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The history of telecardiology dates back to early 1960 when Electrocardiogram (ECG) was 

delivered via telecommunication transmission lines. Recent advances in wireless telecardiology 

have brought ease of access, efficiency, remote monitoring, improvement in patient’s quality of 

life and significant reduction in health care costs. The transmission of ECG over wireless 

communication channel introduces several challenges compared to standard wireline monitoring 

of cardiovascular activity. In this work, a pre-processing algorithm is presented for reliable 

recovery of ECG signal corrupted by additive white Gaussian noise (AWGN) even at very low 

signal-to-noise ratio (SNR) conditions. At low SNR conditions, interference of noise corrupts the 

ECG signal to such an extent that the received ECG signals when compared to the original 

signals show unreliable results. The proposed method involves removal of redundancy in the 

original signal by a two-step approach: transform based compression using orthogonal wavelet 

basis function followed by entropy encoding. This is to increase the compression ratio but not at 

the expense of the quality of the reconstructed signal. This is important to preserve the content of 

clinical information. The aim of the proposed algorithm is to improve the fidelity of the received 
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ECG signal for accurate clinical interpretation. It is done by using data segmentation, data 

encoding, reassembly, features detection and signal reconstruction. These steps ensure that the 

diagnostically critical P-wave, QRS complex and T-wave are kept free of large reconstruction 

errors. The obtained results are evaluated in terms of compression ratio and PRMSD which are 

around 2.55:1 and 39.62% respectively at 3dB SNR. The visual perception of the reconstructed 

ECG signal also shows high quality signal recovery.
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CHAPTER 1 

 

INTRODUCTION 

 

 

The reliable delivery of a patient’s biomedical data such as ECG in real time is critical in 

emergency care. The architecture of health monitoring system to transmit ECG signal over noisy 

communication channel must ensure reliable transmission and recovery of signal that could 

withstand channel impairment such as noise that could significantly degrade the precision of 

ECG measurements. This chapter discuss research motivation, problem definition, 

implementation and contribution to the design of robust and error resilient ECG monitoring 

system. 

1.1 Motivation and problem definition 

According to Centers for Disease Control and Prevention (CDC), heart disease refers to several 

type of heart conditions such as Atrial Fibrillation, Aortic Aneurysm and Cardiomyopathy, etc. 

The coronary artery disease is most common type of heart disease. The narrowing of coronary 

arteries due to atherosclerosis restrict blood flow to the heart which can cause heart attack, 

killing over 370,000 people annually. More than 600,000 Americans die of heart disease each 

year [102] and it contribute to one in every four deaths in US. Every year 735,000 Americans 

have a heart attack, of these, 525,000 are first time attack and remaining 210,000 happen in 

people who had heart attack previously in their life [105]. In US, someone has a heart attack 

every 34 seconds and every 60 seconds someone dies from heart disease related event. These 

statistics show that cardiovascular diseases claim more lives than all forms of cancer combined.
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There are several medical conditions and lifestyle choices that could put people at higher risk 

of heart disease, including:  

 Diabetes  

 Overweight and obesity 

 High blood pressure and high cholesterol 

 Physical inactivity 

 Smoking and excessive alcohol use 

 Hypertension 

Early action is important in event of heart attack. Chest X-rays, coronary angiograms, 

electrocardiograms and stress tests are performed to determine the severity of heart disease. The 

chances of survival are greater when emergency treatment is administered immediately. In 2011, 

about 326,200 people experienced out-of-hospital cardiac arrests in US, out of which, 10.6% 

survived due to emergency medical services. The same year out of 19,300, 31.4% survived 

bystander-witnessed out-of-hospital cardiac arrest [102]. About 47% of deaths are attributed to 

cardiac disease occurring outside the hospital in people having heart disease; they either do not 

act or ignore early warning signs of heart attack. The economic impact of heart related disease on 

the US health care system continues to grow [104] with aging population. The direct and indirect 

cost of cardiovascular disease totals more than $320.1 billion per year including health care 

expenditures (e.g., hospitalization, rehabilitation services, physician visits, drugs, etc.) and loss 

of productivity from death and disability [102]. This economic impact could be reduced by 

intelligent, reliable and context aware health monitoring system which detect the disease in early 

stages and potentially save lives and cost associated with treatment of cardiovascular diseases.  
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The clinical significance of electrocardiogram (ECG or EKG) test is to examine the electrical 

conduction system of the heart over a period of time using electrodes on a patient’s body. The 

electrical changes that arise from the heart muscle depolarization during each heart beat is 

detected by these electrodes and represents a voltage variation with time. The routine ECG 

screening procedure in patients without symptoms and those at low risk of coronary heart disease 

is not recommended as it may lead to misdiagnosis or false indication of existence of a problem 

[103]. Ambulatory ECG, Holter monitoring or continuous ECG monitoring is indispensable to 

monitor patients who show infrequently occurring of cardiac dysrhythmia which would unlikely 

be seen on a conventional short recording. This is also important in the event of heart attack 

when ECG done during a heart attack may look normal or unchanged from previous recording 

and need to be repeated over several hours and days to observe for changes.  

Some key medical uses of ECG include: 

1. Monitor the health of heart in patients with preexisting conditions such as high blood 

pressure, high cholesterol, smoking, diabetes and with family history of early heart 

disease. 

2. Analyze the cause of symptoms of heart disease such as shortness of breath, 

palpitations, dizziness, seizures, chest pain, pericarditis and fainting. 

3. Monitor the functionality of mechanical implant devices such as pacemakers. 

4. Monitor any possible side effect of medication on heart activity. 

5. Monitor the size and position of heart chambers 

The research discussed here focused on the study of reliable recovery of ECG signal 

when it is corrupted by the additive white Gaussian noise (AWGN) under poor SNR 
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conditions using data buffering, lossless data compression, data denoising and ECG signal 

reconstruction. 

The following section describes briefly the implementation of the proposed architecture and a 

detailed discussion is given in Chapter 4. 

1.2 Problem Implementation 

The proposed work addresses the challenges associated with the interference of ECG signal by 

white Gaussian noise over communication channel under low SNR conditions. The system 

architecture includes several modules each associated with a specific function. 

Data analysis module performs raw compression on ECG signal using wavelet transform. 

This level 1 compression reduces the redundancy in the signal without compromising the vital 

information necessary for signal recovery and clinical analysis. The purpose of this step is to 

represent cardiac and non-cardiac cycle with minimum samples. 

The minimum identified samples are further compressed at level 2 using Huffman 

coding. The encoded signal as shown in Chapter 4 represents original ECG signal with total 

length of code equals to 4.789 bits. During this process, no information is lost and encoded 

signal is transmitted as separate sign and data symbol stream. 

AWGN model is used to study the superposition of white noise with ECG signal at 

varying low SNR. The proposed architecture simulates the scenario when bandpass signal power 

is overwhelmed by noise power at extremely low SNR. The recovery of original signal is 

accomplished using data recovery module. 

Data recovery module detects key ECG signal features, reassemble, recover and 

reconstruct the received signal. The process of recovering the original signal starts with the 
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detection of P-wave, QRS complex and T-wave. These three repetitive electrical entities 

represent, atrial depolarization (P-wave), ventricular depolarization (QRS complex) and 

ventricular polarization (T-wave) of heart. The detection of P-wave, QRS complex and T-wave 

is based on variance and expected value of samples inside each corresponding window compared 

to a non-cardiac segment. Depending on the SNR of received signal, an adaptive threshold is 

used to determine whether the samples belong to key characteristic features of ECG signal or 

noise. The width of each window is then compared to the estimated duration of P-wave, QRS 

complex and T-wave of a normal ECG signal for the detection of these features. The window 

that may contains ST segment is first identified by doing the peak search and combining samples 

that result in less variation. The search for P-wave and QRS complex is then carried out on 

samples inside the adjacent left and right windows (reference to ST window) respectively. The 

detection of QRS complex and P-wave is based on doing the peak search and combining samples 

that yield maximum and least variation in search for QRS complex and P-wave.  

The process of recovering QRS complex results in minimum amplitude distortion. The 

samples inside decoded sign symbol stream are scaled repeatedly and then reassembled with 

associated data samples to reconstructs QRS complex. This is contrary to the procedure where 

signal is de-noised and then recovered which results in severe QRS complex distortion and 

impacts the quality of the recovered signal. 

The recovery of P and T-waves involve de-noising of ECG signal by discrete wavelet 

transform at level 4 using Daubechies-4 wavelet. The de-noising algorithm as explained in [5] is 

modified to recover P-wave and T-wave such that smoothing process does not significantly 

impact the quality of samples inside the observed P and ST segments. Using linear interpolation, 
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the denoised samples of P-wave and T-wave are then combined with the samples of recovered 

QRS complex.  

1.3 Research Contribution 

The real time transmission and recovery of ECG signal is a key deliverable of any health 

monitoring system that offers tele cardiology services related to cardiac diagnostics and 

monitoring for therapeutic purpose. The contribution of this work in the context of reliable ECG 

monitoring include: 

(i) The presented work is an improvement in terms of accuracy over the existing solutions 

described in [5] and [101]. The proposed algorithm provides good performance even for very 

weak ECG signal that is corrupted by white Gaussian noise. 

(ii) The design and implementation of m-ECG algorithm provides a framework for 

reliable recovery of ECG signal. It includes signal pre-processing, data segmentation, data 

encoding in data analysis module and data detection, reassembly and signal reconstruction in 

data recovery module.  

(iii) The recovery of QRS complex with minimum distortion. 

(iv) The compression of ECG signal and sampling of received signal is based on variance 

and expected value of sample amplitudes. 

(v) A modified de-noising algorithm is proposed with adaptive threshold for the recovery 

of P-wave and T-wave in the presence of white Gaussian noise without compromising the 

morphology of the reconstructed ECG signal. 
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(vi) The mechanism to identify samples that may contain P-wave, QRS complex and T 

wave is based on threshold that uses signal-to-noise ratio and isolates cardiac samples from the 

noise.     

1.4 Organization of the Dissertation 

The recovery of ECG signal in different noisy environment aimed at improving signal-to-noise 

ratio is studied using various filter algorithms [5-12]. In this context, a novel ECG end-to-end 

system architecture using the proposed m-ECG algorithm is presented that demonstrates good 

performance in terms of signal detection, recovery and reconstruction. The proposed work is 

organized as follows. 

Chapter 2 provides comprehensive background information on ECG signal processing 

techniques, signal denoising techniques and various signal coding schemes with associated 

challenges and metrics used to analyze the performance of compression algorithms. The use of 

time-frequency analysis of ECG signal yields simultaneous time-frequency localization of non-

stationary signals. The fixed resolution of Short Time Fourier Transform (STFT) due to non-

optimal window function provides uncertainty in knowing exact time-frequency information of 

the transformed signal. The use of Discrete Wavelet Transform (DWT) enables digital 

computation of ECG signal and provides time-scale representation using digital filter techniques 

where signal is analyzed at different resolution using filters with different cutoff frequencies. The 

dominant frequencies and non-significant frequencies in the original signal appear as high 

amplitude and low amplitude respectively in DWT transformed ECG signal where some level of 

compression is achieved by discarding low amplitude samples without any loss of information. 

The choice of ECG compression algorithm largely depends on sample rate, signal bandwidth, 
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noise level and average number of bits per compressed sample. The goal of data compression of 

biomedical signals, such as ECG involves representation of ECG signal using minimum number 

of bits without losing diagnostic information of original signal. Various types of ECG signal 

compression schemes are discussed along with relevant merits and challenges. 

Detailed overview of referenced literature is presented in Chapter 3. Issues and 

challenges related to the transmission of ECG signal over communication channel such as QoS 

requirement, channel impairments, data loss and latency are discussed with reference to cellular 

network. The efficient use of available bandwidth of communication network involves maximum 

data transfer with minimum redundancy. ECG compression techniques include direct and 

transformation methods to achieve effective data compression with minimum reconstruction 

error.  Detailed review of direct methods such as AZTEC, TP, CORTES and SAPA-2 are 

presented. Data compression algorithm using KLT, FFT, DCT and DWT are also presented. The 

reconstructed signal performance is generally measured using statistical measures such as 

compression ratio, mean square error and percent root mean square difference. 

The architecture and implementation of proposed m-ECG algorithm is presented in 

Chapter 4. The recovery of ECG signal that is corrupted by additive white Gaussian noise 

channel (AWGN) is explained with detailed analysis of ECG feature detection, recovery, 

denoising and reconstruction. The design also includes the implementation of data analysis and 

data recovery modules to support reliable recovery of ECG signal when it is corrupted by white 

Gaussian noise under poor SNR.   

Chapter 5 summarizes work and identifies future directions that are essential to design 

reliable pervasive health monitoring system that support wide range of biomedical signal 
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monitoring. The challenges associated with real time monitoring of ECG signal such as 

availability, accuracy and resilience to communication channel impairment are discussed.  

1.5 Conclusion 

The transmission of biomedical signal such as ECG over communication channel introduces 

several challenges compared to standard wireline monitoring of biomedical activities. The 

availability of high bandwidth, high data rate and low latency of next generation wireless 

communication network facilitates patient centric real time monitoring of biosignals. However, 

the design of such system gets complicated by frequent communication errors associated with 

noise. The use of error control mechanism for maintaining signal fidelity over communication 

channel is essential for acceptable signal recovery.
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CHAPTER 2 

 

BACKGROUND RESEARCH 

 

 

The recent advancement in wireless networking technologies and mobile computing have made 

possible to deliver ubiquitous health care services and exchange of medical data anytime and 

anywhere. The availability of high transmission rates to provide connected health care depends 

on network performance such as bandwidth, latency, coverage and reliability at any given time. 

It is necessary to reduce the amount of data without loss of important bio-medical information 

while using lowest possible network resources. 

This chapter presents brief background of commonly used techniques and methodology 

for (A) data conditioning and pre-processing (B) data de-noising and (C) data reconstruction. 

The details presented here are not intended to be comprehensive. 

2.1 The Electrocardiogram (ECG) Signal 

Electrocardiography displays the electrical activity of the heart captured over time by using 

external electrodes attached to the chest. The electrical changes on the chest that arise from heart 

muscle depolarization during heartbeat is detect by these electrodes. The location of the 

electrodes on the body influence different components of ECG signal including; amplitude, 

polarity and time duration of electrical waves characterized by peaks and valleys which in turn 

reflects the heart activity being normal or irregular or certain parts of heart are being stressed or 

enlarged. Besides measuring the rate and rhythm of heartbeat, it also provides evidence of blood 

flow to heart muscles.
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The normal frequency range of ECG signal is 0.05Hz – 100Hz with 1mV – 10mV 

dynamic range [1]. The cardiac cycle is made up of multiple waves with signature pattern, 

duration and intensity; these waves are represented by letters P, Q, R, S, T and U. The 

performance of ECG monitoring system depends on the accuracy and reliable detection of QRS 

complex, P and T waves owing to the fact that they give information about the coordination 

between different events during a cardiac cycle [3]. The normal adult heart rate is 72 beats per 

minute and the duration from the beginning of a heartbeat to the beginning of the next heartbeat 

is about 0.83 sec [2] then by the definition of ECG signal the length of each cardiac event could 

be known [1]. 

 

 

 

 

 

 

 

 

Figure 2.1. Normal Sinus Rhythm 

The normal duration of key components of ECG waveform as shown in Fig. 2.1 are as follows: 

 P-R segment: 0.12s – 0.2s  
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 Q-T segment: 0.35s – 0.44s 

 S-T segment:  0.05s – 0.15s 

 P-wave interval: 0.11s 

 QRS complex: 0.08s – 0.12s 

Moreover, the typical amplitude associated with the duration of characteristic wave is: 

 P wave: 0.25mV 

 R wave: 1.60mV 

 Q wave: 25% of R wave 

 T wave: 0.1mV – 0.5mV 

2.2 ECG Signal Processing 

The time domain methods employed earlier for ECG signal analysis often mask the information 

that could be readily seen in frequency domain or more accurately in time-frequency domain to 

study all features of ECG signal. In this section a detailed comparison between the 

time/frequency versus time-frequency analysis of ECG signal is presented. 

2.2.1 Time/Frequency ECG signal analysis 

A reversible transformation of signal from time to frequency and vice versa using Fourier 

Transform (FT) in most cases highlight information hidden in frequency domain of the signal 

which would otherwise not available in time domain. Let us take a closer look at how the 

transform works, 

𝑋(𝑓) =  ∫ 𝑥(𝑡) ∙ 𝑒−𝑗𝜔𝑡∞

−∞
𝑑𝑡                                                              [2.1]                                          

𝑥(𝑡) =  ∫ 𝑋(𝑓) ∙ 𝑒𝑗𝜔𝑡∞

−∞
𝑑𝑓                                                                [2.2] 
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Equation (2.1) transform the time-domain signal x(t) by integrating it over all time, yielding the 

spectral components that exists in the signal with no time resolution [4]. As the frequency 

content of ECG varies in time, the need for an accurate description of ECG frequency contents 

according to their location in time is essential [1]. Almost all biological signals including ECG 

are non-stationary [4] which provides better insight of pathological conditions if represented by 

time-frequency representation of heart’s electrical activity. 

2.2.2 Time-Frequency ECG signal analysis 

Time-Frequency representation provides simultaneous time-frequency localization of time-

variant, non-stationary signals. The discussion in this section is limited to Short-time Fourier 

Transform (STFT) followed by detailed application of wavelet transform applied to ECG signal. 

Short Time Fourier Transform (STFT) transforms non-stationary signal into narrow time 

intervals, narrow enough to be considered stationary followed by Fourier transform of each 

segment thus providing spectral information of a separate time-slice of the signal with time and 

frequency information. At any given time-frequency, the signal is analyzed by the following 

relation: 

𝑆𝑇𝐹𝑇 𝑥
𝑓 (𝑡′, 𝑓) =  ∫ (𝑥(𝑡). 𝑊(𝑡 − 𝑡′)) ∙ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡                                      

𝑡
[2.3] 

Where for every 𝑡′and f a new STFT coefficient is computed by the product of x(t) and its 

complex conjugate window function W(t). The window function influences the transformed 

signal by its shape (Rectangular, Gaussian, Elliptic, Hann, etc.)  and size. A wide window offers 

poor time but good frequency resolution compared to a narrow window with better time at the 

cost of poor frequency resolution. The choice of an appropriate support of window for signal 

analysis is application dependent. If the frequency components of the signal are distinctly 
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defined, then sacrificing some spectral information will provide good time resolution in the 

transformed signal. It also shows that STFT gives a fixed resolution at all times due to non-

optimal window support providing uncertainty in knowing the exact time-frequency information 

of transformed signal. It attempts to provide the information related to the interval of frequencies 

which are present in corresponding time intervals. 

2.2.3 Wavelet Transform 

Wavelet Transform (WT) provides simultaneous time-frequency information by overcoming 

problems related to resolution inherent to STFT. It offers variable resolution of the original 

signal where high frequencies are better resolved in time with less error compared to low 

frequencies that are resolved in frequency with less uncertainty. This Multiresolution Analysis 

(MRA) allows the signal with different frequencies to be analyzed with different resolution 

where each spectral component is not resolved equally as was the case with STFT [4].  

ECG signal is characterized by high frequency component with distinct spectral contents 

for short duration and low frequency components for relatively longer duration. The use of WT 

provides good time resolution for high frequency and good frequency resolution for low 

frequency ECG spectral components. 

The following section provides brief overview of theory of wavelet transform in terms of 

continuous and discrete signal transform with detailed account of application of discrete wavelet 

transform for the analysis of ECG signal including detection of cardiac events as discussed in 

section 2.1, signal de-noising and signal compression. The signal could be analyzed by choosing 

the most appropriate wavelet function which is a key advantage in contrast to single sinusoid 

feature of the Fourier analysis.  
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2.2.3.1 Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is defined as follows: 

𝐶𝑊𝑇𝑥
ѱ(𝜏. 𝑠) =  𝛹𝑥

ѱ(𝜏, 𝑠) =  
1

√|𝑠|
∫ 𝑥(𝑡) ∙ ѱ∗ (

𝑡−𝜏

𝑠
) 𝑑𝑡                                [2.4] 

The transformed signal is convolution of the wavelet function ѱ*(t) also known as the mother 

wavelet with signal x(t) and function of two variables; translation (τ) and scale parameter (s) 

respectively. The term mother wavelet represents a prototype for generating other window 

functions where the used windows are its dilated (s>1) or compressed (s<1) versions. A high 

scale provides bird’s eye view and spans over the entire signal whereas low scale provides a 

detailed view of the signal that usually lasts for a short time.  

The computation of CWT for a band limited signal involves limited interval of scales. 

The wavelet is placed at the beginning of the signal and set to (s=1), representing most 

compressed wavelet multiplied by the signal, integrated and subsequently normalized as shown 

in the equation (2.4). Once the wavelet function reaches the end of the signal, the scale is 

increased by a small value and the procedure is repeated for all s that culminates in the CWT of 

the given signal. According to equation (2.4), CWT is a representation of a square-integral 

function defined as: 

< 𝑓(𝑡), 𝑔(𝑡) > =  ∫ 𝑓(𝑡) ∙ 𝑔 ∗ (𝑡)𝑑𝑡                                          [2.5] 

By comparing equation (2.4) and (2.5), CWT could be thought of as the inner product of 

test signal with the basis function ѱ
τ,s
* (t): 

𝐶𝑊𝑇𝑥
ѱ(𝜏. 𝑠) =  𝛹𝑥

ѱ(𝜏, 𝑠) =  ∫ 𝑥(𝑡) ∙ ѱ𝜏,𝑠
∗ (𝑡) 𝑑𝑡                               [2.6] 
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where,  

ѱ𝜏,𝑠(𝑡) =  
1

√𝑠
ѱ (

𝑡−𝜏

𝑠
)                                                          [2.7] 

Thus CWT measures the similarity between the basis function and the signal’s frequency 

contents at a certain scale.     

2.2.3.2 Discrete Wavelet Transform 

The discretized continuous wavelet transform enables the digital computation of continuous 

wavelet transform by sampling CWT. It provides highly redundant information as far as the 

signal reconstruction is concerned. This redundancy in turn depends on the size of the signal and 

resolution and involves significant computation time and resources. When the energy of the 

signal is finite, the reconstruction of the original signal does not require all values of 

decomposition provided using the wavelet that satisfies some admissibility conditions. In this 

case, a continuous time signal is characterized by the knowledge of discrete waveform that 

provides sufficient information for analysis and synthesis of the original signal with a significant 

reduction in the computation time.  

The Discrete Wavelet Transform (DWT) provides easier implementation when compared 

to CWT. Like CWT, it provides time-scale representation of signal using digital filtering 

techniques where filters of different cutoff frequencies are used to analyze the signal at different 

resolution. Filtering a signal corresponds to the convolution of signal x(n) with the impulse 

response h(n) of the low pass filter as follows: 

𝑥(𝑛) ∗ ℎ(𝑛) =  ∑ 𝑥(𝑘) ∙ ℎ(𝑛 − 𝑘)                                          ∞
𝑘=−∞  [2.8] 



 

17 

The signal is also decomposed simultaneously using a high pass filter g(n). The 

decomposition obtained by successive high-pass and low-pass filtering of the time domain signal 

yield detailed coefficients and coarse approximation coefficients respectively. When they are 

applied to raw data vector it works as a smoothing filter to bring out data’s detail information [5]. 

These two filters are related to each other and known as quadrature mirror filter. Low-pass filter 

removes all the frequencies that are above half of the highest frequency in the signal thereby 

changing the resolution to one half after filtering operation. After filtering, half of the samples 

can be eliminated by subsampling by 2 without any loss of information according to the 

Nyquist’s rule as half the frequencies of the signal is removed by each of the corresponding 

filters. The process of discarding every other sample and leaving the signal with half the number 

of points which essentially doubles the scale constitutes level one decomposition and can be 

mathematically expressed as follows: 

𝑦𝑙𝑜𝑤(𝑘) =  ∑ 𝑥(𝑛) ∙ ℎ(2𝑘 − 𝑛)                                                ∞
𝑛=−∞  [2.9] 

𝑦ℎ𝑖𝑔ℎ(𝑘) =  ∑ 𝑥(𝑛) ∙ 𝑔(2𝑘 − 𝑛)                                              ∞
𝑛=−∞ [2.10] 

where y
low

(k) and y
high

(k) are the outputs of the low-pass and high-pass filters respectively 

following subsampling by 2. This hierarchical sub-band coding and multi-resolution analysis 

which sometimes called pyramidal algorithm [5] can be repeated to further increase the 

frequency resolution and the approximation coefficients decomposed with high and low pass 

filters and then down-sampled. Fig. 2.2 illustrates this procedure, where x(n) is the original signal 

to be decomposed using low-pass filter; h(n) and high-pass filter; g(n) respectively. The 



 

18 

frequency resolution (f) at each level is shown along with the corresponding approximation (A1, 

A2, etc.) and detailed (D1, D2, etc.) coefficients. 

Figure 2.2. Multi-resolution wavelet analysis 

The frequencies that are most prominent in the original signal will appear as high 

amplitudes in the region of the DWT signal that includes those frequencies. The frequency bands 

that are not very prominent in the original signal will have very low amplitudes and that part of 

the DWT signal can be discarded without any major loss of information – thus allowing data 

reduction [4]. 

The reconstruction procedure on other hand follows reverse order where signals at every 

level are up-sampled by 2, passed through the synthesis filters g'(n) and ℎ′(n) and then added. 

The reconstruction at each level is achieved by the following relationship. 

𝑥(𝑛) = ∑ ((𝑦𝑙𝑜𝑤(𝑘) ∙ ℎ(−𝑛 + 2𝑘)) + (𝑦ℎ𝑖𝑔ℎ(𝑘) ∙ 𝑔(−𝑛 + 2𝑘)))∞
𝑘=−∞                     [2.11] 
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The above relation shows analysis and synthesis filters being identical except for time 

reversal. Fig. 2.3 illustrates multi-resolution synthesis procedure where ℎ′(n) and g'(n) are low-

pass and high-pass reconstruction filters yielding approximation (A′3, A′2, etc.) and detail (D′3, 

D′2, etc.) coefficients at subsequent synthesis level. 

 

 Figure 2.3. Multi-resolution wavelet synthesis 

While wavelets are used in important applications such as computer vision, image 

compression and data analysis for characterizing behavior over a wide range of time scales, the 

wavelet techniques are equally useful in applications that involve signal de-noising. 

2.3 Signal De-noising using Wavelet Transform 

The process of noise removal or signal de-noising is the reconstruction of a signal from a noisy 

one. The two common approaches for signal de-noising include; de-noising in the original signal 

domain and de-noising in the processed domain. The wide range of applications in which de-

noising is important for signal analysis include medical imaging and data analysis where the 
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removal of noise from biomedical signals requires specific care to avoid loss of useful 

information during the de-noising process. The scope of this dissertation is limited to the 

recovery of ECG signal that has been contaminated by additive white Gaussian noise. Different 

works have been done to design filtering algorithms aimed at improving the SNR and recovery 

of ECG signal from different noisy environment [5-9]. The use of Kernel/Spline estimators 

suppresses noise by broadening and erasing certain features but do not resolve local structures of 

the signal that is characterized by different scale and amplitudes. The Fourier transform based 

signal filtering cannot separate noise from signal where the noise and signal spectrum overlap. 

For a broad class of signals that possess certain smoothness properties, wavelet based 

techniques are optimal or near optimal for signal recovery, the general wavelet-based method for 

de-noising involves: 

 Decomposition: Applying wavelet transform to the noisy signal at level N 

 Threshold detail coefficients: Appropriate threshold limit at each level to remove the 

noise 

 Reconstruct: Compute inverse wavelet transform of the threshold detail and using 

original approximation coefficients to obtain a de-noised signal 

The model of a noisy signal is the superposition of the signal f(i) and zero mean Gaussian 

white noise with variance of σ2: η(0, σ2) [10]. The model is mathematically expressed using 

following equation: 

𝑠(𝑖) = 𝑓(𝑖) + 𝑒(𝑖)                                                           [2.12] 

where: s(i) – signal to be de-noised, f(i) – noise free signal, e(i) – noise. 
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2.3.1 Choice of wavelet and resolution levels 

The selection of appropriate mother wavelet is important to better approximate and capture the 

transient spikes of the original signal; it will not only determine how well the original signal is 

estimated in terms of shape but will also influence the frequency spectrum of the de-noised 

signal. The choice of mother wavelet could be based on visual inspection of signal of interest; it 

could also be selected based on the correlation between the de-noised signal and signal of 

interest as follows [12]: 

𝛾 =
∑(𝑋−𝑋′)(𝑌−𝑌′)

√∑(𝑋−𝑋′)2(𝑌−𝑌′)2
                                                                [2.13] 

 The resulting transform is expected to be maximal when the input signal most resembles 

the mother wavelet. The process of wavelet transformation involves signal decomposition at 

different levels, the maximum level of wavelet transform applied to the signal depends on the 

signal length and reduction of noise required thus improving the signal-to-noise (SNR) of the 

original signal. Generally, when the signal has higher SNR with noticeable noise, the use of more 

levels in order to extract the fine details of the signal is desirable compared to the signal with 

poor SNR where the use of high levels say 8 or 10 of signal decomposition could remove much 

of the desired information that could otherwise be captured using lower 4 or 5 decomposition 

levels [12]. 

2.3.2 Wavelet Thresholding 

Wavelet thresholding is a non-linear process to recover signal of interest corrupted by noise. The 

threshold value is computed according to the model of the signal to be de-noised and the nature 

of noise [11]. Using the model as described above in equation (2.12), each coefficient is 
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compared against a threshold in order to decide whether or not it qualifies as a desirable part of 

original signal, this entails recovery of coefficients that are relatively stronger than the 

background noise. Coefficients having small magnitude are considered as pure noise and are 

subsequently set to zero. The process of wavelet thresholding is generally applied to the detail 

coefficients such that the computed threshold does not lead to a large bias of the estimator nor it 

increases the variance of the resulting threshold coefficients. The low frequency critical 

components of the signal as represented by approximation coefficients are less impacted by the 

noise and as such not subject to wavelet thersholding. 

The threshold for wavelet coefficients using either soft or hard thresholding rule is 

expressed as follows [11]: 

𝑇𝑠𝑜𝑓𝑡 = {
𝑥 − 𝑇ℎ𝑟      𝑥 > 𝑇ℎ𝑟
 0                |𝑥| ≤ 𝑇ℎ𝑟
 𝑥 + 𝑇ℎ𝑟  𝑥 < −𝑇ℎ𝑟

                                                                [2.14] 

𝑇ℎ𝑎𝑟𝑑 =  {
𝑥  |𝑥| ≥ 𝑇ℎ𝑟
0  |𝑥| < 𝑇ℎ𝑟

                                                                               [2.15] 

The simplest thresholding process or hard thresholding involve setting to zero the 

elements whose absolute values are lower than the threshold Thr. The process of soft 

thresholding is an extension of hard thresholding, first setting to zero the elements whose 

absolute values are lower that the threshold and then shrinking the nonzero coefficients towards 

0. The procedure to find the optimal value of threshold usually involve the estimation of noise 

level; if signal under analysis is corrupted by white noise with variance σ2, its standard deviation 

can be estimated from the median of its detail coefficients:  
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𝜎 =   (|𝑑(𝑗, 𝑘)|)  0.6745⁄                                                                [2.16] 

Where |d(j,k)| is the median absolute deviation and the factor in the denominator, the scale 

factor depends on the distribution of d(j,k) and is equal to 0.6745 for a normally distributed data. 

Donoho and Johnstone [97] proposed a popular estimate of the noise level σ based on Stein’s 

unbiased risk estimate (SURE) known as VisuShrink and is given as follows: 

𝑇ℎ𝑟 =  𝜎 √2. log (𝑁)                                                            [2.17] 

where N is the length of the ECG signal. The original ECG sequence could be reconstructed 

from the resulting threshold detail coefficients which yield denoised version of the original 

signal. 

2.4 ECG Signal Compression 

The monitoring of heart rate variability and diagnosis of cardiac abnormality involve ECG signal 

recording over long duration generating volume of data that lead to increasing demand on disk 

size to store information. In the particular case of data transmission across cellular networks and 

wireless communication systems it is very important to send maximum amount of data while 

using lowest possible network resources. 

Any data compression of bio-medical signal including ECG must ensure the preservation 

of diagnostic information for correct medical diagnosis, increase the capacity of storage systems 

and reduce the transmission time between the patient and the health care provider. The goal is to 

represent ECG signal using fewest number of bits as accurately as possible by employing either 

lossless or lossy compression. In lossless compression, the signal is reconstructed as exact replica 

of the original signal and in lossy compression the reconstruction is done with certain amount of 
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distortion, small enough not to modify the diagnostic contents of the original signal. It may be 

necessary to perform noise filtering of the ECG signal prior to signal compression. 

The factors that influence data compression largely depends on the sampling rate, signal 

bandwidth, noise level and the number of bits used to represent each sample of the original 

signal. A lossy compression method yield better compression performance at the cost of losing 

some clinical information whereas a lossless compression method offers moderate to high 

compression ratio without compromising the morphology of the original signal. The reliability 

requirement of signal transmission across wireless communication system makes lossless 

compression method for ECG compression an imperative choice for better medical diagnosis. 

ECG signal compression techniques could also be classified into the following three 

major categories: (I) Direct data compression, (II) Transform based compression and (III) 

Parameter extraction. Direct and transform based data compression methods are reversible where 

the original signal could be recovered whereas the signal recovery is irreversible in parameter 

extraction technique of signal compression. Direct data compression techniques could be viewed 

as intelligent subsampling of original signal where the selection of successive significant samples 

is referenced to the properties of preceding samples so that the reconstruction error remains 

within certain tolerance. The performance of direct compression method is sensitive to the noise 

level in the ECG signal. AZTEC and SAPA are two well-known examples of direct method of 

data compression [13, 14]. Transformation based compression technique such as wavelet 

transform localizes the signal component in time-frequency space using time-frequency kernel 

and detects the redundancies utilizing energy distribution in the spectrum. It assumes that a 

compact signal representation exists in terms of the coefficients of a truncated orthonormal 
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expansion. Besides wavelet transform, orthogonal transform and Discrete Fourier Transform 

have also been used for ECG data compression. 

The process of ECG data compression essentially involves two main steps: (I) reduction 

of redundancy in the original signal to produce a more compact signal (II) encoding the compact 

signal to produce an efficiently coded binary stream suitable for transmission or storage. 

The scope of study in this dissertation is focused on employing lossless coding for ECG 

data compression. The intention through the proposed work is achieving maximum data 

reduction while preserving the morphology of ECG signal when transmitting across wireless 

communication network. The choice of using Huffman coding – a statistical compression 

algorithm for ECG data compression is mainly due to its best performance in real time data 

streaming over high speed wireless communication network and offer best efficiency in terms of 

compression ratio. The design of compression algorithm and structure of input data plays an 

important role in achieving high compression ratio and allow large amount of data transmission 

using lowest possible network resources. There are several measures such as compression ratio, 

PRMSD, RMS etc. which are used to evaluate the performance of compression algorithms. 

(1) Compression Ratio (CR) expresses the effectiveness of data compression as a ratio between 

the number of bits required to represent the original signal to the number of bits required to 

represent the compressed signal. 

𝐶𝑅 =  
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑒𝑎𝑚

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
                                          [2.18] 

(2) Bit length defines the average number of bits required to represent a sample of the ECG 

signal and is independent of sample rate and word length in contrast to compression ratio 
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(3) Compression Percentage (CP) expresses the compression rate as a percentage of the size of 

the original data.  

𝐶𝑃 =  (1 − 1
𝐶𝑅⁄ ) ∗ 100 (%)                                                   [2.19] 

The performance of lossy compression algorithm is characterized by measurement of 

distortion in the reconstructed signal as excellent compression ratio and bit length could be 

achieved at the expense of a severely distorted signal. The conditions such as sampling 

frequency, bandwidth, precision and noise level use to record the original signal influence 

compression ratio.  

The following metrics define the complementary performance of compression algorithm 

such as accuracy with which the diagnostic information in the original ECG signal is preserved. 

For the original signal x(n) with N samples and the reconstructed signal x̃(n), the following are 

defined as: 

(4) Percent Root Mean Square Difference calculates the deformation in the reconstructed signal 

by point wise comparison with the original data. 

𝑃𝑅𝑀𝑆𝐷 =  √
∑ (𝑥(𝑛)−𝑥̃(𝑛))

2𝑁
𝑛=1

∑ 𝑥2𝑁
𝑛=1 (𝑛)

∗ 100 (%)                                     [2.20] 

Another definition of PRMSD called PRMSD1, is same as PRMSD but it subtracts the average 

value of signal 𝑥̅ from each original sample x(n) to eliminate the dc level. 

𝑃𝑅𝑀𝑆𝐷1 =  √
∑ (𝑥(𝑛)−𝑥̃(𝑛))

2𝑁
𝑛=1

∑ (𝑥(𝑛)−𝑥̅(𝑛))2𝑁
𝑛=1

∗ 100 (%)                                    [2.21] 
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(5) Root Mean Square Error measures error between the original and the reconstructed signal as 

follows: 

𝑅𝑀𝑆 =  √∑ (𝑥(𝑛)−𝑥̃(𝑛))
2𝑁

𝑛=1

𝑁
                                                                [2.22] 

(6) Signal-to-Noise Ratio measures the deformation as follows: 

𝑆𝑁𝑅 =  10 𝑙𝑜𝑔 
∑ (𝑥(𝑛)−𝑥̅(𝑛))

2𝑁
𝑛=1

∑ (𝑥(𝑛)−𝑥̃(𝑛))
2𝑁

𝑛=1

  (dB)                                           [2.23] 

where 𝑥̅ is the average value of the original signal. 

2.4.1 Huffman Coding 

Huffman code is a particular type of prefix code that is commonly used for lossless data 

compression where no symbol is a prefix of another symbol. The output from the Huffman’s 

algorithm can be viewed as a variable-length code where the length of the assigned code to each 

symbol depends on its probability of occurrence in the input data stream. Therefore, symbols that 

occur with highest frequency are generally represented using fewer bits than less common 

symbols which are assigned longer encoding bits. The process of coding is performed as follows 

and is shown in Fig. 2.4 for five symbols {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} with associated probabilities P (𝑎1) 

= 0.4, P (𝑎2) = 0.25, P (𝑎3) = 0.25, P (𝑎4) = 0.05, and P (𝑎5) = 0.05. 

1. The symbols are sorted and listed in order of descending probabilities. 

2. The two symbols with the lowest probabilities are combined to create a new element with 

probability that is the sum of both symbols. A binary code [0 or 1] is assigned to each 

branch element. 
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3. Repeat steps 1 and 2 until a single root node is obtained. 

4. The code for each symbol is obtained from the root of the tree to the corresponding 

symbol. 

 

 

 

 

 

 

 

Figure 2.4. Huffman Coding Tree 

The compression achieved by the Huffman code depends on the distribution of input 

symbols with average length that is close to the entropy of the source.  

The average length of Huffman encoded signal can be calculated as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑃𝑗 𝑙𝑜𝑔2
1

𝑃𝑗

𝑛−1
𝑗=0                                                     [2.24] 

Entropy is an important measure of data compression, it outlines the minimum number of 

bits required to encode the entire input signal with lossless compression and it could also be used 

to determine if data compression is worth attempting thereby evaluating the effectiveness of 
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compression. The number of bits in a compressed code when compared to the entropy of the 

signal reveal the optimal behavior of the compressed code. 

2.5 Conclusion 

In this chapter, various available signal processing techniques for ECG analysis in time, 

frequency and time-frequency domains were discussed. The use of time-frequency transform, 

such as wavelet transform greatly improves the clinical diagnosis and the correct interpretation 

of ECG signal. 

The use of next generation wireless technologies in health care has led to an increase in 

pervasive monitoring of patients’ vital signals. To make best use of bandwidth, speed and 

coverage of such infrastructure, data compression of original signal before transmitting it over 

the network is necessary. The choice of lossless data compression depends on system 

requirement and data structure to ensure reliable reconstruction of received signal.
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CHAPTER 3 

 

LITERATURE REVIEW 

 

 

Patient monitoring plays a pivotal role in mobile health care system where reliability, efficiency 

and context awareness are the key attributes that influence the architecture of the system. The 

exploitation of wireless communication and multimedia technologies and their subsequent 

integration in the traditional health care system offers variety of medical services that are not 

possible with standard telephony communication alone [15].  

This chapter presents a detailed overview of related works on pervasive patient 

monitoring of ECG signal using wireless infrastructure, signal processing techniques, effect of 

varying signal-to-noise ratio on the quality of the received signal and signal re-construction. 

3.1 ECG Transmission over Communication Network  

Mobile health system significantly impacts the delivery of healthcare services. The use of 2G 

and 2.5G networks to transmit 12-lead ECG to support transmission from ambulances and rural 

health emergency centers are shown in [16]. Istepanian et al demonstrate the transmission of 

ECG data and still images during emergency over GSM/GPRS network [17]. Wireless 

transmission of ECG and images from a rural health center and mobile ambulance using 

2G/2.5G infrastructure was demonstrated by Kyriacou et al. in [18]. Clarke [19] proposed a 

reference architecture using General Packet Radio Service (GPRS) network to transmit ECG data 

from ambulances with wireless connectivity to sensors. The transmission of ECG and other 

parameters to support patients with chronic heart diseases using Global System for Mobile 

Communication (GSM) network and internet was studied by Salvador et al. [20]. The use of 2G 
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to transmit prehospital ECG to receiving stations in hospitals from symptom onset to reperfusion 

in time sensitive situations is shown by Clemmensen et al. [21]. Ambulatory emergency support 

through wireless transmission of ECG and images using 2G network was investigated by 

Kyriacou et al. [22]. Giovas et al [23] used GSM network to transmit 12-lead ECG data from a 

moving ambulance to a central hospital. A mobile emergency care system using German 

Telekom mobile data network to investigate the technical and conceptual suitability of such 

system where hospital was being informed more than 20 minutes in advance about the patient 

condition was undertaken [24]. In Uppsala, Sweden, Karlsten et al. [25] designed a 2G based 

time sensitive telemedicine and decision support system where ECG data was transferred from 

ambulance to the receiving medical facility over data network. Yan Xiao et al. [26] implemented 

a mobile based telemedicine system to transmit video and ECG signal from moving ambulance 

to desktop computer of the receiving physician. Pre hospital care involving transmission of ECG 

as a pilot project in Singapore between three emergency ambulances and emergency department 

was studied by Anantharaman et al. [27]. Rodriguez et al. [28] designed a mobile ECG 

transmission system to transmit single-lead ECG data via GSM mobile telephony. 

AMBULANCE [29] was developed as a portable medical device that allowed telediagnosis and 

transmission of ECG and still images of patient from an emergency site to a physician using 

GSM network. The Poket Doktor [30] by Hall et al designed to provide a flexible, scalable 

method of storing and communicating critical electronic medical record information using 

personal handheld electronic devices. Reponen et al. [31] proposed a personal digital assistant 

(PDA) based on GSM digital cellular phone to transmit computerized tomography. Anliker et al 

[37] implemented an advanced care and alert portable telemedical monitor (AMON) for acute 
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cardiac and respiratory patients. The wearable medical monitor collects and evaluates multiple 

vital signs and transmit data to a medical center over GSM link. Arjun et al. [40] proposed a 

distributed secure system where biomedical data being collected by wearable sensors is 

transmitted to the health monitoring center over GSM network. Alahmadi et al. [39] proposed an 

approach based on smart mobile e-health monitoring system that uses multi-level intelligent 

framework to share and analyze patient’s data over GSM network. Prentza et al. [44] discuss e-

Vital and CHS projects that make use of a 2G network to bring improvement to emergency 

treatments, routine check-ups and medical consultations.  

The use of 3G mobile network to transmit bio-signals and images of the patient have 

been demonstrated by many applications. A cost-effective portable teletrauma sysem that 

simultaneously transmit patient’s video, medical images and ECG signal over a commercially 

available 3G wireless data service was demonstrated by Yuechun et al. [32]. OTELO [33], an 

end-to-end mobile tele-echography system used an ultra-light robot to evaluate quality of service 

issues defined in terms of throughput, packet-delay and jitter over a 3G connectivity link. 

Richard et al. [34] proposed a methodology for measurement-based performance assessment of 

3G network to support m-health services. An integrated 3G based ubiquitous health care 

monitoring system with ECG diagnosis algorithm on a cell phone is discussed in [35] where the 

physiological signs of a patient from a wireless sensor is transmitted directly to a PDA using 3G 

wireless network. MobiHealth [36] project was developed using UMTS network for continuous 

monitoring and transmission of vital signals to the hospital. Viruete et al [38] analyzed and 

measured a multi-collaborative wireless telemedicine system over a 3G mobile network. The 

system was designed to communicate from an ambulance with medical specialists in a remote 
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hospital through UMTS network. The performance analysis of joint transmission of voice, real-

time video, ECG, heart sound and file transfer for both uplink and downlink over High Speed 

Packet Access (HSPA) was presented by D. Vouyioukas et al. [41]. The quality of service (QoS) 

was examined by prioritization of m-health services and it suggested improvements to HSPA 

system parameters. The use of context information in mobile health service platform using 3G 

wireless communication network to support m-health service delivery was investigated by K. 

Wac et al. [42]. The proposed model made use of context information in a QoS aware m-health 

service platform in defining end-user QoS and impact of communication network infrastructure 

on the delivered QoS. 

R. Istepanian et al. [45] addresses some of the scenarios and characteristics of next 

generation mobile telemedicine systems that offer high communication speed, high capacity, low 

per-bit transmission cost and IP-based technology to deliver effective medical care and provide 

choices to both patients and care-givers that fit their lifestyle while maintaining access to critical 

medical information. In [43], Pravin et al highlight main problems associated with mobile patient 

monitoring system as follows:  

(a) Lack of sufficient bandwidth for transmitting bio-signals due to wireless network 

coverage or congestion resulting in high latency.  

(b) QoS requirements to transmit bio-signal also need to take into consideration issues 

such as network delay and jitter.  

(c) The loss of data during transmission over the network need to be minimized so that 

the health care professionals have access to high quality bio-signals. 
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3.2 ECG Compression Techniques 

The ECG signal represent various features of heart’s electrical activity and is characterized by P, 

Q, R, S and T wave respectively [46], where: 

(A): P wave marks the depolarization of atria. When the heart chambers receive the blood from 

the body, the left atrium is depolarized which collects the oxygen rich blood from the lungs and 

the right atrium collects oxygen deficient blood from the body. 

(B): QRS complex represents the depolarization of left ventricle which sends oxygen rich blood 

to the body and the right ventricle sends the oxygen deficient blood to the lung. Due to the larger 

muscle mass of ventricles the amplitude of QRS complex is significantly large compared to P-

wave. 

(C): T wave represents the ventricles repolarization or relaxed state before the atria prepares for 

the next beat. 

The real time ECG signal transmission over communication network for both monitoring 

and diagnostic purposes involve massive volume of digital data that makes ECG data 

compression an important area of research in biomedical signal processing. The preservation of 

main characteristic features of ECG signal during compression as defined above in (A-C) are 

important as it is used by cardiologists to analyze heart activity and note any disorder. The 

effectiveness of ECG compression technique is often described in terms of achieving a good 

compression ratio while preserving relevant signal information, execution time and measure of 

error loss as percent-mean-square difference [47]. Existing data compression techniques for ECG 

signals are broadly categorized as direct data and transformation methods. They are discussed 

below: 
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3.2.1 Direct Method for ECG Data Compression 

The direct method of ECG data compression involves detection and elimination of redundancies 

and yield minimum distortion. Dedicated techniques such as Amplitude Zone Time Epoch 

Coding (AZTEC) by Cox et al. [48] for preprocessing of real-time ECG signal were developed 

for rhythm analysis. The algorithm converts raw ECG data into horizontal lines (plateaus) and 

slopes. The amplitude of the line and its length are stored as value for each plateau and the value 

of slope is saved whenever a plateau of three samples or more can be formed. The reconstruction 

of the signal is achieved by expanding plateaus and slopes into discrete sequence of data points. 

Compression ratio of 5:1 for ECG signal sampled at 200Hz with 12bit resolution is achieved per 

ref. [50]. 

The Turning Point (TP) data reduction algorithm by Mueller [49] processes three data 

points at a time and eliminate one point from every pair of points in the ECG trace. This depends 

on which point preserves the slope of the original three points. The turning point method yield a 

compression factor of 50% whereby the reconstructed signal resembles the original signal with 

some distortion [50]. 

The coordinate reduction time encoding system (CORTES) algorithm by Abenstein and 

Tompkins [51] combines the best features of TP and AZTEC to reduce data without losing the 

clinical information content. CORTES applies TP algorithm to the high frequency regions and 

AZTEC algorithm to the isoelectric regions of the ECG signal. The signal reconstruction is 

achieved by expanding the plateaus into the discrete data points and interpolating between TP 

data points. As per [50], CORTES algorithm reports a compression ratio of 4.8:1. 
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Gardenhire [52] reported ECG compression method – Fan, by replacing the original 

signal with straight line segments such that none of the points lies farther from line segment than 

predetermined threshold. A related technique that also approximates ECG waveform with 

straight line segments known as Scan-Along Polygon Approximation (SAPA) was presented by 

Ishijima et al. [53] as set of three algorithms. The SAPA-2; one of the three SAPA algorithms 

showed best result by comparing the deviation between the approximated line and the original 

signal against a predetermined error tolerance. 

Stewart et al. [54] described delta coding with threshold for compression of three lead 

ECG signal by eliminating data according to a preset error threshold. The data is considered 

redundant for elimination when absolute value of the difference between adjacent samples in any 

of the three ECG lead signal is less than the threshold, otherwise it is retained. Ruttimann et al. 

[55] studied the performance of Differential Pulse Code Modulation (DPCM) system with linear 

prediction as a function of the order of the predictor. They concluded that linear predictor of 

order higher than two does not result in increased data compression. The performance 

comparison of DPCM using a second order linear predictor versus a second order interpolator 

was demonstrated [56] with results showing superior performance with the latter. 

J. R. Cox et al. [57] proposed Huffman coding technique by employing second order 

predictor system for ECG data compression. The code words of resulting second difference ECG 

data was partitioned into two sets: frequent data set and an infrequent data set. Huffman coding 

was applied to the frequent code words set while fixed word length coding was applied to the 

infrequent set. ECG data compression using Huffman coding is also implemented in [58] and 

[59]. 
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The implementation of two asynchronous data compression techniques is described based 

on picking out the peaks of the ECG signal in one case and adaptive peaking in the second case 

as per ref. [60]. The basic operation of such techniques involve extraction of parameters such as 

amplitude, slope changes and points of maxima and minima. Signal reconstruction is 

accomplished by joining these points by polynomial fitting techniques such as straight lines. T. 

S. Ibiyemi [61] proposed a data compression technique on similar principle by clipping the 

signal and using zero-crossing intervals as features. The system was validated by experiments 

using ECG of rat’s heart. Imai et al. [62] proposed efficient encoding method for ECG using 

spline functions. The method consists of two steps; extraction algorithm that extracts ECG 

features from A/D converter and restoration algorithm that restores the original ECG signal from 

the extracted samples using spline functions. The spline function performs a smoothing operation 

and thereby achieves root mean square error that is half the AZTEC method for given 

compression ratio. 

Jalaleddine et al. [63] proposed data compression method for ECG by substituting a 

periodic signal by one cycle period and a count of the total number of cycles that occur, in the 

signal. The underlining assumption treats ECG as quasi-periodic signal that does not change 

significantly as a result of change in the heart function. The proposed scheme involves detection 

of QRS complex as a repetitive wave in the ECG signal. The difference between generated QRS 

template and actual QRS complex result in a low amplitude and slow varying difference signal 

that when compressed using Fan compression algorithm results in better performance in terms of 

higher compression ratio. In another study, preliminary evaluation of this scheme yielded no 

significant improvement over Fan compression algorithm [50]. 
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3.2.2 Transform Method for ECG Data Compression 

The use of transformation data compression techniques for ECG compression involve input 

signal preprocessing by orthogonal transforms such as Karhunen-Loeve Transform (KLT), Fast 

Fourier Transform (FFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform 

(DWT). The compression is achieved based on energy distribution of the signal, properly 

encoding the transformed output and reducing the data required to adequately represent the 

original signal. The signal reconstruction involves inverse transformation to recover the original 

signal without losing relevant clinical information for accurate detection and classification. Al-

Nashash [64] modeled ECG as quasi-periodic signal and proposed a data compression technique 

using Fourier series by estimating Fourier coefficients using FFT algorithm or adaptive least 

mean square (LMS) algorithm. Saberkari et al. [65] investigated a different frequency domain 

transform for ECG signal compression. They used compression ratio (CR) and percent root mean 

square difference (PRD) as figure of merit and showed that Discrete Sine Transform (DST) has 

the least compression ratio whereas Discrete Cosine Transform (DCT-II) offered most percent 

root mean square difference. The DCT is widely used for data compression such as image, 

speech and ECG as it yields nearly optimal performance in the signals that exhibit high 

correlation in adjacent samples. Batista et al. [66] proposed ECG compression method based on 

optimized quantization of DCT coefficients that was previously used for image compression. 

The proposed method achieved CR of 9.3:1 for PRD equal to 2.5%. Allen et al. [67] studied the 

tradeoffs between accuracy, speed and compression ratio using DCT for ECG data compression. 

The goal of the study was to select a small subset of transform coefficients that contain most 

information about the signal without introducing noticeable error during reconstruction. The use 
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of DCT and Laplacian Pyramid (LP) based compression method for ECG signal was proposed 

by Aggarwal et al. [68]. The proposed method involves transformed coefficients being threshold 

using user defined PRD. The lookup table then stores the map for zero and non-zero coefficients, 

the non-zero coefficients are quantized by Max-Lloyd quantizer followed by arithmetic coding. 

Huffman coding was used to encode the lookup table. Ahmed et al. [70] studied the ECG data 

compression using Haar transform, DCT and KLT for a single lead canine ECG to achieve CR of 

3:1. Reddy et al. [75] used Fourier descriptors for ECG data compression. The two-lead ECG 

data segmented into QRS complex and S-Q interval are Fourier transformed with an overall 

compression ratio of 7. Lee et al. [76] described a real time ECG compression algorithm for a 

digital holter system that achieved a CR of 8.82:1 and PRD of 1.82. The algorithm involved 

applying DCT on a processed ECG data which is encoded using Huffman coding compression to 

achieve high level of compression.  

The use of Walsh transform to implement a real-time ECG data compression system was 

investigated [77] using mean squared error (MSE) and linear filtering techniques. Frangakis et 

al. [78] also proposed a fast Walsh transform based ECG data compression algorithm for multi-

microprocessor based system. De Perez et al. [79] presented ECG data compression technique 

based on exponential quantization of ECG Walsh spectrum. The proposed method yields CR of 

8:1.5 with additional reduction of high frequency recording noise besides simplicity and speed. 

Shridhar et al. [80] compared the performance of three data reduction techniques for ECG data 

compression: linear prediction using DPCM, FT and slope change detection. Their analysis 

revealed that slope change detection when applied to pre-filtered data showed a MSE below 1% 

compared to FT for a single lead ECG compression. 
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KLT transform also known as Principal Component transform represents the input signal 

with least number of orthonormal functions for a given RMS error [50]. Olmos et al. [69] 

analyzed Karhunen-Loeve transform (KLT) technique for ECG data compression. The 

application of KLT to entire beat and to independent windows yielded CR of 12.1 with a mean 

MSE of 0.3% and CR of 17.21 with a mean MSE of 0.44% respectively. Womble et al. [71], 

[73]- [74] used data compression technique using Karhunen-Loeve series for ECG data to 

achieve CR of 12:1. Young et al. [72] analyzed the application of principal component theory or 

KLT to study ECG classification. 

The use of Discrete Wavelet Transform (DWT) makes it suitable to analyze and extract 

information from non-stationary signals such as ECG. The time-frequency resolution properties 

along with localization feature of wavelet makes it a robust tool to study the behavior of non-

stationary signals that are characterized by drifts and abrupt changes. Rajoub [81] used DWT to 

pre-processed ECG signal and achieved a compression ratio of 24:1 with PRD as low as 1.08% 

by using run length encoding (RLE) on resulting wavelet decomposition coefficients and binary 

representation for significant coefficients. Yan et al. [82] proposed ECG data compression 

method based on integer to integer wavelet transform for a Holter system. The delay 

performance of ECG compression algorithm for time-critical data transmission over CDMA 

network, based simulation model with mobile channel noise was studied by Kim et al. [83]. They 

proposed a wavelet-based ECG compression algorithm with a low delay property for 

instantaneous and continuous ECG transmission over wireless network by waveform 

partitioning, adaptive frame sizing and wavelet compression to attain low delay and high signal 

fidelity. Istepanian et al. [17] evaluated ECG compression performance using optimal zonal 
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wavelet coding (OZWC) and wavelet transform of higher order statistics based coding 

(WHOSC) for real time low bandwidth telemedicine application. The proposed method enhances 

medical data compression with high compression ratio (CR) and low normalized rms error 

(NRMSE). Ramakrishnan et al. [84] showed that ECG coding scheme involving linear prediction 

of significant wavelet coefficients increased the compression ratio while the error remained 

uniform throughout the ECG cycle and QRS complex remained free of maximum reconstruction 

error. MULTIWAVE – a multiresolution wavelet based algorithm for ECG data compression by 

Thakor et al. [85] achieved variable data compression rates of 2:1, 4:1, 8:1 and so on at each 

successive scale better than TURNING POINT algorithm. The algorithm decomposed the signal 

into coarse and fine samples and analyzed the signal at successive scales by convolution with an 

orthonormal set of filters, followed by decimation. The 1D case of set partitioning in hierarchical 

trees compression algorithm (SPIHT) used by Lu et al. [86] to compress wavelet ECG data 

codec was more efficient in terms of computation as well as compression when compared to 

other ECG compression schemes.  

Hilton [87] proposed wavelets and wavelet packet based compression algorithm to 

compress Holter ECG data by 8:1 compression. A similar approach using wavelet packet based 

algorithm for the compression of a single lead ECG signal was investigated by Brian [89] using 

KL transform.  

Al-Busaidi et al. [88] used ECG compression technique involving discrete wavelet 

transform (DWT), bit-field preserving (BFP) and run length encoding (RLE) method to achieve 

desired data compression. The compressed packets are decomposed into blocks and compressed 

again to fit inside the available payload before transmission. Crowe et al. [90] investigated the 
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application of wavelet transform to the study of ECG and heart rate variability data for data 

compression using efficient pyramidal algorithm. Ahmeda et al. [91] described a hybrid 

technique based on combination of wavelet transform and linear prediction to achieve effective 

data compression of 20:1 with PRD less than 4%. A novel algorithm for wavelet based ECG 

signal coding was proposed by Kumari et al. [92] by using both horizontal and vertical bit 

scanning – a concept similar to Huang’s Partition Parity Coding (PPC) and intra band coding to 

achieve high compression ratio. The subsequent application of adaptive entropy coding provided 

high quality signal reconstruction. 

Chen et al. [94] proposed wavelet based method for the compression of ECG data. It 

involved the application of DWT to the ECG signal where the resulting DWT coefficients are 

quantized with uniform scalar dead-zone equalizer and subsequently decomposed into four 

symbol streams. An adaptive arithmetic coder was then used for entropy coding of the symbol 

stream resulting in a CR of 14:1. Blanco et al. [94] studied the impact of increasing compression 

ratio on the quality of reconstructed signal using wavelet transform. The quality of the 

reconstructed signal should be analyzed together with different parameters, such as a joint use of 

CR and PRD otherwise considering only the PRD and the CR parameters independently could 

hide the real performance of the compressor. 

Manikandan et al. [95] proposed a wavelet threshold based ECG signal compression 

technique using uniform scalar zero zone quantizer (USZZQ) and Huffman coding on 

differencing significance map (DSM). The significant wavelet coefficients selected based on 

energy efficiency at each sub-band are quantized with uniform scalar zero zone quantizer. The 

indices of wavelet coefficients are stored in significance map which is encoded using Huffman 
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coding. The proposed technique achieved a CR of 18.7:1 with lower PRD on record 117 from 

MIT-BIH arrhythmia data base compared to other threshold based methods. 

Brechet et al. [96] discussed ECG and EMG data compression based on discrete wavelet 

packet transform decomposition. The mother wavelet was selected based on minimal distortion 

of the decoded signal for fixed compression ratio. The basis of wavelet packets was selected for 

given mother wavelet. The proposed method yields a CR in the range of 50%-90%.  

3.3 Conclusion 

In this chapter various techniques discussed in the published literature on ECG data compression 

are presented. The context was achieving high data compression and high quality reconstruction 

of ECG signal. The techniques are divided into two main groups based on direct and transform 

based signal compression methods. The criteria to choose one over the other depends on 

preserving minimum essential information required to ensure reliable clinical diagnosis of ECG 

signal.  
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CHAPTER 4 

 

M-ECG ALGORITHM 

 

 

This chapter presents a simple and reliable algorithm for recovery of ECG signal that is 

corrupted by additive white Gaussian noise (AWGN) at moderate to low SNR conditions with 

relevant assumptions. When the signal is transmitted over wireless network, it picks up several 

sources of noise that prevents accurate extraction of useful information making it irrelevant for 

clinical analysis. Different studies have proposed design of algorithms to improve signal-to-noise 

(SNR) and ECG recovery under different noise conditions [6], [8], [98]. In this context, m-ECG 

algorithm is developed that provides adequate and near accurate recovery of ECG signal that is 

corrupted by WGN. 

4.1 Problem Framework 

The m-ECG algorithm is based on wavelet transform applied to ECG signal followed by data 

pre-processing and signal encoding. This technique provides high compression with less 

reconstruction error when the signal is subjected to extreme low SNR conditions.  

The signal reconstruction involves data decoding, data reassembly, features detection and 

recovery and signal denoising to recover the original signal. The proposed algorithm is novel and 

efficient to reduce the data size while maintaining the reconstructed signal quality.  

The ECG signal processing model in the context of the stated problem framework is 

depicted in Fig. 4.1.
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Figure 4.1. ECG signal processing model 
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The input ECG signal for testing and evaluation is sourced from MIT-BIH Arrhythmia 

Database [99]. The performance of m-ECG algorithm is measured in terms of compression ratio 

(CR) and distortion of the reconstructed ECG signal. A more detailed description of ECG 

processing model using m-ECG algorithm is shown in Fig. 4.2. 

    

 

Figure 4.2. ECG signal processing using m-ECG algorithm  

The design and implementation of m-ECG algorithm in context of data analysis module 

and data recovery module along with associated components are discussed in the following 

sections. 
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4.2 Data Analysis Module 

The data analysis module performs signal pre-processing on input ECG signal using discrete 

wavelet transform, data segmentation and data encoding. The ECG signal [99] is used as input 

and all components of data analysis module are implemented in MATLAB [100]. The key 

characteristic features of input ECG signal are as follows: 

1. Length of signal: 1024 samples (simulation results are shown using 300 samples) 

2. Frequency range: 0.01Hz – 300Hz 

3. Amplitude range: 0.05mV – 4.0mV  

The detail of each block is discuss in the following sections.  

4.2.1 Compression of ECG signal 

The time localized feature extraction of non-stationary ECG signal is accomplished using 

wavelet function, Daubechies at level 4 – db4. The choice of wavelet at this decomposition level 

not only reduces the amount of data required to adequately represent the original signal but also 

provides better approximation by capturing the transients of the original signal. The multilevel 

wavelet decomposition of input signal yields approximate coefficient cA4 and detailed cD1-cD4 

coefficients.  

The selection of significant DWT coefficients involves the application of soft fixed-form 

threshold that realizes minimum of the maximum mean square error performance multiplied by a 

small factor proportional to logarithmic length of input signal.  

𝑇ℎ𝑟 =  √2. log (length of signal)                                                           [4.1] 
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The resulting level 1 compressed signal as shown in Fig. 4.3 contains fewer detailed 

coefficients that accurately approximate the original signal. This compressed signal retains 80% - 

85% energy of the original ECG signal by preserving key characteristic features and removing 

redundant samples. 

 

 

 

 

 

 

 

Figure 4.3. Level 1 compression using DWT – Original (RED), Compressed (BLACK) 

4.2.2 Data Segmentation 

The compressed ECG samples are represented using n-uint16 where each sample is stored as 

uint8 sign and uint8 data. If the data is accurately stored using uint8 then its associated uint8 sign 

contains all zeros otherwise it holds sign or overflow bits.  

The data segmentation process structures the compressed data in separate sign and data 

bits in order to achieve higher compression by using Huffman encoding where sign symbols 

stream and data symbols stream are encoded separately.  

The data segmentation process is shown in Fig. 4.4 where each sample of compressed 

ECG signal is represented using sign and data bits. 
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Figure 4.4. Data segmentation of compressed ECG signal 

4.2.3 Data Encoding 

The lossless compression at level 2 involve Huffman coding of the previously compressed ECG 

signal. The compressed ECG signal with data and sign symbols are encoded separately to 

achieve maximum data reduction while preserving key characteristic features.  

The length of code depends upon the statistical frequency of each symbol in the ECG 

signal. The sign (ss#) and data symbols (ds#) are grouped separately as shown in Fig. 4.5. The 

associated probabilities of sign and data symbols are used to create Huffman code dictionary 

(Table 4.1) that contains information of distinct signal values with associated code-words. The 

average length among all code-words in the dictionary is weighted according to the symbol 

probability and number of bits in the code vector. The effectiveness of compression is then 

measured in terms of compression ratio:  

𝐶𝑅 =  
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑒𝑎𝑚

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
                                                      [4.2] 
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Figure 4.5. Sign and data symbols encoding  

The application of Huffman coding to ECG signal results in compressed signal with total 

length of code equals to 4.789 bits compared to 4.735 bits which is the entropy of the signal 

obtained using equation (2.23). The structure of the input data, the design of the compression 

scheme and its implementation are the key factors in determining the compression ratio and 

deciding whether the data compression is beneficial (reducing the amount of data to be sent over 

the network) or deteriorates the performance of the communication network by increased delay 

associated with data compression and decompression. 

 This completes the pre-processing of the ECG signal by using data analysis module. The 

impact of AWGN on encoded sign and data symbol stream will be discussed in the next section.  
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Table 4.1. Encoded ECG signal using Huffman coding 

Symbols Probability Code Vector Length of each code  

0 0.133 [0,1,1] 0.399 

1 0.013 [1,0,0,1,1,1] 0.078 

2 0.008 [0,1,0,1,0,0,0] 0.056 

3 0.003 [1,1,0,0,0,0,0,1] 0.024 

4 0.005 [0,1,0,0,1,0,0,0] 0.04 

7 0.002 [0,1,0,0,1,0,0,1,1] 0.018 

8 0.002 [0,1,0,0,1,0,0,1,0] 0.018 

9 0.007 [1,0,0,0,1,1,1] 0.049 

10 0.002 [0,1,0,0,1,1,1,0,1] 0.018 

12 0.005 [1,1,1,0,1,1,1] 0.035 

13 0.005 [1,1,1,0,1,1,0] 0.035 

16 0.003 [1,1,0,0,0,0,0,0] 0.024 

18 0.003 [1,1,0,0,0,0,1,1] 0.024 

20 0.003 [1,1,0,0,0,0,1,0] 0.024 

21 0.002 [0,1,0,0,1,1,1,0,0] 0.018 

22 0.002 [0,1,0,0,1,1,1,1,1] 0.018 

24 0.003 [1,1,0,0,1,1,0,1] 0.024 

26 0.003 [1,1,0,0,1,1,0,0] 0.024 

27 0.002 [0,1,0,0,1,1,1,1,0] 0.018 

28 0.003 [1,1,0,0,1,1,1,1] 0.024 

30 0.002 [0,1,0,0,1,1,0,0,1] 0.018 

32 0.003 [1,1,0,0,1,1,1,0] 0.024 

33 0.002 [0,1,0,0,1,1,0,0,0] 0.018 

36 0.002 [0,1,0,0,1,1,0,1,1] 0.018 

37 0.002 [0,1,0,0,1,1,0,1,0] 0.018 

38 0.002 [1,0,0,0,0,0,1,0,1] 0.018 

40 0.002 [1,0,0,0,0,0,1,0,0] 0.018 

41 0.003 [1,1,0,0,1,0,0,1] 0.024 

42 0.002 [1,0,0,0,0,0,1,1,1] 0.018 

47 0.003 [1,1,0,0,1,0,0,0] 0.024 

48 0.002 [1,0,0,0,0,0,1,1,0] 0.018 

49 0.002 [1,0,0,0,0,0,0,0,1] 0.018 

51 0.002 [1,0,0,0,0,0,0,0,0] 0.018 

52 0.002 [1,0,0,0,0,0,0,1,1] 0.018 
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Symbols Probability Code Vector Length of each code  

56 0.008 [0,1,0,1,0,1,1] 0.056 

59 0.005 [1,1,1,0,0,0,1] 0.035 

61 0.002 [1,0,0,0,0,0,0,1,0] 0.018 

62 0.003 [1,1,0,0,1,0,1,1] 0.024 

64 0.002 [1,0,0,0,0,1,1,0,1] 0.018 

66 0.005 [1,1,1,0,0,0,0] 0.035 

68 0.002 [1,0,0,0,0,1,1,0,0] 0.018 

69 0.002 [1,0,0,0,0,1,1,1,1] 0.018 

72 0.002 [1,0,0,0,0,1,1,1,0] 0.018 

74 0.003 [1,1,0,0,1,0,1,0] 0.024 

78 0.003 [1,0,1,1,0,1,0,1] 0.024 

80 0.002 [1,0,0,0,0,1,0,0,1] 0.018 

92 0.002 [1,0,0,0,0,1,0,0,0] 0.018 

97 0.003 [1,0,1,1,0,1,0,0] 0.024 

125 0.002 [1,0,0,0,0,1,0,1,1] 0.018 

128 0.002 [1,0,0,0,0,1,0,1,0] 0.018 

130 0.002 [0,1,0,1,1,0,1,0,1] 0.018 

144 0.002 [0,1,0,1,1,0,1,0,0] 0.018 

146 0.002 [0,1,0,1,1,0,1,1,1] 0.018 

155 0.002 [0,1,0,1,1,0,1,1,0] 0.018 

160 0.003 [1,0,1,1,0,1,1,1] 0.024 

169 0.002 [0,1,0,1,1,0,0,0,1] 0.018 

175 0.002 [0,1,0,1,1,0,0,0,0] 0.018 

188 0.002 [0,1,0,1,1,0,0,1,1] 0.018 

190 0.003 [1,0,1,1,0,1,1,0] 0.024 

194 0.002 [0,1,0,1,1,0,0,1,0] 0.018 

195 0.002 [0,1,0,1,1,1,1,0,1] 0.018 

197 0.003 [1,0,1,1,0,0,0,1] 0.024 

199 0.002 [0,1,0,1,1,1,1,0,0] 0.018 

200 0.005 [1,1,1,0,0,1,1] 0.035 

201 0.002 [0,1,0,1,1,1,1,1,1] 0.018 

202 0.007 [1,0,0,0,1,1,0] 0.049 

203 0.002 [0,1,0,1,1,1,1,1,0] 0.018 

204 0.002 [0,1,0,1,1,1,0,0,1] 0.018 

206 0.002 [0,1,0,1,1,1,0,0,0] 0.018 

207 0.002 [0,1,0,1,1,1,0,1,1] 0.018 
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Symbols Probability Code Vector Length of each code  

208 0.012 [1,1,0,1,0,1] 0.072 

209 0.002 [0,1,0,1,1,1,0,1,0] 0.018 

210 0.01 [1,1,1,0,1,0] 0.06 

211 0.005 [1,1,1,0,0,1,0] 0.035 

212 0.006 [1,1,0,0,0,1,1] 0.042 

213 0.006 [1,1,0,0,0,1,0] 0.042 

214 0.008 [0,1,0,1,0,1,0] 0.056 

215 0.003 [1,0,1,1,0,0,0,0] 0.024 

216 0.013 [1,0,0,1,1,0] 0.078 

217 0.007 [1,0,0,1,0,0,1] 0.049 

218 0.005 [1,1,1,1,1,0,1] 0.035 

219 0.003 [1,0,1,1,0,0,1,1] 0.024 

220 0.002 [0,1,0,1,0,0,1,0,1] 0.018 

221 0.006 [1,0,1,0,1,0,1] 0.042 

222 0.013 [1,0,0,1,0,1] 0.078 

223 0.002 [0,1,0,1,0,0,1,0,0] 0.018 

224 0.018 [0,1,0,0,0,1] 0.108 

225 0.007 [1,0,0,1,0,0,0] 0.049 

226 0.012 [1,1,0,1,0,0] 0.072 

227 0.008 [1,0,0,0,1,0,1] 0.056 

228 0.006 [1,0,1,0,1,0,0] 0.042 

229 0.01 [0,1,0,0,0,0,1] 0.07 

230 0.01 [0,1,0,0,0,0,0] 0.07 

232 0.006 [1,0,1,0,1,1,1] 0.042 

233 0.003 [1,0,1,1,0,0,1,0] 0.024 

234 0.008 [1,0,0,0,1,0,0] 0.056 

235 0.003 [1,0,1,1,1,1,0,1] 0.024 

236 0.003 [1,0,1,1,1,1,0,0] 0.024 

237 0.002 [0,1,0,1,0,0,1,1,1] 0.018 

238 0.003 [1,0,1,1,1,1,1,1] 0.024 

239 0.003 [1,0,1,1,1,1,1,0] 0.024 

240 0.025 [1,0,1,0,0] 0.125 

241 0.005 [1,1,1,1,1,0,0] 0.035 

242 0.02 [1,1,1,1,0] 0.1 

243 0.003 [1,0,1,1,1,0,0,1] 0.024 

244 0.005 [1,1,1,1,1,1,1] 0.035 

.  
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Symbols Probability Code Vector Length of each code  

245 0.003 [1,0,1,1,1,0,0,0] 0.024 

246 0.006 [1,0,1,0,1,1,0] 0.042 

248 0.003 [1,0,1,1,1,0,1,1] 0.024 

249 0.003 [1,0,1,1,1,0,1,0] 0.024 

250 0.008 [0,1,0,0,1,0,1] 0.056 

251 0.005 [1,1,1,1,1,1,0] 0.035 

253 0.002 [0,1,0,1,0,0,1,1,0] 0.018 

254 0.023 [1,1,0,1,1] 0.115 

255 0.345 [0,0] 0.69 

 

4.3 Analyzing ECG signal impairment due to AWGN 

The studied model of noisy ECG signal as discussed in section 2.3 is the superposition of the 

signal f(i) and a zero mean Gaussian white noise with variance of σ2: η (0, σ2):  

𝑠(𝑖) = 𝑓(𝑖) + 𝑒(𝑖)                                                           [4.3] 

where s(i) is the signal to be de-noised, f(i) is the noise free signal and e(i) is the noise. The noise 

e(i) is additive, statistically independent and impacts every single frequency component over the 

whole length of received ECG signal.  

The problem implementation uses additive white Gaussian noise (AWGN) with 

varying signal-to-noise ratio and measures the distortion of reconstructed ECG signal. The 

AWGN does not account for fading, interference, dispersion or frequency selectivity. It is a 

simple model that is useful in understanding system behavior and channel background noise 

before other impairments are considered. 

The study of radio propagation model to predict path loss or effective coverage area of 

the transmitter is beyond the scope of research. 



 

 

55 

The received ECG signal that is corrupted by AWGN at SNR of 20dB, 15dB, 10dB and 

3dB is shown in Fig. 4.6 – Fig. 4.9 respectively. The interference with noise results in severe 

distortion and attenuation of P-wave, QRS-complex and T-wave which are the characteristic 

features of ECG signal. As the noise level continues to increase, the detection and recovery of 

these features under poor SNR becomes extremely challenging.  

The m-ECG algorithm addresses the problem related to reliable and clinically acceptable 

ECG signal recovery even under poor SNR conditions. The recovered ECG signal in general and 

the reconstructed QRS complex in particular shows high fidelity and exceptional reproducibility 

when compared to the studies undertaken by Chourakri et al. [5] and Rabiul et al. [101].  

The decoding of received signal, reassembly, detection and recovery of key characteristic 

features using m-ECG algorithm is discussed under data recovery module.   

 

 

 

 

 

 

 

Figure 4.6. ECG signal corrupted by AWGN at 20dB SNR 
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Figure 4.7. ECG signal corrupted by AWGN at 15dB SNR 

 

 

 

 

 

 

 

 

Figure 4.8. ECG signal corrupted by AWGN at 10dB SNR 
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Figure 4.9. ECG signal corrupted by AWGN at 3dB SNR 

4.4 Data Recovery Module 

The decoding, recovery and reconstruction of received ECG signal that is corrupted by WGN is 

the key deliverable of data recovery module. The recovery of ECG signal involves the decoding 

of received symbols. The resulting sign and data symbols are then combined to create 

reassembled ECG signal which is then used for the detection of P wave, QRS complex and T 

wave. The detection process also uses empirical threshold to isolate noise samples. The 

recovered QRS complex is then combined with the denoised samples of P-wave and T-wave 

using linear interpolation and yield reconstructed ECG signal.  

The distortion of recovered ECG signal using m-ECG algorithm is measured in terms of percent 

root mean square difference (PRMSD), compression ratio (CR) and signal-to-noise ratio (SNR) 

as shown in Table 4.4. 
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4.4.1 Data Decoding 

The received sign (rec_enc_sign_s#) and data (rec_enc_data_s#) symbols are decoded using 

Huffman decoding. The decoder use symbol probabilities to decompress the data as sign (ss#) 

and data (ds#) as shown in Fig. 4.10. These sign and data symbols are then reassembled during 

data reassembly process. 

 

Figure 4.10. Sign and data symbols decoding 
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4.4.2 Data Reassembly 

The data reassembly process combines decoded sign (ss#) symbol with its associated data 

symbol (ds#) and yield an ECG sample as shown in Fig. 4.11. This process is repeated for all 

decoded sign and data symbols and the resulting ECG samples are sequentially combine to create 

reassembled ECG signal as shown in Fig. 4.12. This reassembled ECG signal is used for the 

detection and recovery of P wave, QRS complex and T wave. 

 

Figure 4.11. Data reassembly process 
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Figure 4.12. Reassembled ECG signal at 3dB SNR 

Table 4.2 shows first 300 sign and data symbols that were used to create the reassembled ECG 

signal at SNR of 3dB. 

Table 4.2. Reassembled sign and data symbols  

Symbol # Sign symbols: ss# Data symbol: ds# 

0 255 243 

1 255 159 

2 255 157 

3 0 152 

4 0 110 

5 0 98 

6 0 64 

7 255 205 

8 255 200 

9 255 124 

10 255 123 
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Symbol # Sign symbols: ss# Data symbol: ds# 

11 255 111 

12 255 100 

13 255 170 

14 255 213 

15 255 255 

16 255 24 

17 255 183 

18 255 176 

19 0 53 

20 0 14 

21 0 141 

22 0 108 

23 0 76 

24 0 70 

25 0 38 

26 0 85 

27 0 146 

28 0 85 

29 0 103 

30 0 0 

31 0 0 

32 0 116 

33 0 65 

34 0 142 

35 0 128 

36 0 131 

37 0 73 

38 0 110 

39 0 107 

40 0 88 

41 0 39 

42 0 100 

43 0 41 

44 255 238 

45 255 144 

46 255 170 

47 255 229 

48 255 159 
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Symbol # Sign symbols: ss# Data symbol: ds# 

49 255 226 

50 255 40 

51 255 189 

52 255 219 

53 255 138 

54 255 146 

55 255 162 

56 255 201 

57 255 114 

58 255 209 

59 255 247 

60 255 199 

61 255 68 

62 255 145 

63 255 216 

64 255 255 

65 255 177 

66 255 255 

67 255 219 

68 255 255 

69 255 255 

70 255 236 

71 255 255 

72 255 211 

73 255 255 

74 255 234 

75 255 216 

76 255 141 

77 255 200 

78 255 214 

79 255 162 

80 255 185 

81 255 125 

82 0 0 

83 0 59 

84 0 72 

85 0 41 

86 0 0 
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Symbol # Sign symbols: ss# Data symbol: ds# 

87 0 47 

88 0 0 

89 255 172 

90 255 224 

91 255 163 

92 255 235 

93 255 140 

94 255 199 

95 255 165 

96 255 254 

97 255 255 

98 255 255 

99 255 223 

100 0 74 

101 0 131 

102 0 107 

103 0 67 

104 255 152 

105 255 133 

106 255 169 

107 255 180 

108 255 155 

109 255 152 

110 255 255 

111 255 160 

112 255 117 

113 255 198 

114 255 194 

115 255 204 

116 255 250 

117 255 213 

118 255 127 

119 255 147 

120 255 169 

121 0 111 

122 0 106 

123 0 0 

124 0 111 
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Symbol # Sign symbols: ss# Data symbols: ds# 

125 0 105 

126 0 17 

127 0 76 

128 0 85 

129 0 61 

130 0 1 

131 0 83 

132 0 83 

133 0 158 

134 0 134 

135 0 22 

136 0 42 

137 0 40 

138 0 0 

139 0 91 

140 255 170 

141 255 254 

142 255 99 

143 255 140 

144 255 128 

145 255 230 

146 255 147 

147 255 181 

148 255 176 

149 255 171 

150 255 240 

151 255 230 

152 255 204 

153 255 91 

154 255 152 

155 255 161 

156 255 249 

157 255 189 

158 255 183 

159 255 106 

160 255 81 

161 255 170 

162 255 91 
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Symbol # Sign symbols: ss# Data symbols: ds# 

163 255 107 

164 255 154 

165 255 170 

166 255 110 

167 255 234 

168 255 114 

169 255 114 

170 255 217 

171 255 255 

172 255 106 

173 255 85 

174 255 193 

175 255 223 

176 255 192 

177 255 229 

178 255 213 

179 255 147 

180 255 142 

181 255 137 

182 255 169 

183 0 82 

184 0 112 

185 255 205 

186 255 75 

187 255 201 

188 255 182 

189 255 155 

190 255 198 

191 255 255 

192 255 145 

193 255 179 

194 255 9 

195 255 247 

196 255 255 

197 255 170 

198 255 238 

199 255 14 

200 0 119 
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Symbol # Sign symbols: ss# Data symbols: ds# 

201 0 33 

202 0 107 

203 255 198 

204 255 192 

205 255 154 

206 255 43 

207 255 109 

208 255 206 

209 255 240 

210 255 169 

211 255 255 

212 255 224 

213 255 255 

214 255 198 

215 255 158 

216 255 170 

217 255 178 

218 255 176 

219 255 124 

220 255 255 

221 0 96 

222 0 170 

223 0 191 

224 0 11 

225 0 58 

226 0 188 

227 0 90 

228 0 81 

229 0 170 

230 0 89 

231 0 182 

232 0 229 

233 0 59 

234 0 54 

235 0 144 

236 0 85 

237 255 0 

238 255 185 
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Symbol # Sign symbols: ss# Data symbols: ds# 

239 255 255 

240 255 173 

241 255 242 

242 255 113 

243 255 137 

244 255 170 

245 255 176 

246 255 159 

247 255 234 

248 255 222 

249 255 0 

250 255 214 

251 255 164 

252 255 179 

253 255 147 

254 255 207 

255 255 175 

256 255 160 

257 255 145 

258 255 197 

259 255 206 

260 255 80 

261 255 191 

262 255 153 

263 255 255 

264 255 153 

265 255 164 

266 255 31 

267 255 170 

268 255 170 

269 255 154 

270 255 220 

271 255 203 

272 255 229 

273 255 95 

274 255 195 

275 255 170 

276 255 194 
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Symbol # Sign symbols: ss# Data symbols: ds# 

277 255 153 

278 255 192 

279 255 206 

280 255 225 

281 255 255 

282 255 190 

283 255 217 

284 255 179 

285 255 90 

286 255 164 

287 255 85 

288 255 170 

289 255 222 

290 255 156 

291 255 109 

292 255 13 

293 255 152 

294 255 170 

295 0 198 

296 0 166 

297 0 213 

298 255 211 

299 255 240 

 

4.4.3 Detection of P-wave, QRS complex and T-wave 

The process of ECG signal recovery starts with the detection of P-wave, QRS complex and T-

wave. This section describes the procedure undertaken by m-ECG algorithm to detect key 

features of ECG waveform that is corrupted by WGN when SNR is < 5dB. The detection of 

these features under poor SNR conditions were found to be extremely challenging but were 

readily identified by the proposed detection scheme. The steps involved in the detection process 

are described as follows: 
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Step 1: The noise samples are isolated by doing peak search for max x(n) samples along the 

complete length of reassembled ECG signal. The collocated peak samples with minimum 

variance are grouped together inside a window. The width of each window depends on the 

number of its peak and adjacent samples.  The length of each window is then compared to the 

duration of normal PR interval (from the onset of P-wave to the beginning of QRS complex), 

QRS complex and ST interval (from the onset of ST segment till the end of T-wave) as described 

in section 2.1. This step is shown in Fig. 4.13. 

 

Figure 4.13. ECG features detection using windows 

Step 2: Select the window(s) with maximum width and calculate the variance and expected value 

of its samples using equation (4.4) and (4.5) respectively. If the expected value of samples inside 

the window is higher than the expected value of noise samples (ϒSNR), then the selected window 

may contain T-wave inside the ST interval.  
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𝐸(𝑋) =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                                                             [4.4] 

𝑉𝐴𝑅(𝑋) =  
1

𝑁
∑ (𝑥𝑖 − 𝐸(𝑋))2𝑁

𝑖=1                                                             [4.5] 

Fig. 4.14 shows window ‘1’ with possible T wave. 

 

Figure 4.14. Window ‘1’ with possible T-wave 

Step 3: The search for P-wave and QRS complex is done on samples inside the adjacent window 

on both sides of window ‘1’. The variance and expected value of samples are then calculated. If 

the expected value of samples inside the window is higher than the expected value of noise 

samples (ϒSNR), then window ‘3’ and window ‘2’ may contains P-wave and QRS complex 

respectively. Fig. 4.15 shows window ‘3’ and window ‘2’ with possible P-wave and QRS 

complex. 
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Figure 4.15. Window ‘2’ and window ‘3’ with possible P-wave and QRS complex 

Step 4: If the initial search failed to recover P-wave, QRS complex and T-wave during the data 

recovery process then the length of each window is either increased or decreased until all key 

characteristic features of ECG signal are recovered. Fig. 4.16 summarizes these steps in a flow 

chart. 

ϒSNR represents expected value of noise samples between P and T wave that do not 

contain important clinical information. The average value of these samples change with the SNR 

of received signal which is used as threshold to discard very low amplitude samples inside the 

window without any major loss of information for the recovery of P-wave, QRS complex and T-

wave. The value of ϒSNR is selected from a lookup table, a higher threshold drops more samples 

from the window which will impact the recovery of characteristic features. Selecting a lower 

threshold add insignificant samples to the window which in turn add more noise. 
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This completes ECG feature detection. The recovery of P-wave, QRS complex and T-wave will 

be discussed in next sections. 

 

Figure 4.16. Flow chart: ECG feature detection process 
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4.4.4 Recovery of QRS complex 

The sign symbols inside window ‘2’are used to recover and reconstruct the QRS complex with 

minimum distortion. As shown in Table 4.2, reassembled sign symbols represent sign and 

overflow bits of each data sample. If data symbol is accurately represented using uint8, it has 

null (zeros) in the corresponding sign symbol, otherwise it holds the overflow data bits or the 

sign extension (255) of corresponding data symbol.  

When the ECG signal is corrupted by WGN at low SNR (<3dB being worst case 

analysis), simulation result shows that contents of received sign symbol stream recovers with less 

uncertainty compared to data using parametric estimation where each sign symbol is rounded to 

either zero or 255.  

 When SNR is high, the data recovery module combines the data symbol to its 

corresponding sign symbol and constructs the reassembled ECG signal. If the reassembled signal 

is of good quality to detect P-wave, QRS complex and T-wave then reconstructed ECG signal 

shows very low distortion.  

When SNR is extremely low (<3dB) it may result in erroneous detection of P-wave, QRS 

complex and T-wave in the reassembled signal. Under this condition, redundant sign symbols are 

used to recover sign or overflow bits of associated data symbol using parametric estimation. 

Once the window with possible QRS complex is detected, it is recovered by using sign 

symbols. Fig. 4.17 shows QRS complex recovery algorithm where AR and AS represents the 

amplitude of R wave and S wave of recovered QRS complex. ARnom and ASnom represents 

amplitude of R wave and S wave of normal QRS complex. The QRS complex is recovered here 

with less noise and signal distortion compared to Chourakri et al. [5] and Rabiul et al. [101].  
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Figure 4.17. Recovery of QRS complex using sign vector 

The steps involve in the QRS complex recovery process are described as follows: 

Step 1: The sign symbols are scaled high or low to recover the QRS complex. The positive 

cycle, R wave of QRS complex is increased from 0 to either 1 or 2. The negative cycle, S wave 

of QRS complex is decreased from 255 to 254. 

Step 2: Compare amplitude, AR and AS to the amplitude of R and S wave of normal QRS 

complex. The new sign symbol that yield amplitude closer to the amplitude of R and S wave of 

normal QRS complex is selected and then combined with associated data symbol.   

Step 3: Repeat above steps until QRS complex is recovered. 

Table 4.3 shows first 300 samples of reassembled ECG signal (see section 4.4.2) with 

modified sign symbols (in red) for the recovery of QRS complex. This reassembled ECG signal 

was corrupted by WGN at SNR of 3dB. 

Change sign symbol 

of QRS complex 

255:       254  

0:       1 or 2 

AR = ARnom, 

AS = ASnom 
NO QRS complex is 

recovered 
YES 
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Table 4.3. QRS complex recovery using sign symbols  

Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

0 255 255 243 

1 255 255 159 

2 255 255 157 

3 0 0 152 

4 0 1 110 

5 0 2 98 

6 0 0 64 

7 255 254 205 

8 255 254 200 

9 255 254 124 

10 255 255 123 

11 255 255 111 

12 255 255 100 

13 255 255 170 

14 255 255 213 

15 255 255 255 

16 255 255 24 

17 255 255 183 

18 255 255 176 

19 0 0 53 

20 0 0 14 

21 0 0 141 

22 0 0 108 

23 0 0 76 

24 0 0 70 

25 0 0 38 

26 0 0 85 

27 0 0 146 

28 0 0 85 

29 0 0 103 

30 0 0 0 

31 0 0 0 

32 0 0 116 

33 0 0 65 

34 0 0 142 

35 0 0 128 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

36 0 0 131 

37 0 0 73 

38 0 0 110 

39 0 0 107 

40 0 0 88 

41 0 0 39 

42 0 0 100 

43 0 0 41 

44 255 255 238 

45 255 255 144 

46 255 255 170 

47 255 255 229 

48 255 255 159 

49 255 255 226 

50 255 255 40 

51 255 255 189 

52 255 255 219 

53 255 255 138 

54 255 255 146 

55 255 255 162 

56 255 255 201 

57 255 255 114 

58 255 255 209 

59 255 255 247 

60 255 255 199 

61 255 255 68 

62 255 255 145 

63 255 255 216 

64 255 255 255 

65 255 255 177 

66 255 255 255 

67 255 255 219 

68 255 255 255 

69 255 255 255 

70 255 255 236 

71 255 255 255 

72 255 255 211 

73 255 255 255 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

74 255 255 234 

75 255 255 216 

76 255 255 141 

77 255 255 200 

78 255 255 214 

79 255 255 162 

80 255 255 185 

81 255 255 125 

82 0 0 0 

83 0 0 59 

84 0 0 72 

85 0 0 41 

86 0 0 0 

87 0 0 47 

88 0 0 0 

89 255 255 172 

90 255 255 224 

91 255 255 163 

92 255 255 235 

93 255 255 140 

94 255 255 199 

95 255 255 165 

96 255 255 254 

97 255 255 255 

98 255 255 255 

99 255 255 223 

100 0 0 74 

101 0 1 131 

102 0 2 107 

103 0 0 67 

104 255 255 152 

105 255 254 133 

106 255 254 169 

107 255 254 180 

108 255 255 155 

109 255 255 152 

110 255 255 255 

111 255 255 160 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

112 255 255 117 

113 255 255 198 

114 255 255 194 

115 255 255 204 

116 255 255 250 

117 255 255 213 

118 255 255 127 

119 255 255 147 

120 255 255 169 

121 0 0 111 

122 0 0 106 

123 0 0 0 

124 0 0 111 

125 0 0 105 

126 0 0 17 

127 0 0 76 

128 0 0 85 

129 0 0 61 

130 0 0 1 

131 0 0 83 

132 0 0 83 

133 0 0 158 

134 0 0 134 

135 0 0 22 

136 0 0 42 

137 0 0 40 

138 0 0 0 

139 0 0 91 

140 255 255 170 

141 255 255 254 

142 255 255 99 

143 255 255 140 

144 255 255 128 

145 255 255 230 

146 255 255 147 

147 255 255 181 

148 255 255 176 

149 255 255 171 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

150 255 255 240 

151 255 255 230 

152 255 255 204 

153 255 255 91 

154 255 255 152 

155 255 255 161 

156 255 255 249 

157 255 255 189 

158 255 255 183 

159 255 255 106 

160 255 255 81 

161 255 255 170 

162 255 255 91 

163 255 255 107 

164 255 255 154 

165 255 255 170 

166 255 255 110 

167 255 255 234 

168 255 255 114 

169 255 255 114 

170 255 255 217 

171 255 255 255 

172 255 255 106 

173 255 255 85 

174 255 255 193 

175 255 255 223 

176 255 255 192 

177 255 255 229 

178 255 255 213 

179 255 255 147 

180 255 255 142 

181 255 255 137 

182 255 255 169 

183 0 0 82 

184 0 0 112 

185 255 255 205 

186 255 255 75 

187 255 255 201 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

188 255 255 182 

189 255 255 155 

190 255 255 198 

191 255 255 255 

192 255 255 145 

193 255 255 179 

194 255 255 9 

195 255 255 247 

196 255 255 255 

197 255 255 170 

198 255 255 238 

199 255 255 14 

200 0 1 119 

201 0 2 33 

202 0 0 107 

203 255 254 198 

204 255 254 192 

205 255 254 154 

206 255 255 43 

207 255 255 109 

208 255 255 206 

209 255 255 240 

210 255 255 169 

211 255 255 255 

212 255 255 224 

213 255 255 255 

214 255 255 198 

215 255 255 158 

216 255 255 170 

217 255 255 178 

218 255 255 176 

219 255 255 124 

220 255 255 255 

221 0 0 96 

222 0 0 170 

223 0 0 191 

224 0 0 11 

225 0 0 58 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

226 0 0 188 

227 0 0 90 

228 0 0 81 

229 0 0 170 

230 0 0 89 

231 0 0 182 

232 0 0 229 

233 0 0 59 

234 0 0 54 

235 0 0 144 

236 0 0 85 

237 255 255 0 

238 255 255 185 

239 255 255 255 

240 255 255 173 

241 255 255 242 

242 255 255 113 

243 255 255 137 

244 255 255 170 

245 255 255 176 

246 255 255 159 

247 255 255 234 

248 255 255 222 

249 255 255 0 

250 255 255 214 

251 255 255 164 

252 255 255 179 

253 255 255 147 

254 255 255 207 

255 255 255 175 

256 255 255 160 

257 255 255 145 

258 255 255 197 

259 255 255 206 

260 255 255 80 

261 255 255 191 

262 255 255 153 

263 255 255 255 
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Symbol # Original Sign symbols: ss# Scaled Sign symbols: ss# Data symbols: ds# 

264 255 255 153 

265 255 255 164 

266 255 255 31 

267 255 255 170 

268 255 255 170 

269 255 255 154 

270 255 255 220 

271 255 255 203 

272 255 255 229 

273 255 255 95 

274 255 255 195 

275 255 255 170 

276 255 255 194 

277 255 255 153 

278 255 255 192 

279 255 255 206 

280 255 255 225 

281 255 255 255 

282 255 255 190 

283 255 255 217 

284 255 255 179 

285 255 255 90 

286 255 255 164 

287 255 255 85 

288 255 255 170 

289 255 255 222 

290 255 255 156 

291 255 255 109 

292 255 255 13 

293 255 255 152 

294 255 255 170 

295 0 0 198 

296 0 1 166 

297 0 1 213 

298 255 255 211 

299 255 254 240 
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Fig. 4.18 shows QRS complex that is corrupted by WGN at SNR of 15dB.  

 

     Figure 4.18. QRS complex distortion by WGN at 15dB SNR 

The QRS complex in Fig. 4.18 could be easily detected in the reassembled ECG signal. 

The recovery of QRS complex with minimum distortion is shown in Fig. 4.19 and Fig. 4.20 The 

sign symbols are scaled high or low and then compared to the amplitude of R wave and S wave 

of normal QRS complex. Fig. 4.19 depicts an overshoot in R wave when the original sign 

symbol ‘0’ is increased to ‘2’. This error is corrected in Fig. 4.20 when new sign symbol ‘1’yield 

the amplitude of R wave that is comparable to the R wave of normal QRS complex.  

During the QRS complex recovery process, some level of distortion was observed at QR 

and RS transition. This distortion was due to the samples with erroneous sign symbols that were 

estimated incorrectly during data reassembly process.   
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Figure 4.19. R wave overshoot due to sign symbol scaling error 

 

Figure 4.20. QRS complex recovery 
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4.4.5 Signal denoising for the recovery of P-wave and T-wave  

The objective of signal denoising is to estimate the reassembled ECG signal by employing noise 

reduction techniques without compromising important clinical information. The recovery of P 

and T-wave involves denoising of reassembled ECG signal in transform domain using discrete 

wavelet transform because of its good localization properties in time and frequency. The 

denoising process decomposes signal using digital filters and yield approximate and detail 

coefficient using wavelet shrinkage and thresholding method. The threshold discards the 

insignificant detail coefficients without substantially affecting the signal fidelity and the resulting 

noise free P and T wave are recovered without smoothing out the wave structure. 

The denoising algorithm proposed by Chourakri et al. [5] was modified for the recovery 

of P wave and T wave and is based on classical wavelet denoising scheme as proposed by 

Donoho [97]. The obtained noise free P and T-waves were constructed in time domain using 

modified coefficients and linear signal interpolation. The recovery process is explained as 

follows:  

Step 1: Apply DWT at level 1 on reassembled ECG signal using Daubechies wavelet function 

‘db4’ to estimate WGN and identify detail coefficient sequence (cD1) and approximation 

coefficient sequence (cA1) respectively. The detail coefficients are subjected to threshold using 

the equation (2.16) and (2.17). 

Step 2: Apply DWT at level 4 on reassembled ECG signal using wavelet function ‘db4’ and 

identify 4 detail sequence (cnD4, cnD3, cnD2 and cnD1) and approximation sequence (cnA4). 

The detail coefficients are subjected to threshold using the equation (2.16) and (2.17) that result 

in the detail coefficient sequence (cnDT4, cnDT3, cnDT2 and cnDT1). 
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Step 3: Apply DWT at level 4 on the residual signal obtained from step 1 using wavelet function 

‘db4’ and identify 4 detail sequence (crD4, crD3, crD2 and crD1) and approximation sequence 

(crA4). 

Step 4: Generate noise free detail coefficient as follows: 

cnfD1 = cnDT1 – crD1 

cnfD2 = cnDT2 – crD2 

cnfD3 = cnDT3 – crD3 

cnfD4 = cnDT4 – crD4 

Step 5: Reconstruct the denoised ECG signal using inverse discrete wavelet transform (IDWT) 

with detail sequence (cnfD4, cnfD3, cnfD2 and cnfD1) and approximation sequence (cnA4). 

These denoised samples are then combined with recovered QRS complex using linear 

interpolation. This modified denoising algorithm not only suppresses the noise but also preserve 

the shape of P-wave and T-wave in the denoised signal. The analysis of different DWT levels 

shows that level 1 approximation sequence is dominated by WGN and set of peaks that are 

related to R wave whereas level 1 detail sequence is submerged in WGN. 

This completes the recovery of P-wave and T-wave. Fig. 4.21 summarizes these steps in 

a flow chart. 
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Figure 4.21. Recovery of P-wave and T-wave  

The recovery and reconstruction of ECG signal that is corrupted by WGN at 3dB SNR is 

summarized as follows. The resolution of reconstructed ECG signal (100.dat) is limited to first 

300 samples for qualitative analysis.  

The reassembled ECG signal with significantly distorted QRS complex and corrupted P-

wave and T-wave are shown in Fig. 4.22.   
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Figure 4.22. Recovery of ECG signal at 3dB SNR 

The recovery of QRS complex by changing the sign symbol stream is shown in Fig. 4.23 and 

Fig. 4.24. 

 

 Figure 4.23. Recovery of QRS complex by scaling sign symbols 
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Figure 4.24. Recovery of QRS complex with modified sign symbol 

The reconstructed ECG signal is shown in Fig. 4.25 with recovered QRS complex and denoised 

P-wave and T-wave.  

Figure 4.25. Reconstructed ECG signal at 3dB SNR 
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The comparative result is shown in Fig. 4.26 where QRS complex is recovered with significant 

distortion when ECG signal is corrupted by AWGN. 

 

Figure 4.26. Correlation of the original ECG (RED) and denoised signal (BLACK) - [5] 

Table 4.4 shows the distortion measured in reconstructed ECG signal over 300 samples, where 

the received ECG signal was corrupted by AWGN at 3dB. 

Table 4.4. Distortion measured in reconstructed ECG signal  

Record 
PRMSD PRMSD1 

Compression Ratio 
SNR 

(%) (%) (dB) 

100 39.62 41.62 2.55:1 7.61 

116 42.13 44.71 2.71:1 6.31 

117 43.31 45.12 2.63:1 6.72 
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4.5 Conclusion  

This chapter discussed the architecture and implementation of m-ECG algorithm that can help in 

reliable and clinically acceptable ECG signal recovery when corrupted by WGN under poor SNR 

conditions. The novel approach improves signal fidelity through pre-processing, data 

buffering, data encoding, data segmentation, ECG feature detection and denoising. The 

comparative result with [5] demonstrate performance improvement using m-ECG algorithm with 

minimum QRS complex distortion and high resolution P-wave and T-wave recovery.
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

This chapter summarizes the research carried out for this dissertation and the future direction that 

can advance research to achieve a reliable, stable, scalable and ubiquitous health monitoring 

system that supports wide range of medical monitoring of bio-signals. The performance of such a 

system is a tradeoff between transmission efficiency and reliable ECG signal recovery. 

 5.1 Conclusion 

The m-ECG algorithm developed here provides a framework for reliable ECG recovery when the 

signal is corrupted by AWGN even at very low signal-to-noise ratio by employing pre-

processing, data segmentation, data encoding, data reassembly, detection, and denoising. The 

design and implementation of m-ECG algorithm offer good performance against white Gaussian 

noise even when the signal-to-noise ratio drops to near 0dB. The performance of the m-ECG 

algorithm is evaluated using ECG data record downloaded from MIT-BIH arrhythmia database. 

The white Gaussian noise signal with varying SNR was simulated for the purpose of testing.  

The use of transform based compression followed by lossless encoding significantly 

reduced the size of ECG signal. The aim in ECG compression is to increase the compression 

ratio but not at the expense of quality of the reconstructed signal. 

The use of wavelet transform for signal denoising significantly distorts the amplitude of 

QRS complex. The proposed methodology attempts to recover the signal with negligible 

distortion by repeated scaling of the sign symbols. This technique keeps the diagnostically 

critical QRS region free from large reconstruction errors. The obtained results for P-wave and T-
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wave similarly showed high efficiency in suppressing the corrupted noise and recovering critical 

ECG signal components without compromising relevant clinical information. The signal 

reconstruction is achieved by linear interpolation of QRS complex with denoised P and T waves.  

The signal detection process is another important aspect of the work presented here, 

where the reassembled signal is segmented based on variance and expected value of peak and 

adjacent samples. The empirical threshold that is based on the signal-to-noise ratio isolates peak 

samples from non-cardiac samples. This adaptive threshold forces the samples that are not the 

part of cardiac event as noise and changes its value when SNR changes. This improves signal 

detection and reconstruction with minimal error. 

 5.2 Future Research 

There are many areas in the work presented here that require further analysis and improvement 

that could be extended to include interesting ideas and research directions in mobile health care 

monitoring.  

ECG feature detection when information about noise distribution is not known could be 

based on non-parametric approach such as the kth-nearest neighbor, however detection of 

cardiac events using Bayesian estimation yields minimum variance when prior information about 

the noise distribution is known. The m-ECG algorithm assumes normal noise distribution and 

use of parametric estimation process to detect QRS complex, PR interval and ST segment 

respectively. Non-parametric approaches should be explored for ECG feature detection as in 

most of the cases the channel noise is not known apriori. 
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The proposed scheme of data segmentation where it segregates data and sign symbols for 

reliable recovery of ECG signal when it is corrupted by AWGN could be extended to other bio-

medical signals such EEG and EMG.  

The data latency associated with signal compression and decompression can be 

exacerbated by network congestion, packet loss and delay variations. The use of fast dictionary-

based compression algorithm such as LZW and others that we have discussed in chapter 3 could 

be investigated for high bandwidth communication networks that provide the best compression 

and decompression using the efficient signal coder and decoder. 

The AWGN channel model is commonly used to simulate background channel noise 

under study; further research to analyze the behavior of more complex frequency selective 

nonlinear multi-terminal channels with application to cellular system is required in the context of 

pervasive monitoring of vital biomedical signals.  

The real time monitoring of ECG signal should be context aware, where the system 

intelligently uses the m-ECG algorithm to detect and reconstructs the ECG signal and 

subsequently raise alarm in event of emergency.
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