
mation regarding a (stochastic) direction of improve-
ment was available. In contrast, in the discrete case, 
when one orders xt while one still observes Gt = 

h1{x > D } − b1{x ≤ D }, G only provides one-sided t t t t t 

information, G = C (F , x ) − C (F , x − 1), and only t t t 

indicates the potential for a downward correction but 
not for an upward one. In other words, through sales 
observations while ordering xt , one may not obtain a 
noisy signal about C (F , xt +1)−C (F , xt). This unavail-
ability of local information plays a crucial role in the 
added regret and drives the need for the system-
atic experimentation highlighted above. In particular, 
in §4.3, we will see that as soon as one recovers such 
local information for both downward and upward 
corrections, then one may obtain a bounded regret, as 
in the uncensored case, with no active experimenta-
tion required. 

4.2.2. A Near-Optimal Policy. We now construct 
a policy for the censored demand setting. It operates 
in stages and maintains an estimate of the optimal 
ordering quantity whose “accuracy” improves from 
stage to stage. Each stage j starts with an exploita-
tion phase of length Ac 

j , during which the current esti-
mate is applied. Then, the algorithm computes the 
empirical /-quantile of the observations in this phase. 
If this quantity is strictly less than the ordering quan-
tity, this suggests that the current estimate was too 
high, and the empirical /-quantile becomes the new 
estimate, initiating a new phase. If, on the other hand, 
the /-quantile is equal to the experimentation level, 
which suggests that the current estimate is greater than 
or equal to the optimal ordering quantity, the algorithm 
enters into an exploration phase of length Ae 

j with an 
ordering quantity that is increased beyond the cur-
rent estimate by a given factor. After the first explo-
ration phase, if the empirical /-quantile is now below 
the experimentation level, the estimate for the optimal 
ordering quantity is updated and the algorithm enters 
into a new stage. If, however, the new /-quantile 
is still equal to the experimentation level, then one 
increases the experimentation level once again by a 
given factor and starts another exploration phase. The 
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policy proceeds in this fashion with successive con-
tingent exploration phases until the latest empirical 
/-quantile is strictly below the corresponding experi-
mentation level, at which point it proceeds to a new 
stage. A formal description of the policy is provided 
below. 

nAlgorithm 2 (Input parameters: {(Ac 
j , A

e 
j , mj ): j ≥ 1, 

n ≥ 1}) 

Step 1. Initialization: 
Set ts = 0, y1 

(0) 
∈ {1, . . . , M }, n = 0, j = 1 

Step 2. Ordering: 
Set xt = yj 

(0) for t = ts + 1, . . . , ts + Ac 
j [exploitation] 

Estimate /-quantile of min{Dt, xt} over the 
exploitation phase: 

Compute 
t +Ac 
s j 

�
−1 q

(0) 
= inf k: �Ac 1{min{D , x } ≤ k} ≥ /j j t t 

t=t +1s 

Set n = 0 and ts = ts + Aj 
c 

(n) (n) (n) While q = y and y ≤ M − 1j j j 
(n+1) (n) n+1 (n) Set y = min{y + max{ m y l, 1}, M } j j j j 

(n+1)Set xt = yj for t = ts + 1, . . . , ts + Aj 
e 

[exploration] 
Estimate /-quantile of min{Dt, xt} 

over the exploration phase: 

Compute 
t +Ae 
s j

(n+1)
�
−1 q = inf k: �Ae 1{min{D , x } ≤ k} ≥ /j j t t

t=ts +1

Set n = n + 1 and t = t + Ae 
s s j 

End
(0) (n) Set y = qj+1 j 

Step 3. Loop: Set j = j + 1 and go to Step 2. 

The policy outlined above may take an arbitrary 
initial ordering level as an input. In particular, it is 
possible to start at a level based on the input of 
experts or some sort of estimate based on obser-
vations from related products. The decision xt pre-
scribed by the policy at time t only depends on the 
sales observations up until time t − 1, and hence it is 
admissible in the censored demand setting. 

nThe role of the sequence mj in the algorithm is to 
modulate the steps taken as time progresses. Suppose 

nthat mj = 0.5 for all n in cycle j , and the algorithm is 
at a low ordering level compared to the optimal. With 
high likelihood, there will be successive contingent 
exploration phases, and each new exploration level 
will be approximately 1.5 times the previous one. This 
enables the algorithm to reach the neighborhood of 

the optimal quantity rather quickly. However, when 
the algorithm has had some time to learn about the 
demand distribution and is likely to be closer to the 
optimal quantity, one should select a smaller quan-

ntity mj , to take smaller steps while performing suc-
cessive contingent exploration phases. 

We next specify a particular sequence of explo-
ration and exploitations phases that will lead to near-
optimal performance. The intuition for the selection 
is based on the insights gleaned from the proof of the 
lower bound of Theorem 3 that indicated that experi-
mentation should take place at logarithmic frequency. 
Hence, we will take sequences such that Ae ≈ log Ac 

j j . 
In particular, fix a, z ∈ (1, 2), and suppose one selects 

y1 = ye 

= 2 − log(1 − m/8
2) −1 log(max{M , 2})(log a)−1

l, (9) 

Ac 
j = y1 a 

zj−1 
l, j ≥ 1 

[exploitation phase lengths], (10) 

Ae 
j = yez

j−1 , j ≥ 1 

[exploration phase lengths], (11) 

where m/ was defined in Lemma 1 (see (A3)). Sup-
npose also that mj > 0 for all j ≥ 1 and n ≥ 2, and that 

for some given j P , mj 
1 = 0 for j ≥ j P . 7 Let 1c denote the 

resulting policy. The next result provides a character-
ization of the performance of 1c . 

Theorem 4. 1c satisfies 

sup{t1c 

(F , T ) − t ∗ (F , T )} 
F ∈' 

≤ K̄c log M M log M + log T  , (12) 

¯where Kc is a positive constant. 

This result, in conjunction with the result of Theo-
rem 3, yields that the minimax regret grows logarith-
mically with time in the censored setting, and that the 
policy 1c is near optimal. 

Proof Sketch and Intuition. The intuition underly-
ing the performance of the policy above is based 
on the fact that the policy 1c ensures that sufficient 
experimentation is performed to refine one’s esti-
mate of the /-quantile as time progresses, and such 
experimentation is performed essentially at the “opti-
mal” frequency of (log T )/T . More precisely, the proof 
establishes by induction that the estimate of the 
/-quantile at the beginning of stage j , yj 

(0), satisfies 

Ae 
(0) j ∗ I{y ≤ i} ≤ aj a , for i ≤ x − 1,j i F 

Ae 
(0) j ∗ I{yj ≥ i} ≤ aj ai−1, for i ≥ xF + 1, 

7 The rationale for the latter is to ensure that only local experimen-
tation is conducted once the algorithm has zoomed in on the correct 
region. 
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where aj is an appropriately bounded sequence, and 
ai is the same constant as that defined in Lemma 1. 
Hence, the probability of ordering a quantity that 
differs from the optimal one during an exploitation 
phase shrinks exponentially fast as the number of 
stages increases. We use this result to account for the 
losses over the exploitation and exploration phases, 
compared to the optimal cost with knowledge of the 
demand distribution. In addition to losses of order M 
due to the initial exploration phase of the algorithm, 
one will incur bounded losses for the exploration 
phases; these are of length Ae 

j ≈ log Ac 
j . We estab-

lish that in each stage, the algorithm will—with very 
high likelihood—actively explore, by ordering more 
than the current estimate of the optimal quantity, 
and that the policy will most often enter a single 
exploration phase. The total losses over those phases 
can be shown to be of order log T . The probability 
bounds above imply that the number of stages in 
which more than one contingent exploration is per-
formed has a finite expectation and that losses in each 
can be bounded by a factor of M . Similarly, one can 
establish that losses over all exploitation phases are 
bounded by a factor of M . This is what drives the 
bound in (12). 

The policy 1c bases its decisions on the informa-
tion gathered solely in the preceding phase. A natural 
alternative is to use information from all periods with 
an order level of at least as much as the current one,8 

and base decisions on observations in this set. When 
data are not aggregated from stage to stage, the deci-
sion in stage j + 1 is only based on the decision at 
the start of stage j and demands in stage j that are 
independent of the decision. When data are aggre-
gated from stage to stage, the decision in stage j + 1 
is now based on the decision at the start of stage j 
and past observations, which may be correlated with 
the decision. For example, the fact that the decision 
at the start of stage j is (erroneously) low is an indi-
cation of past demand realizations that are also low. 
This lack of decoupling between decisions and obser-
vations introduces significant technical complications. 
Although we have restricted the proof to the case in 
which no aggregation is performed for technical con-
siderations, we briefly explore numerically the impact 
of aggregation in §5. 

4.3. Partially Censored Demand
We now turn to the intermediate setting in which, 
in addition to sales, the decision maker observes a 

8 If one uses observations from periods with an order level smaller 
than the current one, any sales observations during such periods 
may be censored. In this case, the fact that such a sales observation 
is below the current estimate may not necessarily mean that the 
associated demand was below the current estimate. The same is 
not true for the other direction. 

lost sales indicator, i.e., is able to see whether any 
demand was not satisfied by the available inven-
tory. In this setting, consider a slightly modified ver-
sion of Algorithm 2, with the following two changes. 
(i) In the line where the “While” statement appears, 

(n) (n) (n) (n) replace q = y with q = y + 1, and (ii) replace j j j j 

min{D , x } with min{D , x } + 1{D > x } throughout t t t t t t 

the algorithm. For completeness, a formal descrip-
tion is provided in Appendix D in the online com-
panion (available at http://papers.ssrn.com/sol3/ 
papers.cfm?abstract_id = 1983270). Let 1pc denote the 
policy with the same parameters as 1c with the mod-
ifications described above. In other words, 1pc is the 
version of the policy 1c that uses the lost sales indica-
tor (1{D > yj 

(n) 
}) to determine whether demand strictly 

exceeded inventory at various points, which was not 
possible in the censored case. Observe that at these 
steps in the policy, the lost sales indicator is added to 
the sales observation, and the sample quantile of the 
sum is computed. The sum is equal to the inventory 
level whenever demand is exactly equal to the inven-
tory level (i.e., there were no lost sales), and the sum 
is equal to the inventory level plus one, whenever 
there are lost sales. Consequently, one can refine the 
estimate of the probability that demand is less than 
or equal to the inventory level (which allows to esti-
mate whether the current level x̂ is a good estimate 
of the optimal ordering quantity) without deviating 
to a strictly higher inventory level. In fact, observing 
sales plus the lost sales indicator at ordering level x̂
is exactly equal to observing sales at ordering level 
x̂ + 1. In a sense, the lost sales indicator allows the 
decision maker to perform “free experimentation” at 
x̂ + 1, while still incurring costs for x̂. 

The performance of 1pc is provided in the next 
result. 

Theorem 5. 1pc satisfies 

¯sup{t1pc 

(F , T ) − t ∗ (F , T )} ≤ Kpc (log M )2M , (13) 
F ∈' 

¯where Kpc is a positive constant. 

This result establishes that it is possible to recover 
bounded regret with the availability of the lost sales 
indicator. As opposed to the policy 1c, which uses 
sales observations only, and which performed fre-
quent active exploration to refine its estimate of the 
optimal ordering quantity, exploration phases will 
now be avoided with high likelihood when the cur-
rent estimate is correct. It is now possible to use the 
data from the exploitation phase to refine one’s esti-
mate of the optimal ordering quantity. The policy 1pc 

still possesses the ability to counter the milder censor-
ing that is present through the contingent exploration 
phases. 
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A key insight that arises from the result above is 
that for discrete demand distributions, the availability 
of the lost sales indicator, which could be interpreted 
as the minimal information one could collect beyond 
sales, enables one to mitigate the performance degra-
dation stemming from censoring. Although the poli-
cies in the uncensored and partially censored settings 
both admit bounded minimax regret, it is worth not-
ing that their performance will in general be different 
because one still operates with much less information 
in the partially censored setting. However, the two 
settings share a key characteristic, the absence of the 
need for systematic exploration at suboptimal levels 
to achieve the best possible order of magnitude of 
regret, that was key in the censored setting. 

We now revisit the discussion on the availability 
of local information with respect to improvement 
directions and the contrast between the continu-
ous and discrete settings for the case of censored 
demand. Whereas in the discrete setting with cen-
sored observations the only information available was 
with respect to downward corrections, the availability 
of the lost sales indicator enables the decision maker 
to now obtain information regarding upward correc-
tions. Indeed, letting G+ 

= G + (h + b) 1{D ≥ x } −t t t t 

G+1{Dt > xt } , one has that t = C (F , xt +1)−C (F , xt). 
As a result, in the partially censored setting, one 
recovers the local information for improvement direc-
tions that was available in the continuous setting. 
Hence, in both the discrete and the continuous set-
tings, we conclude that when such local information 
is available, the minimax regret growth under censor-
ing is identical to that of the observable demand case. 

5. Numerical Experiments
In the previous sections, we characterized the min-
imax regret under different informational settings. 
This order of magnitude characterization provides 
useful insights with respect to the value of differ-
ent types of information and the implications on 
the exploration–exploitation trade-off. To complement 
these theoretical results, we explore numerically three 
questions pertaining to the impact of data aggrega-
tion, demand granularity, and the marginal value of 
observing additional lost sales. 

For this, we will focus on the following five poli-
cies: the policy 1u described in Algorithm 1, which 
uses demand observations; the policy 1c described 
in Algorithm 2, which uses sales observations only 

z(we select the tuning parameters Ac 
j = y1a

j−1 
l and 

Ae 
j = yez

j−1 , j ≥ 1, with a = 2, z = 1.25, y1 = 10, ye = 
n10, and mj = 1/j2 for all j and n); the policy 1pc 

described in §4.3 that uses sales observations as well 
as a lost sales indicator, which uses the same tun-
ing parameters as 1c; and the policies 1 a 

c and 1a 
pc , 

which are identical to 1c and 1pc , except they aggre-
gate past data as described below. The values of M 
and 8 are not used by the policies we test. In the algo-
rithms, we replace M by o. Although specific con-
ditions on the multiplicative constants were required 
for the proofs of theoretical performance (see (9)), 
it is in general difficult to provide “optimal” val-
ues for those. In the present case, the numerical per-
formance of the policies seemed to be robust across 
a broad set of parameters. For example, we chose 
to start the phases with 10 periods, but as long as 
reasonable values are selected to ensure that mean-
ingful inference and learning can take place, with-
out those overtaking exploitation periods, the overall 
qualitative behavior between the different informa-
tion settings is preserved. Although we did not do 
so, in general, to select tuning constants, it might be 
desirable to test different sets of parameters on a large 
set of test instances and select the ones that lead to 
the most robust performance. 

5.1. Data Aggregation
The policies 1c and 1pc base their decisions on the 
information gathered solely in the preceding phase. 
A natural alternative is to use information from all 
periods with an order level of at least as much as 
the current one, and base decisions on observations in 
this set. Intuitively, aggregation should improve per-
formance, because each decision is based on a larger 
number of observations. Numerically, we observed 
that this is indeed the case. The uncensored policy 
also aggregates past observations, and studying the 
performance of the aggregated versions of our algo-
rithms in a sense levels the playing field. Let It (y) = 

{i < t � xi ≥ y} be the set of all periods before t with 
an ordering quantity of at least y. Consider policy 1c . 
Recall that the exploration level in cycle j on the nth 
exploration phase is yj 

(n) . Let t be the first period of 
this exploration phase. When computing the sample 
quantile qj 

(n) after this exploration phase, 1c uses the 
observations in this final exploration phase. Consider 
the alternative policy 1 a 

c, where one uses all the obser-
vations in the set It (yj 

(n) 
) by setting 

(n) 1 
q = inf k: j (n) 

�It (yj )� 

· 1{min{Di, yj 
(n) 

} ≤ k} ≥ / (14) 
(n) 

i∈It (y )j 

in the corresponding step of the algorithm. The result-
ing algorithm operates in a similar fashion. A similar 
modification is made when defining the policy 1a 

pc in 
the partially censored setting. 

Figure 1 depicts the regret t1 (F , T ) − t ∗(F , T ) as 
a function of the time horizon T for the policies 
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Figure 1 Performance
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Notes. The figure depicts the regret tr (F , T )− t ∗(F , T ) as a function of time. The regret was estimated through simulation, using 104 replications. 

above. For the censored and partially censored set-
tings, Figure 1(a) contains the policies 1c and 1pc , 
which do not aggregate past observations, whereas 
part (b) contains their counterparts 1 a 

c and 1a 
pc , which 

aggregate past observations. Both parts of the figure 
also include the policy 1u , which uses uncensored 
demand observations. The case under consideration 
is one where the underlying demand distribution is 
Binomial with 30 trials and a probability of success 
of 0.5. In addition, the underage and overage costs 
are fixed at b = 2 and h = 1. The optimal order level is 
x ∗ = 16 in this case, and all the algorithms start with 
an initial ordering level of 20. 

In Figure 1(a), we observe that the policy 1u 

that has access to the greatest level of information 
(uncensored demand) has the lowest regret, and the 
policy 1c , which has access to the least informa-
tion (sales), has the highest regret, as expected. The 
policy 1pc , which has access to partially censored 
demand, achieves a performance between those two. 
The regret associated with policy 1c increases with 
time, at a logarithmic rate. This is due to the “jump” 
in regret during the frequent experimentation phases, 
which have length O(log T ) and are performed at 
each stage. On the other hand, 1pc does not incur 
such systematic losses, because once the policy has 
already zoomed in on the right region, it only con-
ducts experimentation with small probability. Initially, 
the performance of 1pc is closer to that of 1c than 1u; 
as time progresses, the regret under 1c grows without 
bound, whereas it eventually stabilizes under both 
1u and 1pc . Using aggregation, policies that operate 
under censoring do better, but their qualitative com-
parison does not change. 

The example focused on a problem with b = 2. 
In problems with larger underage costs, a higher 

quantile of the distribution needs to be estimated, 
which is in a sense more difficult, because there 
are fewer observations above higher quantiles. We 
observed that although learning happens more slowly 
in such settings, the qualitative observations are pre-
served, and an example with b = 15 is provided in 
Appendix E in the online companion. 

5.2. Role of Granularity
As discussed in the introduction, one would expect 
the value of the lost sales indicator to decrease, as 
demand becomes less and less granular. We next 
investigate numerically the transition from a discrete 
to a continuous setting. In Figure 2, the binomial dis-
tribution that was used in Figure 1 is—in a sense— 
scaled to have less granularity. Consider two demand 
models: one where the discrete points correspond to, 
say, “kilograms” of the good, and a scaled version, 
where the unit of measurement is “grams.” The scaled 
demand distribution is constructed in a way such that 
the cumulative distribution function (cdf) of the origi-
nal demand distribution evaluated at x kilograms has 
the same value as the cdf of the scaled demand dis-
tribution evaluated at 103 · x grams, for any integer x. 
However, the scaled demand distribution has posi-
tive mass also between multiples of 103. The cdf for 
these values are chosen as a linear interpolation of 
the neighboring multiples of 103. For example, the cdf 
of the scaled demand distribution at 1,500 grams is 
the average of the cdf of the original demand distri-
bution at 1 kilogram and 2 kilograms. The backorder 
and holding cost rates are also scaled accordingly. 
Recall that the demand distribution used in Figure 1 
is binomial with a support of 30. The demand dis-
tributions underlying Figure 2 are scaled versions of 
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Figure 2 Granularity
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this binomial distribution, with support values of 15, 
30, 50, 100, and 104 respectively. 

As granularity decreases, the value of the lost sales 
indicator decreases, as observed by the diminishing 
gap between the regret curves corresponding to the 
censored and partially censored settings. In addi-
tion, when the support is large, all the three policies 
(1 a 

c , 1a 
pc and 1u)9 now appear to have a regret that 

grows logarithmically with time, which is what one 
would expect if demand was continuous (based on 
the analysis of §3). 

5.3. Impact of Information Beyond the
Lost Sales Indicator

We have so far focused exclusively on three informa-
tion levels: uncensored, censored, and partially cen-
sored. There may be settings in which the firm has 
more information than the partially censored setting, 
but less information than the observable demand set-
ting. To better understand the value of such addi-
tional information, and just for illustration purposes, 
we implemented policies that can observe the first 
i lost sales, for increasing values of i. The case 
i = 0 corresponds to censored demand, i = 1 corre-
sponds to partially censored demand, and i = o cor-
responds to observable demand. We consider policies 
with the same structure as 1a 

pc , except that as i 
increases, the size of the exploration and exploita-
tion phases decreases in the following fashion: 
ye = y1 = 10/(i − 1)l and a = max{2/(i − 1), 1}. This is 

9 We illustrate the aggregated version of the policies here, but all 
qualitative comparisons remain the same when data are not aggre-
gated. A similar figure with nonaggregated policies is provided in 
Appendix E in the online companion. 

a heuristic meant to capture the fact that as demand 
is less censored, one requires less exploration. 

We illustrate this in Figure 3. The lines that are 
between those of the partially censored and uncen-
sored cases correspond to policies that have progres-
sively higher levels of information, in particular, the 
first i lost sales are observed, for increasing values of 
i. The levels of intermediate settings shown are i = 

2, 5, 10, and 15. As expected, each level of additional 
information improves performance. The policies span 
the gap between the partially censored setting and the 
uncensored setting, and converge to the uncensored 
setting for i large enough. Although it is the first lost 
sales indicator that removes the need for fine-tuning, 
additional information enables one to converge faster 
to the neighborhood of the optimal quantity. The 
example suggests that observing even a small per-
centage of lost sales can enable firms to mitigate the 
effects of censoring to a substantial degree. 

6. Conclusions
The present paper assumed that inventory is per-
ishable, and unused inventory is lost at the end of 
every period. If inventory is not perishable, in addi-
tion to being coupled through information, periods 
also become coupled through inventory carryover. 
Under an assumption on salvage value (see Veinott 
1965), the optimal policy with the knowledge of the 
demand distribution would be a stationary order-
up-to policy, and the framework developed here is 
likely to be applicable to such cases, under additional 
assumptions on the form of demand. The key would 
now be to carefully account for both the impact of 
information and inventory position. To control for the 
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Figure 3 Partial Censoring
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impact of overordering, demand would now need to 
be bounded away from zero, at least in expectation. 
For example, with such assumptions, for the case of 
continuous distributions and a given stochastic gra-
dient algorithm, Huh and Rusmevichientong (2009) 
proposed an approach to account for losses due to 
potentially having a wrong estimate of the optimal 
order-up-to level, as well as losses associated with the 
inability to bring the inventory level down to the cur-
rent estimate. 

The characterization of the minimax regret obtained 
under various informational settings and demand 
types in the present study enhances the under-
standing of the implications of demand censoring. 
Although the present work focused on the repeated 
newsvendor problem, the approach and tools devel-
oped herein will be useful in other settings where one 
is interested in comparing different informational set-
tings with respect to the cost stemming from censored 
information, as well as the fundamental changes in 
the exploration–exploitation trade-off that such cen-
soring drives. Information censoring is prevalent in 
a variety of applications beyond inventory manage-
ment, ranging from capacity planning in airlines with 
multiple fare classes to bidding in auctions with 
uncertain valuations. 

From a more practical perspective, demand cen-
soring is an important phenomenon faced by many 
businesses. Firms may choose to invest in informa-
tion technology in an attempt to collect data on lost 
sales, and a key input for deciding to do so is asso-
ciated with the cost of such censoring. Although the 
present paper has focused on a theoretical charac-
terization of demand censoring through the lens of 
minimax regret, we believe that working to refine 
our understanding of the cost of censoring, and 
developing associated practical frameworks, is an 
important direction for further research. 
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Appendix A. Selected Proofs
In the present section, we provide proofs of selected 
results. All other proofs are provided in the online compan-
ion, available at http://papers.ssrn.com/sol3/papers.cfm? 
abstract_id=1983270. 

Preliminaries
Formally, the history up to (and including) time t available 
to the decision maker in each of the three informational 
settings is given as follows: 

:u 
t = {(Ds , xs ): 1 ≤ s ≤ t} for t ≥ 1 and :0 

u 
= 0, 

:c 
= {(min{D , x }, x ): 1 ≤ s ≤ t} for t ≥ 1 and :c 

= 0,t s s s 0 

:
pc
t s s s s s={(min{D , x }, x , 1{D > x }): 1 ≤s ≤ t} 

for t ≥ 1 and :pc 
0 = 0. 

For each of the settings above, a = u, c, pc, a policy is nonan-
ticipating if the quantity ordered in the tth period is deter-
mined by :a 

t−1 (i.e., is :a 
t−1-measurable). For any 1 ∈ 'a , 

we denote the quantity ordered in the tth period, xt , by 
!t (:t

a 
−1). 

For any a = u, c or pc, the expected cost associated with 
an admissible policy 1 over T periods when the demand 
distribution is F is given by 

T 
1 (:a )+t1 (F , T ) = F h(!t t−1) − Dt

t=1

+ b(Dt − !t (:t
a 
−1))

+ 

T 
1 1 )+= h(!t (:

a 
F F t−1) − Dt 

t=1 

+ b(Dt − !t (:t
a 
−1))

+ 
� !t (:t

a 
−1) 

 

T 
 

= 
1 
F C (F , !t (:t

a 
−1)) , 

t=1 
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where the last equality follows from the fact that Dt is inde-
pendent of !t (:

a 
t−1). The equality above will be used exten-

sively in all the proofs below. We will also use the fact that, 
for discrete distributions, for any integer x ≥ 0, 

max{x ∗ , x}−1 

C (F , x) − C (F , x ∗ ) = (h + b) �/ − F (i)�. (A1) 
i=min{x∗, x} 

Proof of Lemma 1. The proof is based on a large devia-
tion argument. Let Wi, j = 1{Zi ≤ j } for i ≥ 1 and j = 0, . . . , y, 
and note that, for j ∈ {0, . . . , y − 1}, Wi, j is a Bernoulli ran-
dom variable with expectation F (j ). 

Suppose first that j ≤ xF 
∗ − 1 and F (j ) ∈ (0, 1). Then for 

t ≥ 2, 

t−1 t−1 

I{x̃t ≤ j } =I 1{Zi ≤ j } ≥ (t −1)/ =I Wi, j ≥ (t −1)/ , 
i=1 i=1 

and a Chernoff bound yields that for any nonnegative 
parameter e, 

t−1 

I{x̃t ≤ j } ≤ exp e Wi, j exp{−e(t − 1)/} 
i=1 

= ((exp{e} − 1)F (j ) + 1)t−1 exp{−e(t − 1)/}. 

Selecting the value of e that minimizes the right-hand side 
above, e∗ = log /(1 − /)−1(1 − F (j ))(F (j ))−1 , which is posi-
tive because j ≤ xF 

∗ − 1 implies that F (j ) < /, one obtains 

t−1 

I 1{Zi ≤ j } ≥ (t − 1)/ ≤ a tj 
−1 , 

i=1 

with the value of aj given by 

  1−/  /1 − F (j ) F (j ) 
aj = . (A2)

1 − / /

If F (j ) = 0, then we have I{x̃t ≤ j } = 0 = aj . 
Now, similarly, if xF 

∗ + 1 ≤ j ≤ y and F (j − 1) ∈ (0, 1), we 
have that, for t ≥ 2, 

t−1 

I{x̃t ≥ j } = I 1{Zi ≤ j − 1} < (t − 1)/ 
i=1 

t−1 

= I Wi, j −1 < (t − 1)/ , 
i=1 

and through a Chernoff bound that, for any nonnegative 
parameter e, 

I{x̃t ≥ j } ≤ ((exp{−e} − 1)F (j − 1) + 1)t−1 exp{e(t − 1)/}. 

Selecting the value of e that minimizes the right-hand side 
above, e∗ = − log /(1 − /)−1(1 − F (j − 1))(F (j − 1))−1 , which 
is nonnegative because j ≥ xF 

∗ + 1 and hence F (j − 1) > /, 
one obtains 

t−1 
t−1I 1{Zi ≤ j −1}≤ (t −1)/ ≤ aj−1, 

i=1 

with aj given in (A2). 
If F (j − 1) = 1, then we have I{x̃t ≥ j } = 0 = aj−1. If j ≥ 

y + 1, then the result also follows trivially. 

We now turn to establish the bound for aj . For all x ∈ 
(0, 1), let 

  1−/  /1 − x x 
g(x) = .

1 − / /

Clearly, g( · ) is infinitely differentiable on (0, 1) with second 
derivative given by 

/ /−1 /−2(1 − x)−/−1x (1 − x)/x (1 − x)1−/x
g(2)(x) = − − 2 − ,

(1 − /)−///−1 (1 − /)///−1 (1 − /)−///−1 

which is negative for all x ∈ (0, 1); hence g( · ) is strictly con-
cave on (0, 1). In addition, one can establish that g( · ) is 

(2)(maximized at x = / with value 1. The fact that g · ) tends 
to −o as x → 0 and as x → 1, coupled with the fact that 

(2)( (2)(g · ) is continuous, implies that g · ) admits a maximizer 
in (0, 1). Let x be this maximizer, m = g(2)(x ), and let g g g 

m/ = (1/2)�mg �. (A3) 

We have g(2)(x) ≤ mg < 0 for all x ∈ (0, 1). We deduce, 
through a Taylor expansion that for all x ∈ (0, 1), there exists 
x̃ ∈ (0, 1) such that g(x) − g(/) = (1/2)g(2)( ̃x)(x − /)2, and 
hence 1 − g(x) ≥ (1/2)�mg �(x − /)2. By continuity of g( · ) on 
0, 1 , the latter inequality is also valid at the boundaries 

0 and 1. Noting that for all j ≥ 0, aj = g(F (j )), we hence 
have that 

aj ≤ 1 − m/(F (j ) − /)2 .  

Proof of Theorem 2. Let F be an arbitrary distribution 
in '. Recall that xt denotes the ordering quantity of policy 
1u at time t. Consider the regret over T periods: 

t1u 
(F , T ) − t ∗ (F , T ) 

T 

= C (F , xt ) − C (F , x ∗ ) 
t=1 

T 

= C (F , xt ) − C (F , x ∗ ) � xt = j I{xt = j } 
∗ t=1 j∈{0, ..., M }\x 

T x ∗−1 x ∗−1 
(a) 
= (b + h) (/ − F (i)) I{xt = j } 

t=1 j=0 i=j 

M j−1 

+ (F (i) − /) I{xt = j } 
∗j=x ∗+1 i=x 

T x ∗−1 i 

= (b + h) (/ − F (i)) I{xt = j } 
t=1 i=0 j=0 

M M 

+ (F (i) − /) I{xt = j } 
i=x ∗ j=i+1 

T x ∗−1 

= (b + h) (/ − F (i)) I{xt ≤ i} 
t=1 i=0 

M−1 

+ (F (i) − /) I{xt ≥ i + 1} , 
∗i=x 

where (a) follows from (A1). Now, applying Lemma 1(a) 
with y = M + 1 (in which case x̃t = xt for all t ≥ 2) and 
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bounding the terms I{x1 ≤ i} and I{x1 ≥ i + 1} by 1 yields 
that 

t1u 
(F , T ) − t ∗ (F , T ) 

T x ∗−1 M−1 

≤ (b + h) (/ − F (i))at 
i 
−1 

+ (F (i) − /)at
i 
−1 

t=1 i=0 i=x ∗ 

T 

= (b + h) �/ − F (i)� ai 
t−1

i∈{0, ..., M −1} t=1

(a) 1 
≤ (b + h) min �/ − F (i)�T , �/ − F (i)� ,

1 − aii∈{0, ..., M −1} 

T t−1where (a) follows from upper bounding by either t=1 ai 

T or o t . An application of Lemma 1 implies that ai ≤t=1 ai 

1 − m/(F (i) − /)2, and we deduce that �/ − F (i)�(1 − ai)
−1 ≤ 

(m/�F (i) − /�)−1. Returning to the regret, we have 

t1u 
(F , T ) − t ∗ (F , T ) 

M−1 1 
≤ (b + h) min �/ − F (i)�T , 

i=0 m/�F (i) − /� 

(b + h)M
≤ . (A4) 

m/8 

This completes the proof. 

Proof of Theorem 3. We analyze the worst-case perfor-
mance of any policy when nature can only select between 
two demand functions, which provides a lower bound 
on the minimax regret, which scales logarithmically with 
T . This part uses ideas that have appeared in the con-
text of multiarmed bandit problems (see, e.g., Lai and 
Robbins 1985). 

Dependence on T . We will develop a lower bound on per-
formance that scales with the time horizon T . To that end, 
we will again analyze the worst-case performance of any 
policy 1 ∈ 'c when nature is restricted to select between 
the following two judiciously selected distribution functions 
in ': 

/ + 8 if k = 0, / − 8 if k = 0,
Fa(k) = Fb (k) = 

1 if k ≥ 1, 1 if k ≥ 1, 

which admit positive mass at both 0 and 1 because we 
assume that 8 ∈ (0, min{/, 1 − /}/2). For c = a, b, and for 
any event ; and random variable X, we let Ic(;) and c X 
denote the probability of ; and the expectation of X (when 
it is well defined), respectively, when F = Fc. 

For the rest of the analysis in Step 2, we fix an arbitrary 
policy 1 in 'c , and we will establish by contradiction that 
the worst-case performance regret associated with this pol-
icy is necessarily bounded below by K8−1 log T for some 
appropriate positive constant K. 

Fix an arbitrary g ∈ (0, 1), and define the following con-
stants that depend only on g, b, and h: 

K1 = g4−1 2/−1 
+ (1 − /)−1 

+ /−2 −1 , (A5) 

K2 = (8/−1 
+ 12(1 − /)−1)2 , (A6) 

K3 = 2−1K1 exp{−4gK 2 
−1}(h + b), (A7) 

K4 = max 2K1, 2 exp{1} 

· (1 − min{1/2, 2 exp{−4gK 2 
−1}})−1K3(h + b)−1 . (A8) 

Note that T 1−g (log T )−1 tends to infinity as T tends to infin-
ity, and hence there exists T0 such that 

T 1−g (log T )−1 
≥ K48

−2 , for all T ≥ T0. (A9) 

For the rest of the proof, we assume that T ≥ T0. Suppose 
for a moment that 

sup {t1 (Fc, T ) − t ∗ (Fc, T )} < K38
−1 log T . (A10) 

c=a, b 

Let 7 denote the number of periods until T when the pol-
T (:cicy orders a positive quantity, i.e., 7 = t=1 1{!t t−1)  = 0}; 

7 is also the number of periods when the policy orders a 
number of units that differs from the optimal number of 
units when the demand distribution is Fa. 

The analysis in the remainder of this step will proceed as 
follows. We first establish that given the performance guar-
antee (A10), the probability that 7 ≤ K18

−2 log T is appro-
priately “small” (for K1 defined in (A5)) when demand 
is generated according to Fb . This will imply through a 
change of measure argument that the probability that 7 ≤ 

K18
−2 log T is also small when demand is generated accord-

ing to Fa. The latter, in turn, will yield a contradiction 
with (A10). 

Given (A9), K18
−2 log T ≤ T /2, and one can bound 

I1 
b {7 ≤ K18

−2 log T } as follows: 

I1 
b {7 ≤ K18

−2 log T } = I1 
b {T − 7 ≥ T − K18

−2 log T } 

(a)
≤ (T − K18

−2 log T )−1 
b 
1 T − 7 

(b)
≤ (T − K18

−2 log T )−1 

· K38
−2(b + h)−1 log T 

≤ 2T −1K38
−2(b + h)−1 log T , (A11) 

where (a) follows from Markov’s inequality, and (b) follows 
from (A10) in conjunction with the following sequence of 
inequalities that links b 

1 T − 7 and t1 (Fb , T ) − t ∗ (Fb, T ): 

T 

t1 (Fb , T ) − t ∗ (Fb , T ) = 
1 
b C (Fb , !t (:t

c 
−1)) − C (Fb , 1) 

t=1 

T(a)
≥ 

1 
b C (Fb , !t (:t

c 
−1)) − C (Fb, 1) 

t=1 

· 1{!t (:t
c 
−1) = 0} 

= (C (Fb , 0) − C (Fb , 1)) b 
1 T − 7 

(b) 
= (b + h)8 b 

1 T − 7 . 

In the latter, (a) is a consequence of the optimality of order-
ing one unit when the distribution is Fb , and (b) follows 
from (A1). 

Based on (A11), we develop an upper bound on 
I1 

a {7 ≤ K18
−2 log T }, whose proof appears in Appendix C in 

the online companion. 

Lemma 2. The following inequality holds: 

I1 
a {7 > K18

−2 log T } ≥ exp{−4gK2 
−1}. (A12) 
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We conclude Step 2 with the analysis of the regret asso- be the ordering level in the nth exploration phase (if neces-
ciated with 1 when F = Fa: sary) of cycle j , given that the cycle starts with exploitation 

level yj 
(0) 

= k: t1 (Fa, T ) − t ∗ (Fa, T ) 

T zj 
1(k) = min{k + max{ mj 

1 
· kl, 1}, M }, 

= 
1 C (F , !t (:t

c 
−1)) − C (F , 0)a a a n n n−1 

t=1 zj (k) = min{zj 
n−1 

+ max{ mj · zj (k)l, 1}, M }, ∀ n ≥ 2. 
 

 

 

 

T 

≥ 
1 C (F , !t (:t

c 
−1)) − C (F , 0)a a a 

For all j ≥ 1, let nj (k, x) = min{c: zc(k) ≥ x}. The following 
7 > K18

−2 log T j 

lemma (proved in Appendix C in the online companion) 
t=1 bounds the probability of using an exploitation level other 

· Ia 
1 {7 > K18

−2 log T } than x ∗ for each cycle j . 
(0)(a)

1 Lemma 3. For j ≥ 2, the exploitation level at stage j , y
≥ exp{−4gK 2 

−1} a 
j , 

satisfies 
c 
t−1)) − C (Fa, 0) 

 

 

 

 

T 

· C (Fa, !t (: 7 > K18
−1 log T (0) Aj 

e 
−1I{y ≤ i} ≤ aj a for all i ≤ x ∗ − 1, (A15)j i 

t=1 

(0) j−1(b) I{yj ≥ i} ≤ aj ai

A

−

e 

1 for all i ≥ x ∗ + 1, (A16)
≥ exp{−4gK−1}(C (F , 1) − C (F , 0))2 a a 

T 

· a 
1 1{!t (:t

c 
−1)  = 0}

 

 

 

 

7 > K18
−2 log T 

where a2 = 3 + n1(1, M ) and, for j ≥ 2, 

Ae1 
+ 1 + nj+1(1, M )aj a x ∗ 

j−

−

1 
1. (A17) t=1 aj+1 = 

Ae 

1 − a x ∗ 
j 

> exp{−4gK −1}(C (F , 1) − C (F , 0))K18
−2 log T , 2 a a 

Step 2: Performance analysis. We now turn to analyze the 
where (a) follows from (A12) and (b) follows from the fact regret of the proposed policy. Let tj be the first time period 

a a a athat C (F , x) − C (F , 0) ≥ C (F , 1) − C (F , 0) whenever x  = 0. in cycle j , and let tj , n be the last period of (contingent) 
Equation (A1) implies that C (Fa, 1) − C (Fa, 0) ≥ (h + b)8, and exploration phase n in cycle j (with tj , 0 := tj + Ac 

j − 1). Con-
hence sider any time T and K = inf{j ≥ 1: tj+1 ≥ T }. We first note 
t1 (F , T ) −t ∗ (F ,T ) ≥exp{−4gK −1}K1(h +b)8−1 logT . (A13) that 

a a 2 

We have therefore established that if (A10) holds, t1 (F , T ) − t ∗ (F , T ) ≤ t1 (F , tK+1) − t ∗ (F , tK+1)

then (A13) necessarily holds. This is a contradiction because K

exp{−4gK−1}(h +b)K1 = 2K3 > K3 (see (A5) and (A7)). Hence = 9c 
+ 9e , where for j ≥ 1,2 j j 

(A10) cannot hold, and it must be the case that j=1 

tj +Ac −1sup {t1 (Fc, T ) − t ∗ (Fc, T )} ≥ K38
−1 log T . (A14) j

c=a, b 9c 
j = C (F , xt ) − C (F , x ∗ ) 

General lower bound. We note that the worst-case regret t=tj 

may always be of order M given the limited initial informa- [regret over the exploitation phase of cycle j],
tion (see Lemma 4 in Appendix C in the online companion). 

tj , ñjWe deduce that for some K > 0, inf1∈'c supF ∈'{t1 (F , T ) − 

t ∗ (F , T )} ≥ K max{M , log T }, which in turn implies that 9j 
e 
= C (F , xt ) − C (F , x ∗ ) 

t=tj ,0+1 
inf sup{t1 (F , T ) − t ∗ (F , T )} ≥ 1 

2 K M + log T  . 
1∈'c 

F ∈' [regret over the ñj ≥ 0 exploitation phases of cycle j]. 
This concludes the proof. (0)Let pj (k) = I{yj = k} for all j ≥ 2 and k ≥ 1.

Analysis of 9c For j = 1, one obtains trivially 9c ≤Proof of Theorem 4. Let F be an arbitrary distribution j . j 

∗ (h + b)M 2y1. For j ≥ 2, the expected regret during the in ', and let x denote the optimal newsvendor solution 
∗ exploitation phase of can be bounded as follows: when one knows F (x = inf{k ≥ 0: F (k) ≥ /}); the latter is 

necessarily bounded by M because F ∈ '. The proof pro- M 
(0) (0)9c

ceeds in two main steps. First, we establish that, from stage j = Ac 
j C (F , yj ) − C (F , x ∗ ) � yj = k pj (k) 

∗ k=0to stage, one will refine the estimate of x in a manner 
made precise in Lemma 3. We then conduct a performance M max{x ∗ , k}−1 

analysis, evaluating separately the expected regret over the = (h + b)Aj 
c 

�/ − F (i)�pj (k) 
k=0 i=min{x∗, k} exploitation and exploration phases. For simplicity, we fix 

z = 2 throughout the proof. x ∗−1 

Step 1: Refining the estimate of x ∗. The policy 1c consists = (h + b)Ac 
j �/ − F (i)� I{yj 

(0) 
≤ i} 

of consecutive stages of increasing length. Each stage starts i=0 

with an exploitation phase, followed by possibly one or M−1 

more contingent additional exploration phases. The order- + �/ − F (i)� I{yj 
(0) 

≥ i + 1} 
(0) (ñj ) i=x ∗ ing level in the exploitation phase of stage j ≥ 2 is y = qj j−1 , 

where ˜ is the number of contingent exploration phases in (a) M−1 Aenj j−1 
(n) (n) (n) ≤ (h + b)Aj 

c aj �/ − F (i)�a ,nstage j , i.e., ñj = inf{n ≥ 0: {qj+1 < yj }∪{yj = M }}. Let zj (k) i 
i=0 
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ewhere (a) follows from Lemma 3. Noting that ai 
y

≤ 1/4, 
we have 

M−1 
2j−1 Aj 

e 
−19c 

j ≤ (h + b)y1a aj �/ − F (i)�ai 
i=0 

≤ (h + b)y1aj (a/4)4j−2 
M . (A18) 

Analysis of 9e 
j . Suppose first that j = 1. Then, not-

ing that there are at most n1(1, M ) contingent explo-
rations, 9e 

1 ≤ n1(1, M )(h + b)Mye ≤ (h + b)M (log M )/ 
log(1 + m1) ye, where the last inequality follows from the 
fact that n1(1, M ) ≤ (log M )/ log(1 + mj ). Suppose now that 
j ≥ 2. We have 

ñj tj , n 

9e 
j = C (F , yj 

(n) 
) − C (F , x ∗ ) 

n=1 t=tj , n−1 +1 

M nj (k, M ) tj , n 

= C (F , zn 
j (k)) − C (F , x ∗ ) 

k=1 n=1 t=tj , n−1+1 

· 1{ñj ≥ n} � yj 
(0) 

= k pj (k). 

Conditional on yj 
(0) 

= k, the event {ñj ≥ n} only depends on 
:c and is hence independent of the demand observa-tj , n−1 

tions {Dt : t ≥ tj , n−1 + 1}. We have 

nj (k, M ) tj , n M 

9e 
= C (F , zn(k)) − C (F , x ∗ ) � y

(0) 
= kj j j 

k=1 n=1 t=tj , n−1+1 

· I{ñj ≥ n � yj 
(0) 

= k} pj (k) 

nj (k, M ) M 

≤ Ae C (F , zn(k)) − C (F , x ∗ ) � y
(0) 

= kj j j 
k=1 n=1 

· I{ñj ≥ n � yj 
(0) 

= k} pj (k) 

≤ Ae 
j A1 + A2 + A3 + A4 , 

where 

∗−1 nj (k, M ) 

A1 = 

x 

C (F , zj 
n(k)) − C (F , x ∗ ) � yj 

(0) 
= k 

k=1 n=1 

· I{ñj ≥ n � yj 
(0) 

= k} pj (k), 

(0) ∗ A2 = C (F , z1 
j (x ∗ )) − C (F , x ∗ ) � yj = x 

· I{ñj ≥ 1 � yj 
(0) 

= x ∗ }pj (x ∗ ), (A19) 

nj (x ∗ , M ) 
(0) ∗ A3 = C (F , zn 

j (x ∗ )) − C (F , x ∗ ) � yj = x 
n=2 

· I{ñj ≥ n � yj 
(0) 

= x ∗ }pj (x ∗ ), 

nj (k, M ) M 

A4 = C (F , zj 
n(k)) − C (F , x ∗ ) � yj 

(0) 
= k 

k=x ∗+1 n=1 

· I{ñj ≥ n � yj 
(0) 

= k} pj (k) 

x ∗−1 

A1 ≤ nj (0, M )(h + b)Mpj (k) 
k=1 

≤ nj (0, M )(h + b)M I{yj 
(0) 

≤ x ∗ − 1} 

Ae 

≤ nj (0, M )(h + b)Maj−1a ∗ 
j−

−

1 
1,x 

where the last inequality follows from Lemma 3. We also 
have 

1zj (x ∗ )−1 

A2 ≤ C (F ,zj 
1(x ∗ ))−C (F ,x ∗ ) = (h +b) �/−F (i)� and 

∗i=x 

A3 ≤ nj (x ∗ , M )(h + b)M I{ñ ≥ 2 � yj 
(0) 

= x ∗ } 

j−1
≤ nj (x ∗ , M )(h + b)Maj−1a 

A

∗ 

e 

,x 

where the last inequality follows from noting that 
(0) (0) ∗ (1) 1 (0)I{ñj ≥ 2 � y = x ∗ } = I{q = x , q = z (x ∗ ) � y x ∗ }, and j j j j j 

hence one may upper bound this probability by I{qj 
(1) 

≥ 
Ae 

(0) (0) j−1 
x ∗ + 1 � y = x ∗ , q = x ∗ } ≤ a ∗ . Finally, j j x 

A4 ≤ nj (x ∗ + 1, M )(h + b)M I{yj 
(0) 

≥ x ∗ + 1} 

j−1
≤ nj (x ∗ + 1, M )(h + b)Maj−1a 

A

∗ 

e 

,x 

where the last inequality follows from Lemma 3. 
Note that for i ∈ {0, . . . , M }, 

Ae AeAe 
j−1 Ae 

j−2 j−2 (a) 4 exp{−1} j−2
Ae 

= 4Ae 
j ai j−2ai ai ≤ ai

−(log ai) 

(b)
−18−2

≤ 4 exp{−1}(min{1/M2 , 1/22})2j−3 
m/ , 

where (a) follows from the fact as long as ai ∈ (0, 1), for any 
i = 0, . . . , M and any z, 

z )−1 zai ≤ −(log ai exp{−1}, (A20) 

and (b) follows from the fact that ai 
ye ≤ min{1/M2 , 1/22} for 

all i ≥ 0 given the choice of ye in (9). We deduce that 

zj −1 

9e 
j ≤ (h + b) �/ − F (i)�Ae 

j 
∗i=x 

 Ae Ae 
 j−1 j−1

+ nj (0, M )(h + b)MAe 
j aj−1 a ∗−1 + 2a ∗x x 

zj −1 

≤ (h + b) �/ − F (i)�Ae 
j + 12nj (0, M )Maj−1e 

−1 

i=x ∗ 

−1
· (min{1/M2 , 1/22})2j−3 

m/ 8−2 . (A21) 

y
, 2−2}, eConclusion. Now, noting that ax ∗ ≤ min{M−2 

nj (1, M ) ≤ M and using (A17), we have aj+1 ≤ 3 + Maj · 

min{M−2j 
, 2−2j 

}. Recalling that a2 = 3 + n1(1, M ) ≤ 

3 + M , one can establish that aj ≤ 6 for all j ≥ 3. Since tj+1 − 

tj ≥ y1a
2j 

, K ≤ (log log(T /y1) − log log a)/ log 2 ≤ (log log T − 

log log a)/ log 2. Recalling the definition of ye in (9) and 
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putting together (A18), and (A21) with the facts stated in 
above, one obtains 

K 

t1 (F , T ) − t ∗ (F , T ) ≤ (h + b)M 2y1 + 6(h + b)My1 (a/4)4j−2 

j=2 

+ (h + b)M (log M )/ log(1 + m1) ye 

1 
K zj (x ∗ )−1 

+ (h + b) �/ − F (i)�Ae 
j 

∗j=2 i=x 

+ 72(h + b)M exp{−1}m−

/ 
18−2 

K 

· nj (0, M )(min{1/M2 , 1/22})2j−3 
. 

j=2 

Note that z1(x ∗ ) = x ∗ + 1 for j ≥ j P, because m1 = 0 for all 
j ≥ j P. Thus, 

j j 

1z (x ∗ )−1K j K logT 
�/−F (i)�Ae 

= �/−F (x ∗ )�y 2j−1 
≤y 2K 

≤y .j e e e 
∗ loga

j=j P i=x j=j P 

One deduces that 

t1 (F , T ) − t ∗ (F , T ) ≤ K log M8−2 M log M + log T  , 

where K is a suitable positive constant that depends only 
on b and h. This completes the proof. 
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