
STUDY ON PARAMETER ESTIMATION VIA MULTI-STAGE SAMPLING

WITH APPLICATIONS

by

Francis Bilson Darku

APPROVED BY SUPERVISORY COMMITTEE:

Bhargab Chattopadhyay, Co-Chair

Frank Konietschke, Co-Chair

Swati Biswas

Pankaj K. Choudhary



Copyright c© 2018

Francis Bilson Darku

All rights reserved



This dissertation is dedicated to my family, fiancée and all who believed in me and have

supported me one way or the other.



STUDY ON PARAMETER ESTIMATION VIA MULTI-STAGE SAMPLING

WITH APPLICATIONS

by

FRANCIS BILSON DARKU, BSc, MSc

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

STATISTICS

THE UNIVERSITY OF TEXAS AT DALLAS

August 2018



ACKNOWLEDGMENTS

I take this opportunity to express my heartfelt gratitude to all who have influenced and

guided me in producing this wonderful work. First and foremost, I would like to express my

appreciation to Dr. Bhargab Chattopadhyay and Dr. Frank Konietschke for their immense

guidance, support, advice and time throughout my journey as a PhD student. Their patience

and tolerance made them very approachable at all times (literally). My thanks also goes to

Dr. Swati Biswas and Dr. Pankaj Kumar Choudhary for serving on my advising committee,

providing me with valuable feedback, and granting me the opportunities to serve as their

teaching assistant. Furthermore, I am thankful to Dr. Ken Kelley of University of Notre

Dame for his collaboration and advice on my future career. I would also like to acknowledge

all the Statistics professors in the Department of Mathematical Sciences for the knowledge

they imparted in me throughout my studies. To all the secretaries in Mathematical Sciences

Department (both present and past), I say a big thank you for patiently helping me with

all my paperwork and making my studies easier at UTD. My special thanks also goes to

Dr. Robert Serfling for his assistance during my admission process and the Department of

Mathematical Sciences for the funding opportunity to pursue my PhD. To all the TAs and

RAs, it has been a great time working with you all, as well as serving some of you as your

TA. I am grateful to Joanna Agyapomaa Aduhene, Dorcas Ofori-Boateng, Josephine Sarpong

Akosa and Dr. Marinelle Rodrigues for proofreading my thesis amidst their busy schedule

and different area of expertise. I also acknowledge the support of the following families

who made my stay in Dallas wonderful: the Ogbolu family, the Ayisah-Eyeson family and

the Rozario family. I also appreciate Newman Catholic Ministry members, the African and

Ghanaian communities, and my roommates for their company and support. Lastly, but

most importantly, I would like to thank the Almighty God for His grace and mercy that has

brought me thus far.

April 2018

v



STUDY ON PARAMETER ESTIMATION VIA MULTI-STAGE SAMPLING

WITH APPLICATIONS

Francis Bilson Darku, PhD
The University of Texas at Dallas, 2018

Supervising Professors: Bhargab Chattopadhyay, Co-Chair

Frank Konietschke, Co-Chair

Over the past few decades, researchers have been (and are still being) encouraged to report

confidence intervals along with their parameter estimates instead of just the binary outcome

of a hypothesis testing based on an arbitrary cut of value for p − value (mostly α = 5%).

However, researchers traditionally define their sample sizes in advance before sampling is

done. This naturally may lead to wide confidence intervals. Ceteris paribus, wider confidence

intervals indicate higher uncertainty and this discourages researchers from reporting the

confidence intervals. As a remedy to this problem, sample size planning methods, such as

accuracy in parameter estimation and power analysis, were developed. These methods seek

to determine the appropriate sample sizes needed to obtain sufficiently narrow confidence

intervals in the case of accuracy in parameter estimation, or high power in the case of power

analysis. One drawback of these methods is that they require researchers to provide the

values of some population parameters which are generally unknown in advance. Thus, the

use of suppose population values, which are different from their true population values, in

these methods will result in wrong sample size calculations. Incorrect sample sizes then also

lead to incorrect inferences or decisions. Another drawback of these traditional methods is the

assumption of the distribution from which the data are sampled. There is no reason to assume
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that data will always follow a particular distribution, say normal, in every situation. To

overcome these challenging assumptions, multi-stage procedures which have been around for

more than half a century can be used. We therefore develop multi-stage sampling procedures

for constructing sufficiently narrow confidence intervals for parameters with a pre-specified

confidence level and pre-specified upper bound on the width of the confidence interval. We

do this for a general class of effect sizes, different types of correlation measures, and the

Gini index. Our methods do not require the knowledge of population parameters or the

distribution from which the data are sampled. In other words, our methods work in a

distribution-free environment with no requirement for knowledge of population values. In

our procedure, the sample size needed to obtain a sufficiently narrow confidence is not

specified a priori. Rather, a stopping rule, which will be defined, determines whether after

a pilot sample is obtained, additional samples will be needed or not. We provide theorems

with their proofs to support our procedures and demonstrate their characteristics with Monte

Carlo simulations. In the case of the Gini index, we also provide an application to the 64th

National Sample Survey in India.
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CHAPTER 1

INTRODUCTION

1.1 Overview

With many researchers and regulatory authorities advocating for the reporting of effect sizes

and their corresponding confidence intervals, this dissertation is concerned with improving

the accuracy and precision of such confidence intervals. This is achieved by developing se-

quential procedures for constructing confidence intervals that have sufficiently narrow width

at given confidence level. The methods do not rely on data distribution, that is, they do not

make any distribution assumption about data. This chapter may contain some overlapping

information with the remaining chapters because they are heavily drawn from fully devel-

oped manuscripts that either have been published, are under review, or yet to be submitted

to a journal for publication.

1.2 Bounded-Width Confidence Interval Problem

Let X1, X2, . . . be a sequence of independent and identically distributed (iid) random vari-

ables from a proper distribution function F (x) with an unknown parameter θ. Let θ̂n be a

consistent estimator of θ based on a sample of size n. Without loss of generality, let

√
n(θ̂n − θ)

ξ
→ F (x) as n→∞ (1.1)

then a 100(1− α)% confidence interval for θ is given as

Jn =

(
θ̂n − qα/2

ξ√
n
, θ̂n + qα/2

ξ√
n

)
(1.2)

where, qα is the 100α% upper quantile of the distribution F . The width of Jn is

wn =
2qα/2ξ√

n
. (1.3)
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All things being equal, a narrow confidence interval is preferred as it shows higher precision

and accuracy (Anscombe, 1949). Thus, it is appropriate to bound the width of the confi-

dence interval by a pre-specified value, say ω. This means that the maximum width of the

confidence interval that is acceptable is ω and any width wn less than ω is also preferred. If

ξ2 is known, then the smallest sample size needed to achieve the desired width ω and the

confidence level 100(1− α)% is given by

n ≥

⌈
4q2
α/2ξ

2

ω2

⌉
, (1.4)

where dxe is the smallest integer greater than or equal to x. On the other hand, if ξ2 is

unknown but it is known that ξ2 is bounded above by ξ2
0 , i.e. 0 < ξ2 ≤ ξ2

0 then

n ≥

⌈
4q2
α/2ξ

2
0

ω2

⌉
(1.5)

will guarantee that we meet our pre-specified goal (Ghosh and Mukhopadhyay, 1976). Nonethe-

less, ξ2 (or its upper bound ξ2
0) is unknown in most, if not all, situations. The use of supposed

values of ξ2 may lead to inaccurate sample sizes that may not satisfy Equation (1.4) or (1.5).

Unfortunately, there is no fixed sample size procedure that can guarantee that the pop-

ulation parameter θ will lie within the confidence interval with pre-assigned confidence level

and width (Anscombe, 1953; Dantzig, 1940; Ghosh and Mukhopadhyay, 1976; Mukhopad-

hyay and De Silva, 2009). To solve this bounded-width problem, two steps have to be followed

according to Anscombe (1953): (i) obtain a suitable sampling distribution of θ̂n using large

sample size theory, as exact small-sample solutions may be very difficult to formulate and

at the same time achieve a narrow width (Anscombe, 1949), (ii) develop an appropriate

sequential procedure to obtain the sample size n. Thus, by step (ii), the solution to this

bounded-width confidence interval problem lies within the domain of sequential analysis.

The next section discusses several sequential procedures and this will be followed by the

large sample size theory for sampling distributions of statistics under sequential procedures.

2



1.3 Multi-Stage Sampling Procedures

The first person known to have used the term sequential in the statistics context is Abraham

Wald in his work on hypothesis testing in which the sample size was not fixed in advance

(Anscombe, 1953). He proposed a sequential method of testing a hypothesis based on three

decisions - (1) accept the hypothesis, (2) reject the hypothesis, or (3) sample additional

observations. Thus, given a set of observations, one of the three decisions is made. If either

decision (1) or (2) is made, sampling is terminated. If decision (3) is made then an additional

observation is collected and the hypothesis is tested again for any of the three mentioned

outcome. The process is continued sequentially until either decision (1) or (2) is made. In

addition, Wald (1947) suggested in his Sequential Analysis book that sequential procedures

can be used for constructing confidence intervals for unknown parameters.

In 1949, Anscombe showed that with the use of sequential procedures, one can estimate

unknown parameters with some level of accuracy while using fixed-sample size formulae.

However, his work was challenged by Cox (1952) who argued that Anscombe’s work was

more heuristic and lacked theoretical backing. In light of this, Anscombe developed the

large-sample theory for sequential estimation in 1952. His works along with the results of

Stein (1945), Ray (1957), Chow and Robbins (1965), among others, pioneered the field of

sequential analysis. (Readers are referred to Mukhopadhyay and Chattopadhyay (2012) for

more contributions of Anscombe.)

With the introduction of sequential analysis, the field of statistics can be pushed beyond

the limits and assumptions of fixed sample size procedures. Researchers do not need to

know the population values of a parameter(s) a priori or use supposed values. Sequential

procedures have extended the boundaries of sample size calculations, power analysis, and

accuracy in parameter estimation, in that researchers can now proceed with estimating and

inferring parameters with little or no assumptions about the population distributions and

required sample sizes. In some situations, sequential analyses can reduce the average sample

3



size needed to minimize the desired level of error or maximize the level of accuracy of an

estimator (Robbins, 1952).

A variety of sequential procedures, developed over the course of time, are discussed below

in the next three subsections.

1.3.1 Two-Stage Procedure

The two-stage sequential procedure is known to have been introduced and used by Maha-

lanobis in 1940 to estimate the acreage and yield of Jute crop in Bengal, India (Mahalanobis,

1967). He had the idea of using pilot samples in large scale sample surveys to gain informa-

tion about the sampling error. However, it was Stein’s seminal work in 1945 and 1949 that

laid down the statistical foundations for the two-stage procedure. In his work, he solved

the problem of constructing a confidence interval with a pre-specified width and confidence

level, for the mean µ of a normal distribution with unknown population variance σ2. He

proposed that observations should be taken in two stages: In the first stage, also called the

pilot stage, a sample X1, . . . , Xm of size m(≥ 2) (pilot sample size) should be taken, based

on which the sample variance S2
m is obtained. In the second stage, the final sample size N

needed to obtain a confidence interval whose width and confidence level meet the set criteria

is computed. If N = m, no additional observations are needed. On the contrary, if N > m,

N −m additional observations are sampled in the second stage. This proposed procedure

by Stein has become the bedrock for applying the two-stage procedure in several situations,

with several modifications.

1.3.2 Purely Sequential Procedure

The two-stage procedure by Stein (1945) is known to overestimate the optimal sample size

(Ghosh et al., 1997). As an alternative to the two-stage procedure, Anscombe (1952) intro-

duced the idea of a purely sequential procedure which was later expanded by Ray (1957)
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and Chow and Robbins (1965). The goal of this procedure is to improve the estimate of

the nuisance parameter(s) (which in this case is the variance σ2 of the normal distribution)

as each observation is collected until a stopping criterion is met. The improvement in the

estimation of σ2 eventually lead to an improvement in the estimate of the sample size needed

to achieve the pre-specified width and confidence coefficient.

The purely sequential procedure is described as follows: Obtain the pilot sampleX1, . . . , Xm

of size m(≥ 2) at the initial stage and estimate σ2 (using S2
m) and estimate the final sample

size C. If m ≥ C stop sampling. If m < C, add one more observation Xm+1 and update the

estimation of σ2 to S2
m+1. Check if m+ 1 greater or equal to new estimate of the sample size

C. If m + 1 ≥ C, sampling is terminated, otherwise an additional observation is collected.

This process goes on until a sample of size n that it is greater than or equal to the estimated

sample size C is attained. At this point sampling is terminated and the confidence interval

is constructed as stated in Equation (1.2).

1.3.3 Other Procedures

Aside from the two main principal procedures already described many researchers have tried

to develop hybrid and improved versions to harness the benefits of both methods. Some of

these versions are discussed below.

Modified Two-Stage Procedure

In implementing Stein’s (1945) two-stage procedure, one chooses the pilot sample size m

arbitrarily. However, there is still the question of how large or small should m be. As the

confidence level is increased, while the confidence interval width and others remain constant,

it is expected that the optimal sample size and the estimated sample size increase. Also, as

the confidence interval width gets narrower, while the confidence level and other parameters

remain constant, the optimal and estimated sample sizes are expected to increase. In both of
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these cases, the pilot sample size should increase accordingly but not too much to exceed the

optimal sample size. To solve this problem, Mukhopadhyay (1980) proposed a modified two-

stage procedure. In his work, he proposed a formula for m that depends on the pre-specified

width and confidence coefficient of the confidence interval. As a result, the pilot sample size

increases as the pre-specified width decreases or the confidence coefficient increases.

Three-Stage Procedure

Since Stein’s (1945) two-stage procedure oversamples most of the time and Anscombe’s

(1949) purely sequential procedure is operationally infeasible at times, Mukhopadhyay (1976)

introduced the three-stage procedure. This procedure has an intermediated sampling stage

between the pilot samples and the final samples. The aim of the intermediate stage is to

improve the accuracy of the final sample size estimation. The result from this procedure

is typically closer to the optimal sample size than what is obtained from the two-stage

procedure. At the same time, it also involves fewer steps than the purely sequential procedure

in the sense that sampling is done in only three stages as compared to the one-by-one

sequential sampling used in the purely sequential procedure. Further research on the three-

stage procedure can be found in Hall (1981), Ghosh et al. (1997), and Mukhopadhyay and

De Silva (2009).

Accelerated Sequential Procedure

As mentioned above, the purely sequential procedure may be inconvenient sometimes in some

situations and one may require a procedure that can accurately estimate the final sample

size but also reduce the sampling stages. Another procedure that is a good candidate for this

situation, apart from the three-stage procedure, is the accelerated sequential procedure. This

method is designed to first collect observations in a purely sequential manner up to a point

where the number of observations n is greater or equal to a fraction γ of the estimated final
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sample size C, that is n ≥ γC = t for 0 < γ < 1. Then based on the collected observations,

the final sample size can be estimated as C = t/γ and used to determine how many more

observations need to be collected in a single batch. More details about this procedure can

be found in Hall (1983), Mukhopadhyay and Solanky (1991), Mukhopadhyay (1996), and

Kumar et al. (2012).

Parallel Piecewise Sequential Procedure

In 1993, Mukhopadhyay and Sen introduced the parallel piecewise sequential procedure to

take advantage of processes that naturally employ several operations that occur concur-

rently or in parallel forms. Examples of such processes include conducting a survey in

different regions of a state or country, several bank tellers attending to customers, computer

servers processing data simultaneously, customers checking out at supermarkets, etc. In the

parallel piecewise sequential procedure, k independent sequences of random variables Xij,

j = 1, . . . , ni, . . . and k = 1, . . . , k are observed concurrently from a distribution F . At any

point, the observations are pooled together to estimate the unknown parameter(s) of interest

and the appropriate inferences are made when the stopping rule(s) is(are) met. Readers can

find more work on this procedure by Bose and Mukhopadhyay (1994), Mukhopadhyay and

Datta (1994), and Mukhopadhyay and de Silva (1998).

1.3.4 Properties of Sequential Approach

There are some desirable properties that sequential procedures may exhibit. A sequential

procedure that possess more of these properties may be preferred to one that has fewer.

Below, we mention and discuss some of these properties.
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Consistency or Exact Consistency

A sequential procedure for constructing a 100(1−α)% confidence interval JN for an unknown

parameter θ is said to be (exactly) consistent if

Pθ {θ ∈ JN} ≥ 1− α, ∀θ ∈ Θ (1.6)

(Chow and Robbins, 1965). Here, Θ defines the parameter space of F . This means that

after sampling is terminated for a sequential procedure the confidence interval constructed

will achieve at least 100(1− α)% coverage probability as desired.

Asymptotic Consistency

Now, to talk about asymptotic theory in sequential procedures, i.e. the final sample size N

is assumed to be large (N → ∞). As the maximum acceptable width ω of the confidence

interval tends to 0 (ω → 0), the sample size N gets larger. This is intuitive because as a

large sample size is needed to make a narrow confidence interval that still maintains 100(1−

α)% coverage probability. Hence, the asymptotic properties of the sequential procedures

introduced and/or discussed in this manuscript will be stated with limits as ω → 0.

An important large sample property that researchers would like sequential procedures to

have is the asymptotic consistency. For a given stopping rule for constructing a 100(1−α)%

confidence interval for an unknown parameter θ, the asymptotic consistency property is

defined as

lim
ω↓0

Pθ {θ ∈ JN} = 1− α, ∀θ ∈ Θ. (1.7)

This property ensures that the confidence interval constructed from the given sequential

procedure will have the anticipated 1 − α coverage probability for large sample sizes. It is

worth noting that a procedure that posses the asymptotic consistency property does not

necessarily possess the exact consistency property. An example of such a case is the purely

sequential procedure for constructing 1 − α confidence interval for mean µ from a normal

population with an unknown variance σ2 (see Mukhopadhyay and De Silva, 2009, pp 111).
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Asymptotic (First Order) Efficiency

Another important property is the asymptotic first order efficiency or asymptotic efficiency.

A sequential procedure is asymptotically efficient if

lim
ω↓0

E(N)

nω
= 1. (1.8)

This ensures that as the desired width ω of the confidence interval tends to 0, the ratio of

the estimated sample size, obtained through the given procedure, to the theoretical opti-

mal sample size will be 1 on the average. In other words, a desired procedure should not

overestimate or underestimate the optimal sample size on the average. Stein and Wald’s

((1947), (1949)) two-stage procedure does not possess this property (Mukhopadhyay, 1980).

It actually overestimates the optimal sample size (Ghosh et al., 1997).

Other Properties

Aside the above main properties, there are other properties that most sequential procedures

seek to achieve.

(i) Finite Sample Size: This is a very important property as it ensures that sampling

will be terminated. This is usually stated as

P (N <∞) = 1. (1.9)

(ii) Almost Sure Convergence: A sequential procedure converges almost surely if

P

(
lim
ω↓0

N

nω
= 1

)
= 1. (1.10)

This property ensures that for large sample size (or very narrow width) the estimated

final sample size will be close to the optimal sample size almost surely.
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(iii) Asymptotically Second Order Efficiency: Ghosh and Mukhopadhyay (1981) in-

troduced the notion of asymptotically second order efficiency to show that the purely

sequential procedure for constructing a fixed-width confidence interval for mean with

unknown variance performs better than the modified two-stage procedure. If a stopping

rule for N is asymptotically second order efficient then

lim
ω↓0

E(N − nω) <∞ (1.11)

1.4 Random Central Limit Theorem

For large fixed sample sizes, the central limit theorem (CLT) can be invoked to obtain the

sampling distribution for most statistics. However, for a random sample sizeN , a justification

for the use of the central limit theorem is needed. Anscombe (1952) introduced an analogous

version of CLT for random sample sizes known as the random central limit theorem. In order

to apply Anscombe’s random central limit theorem for the computation of the asymptotic

distribution of a statistic, Anscombe’s uniform continuity in probability (u.c.i.p.) condition

as stated below must be fulfilled:

Let {Yn}, n = 1, 2, . . . be a sequence of i.i.d. random variable. Suppose that there exists

a real number θ, a sequence of positive numbers wn, and a distribution function F (x), such

that the following conditions are satisfied:

i. Convergence of {Yn}: For any x such that F (x) is continuous,

P (Yn − θ ≤ xwn)→ F (x) as n→∞ (1.12)

ii. Uniform continuity in probability of {Yn}: Given any small positive ε and η, there is a

large ν and small positive c such that, for any n > ν,

P {|Yn′ − Yn| < εwn simultaneously for all integers n′ such that |n′ − n| < cn} > 1− η

(1.13)

10



Theorem 1.1 (Anscombe’s (1952) Random Central Limit Theorem). Let {nr} be an in-

creasing sequence of positive integers tending to infinity, and let {Nr} be a sequence of proper

random variables taking positive integer values such that Nr/nr → 1 in probability as r →∞.

Then if the sequence of random variables {Yn} satisfies conditions (1.12) and (1.13),

P (YNr − θ ≤ xwnr)→ F (x) as r →∞ (1.14)

at all continuity points x of F .

With the above theorem and the procedures discussed in subsection 1.3, the remaining

chapters of this dissertation solve different bounded-width problems in the field of statistics

and other disciplines.

1.5 U-statistics, Hoeffding’s Decomposition, and Asymptotic Variance

U-statistics are a class of statistics introduced by Hoeffding (1948), which can be used to con-

struct an unbiased estimator of some parameters associated with any unknown distribution

function. The U-statistic associated with some parameter φ(r) can be defined as

H(r)
n =

(
n

r

)−1∑
(n,r)

h(r)(Xi1 , ..., Xir), (1.15)

where the summation is over all possible combinations of indices (i1, . . . , ir) such that

1 ≤ i1 < i2 < · · · < ir ≤ n, r < n and h(r)(·) is a symmetric kernel of degree r such

that E[h(r)(Xi1 , ..., Xir)] = θ. The degree, r, is the smallest number of random variables

required to estimate the parameter, φ(r), unbiasedly. Examples of U-statistics can be found

in Chattopadhyay and Kelley (2016, 2017).

Sproule (1969, 1985) developed the framework for constructing a fixed-width confidence

interval for the mean of a U-statistic for a given coverage probability. In his work, he only

required the existence of the second moment of the kernel. With the use of U-statistics,
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it becomes easier to derive the asymptotic distribution and the asymptotic variance of the

estimator using Hoeffding’s (1948) decomposition. Sproule also proved that a fixed-width

sequential procedure for a U-statistic is asymptotically efficient.

Next, proceeding along the lines of Lee (1990), for c = 1, . . . , r, define hc(x1, . . . , xc) =

E[h(X1, . . . , Xr)|(x1, . . . , xc)]− φ(r). Next, define

ψ1(x1) = h1(x1); ψ2(x1, x2) = h2(x1, x2)− ψ1(x1)− ψ1(x2)

ψr(x1, . . . , xr) = hr(x1, . . . , xr)−
r∑
c=1

ψc(xc)−
∑

1≤i1<i2≤r

ψ2(xi1 , xi2)− · · ·−

∑
1≤i1<...<ir−1≤r

ψr−1(x1, . . . , xir−1) (1.16)

Then, the U-statistic, using Hoeffding’s decomposition, can be defined as

H(r)
n − φ(r) =

r

n

r1∑
c=1

ψ1(Xc) +Mn, (1.17)

where Mn is the remainder term composed of ψ2, . . . , ψr−1, such that Mn = Op(n
−1) if

E
[
h(r)(Xi1 , ..., Xir)

]2
< ∞. Using Lee (1990), the variance of H

(r)
n is r2

n
ψ2 + O(n−2), where

ψ2 = E [ψ2
1(X1)]. Thus, the asymptotic variance of H

(r)
n is

Var
(
H(r)
n

)
=
r2

n
ψ2. (1.18)

1.6 Chapter Organization

The remaining chapters of this dissertation are organised as follows: Chapter 2 develops a

sequential approach to solving the bounded-width confidence interval problem for a general

class of effect sizes. This work has already been published by Kelley, Darku, and Chattopad-

hyay (2018) in Psychological Methods - a journal by American Psychological Association.

Chapter 3 is an extension of Chapter 2 to include correlation coefficients which is a special

class of effect sizes. This chapter develops bounded-width confidence interval for the different
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measures of correlation coefficient, including multiple R2, using sequential approaches. This

work has been submitted for publication and is currently under review (Kelley et al., 2017).

In Chapter 4, we develop the sequential methodology for constructing a sufficiently narrow

confidence interval for Gini index under a survey whose sampling involves stratification and

clustering, ie. a complex survey. In this same chapter, the sequential methodology under

complex survey is applied to data from National Sample Survey (NSS) Organization in India.

This work has also been submitted for publication (Bilson Darku et al., 2018). Chapter 5

presents a summary of the works in the manuscripts, gives directions for future works and

provides concluding remarks.

Simulations and computations found in this dissertation were all done with codes and

software packages from R software (R Core Team, 2017).

13



CHAPTER 2

A PURELY SEQUENTIAL APPROACH TO ACCURACY IN PARAMETER

ESTIMATION FOR A GENERAL CLASS OF EFFECT SIZES1

2.1 Introduction

The concept of effect size as a primary outcome of interest has gained much traction over

the last decade and is widely recognized as an important part of research studies. This

concept is different from, though it can be complementary to, the binary outcome of a null

hypothesis significance test that either rejects or fails-to-reject one or more null hypothe-

ses. Effect size has been defined as “a quantitative reflection of the magnitude of some

phenomenon that is used for the purpose of addressing a question of interest” (Kelley and

Preacher, 2012). Effect sizes such as the standardized mean difference, coefficient of deter-

mination, regression coefficient, path coefficient, correlation, among others, are widely used

in many disciplines. The emphasis on effect sizes in modern research seems to have stemmed

from methodologists heavily emphasizing their importance for many years (e.g., Morrison

and Henkel, 1970; Meehl, 1997; Cohen, 1994; Thompson, 2002), professional organizations

(American Psychological Association, 2010; Task Force on Reporting of Research Methods

in AERA Publications, 2006; Association for Psychological Science, 2014) requiring them in

scholarly work, journal editors pushing for more emphasis on effect size as a way to quantify

practical meaning from a study, and journal reviewers, many of whom have themselves em-

braced the call for more effect sizes. It is clear that effect size now plays an important role

in the research landscape of many disciplines.

The need to focus on effect sizes, the importance of confidence intervals for population

effect sizes, and the limitations of null hypothesis significance tests based on a p-value that

1Copyright c©2017 by the American Psychological Association. Adapted with permission. Kelley, K., F.
Bilson Darku, and B. Chattopadhyay (2017). Accuracy in parameter estimation for a general class of effect
sizes: A sequential approach. Psychological Methods.
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is less than or greater than a specified Type I error rate has recently been put at the front

of methodological consideration. In particular, warnings and recommendations long made

by methodologists within statistics, psychology, and others, about an over-reliance on null

hypothesis significance tests and the corresponding p-value, has now been echoed by the

American Statistical Association (ASA) in what is “the first time the ASA has spoken so

publicly about a fundamental part of statistical theory and practice” (American Statistical

Association, 2016). In an editorial by the ASA’s Executive Director, on behalf of the ASA

Board of Directors (Wasserstein, 2016), six principles are addressed that could “improve the

conduct or interpretation of quantitative science” (2016, p. X). The ASA’s conclusions comes

50 years after Bakan stated “the test of statistical significance in psychological research may

be taken as an instance of a kind of essential mindlessness in the conduct of research” (1966,

p. 436) but that he also acknowledged that his ideas were not original but what “everybody

knows” (p. 423).

The ASA editorial goes on to say that “in view of the prevalent misuses of and miscon-

ceptions concerning p-values, some statisticians prefer to supplement or even replace p-values

with other approaches”. The suggestions for supplementing or replacing p-values are “meth-

ods that emphasize estimation over testing, such as confidence, credibility, or prediction

intervals; Bayesian methods; alternative measures of evidence, such as likelihood ratios or

Bayes Factors; and other approaches such as decision-theoretic modeling and false discov-

ery rates. All these measures and approaches rely on further assumptions, but they may

more directly address the size of an effect (and its associated uncertainty) or whether the

hypothesis is correct” (emphasis added). This work addresses the size of the effect and its

uncertainty explicitly and, importantly, without the prior specification of likely unknown

population values as is typical in research design texts. This work is believed to be both

timely and important for helping to advance psychology and related disciplines by focusing

explicitly on estimation of effect sizes of interest.
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We begin with the premise that point estimates almost certainly differ from their popu-

lation analogs. Correspondingly, as many others have stated, it is important for effect sizes

to be accompanied by confidence intervals in order to convey the uncertainty of the esti-

mate at some specified level of confidence. Depending on sample size, among other factors,

the confidence interval width (i.e., the length of the confidence interval), even with samples

from the same population, will vary. Holding everything else constant, narrower confidence

intervals at a specific confidence level (e.g., 95%) provide more precise information about

the parameter of interest than a wider confidence interval does at the same confidence level.

In an effort to construct sufficiently narrow confidence intervals, the accuracy in parameter

estimation (AIPE) approach to sample size planning (e.g. Kelley and Maxwell, 2003; Kel-

ley and Lai, 2011; Kelley and Rausch, 2006; Kelley, 2008, 2007b; Terry and Kelley, 2012;

Lai and Kelley, 2011b; Pornprasertmanit and Schneider, 2014), also known as “the confi-

dence interval approach”, has been developed for a variety of important effect sizes. Such

approaches are similar to the “fixed-width confidence interval problem,” where instead of

having an upper bound on the length of the confidence interval, the length of the confidence

interval is exactly the desired width (e.g., Sproule, 1985; Mukhopadhyay and De Silva, 2009;

Mukhopadhyay and Chattopadhyay, 2012).

The AIPE approach to sample size planning, as it has been developed thus far in the

literature, is a fixed-sample size approach based on supposed values of one or more parameters

in an effort to obtain a sufficiently narrow confidence interval at the specified level (e.g.,

95%, 99%). However, a potential problem is that if the supposed value of the population

parameter(s) is/are incorrect, then the (fixed) sample size from the AIPE perspective may

be very different than what the (fixed) sample size would have been if the true population

parameter(s) was (were) used. This problem also happens in power analysis when the sample

size is based on the supposed population value (e.g., Cohen, 1988; cf. basing sample size

on the minimum value of the parameter that would be of theoretical interest, Lipsey, 1990;
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Murphy and Myors, 2004). A remedy to needing the generally unknown population values

in traditional applications of the AIPE approach is a sequential analysis approach. Here,

the population parameters are not pre-specified, and as a result, the sample size cannot be

fixed in advance. That is, the procedure is not of the “fixed-n” research design framework.

Rather, the sample size deemed appropriate in sequential estimation procedure depends on

collecting observations until an a priori specified criterion or stopping rule is satisfied.

Sequential methods have been developed in various areas of statistics beginning 75 years

ago (e.g., Wald, 1945, 1943). In sequential medical trials, Armitage (1960, pp. 9–10) advo-

cated the use of estimates of difference in effects of two treatments with some desired standard

error rather than basing a decision on null hypothesis significance tests. In the context of

clinical trials, Lai (1998) discussed a sequential procedure for constructing fixed-width con-

fidence intervals for some population characteristics of interest. Recently, for allocation of

two treatments in clinical trials, Bandyopadhyay and Biswas (2015) developed fixed-width

confidence intervals for response-adaptive allocation design. However, sequential methods

for inference have not had much impact in psychology and related disciplines as of yet, with

the notable exception of item response theory (e.g., in the context of computer adaptive

tests; Chang and Ying, 2009 and the references therein). The focus of this work is in the re-

search design context when inferences are made about population parameters, such as mean

differences, correlations, a variety of standardized effect sizes, et cetera, where it is proposing

an alternative to fixed-n procedures such as how power analysis and accuracy in parameter

estimation are commonly employed.

In this work, a sequential procedure is used to estimate a general effect size in order for

the confidence interval for the population effect size of interest to be sufficiently narrow. This

idea, which will be called sequential AIPE, is a generalization of much of the literature that

currently exists in this framework that requires the specification of population values. The

work then discusses the AIPE problem for this general class of effect size, special cases of
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which are many commonly used effect sizes, and propose a sequential estimation procedure.

This is followed with the desired result of the sequential optimization procedure for con-

structing the sufficiently narrow confidence interval with a pre-specified level of confidence.

Additionally, and importantly, these developments are made in a distribution-free environ-

ment. The distribution-free environment is important, though challenging, because there is

often no reason to assume that the underlying distribution of the data for which an effect

size will be calculated would be known (e.g., gamma, lognormal, normal). For example, in

applied research, normal distributions may be rare (e.g., Micceri, 1989), and thus basing

important decisions on assumptions that are not realized may be problematic. Such issues

are avoided and focus is placed on the most robust context of a distribution-free environment

(e.g., Wilcox, 2012). Thus, these developments offer a great deal of generality and flexibility.

In the following section, we introduce a class of effect sizes that will be considered in this

work and the framework for their estimation.

2.2 Effect Sizes Based on Ratio of Two Parameters: A General Framework

In this work, we consider a general family of effect sizes, which we define as the ratio of

two parameters, with each parameter being a function of one or more other parameters. In

particular, the sequential procedure developed is not for any one particular effect size, but

rather for a general effect size which has many special cases.

Consider the general effect size parameter θ, which can be expressed as a ratio of functions

of two parameters, θ1 and θ2, such that θ is defined as

θ =
g1 (θ1)

g2 (θ2)
, (2.1)

where g1(·) and g2(·) are two continuous functions, θ1 and θ2 are parameters each involving

linear combinations of parameters corresponding to k groups or k different parameters from
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the same group, provided g2 (θ2) 6= 0. For i = 1, . . . , k, suppose that θ1i and θ2i are the

parameters for the ith group or is the ith parameter from the same group, such that

θ1 =
k∑
i=1

l1iθ1i (2.2)

and

θ2 =
k∑
i=1

l2iθ2i, (2.3)

where l1is and l2is are known constants. Suppose the goal is to estimate the effect size

parameter θ, the population ratio of functions of θ1 and θ2, on the basis of n observations

from each of the k groups. Let the observations from the ith group be Xi1, . . . , Xin. Further,

let T1n and T2n be the two estimators for θ1 and θ2 respectively, where T1n =
∑k

i=1 l1iUin is

a linear combination of k independent U-statistics and T2n =
∑k

i=1 l2iVin is another linear

combination of k independent U-statistics. Now assume that for i = 1, 2, ..., k the U-statistic

Uin is an unbiased and consistent estimator of θ1i and the U-statistic Vin is an unbiased and

consistent estimator of θ2i. The U-statistics, that is, unbiased estimators of the parameters

of interest, are discussed in detail in Section 1.5. The estimator of the effect size parameter

θ, based on estimators of θ1 and θ2, is given by,

Tn =
g1(T1n)

g2(T2n)
. (2.4)

This effect size, θ in the population and Tn in a sample of size n, is very general. Using

several examples it will be shown that some widely used effect size parameters and their

corresponding estimators are special cases of the forms given in Equation (2.1) and Equa-

tion (2.4), respectively.

2.2.1 Example 1: Standardized Mean Difference

Consider the standardized mean difference, which is a standardized measure of separation

between two group means. The population standardized mean difference is defined as

δ =
µ1 − µ2

σ
, (2.5)
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where θ1 = µ1 − µ2 and θ2 = σ2, with µ1 and µ2 being the population means from groups

1 and 2, respectively, and σ being the population standard deviation of scores within the

two groups under the homogeneity of variance assumption (σ2
1 = σ2

2 = σ2). In practice,

δ itself is unknown as the population values of the means for groups 1 and 2, µ1 and µ2

respectively, and common standard deviation, σ, are unknown. Let X̄1n and X̄2n denote the

sample mean of scores on an outcome of interest from groups 1 and 2 respectively. Let s2
1n

and s2
2n represent the usual unbiased estimators of population variances from groups 1 and

2, respectively. X̄1n and X̄2n are each U-statistics of degree 1 and s2
pn is a function of two

U-statistics, s2
1n and s2

2n, both of degree 2 such that

spn =

√
s2

1n + s2
2n

2
, (2.6)

is the square root of the pooled sample variance here. (Note that the sample sizes for both

groups are the same.) In this case, from Equation (2.4), T1n = X̄1n − X̄2n is the difference

of means from two groups and T2n = s2
pn is the pooled sample variance. Thus, Uin = X̄in

and Vin = s2
in. The known coefficients are l11 = 1, l12 = −1, l21 = 1/2 and l22 = 1/2 and

k = 2. The numerator and denominator are, the difference in means and square root of the

pooled variance, respectively. More formally, g1(T1n) = X̄1n − X̄2n and g2(T2n) = sp. Thus

the effect size estimator for the population standardized mean difference is

dn =
X̄1n − X̄2n

spn
. (2.7)

Consider now a variant of Equation (2.5) in which the control group standard deviation

is used as the divisor. Let subscript 1 be treatment group (T ) and subscript 2 denote the

control group (C). Then, the parameter of interest would be Glass’ ∆ which is given by

∆ =
µT − µC
σC

(2.8)

(Glass and Smith, 1979). For ∆ the homogeneity of variance need not be assumed, as only

one standard deviation is used. Here, the known coefficients are l11 = l1T = 1, l12 = l1C =
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−1, l21 = l2T = 0, l22 = l2C = 1 and k = 2. Thus effect size estimator for the population

standardized mean difference is

dCn =
(X̄Tn − X̄Cn)

sCn
. (2.9)

Here, the functions are g1(T1n) = T1n and g2(T2n) =
√
T2n, where T1n = X̄Tn − X̄Cn and

T2n = s2
Cn. The notation dCn is used to show that groups can be used in the numerator but

not the denominator, or vice versa.

2.2.2 Example 2: Coefficient of Variation

Consider the coefficient of variation, where the population value is defined as

κ =
σ

µ
. (2.10)

From Equation (2.1), θ1 = σ2 and θ2 = µ, where µ is the population mean and σ is the pop-

ulation standard deviation (with k = 1). For estimating the unknown population coefficient

of variation, κ, the corresponding estimator is

kn =
sn
X̄n

. (2.11)

From Equation (2.4), T1n = s2
n, which is the sample variance and T2n = X̄n is the sample

mean of n observations. Because k = 1, U1n = s2
n and V1n = X̄n. The known coefficients are

l11 = 1 and l21 = 1. The function g1(T1n) = sn and g2(T2n) = X̄n. Thus we see that kn is a

ratio of two functions of two U-statistics: s2
n (a U-statistic of degree 2; of which, with g1(·)

we take the square root) and X̄n (a U-statistic of degree 1).

2.2.3 Example 3: The Standardized Mean

The standardized mean, which is the reciprocal of the coefficient of variation, that is, µ/σ

is also an effect size of interest in some situations (e.g., Cohen, 1988; Kelley, 2007a). From
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Equation (2.1), θ1 = µ and θ2 = σ2. For estimating µ/σ, the estimator is X̄n/sn. According

to Equation (2.4), T1n = X̄n is the sample mean and T2n = s2
n is the sample variance score

from a sample of n observations. Here, k = 1, so U1n = X̄n and V1n = s2
n. The known

coefficients are l11 = 1 and l21 = 1. The functions g1(T1n) = X̄n and g2(T1n) = sn.

2.2.4 Example 4: Regression Coefficient in Simple Linear Model

Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are pairs of observations from a simple linear regres-

sion model of the form

Yi = β0 + β1Xi + εi, (2.12)

where Yi is the dependent variable, Xi is the independent variable, εi’s are the independent

and identically distributed errors, and β0 is the population intercept parameter and β1 is

the population slope parameter. Now consider the effect of X on Y , which is the population

slope defined as

β1 =
σXY
σ2
X

, (2.13)

where σXY is the population covariance between X and Y , and σ2
X is the population variance

of X. Because the value of β1 is unknown in practice, it must be estimated, which is generally

done using least squares criterion, by

b1n =

∑
(xi − x̄n)(yi − ȳn)∑

(xi − x̄n)2
=
sXY n
s2
Xn

, (2.14)

where sXY n is the unbiased estimator for covariance between X and Y , and s2
Xn is the

unbiased estimator for the variance of X, based on a sample of size n. These estimators are

both U-statistics of degree 2. From Equation (2.4), g1(T1n) = sXY n and g2(T2n) = s2
X and

l11 = l21 = 1. Hence, U1n = sXY,n and V1n = s2
X . Thus, the estimator for the regression

parameter β1 is a ratio of two functions of U-statistics with degree 2.
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2.2.5 Example 5: Effect Size for Ordinal Data

In the case of ordinal data, Cliff’s delta can be used, which we illustrate here (see, for

example, Cliff, 1993). Cliff’s delta is a measure of how often randomly sampled values

in one distribution are larger than the randomly sampled values in a second distribution.

Suppose there are two sets of ordinal data of sizes n1 and n2, potentially from two groups or

distributions. Then, the sample estimator of Cliff’s delta for the two groups or distributions

is given by

#(xi > yj)−#(xi < yj)

n1n2

=
2U

n1n2

− 1, (2.15)

where # is defined as the number of times and U is the Mann-Whitney U-statistic (the test

statistic used in nonparametric two-sample location test). For details on Mann-Whitney

U-statistic, readers are referred to Kumar and Chattopadhyay (2013).

2.2.6 Example 6: Contrasts

Let us now consider contrasts, which are often used in analysis of variance. For the ith

group, suppose Xi1, . . . , Xin are independent and identically distributed random variables

with means µi and variances σ2
i , i = 1, . . . , K. Thus, in total, there are Kn observations

from K groups. Then, the population contrast related to the corresponding scenario is given

by

ψ =
K∑
i=1

ciµi, (2.16)

where c1, . . . , cK are known coefficients and
∑K

i=1 ci=0.

An estimator of the contrast ψ is ψ̂n =
∑K

i=1 ciX̄in, where X̄1n, . . . , X̄Kn are the group

means. In this case, from Equation (2.4), we use, T1n =
∑K

i=1 ciX̄in, so Uin = X̄in. The

known coefficients are l1i = ci for i = 1, 2..., k and k = K. Here, g1(T1n) = T1n and g2(·)=1.
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2.2.7 Example 7: Univariate Parameters and Their Functions

The parameters such as population mean, difference of population means, population vari-

ance, population Gini’s mean difference can be shown to satisfy Equation (2.1) with g1(θ1)

as the parameter of interest and g2(θ2) = 1. In fact, the sum or difference of the above

parameters themselves satisfy Equation (2.1) (i.e., the difference in means, the difference in

variances, etc.).

In all of the above mentioned examples, the effect sizes satisfy Equation (2.1) and the

corresponding estimators satisfy Equation (2.4). Correspondingly, θ is described as the

general effect size. Note that the subscript n is used on the effect size estimator to denote

the sample size on which it is based. This is very important as the properties of the effect

size estimator Tn based on different sample sizes are considered. At this point, a general

effect size has been developed and illustrated with several examples. In what follows, we

develop the central limit theorem for the general effect size.

2.3 Central Limit Theorem for Tn

Our procedure depends on the Central Limit Theorem for the effect size parameter θ, defined

in Equation (2.1), due to the distribution-free scenario we have used. As noted earlier, T1n

and T2n are linear combinations of U-statistics. We note that, T1n =
(∑k

i=1 l1iUin

)
and

T2n =
(∑k

i=1 l2iVin

)
, where Uin values are U-statistics with kernel h1i of degree r1i for

estimating the θ1i and Vin values are U-statistics with kernel h2i of degree r2i for estimating

θ2i.

Theorem 2.1. Suppose the parent distribution(s) is(are) such that E [U2
in] <∞ and E [V 2

in]) <

∞ for i = 1, . . . , k. Then, the central limit theorem corresponding to Tn is

√
n(Tn − θ)

L→ N(0, ξ2), (2.17)
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where ξ2 is the asymptotic variance given by ξ2 = D′ΣD, and D′ =
[
g′1(θ1)

g2(θ2)
,
−g1(θ1)g′2(θ2)

g22(θ2)

]
is a

vector and,

Σ =

 ξ2
1 ξ12

ξ12 ξ2
2

 .
Here, ξ2

1 and ξ2
2 are, respectively, the asymptotic variances of

√
n(T1n−θ1) and

√
n(T2n−θ2)

and the asymptotic covariance of
√
n(T1n − θ1) and

√
n(T2n − θ2) is ξ12.

Before proving the main theorem, the following lemma will be stated and proved.

Lemma 2.1. Asymptotic variances of
√
n(T1n− θ1) and

√
n(T2n− θ2) are ξ2

1 and ξ2
2 and the

asymptotic covariance of
√
n(T1n − θ1) and

√
n(T2n − θ2) is ξ12.

Proof. Using Hoeffding’s (1948) decomposition as in Equation (1.17), Uin and Vin can be

written as

Uin =
r1i

n

r1i∑
c=1

ψ1i(Xic) +Op(n
−1)

Vin =
r2i

n

r2i∑
c=1

ψ2i(Xic) +Op(n
−1), (2.18)

where ψ1i(Xic) and ψ2i(Xic) are, respectively,

ψ1i(Xic) = EF [h1i(Xi1, . . . , Xir1i)|Xic = xic]− θ1i

ψ2i(Xic) = EF [h2i(Xi1, . . . , Xir2i)|Xic = xic]− θ2i. (2.19)

Suppose that ξ2
1i = E [ψ2

11(Xic)] and ξ2
2i = E [ψ2

21(Xic)] and ξ1i2i = cov [ψ2
1i(Xic), ψ

2
2i(Xic)].

Using Equation (1.18), the asymptotic variance of Uin is r2
1iξ

2
1i/n for i = 1, 2, ..., k and the

asymptotic variance of Vin is r2
2iξ

2
2i/n for i = 1, 2, ..., k. Then, we have

E

[
k∑
i=1

l1iUin

]
=

k∑
i=1

l1iθ1i, (2.20)

E

[
k∑
i=1

l2jVin

]
=

k∑
j=1

l2iθ2i, (2.21)
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and

Var

[
k∑
i=1

l1iUin

]
=

k∑
i=1

l21ir
2
1iξ

2
1i/n = ξ2

1/n, (2.22)

Var

[
k∑
i=1

l2iVin

]
=

k∑
i=1

l22ir
2
2iξ

2
2i/n = ξ2

2/n. (2.23)

The asymptotic covariance of T1n and T2n is,

cov

[
k∑
i=1

l1iUin,

k2∑
j=1

l2jVjn

]
=

k∑
i=1

k∑
i=1

l1il2icov [Uin, Vin]

=
k∑
i=1

k∑
i=1

l1il2ir1ir2iξ1i2i/n = ξ12/n (2.24)

�

Now, let us prove Theorem 2.1.

Proof. Using Lee (1990), Yn = [
√
n(T1n − θ1),

√
n(T2n − θ2)]

′ L→ N2(0,Σ), where,

Σ =

 ξ2
1 ξ12

ξ12 ξ2
2

 .
Now, define the ratio R(u, v) = g1(u)

g2(v)
, if g2(v) 6= 0. Using Taylor’s expansion, we can write

√
n(Tn − θ) =

√
n(R(T1n, T2n)−R(θ1, θ2)) = D′Yn + εn||Yn||2, (2.25)

where D′ =
[
g′1(θ1)

g2(θ2)
,
−g1(θ1)g′2(θ2)

g22(θ2)

]
, and εn → 0 if ||(T1n, T2n)′ − (θ1, θ2)′||2 → 0. Hence,

εn||Yn||2
P→ 0 as n → ∞. Thus, the central limit theorem for the effect size of the type

defined in Equation (2.4) shows that as n→∞,

√
n(Tn − θ)

L→ N(0, ξ2), (2.26)

where ξ2 is the asymptotic variance given by ξ2 = D′ΣD and
L→ indicates convergence in

distribution. �

Using the central limit theorem developed, the application of accuracy in parameter

estimation approach for the general effect size parameter under a fixed-sample scenario will

be discussed.
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2.4 Accuracy in Parameter Estimation of General Effect Size Parameter: A

Fixed-Sample Size Approach

The goal of this work is to obtain a sufficiently narrow 100(1− α)% confidence interval for

the effect size parameter θ under the distribution-free scenario. As this work is being done in

a distribution-free scenario, no assumption is made about the distribution of the scores from

which the sufficiently narrow confidence interval for θ will be calculated. In practice, the

distribution of the scores is generally unknown. In other words, because of the untenability

of knowing the distribution from which scores are sampled, we do not assume any specific

distribution of the scores. Correspondingly, what follows are developments in a distribution-

free scenario. Thus, the exact distribution of Tn cannot be obtained. To be clear, this is

not a limitation of the method per se, but rather with the distribution-free scenario more

generally. Sproule (1985) developed a method to construct a fixed-width confidence interval

under distribution-free scenario using large sample theory, but that method cannot be applied

directly in this problem as the general effect size may involve the ratio of functions of one

or more parameters. In this work, large sample theory will be used to find the asymptotic

distribution of Tn. With this, a sufficiently narrow 100(1 − α)% confidence interval for θ

will be constructed, and for practical purposes, will be shown to yield intervals that tend to

work well.

Using Theorem 2.1, the approximate 100(1− α)% confidence interval for θ is given by

Jn =

(
Tn − zα/2

ξ√
n
, Tn + zα/2

ξ√
n

)
, (2.27)

where ξ2/n is the asymptotic variance of Tn. The width of the confidence interval Jn is given

by

wn = 2zα/2
ξ√
n
. (2.28)
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In AIPE problems, the sample size required to achieve sufficient accuracy is solved so that

the width of the confidence interval is no larger than ω. Thus, for a given ω, we have

2zα/2
ξ√
n
≤ ω, (2.29)

which implies that the necessary sample size to construct 100(1 − α)% confidence interval

for θ will be

n ≥

⌈
4z2

α/2ξ
2

ω2

⌉
≡ nω, (2.30)

where dxe is the ceiling function which is the least integer greater than or equal to x (e.g.,

d95.2e = 96). The expression in the Equation (2.30) can be found by solving for n in

Equation (2.29). Thus, nω is the theoretically optimal sample size required to make the

100(1−α)% confidence interval for θ provided ξ2 (recall that ξ2/n is the asymptotic variance

of Tn) is known. Because in reality ξ2 is generally unknown, the optimal sample size nω is

also unknown as nω depends on ξ2. In order to estimate the optimal sample size nω, a

consistent estimator, ξ̂2
n is used for estimating ξ2. We note that any value of ξ̂2

n does not

guarantee that the condition in Equation (2.30) is satisfied and thereby estimates the optimal

sample size nω. Also often, in several sample size planning methods, a researcher will use a

supposed value (say ξ̃2) of the population parameter, ξ2, to compute nω. However, ξ̃2 may

differ considerably from ξ2, which can have a large impact on the appropriate sample size.

Further, and more troubling, even if ξ̃2 differs from ξ2 by a relatively small degree, there can

(still) be a large impact on the appropriate sample size. Thus, using unknown population

values to estimate ξ2 can lead to potentially poor choices for the appropriate sample sizes.

So, a sequential procedure, which does not require supposed population parameter value, will

be used to find out the sample size but will satisfy the condition given in Equation (2.30).

This approach w
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2.5 Accuracy in Parameter Estimation via a Sequential Optimization Proce-

dure

As opposed to fixed-sample procedures, in sequential procedures, the sample size is not fixed

in advance. As previously discussed, no fixed sample-size procedure can provide a solution

to the accuracy in parameter estimation problems without making assumptions about the

distribution of the data. Here we propose a purely sequential procedure to construct a

100(1 − α)% confidence interval for the general effect size parameter θ. Recalling that

the effect size θ subsumes many special cases, and that we work within a distribution-free

environment, our work is thus a general and novel treatment and one that subsumes many

potential special cases that could have independently been developed.

In a sequential procedure, the estimation of parameter(s) occurs in stages until a stopping

rule is met. In the first stage, a small sample called a pilot sample is observed and then the

parameters are estimated to check a pre-defined condition in a stopping rule. A stopping

rule is a rule that indicates, after every stage, whether further sampling of one (or more)

observation(s) is necessary or should be stopped. Thus, further sampling of observations is

carried out if the pre-defined condition in the stopping rule is not met and further sampling is

stopped once the pre-defined condition in the stopping rule is satisfied. At a particular stage,

if the pre-defined condition is not met, the researcher collects one (or more) observation(s)

and then estimates the parameter of interest based on the collected observation(s). This

process is repeated until the pre-defined condition is met. For details about the general

theory of sequential estimation procedures, interested readers are referred to Sen (1981),

Ghosh and Sen (1991), Mukhopadhyay and Chattopadhyay (2012), or Chattopadhyay and

Mukhopadhyay (2013).

Recall that the optimal sample size nω is unknown due to ξ2 being unknown. We use

the consistent estimator of ξ2, namely ξ̂2
n, which is based on n observations drawn from the
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k groups. We now develop an algorithm to find an estimate of the optimal sample size via

the purely sequential estimation procedure.

Stage 1: Scores of m randomly selected individuals are collected from each of the k groups.

Following Mukhopadhyay (1980) we recommend using the pilot sample size m given as

m = max

{
m0,

⌈
2zα/2
ω

⌉}
, (2.31)

where m0(> 0) is the least possible sample size required to estimate ξ2 and d·e is the ceiling

function of the term—the ceiling being the smallest integer not less than (2zα/2/ω). Based

on this pilot sample of size m, an estimate of ξ2 is obtained by computing ξ̂2
m. If m <⌈

4z2
α/2

ω2

(
ξ̂2
m + 1

m

)⌉
, then proceed to the next step. Otherwise, if m ≥

⌈
4z2
α/2

ω2

(
ξ̂2
m + 1

m

)⌉
, stop

sampling and set the final sample size equal to m from each group.

Stage 2: Obtain an additional m′(≥ 1) observations. At this stage there are (m + m′)

observations from each of the k groups. Update the estimate of ξ2 by computing ξ̂2
m+m′ .

Now check whether m+m′ ≥
⌈

4z2
α/2

ω2

(
ξ̂2
m+m′ +

1
m+m′

)⌉
. If m+m′ <

⌈
4z2
α/2

ω2

(
ξ̂2
m+m′ +

1
m+m′

)⌉
then go to the next step. Otherwise, if m+m′ ≥

⌈
4z2
α/2

ω2

(
ξ̂2
m+m′ +

1
m+m′

)⌉
then stop further

sampling and report that the final sample size is (m+m′) from each group.

This process of collecting one (or more) observation(s) in each stage after stage 1 continues

until there are N observations such that N ≥
⌈

4z2
α/2

ω2

(
ξ̂2
N + 1

N

)⌉
. At this stage, we stop

further sampling because the stopping rule has been satisfied and report that the final sample

size is N for single group designs or N within each group for multiple group designs (and

thus the total sample size is KN in multiple group designs, as we have assumed equal sample

size per group).

Based on the algorithm just outlined, a stopping rule for the sampling can be defined as

follows:

N is the smallest integer n(≥ m) such that n ≥
4z2

α/2

ω2

(
ξ̂2
n +

1

n

)
, (2.32)
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where the term n−1 is a correction term which ensures that the sampling process does not

stop too early for the optimal sample size because of the use of the approximate expression.

After each and every stage, the stopping rule indicates whether the collected sample size is

more than the estimated optimal sample size, then additional m′ observations are collected

in the next stage. At some stage, when the collected sample size becomes equal to or more

than the estimated optimal sample size, sampling is terminated. Thus N in Equation (2.32)

is regarded as the estimator of the theoretically optimal sample size nω required to make

100(1− α)% confidence interval for θ provided ξ2 is known.

For details about the correction term, refer to Chattopadhyay and De (2016), Sen and

Ghosh (1981), Chattopadhyay and Kelley (2016, 2017). Note that for large sample sizes,

ξ̂2
n + n−1 converges to ξ2.

2.5.1 Characteristics of Our Sequential Procedure

Based on the algorithm just outlined, it is important to ensure that the sampling of infinite

number of observations is not possible. If observations are collected using Equation (2.32),

sampling will stop at some stage with probability one. This is proved in Lemma 2.2, which

says that under appropriate conditions, P (N <∞) = 1. This result is very important as it

mathematically ensures that sampling will be terminated eventually.

Note that, from Equation (2.32), N is a random variable because N depends on the

estimator of ξ2, which itself is a random variable. Theorem 2.2 implies that the 100(1−α)%

confidence interval for θ [
TN −

zα/2ξ̂N√
N

, TN +
zα/2ξ̂N√

N

]
(2.33)

formed using N observations achieves the specified coverage probability 1−α asymptotically.

This property is called asymptotic consistency. Thus, in Theorem 2.2 we have proven that
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our purely sequential procedure has the asymptotic consistency property. Additionally, The-

orem 2.2 proves that the confidence interval for θ given in Equation (2.33) always achieves

a sufficiently narrow width (less than ω).

We now state the lemmas and another theorem of this work along with their proofs.

2.6 Random Central Limit Theorem for Tn

Before the main theorem is stated, the following two lemmas are needed.

Lemma 2.2. Under the assumption that E[ξ̂2
n] exist, for any ω > 0, the stopping time N is

finite, that is, P (N <∞) = 1.

Proof. Note that ξ̂2
n is a consistent estimator of ξ2. Therefore, for any fixed ω > 0,

P (N >∞) = lim
n→∞

P (N > n) ≤ lim
n→∞

P

{
n <

(
2zα/2
ω

)2 (
ξ̂2
n +

1

n

)}
= 0. (2.34)

The last equality is obtained since ξ̂2
n → ξ almost surely as n → ∞. Thus, P (N < ∞) =

1. �

Lemma 2.3. If the parent distribution(s) is(are) such that E[ξ̂2
n] exists, then the stopping

rule in Equation (2.32) yields

N

nω

P−→ 1 as ω ↓ 0 (2.35)

where,
P−→ indicates convergence in probability.

Proof. The definition of stopping rule N in Equation (2.32) yields(
2zα/2
ω

)2

ξ̂2
N ≤ N ≤ mI(N = m) +

(
2zα/2
ω

)2 (
ξ̂2
N−1 + (N − 1)−1

)
. (2.36)

Since N → ∞ asymptotically as ω ↓ 0 and ξ̂n → ξ in probability as n → ∞, by Theorem

2.1 of Gut (2009), ξ̂2
N → ξ2 in probability. Hence, dividing all sides of Equation (3.18) by

nω and letting ω ↓ 0, we prove N/nω → 1 asymptotically as ω ↓ 0. �
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Now with all the necessary lemmas and theorem laid down, the main theorem of this

work will be stated and proved.

Theorem 2.2 (Main Theorem). If the parent distribution(s) is(are) such that E[ξ̂2
n] exist,

then the stopping rule in Equation (2.32) yields:

Part 1: P

(
TN −

zα/2ξ̂N√
N

< θ < TN +
zα/2ξ̂N√

N

)
→ 1− α as N →∞.

Part 2:
2zα/2ξ̂N√

N
≤ ω (2.37)

Proof. Here we proceed along the lines of (Chattopadhyay and De, 2016).

Part 1: We define n1 = (1− ρ)nω and n2 = (1 + ρ)nω for 0 < ρ < 1. From Lee (1990),

Yn =
[√
n(T1n − θ1),

√
n(T2n − θ2)

]′ L−→ N2(0,Σ),

where

Σ =

 ξ2
1 ξ12

ξ12 ξ2
2

 .

So we need to show that YN
L−→ N2(0,Σ). Let D′ = [a0, a1]. Then D′YN = D′Ynω +

(D′YN −D′Ynω). It is therefore sufficient to show that (D′YN −D′Ynω)
P−→ 0 as N →∞.

Note that

(D′YN −D′Ynω) = a0

√
N(T1N − T1nω) + a1

√
N(T2N − T2nω) +

(√
N

nω
− 1

)
D′Ynω (2.38)
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For a fixed ε > 0,

P
{∣∣∣a0

√
N(T1N − T1nω) + a1

√
N(T2N − T2nω)

∣∣∣ > ε
}

≤ P
{∣∣∣a0

√
N(T1N − T1nω) + a1

√
N(T2N − T2nω)

∣∣∣ > ε, |N − nω| < ρnω

}
+ P {|N − nω| > ρnω}

≤ P

{
max

n1<n<n2

√
n |T1n − T1nω | >

ε

2|a0|

}
+ P

{
max

n1<n<n2

√
n |T2n − T2nω | >

ε

2|a1|

}
+ P {|N − nω| > ρnω}

≤ P

{
max

n1<n<n2

√
n

∣∣∣∣∣
k∑
i=1

l1iUin −
k∑
i=1

l1iUinω

∣∣∣∣∣ > ε

2|a0|

}

+ P

{
max

n1<n<n2

√
n

∣∣∣∣∣
k∑
i=1

l2iVin −
k∑
i=1

l2iVinω

∣∣∣∣∣ > ε

2|a1|

}

+ P {|N − nω| > ρnω}

≤
k∑
i=1

P

{
max

n1<n<n2

√
n |Uin − Uinω | >

ε

2|a0|kl1i

}

+
k∑
i=1

P

{
max

n1<n<n2

√
n |Vin − Vinω | >

ε

2|a1|kl2i

}
+ P {|N − nω| > ρnω}

Using Lemma 2.3, we have N/nω
P−→ 1, and Uin and Vin, i = 1, . . . , k, are U-statistics which

satisfy Anscombe’s uniform continuous in probability condition, we conclude that for all

ε > 0, ∃η > 0, N0 > 0 such that

P
{∣∣∣a0

√
N(T1N − T1nω) + a1

√
N(T2N − T2nω)

∣∣∣ > ε
}
< η, ∀N > N0.

This implies that a0

√
N(T1N − T1nω) + a1

√
N(T2N − T2nω)

P−→ 0 as N →∞. Now, D′Ynω
L−→

N2(0,Σ) and using Lemma 2.3, we have N/nω
P−→ 1 and, then (

√
N/nω − 1)D′Ynω

P−→ 0 as

N → ∞. Therefore, from Equation (2.38), we know that (D′YN − D′Ynω)
P−→ 0, that is,

YN
L−→ N2(0,Σ). We define R(u, v) = g1(u)

g2(v)
, if g2(v) 6= 0. By Taylor series expansion, we can
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expand R(T1N , T2N) around (θ1, θ2) as

R(T1N , T2N) = R(θ1, θ2) +
g′1(θ1)

g2(θ2)
(T1N − θ1)− g1(θ1)g′2(θ2)

g2
2(θ2)

(T2N − θ2) + hN ,

where

hN =
1

2

{
g′′1(a)

g2(b)
(T1N − θ1)− 2g′1(a)g′2(b)

g2
2(b)

(T1N − θ1)(T2N − θ2)

+g1(a)

(
g′′2(b)g2

2(b)− 2g′2(b)g2(b)

g4
2(b)

)
(T2N − θ2)2

}
,

(2.39)

a = θ1 + p(T1N − θ1), b = θ2 + p(T2N − θ2), and p ∈ (0, 1).

Thus,

√
N (R(T1N , T2N)−R(θ1, θ2)) = D′YN +

√
NhN (2.40)

where D′ =
[
g′1(θ1)

g2(θ2)
,−g1(θ1)g′2(θ2)

g22(θ2)

]
.

From Lee (1990) and Anscombe’s (1952) CLT,
√
N(UiN−θ1i) and

√
N(ViN−θ2i) converge

in distribution to normal distributions. This implies that
√
N(T1N − θ1) and

√
N(T2N − θ2)

also converge in distribution to normal. Also, both (T1N − θ1) and (T2N − θ2) converge to 0

almost surely. Hence,
√
NhN

P−→ 0.

Therefore,

√
N (TN − θ) =

√
N (R(T1N , T2N)−R(θ1, θ2))

L−→ N(0,D′ΣD) as N →∞.

Part 2: Using stopping rule N in Equation (2.32) we have, for all N ,(
2zα/2
ω

)2

ξ̂2
N ≤ N =⇒ 4z2

α/2

ξ̂2
N

N
≤ ω2

=⇒ 2zα/2
ξ̂N√
N
≤ ω

�
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2.7 Application to Some Widely Used Effect Sizes

As an illustration of our sequential procedure, we will show its application in detail for the

standardized mean difference, coefficient of variation, and the regression coefficient (slope)

from a simple linear model. Other effect sizes, as we previously explained, as well as linear

functions of those effect sizes for multiple groups, can be implemented in a similar way. We

focus on these three effect sizes because of their wide usage in psychology and related fields.

2.7.1 Standardized Mean Difference

SupposeX11, X12, . . . , X1n are independent random samples from a distribution F1 with mean

µ1 and variance σ2, and X21, X22, . . . , X2n are independent random samples from another

distribution F2 with mean µ2 and variance σ2. The population standardized mean difference,

from Equation (2.5) is estimated by the sample standardized mean difference as

dn =
(X̄1n − X̄2n)

spn
, (2.41)

where spn =
√

1
2
(s2

1n + s2
2n) is the square root of the pooled sample variance. Using Theo-

rem A.1 the asymptotic distribution of the sample standardized mean difference, dn is given

by

√
n (dn − δ)

L−→ N(0, ξ2), (2.42)

where the asymptotic variance of dn is given by

ξ2 = 2− (µ1 − µ2)(µ13 − µ23)

σ4
+

(µ1 − µ2)2

4σ6

(
µ14 + µ24

4
− σ4

2

)
(2.43)

and µij is the jth central moment of distribution Fi, for i = 1, 2. Thus, we have a consistent

estimator of ξ2, which is given as

ξ̂2
n = max{V 2

n , n
−3} (2.44)
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with V 2
n given by

V 2
n = 2− (X̄1n − X̄2n)(µ̂13n − µ̂23n)

s4
pn

+
(X̄1n − X̄2n)2

4s6
pn

(
µ̂14n + µ̂24n

4
−
s4
pn

2

)
. (2.45)

where for i = 1, 2, µ̂i3n and µ̂i4n are U-statistics for µi3 and µi4, respectively, which are defined

in Equations (A.1) and (A.2). Theorem A.2 in the Appendix shows that the (approximate)

100(1−α)% confidence interval for the population standardized mean difference, δ, is given

by (
dN −

zα/2ξ̂N√
N

, dN +
zα/2ξ̂N√

N

)
, (2.46)

which is formed using N observations and achieves the specified coverage probability of 1−α,

asymptotically. Additionally, Theorem A.2 proves that the confidence interval for δ given in

Equation (2.46) always achieves a sufficiently narrow width (less than ω).

The sequential procedure we developed can be used in constructing an approximate

100(1 − α)% confidence interval for the parameter δ, so that the width of the confidence

interval is less than ω under a distribution-free framework. Additionally, using Theorem A.2,

it can be shown that for large sample sizes, the confidence interval will also achieve the

specified coverage probability 1− α asymptotically. Nevertheless, for different distributions

the sampling distribution of the final sample size will vary and this distribution has no known

way to be analytically derived. We illustrate the properties of the final sample size empirically

with a Monte Carlo simulation. Note that our method is mathematically justified and we

provide Monte Carlo simulation results for descriptive purposes as well as to illustrate the

properties of our method for a variety of finite sample sizes. We acknowledge that our large

sample theory framework may not work well in all finite sample size situations for arbitrary

distributions.
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Characteristics of the Final Sample Size: An Empirical Demonstration

We now demonstrate the properties of our method using a Monte Carlo simulation for con-

structing 100(1−α)% confidence interval for population standardized mean difference, δ, such

that the width of the confidence interval is less than ω and the confidence interval achieves,

asymptotically, the specified coverage probability 1 − α. This is done by implementing the

sequential procedure via Monte Carlo simulations by drawing random samples from three

distributions; gamma, lognormal, and normal under several parameter combinations.

We implement the proposed sequential procedure and, for the sample size (N), we esti-

mate the mean sample size (N), the standard error of N (s(N)), coverage probability (p),

the standard error of estimated coverage probability(sp), and average length of confidence

intervals w̄N . We use 5,000 replications for each condition of the simulation study. We chose

parameters of the distributions that, in our experience, are reasonable scenarios in applied

research. In each replication, we first draw m observations from the populations and then

follow the algorithm of the purely sequential procedure outlined in Section 2.5 by drawing

m′ = 1 observations at each stage after the pilot stage. We summarize our findings in Table

2.1. In all cases in Table 2.1, the seventh column suggests that the coverage probability

is close to the target coverage probability of either 90% or 95%, respectively. Also, in all

cases, the average width is less than ω. The fifth column indicates the ratio of the average

final sample size (N) to the optimal sample size (nω) is close to 1. Furthermore, notice that

the mean confidence interval width is just below the desired width. Thus, our procedure is

shown to work well in a variety of situations, demonstrating empirically (for finite samples)

what has been shown mathematically (under large sample theory).

2.7.2 Coefficient of Variation

Suppose X1, X2, . . . , Xn are independent random samples from a distribution F with mean µ

and variance σ2, then using Theorem 2.1, the asymptotic distribution of the sample coefficient
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Table 2.1. Summary of final sample size for 100(1 − α)% confidence interval for δ with
ω = 0.2

Distributions δ N̄ sN̄ nω N̄/nω p sp w̄N

α = 0.10

N(10, 1), N(9.7, 1) 0.3 548.5 0.0013 548 1.0010 0.8986 0.0043 0.1998
N(10, 1), N(9.6, 1) 0.4 553.3 0.0017 552 1.0020 0.9056 0.0041 0.1998
N(10, 1), N(9.5, 1) 0.5 559.5 0.0022 559 1.0010 0.8990 0.0043 0.1998

LN(2.991, 0.09975), LN(2.96, 0.1028) 0.3 548.7 0.0051 549 0.9994 0.9012 0.0042 0.1995
LN(2.991, 0.09975), LN(2.95, 0.1039) 0.4 554.2 0.0058 555 0.9986 0.9016 0.0042 0.1995
LN(2.991, 0.09975), LN(2.939, 0.105) 0.5 560.0 0.0082 562 0.9964 0.8962 0.0043 0.1990

Ga(100, 0.1), Ga(94.09, 0.1031) 0.3 548.6 0.0037 548 1.0010 0.8968 0.0043 0.1997
Ga(100, 0.1), Ga(92.16, 0.1042) 0.4 553.7 0.0046 554 0.9995 0.8970 0.0043 0.1996
Ga(100, 0.1), Ga(90.25, 0.1053) 0.5 559.8 0.0056 560 0.9997 0.8948 0.0043 0.1996

α = 0.05

N(10, 1), N(9.7, 1) 0.3 778.3 0.0016 777 1.0020 0.9538 0.0003 0.1999
N(10, 1), N(9.6, 1) 0.4 785.0 0.0021 784 1.0010 0.9494 0.0031 0.1999
N(10, 1), N(9.5, 1) 0.5 793.6 0.0026 793 1.0010 0.9456 0.0032 0.1999

LN(2.991, 0.09975), LN(2.96, 0.1028) 0.3 779.4 0.0046 779 1.0000 0.9468 0.0032 0.1998
LN(2.991, 0.09975), LN(2.95, 0.1039) 0.4 787.3 0.0054 787 1.0000 0.9464 0.0032 0.1998
LN(2.991, 0.09975), LN(2.939, 0.105) 0.5 796.6 0.0086 798 0.9983 0.9458 0.0032 0.1995

Ga(225, 0.0667), Ga(216.1, 0.0680) 0.3 778.5 0.0037 778 1.0010 0.9428 0.0033 0.1998
Ga(225, 0.0667), Ga(213.2, 0.0685) 0.4 785.2 0.0046 785 1.0000 0.9448 0.0032 0.1998
Ga(225, 0.0667), Ga(210.2, 0.0690) 0.5 793.9 0.0063 794 0.9999 0.9448 0.0032 0.1997

Note: δ is the population standardized mean difference; N̄ is the mean final sample size; p is the estimated
coverage probability; ω is the upper bound of the length of the confidence interval for δ; s(N̄) is the standard
deviation of the mean final sample size (i.e., standard error of the final sample size); nω is the theoretical
sample size if the procedure is used with the population parameters; s(p) is the standard error of p; w̄N

average length of confidence intervals for δ based on N observations; tabled values are based on 5,000
replications of a Monte Carlo simulation study from distributions Normal (N) with parameters mean and
variance, lognormal (LN) with parameters log-mean and log-sd and Gamma (Ga) with parameters shape
and scale.

of variation kn = sn/X̄n is
√
n (kn − κ)

L−→ N(0, ξ2), (2.47)

where

ξ2 =
µ4

4µ2σ2
− σ2

4µ2
− µ3

µ3
+
σ4

µ4
(2.48)

and µν = E [(X − µ)ν ], (for ν = 3, 4, provided the fourth moment exists). This approach

yields the same asymptotic variance as found by Albrecher et al. (2010) (although they used

39



a different method to derive the expression). Thus, kn, which is a consistent estimator of

the population coefficient of variation κ = σ/µ, is asymptotically distributed as normal with

mean κ and variance, ξ2/n.

Using Heffernan (1997) and Abbasi et al. (2010), we have estimators based on U-statistics

for the population third central moment, namely, µ3 = E[X−µ]3, and the population fourth

central moment, namely µ4 = E[X − µ]4. Let the estimators be denoted as µ̂3n and µ̂4n

respectively. The expressions of µ̂3n and µ̂4n are given in Equations (A.4) and (A.5) in the

Appendix. Thus we have a consistent estimator of ξ2 which is given by

ξ̂2
n = max

{
V 2
n , n

−3
}

(2.49)

where V 2
n is given by

V 2
n =

µ̂4n

4X̄2
ns

2
n

− s2
n

4X̄2
n

− µ̂3n

X̄3
n

+
s4
n

X̄4
n

. (2.50)

The small positive term n−3, for large sample size n, is used to ensure that we do not get a

negative estimate of ξ2 as there is a nonzero chance, though it may be small, that the sample

estimate of V 2
n may be negative. Theorem A.3 shows that the 100(1−α)% confidence interval

for coefficient of variation is given by(
kN −

zα/2ξ̂N√
N

, kN +
zα/2ξ̂N√

N

)
(2.51)

achieves the specified coverage probability of 100(1−α)%, asymptotically. Additionally, The-

orem A.3 proves that the confidence interval for κ given in Equation (2.51) always achieves

a sufficiently narrow width (less than ω).

Characteristics of the Final Sample Size: An Empirical Demonstration

We now demonstrate the properties of our method using a Monte Carlo simulation for

constructing 100(1− α)% confidence interval for population coefficient of variation, κ, such

that the width of the confidence interval is less than ω and the confidence interval achieves,
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asymptotically, the specified coverage probability 100(1−α)%. This is done by implementing

the sequential procedure via Monte Carlo simulations by drawing random samples from a

pair of distributions.

We implement the purely sequential procedure and, for the sample size (N), we esti-

mate the mean sample size (N), the standard error (s(N)) of N , coverage probability (p),

the standard error of estimated coverage probability (sp), and average length of confidence

intervals w̄N , based on 5,000 replications by drawing random samples from several distribu-

tions: gamma, lognormal, normal. The parameters of the distribution are chosen to represent

possible scenarios in research. In all cases, the number of replications used is 5,000. In each

replication, we first draw m observations from the populations and then follow the algorithm

of the purely sequential procedure by drawing m′ = 1 observations at each stage after the

pilot stage. We summarize our findings in Table 2.2. In all cases in Table 2.2, the seventh

column suggests that the coverage probability is close to the target coverage probability of

90% and 95%, respectively. Also in all cases, the average width is less than ω. The fifth

column indicates the ratio of the average final sample size (N) to the optimal sample size

(nω) is close to 1.

2.7.3 Regression Coefficient: Simple Linear Model

Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are pairs of observation from a simple linear regres-

sion model of the form

Yi = β0 + β1Xi + εi (2.52)

where Yi is the dependent variable, Xi is the independent variable, εis are independent and

identically distributed errors, and β0 and β1 are the unknown regression parameters. Now,

we consider the effect of X on Y , which is the regression coefficient β1 = σXY /σ
2
X , where

σXY is the population covariance between X and Y , and σ2
X is the population variance of
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Table 2.2. Summary of final sample size for 100(1 − α)% confidence interval for κ with
ω = 0.04

Distribution κ N̄ sN̄ nω N̄/nω p sp w̄N

α = 0.10

N(10, 4) 0.2 178.8 0.0049 147 1.2170 0.8844 0.0049 0.0351
N(10, 9) 0.3 368.6 0.0104 360 1.0240 0.8890 0.0044 0.0389
N(10, 16) 0.4 713.5 0.0164 715 0.9979 0.8916 0.0044 0.0397

LN(1, 0.1980) 0.2 182.3 0.0080 159 1.1470 0.8650 0.0048 0.0350
LN(1, 0.2936) 0.3 397.6 0.0245 429 0.9268 0.8680 0.0048 0.0388
LN(1, 0.3853) 0.4 852.5 0.0592 971 0.8780 0.8598 0.0049 0.0397

Ga(25, 0.6) 0.2 173.0 0.0054 141 1.2270 0.8794 0.0046 0.0347
Ga(11.11, 0.6) 0.3 335.2 0.0129 332 1.0100 0.8780 0.0046 0.0386
Ga(6.25, 0.6) 0.4 610.0 0.0239 628 0.9713 0.8810 0.0046 0.0396

α = 0.10

N(10, 4) 0.2 241.2 0.0063 208 1.1600 0.9422 0.0033 0.0363
N(10, 9) 0.3 519.1 0.0126 510 1.0180 0.9408 0.0033 0.0392
N(10, 16) 0.4 1014.0 0.0195 1015 0.9992 0.9458 0.0032 0.0398

LN(1, 0.1980) 0.2 247.4 0.0105 225 1.1000 0.9234 0.0038 0.0362
LN(1, 0.2936) 0.3 570.3 0.0322 608 0.9381 0.9244 0.0037 0.0392
LN(1, 0.3853) 0.4 1243.0 0.0770 1378 0.9022 0.9210 0.0038 0.0398

Ga(25, 0.6) 0.2 233.0 0.0071 200 1.1650 0.9342 0.0035 0.0359
Ga(11.11, 0.6) 0.3 472.5 0.0163 472 1.0010 0.9356 0.0035 0.0390
Ga(6.25, 0.6) 0.4 871.3 0.0301 892 0.9768 0.9402 0.0034 0.0397

Note: κ is the population coefficient of variation; N̄ is the mean final sample size; p is the estimated coverage
probability; ω is the upper bound of the length of the confidence interval for δ; s(N̄) is the standard deviation
of the mean final sample size (i.e., standard error of the final sample size); nω is the theoretical sample size if
the procedure is used with the population parameters; s(p) is the standard error of p; w̄N average length of
confidence intervals for δ based on N observations; tabled values are based on 5,000 replications of a Monte
Carlo simulation study from distributions Normal (N) with parameters mean and variance, lognormal (LN)
with parameters

X. Since the value of β1 is unknown in practice, we estimate it by

b1n =

∑
(xi − x̄n)(yi − ȳn)∑

(xi − x̄n)2
=
sXY n
s2
Xn

(2.53)

where sXY n is the unbiased estimator for covariance between X and Y for a sample of

size n and s2
Xn is the unbiased estimator for variance of X for a sample of size n. Using
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Theorem A.4, the central limit theorem for b1n = sXY n/s
2
Xn is

√
n (b1n − β1)

L−→ N(0, ξ2), (2.54)

where the asymptotic variance is given by

ξ2 =
µ22

σ4
X

− 2σXY µ31

σ6
X

+
σ2
XY µ40

σ8
X

. (2.55)

A consistent estimator for ξ2, similar to that given in Equation (A.11) in the Appendix,

can be used to construct 100(1 − α)% confidence interval for the regression parameter β1

without considering any normality assumption of the errors. Theorem A.5 shows that the

100(1− α)% confidence interval for regression parameter, β1 is given by(
b1N −

zα/2ξ̂N√
N

, b1N +
zα/2ξ̂N√

N

)
(2.56)

achieves the specified coverage probability of 1 − α, asymptotically. Additionally, The-

orem A.5 proves that the confidence interval for β1 given in Equation (2.56) achieves a

sufficiently narrow width (less than ω) using the sequentially estimated sample size, which

is an estimate of the theoretically optimal sample size.

2.8 An Extension: Unbalanced Design

There are situations in which the sample size per group may be different. Under such designs,

we can also use the sequential procedure. As an example, we consider a single-factor between-

subjects unbalanced design related to Example 6. For the kth group, suppose Xk1, . . . , Xknk

are independent and identically distributed random variables with unknown means µk and

unknown variances σ2
k. Thus, in total, there are n =

∑K
k=1 nk observations from K groups.

Then, the population contrast related to the corresponding scenario is given by

ψ =
K∑
k=1

ckµk (2.57)

43



where c1, . . . , cK are known coefficients and
∑K

k=1 ck = 1. An estimator of the contrast ψ is

ψ̂n =
∑K

k=1 ckX̄knk , where X̄1n1 , . . . , X̄KnK are the sample group means. Now,

Var(ψ̂n) =
K∑
k=1

c2
kσ

2
k

nk
. (2.58)

Thus, the 100(1− α)% confidence interval for ψ is given byψ̂n − zα/2
√√√√ K∑

k=1

c2
kσ

2
k

nk
, ψ̂n + zα/2

√√√√ K∑
k=1

c2
kσ

2
k

nk

 . (2.59)

The length of the confidence interval given by Equation (2.59) is

wn = 2zα/2

√√√√ K∑
k=1

c2
kσ

2
k

nk
. (2.60)

Here, we need to find the minimum total sample size with the restriction

2zα/2

√√√√ K∑
k=1

c2
kσ

2
k

nk
≤ ω =⇒

K∑
k=1

c2
kσ

2
k

nk
≤ ω2

4z2
α/2

. (2.61)

Using the Lagrange multiplier method, we define a function

gnkλ =
K∑
k=1

nk + λ

(
K∑
k=1

c2
kσ

2
k

nk
− ω2

4z2
α/2

)
. (2.62)

We note that the Lagrange multiplier method is a method which can be used to find local

minimum or maximum of a function under equality constraints (for e.g. Vapnyarskii, 2001).

By partial differentiation of gnkλ with respect to nk and λ, we have for i = 1, 2, . . . , K

∂

∂nk
gnkλ = 0 =⇒ 1− λc

2
kσ

2
k

nk
= 0 =⇒ nk =

√
λckσk (2.63)

and

∂

∂λ
gnkλ = 0 =⇒

K∑
k=1

c2
kσ

2
k

nk
=

ω2

4z2
α/2

=⇒
K∑
k=1

c2
kσ

2
k√

λckσk
=

ω2

4z2
α/2

=⇒
√
λ =

4z2
α/2

ω2

K∑
k=1

ckσk. (2.64)
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Using Equations (2.63) and (2.64), the optimum sample size for the kth group is given by

nkω =
4ckσcz

2
α/2

ω2

K∑
k=1

ckσk. (2.65)

Thus nkω (k = 1, 2, . . . , K) is the optimum sample size that is required from the kth group

so as to have a confidence interval of width less than ω. But for k = 1, 2, . . . , K, nkω are

unknown. So, as before, in order to estimate the optimum sample size for all K groups, we

use a sequential method.

2.9 Concluding Remarks

In psychology and related disciplines, estimating effect sizes is important and so is quantifying

their uncertainties. Correspondingly, wide confidence intervals are undesirable and illustrate

the uncertainty with which the population value has been estimated, at some specified level

of confidence. Intervals that illustrate a wide range for the population value of the parameter

of interest have been termed “embarrassingly large” (see, Cohen, 1994, p. 1102), with Cohen

speculating that the reason researchers seldomly, at the time, reported confidence intervals

was due to their (embarrassingly large) widths. The AIPE approach to sample size sought to

solve embarrassingly large widths by explicitly planning sample size for sufficiently narrow

intervals. Although these methods are useful, they have their own shortcoming, namely

traditional applications of AIPE tend to require knowledge or speculation of parameters and

distribution in order to plan the necessary sample size. Further, traditional applications of

AIPE require assumptions about the type of distribution from which the scores were sampled

(e.g., normal). This work solves this problem of requiring population parameters and known

distributional forms in order to implement the AIPE approach to sample size planning and

it does so for a general class of effect size. Importantly, we have worked in a distribution-free

environment, where we have not made untenable assumptions about the distribution of the

scores from which the observations are sampled. We believe that our approach advances
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the fields of effect size and sample size planning to improve the state of research design and

analysis in psychology and related disciplines. The accuracy in parameter estimation for

effect sizes of interest is an important issue (e.g., Maxwell et al., 2008, for a review) and now

the approach can be implemented easily without assumptions of known population values

and known distributional forms.

For any given population, the variance of the effect size estimator decreases as sample size

increases, holding everything else constant. This, in turn, decreases the width of the corre-

sponding confidence interval for the effect size parameter as well as the coverage probability,

the probability that the confidence interval will contain the true effect size parameter value.

An optimal sample size is desired which can be used to construct a 100(1− α)% confidence

interval for the effect size parameter, such that the confidence interval will be as narrow

as specified (i.e., the width of the confidence interval will be less than ω and the coverage

probability of the interval is approximately 100(1 − α)%). A fixed sample size procedure

cannot achieve both the coverage probability and the width less than ω simultaneously. We

have shown in this work how to solve this problem for the general effect size parameter under

a distribution-free environment.

Our method, unlike fixed sample size procedures, is not based on the assumption on the

distribution of the data and the population parameters required to estimate the theoretically

optimal sample size (i.e., the sample size if all parameters were known). In this work, we

have developed a sequential procedure which provides an estimate of the theoretically true

optimal sample size required to construct a 100(1 − α)% confidence interval for the effect

size parameter such that the confidence interval will be narrow – that is the width of the

confidence interval will be less than ω and the coverage probability of the interval will be

approximately 100(1 − α)% without assuming any specific distribution for the data. The

lack of any assumption on the distribution of the data is a key part of the contribution, as

in many situations there is no reason to believe that the distribution of the scores is gamma,

lognormal, normal, or some other distribution.

46



The sequential procedure we developed in this work ensures that the width of the con-

fidence interval for the general effect size will be less than the pre-specified upper bound,

ω, and also the coverage probability is approximately 100(1 − α)%, assuming throughout

that the observations are independent and identically distributed but with no assumption of

the distribution of the data. Additionally, the ratio of the average final sample size and the

theoretically optimal sample size is approximately 1, as we showed with theorems as well as

demonstrating empirically via the Monte Carlo simulations.

The traditional AIPE procedure, unlike a sequential AIPE procedure, requires the knowl-

edge or speculation of parameters in order to plan the necessary sample size. After getting

the complete data, with sample size as given by the traditional AIPE procedure, the required

confidence interval for the effect size is computed. In the sequential AIPE, the analysis of

the data is carried out in stages, as it comes, and then finally the confidence interval for the

effect size is computed. Unlike traditional AIPE, in the sequential AIPE the data collection

always stops after the width of the confidence interval is smaller than ω. The traditional

AIPE procedure can be used when the population parameters necessary to compute the

required sample size are fully known, however this is not practically possible. In fact, Sen

and Ghosh (1981) argued that sequential procedures are economical in terms of sample size.

There are several limitations of our method because the method does not directly consider

(a) the problem of continuous availability of participants or observations after each stage;

(b) potential difficulty in specification of m′ (c) difficulty in specification of ω and confidence

coefficient 100(1 − α)%; (d) no knowledge of the final sample size at the beginning of the

study; and (e) the problem of unbounded confidence intervals (e.g., single-sided confidence

intervals which have a limit of positive or negative infinity).

The first limitation is the problem of assuming that the participants or observations

can be readily available as and when required. In some situations, after applying stopping

rules for the observations collected up to a certain stage, we may need to wait until another
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opportunity to obtain another m′ observations. However, a similar kind of situation may

also arise when using a traditional AIPE method as well.

The second limitation is that we need to pre-specify the values of the choice of m′, which

represents the number of observations that will be added in each stage after the pilot sampling

stage or first stage. In some situations it is as easy to collect more than one observation as it is

collecting a single observation at every stage. So, as per convenience, the value of m′ should

be accordingly decided based on economic considerations. For example, Chattopadhyay

and Kelley (2017) discussed the choice of m′ using an application of a sequential procedure

that considered both cost and accuracy for estimating standardized mean difference of the

reading scores while studying the impact of same language subtitling (SLS) on reading ability.

Suppose the data collection on the reading ability of the students is performed during in-

school visits by a surveyor. On any working day at the school, suppose the surveyor is

allowed only 2 hours for interviewing students and every day, a certain amount of money

is provided to the surveyor for travel cost and an hourly wage, say $60 for 2 hours of work

and travel. Because there will be two groups, the choice of m′ could be 1, or any other

value such as 5 or 10. As the surveyor may just as easily collect m′ = 10 as m′ = 1, we

generally recommend a larger value of m′, all other things being equal. Nevertheless, there

is no uniform method which can help take a decision on m′ that will fit all scenarios.

In conceptually similar situations, but yet in a different context, consider the way in which

a computer adaptive test (CAT), in which the final number of items is usually unknown,

additional items are presented to an examinee until the desired accuracy in the estimation of

examinee’s ability is achieved. Obtaining one more sample (in CAT, presenting an additional

item), that is taking m′ = 1 is better than giving 10 more additional items (m′ = 10) at a

time after pilot stage may ultimately result in oversampling. Suppose after a certain stage,

only two more additional items are actually required, but due to pre-specification of m′ = 10

we have to present eight more items. This will require participants taking more items than

is actually required.
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The third limitation is that of specifying the value of ω, as there is no uniformly appropri-

ate value. This limitation, however, also exists in traditional AIPE method. This is similar

to some extent to the question of “what is the appropriate value of statistical power?” The

answer has rules of thumb (e.g., 80% power, power = 1−α, power = 1− 2α, etc.), but with

no universal agreement on what should be used. We see this limitation as a type of paradox

of choice (e.g., Schwarz, 2004), in that ω can be specified as any (positive) value, in which

the smaller ω the more accurate an estimate. Nevertheless, by requiring a specific value of

ω, researchers may decide that because there is no obvious value, they do not implement the

procedure.

The fourth limitation of the sequential AIPE procedure is that of not knowing the final

sample size at the start of the study. Since, our sequential procedure is a data-driven

procedure, it may lead to a sample size that is so large that it is unreasonable to obtain

with the available resources. Nevertheless, the problem of not knowing the true final sample

size at the beginning of the study can be palliated by using a sensitivity analysis with

parameters and supposed distributions in the sequential framework. This will provide a lot

of information about the sensitivity of the final sample size in a variety of scenarios.

The fifth limitation of the sequential AIPE procedure is due to the ratio form. If the

numerator of an estimate is non-zero but the denominator is near zero, the ratio can be

extremely large in an absolute sense. However, this is not just a problem in our case but is

true for effect sizes (estimates) that are (a) functions of ratios and (b) not bounded. Bounded

ratios, such as the correlation coefficient, will not suffer from this potential issue. A similar

situation in the context of mediation is discussed in Preacher and Kelley (2011) (see also

Fieller, 1954).

The procedure we developed for the sequential accuracy in parameter estimation problem

of general effect size is applied to several effect sizes such as coefficient of variation, standard-

ized mean difference, and regression coefficient among others. The basic theory of sequential
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methods is based on the idea of “learn-as-you-go” with the stopping rule instructing a re-

search to continue or stop sampling. Based on the limitations of fixed sample size planning

procedures with regard to assumed data distribution and assumed knowledge of population

parameters, use of sequential procedures in psychology and related fields can be beneficial.

Recent methodological advances for sequential methods, for example, consider the standard

error and study cost for the coefficient of variation (Chattopadhyay and Kelley, 2016) and

the standardized mean difference (Chattopadhyay and Kelley, 2017). This is the first work,

however, to make developments for AIPE in the context of sequential methods and to do so

for a general class of effect size measures.
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CHAPTER 3

A PURELY SEQUENTIAL APPROACH TO ACCURACY IN PARAMETER

ESTIMATION FOR POPULATION CORRELATION COEFFICIENTS1

3.1 Introduction

The correlation coefficient provides a scale-free measure of the magnitude, direction, and

strength of the linear relationship between two variables and lies in the interval [−1, 1]. The

Pearson product moment correlation coefficient is often used when variables are quantitative.

However, other correlations exist when variables are ordinal, such as the Kendall’s tau or

Spearman’s rho rank correlation coefficients. In this work, we develop sequential methods

for obtaining accurate estimates of population correlation coefficients. We begin with the

Pearson product moment correlation due to its popularity in psychology and related fields

before generalizing to other correlations and, ultimately, to the squared multiple correlation

coefficient in the multiple regression framework. Our work builds on Kelley et al. (2018),

but is distinct in important ways as we will discuss.

Suppose (X1, Y1), . . . , (Xn, Yn) is a random sample from a bivariate distribution of arbi-

trary form, F , with covariance σXY and with the marginal distributions of X and Y having

population variances σ2
X and σ2

Y , respectively. Throughout the article, it is assumed that

observations are drawn from a homogeneous population. The population Pearson product

moment correlation coefficient of X and Y , is given by

ρ =
σXY√
σ2
Xσ

2
Y

. (3.1)

In most disciplines, the correlation coefficient is often a primary outcome variable of interest.

For this reason, many authors have heavily invested in methodological work for estimation

1This chapter is based on Kelley, Bilson Darku, and Chattopadhyay (2017) which is under review for
publication.
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of and inference for the population correlation coefficient in an effort to better describe

quantitative relationships, plan studies that will estimate the correlation coefficient, and

perform inferential procedures for the population correlation coefficient. For example, Wolf

and Cornell (1986) and Bonett and Wright (2000) emphasized the importance of estimating

the population correlation coefficient with a narrow confidence interval, specifically under

the assumption of a bivariate normal distribution. Under the same distribution assump-

tions, Moinester and Gottfried (2014) provided a review of several methods for constructing

a narrow confidence interval for the population correlation coefficient. Holding constant the

population of interest, the effect size of interest, any bias of the estimator, and the confi-

dence interval coverage, a narrower confidence interval for the parameter is preferred to a

wider confidence interval because it illustrates more precision about the parameter of inter-

est. Holding constant or decreasing any bias, one way of increasing precision, and thereby

improving accuracy, is to increase the sample size (e.g., Kelley and Maxwell, 2003; Maxwell

et al., 2008).

The existing approaches to plan sample size for obtaining a narrow confidence interval

for the population correlation coefficient are based on supposed values of one or more popu-

lation parameters in the context of bivariate normal distributions (e.g., Bonett and Wright,

2000; Corty and Corty, 2011; Moinester and Gottfried, 2014). A framework of sample size

planning known as accuracy in parameter estimation (AIPE), which has been developed for

constructing sufficiently narrow confidence intervals for several population effect sizes, has

traditionally been based on supposed population parameter values (e.g., Kelley and Maxwell,

2003; Kelley and Rausch, 2006; Kelley, 2007b, 2008; Kelley and Lai, 2011; Terry and Kelley,

2012; Lai and Kelley, 2011a,b; Pornprasertmanit and Schneider, 2014). However, a potential

problem is the requirement of one or more supposed values of the population parameters,

which will generally be unknown.2 Existing approaches aimed at sample size planning for

2In the context of statistical power, an alternative approach that does not require the specification of the
population parameter(s) is to specify the minimally important effect size of interest, which basis statistical
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obtaining a narrow confidence interval for the population correlation coefficient rely on sup-

posed population values. Further, applications of AIPE and power analysis also rely on

supposed population values. When using supposed population values, that is, treating a

supposed value as if it were the true population value, the obtained sample size estimates

can differ dramatically from what the theoretically optimal sample size value would be if

the population parameters were known. In such situations, even small differences in the

supposed and actual value of a parameter can lead to large differences in the planned versus

actually required sample size, due to power curves being nonlinear.

Fisher’s (1915) z-transform method can be used to find the confidence interval for the

population correlation coefficient, but it is based on the assumption of bivariate normality.

However, because we are working under a distribution-free scenario, our confidence interval

procedure is built upon the asymptotic distribution of sample correlation coefficient proposed

by Lee (1990). Unlike Bonett and Wright (2000), Corty and Corty (2011), and Moinester

and Gottfried (2014), our approach is more flexible because (a) it does not require the

assumption of the bivariate normal distribution of the two variables and (b) supposed values

of the population parameters are not needed to plan the sample size. These two points are

critical.

We use a sequential approach to find a narrow confidence interval for the population corre-

lation coefficient, which we call sequential AIPE. This approach is similar to the “fixed-width

confidence interval” method, in which the width of the confidence interval is pre-specified.

Sequential AIPE differs from the fixed-width confidence interval approach because sequential

AIPE aims to find the minimum value of the sample size such that the confidence interval

is sufficiently narrow by pre-specifying the upper bound on the confidence interval width

power based on the minimum parameter value of interest that would be practically of interest or theoretically
interesting. O’Brien and Castelloe (2007) discuss that this approach has potential problems, because for
important outcomes in which any non-zero effect is important, the planned sample sizes can be extremely
large.
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(e.g., Sproule, 1985; Mukhopadhyay and De Silva, 2009; Mukhopadhyay and Chattopadhyay,

2012). In particular, the fixed-width confidence interval procedure deals with construction

of a confidence interval for a population parameter that has a width which is exactly equal

to the pre-specified value of the confidence interval width. By contrast, in sequential AIPE,

the aim is to obtain a sufficiently narrow confidence interval for a population parameter such

that the confidence interval is not wider than the pre-specified width.

Under the distribution-free scenario, the exact sampling distribution of the sample cor-

relation coefficient cannot be obtained. This is because in the distribution-free environment

no underlying distribution is assumed, such as a bivariate normal. Unlike Fisher’s method,

we are working under the distribution-free scenario, we use the asymptotic distribution of

the sample correlation coefficient developed by Lee (1990) to obtain a sufficiently narrow

confidence interval for the population correlation coefficient, ρ, using the smallest possible

sample size.

We first discuss the (traditional) AIPE for the Pearson product moment correlation co-

efficient and propose a sequential estimation procedure, which extends the ideas of Kelley

et al. (2018). The methods of Kelley et al. (2018) were for a generalized effect size consisting

of the ratio of linear functions. We then extend the methods used for the Pearson product

moment correlation coefficient to Kendall’s tau rank correlation coefficient and Spearman’s

rank correlation coefficient. Thus, the methods that we develop here are for three types of

correlation coefficients, which represents a fundamentally different type of effect size than

that given in Kelley et al. (2018). Nevertheless, in both cases, our methods use a sequen-

tial procedure for constructing a sufficiently narrow confidence interval (i.e., no larger than

specified width) with a specified level of confidence without requiring supposed population

values. Importantly, we make all of these developments in a distribution-free environment.

The distribution-free environment is important because there is often no reason to assume

that the underlying distribution of the data for which the correlation coefficient will be
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calculated would be known (e.g., bivariate normal, bivariate gamma). Finally, we provide

an extension of the sequential procedure in order to obtain a sufficiently narrow confidence

interval for the squared multiple correlation coefficient, yet here we assume multivariate

normality rather than working in a distribution-free environment (due to the current limi-

tations in the distribution-free literature for confidence intervals for the population squared

multiple correlation coefficient). For all of the different correlation coefficients discussed, we

provide Monte Carlo simulation results that illustrate the characteristics of the procedures

in a variety of scenarios.

3.2 Accuracy in Parameter Estimation of Pearson’s Product Moment Correla-

tion Coefficient

Pearson’s product moment correlation coefficient continues to serve as an important role in

many disciplines. The sample correlation coefficient based on n observations is given by

rn =
SXY n√
S2
XnS

2
Y n

. (3.2)

where

SXY n ≡ U1n =

(
n

2

)−1 ∑
1≤i<j≤n

1
2
(Xi −Xj)(Yi − Yj) =

1

n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn), (3.3)

S2
Xn = U2n =

(
n

2

)−1 ∑
1≤i<j≤n

1
2
(Xi −Xj)

2 =
1

n− 1

n∑
i=1

(Xi − X̄n)2, and (3.4)

S2
Y n = U2n =

(
n

2

)−1 ∑
1≤i<j≤n

1
2
(Yi − Yj)2 =

1

n− 1

n∑
i=1

(Yi − Ȳn)2 (3.5)

(3.6)

are the sample covariance of X and Y , sample variance of X, and sample variance of Y

respectively. We use a subscript n to denote the current sample size used in the estima-

tion. For technical details regarding the equivalence, we refer the reader to Lee (1990) and
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Mukhopadhyay and Chattopadhyay (2013, 2014). The U-statistics form of the expressions

of sample covariance and sample variances are required for proving Theorem 3.1.

Using Lee (1990), the asymptotic variance of rn is ξ2
ρ/n, where

ξ2
ρ =

ρ2

4

(
µ40

σ4
X

+
µ04

σ4
Y

+
2µ22

σ2
Xσ

2
Y

+
4µ22

σ2
XY

− 4µ31

σXY σ2
X

− 4µ13

σXY σ2
Y

)
(3.7)

and µij = E [(X − µX)i(Y − µY )j]. Then the approximate 100(1 − α)% confidence interval

for ρ is given by (
rn − zα/2

ξρ√
n
, rn + zα/2

ξρ√
n

)
, (3.8)

where zα/2 is the 1 − α/2 quantile of the standard normal distribution. The width of the

confidence interval defined in Equation (3.8) is given by

wn = 2zα/2
ξρ√
n
. (3.9)

In AIPE problems the sample size required to achieve the sufficient accuracy is solved by

specifying the upper bound on the width of the confidence interval, ω. So for a given ω, we

have

2zα/2
ξρ√
n
≤ ω, (3.10)

which implies that the necessary sample size to construct 100(1 − α)% confidence interval

for ρ will be

n ≥

⌈
4z2

α/2ξ
2
ρ

ω2

⌉
≡ nω, (3.11)

where dxe is the ceiling function which is the smallest integer greater than or equal to x

(e.g., d49.2e = 50). Here, nω is the theoretical optimal sample size required to make the

100(1 − α)% confidence interval for ρ provided that the asymptotic variance, ξ2
ρ, is known.

The optimal sample size nω, is unknown as in reality ξ2
ρ is unknown. We note that the

supposed values of ξ2
ρ cannot be used to estimate nω as this may not guarantee that the

condition in Equation (3.11) is satisfied. So, we will use a sequential procedure, which does
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not need a supposed population parameter value to find out the sample size but will satisfy

the condition given in Equation (3.11). Here, we use a consistent estimator of ξ2
ρ in our

sequential procedure to estimate the optimal sample size. The consistent estimator of ξ2
ρ is

given by

ξ̂2
ρn = max

{
V 2
ρn, n

−γ} , γ > 0, (3.12)

where

V 2
ρn =

r2
n

4

(
µ̂40n

S4
Xn

+
µ̂04n

S4
Y n

+
2µ̂22n

S2
XnS

2
Y n

+
4µ̂22n

SXY n
− 4µ̂31n

SXY nS2
Xn

− 4µ̂13n

S2
XY nS

2
Y n

)
. (3.13)

and µ̂ijn’s, the estimators of µij’s, are defined in Equations (B.2) – (B.6) in the Appendix.

We note that the estimator V 2
ρn is a moment-based estimator of ξ2

ρ and there is a chance,

even though negligible, that it may come out to be negative in some situations. In order to

avoid such scenario, if it arises, we use the term n−γ. Any choice of γ will not affect the

consistency property of ξ̂2
ρn; hereafter we use γ = 3.

3.3 Accuracy in Parameter Estimation via a Sequential Optimization Proce-

dure

The sample size is not fixed in advance in sequential methodologies as opposed to fixed

sample-size procedures. Here, we propose a sequential procedure to construct a 100(1−α)%

confidence interval for the correlation coefficient ρ within a distribution-free environment.

For details about the general theory of sequential estimation procedures, we refer interested

readers to Sen (1981), Ghosh and Sen (1991), Chattopadhyay and Mukhopadhyay (2013),

Chattopadhyay and Kelley (2016, 2017), and De and Chattopadhyay (2017). Recall that

the optimal sample size nω is unknown due to ξ2 being unknown. We use the consistent

estimator of ξ2, namely ξ̂2
n, which is based on n observations on both X and Y . We now

develop an algorithm to find an estimate of the optimal sample size via the purely sequential

estimation procedure.
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Stage 1: Observations are collected on variables X and Y for a randomly selected pilot

sample of size m. We recommend using the pilot sample size, m, following Mukhopadhyay

(1980), as

m = max

{
4,

⌈
2zα/2
ω

⌉}
. (3.14)

Based on this pilot sample of sizem, we estimate ξ2 by computing ξ̂2
m. Ifm <

⌈
4z2
α/2

ω2

(
ξ̂2
m + 1

m

)⌉
,

then proceed to the next step. Otherwise, if m ≥
⌈

4z2
α/2

ω2

(
ξ̂2
m + 1

m

)⌉
, stop sampling and set

the final sample size equal to m.

Stage 2: Obtain an additional m′(≥ 1) observations, where m′(≥ 1) is the number of

paired observations that are added to the sample in every stage after the pilot stage. Thus,

for adding a single pair to the collected data, m′ = 1. However, if five additional pairs

are taken at each stage, then m′ = 5. Thus, after collecting the pilot sample and the

sampling at the next stage, there are (m + m′) observations on both X and Y . After

updating the estimate of ξ2 by computing ξ̂2
m+m′ , a check is performed to determine whether

m + m′ ≥
⌈

4z2
α/2

ω2

(
ξ̂2
m+m′ +

1
m+m′

)⌉
. If m + m′ <

⌈
4z2
α/2

ω2

(
ξ̂2
m+m′ +

1
m+m′

)⌉
then go to the

next step. Otherwise, if m+m′ ≥
⌈

4z2
α/2

ω2

(
ξ̂2
m+m′ +

1
m+m′

)⌉
then stop further sampling and

report the final sample size as (m+m′).

This process of collecting one (or more) observation(s) in each stage after the first stage

continues until there are N observations such that N ≥
⌈

4z2
α/2

ω2

(
ξ̂2
N + 1

N

)⌉
. At this stage,

we stop further sampling and report the final sample size as N .

Based on the algorithm just outlined, a sampling stopping rule can be defined as follows:

N is the smallest integer n(≥ m) such that n ≥
4z2

α/2

ω2

(
ξ̂2
n +

1

n

)
, (3.15)

where the term n−1 is a correction term ensuring that the sampling process does not stop

too early for the optimal sample size because of the use of the approximate expression.
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The inclusion of the correction term retains the convergence property of ξ̂2
n + n−1, thus

ξ̂2
n + n−1 converges to ξ2 for large sample sizes. For details of the correction term, refer to

Chattopadhyay and De (2016), Sen (1981), and Chattopadhyay and Kelley (2016, 2017).

Following the sequential procedure, the 100(1−α)% confidence interval for the population

correlation coefficient, ρ, is given by(
rN −

zα/2ξ̂N√
N

, rN +
zα/2ξ̂N√

N

)
. (3.16)

The width of the confidence interval in Equation (3.16) will be less than ω, in accord with our

method’s specifications. Lemma 3.1 proves that the estimated sample size from sequential

procedure, N , is finite. Also, Theorem 3.1 in the Appendix proves that the confidence

interval achieves the specified coverage probability 1 − α asymptotically using N which is

the estimate of the smallest possible sample size (nω). Here the smallest possible sample

size indicates that the sample size required to obtain a sufficiently narrow 100(1 − α)%

confidence interval is nω. Since nω is unknown, using sequential procedure we can find a

consistent estimator, N , of nω (proved in Lemma 2). Additionally, Theorem 3.1 proves that

the confidence interval for ρ given in Equation (3.16) always achieves a sufficiently narrow

width (less than ω).

In the next section, we state and prove some lemmas and theorem associated with the

sequential procedure described for constructing a bounded-width confidence interval for Pear-

son’s correlation coefficient.

3.4 Lemmas and Theorems

Lemma 3.1. Under the assumption that E[ξ̂2
ρn] exist, for any ω > 0, the stopping rule N is

finite, that is, P (N <∞) = 1.

Proof. Using Lemma A1 of Chattopadhyay and De (2016), we can prove this lemma. �
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Lemma 3.2. If the parent distribution(s) is(are) such that E[ξ̂2
ρn] exists, then the stopping

rule in Equation (3.15) yields

N

nω

P−→ 1 as ω → 0, (3.17)

where
P−→ indicates convergence in probability.

Proof. To prove this lemma, we proceed along the lines of Chattopadhyay and Kelley (2017)

(see also De and Chattopadhyay, 2017). The definition of stopping rule N in Equation (3.15)

yields (
2zα/2
ω

)2

ξ̂2
ρN ≤ N ≤ mI(N = m) +

(
2zα/2
ω

)2(
ξ̂2
ρ,N−1 +

1

N − 1

)
. (3.18)

Since N →∞ asymptotically as ω ↓ 0 and ξ̂2
ρn → ξ2

ρ in probability as n→∞, by Theorem

2.1 of Gut (2009), ξ̂2
ρN → ξ2

ρ in probability. Hence, dividing all sides of Equation (3.18) by

nω and letting ω ↓ 0, we prove N/nω → 1 asymptotically as ω ↓ 0. �

Theorem 3.1. Suppose the parent distribution F is such that E[U2
in] < ∞ for i = 1, 2, 3,

then the stopping rule in Equation (3.15) yields:

Part 1: P

(
rN −

zα/2ξ̂ρN√
N

< ρ < rN +
zα/2ξ̂ρN√

N

)
→ 1− α as ω → 0,

Part 2:
2zα/2ξ̂ρN√

N
≤ ω. (3.19)

Proof. Part 1: We now proceed along the lines of De and Chattopadhyay (2017). Let

Un = [U1n, U2n, U3n]′ and θ = [σXY , σ
2
X , σ

2
Y ]′, then from Lee (1990), we know that

Yn =
√
n[Un − θ]

L−→ N3(0,Σ), (3.20)

where

Σ =


µ22 − σ2

XY µ31 − σXY σ2
X µ13 − σXY σ2

Y

µ31 − σXY σ2
X µ40 − σ4

X µ22 − σ2
Xσ

2
Y

µ13 − σXY σ2
Y µ22 − σ2

Xσ
2
Y µ04 − σ4

Y

 .
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We define D′ = [a1, a2, a3] and note that D′YN = D′Ynω + (D′YN −D′Ynω). To prove

that YN
L−→ N3(0,Σ), we have to show that D′(YN −Ynω)

P−→ 0 as ω → 0. We write

D′(YN −Ynω) =
3∑
i=1

ai
√
N (UiN − Uinω) +

(√
N/nω − 1

)
D′Ynω . (3.21)

Let n1 = (1− γ)nω and n2 = (1 + γ)nω for γ ∈ (0, 1). For a fixed ε > 0,

P

{∣∣∣∣∣
3∑
i=1

ai
√
N (UiN − Uinω)

∣∣∣∣∣ > ε

}

≤ P

{∣∣∣∣∣
3∑
i=1

ai
√
N (UiN − Uinω)

∣∣∣∣∣ > ε, |N − nω| < γnω

}
+ P {|N − nω| > γnω}

≤
3∑
i=1

P

{
max

n1<n<n2

√
n |Uin − Uinω | >

ε

3|ai|

}
+ P {|N − nω| > γnω} .

(3.22)

Because N/nω
P−→ 1 and Uin, i = 1, 2, 3 are U-statistics which satisfy Anscombe’s uni-

formly continuous in probability condition (see Anscombe, 1952, or Theorem 1.4), we con-

clude that
∑3

i=1 ai
√
N (UiN − Uinω)

P−→ 0. Also, (
√
N/nω − 1)D′Ynω

P−→ 0 as ω → 0 and

D′Ynω
L−→ N(0,D′ΣD). Hence, we conclude from Equation (3.21) that D′(YN −Ynω)

P−→ 0,

that is, YN
L−→ N3(0,Σ). Now, we define g(u1, u2, u3) = u1√

u2u3
for u2, u3 > 0 and rewrite

rn = g(Un) using Taylor’s expansion about θ:

g(Un) = g(θ) +
U1N − σXY
σXσY

− σXY
2σ3

XσY
(U2N − σ2

X)− σXY
2σXσ3

Y

(U3N − σ2
Y ) +RN , (3.23)

where

RN =
1

2
(UN − θ)′{D2g(a)}(UN − θ) (3.24)

and D2g(a) is the Hessian matrix of g(Un) evaluated at a = (1− γ)θ + γUn for γ ∈ (0, 1).

Thus,

√
N(rN − ρ) =

√
N
ρ

2

(
2

σXY
(U1N − σXY )− 1

σ2
X

(U2N − σ2
X)− 1

σ2
Y

(U3,N − σ2
3)

)
+
√
NRN

= D′YN +
√
NRN , (3.25)
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where ρ = g(θ) and D′ = ρ
2

[
2

σXY
,− 1

σ2
X
,− 1

σ2
Y

]
. According to Lee (1990) and Anscombe’s CLT

(see Anscombe, 1952, or Theorem 1.4),
√
N(U1N−σXY ),

√
N(U2N−σ2

X), and
√
N(U3N−σ2

Y )

converge to normal distributions and (U1N − σXY ), (U2N − σ2
X), and (U3N − σ2

Y ) converge to

0 almost surely. This implies
√
NRN

P−→ 0 as N → ∞. Hence,
√
N(rN − ρ)

L−→ N(0, ξ2) as

ω → 0, where

ξ2 = D′ΣD =
ρ2

4

(
µ40

σ4
X

+
µ04

σ4
Y

+
2µ22

σ2
Xσ

2
Y

+
4µ22

σ2
XY

− 4µ31

σXY σ2
X

− 4µ13

σXY σ2
Y

)
(3.26)

and µij = E [(X1 − µX)i(Y1 − µY )j].

Part 2: We can prove by using Kelley et al. (2018) directly. �

3.5 Characteristics of the Final Sample Size for Pearson’s Product Moment

Correlation: A Simulation Study

Recall that our procedure is asymptotically correct but its effectiveness in smaller sample

size situations is not fully known, given the methods of confidence interval construction are

themselves asymptotically correct. Correspondingly, we now demonstrate the properties of

our method using a Monte Carlo simulation for constructing 100(1−α)% confidence intervals

for population correlation coefficients from a variety of different bivariate distributions. To

implement the sequential AIPE procedure, we specify a maximum confidence interval width

of ω = 0.1 (say) and a confidence coefficient of 90%. We compute the pilot sample size by

using the formula given in the algorithm m = 33
(
= max

{
4, d2z0.1/2/0.1e

})
. The estimate of

the asymptotic variance of correlation coefficient is calculated using the pilot sample, and we

check if the stopping rule in Equation (3.15) is met. If the stopping rule is met, the sampling

stops. Otherwise, an additional sample is generated and asymptotic variance recalculated.

This continues until the stopping rule in Equation (3.15) is met. The simulation results are

based on two different distributions: bivariate normal and bivariate gamma distributions.

For bivariate normal and the bivariate gamma distribution from Theorem 2 of Nadarajah
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and Gupta (2006), the simulation study was done for correlation coefficient ρ of 0.1, 0.3, and

0.5, ω = 0.1, 0.2 and α = 0.1, 0.05. In all cases, 5,000 replications were used.

Table 3.1. Summary of final sample size for 100(1− α)% confidence interval for ρ

ω Distribution ρ N̄ se(N̄) nω N̄/nω p sp w̄N se(w̄N)

α = 0.10

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1056.0 0.9581 1061 0.9957 0.8944 0.0043 0.0999 9.33× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 891.2 0.9900 897 0.9935 0.8902 0.0044 0.0999 1.21× 10−6

N2(0, 0, 1, 1, 0.5) 0.5 601.0 0.9920 609 0.9869 0.8868 0.0045 0.0997 2.04× 10−6

Ga2(5, 5, 50, 10) 0.1 1124.0 1.5480 1138 0.9876 0.8984 0.0043 0.0999 1.66× 10−6

Ga2(5, 5, 16.67, 10) 0.3 1049.0 1.6510 1066 0.9840 0.8982 0.0043 0.0999 1.97× 10−6

Ga2(5, 5, 10, 10) 0.5 774.4 1.6730 797 0.9717 0.8862 0.0045 0.0995 7.24× 10−5

0.2 N2(0, 0, 1, 1, 0.1) 0.1 260.3 0.5085 266 0.9784 0.8762 0.0047 0.1985 1.48× 10−4

N2(0, 0, 1, 1, 0.3) 0.3 216.4 0.6056 225 0.9617 0.8666 0.0048 0.1963 2.86× 10−4

N2(0, 0, 1, 1, 0.5) 0.5 138.0 0.6628 153 0.9022 0.8124 0.0055 0.1873 5.60× 10−4

Ga2(5, 5, 50, 10) 0.1 272.0 0.7694 285 0.9545 0.8784 0.0046 0.1978 2.07× 10−4

Ga2(5, 5, 16.67, 10) 0.3 245.9 0.9045 267 0.9209 0.8546 0.0050 0.1947 3.69× 10−4

Ga2(5, 5, 10, 10) 0.5 164.0 1.0100 200 0.8198 0.7686 0.0060 0.1806 7.25× 10−4

α = 0.05

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1502.0 1.1200 1507 0.9969 0.9442 0.0032 0.0999 6.44× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 1267.2 1.1890 1273 0.9956 0.9460 0.0032 0.0999 8.13× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 857.0 1.1920 865 0.9908 0.9464 0.0032 0.0998 7.91× 10−6

Ga2(5, 5, 50, 10) 0.1 1600.0 1.8780 1615 0.9910 0.9498 0.0031 0.0999 1.23× 10−7

Ga2(5, 5, 16.67, 10) 0.3 1497.0 1.9960 1513 0.9840 0.9490 0.0031 0.0999 1.24× 10−6

Ga2(5, 5, 10, 10) 0.5 1109.0 1.9540 1132 0.9794 0.9430 0.0033 0.0998 3.90× 10−5

0.2 N2(0, 0, 1, 1, 0.1) 0.1 372.2 0.5746 377 0.9872 0.9396 0.0034 0.1992 8.16× 10−5

N2(0, 0, 1, 1, 0.3) 0.3 312.5 0.6112 319 0.9796 0.9332 0.0035 0.1989 9.71× 10−5

N2(0, 0, 1, 1, 0.5) 0.5 204.0 0.7435 217 0.9400 0.9012 0.0042 0.1938 3.83× 10−4

Ga2(5, 5, 50, 10) 0.1 391.1 0.8966 404 0.9681 0.9412 0.0033 0.1989 1.15× 10−4

Ga2(5, 5, 16.67, 10) 0.3 360.1 1.0160 379 0.9501 0.9252 0.0037 0.1977 2.30× 10−4

Ga2(5, 5, 10, 10) 0.5 251.6 1.1640 283 0.8889 0.8766 0.0047 0.1901 5.30× 10−4

Note: ρ is the population correlation coefficient; N̄ is the mean final sample size; p is the estimated coverage
probability; ω is the upper bound of the length of the confidence interval for ρ; se(N̄) is the standard deviation
of the mean final sample size (i.e., standard error of the final sample size); nω is the theoretical sample size
if the procedure is used with the population parameters; se(p) is the standard error of p; w̄N average length
of confidence intervals for ρ based on N observations; se(w̄N ) is the standard error of w̄; tabled values are
based on 5,000 replications of a Monte Carlo simulation study from distributions: Bivariate Normal (N2)
distribution with parameters µ1, µ2, σ2

1 , σ2
2 and ρ, respectively, and Bivariate Gamma (Ga2) with parameters

a1, a2, c, and µ, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).
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Table 3.1 shows the mean final sample size N̄ (estimates E[N ]), coverage probability p,

and average confidence interval width w̄N (estimates E[wn]). The values se(N̄), se(p), and

se(w̄N) represent the standard errors of N̄ , p, and w̄N respectively. None of the confidence

interval widths, wN , obtained from the final sample sizes, N , exceeded the maximum specified

width, ω. The table also shows that, in most cases, the ratio of the mean final sample size to

the theoretical sample sizes is satisfactory, if not highly so. However, in some situations the

the ratio of the mean final sample size to the theoretical sample sizes is not on target (e.g.,

< 85% empirical coverage in the situation of a 90% confidence interval). These situations,

however, occur only when the empirical confidence interval coverage differs markedly from

the nominal coverage. We will discuss this limitation below, which is due to the confidence

interval procedure and not the sequential AIPE procedure.

Table 3.1 shows that, in most situations, our sequential procedure works well. However,

there are some situations where (a) the ratio of the mean final sample size to the theoretical

sample size (i.e., N̄/nω) is considerably less than 1.0, such as in Table 3.1 in the final column.

There, the ratio is 0.82. In particular, the mean final sample size was 164 but the theoretical

sample size is 200. However, also note that the confidence interval coverage, nominally

set to 90%, was shown to be only 76.86%. Consideration of this issue led to a separate

simulation study to evaluate if the problem was with (a) the sequential procedure or (b)

the confidence interval method itself. We conducted another Monte Carlo simulation study

using a fixed-n approach at the theoretical sample size. Because the only thing manipulated

was the method, fixed-n or sequential, any differences would be due to that. However, if the

confidence interval coverage performance is the same, then it is a failure of the confidence

interval procedure itself, not the sequential approach.

Our results (see Table 3.2), based on 10,000 replications, show that the empirical con-

fidence interval coverage is too low for some of the situations, particularly for the smaller

sample sizes (e.g., 90% coverage and larger values of ρ). We believe that the shortcoming in
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Table 3.2. Simulation results for 100(1− α)% confidence interval for ρ for fixed n

α = 0.10 α = 0.05

ω Distribution ρ nω p nω p

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1061 0.8998 1507 0.9477
N2(0, 0, 1, 1, 0.3) 0.3 897 0.9013 1273 0.9528
N2(0, 0, 1, 1, 0.5) 0.5 609 0.8941 865 0.9466

Ga2(5, 5, 50, 10) 0.1 1138 0.8991 1615 0.9505
Ga2(5, 5, 16.67, 10) 0.3 1066 0.8942 1513 0.9447
Ga2(5, 5, 10, 10) 0.5 797 0.8951 1132 0.9456

0.2 N2(0, 0, 1, 1, 0.1) 0.1 266 0.8924 377 0.9454
N2(0, 0, 1, 1, 0.3) 0.3 225 0.8985 319 0.9446
N2(0, 0, 1, 1, 0.5) 0.5 153 0.8894 217 0.9392

Ga2(5, 5, 50, 10) 0.1 285 0.8899 404 0.9470
Ga2(5, 5, 16.67, 10) 0.3 267 0.8881 379 0.9424
Ga2(5, 5, 10, 10) 0.5 200 0.8840 283 0.9381

Note: ω is the upper bound of the desired confidence interval length; ρ is the population correlation coef-
ficient; nω is the optimal sample size given ω, ρ and the specified distribution; p is the simulated coverage
probability for a fixed sample size of nω given ρ and the distribution.

the confidence interval coverage is due to the bias of the estimator of the kurtosis parameter

(namely, µ40/σ
4
X) in ξ2 given in Equation (3.7). This biased estimator of the kurtosis that is

used in this article, along with five other estimators, was studied by An and Ahmed (2008).

In order to get better results, a robust consistent estimator for kurtosis parameters may be

used, but this is an active area of research and we are limited by what already exists in the

literature.

3.6 Alternative Confidence Intervals for Pearson’s Correlation Coefficient

Our proposed sequential procedure can be extended to other forms of confidence intervals

for the population correlation coefficient, such as those proposed by Corty and Corty (2011)

and Moinester and Gottfried (2014). We discuss how our methods apply to the methods

recommended by these authors. We are agnostic to which method should be used, but rather

want to show how our methods work for both situations.
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3.6.1 Confidence Interval by Corty and Corty (2011)

Corty and Corty (2011) used Fisher’s z-transform and thereby proposed a way to estimate

the sample size for a given choice of sample correlation coefficient, confidence level, and ω.

Moinester and Gottfried (2014) noted that the optimal sample size required to achieve a

100(1−α)% confidence interval for correlation coefficient (ρ), proposed by Corty and Corty

(2011), with width no larger than ω is

nCC =

(
4zα/2
ln(B)

)2

+ 3, (3.27)

where

B =
(1 + |ρ|+ ω/2)(1− |ρ|+ ω/2)

(1 + |ρ| − ω/2)(1− |ρ| − ω/2)
, (3.28)

and |ρ| being the absolute value of the population correlation coefficient. Now the supposed

value of the population correlation coefficient, whose confidence interval we would like to

construct, can differ markedly from the true population value. As discussed, our sequential

procedure does not require inserting supposed population values. Our sequential stopping

rule which helps find the estimate of the optimal sample size is as follows:

NCC is the smallest integer n(≥ mCC) such that

n ≥ 16z2
α/2

[(
ln

(
(1 + |rn|+ ω/2)(1− |rn|+ ω/2)

(1 + |rn| − ω/2)(1− |rn| − ω/2)

))−2

+
1

n

]
+ 3. (3.29)

Following the sample of size NCC , collected using the sequential stopping rule stated in

Equation (3.29), the 100(1−α)% confidence interval for the population correlation coefficient,

ρ, can be constructed by applying the confidence interval formula as in Corty and Corty

(2011). We suggest the pilot sample size, mCC , as

mCC = max

4,


1

2

3 +
16z2

α/2

(ln b)2
+

√√√√(3 +
16z2

α/2

(ln b)2

)2

+
(
8zα/2

)2



 (3.30)
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where

b =

(
2 + ω

2

) (
1 + ω

2

)(
1− ω

2

) (
1−2ω

4

) (3.31)

for rn < 1− ω
2

and ω < 0.5.

The optimal sample size, nCC , can be estimated by adopting the sequential stopping rule

defined in Equation (3.29). Note that, in practice, nCC is usually unknown because ρ will

usually be unknown. Thus, when one uses supposed values of parameters the final sample

size is known but is based on a value that is almost certainly not true. The derivation of

pilot sample size formula in Equation (3.30) is shown in the next subsection.

Derivation of Pilot Sample Size Confidence Interval by Corty and Corty (2011)

For rn < 1− ω
2

and ω < 0.5,

B =

(
1 + |rn|+ ω

2

) (
1− |rn|+ ω

2

)(
1 + |rn| − ω

2

) (
1− |rn| − ω

2

) < (2 + ω
2

) (
1 + ω

2

)(
1− ω

2

) (
1−2ω

4

) = b

=⇒ lnB < ln b =⇒ 1

lnB
>

1

ln b
. (3.32)

From the stopping rule in Equation (3.29) and using Equation (3.32), we have

n ≥ 16z2
α/2

(
1

(lnB)2
+

1

n

)
+ 3 ≥ 16z2

α/2

(
1

(ln b)2
+

1

n

)
+ 3

n2 ≥

(
16z2

α/2

(ln b)2
+ 3

)
n+ 16z2

α/2

n2 −

(
16z2

α/2

(ln b)2
+ 3

)
n− 16z2

α/2 ≥ 0. (3.33)

Using quadratic formula and n > 0, we have

n ≥ 1

2

3 +
16z2

α/2

(ln b)2
+

√√√√(3 +
16z2

α/2

(ln b)2

)2

+
(
8zα/2

)2

 (3.34)

Thus, the pilot sample size mCC is

mCC = max

4,


1

2

3 +
16z2

α/2

(ln b)2
+

√√√√(3 +
16z2

α/2

(ln b)2

)2

+
(
8zα/2

)2



 . (3.35)
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3.6.2 Confidence Interval in Method 4 by Moinester and Gottfried (2014)

In method 4 of Moinester and Gottfried (2014), the 100(1− α)% confidence interval for the

population correlation coefficient, when observations are assumed to be from a bivariate-

normal distribution, is (
rn − zα/2

1− r2
n√

n− 1
, rn + zα/2

1− r2
n√

n− 1

)
. (3.36)

The optimal sample size required to achieve a 100(1−α)% confidence interval for correlation

coefficient (ρ) with width no larger than ω is

nMG =

[
2zα/2(1− ρ2)

ω

]2

+ 1. (3.37)

Our sequential stopping rule, which does not take into account the supposed value of the

population correlation coefficient, is as follows:

NMG is the smallest integer n(≥ mMG) such that n ≥
4zα/2
ω2

[(
1− r2

n

)2
+

1

n

]
+ 1. (3.38)

Following the sample of size NMG collected using the sequential stopping rule of Equa-

tion (3.38), the 100(1− α)% confidence interval for ρ is(
rNMG

− zα/2
1− r2

NMG√
NMG − 1

, rNMG
+ zα/2

1− r2
NMG√

NMG − 1

)
. (3.39)

We suggest the pilot sample size, mCC , of

mMG = max

4,

1 +
√

1 +
(
4zα/2/ω

)2

2


 . (3.40)

The optimal sample size, mMG, can be estimated by following the sequential stopping rule

defined in Equation (3.38). The next subsection shows derivation of the pilot sample size

given in Equation (3.30).
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Derivation of Pilot Sample Size for Confidence Interval in Method 4 by Moinester

and Gottfried (2014)

From the stopping rule defined in Equation (3.38), we have

n ≥
4z2

α/2

ω2

[(
1− r2

n

)2
+

1

n

]
+ 1 ≥

4z2
α/2

nω2
+ 1

n2 − n−
4z2

α/2

ω2
≥ 0. (3.41)

Solving for n > 0, we have

n ≥
1 +

√
1 +

(
4zα/2/ω

)2

2
(3.42)

The pilot sample size mMG is therefore defined as

mMG = max

4,

1 +
√

1 +
(
4zα/2/ω

)2

2


 . (3.43)

3.6.3 Simulation Study

We now compare the characteristics of the stopping rule defined in Equation (3.15) with the

stopping rules defined in Equations (3.29) and (3.38) using a Monte Carlo simulation study

for constructing 100(1−α)% confidence intervals for population correlation coefficients from

bivariate distributions. For bivariate normal and the bivariate gamma distribution from

Theorem 2 of Nadarajah and Gupta (2006), the simulation study was done for correlation

coefficient ρ of 0.1, 0.3, and 0.5 and ω = 0.1, 0.2. In both cases, 5,000 replications were used.

Tables 3.3 and 3.4 show the estimates of mean final sample size, coverage probability, and

average confidence interval width and also the corresponding standard errors.

Comparing the characteristics of the stopping rule defined in Equation (3.15) with the

stopping rules defined in Equations (3.29) and (3.38), we observe that the behavior of the

coverage probability as well as ratio of average sample size estimate and the optimal sample

size are almost similar in all three procedures.
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Table 3.3. Summary of final sample size for 100(1 − α)% confidence interval for ρ using
Corty and Corty (2011)

ω Distribution ρ N̄CC se(N̄CC) nCC N̄CC/nCC pCC se(pCC) w̄NCC se(w̄NCC )

α = 0.10

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1060.0 0.1942 1062 0.9979 0.8980 0.0043 0.1000 2.75× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 893.6 0.5208 897 0.9962 0.8986 0.0043 0.1000 7.71× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 604.4 0.7567 609 0.9924 0.8868 0.0045 0.1001 1.32× 10−5

Ga2(5, 5, 50, 10) 0.1 1060.0 0.1966 1062 0.9982 0.8906 0.0044 0.1000 3.03× 10−7

Ga2(5, 5, 16.67, 10) 0.3 894.5 0.5549 897 0.9972 0.8728 0.0047 0.1000 1.19× 10−6

Ga2(5, 5, 10, 10) 0.5 604.5 0.8638 609 0.9925 0.8464 0.0051 0.1001 1.52× 10−5

0.2 N2(0, 0, 1, 1, 0.1) 0.1 264.6 0.1173 267 0.9909 0.8892 0.0044 0.1999 1.16× 10−5

N2(0, 0, 1, 1, 0.3) 0.3 222.1 0.2994 225 0.9872 0.8916 0.0044 0.2002 3.70× 10−5

N2(0, 0, 1, 1, 0.5) 0.5 146.1 0.4565 153 0.9551 0.8692 0.0048 0.2021 1.14× 10−4

Ga2(5, 5, 50, 10) 0.1 264.1 0.1665 267 0.9892 0.8842 0.0045 0.1999 3.10× 10−5

Ga2(5, 5, 16.67, 10) 0.3 221.8 0.3441 225 0.9859 0.8606 0.0049 0.2002 5.22× 10−5

Ga2(5, 5, 10, 10) 0.5 143.1 0.5639 153 0.9351 0.7942 0.0057 0.2027 1.54× 10−4

α = 0.05

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1504.0 0.2268 1507 0.9983 0.9474 0.0032 0.1000 1.92× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 1269.0 0.6185 1273 0.9971 0.9462 0.0032 0.1000 5.64× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 857.6 0.8464 863 0.9938 0.9452 0.0032 0.1001 1.43× 10−6

Ga2(5, 5, 50, 10) 0.1 1505.0 0.2318 1507 0.9985 0.9400 0.0034 0.1000 2.10× 10−7

Ga2(5, 5, 16.67, 10) 0.3 1270.0 0.6581 1273 0.9975 0.9354 0.0035 0.1000 8.25× 10−7

Ga2(5, 5, 10, 10) 0.5 859.1 0.9800 863 0.9955 0.9090 0.0041 0.1001 9.37× 10−6

0.2 N2(0, 0, 1, 1, 0.1) 0.1 375.2 0.1206 377 0.9952 0.9478 0.0031 0.1999 1.69× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 315.6 0.3343 318 0.9925 0.9444 0.0032 0.2002 2.81× 10−5

N2(0, 0, 1, 1, 0.5) 0.5 210.1 0.4924 215 0.9774 0.9400 0.0034 0.2017 7.54× 10−5

Ga2(5, 5, 50, 10) 0.1 375.1 0.1250 377 0.9950 0.9418 0.0033 0.1999 1.93× 10−6

Ga2(5, 5, 16.67, 10) 0.3 315.7 0.3694 318 0.9926 0.9248 0.0037 0.2002 2.60× 10−5

Ga2(5, 5, 10, 10) 0.5 208.2 0.5970 215 0.9686 0.8866 0.0045 0.2019 9.94× 10−5

Note: ρ is the population correlation coefficient; N̄CC is the mean final sample size; pCC is the estimated
coverage probability; ω is the upper bound of the length of the confidence interval for ρ; se(N̄CC) is the
standard deviation of the mean final sample size (i.e., standard error of the final sample size); nCC is the
theoretical sample size if the procedure is used with the population parameters; se(pCC) is the standard
error of pCC ; w̄NCC

average length of confidence intervals for ρ based on NCC observations; se(w̄NCC
) is the

standard error of w̄NCC
; tabled values are based on 5,000 replications of a Monte Carlo simulation study from

distributions: Bivariate Normal (N2) distribution with parameters µ1, µ2, σ2
1 , σ2

2 and ρ, respectively, and
Bivariate Gamma (Ga2) with parameters a1, a2, c, and µ, respectively, based on Theorem 2 of Nadarajah
and Gupta (2006).

3.7 Sequential AIPE for Kendall’s Tau and Spearman’s Rho

We now discuss the sequential approach related to the accuracy in parameter estimation

problem for estimating Kendall’s rank correlation coefficient, popularly known as Kendall’s
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Table 3.4. Summary of final sample size for 100(1 − α)% confidence interval for ρ using
Moinester and Gottfried (2014)

ω Distribution ρ N̄MG se(N̄MG) nMG N̄MG/nMG pMG se(pMG) w̄NMG
se(w̄NMG

)

α = 0.10

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1060.0 0.1936 1062 0.9978 0.8944 0.0043 0.1000 2.74× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 893.9 0.5182 898 0.9955 0.8990 0.0043 0.0999 7.62× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 606.1 0.7103 610 0.9935 0.8932 0.0044 0.0999 1.90× 10−6

0.2 N2(0, 0, 1, 1, 0.1) 0.1 264.5 0.1032 267 0.9907 0.8868 0.0045 0.1998 2.37× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 222.7 0.2779 226 0.9853 0.8848 0.0045 0.1995 8.62× 10−6

N2(0, 0, 1, 1, 0.5) 0.5 149.1 0.4043 154 0.9681 0.8642 0.0048 0.1989 2.21× 10−5

α = 0.05

0.1 N2(0, 0, 1, 1, 0.1) 0.1 1505.0 0.2233 1508 0.9982 0.9498 0.0032 0.1000 1.94× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 1270.0 0.6142 1274 0.9970 0.9452 0.0032 0.1000 5.13× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 860.5 0.8382 866 0.9937 0.9454 0.0032 0.0999 1.33× 10−6

0.2 N2(0, 0, 1, 1, 0.1) 0.1 375.8 0.1204 378 0.9942 0.9440 0.0033 0.1998 1.65× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 317.1 0.3343 320 0.9908 0.9452 0.0032 0.1997 4.26× 10−6

N2(0, 0, 1, 1, 0.5) 0.5 213.9 0.4407 218 0.9812 0.9376 0.0034 0.1992 2.66× 10−5

Note: ρ is the population correlation coefficient; N̄MG is the mean final sample size; pMG is the estimated
coverage probability; ω is the upper bound of the length of the confidence interval for ρ; se(N̄MG) is the
standard deviation of the mean final sample size (i.e., standard error of the final sample size); nMG is the
theoretical sample size if the procedure is used with the population parameters; se(pMG) is the standard
error of pMG; w̄NMG

average length of confidence intervals for ρ based on NMG observations; se(w̄NMG
) is

the standard error of w̄NMG
; tabled values are based on 5,000 replications of a Monte Carlo simulation study

from Bivariate Normal distribution (N2) with parameters: means, variances and correlation.

tau and denoted here by τ , and Spearman’s rank correlation coefficient, popularly known as

Spearman’s ρ and denoted here by ρs.

3.7.1 AIPE for Kendall’s τ

Kendall’s τ is a statistic which can be used to measure the ordinal association between two

variables. Suppose (X, Y ) denote a pair of random observations with a joint distribution

function F . If (X1, Y1) and (X2, Y2) are random observations from F , then Kendall’s tau

which measures the association between variables X and Y can be defined as

τ = E [sgn(X1 −X2)sgn(Y1 − Y2)] (3.44)
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where

sgn(x) =


−1, when x < 0,

0 when x = 0,

+1 when x > 0,

An estimator of Kendall’s τ is given by

rτ,n =
2

n(n− 1)

∑
1≤i<j≤n

sgn(Xi −Xj)sgn(Yi − Yj) (3.45)

which is a U-statistics (see Lee, 1990). Hoeffding (1948) as well as Daniels and Kendall

(1947) have shown that the asymptotic distribution of τ , defined in Equation (3.44), is given

by

√
n (rτ,n − τ)

D−→ N
(
0, ξ2

τ

)
, (3.46)

where the expression of the asymptotic variance, ξ2
τ , is given by

ξ2
τ = 4Var {E [sgn (X1 −X2) sgn (Y1 − Y2)|X1, Y1]}

= 4Var {1− 2F1(X1)− 2F2(Y1) + 4F (X1, Y1)} , (3.47)

provided F1 and F2 are the marginal distributions of X and Y respectively. Proceeding

along the same lines as in Equations (3.8)–(3.11), we can find that the sample size required

to achieve the sufficient accuracy with pre-specified upper bound (ω) on the width of the

confidence interval for τ will be

n ≥

⌈
4z2

α/2ξ
2
τ

ω2

⌉
≡ nKT , (3.48)

where ξ2
τ is defined as in Equation (3.47). In reality, ξ2

τ is unknown, so we use a consistent

estimator, which is given by

ξ̂2
n,KT =

16

n− 1

n∑
i=1

(Wi − W̄ )2, (3.49)
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where

Wi =
2

n

n∑
k=1

1 {Rx,k ≤ Rx,i, Ry,k ≤ Ry,i} −
Rx,i

n+ 1
− Ry,i

n+ 1
(3.50)

with 1{A} denoting the indicator function of set A (see Kojadinovic and Yan, 2010; Genest

and Favre, 2007). Because ξ2
τ is unknown in reality, in order to compute the required sample

size, nKT , we use the sequential procedure outlined. Our sequential stopping rule which

helps find the estimate of the optimal sample size is as follows:

NKT is the smallest integer n(≥ mKT ) such that
4z2

α/2

ω2

(
ξ̂2
n,KT + n−1

)
(3.51)

where mKT is the pilot sample, the same as that given in Equation (3.14).

We now find the characteristics of the stopping rule defined in Equation 3.51 using Monte

Carlo simulation for constructing 100(1−α)% confidence intervals for population correlation

coefficients from bivariate distributions – bivariate normal and the bivariate gamma distri-

bution from Theorem 2 of Nadarajah and Gupta (2006). The simulation study was done for

correlation coefficient τ corresponding of 0.1, 0.3, and 0.5 and ω = 0.1, 0.2. In both cases,

5,000 replications were used. Table 3.5 shows the estimates of mean final sample size, cover-

age probability, and average confidence interval width and also the corresponding standard

errors for 90% and 95% confidence interval coverage, respectively.

The width of the confidence interval given by the sequential procedure with stopping

rule defined in Equation (3.51) did not exceed the maximum specified width ω. Further,

the coverage probability estimates are close to the corresponding confidence level. Also, the

ratio of average sample size estimate and the optimal sample size is close to 1.

3.7.2 AIPE for Spearman’s ρ

Let (X, Y ) be a random observation with common distribution function F with marginals

F1(x) and F2(y) respectively for X and Y . The popular nonparametric correlation measure
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Table 3.5. Summary of final sample size for 100(1− α)% confidence interval for Kendall’s τ
using asymptotic distribution

ω Distribution ρ τ N̄KT se(N̄KT ) nKT N̄KT/nKT pKT se(pKT ) w̄NKT se(w̄NKT )

α = 0.10

0.1 N2(0, 0, 1, 1, 0.1) 0.1 0.0638 478.4 0.0597 477 1.003 0.8946 0.0043 0.0997 4.815× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 0.1940 443.0 0.1669 442 1.002 0.8888 0.0044 0.0997 8.224× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 0.3333 371.1 0.2575 369 1.006 0.8876 0.0045 0.0995 1.562× 10−6

Ga2(5, 5, 50, 10) 0.1 0.0638 478.4 0.0626 477 1.003 0.8984 0.0043 0.0997 4.901× 10−7

Ga2(5, 5, 16.67, 10) 0.3 0.1940 443.1 0.1783 442 1.002 0.8952 0.0043 0.0996 1.022× 10−6

Ga2(5, 5, 10, 10) 0.5 0.3330 370.9 0.2881 369 1.005 0.8930 0.0044 0.0995 2.200× 10−6

0.2 N2(0, 0, 1, 1, 0.1) 0.1 0.0638 120.9 0.0354 120 1.008 0.8824 0.0046 0.1977 3.834× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 0.1904 112.2 0.0846 111 1.011 0.8840 0.0045 0.1972 7.805× 10−6

N2(0, 0, 1, 1, 0.5) 0.5 0.3333 94.5 0.1250 93 1.016 0.8862 0.0045 0.1960 1.615× 10−5

Ga2(5, 5, 50, 10) 0.1 0.0638 120.9 0.0364 120 1.008 0.8858 0.0045 0.1977 4.113× 10−6

Ga2(5, 5, 16.67, 10) 0.3 0.1940 112.0 0.0915 111 1.009 0.8866 0.0045 0.1972 1.037× 10−5

Ga2(5, 5, 10, 10) 0.5 0.3333 94.2 0.1457 93 1.012 0.8756 0.0047 0.1958 2.273× 10−5

α = 0.05

0.1 N2(0, 0, 1, 1, 0.1) 0.1 0.0638 678.4 0.0698 677 1.002 0.9506 0.0031 0.0998 3.429× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 0.1940 628.2 0.1984 627 1.002 0.9408 0.0033 0.0998 5.691× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 0.3333 526.0 0.3058 524 1.004 0.9444 0.0032 0.0996 1.084× 10−6

Ga2(5, 5, 50, 10) 0.1 0.6380 678.4 0.0741 677 1.002 0.9490 0.0031 0.0998 3.410× 10−7

Ga2(5, 5, 16.67, 10) 0.3 0.1940 628.2 0.2084 627 1.002 0.9512 0.0030 0.0998 7.487× 10−7

Ga2(5, 5, 10, 10) 0.5 0.3333 526.1 0.3452 524 1.004 0.9394 0.0034 0.0996 1.539× 10−6

0.2 N2(0, 0, 1, 1, 0.1) 0.1 0.0638 170.9 0.0371 170 1.005 0.9440 0.0033 0.1984 3.028× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 0.1940 158.2 0.1004 157 1.010 0.9378 0.0034 0.1980 5.218× 10−6

N2(0, 0, 1, 1, 0.5) 0.5 0.3333 133.2 0.1514 131 1.017 0.9318 0.0036 0.1972 1.045× 10−5

Ga2(5, 5, 50, 10) 0.1 0.6380 170.8 0.0425 170 1.005 0.9428 0.0033 0.1984 3.335× 10−6

Ga2(5, 5, 16.67, 10) 0.3 0.1940 158.3 0.1121 157 1.009 0.9364 0.0035 0.1980 6.536× 10−6

Ga2(5, 5, 10, 10) 0.5 0.3330 133.1 0.1725 131 1.016 0.9332 0.0035 0.1971 1.470× 10−5

Note: ρ is the population Pearson’s correlation coefficient; τ is the population Kendall’s τ (computed
using bootstrap method for bivariate Gamma distribution); N̄KT is the mean final sample size; pKT is the
estimated coverage probability; ω is the upper bound of the length of the confidence interval for τ ; se(N̄KT )
is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nKT is
the theoretical sample size if the procedure is used with the population parameters; se(pKT ) is the standard
error of pKT ; w̄NKT

average length of confidence intervals for ρ based on N observations; tabled values are
based on 5,000 replications of a Monte Carlo simulation study from distributions: Bivariate Normal (N2)
with parametersµ1, µ2, σ2

1 , σ2
2 and ρ respectively, and Bivariate Gamma (Ga2) with parameters a1, a2, c,

and µ, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).

proposed by Spearman (1904), which is equivalent to the Pearson correlation for the ranks

of observations, is defined as

ρs = Corr (F1(X)F2(Y )) = 12E [F1(X)F2(Y )]− 3. (3.52)
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For more details, we refer readers to Croux and Dehon (2010), Kojadinovic and Yan (2010),

Genest and Favre (2007), and Borkowf (1999). A consistent estimator for Spearman’s ρ, ρs

based on observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn), is given by

rs,n =

∑n
i=1(Rx,i − R̄x)(Ry,i − R̄y)√∑n

i=1(Rx,i − R̄x)2
∑n

i=1(Ry,i − R̄y)2
(3.53)

=
12

n(n+ 1)(n− 1)

n∑
i=1

Rx,iRy,i − 3
n+ 1

n− 1
(3.54)

= 1− 6
∑n

i=1(Rx,i −Ry,i)
2

n3 − n
, (3.55)

where Rx,i and Ry,i are respectively ranks of Xi among all X’s and Yi among all Y ’s. Using

Borkowf (2002) and Hoeffding (1948), the asymptotic distribution of rs,n is

√
n (rs,n − ρs)

D−→ N
(
0, ξ2

ρs

)
, (3.56)

where

ξ2
ρs = 144(−9θ2

1 + θ3 + 2θ4 + 2θ5 + 2θ6), (3.57)

and

θ1 = E [F1(X1)F2(Y1)] (3.58)

θ3 = E
[
S1(X1)2S2(Y1)2

]
(3.59)

θ4 = E [S(X1, Y2)S1(X2)S2(Y1)] (3.60)

θ5 = E [S(max{X1, X2})S2(Y1)S2(Y2)] (3.61)

θ6 = E [S1(X1)S1(X2)S(max{Y1, Y2})] (3.62)

Si(x) = 1− Fi(x), i ∈ {1, 2} (3.63)

S(x, y) = 1− F1(x)− F2(y) + F (x, y). (3.64)

Proceeding along the same lines as given in Equations (3.8)–(3.11), we can find that the

sample size required to achieve the sufficient accuracy with pre-specified upper bound (ω)
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on the width of the confidence interval for ρs will be

n ≥

⌈
4z2

α/2ξ
2
ρs

ω2

⌉
≡ nSR, (3.65)

where ξ2
ρs is defined as in Equation (3.57). In practice, ξ2

ρs is usually unknown and we use a

consistent estimator. According to Genest and Favre (2007), an estimator of ξ2
ρs is given by

V 2
GF,n = 144(−9An + Bn + 2Cn + 2Dn + 2En) (3.66)

where

An =
1

n

n∑
i=1

Rx,i

n+ 1

Ry,i

n+ 1
(3.67)

Bn =
1

n

n∑
i=1

(
Rx,i

n+ 1

)2(
Ry,i

n+ 1

)2

(3.68)

Cn =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

Rx,i

n+ 1

Ry,i

n+ 1
1 {Rx,k ≤ Rx,i, Rx,k ≤ Rx,j}+

1

4
−An (3.69)

Dn =
1

n2

n∑
i=1

n∑
j=1

Ry,i

n+ 1

Ry,j

n+ 1
max

{
Rx,i

n+ 1

Rx,j

n+ 1

}
(3.70)

En =
1

n2

n∑
i=1

n∑
j=1

Rx,i

n+ 1

Rx,j

n+ 1
max

{
Ry,i

n+ 1

Ry,j

n+ 1

}
. (3.71)

consistent estimator of ξ2
ρs as

V 2
KY,n =

144

n− 1

n∑
i=1

(Zi − Z̄)2 (3.72)

where

Zi =
Rx,i

n+ 1

Ry,i

n+ 1
+

1

n

n∑
k=1

1 {Rx,i ≤ Rx,k}
Ry,k

n+ 1
+

1

n

n∑
k=1

1 {Ry,i ≤ Ry,k}
Rx,k

n+ 1
. (3.73)

Since ξ2
ρs is unknown in reality, in order to compute the required sample size, nSR, we use

sequential procedure. Our sequential stopping rule which helps find the estimate of the

optimal sample size is as follows:

NSR is the smallest integer n(≥ mSR) such that
4z2

α/2

ω2

(
ξ̂2
ρsn + n−1

)
, (3.74)
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where mSR is the pilot sample which is same as the pilot sample size as defined in Equa-

tion (3.14) and ξ̂2
ρsn = V 2

GF,n = V 2
KY,n.

We now find the characteristics of the stopping rule defined in Equation 3.74 using Monte

Carlo simulation for constructing 100(1 − α)% confidence intervals for population correla-

tion coefficients from bivariate distributions – bivariate normal and the bivariate gamma

distribution from Theorem 2 of Nadarajah and Gupta (2006). The simulation study was

done for correlation coefficient τ corresponding to ρ of 0.1, 0.3, and 0.5 and ω = 0.1, 0.2. In

both cases, 5,000 replications were used. Table 3.6 shows the estimates of mean final sample

size, coverage probability, and average confidence interval width and also the corresponding

standard errors at the 90% and 95%.

The width of the confidence interval given by the sequential procedure with stopping rule

defined in Equation (3.74) did not exceed the maximum specified width ω. The coverage

probability estimates are close to the corresponding confidence level. Also, the ratio of

average sample size estimate and the optimal sample size is close to 1.

One can proceed along the same lines as in this manuscript (in the Appendix) and in Kel-

ley et al. (2018) to prove that the respective coverage probabilities for the confidence interval

for Kendall’s tau (τ) and Spearman’s rho (ρs) are approximately close to the confidence level,

and also the width of the confidence interval is less than ω.

3.8 An Extension: Squared Multiple Correlation Coefficient

The sequential procedure that is proposed for correlation coefficient in the previous sections

may be extended for finding a sufficiently narrow confidence interval for multiple correlation

coefficient. In this section, we focus on the sequential AIPE procedure for multiple correlation

coefficient under multivariate normal assumption only. We first formulate the corresponding

AIPE problem. Although the previous parts of the article was distribution-free, here we

assume multivariate normality because there is not, to our knowledge, a sufficient analytic
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Table 3.6. Summary of final sample size for 100(1− α)% confidence interval for Spearman’s
rho, ρs

ω Distribution ρ ρs N̄SR se(N̄SR) nSR N̄SR/nSR pSR se(pSR) w̄NSR se(w̄NSR)

α = 0.10

0.1 N2(0, 0, 1, 1, 0.1) 0.1 0.0955 1065.0 0.4098 1066 0.9988 0.8998 0.0042 0.0999 4.070× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 0.2876 931.3 0.6019 933 0.9982 0.8964 0.0043 0.0999 5.599× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 0.4826 679.3 0.8218 683 0.9946 0.8876 0.0045 0.0998 1.063× 10−6

Ga2(5, 5, 50, 10) 0.1 0.0915 1069.0 0.4031 1116 0.9579 0.9002 0.0042 0.0999 3.943× 10−7

Ga2(5, 5, 16.67, 10) 0.3 0.2821 948.9 0.6067 957 0.9916 0.9004 0.0042 0.0999 5.432× 10−7

Ga2(5, 5, 10, 10) 0.5 0.4765 714.2 0.8437 695 1.0280 0.8998 0.0042 0.0998 9.701× 10−7

0.2 N2(0, 0, 1, 1, 0.1) 0.1 0.0955 265.4 0.2140 267 0.9940 0.8898 0.0044 0.1993 3.409× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 0.2876 231.5 0.3236 234 0.9895 0.8890 0.0044 0.1990 1.780× 10−5

N2(0, 0, 1, 1, 0.5) 0.5 0.4826 166.5 0.4690 171 0.9735 0.8598 0.0049 0.1977 5.669× 10−5

Ga2(5, 5, 50, 10) 0.1 0.0915 266.2 0.2102 279 0.9542 0.8924 0.0044 0.1993 3.444× 10−6

Ga2(5, 5, 16.67, 10) 0.3 0.2821 235.5 0.3279 240 0.9913 0.8894 0.0044 0.1990 1.256× 10−5

Ga2(5, 5, 10, 10) 0.5 0.4765 174.9 0.4832 174 1.0050 0.8618 0.0049 0.1980 4.947× 10−5

α = 0.05

0.1 N2(0, 0, 1, 1, 0.1) 0.1 0.0955 1512.0 0.4830 1513 0.9994 0.9524 0.0030 0.0999 2.780× 10−7

N2(0, 0, 1, 1, 0.3) 0.3 0.2876 1323.0 0.7309 1325 0.9986 0.9526 0.0030 0.0999 3.870× 10−7

N2(0, 0, 1, 1, 0.5) 0.5 0.4826 966.2 0.9759 970 0.9961 0.9410 0.0033 0.0999 7.030× 10−7

Ga2(5, 5, 50, 10) 0.1 0.0915 1518.0 0.4826 1584 0.9583 0.9530 0.0030 0.0999 2.770× 10−7

Ga2(5, 5, 16.67, 10) 0.3 0.2821 1348.0 0.7112 1358 0.9927 0.9526 0.0030 0.0999 3.740× 10−7

Ga2(5, 5, 10, 10) 0.5 0.4765 1015.0 0.9828 986 1.0290 0.9508 0.0031 0.0999 6.472× 10−7

0.2 N2(0, 0, 1, 1, 0.1) 0.1 0.0955 377.4 0.2461 379 0.9958 0.9362 0.0035 0.1995 2.371× 10−6

N2(0, 0, 1, 1, 0.3) 0.3 0.2876 329.7 0.3701 332 0.9931 0.9394 0.0034 0.1993 3.428× 10−6

N2(0, 0, 1, 1, 0.5) 0.5 0.4826 238.8 0.5289 243 0.9829 0.9300 0.0036 0.1986 3.026× 10−5

Ga2(5, 5, 50, 10) 0.1 0.0915 378.7 0.2450 396 0.9562 0.9478 0.0031 0.1995 2.352× 10−6

Ga2(5, 5, 16.67, 10) 0.3 0.2821 336.1 0.3653 340 0.9887 0.9410 0.0033 0.1994 3.349× 10−6

Ga2(5, 5, 10, 10) 0.5 0.4765 250.9 0.5369 247 1.0160 0.9340 0.0035 0.1987 3.231× 10−5

Note: ρ is the population Pearson’s correlation coefficient; ρs is the population Spearman’s rho (computed
using bootstrap method for bivariate Gamma distribution); N̄SR is the mean final sample size; pSR is the
estimated coverage probability; ω is the upper bound of the length of the confidence interval for ρs; se(N̄SR)
is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nSR

is the theoretical sample size if the procedure is used with the population parameters (computed using
bootstrap method for bivariate Ga distribution); se(pSR) is the standard error of pSR; w̄NSR

average length
of confidence intervals for ρs based on N observations; tabled values are based on 5,000 replications of a
Monte Carlo simulation study from distributions: Bivariate Normal (N2) distribution with parameters µ1,
µ2, σ2

1 , σ2
2 and ρ, respectively, and Bivariate Gamma (Ga2) with parameters a1, a2, c, and µ, respectively,

based on Theorem 2 of Nadarajah and Gupta (2006).

method for forming a confidence interval for the population squared multiple correlation

coefficient that is distribution-free.

Suppose, for the ith(i = 1, 2, . . . , n) individual out of n individuals, Yi is the score cor-

responding to the response variable and Xij is the observed score corresponding to the jth
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(j = 1, 2, . . . , k) predictor variable. Let Y denote the random vector of responses and X

denote the corresponding random design matrix. The univariate linear regression model in

matrix form is

Y = β01 + Xβ + ε, (3.75)

where 1 is the vector where all elements are 1, β is the vector of fixed regression parameters

and ε is the random error vector. The population squared multiple correlation coefficient is

given by

P 2 =
σY XΣ−1

XXσXY
σ2
Y

(3.76)

where Σ−1
XX is the inverse of the k×k population covariance matrix of the k predictors, σXY

is the k dimensional column vector of covariances of the k predictors with the response Y ,

σY X is the k dimensional row vector of covariances of the k predictors with the response Y

(σ′XY = σY X), and σ2
Y is the population variance of the response Y .

A well known consistent estimator of the population squared multiple correlation coeffi-

cient, also known as R-squared (R2) or multiple R squared, is given by

R2 =
sY XS−1

XXsXY
s2
Y

(3.77)

where S−1
XX is the inverse of the k × k sample covariance matrix of the k predictors, sXY is

the k dimensional column vector of sample covariances of the k predictors with the response

Y , sY X is the k dimensional row vector of sample covariances of the k predictors with the

response Y (s′XY = sY X), and s2
Y is the sample variance of the response Y .

The approximate 100(1 − α)% confidence interval for the squared population multiple

correlation coefficient as given in Bonett and Wright (2011) is

1− exp

(
ln
(
1−R2

)
± zα/2

2P√
n− k − 2

)
, (3.78)

where zα/2 is the 100(1 − α/2)th percentile of the standard normal distribution. The ap-

proximate 100(1 − α)% Wald-type confidence interval for the population squared multiple
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correlation coefficient using Olkin and Finn (1995) is given by

R2 ± zα/2
2P (1− P 2)√
n− k − 2

. (3.79)

In AIPE of squared population multiple correlation coefficient, in order to have a sufficient

narrow confidence interval, an upper bound (ω) of the confidence interval width is pre-

specified. Using the width constraint, we can find the optimal sample size for the confidence

interval given in Equation (3.78) which is given by

n ≥ 2 + k + 4P 2z2
α/2

{
ln

[
1

2

(
ω

(1− P 2)
+

√
ω2

(1− P 2)2 + 4

)]}−2

≡ nBW , (3.80)

and the optimal sample size for the confidence interval given in Equation (3.79) is

n ≥
16z2

α/2

ω2
P 2
(
1− P 2

)2
+ k + 2 ≡ nOF . (3.81)

The derivation of the optimal sample sizes is given in the next subsection. Thus, nBW is the

optimal sample size which is required to get a sufficiently narrow confidence interval, of the

form given in Equation (3.78), of the multiple correlation coefficient P 2. nOF is the optimal

sample size which is required to get a sufficiently narrow confidence interval, of the form

given in Equation (3.79), of the multiple correlation coefficient P 2.

Because P 2 is unknown, both nBW and nOF are also unknown. Thus, in order to obtain

a sufficiently narrow confidence interval for P 2, we need to estimate nBW and nOF . This can

be done using sequential procedure similar to what was described earlier.

The stopping rule related to the sequential procedure for estimating nBW is given by:

NBW is the smallest integer n(≥ mBW ) such that

n ≥ 2 + k + 4R2z2
α/2

{
ln

[
1

2

(
ω

(1−R2)
+

√
ω2

(1−R2)2 + 4

)]}−2

. (3.82)

We propose the corresponding pilot sample size to be mBW = k + 2. Now, the stopping

rule related to the sequential procedure for estimating nOF is given by:
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NOF is the smallest integer n(≥ mOF ) such that

n ≥
16z2

α/2

ω2

[(
R2 +

1

n

)(
1−

(
R2 +

1

n

))2
]

(3.83)

where mOF = max{k, 4zα/2/ω} is the corresponding pilot sample size. We note that, in

Equation 3.83, we use R2 + 1/n which is a consistent estimator of P 2. Next, the expression

for the stopping rules in Equations (3.78) & (3.79) and their respective pilot sample sizes

mBW and mOF will be derived.

3.8.1 Derivation of Optimal and Pilot Sample Sizes for Confidence Intervals for

Squared Multiple Correlation Coefficient

For the situation in which the population squared multiple correlation coefficient is known,

the optimal sample size for confidence interval provided by Bonett and Wright (2011) in

Equation (3.78) can be derived as follows:

exp

(
ln
(
1−R2

)
+

2Pzα/2√
n− k − 2

)
− exp

(
ln
(
1−R2

)
−

2Pzα/2√
n− k − 2

)
≤ω

(
1−R2

) [
exp

(
2Pzα/2√
n− k − 2

)
− exp

(
−2Pzα/2√
n− k − 2

)]
≤ω

exp

(
2Pzα/2√
n− k − 2

)
− exp

(
−2Pzα/2√
n− k − 2

)
≤ ω

(1−R2)

exp

(
4P 2z2

α/2

n− k − 2

)
− ω

(1−R2)
exp

(
2Pzα/2√
n− k − 2

)
− 1 ≤0. (3.84)
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One may note that exp
(

2Pzα/2√
n−k−2

)
> 0. Thus, using Equation (3.84), we have

exp

(
2Pzα/2√
n− k − 2

)
≤ 1

2

(
ω

(1−R2)
+

√
ω2

(1−R2)2 + 4

)
2Pzα/2√
n− k − 2

≤ ln

[
1

2

(
ω

(1−R2)
+

√
ω2

(1−R2)2 + 4

)]
√
n− k − 2 ≥ 2Pzα/2

{
ln

[
1

2

(
ω

(1−R2)
+

√
ω2

(1−R2)2 + 4

)]}−1

n ≥ 2 + k + 4P 2z2
α/2

{
ln

[
1

2

(
ω

(1−R2)
+

√
ω2

(1−R2)2 + 4

)]}−2

.

Next, using the stopping rule in Equation (3.82), the corresponding pilot sample can be

derived by

n ≥ 2 + k + 4R2z2
α/2

{
ln

[
1

2

(
ω

(1−R2)
+

√
ω2

(1−R2)2 + 4

)]}−2

=⇒ n ≥ 2 + k. (3.85)

Thus, the pilot sample size mBW is defined as

mBW = k + 2. (3.86)

Furthermore, given that the population squared multiple correlation coefficient is known,

the optimal sample size for the Wald-type confidence interval provided by Olkin and Finn

(1995) in Equation (3.79) can be derived as follows:

4zα/2
P (1− P 2)√
n− k − 2

≤ ω =⇒ n− k − 2 ≥ 16z2
α/2

P 2(1− P 2)2

ω2

=⇒ n ≥ 16z2
α/2

P 2(1− P 2)2

ω2
+ k + 2

The corresponding pilot sample size can be derive as

n ≥
16z2

α/2

ω2

(
R2
(
1−R2

)2
+

1

n

)
≥

16z2
α/2

nω2
=⇒ n2 ≥

16z2
α/2

ω2
=⇒ n ≥

4zα/2
ω

. (3.87)

The pilot sample size mOF is therefore defined as

mOF = max

{
k + 2,

4zα/2
ω

}
. (3.88)
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3.8.2 Simulation Results

We now find the characteristics of the stopping rules defined in Equations (3.82) and (3.83)

using Monte Carlo simulation for constructing 100(1− α)% confidence intervals for squared

population multiple correlation coefficient from multivariate distribution with mean param-

eter vector and dispersion matrix respectively given by

µ = (0, . . . , 0)′ = 0(k+1)×1 and Σ(k+1)×(k+1) =

1 γ ′

γ I


where γ = (γ1, γ2, . . . , γk)

′ = σY X with γi =
√
P 2/k for i = 1, . . . , k, and I is a k×k identity

matrix (i.e. cov(X) = I). The simulation study was done for squared population multiple

correlation under several scenarios with replication size 5,000.

Tables 3.7–3.10 show the estimates of mean final sample size, coverage probability, and

also the corresponding standard errors and the average confidence interval width. The simu-

lation results show that the width of the confidence interval given by the sequential procedure

with stopping rules defined in Equations (3.82)–(3.83) did not exceed the maximum speci-

fied width ω. Except for smaller optimal sample sizes, the coverage probability estimates are

close to the corresponding confidence level and also, the ratio of average sample size estimate

and the optimal sample size is close to 1. Overall, the results for the sequential procedure

corresponding to the confidence interval given by Olkin and Finn (1995) performed better

than the procedure given by Bonett and Wright (2011) in terms of required optimal sample

size.

3.9 Discussion

The correlation coefficient is a widely used effect size in psychology and related fields and

estimating the population value is of great importance. The necessity of using a 100(1−α)%

confidence interval that brackets a wide range of values in order to include the true value,
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with the specified level of confidence, represents an important problem. Correspondingly,

a method to obtain a sufficiently narrow 100(1 − α)% confidence interval for the popula-

tion correlation coefficient with a confidence interval width no larger than desired is very

advantageous in many research contexts. However, until now, all such approaches required

the specification of unknown population values and bivariate normality. Our approach over-

comes both of these limitations. We discuss a distribution-free confidence interval approach

for the population correlation coefficients viz. Pearson’s product moment correlation coeffi-

cient, Kendall’s τ rank correlation coefficient, and Spearman’s ρ rank correlation coefficient.

We then use the distribution-free framework to develop a sequential approach to accuracy

in parameter estimation of the correlation coefficients.

It is known that, holding everything else constant, a narrower confidence interval provides

more information about the parameter than a wider confidence interval. Given a value of the

upper bound of the confidence interval (ω), an approximate 100(1−α)% confidence interval

for the population correlation coefficient can be constructed by using an a priori sample size

planning approach, which requires a hypothesized value of the population parameters. Using

a supposed population value based on theory, an estimate from one or more other studies,

or a conjecture based on a rule of thumb can lead to sample size estimates that grossly

differ from what the theoretically optimal sample size would be if the population parameters

were known and assumptions specified. We overcome such a limitation by proposing a

sequential procedure which can be used to construct an approximate 100(1−α)% confidence

interval for the population correlation coefficients within a pre-specified width (ω) without

assuming any distribution of the data. Unlike a priori sample size planning approaches, our

sequential procedure does not require knowledge of population parameters in order to obtain

a sufficiently narrow confidence interval.

We discuss a sequential approach to construct a sufficiently narrow confidence interval for

the population correlation coefficient assuming homogeneity of the data distribution. Some
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studies (e.g., Stanley et al., 2017; van Erp et al., 2017) have shown that heterogeneity of

the data distribution is possible due to which the population effect size may change (e.g.,

parameter drift). However, the incorporation of heterogeneity or parameter drift is beyond

the scope of the article. To the extent that heterogeneity or parameter drift exists over the

time frame in which data are collected, it would be a limitation. Additionally, the methods

we use for confidence interval construction do not work well in all situations, particularly

for small sample sizes combined with non-normal data. Nevertheless, without assuming any

particular distribution, the distribution-free methods we use for Pearson’s, Spearman’s, and

Kendall’s correlations, provided sample size is not too small for the particular situation, will

work well as sample size gets larger. Another limitation in this regard is that our sequen-

tial methods for the squared multiple correlation coefficient requires multivariate normality,

as a well developed distribution-free confidence interval method for the squared multiple

correlation coefficient is not yet available.

As a general overview of our procedure, we first obtain a pilot sample size. After col-

lecting the pilot data, we then use a sequential sampling procedure where, at each stage, we

check whether a stopping rule has been satisfied. If not, additional observation(s) from one

or more individuals, depending on the selected sample size at each stage, on both variables

are collected and the check is performed again. This process continues until the stopping

rule is satisfied. Our method ensures that the length of the confidence interval for correlation

coefficient is less than the desired width and also attains the coverage probability asymp-

totically while using the smallest possible sample size. Based on the limitation of existing

sample size procedures with regard to distribution assumption and assumed knowledge of

population parameters, our sequential procedure has the potential to be widely used in psy-

chology and related disciplines. To help researchers, we have provided freely available R

functions via the MBESS package.
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Table 3.7. Summary of final sample size for 90% confidence interval for P 2 using Bonett and
Wright (2011)

k ω P 2 N̄BW se(N̄BW ) nBW N̄BW/nBW pBW se(pBW ) w̄NBW

2 0.05 0.10 1308.44 5.4457 1407 0.9299 0.8344 0.0053 0.0489
0.30 2529.40 3.0025 2551 0.9915 0.8866 0.0045 0.0499
0.50 2149.81 2.6762 2171 0.9902 0.8916 0.0044 0.0499
0.70 1071.65 2.3025 1098 0.9760 0.8886 0.0044 0.0496
0.90 140.63 0.8780 164 0.8575 0.7894 0.0058 0.0481

0.10 0.10 297.69 2.0105 355 0.8386 0.7404 0.0062 0.0959
0.30 623.99 1.3225 642 0.9719 0.8768 0.0046 0.0992
0.50 533.22 1.1170 547 0.9748 0.8858 0.0045 0.0992
0.70 262.79 0.9621 280 0.9385 0.8554 0.0050 0.0982
0.90 34.84 0.3222 47 0.7412 0.7688 0.0060 0.0908

5 0.05 0.10 1414.03 2.8253 1410 1.0029 0.8948 0.0043 0.0498
0.30 2525.96 3.5884 2554 0.9890 0.8916 0.0044 0.0498
0.50 2130.43 3.9169 2174 0.9800 0.8846 0.0045 0.0497
0.70 1056.26 2.8159 1101 0.9594 0.8722 0.0047 0.0494
0.90 129.40 0.9586 167 0.7748 0.7196 0.0064 0.0473

0.10 0.10 364.23 1.3204 358 1.0174 0.8802 0.0046 0.0989
0.30 630.03 1.2387 645 0.9768 0.8816 0.0046 0.0992
0.50 524.81 1.4068 550 0.9542 0.8716 0.0047 0.0987
0.70 252.39 1.1333 283 0.8918 0.8216 0.0054 0.0970
0.90 30.90 0.3098 50 0.6179 0.6668 0.0067 0.0871

10 0.05 0.10 1444.09 3.0292 1415 1.0206 0.8938 0.0044 0.0497
0.30 2503.95 5.1902 2559 0.9785 0.8908 0.0044 0.0496
0.50 2101.63 5.2572 2179 0.9645 0.8720 0.0047 0.0493
0.70 1033.60 3.5467 1106 0.9345 0.8510 0.0050 0.0489
0.90 113.23 1.0222 172 0.6583 0.6032 0.0069 0.0455

0.10 0.10 391.00 1.3881 363 1.0771 0.8580 0.0049 0.0981
0.30 621.40 1.8054 650 0.9560 0.8506 0.0050 0.0982
0.50 509.91 1.8875 555 0.9188 0.8298 0.0053 0.0973
0.70 234.17 1.3801 288 0.8131 0.7476 0.0061 0.0950
0.90 27.13 0.2533 55 0.4932 0.5132 0.0071 0.0817

Note: P 2 is the population multiple correlation; N̄BW is the mean final sample size; pBW is the estimated
coverage probability; ω is the upper bound of the length of the confidence interval for P 2; se(N̄BW ) is the
standard deviation of the mean final sample size (i.e., standard error of the final sample size); nBW is the
theoretical sample size if the procedure is used with known population value of P 2; se(pBW ) is the standard
error of pBW ; w̄BW average length of confidence intervals for P 2 based on NBW observations; tabled values
are based on 5,000 replications of a Monte Carlo simulation study from Multivariate Normal distribution
(Nk) with parameters: mean vector µ and variance covariance matrix Σ.
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Table 3.8. Summary of final sample size for 95% confidence interval for P 2 using Bonett and
Wright (2011)

k ω P 2 N̄BW se(N̄BW ) nBW N̄BW/nBW pBW se(pBW ) w̄NBW

2 0.05 0.10 1893.25 6.6567 1996 0.9485 0.8966 0.0043 0.0492
0.30 3596.31 3.8162 3620 0.9935 0.9388 0.0034 0.0499
0.50 3063.19 2.8966 3080 0.9945 0.9448 0.0032 0.0499
0.70 1537.45 2.3780 1557 0.9874 0.9410 0.0033 0.0498
0.90 212.23 0.9910 230 0.9228 0.8940 0.0044 0.0490

0.10 0.10 435.52 2.5998 503 0.8659 0.8132 0.0055 0.0968
0.30 892.21 1.5674 910 0.9805 0.9374 0.0034 0.0995
0.50 760.73 1.3081 775 0.9816 0.9386 0.0034 0.0995
0.70 380.06 1.0911 395 0.9622 0.9254 0.0037 0.0989
0.90 50.55 0.4177 64 0.7899 0.8432 0.0051 0.0936

5 0.05 0.10 2005.04 3.3728 1999 1.0030 0.9432 0.0033 0.0498
0.30 3600.12 3.8252 3623 0.9937 0.9486 0.0031 0.0499
0.50 3055.20 3.5829 3083 0.9910 0.9432 0.0033 0.0499
0.70 1520.37 3.2019 1560 0.9746 0.9322 0.0036 0.0496
0.90 198.56 1.1441 233 0.8522 0.8384 0.0052 0.0482

0.10 0.10 513.15 1.5693 506 1.0141 0.9334 0.0035 0.0993
0.30 897.13 1.5073 913 0.9826 0.9342 0.0035 0.0993
0.50 754.62 1.6021 778 0.9699 0.9284 0.0036 0.0991
0.70 369.88 1.2873 398 0.9294 0.9074 0.0041 0.0982
0.90 45.27 0.4144 67 0.6757 0.7616 0.0060 0.0910

10 0.05 0.10 2034.40 3.6812 2004 1.0152 0.9446 0.0032 0.0498
0.30 3588.62 5.2427 3628 0.9891 0.9446 0.0032 0.0498
0.50 3028.29 5.4085 3088 0.9807 0.9402 0.0034 0.0497
0.70 1499.93 4.0235 1565 0.9584 0.9228 0.0038 0.0493
0.90 182.09 1.2902 238 0.7651 0.7526 0.0061 0.0473

0.10 0.10 541.94 1.5947 511 1.0606 0.9308 0.0036 0.0990
0.30 893.74 1.9830 918 0.9736 0.9236 0.0038 0.0990
0.50 744.97 2.0460 783 0.9514 0.9100 0.0040 0.0985
0.70 354.90 1.6083 403 0.8806 0.8572 0.0049 0.0969
0.90 39.85 0.3800 72 0.5534 0.6460 0.0068 0.0879

Note: P 2 is the population multiple correlation; N̄BW is the mean final sample size; pBW is the estimated
coverage probability; ω is the upper bound of the length of the confidence interval for P 2; se(N̄BW ) is the
standard deviation of the mean final sample size (i.e., standard error of the final sample size); nBW is the
theoretical sample size if the procedure is used with known population value of P 2; se(pBW ) is the standard
error of pBW ; w̄BW average length of confidence intervals for P 2 based on NBW observations; tabled values
are based on 5,000 replications of a Monte Carlo simulation study from Multivariate Normal distribution
with parameters: mean vector µ and variance covariance matrix Σ.
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Table 3.9. Summary of final sample size for 90% confidence interval for P 2 using Olkin and
Finn (1995)

k ω P 2 N̄OF se(N̄OF ) nOF N̄OF/nOF pOF se(pOF ) w̄NOF

2 0.05 0.10 1406.47 2.4778 1403 1.0025 0.8902 0.0044 0.0497
0.30 2548.32 0.2678 2546 1.0009 0.8986 0.0043 0.0499
0.50 2165.16 0.9286 2165 1.0001 0.9024 0.0042 0.0499
0.70 1091.74 1.2002 1091 1.0007 0.9026 0.0042 0.0498
0.90 174.44 0.4987 156 1.1182 0.8898 0.0044 0.0461

0.10 0.10 347.98 1.3031 351 0.9914 0.8460 0.0051 0.0962
0.30 638.92 0.1593 637 1.0030 0.8930 0.0044 0.0995
0.50 543.16 0.4694 542 1.0021 0.8962 0.0043 0.0993
0.70 275.69 0.6141 273 1.0099 0.8830 0.0045 0.0981
0.90 68.66 0.0963 39 1.7605 0.8678 0.0048 0.0733

5 0.05 0.10 1427.36 2.3615 1403 1.0174 0.8900 0.0044 0.0497
0.30 2549.42 0.2636 2546 1.0013 0.8938 0.0044 0.0499
0.50 2161.49 0.9365 2165 0.9984 0.8998 0.0042 0.0499
0.70 1087.11 1.2317 1091 0.9964 0.8908 0.0044 0.0498
0.90 170.13 0.4898 156 1.0906 0.8684 0.0048 0.0458

0.10 0.10 375.77 1.0788 351 1.0706 0.8888 0.0044 0.0976
0.30 640.31 0.1399 637 1.0052 0.8932 0.0044 0.0995
0.50 539.22 0.4790 542 0.9949 0.8854 0.0045 0.0993
0.70 268.82 0.6312 273 0.9847 0.8604 0.0049 0.0980
0.90 67.94 0.0812 39 1.7420 0.8406 0.0052 0.0710

10 0.05 0.10 1458.75 2.2223 1403 1.0397 0.8964 0.0043 0.0497
0.30 2550.97 0.2510 2546 1.0020 0.9016 0.0042 0.0499
0.50 2157.60 0.9383 2165 0.9966 0.8962 0.0043 0.0499
0.70 1080.75 1.2345 1091 0.9906 0.8898 0.0044 0.0498
0.90 163.12 0.4639 156 1.0456 0.8106 0.0055 0.0452

0.10 0.10 403.12 0.9458 351 1.1485 0.8736 0.0047 0.0981
0.30 641.16 0.1292 637 1.0065 0.8820 0.0046 0.0995
0.50 534.97 0.4924 542 0.9870 0.8736 0.0047 0.0993
0.70 261.45 0.6568 273 0.9577 0.8236 0.0054 0.0979
0.90 67.00 0.0584 39 1.7179 0.7294 0.0063 0.0661

Note: P 2 is the population multiple correlation coefficient; N̄OF is the mean final sample size; pOF is the
estimated coverage probability; ω is the upper bound of the length of the confidence interval for P 2; se(N̄OF )
is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nOF

is the theoretical sample size if the procedure is used with known population value of P 2; se(pOF ) is the
standard error of pOF ; w̄NOF

average length of confidence intervals for P 2 based on NOF observations;
tabled values are based on 5,000 replications of a Monte Carlo simulation study from Multivariate Normal
distribution with parameters: mean vector µ and variance covariance matrix Σ.
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Table 3.10. Summary of final sample size for 95% confidence interval for P 2 using Olkin and
Finn (1995)

k ω P 2 N̄OF se(N̄OF ) nOF N̄OF/nOF pOF se(pOF ) w̄NOF

2 0.05 0.10 1997.80 2.9059 1992 1.0029 0.9404 0.0033 0.0498
0.30 3616.98 0.3207 3615 1.0005 0.9432 0.0033 0.0500
0.50 3074.28 1.1125 3074 1.0001 0.9498 0.0031 0.0499
0.70 1550.08 1.4774 1549 1.0007 0.9412 0.0033 0.0498
0.90 237.06 0.6750 222 1.0679 0.9270 0.0037 0.0473

0.10 0.10 495.01 1.5851 498 0.9940 0.9152 0.0039 0.0976
0.30 906.47 0.1733 904 1.0027 0.9474 0.0032 0.0996
0.50 769.43 0.5548 769 1.0006 0.9522 0.0030 0.0995
0.70 389.45 0.7446 388 1.0037 0.9328 0.0035 0.0987
0.90 84.17 0.1493 56 1.5030 0.9222 0.0038 0.0790

5 0.05 0.10 2016.71 2.8057 1992 1.0124 0.9492 0.0031 0.0498
0.30 3618.07 0.3129 3615 1.0008 0.9504 0.0031 0.0500
0.50 3070.70 1.1156 3074 0.9989 0.9502 0.0031 0.0499
0.70 1544.58 1.4603 1549 0.9971 0.9492 0.0031 0.0498
0.90 230.38 0.6648 222 1.0377 0.9108 0.0040 0.0471

0.10 0.10 522.35 1.3550 498 1.0489 0.9442 0.0032 0.0983
0.30 907.40 0.1615 904 1.0038 0.9442 0.0032 0.0996
0.50 766.17 0.5611 769 0.9963 0.9450 0.0032 0.0995
0.70 383.90 0.7328 388 0.9894 0.9320 0.0036 0.0986
0.90 82.94 0.1290 56 1.4810 0.8988 0.0043 0.0769

10 0.05 0.10 2047.95 2.6772 1992 1.0281 0.9508 0.0031 0.0498
0.30 3619.31 0.3047 3615 1.0012 0.9522 0.0030 0.0500
0.50 3066.39 1.0971 3074 0.9975 0.9538 0.0030 0.0499
0.70 1540.85 1.4559 1549 0.9947 0.9466 0.0032 0.0498
0.90 223.07 0.6671 222 1.0048 0.8720 0.0047 0.0469

0.10 0.10 552.43 1.1856 498 1.1093 0.9406 0.0033 0.0986
0.30 908.41 0.1527 904 1.0049 0.9384 0.0034 0.0996
0.50 762.34 0.5808 769 0.9913 0.9360 0.0035 0.0995
0.70 376.14 0.7833 388 0.9694 0.9038 0.0042 0.0986
0.90 81.28 0.0972 56 1.4513 0.8304 0.0053 0.0728

Note: P 2 is the population multiple correlation coefficient; N̄OF is the mean final sample size; pOF is the
estimated coverage probability; ω is the upper bound of the length of the confidence interval for P 2; se(N̄OF )
is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nOF

is the theoretical sample size if the procedure is used with known population value of P 2; se(pOF ) is the
standard error of pOF ; w̄NOF

average length of confidence intervals for P 2 based on NOF observations;
tabled values are based on 5,000 replications of a Monte Carlo simulation study from Multivariate Normal
distribution with parameters: mean vector µ and variance covariance matrix Σ.
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CHAPTER 4

GINI INDEX ESTIMATION WITHIN PRE-SPECIFIED ERROR BOUND

APPLIED TO INDIAN HOUSEHOLD SURVEY DATA1

4.1 Introduction

The Gini index is a widely used measure of economic inequality which arises due to the

disparity in income or wealth that exists in all countries, states or societies. The most

celebrated population Gini index is given by

GF ≡ GF (X) =
2

µ

∫ ∞
0

xF (x) dF (x)− 1, µ = E(X). (4.1)

This index lies between 0 and 1, with 0 being perfect equality and 1 being perfect inequality.

The Gini index of a country or a region can be computed using household surveys, generally

known as complex household surveys, which involve stratification and clustering sampling

methods. For example, the National Sample Survey (NSS) conducts such household surveys

in India. Similar complex survey designs are used by survey agencies in United States,

European Union and others. For details about the surveys adopted by various agencies in

different countries, please refer to Bhattacharya (2005, 2007). The complex household survey

design, as described by Bhattacharya (2007) is as follows:

Assume that the population is divided into s = 1, 2, . . . , S strata. The sth stratum is

divided into Hs clusters. The clusters of the sth stratum are labelled by cs = 1, . . . , Hs.

Under the cth
s cluster in stratum s, there is a group of Mscs households with νscsh individuals

or members. Therefore, the total number of clusters in the population is H =
∑S

s=1Hs.

The number of households in a stratum will be Ms =
∑Hs

cs=1Mscs and the total number of

households in the population will be M =
∑S

s=1 Ms =
∑S

s=1

∑Hs
cs=1 Mscs .

1This chapter is based on Bilson Darku, Konietschke, and Chattopadhyay (2018) which has been submit-
ted for publication
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From the population, a sample of ns clusters is selected from the sth stratum by simple

random sampling with replacement. A sample of k households is then taken from each of

the selected clusters and indexed by h = 1, 2, . . . , k. Let the total number of clusters selected

from the population be

n =
S∑
s=1

ns with ns = asn and as =
Hs

H
. (4.2)

Thus, the total number of households in the sample will be nk = k
∑S

s=1 ns. For the hth

household in the cth
s cluster from the sth stratum, the observed data (that is, household

monthly income, monthly expenditure, per capita income or others) is denoted as xscsh

and assigned with a weight Wscsh. With the presence of stratification and clustering, the

households are assigned with different weights because the probability of inclusion in the

sample will be different. The assigned weight is computed as the inverse of the probability

of inclusion in the sample (see Binder and Kovacevic, 1995; Horvitz and Thompson, 1952;

Lee and Forthofer, 2006). For the given survey framework, weights are assigned to the data

(xscsh) with respect to the number of observations in the population. The attached weight

is given by

Wscsh =
MscshHs

kns
νscsh, (4.3)

and, for computational purposes, standardized as

wscsh =
Wscsh∑S

s=1

∑ns
cs=1

∑k
h=1Wscsh

. (4.4)

Under the above framework, a consistent estimator of the Gini index for such a population

with n number of clusters, is given by

Ĝn = 1− 2

µ̂

S∑
s=1

ns∑
cs=1

k∑
h=1

wscshxscsh

(
1− F̂ (xscsh)

)
, (4.5)
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where the weighted average income (µ̂) and the empirical distribution (F̂ (·)) of income are

given by

µ̂ =
S∑
s=1

ns∑
cs=1

k∑
h=1

wscshxscsh and (4.6)

F̂ (xscsh) =
S∑
i=1

ns∑
j=1

k∑
l=1

wijlI[xijl≤xscsh]
. (4.7)

respectively (see Bhattacharya, 2007).

In this work, we seek to find a confidence interval for the Gini index in which both the

confidence level (1 − α) and the upper bound on the length of the confidence interval are

pre-specified. It is known that the precision of a confidence interval is given by its width,

and the accuracy is given by the confidence level. For a fixed sample size, if the width

of a confidence interval with a pre-specified confidence level increases, the precision of the

estimate decreases. So, in an effort to get a more precise confidence interval estimate of the

Gini index, a narrow confidence interval is preferred. This work deals with constructing a

sufficiently narrow 100(1 − α)% confidence interval for the Gini index when the data come

from stratified and clustered household surveys with large number of clusters per stratum.

Using Binder and Kovacevic (1995) and Bhattacharya (2007), one may construct con-

fidence intervals for the Gini index under complex survey designs, but it cannot be used

to find a sufficiently narrow 100(1− α)% confidence interval for the population Gini index.

This can only be done by using at least a two stage sequential procedure. These proce-

dures fall in the domain of sequential analysis. In contrast to other procedures, sequential

procedures do not require fixing the sample size (cluster size, here) in advance. However,

sampling is done in stages and the analysis is performed at each stage of the procedure until

a pre-defined stopping rule is met. We refer readers to Ghosh and Sen (1991), Ghosh et al.

(1997), Mukhopadhyay and De Silva (2009), Chattopadhyay and Kelley (2017), Kelley et al.

(2018) and others for more on the sequential analysis literature.
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We are not the first to advocate the use of sequential analysis in economics. Several

economics and econometrics journal articles pursued the idea of sequential analysis earlier.

Stein (1945, 1949) first proposed a two-stage procedure which aimed at estimating the normal

mean when the population variance was unknown. This was the seminal work which gave

the mathematical formulations of sequential analysis after Mahalanobis (1940) described

the design and implementation of multi-stage sampling methodologies in large-scale surveys

in India. Kanninen (1993), Greene (1998), Arcidiacono and Jones (2003), Aguirregabiria

and Mira (2007), and many others are some of the authors that have contributed to the

development of sequential analysis. Recently, Chattopadhyay and De (2016) and De and

Chattopadhyay (2017) developed a sequential procedure for inference problems related to

the Gini index under independent and identically distributed (i.i.d.) conditions, but the

proposed methodology cannot be used for finding a sufficiently narrow 100(1−α)% confidence

interval for the population Gini index under complex household survey designs.

The next subsection discusses the contribution that this work adds to the existing liter-

ature in statistical inference and economics.

4.1.1 Contributions of This Paper

Several authors developed procedures for inference problems related to the Gini index under

the framework of i.i.d. random variables and complex survey designs. Examples include the

manuscripts of Beach and Davidson (1983), Davidson (2009), Davidson and Duclos (2000),

Gastwirth (1972), Bhattacharya (2007), Xu (2007), Chattopadhyay and De (2016), (De and

Chattopadhyay, 2017) and others. However, none of these methods can be used to find

a sufficiently narrow 100(1 − α)% confidence interval for the population Gini index under

complex household survey designs. We propose a two stage procedure and a purely sequential

procedure to find an estimate of the optimal number of clusters which is required to find the

sufficiently narrow confidence interval under a distribution-free scenario. Both the two-stage
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and purely sequential procedures are applied to the 64th round of household survey data

collected in India. Further, a simulation study is carried out on observations collected in the

Indian household survey data and from known income distributions to explore the properties

of the procedures.

The remainder of this paper is organized as follows. In Section 4.2, the problem of

finding a sufficiently narrow confidence interval for the Gini index and the reason for non-

applicability of a procedure with fixed cluster size are formulated. In Section 4.3, the purely

sequential, as well as the two-stage, procedure is developed followed by an application of

both procedures on synthetic and real datasets in Section 4.4. The characteristics of the

procedures are discussed in Section 4.5 with concluding comments provided in Section 4.8.

4.2 Problem Statement

Consider the complex household survey design described in Section 4.1, as originally pro-

posed in Bhattacharya (2007). A consistent estimator of the population Gini index is Ĝn,

given in Equation (4.5). Using Bhattacharya (2007), under uniform consistency and weak

convergence, if for every stratum s, E (|X|) < ∞, then as ns → ∞ for each s at the same

rate,

√
n
(
Ĝ−GF

)
D−→ N

(
0, ξ2

)
(4.8)

where ξ2 is the asymptotic variance which can be found in Bhattacharya (2007). Thus, the

100(1− α)% confidence interval for GF is given by(
Ĝn − zα/2

ξ√
n
, Ĝn + zα/2

ξ√
n

)
(4.9)

where zα/2 is the 100(1−α/2)th percentile of the standard normal distribution N(0, 1). The

goal of this work is to construct a confidence interval for the population Gini index such that

P

(
Ĝn − zα/2

ξ√
n
< GF < Ĝn + zα/2

ξ√
n

)
≥ 1− α (4.10)
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and that the width of the confidence interval is no more than ω (a pre-specified value), that

is,

2zα/2
ξ√
n
≤ ω. (4.11)

Based on the asymptotic normality distribution of Ĝn,

P
{∣∣∣Ĝn −GF

∣∣∣ ≤ ω

2

}
≈ 2Φ

(
ω
√
n

2ξ

)
− 1. (4.12)

So, the coverage probability of such a confidence interval is approximately (1− α) if

ω
√
n

2ξ
≥ zα/2 =⇒ n ≥

4z2
α/2ξ

2

ω2
≡ C. (4.13)

Therefore to achieve a confidence interval with width being at most ω and coverage prob-

ability approximately 100(1 − α)%, the required optimal number of clusters to be sampled

from the sth stratum (s = 1, 2, . . . , S) will be Cs = Cas. Here, C is the optimal total number

of clusters from all strata, and as is known and given in Equation (4.2). Thus if C is known,

that is ξ2 is known, one can find the sufficiently narrow confidence interval by computing(
ĜC − zα/z

ξ√
C
, ĜC + zα/z

ξ√
C

)
(4.14)

which will satisfy Equation (4.13). However without knowing the underlying distribution

of income (or assets or expenditure) within the population, the value of ξ2 is unknown in

practical scenarios. Thus, the optimal cluster size from all the S strata, C, is also unknown.

It is worth noting that the supposed value (or previous survey estimate) of ξ2 may be used

to obtain a value of C. However, a potential problem they may arise is that the supposed

value of ξ2 may be different from the actual value. Moreover, using previous survey estimates

in many situations is not advised as they may not be applicable to the current population.

This is because of a possible change in socio-economic conditions that may arise due to the

change in distribution of income or expenditure as a result of change in economic policies
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or situations. Due to all these factors, the value of C may widely differ from what it

would have been if ξ2 is known and will not guarantee that Equation (4.13) is satisfied.

Since the total cluster size is unknown, one must use at least a two-stage procedure, which

does not need a supposed value (or prior survey estimate) of ξ2, to find out C that will

satisfy Equation (4.13). In this work, both two-stage and purely sequential procedures have

been proposed to estimate the optimal cluster size and thereby ensure a sufficiently narrow

100(1− α)% confidence interval for the Gini index.

4.3 Sequential Methodology

This section describes the two-stage and purely sequential procedures which can be used

to collect data so that we can find the sufficiently narrow confidence interval. Since, ξ2 is

unknown, an estimator of ξ2 will first be discussed.

4.3.1 Estimation for ξ2

Several articles published in statistics and economics journals have proposed different es-

timators of the asymptotic variance parameter of the Gini index under different sampling

schemes. Readers are referred to Langel and Tillé (2013) for a discussion on several tech-

niques used in estimating the asymptotic variance of the Gini index for various sampling

designs. Under the current framework, Binder and Kovacevic (1995) proposed an estimator

of ξ2 for n clusters as

V 2
n,1 =

S∑
s=1

ns
ns − 1

ns∑
cs=1

(uscs − ūs)2 (4.15)
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where

uscs =
2

µ̂

k∑
h=1

wscsh

[
A(xscsh)xscsh +B(xscsh)−

µ̂

2
(Ĝn) + 1

]
, (4.16)

ūs =
1

ns

ns∑
cs=1

uscs , (4.17)

A(xscsh) = F̂ (xscsh)−
Ĝn + 1

2
, and (4.18)

B(xscsh) =
S∑
a=1

ns∑
b=1

k∑
c=1

wabcxabcI(xabc ≥ xscsh), (4.19)

and another estimator of ξ2 proposed by Bhattacharya (2007) is given by

V 2
n,2 =

S∑
s=1

ns∑
cs=1

k∑
h=1

w2
scshψ̂

2
scsh +

S∑
s=1

ns∑
cs=1

k∑
h=1

∑
h′ 6=h

wscshψ̂scshwscsh′ψ̂scsh′

−
S∑
s=1

1

ns

(
ns∑
cs=1

k∑
h=1

wscshψ̂scsh

)2

(4.20)

where

ψ̂scsh = − 2

µ

kn∑
g=1

wg

[
xscshI(xscsh < x(g)) + x(g)(F̂ (x(g)))− I(xscsh < x(g))

]
+

2

µ̂2

kn∑
g=1

[{
S∑
a=1

ns∑
b=1

k∑
c=1

wabcxabcI(xabc < x(g))

}
xscsh

]
, (4.21)

kn = k
S∑
s=1

ns i.e total number of observations, (4.22)

x(g) is the gth ordered observation (among all xscsh). (4.23)

Recently, Hoque and Clarke (2015) showed that the estimators of ξ2 by Binder and Kovacevic

(1995) and Bhattacharya (2007) are actually the same, that is V 2
n,1 = V 2

n,2 (= V 2
n , say).

However, the estimator proposed by (Binder and Kovacevic, 1995) is computationally more

efficient. So, in this work, we use the plug-in estimator V 2
n given in Equation (4.15) (and

originally proposed by Binder and Kovacevic (1995)) as an estimator of ξ2. Next, we describe

a purely sequential procedure for constructing a sufficiently narrow confidence interval for

the Gini index.
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4.3.2 Purely Sequential Procedure

Recall that at least Cs clusters from the sth stratum (s = 1, 2, ..., S) are needed to achieve

the desired confidence interval. First, a pilot cluster size of ts from each stratum s is chosen.

Momentarily, the value of the pilot cluster size will be discussed. Therefore, the total number

of clusters in the pilot stage will be t =
∑S

s=1 ts. Within each selected cluster, there are

k randomly selected households. Now, pilot observations xs11, . . . , xs1k, . . . , xsts1, . . . , xstsk

with s = 1, . . . , S which represent per capita monthly expenditure (or any other data) from

k households from t clusters belonging to all S strata are collected.

Based on the pilot cluster size t, the estimate of ξ2 is computed to examine a pre-defined

condition in a stopping rule. A stopping rule indicates, after every stage, whether further

sampling of cluster(s) is(are) required or to be stopped. So, at a particular stage, if the

condition in the stopping rule is not satisfied, the surveyor collects data from additional

m′(≥ 1) clusters, with k randomly chosen households, from each stratum that has ns ≤ Ĉas,

where Ĉ =
4z2
α/2

ω2

(
V 2
n + 1

n

)
. Then ξ2 is estimated based on all the observations collected

up to that stage, and the stopping condition is checked. This process is repeated until the

condition in the stopping rule is satisfied. It should be noted that m′(≥ 1) can be any integer

that is appropriate, suitable or feasible for the survey. Based on the sequential process, the

stopping rule can be defined as:

N ≡ Nω(≤ H) is the smallest integer n(≥ t) such that

n ≥
4z2

α/2

ω2

(
V 2
n +

1

n

)
= Ĉ and ns ≥ Ĉs = Câs,∀s. (4.24)

The term 1/n is a correction term incorporated to avoid early stopping of the sequential

procedure as V 2
n (the estimator of ξ2) may be very small. However, as the cluster size n

becomes large, V 2
n + 1/n converges to ξ2 since V 2

n is a consistent estimator of ξ2. The final

sample size N constitutes Ns clusters from each stratum s where

Ns = Nas, for s = 1, 2, . . . , S. (4.25)
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Based on the sampled data xscsh and their corresponding standardized weight wscsh with

s = 1, . . . , S, cs = 1, . . . , Ns, and h = 1, . . . , k, the 100(1 − α)% confidence interval for the

Gini index G, with width not larger than ω, is given by(
ĜN − zα/2

VN√
N
, ĜN + zα/2

VN√
N

)
. (4.26)

4.3.3 Two-stage Procedure

Unlike the purely sequential procedure, the two-stage procedure comprises of two stages.

The first stage is called the pilot stage, wherein a sample is drawn from the population.

That is, first a pilot sample of clusters, ts, is selected from each stratum s. Based on the

sample from the pilot stage, ξ2 is computed using the estimator given in Equation (4.15).

Then the total final cluster size from all strata can be estimated by

Q = min

{
H,max

{
t,

⌈
4z2

α/2

ω2
V 2
t

⌉}}
= min {H,Q∗} (4.27)

where Q∗ is the (unbounded) optimal sample size and d·e is the ceiling function, that is, dxe

is the smallest integer that is greater than or equal to x. Thus, the estimated number of

clusters to be sampled from the sth stratum is given by

Qs = min{Hs, [Qas]}, (4.28)

with as as defined in Equation (4.2) and [·] being the nearest integer function. So, in the

second stage, observations from k households will be collected from Qs − ts clusters from

each stratum s. Using the combined data from the two stages, the estimate of ξ2 is updated

and the approximate 100(1− α)% confidence interval for the Gini index is given by(
ĜQ − zα/2

VQ√
Q
, ĜQ + zα/2

VQ√
Q

)
. (4.29)

It can be noted that the final cluster size using either the two-stage procedure or the purely

sequential procedure can be shown to be always finite. The proof is straight forward and

the details are left out for brevity. In the next subsection, the pilot cluster size formula will

be derived.
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4.3.4 Pilot Sample Size

Using Equation (4.24),

n ≥
4z2

α/2

ω2

(
V 2
n +

1

n

)
≥

4z2
α/2

ω2

1

n
=⇒ n ≥

2zα/2
ω

. (4.30)

Thus the total number of sampled clusters is at least 2zα/2/ω. The maximum number of

clusters from the sth stratum is Hs and also the minimum number of clusters to be sampled

is 2. Considering all the constraints in Equation (4.24), the number of clusters to be sampled

from the sth stratum at the pilot stage is

ts = max

{
2,min

{
Hs,

⌈
2aszα/2
ω

⌉}}
. (4.31)

This ensures that the minimum cluster size is met as well as the total possible cluster size is

not exceeded.

4.4 Application

We now apply the sequential procedures to construct confidence intervals for the Gini index

using the per capita monthly expenditures data collected in the 64th Round National Sample

Survey (NSS). The 64th NSS was a stratified multi-staged survey design running from between

July 2007 till June 2008 and covered almost the whole of India.2 As of 2008, the country was

divided into 28 states and 7 union territories, and each is subdivided into districts. Within

each district, two basic sectors were formed; all rural areas constituted the rural sector while

all urban areas constituted the urban sector. Nonetheless, for the urban areas in a district,

separate basic strata were formed for each town that had at least a population of 10 lakhs3

2“The survey excluded (i) Leh (Ladakh) and Kargil districts of Jammu & Kashmir (for central sample),
(ii) interior villages of Nagaland situated beyond 5km of the bus route and (ii) villages of Andaman and
Nicobar Islands which remain inaccessible throughout the year.”(National Sample Survey Organization,
2007)

31 lakh is 100,000
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(1 million) as at 2001 population census and remaining areas were grouped as another basic

stratum (National Sample Survey Organization, 2007). For the rural sector, the sampling

frame was made up of villages while for the urban sector, it was towns/blocks.

Census villages and the Urban Frame Survey (UFS) blocks are the first stage units

(FSU) in the rural and urban sectors respectively. From each strata, FSUs are selected

with replacement from the rural sector with probability proportional to the size and without

replacement from the urban sector by using simple random sampling. Within the FSU,

the households in each sector were considered as the smallest unit of grouping, which is

also referred to as the Ultimate Stage Units (USU). Households were selected by simple

random sampling without replacement and various information about the households were

recorded during the survey. Some of the information include the demographics, household

size, expenditure on education, food, clothing, etc. In order to make inferences from the

data, the information from the households were weighted. A detailed description of the NSS

Data can be found at http://164.100.34.62/index.php/catalog/15.

This work considers only the per capita monthly expenditure for the households. The

“Stratum” variable in the 64th NSS dataset will be used to stratify the states/sectors while

“FSUno” (First Stage Unit Number) variable will be used to cluster the households un-

der each stratum. We discuss the results obtained from applying the proposed sequential

methodologies which were applied to the data collected from two of the most populous

states in India, namely Uttar Pradesh and West Bengal. Additionally, the report includes

the results for the whole state as well as rural and urban sectors of the state. Here, all the

households in each cluster were considered since we are sampling from a survey that already

has few number of households per cluster. However, the weight per household was adjusted

at each sampling stage. The per capita monthly expenditure (with their adjusted weights)

are used to estimate ξ.

In applying the sequential methodologies, the pilot sample sizes ts for each stratum s

are computed using Equation (4.31). At the outset, ts number of clusters are selected from
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stratum s for s = 1, . . . , S. Where ts is same for both the purely sequential procedure and

the two-stage methodology. We apply each of the procedures considering the survey data as

our population.

4.4.1 Application of Purely Sequential Procedure

The proposed purely sequential procedure, with observations from one cluster collected at

each stage after the pilot stage, is applied to the NSS 64th round data. The results for different

combinations of pre-specified width (ω ∈ {0.020, 0.025}) and confidence level (1 − α, α ∈

{0.05, 0.10}) can be found in Tables 4.1 – 4.2. The third column of the tables shows the

collected cluster size N using the stopping rule in Equation (4.24) and the pilot sample size

t. The fourth column shows the value of Ĉ when the procedure ended, Ĉ is the estimated

optimal sample size as in Equation (4.24). ĜN and se(ĜN) are the estimated Gini index

and its standard error respectively based on N clusters. The lower and upper limits of the

confidence intervals obtained with the stopping rule in Equation (4.24) are also reported.

Furthermore, column wN is the estimated width of the confidence interval, and p(Ns < Ĉs)

shows the proportion of strata that had their collected cluster size Ns from the purely

sequential procedure being less than their estimated optimal cluster size Ĉs (Ns is the final

number of clusters selected from stratum s while Ĉs is the estimated optimal number of

clusters to be sampled from stratum s).

Note that the stopping rule was not met under the urban sectors in both states. This is

because all strata do not have enough clusters (that is, p(Ns < Ĉs) = 1). However, in the

other cases, even though N > Ĉ, some strata had Ns < Ĉs. This is because some strata had

more than enough clusters while others did not. For example, it can be seen from Table 4.1

that in the rural sector of Uttar Pradesh, 40% of the strata did not have enough clusters even

though at the end the confidence interval was 0.0186 wide which was less than the desired

width of 0.02.
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Table 4.1. Application results for PSP on NSS 64th Round Data for ω = 0.02

Region ĜH H Ĉ N ĜN Lower CI Upper CI wN p(Ns < Ĉs)

se(ĜH) (t) se(ĜN)

α = 0.10

Uttar Pradesh
All 0.2163 1262 622 672 0.2116 0.2023 0.2209 0.0186 0.2138

(0.0042) (321) (0.0057)

Rural 0.1997 903 505 523 0.2024 0.1931 0.2117 0.0186 0.4000
(0.0041) (198) (0.0057)

Urban 0.2229 359 903 359 0.2229 0.2077 0.2381 0.0304 1.0000
(0.0092) (180) (0.0092)

West Bengal
All 0.2320 878 587 593 0.2334 0.2239 0.2430 0.0191 0.1282

(0.0051) (190) (0.0058)

Rural 0.1812 551 450 450 0.1816 0.1723 0.1909 0.0186 0.2353
(0.0048) (172) (0.0057)

Urban 0.2609 327 612 327 0.2609 0.2482 0.2736 0.0254 1.0000
(0.0077) (185) (0.0077)

α = 0.05

Uttar Pradesh
All 0.2163 1262 834 878 0.2117 0.2022 0.2212 0.0190 0.2138

(0.0042) (333) (0.0048)

Rural 0.1997 903 643 667 0.2024 0.1930 0.2117 0.0187 0.4000
(0.0041) (226) (0.0048)

Urban 0.2229 359 1282 359 0.2229 0.2048 0.2410 0.0362 1.0000
(0.0092) (254) (0.0092)

West Bengal
All 0.2320 878 906 878 0.2320 0.2221 0.2419 0.0198 1.0000

(0.0051) (223) (0.0051)

Rural 0.1812 551 552 551 0.1812 0.1719 0.1906 0.0187 1.0000
(0.0048) (203) (0.0048)

Urban 0.2609 327 869 327 0.2609 0.2458 0.2761 0.0303 1.0000
(0.0077) (207) (0.0077)

4.4.2 Application of Two-Stage Procedure

Using the estimate for ξ2 in Equation (??) obtained from the pilot stage, the final sample

size Q∗ is computed using Equation (4.27). Q∗ is then adjusted to account for the limited

availability of clusters per stratum in the NSS data to obtain the possible number of clusters

Q that can be sampled (Equation (4.27)). Here, Q is distributed over S strata as Qs for
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Table 4.2. Application results for PSP on NSS 64th Round Data for ω = 0.025

Region ĜH H Ĉ N ĜN Lower CI Upper CI wN p(Ns < Ĉs)

se(ĜH) (t) se(ĜN)

α = 0.10

Uttar Pradesh
All 0.2163 1262 401 540 0.2138 0.2035 0.2242 0.0207 0.0000

(0.0042) (302) (0.0063)

Rural 0.1997 903 386 400 0.2014 0.1899 0.2130 0.0231 0.1714
(0.0041) (168) (0.0070)

Urban 0.2229 359 578 359 0.2229 0.2077 0.2381 0.0304 1.0000
(0.0092) (168) (0.0092)

West Bengal
All 0.2320 878 324 319 0.2288 0.2175 0.2401 0.0226 0.1795

(0.0051) (158) (0.0069)

Rural 0.1812 551 276 289 0.1829 0.1721 0.1937 0.0216 0.2353
(0.0048) (138) (0.0066)

Urban 0.2609 327 392 327 0.2609 0.2482 0.2736 0.0254 1.0000
(0.0077) (142) (0.0077)

α = 0.05

Uttar Pradesh
All 0.2163 1262 572 653 0.2123 0.2010 0.2236 0.0226 0.2138

(0.0042) (728) (0.0058)
Rural 0.1997 903 496 510 0.2010 0.1893 0.2128 0.0234 0.1714

(0.0041) (197) (0.0060)
Urban 0.2229 359 821 359 0.2229 0.2048 0.2410 0.0362 1.0000

(0.0092) (717) (0.0092)

West Bengal
All 0.2320 878 517 519 0.2318 0.2199 0.2437 0.0238 0.1538

(0.0051) (186) (0.0061)
Rural 0.1812 551 351 352 0.1815 0.1703 0.1927 0.0223 0.2353

(0.0048) (163) (0.0057)
Urban 0.2609 327 556 327 0.2609 0.2458 0.2761 0.0303 1.0000

(0.0077) (162) (0.0077)

stratum s; rounding off if Qs is not an integer. The sum of Qs gives the actual number of

clusters, Q̃ =
∑S

s=1 Qs, that were sampled from all strata. Using Q̃ clusters, the Gini index

and ξ2 are re-estimated (or updated) and a 100(1 − α)% confidence interval is constructed

according to Equation (4.29).

Similar to the application of the purely sequential procedure, the two-stage procedure is

applied to the NSS 64th round data for different combinations of pre-specified precision (ω)
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and accuracy (1 − α) with the results shown in Tables ?? – 4.4.The second column of the

tables indicates the total number of clusters H in the unit (i.e. the whole state, rural or urban

sector) of the NSS data. The third column displays estimated optimal number of cluster

(Q∗) that are required in order to achieve the desired precision and accuracy. Below Q∗ is

the pilot number of clusters t. The next column shows the estimated optimal sample sizes Q

taking into account the total number of clusters available in the data, that is, the number of

clusters are finite and limited. Q̃ is the actual number of clusters that can be sampled from

all strata considering the fact that we can only sample integer number of clusters from each

strata (i.e. rounding off where there are decimals in the number of clusters to be sampled

from a stratum). Using Equation (4.5) and (4.15), the Gini index estimate, ĜH , for the unit

is computed using all H clusters with its standard error as se(ĜH). The selected clusters are

used to estimate the Gini index and this is denoted as ĜQ̃, with it standard error as se(ĜQ̃).

Lower CI and Upper CI are the lower and upper limits of the 100(1−α)% confidence interval

of the Gini index using a sample of size Q̃, respectively. The last column shows the length

of the confidence interval, wQ̃. It must be noted that Q∗ is unbounded while on the other

hand, Q and Q̃ cannot exceed H. Q̃ can be less than, equal to, or greater than Q depending

on the rounding off. Q∗ will be equal to Q if and only if Q∗ is less than or equal to H.

In Tables 4.3 and 4.4, it can be observed that in all cases, except for the urban sectors

for both states, the confidence interval widths were less than ω. These results were achieved

because the optimal number of clusters required (Q∗), according to the two-stage procedure,

were less than the number available (H). On the other hand, in both Uttar Pradesh and West

Bengal, the estimated optimal cluster sizes Ĉ for the urban sector exceeded the available

number of clusters in the data H. As a consequence of this, the confidence interval widths

for the Gini index in the urban sectors were larger than the pre-specified bound, that is

wQ̃ > ω.
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Table 4.3. Application results for the two-stage procedure on NSS 64th Round Data for
ω = 0.02

Region H Q∗ Q̃ ĜH ĜQ̃ Lower CI Upper CI wQ̃
(t) (Q) (se(ĜH)) (se(ĜQ̃))

α = 0.10

Uttar Pradesh
All 1262 1146 1171 0.2163 0.2137 0.2072 0.2203 0.0131

(321) (1146) (0.0042) (0.0040)

Rural 903 398 406 0.1997 0.2027 0.1940 0.2114 0.0174
(198) (398) (0.0041) (0.0053)

Urban 359 1177 359 0.2229 0.2229 0.2077 0.2381 0.0304
(180) (359) (0.0092) (0.0092)

West Bengal
All 878 624 626 0.2320 0.2307 0.2216 0.2398 0.0182

(190) (624) (0.0051) (0.0055)

Rural 551 422 420 0.1812 0.1785 0.1707 0.1862 0.0155
(173) (422) (0.0048) (0.0047)

Urban 327 857 327 0.2609 0.2609 0.2482 0.2736 0.0254
(185) (327) (0.0077) (0.0077)

α = 0.05

Uttar Pradesh
All 1262 1665 1262 0.2163 0.2163 0.2081 0.2245 0.0164

(333) (1262) (0.0042) (0.0042)

Rural 903 593 595 0.1997 0.2000 0.1914 0.2085 0.0171
(226) (593) (0.0041) (0.0044)

Urban 359 1712 359 0.2229 0.2229 0.2048 0.2410 0.0362
(254) (359) (0.0092) (0.0092)

West Bengal
All 878 874 878 0.2320 0.2320 0.2221 0.2419 0.0198

(223) (874) (0.0051) (0.0051)

Rural 551 535 534 0.1812 0.1814 0.1719 0.1910 0.0191
(203) (535) (0.0048) (0.0049)

Urban 327 1110 327 0.2609 0.2609 0.2458 0.2761 0.0303
(207) (327) (0.0077) (0.0077)
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Table 4.4. Application results for the two-stage procedure on NSS 64th Round Data for
ω = 0.025

Region H Q∗ Q̃ ĜH ĜQ̃ Lower CI Upper CI wQ̃
(t) (Q) (se(ĜH)) (se(ĜQ̃))

α = 0.10

Uttar Pradesh
All 1262 688 680 0.2163 0.2104 0.2023 0.2185 0.0162

(302) (688) (0.0042) (0.0049)

Rural 903 299 308 0.1997 0.2026 0.1927 0.2126 0.0199
(168) (299) (0.0041) (0.0061)

Urban 359 1087 359 0.2229 0.2229 0.2077 0.2381 0.0304
(168) (359) (0.0092) (0.0092)

West Bengal
All 878 396 396 0.2320 0.2293 0.2171 0.2414 0.0243

(158) (396) (0.0051) (0.0074)

Rural 551 275 275 0.1812 0.1750 0.1660 0.1840 0.0180
(138) (275) (0.0048) (0.0055)

Urban 327 582 327 0.2609 0.2609 0.2482 0.2736 0.0254
(142) (327) (0.0077) (0.0077)

α = 0.05

Uttar Pradesh
All 1262 976 947 0.2163 0.2124 0.2041 0.2207 0.0166

(302) (946) (0.0042) (0.0042)

Rural 903 364 353 0.1997 0.2032 0.1922 0.2142 0.0220
(197) (364) (0.0041) (0.0056)

Urban 359 1081 359 0.2229 0.2229 0.2048 0.2410 0.0362
(177) (359) (0.0092) (0.0092)

West Bengal
All 878 607 608 0.2320 0.2315 0.2204 0.2427 0.0224

(186) (607) (0.0051) (0.0057)

Rural 551 391 392 0.1812 0.1759 0.1670 0.1849 0.0178
(163) (391) (0.0048) (0.0045)

Urban 327 754 327 0.2609 0.2609 0.2458 0.2761 0.0303
(162) (327) (0.0077) (0.0077)

4.5 Characteristics of the Procedures

The purely sequential procedure and the two-stage procedure for constructing a sufficiently

narrow confidence interval for the Gini index - unlike fixed sample size procedures - require

107



sample size which are obtained from data. So, the respective sample sizes N and Q are

random in nature. The following theorem provides some asymptotic properties (as ω → 0)

of the final sample sizes of the above procedures with sufficiently large H.

Theorem 4.1. If the parent distribution(s) is(are) such that E[V 2
n ] exists and H (fixed) is

sufficiently large, then as ω → 0

(i)
N

C
→ 1 in probability,

(ii)
Q

C
→ 1 in probability, and

(iii)
2zα/2ξ̂N√

N
≤ ω.

Proof. (i) The definition of stopping rule N associated with the purely sequential proce-

dure in Equation (4.24) yields(
2zα/2
ω

)2

V 2
N ≤ N ≤ tI(N = t) +

(
2zα/2
ω

)2 (
V 2
N−1 + (N − 1)−1

)
. (4.32)

Since N → ∞ as ω ↓ 0 and V 2
n → ξ2 in probability as n → ∞, by applying theorem

2.1 of Gut (2009), V 2
N → ξ2 in probability.

Also, tP (N = t)/C ≤ t/C → 0 as ω ↓ 0. Hence, dividing all sides of Equation (4.32)

by C and letting ω ↓ 0, we prove N/C → 1 in probability as ω ↓ 0.

(ii) The definition of final sample size Q related to the two-stage procedure in Equa-

tion (4.27) yields(
2zα/2
ω

)2

V 2
t ≤ Q ≤ tI(Q = t) +

(
2zα/2
ω

)2

(V 2
t + 1/t). (4.33)

Also, tP (Q = t)/C ≤ t/C → 0 as ω ↓ 0. Now, V 2
t → ξ2 in probability as ω ↓ 0. Hence,

dividing all sides of Equation (4.33) by C and letting ω ↓ 0, we prove Q/C → 1 in

probability as ω ↓ 0.
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(iii) Using stopping rule N in Equation (4.24) we have, for all N ,(
2zα/2
ω

)2

V 2
N ≤ N =⇒

4z2
α/2

N
V 2
N ≤ ω2

=⇒ 2zα/2
VN√
N
≤ ω

�

Parts (i) and (ii) of the theorem shows that the final sample size as obtained from

the purely sequential and the two-stage procedure is a consistent estimator of the sample

size provided ξ2 being known. Part (iii) of the theorem shows that the sufficiently smaller

confidence interval (that is length less than ω) will be obtained by the purely sequential

procedure. The same result can never be proven for the two-stage procedure.

4.6 Replication Using Empirical Data

Next, we use simulation study to illustrate and compare the properties of our purely se-

quential and the two stage procedures in constructing a 100(1 − α)% confidence interval

for the Gini index whose width is less than ω under a complex survey. We presented two

different simulation studies with 5000 as the simulation size - (a) simulation runs using the

NSS survey data as the population and (b) a Monte Carlo simulation in which the observa-

tions are drawn from three populations, each of which has been drawn using three different

distributions, namely; Pareto, Gamma and Lognormal distributions.

4.6.1 Replication Using Empirical Data: Purely Sequential Procedure (PSP)

To begin with, we describe the simulation procedure for the purely sequential methodology.

From any of the given population mentioned previously, ts clusters are randomly sampled

from the sth stratum without replacement. From there, four households are selected from

each cluster using simple random sampling without replacement and these households from
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all t clusters will constitute the pilot sample. From the collected pilot sample, the asymptotic

variance of the Gini index ξ2 is estimated using Equation (4.15), and from Equation (4.24),

the optimal number of clusters C is estimated. The stopping rule is checked and if it is

satisfied, sampling is terminated. On the other hand, if the stopping rule is not satisfied, the

strata whose number of clusters selected are less than the expected, that is {s : ts < Ĉs}, are

identified and additional m′ number of clusters are randomly selected from them without

replacement. Here, m′ is chosen to be either 1 or 10 or 20. In each of the selected m′

clusters, four households are randomly selected without replacement. At this stage, with

the total number of sampled clusters being n, the value of V 2
n is updated and the stopping

rule is checked. If the rule is met, sampling is stopped, otherwise the strata without enough

clusters are identified again and additional m′ clusters are collected from each of them. This

process will continue until and unless the stopping rule is met. At that point, based on say

N number of clusters sampled from all strata, the 100(1 − α)% confidence interval for the

Gini index is constructed as given in Equation (4.26).

The purely sequential procedure was replicated 5000 times on the NSS data. The results

of the simulation study of our purely sequential procedure are found in Tables 4.5 and 4.6. In

the tables, the average optimal sample sizes N̄ and their respective standard errors se(N) are

indicated in the fourth column. p(wN > ω) indicates the proportion of confidence interval

widths that exceeded the desired bound ω, while p(N < Ĉ) is the proportion of estimated

optimal cluster sizes that could not meet the stopping rule.

Apart from the urban sectors, the average confidence interval width w̄N are less than

ω = 0.02 and they have small standard errors. Also, none of the width exceeded the specified

value of ω.

4.6.2 Replication Using Empirical Data: Two-Stage procedure

Unlike the purely sequential procedure described above, the two-stage procedure has only

two stages. The simulation algorithm for the two-stage is as follows. From a given popula-
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Table 4.5. Replication results for PSP on 64th NSS Data (ω = 0.02)

Region ĜH H Ĉ N̄ ĜN w̄N p(wN > ω) p(N < Ĉ)

se(ĜH) t se(Ĉ) se(N) se(ĜN) se(w̄N) se(p(wN > ω))

α = 0.10

Uttar Pradesh
All 0.2163 1262 597.3592 637.7388 0.2160 0.0186 0.0000 0.0000

0.0042 321 112.5162 117.8815 0.0042 0.0006 0.0000

Rural 0.1997 903 431.5098 450.9542 0.1993 0.0180 0.0000 0.0000
0.0041 198 77.5388 78.3839 0.0041 0.0007 0.0000

Urban 0.2229 359 903.0000 359.0000 0.2229 0.0304 1.0000 1.0000
0.0092 180 0.0000 0.0000 0.0000 0.0000 0.0000

West Bengal
All 0.2320 878 682.2386 691.2456 0.2315 0.0193 0.0000 0.0000

0.0051 190 85.2230 85.8925 0.0036 0.0002 0.0000

Rural 0.1812 551 391.9578 397.1726 0.1808 0.0179 0.0000 0.0000
0.0048 172 51.0689 52.2322 0.0032 0.0006 0.0000

Urban 0.2609 327 612.0000 327.0000 0.2609 0.0254 1.0000 1.0000
0.0077 185 0.0000 0.0000 0.0000 0.0000 0.0000

α = 0.05

Uttar Pradesh
All 0.2163 1262 836.5332 871.9902 0.2159 0.0190 0.0000 0.0000

0.0042 321 111.8031 113.5042 0.0030 0.0004 0.0000

Rural 0.1997 903 592.8814 612.3790 0.1992 0.0185 0.0000 0.0000
0.0041 198 88.4435 89.3062 0.0029 0.0005 0.0000

Urban 0.2229 359 1282.0000 359.0000 0.2229 0.0362 1.0000 1.0000
0.0092 180 0.0000 0.0000 0.0000 0.0000 0.0000

West Bengal
All 0.2320 878 888.4526 866.3402 0.2316 0.0197 0.0000 0.8218

0.0051 190 42.1969 31.2673 0.0013 0.0002 0.0000

Rural 0.1812 551 531.0336 530.8254 0.1807 0.0186 0.0000 0.7352
0.0048 172 42.5598 41.2625 0.0014 0.0003 0.0000

Urban 0.2609 327 869.0000 327.0000 0.2609 0.0303 1.0000 1.0000
0.0077 185 0.0000 0.0000 0.0000 0.0000 0.0000

tion, ts number of clusters are randomly selected without replacement from the sth stratum

and four households are randomly sampled from each of selected clusters without replace-

ment. The per monthly capita expenditure xscsh from the selected households, with their

respective weight Wscsh, are used to estimate the asymptotic variance of the Gini index (from

Equation (4.15)). This is followed by using Equation (4.27) to obtain the optimal number
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Table 4.6. Replication results for PSP on 64th NSS Data (ω = 0.025)

Region ĜH H Ĉ N̄ ĜN w̄N p(wN > ω) p(N < Ĉ)

se(ĜH) t se(Ĉ) se(N) se(ĜN) se(w̄N) se(p(wN > ω))

α = 0.10

Uttar Pradesh
All 0.2163 1262 397.4636 446.5638 0.2162 0.0222 0.0000 0.0000

0.0042 321 87.6632 86.6652 0.0058 0.0012 0.0000

Rural 0.1997 903 290.1868 323.1846 0.1995 0.0211 0.0000 0.0000
0.0041 168 61.1267 66.2810 0.0054 0.0012 0.0000

Urban 0.2229 359 578.0000 359.0000 0.2229 0.0304 1.0000 1.0000
0.0092 180 0.0000 0.0000 0.0000 0.0000 0.0000

West Bengal
All 0.2320 878 458.0644 468.1314 0.2315 0.0235 0.0000 0.0000

0.0051 190 92.1715 93.6177 0.0057 0.0006 0.0000

Rural 0.1812 551 268.8992 274.2660 0.1812 0.0213 0.0000 0.0000
0.0048 172 44.5474 45.7673 0.0049 0.0013 0.0000

Urban 0.2609 327 389.7278 326.3296 0.2607 0.0254 0.9760 0.9760
0.0077 185 14.7339 5.0234 0.0005 0.1531 0.0022

α = 0.05

Uttar Pradesh
All 0.2163 1262 549.4374 588.3550 0.2161 0.0231 0.0000 0.0000

0.0042 321 107.3979 110.8163 0.0046 0.0008 0.0000

Rural 0.1997 903 399.6852 417.5508 0.1994 0.0223 0.0000 0.0000
0.0041 198 78.7000 75.5232 0.0043 0.0010 0.0000

Urban 0.2229 359 821.0000 359.0000 0.2229 0.0362 1.0000 1.0000
0.0092 180 0.0000 0.0000 0.0000 0.0000 0.0000

West Bengal
All 0.2320 878 632.3722 641.8234 0.2315 0.0240 0.0000 0.0000

0.0051 190 92.1456 93.1628 0.0040 0.0004 0.0000

Rural 0.1812 551 361.3896 366.2682 0.1809 0.0222 0.0000 0.0000
0.0048 172 50.9696 52.3207 0.0036 0.0009 0.0000

Urban 0.2609 327 556.0000 327.0000 0.2609 0.0303 1.0000 1.0000
0.0077 185 0.0000 0.0000 0.0000 0.0000 0.0000

of clusters Q needed to achieved the desired confidence level and width. If Q > t, additional

Qs − ts number of clusters are randomly selected without replacement from each stratum

s. In each of the additional clusters, four households are also randomly selected without

replacement. Finally, per capita monthly expenditure of all households from the Q number
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of clusters are used to construct the 100(1 − α)% confidence interval for the Gini index as

stated in Equation (4.29).

Tables 4.7 to 4.8 show the results of the simulation study of our two-stage procedure.

The third column shows the average estimated Gini Index and its standard error. The fourth

through to the seventh columns show the average values of Q∗, Q, Q̃, and wQ̃ respectively

with their standard errors. The last column indicates the proportion of times that the length

of the confidence intervals obtained (wQ̃) exceeded the pre-specified upper bound ω.

As the application of the two-stage procedure was repeated 5000 times, results show that

the optimal cluster size is less than the number of clusters in the NSS Data on the average

irrespective of the households that were in the pilot sample. However, the estimated optimal

cluster sizes (Q∗) in the urban clusters always exceeded the available number of clusters

irrespective of which clusters and households were initially sampled. This is clearly seen in

the last column of Tables 4.7 and 4.8. The urban sectors always had confidence interval

width more than desired due to inadequate number of clusters. Also, from the penultimate

column, it could be seen that there are chances that this procedure results in a larger width.

The above described process for the two procedures are replicated 5000 times on the

three synthetic populations. In each replicate, different clusters and households are used as

a pilot sample.

4.7 Replication Using a Pseudo Population

First, a pseudo population is created considering the structure of the survey described in

this paper. This population is subdivided into three strata (S = 3, i.e. s = 1, 2, 3) with

each stratum having 600 clusters (Hs = 600 for s = 1, 2, 3). The clusters are further

divided into households. In all, the total number of households M is 900000, and each sth

stratum having Ms = 300000 number of households. Each household is randomly assigned a

household size νscsh. To create three different synthetic populations, we allow the per capita
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Table 4.7. Replication results for two-stage procedure on 64th NSS Data (ω = 0.02)

Region ĜH H ĜQ̃ Q∗ Q Q̃ wQ̃ p(wQ̃ > ω)

se(ĜH) t se(ĜQ̃) se(Q∗) se(Q) se(Q̃) se(wQ̃) se(p(wQ̃ > ω))

α = 0.10

Utter Pradesh
All 0.2163 1262 0.2158 746.0006 736.7442 747.7408 0.0175 0.1940

0.0042 321 0.0038 292.0440 270.7270 260.7141 0.0028 0.0059

Rural 0.1997 903 0.1993 521.3184 521.0958 521.2806 0.0173 0.2060
0.0041 198 0.0038 173.9302 173.4148 173.5880 0.0029 0.0057

Urban 0.2229 359 0.2229 921.8320 358.9994 359.0000 0.0304 1.0000
0.0092 180 0.0000 234.4798 0.0424 0.0000 0.0000 0.0000

West Bengal
All 0.2320 878 0.2317 783.1276 719.0094 719.0098 0.0184 0.2248

0.0051 190 0.0029 240.1110 151.8134 152.2045 0.0021 0.0059

Rural 0.1812 551 0.1809 491.3992 459.2752 459.2734 0.0170 0.0706
0.0048 173 0.0024 123.0809 78.5944 78.6132 0.0017 0.0036

Urban 0.2609 327 0.2609 696.5434 327.0000 327.0000 0.0254 1.0000
0.0077 185 0.0000 113.4849 0.0000 0.0000 0.0000 0.0000

α = 0.05

Uttar Pradesh
All 0.2163 1262 0.2160 1050.3342 938.7144 937.7854 0.0189 0.3372

0.0042 333 0.0028 427.1341 253.3348 255.7325 0.0026 0.0067

Rural 0.1997 903 0.1995 737.4964 660.4210 660.4842 0.0185 0.3296
0.0041 226 0.0027 280.1239 147.8075 147.9787 0.0026 0.0066

Urban 0.2229 359 0.2229 1438.5742 359.0000 359.0000 0.0362 1.0000
0.0092 254 0.0000 324.5592 0.0000 0.0000 0.0000 0.0000

West Bengal
All 0.2320 878 0.2319 1067.1052 833.7042 833.7296 0.0203 0.2620

0.0051 223 0.0014 292.5594 78.2840 78.5031 0.0011 0.0062

Rural 0.1812 551 0.1811 666.8132 534.2016 534.2286 0.0189 0.1012
0.0048 203 0.0010 160.5609 31.3909 31.4040 0.0007 0.0043

Urban 0.2609 327 0.2609 950.6524 327.0000 327.0000 0.0303 1.0000
0.0077 207 0.0000 132.2993 0.0000 0.0000 0.0000 0.0000

monthly expenditure xscsh for the households to follow a chosen theoretical distribution.

The distributions chosen were Pareto(scale=20000, shape=5), Lognormal(mean = 2.185, sd

= 0.562) and Gamma(shape = 2.649, rate = 0.84). The choice of the parameter values of

the distributions are the same as in Ransom and Cramer (1983), Chattopadhyay and De

(2016), and De and Chattopadhyay (2017).
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Table 4.8. Replication results for two-stage procedure on 64th NSS Data (ω = 0.025)

Region ĜH H ĜQ̃ Q∗ Q Q̃ wQ̃ p(wQ̃ > ω)

se(ĜH) t se(ĜQ̃) se(Q∗) se(Q) se(Q̃) se(wQ̃) se(p(wQ̃ > ω))

α = 0.10

Uttar Pradesh
All 0.2163 1262 0.2157 511.2518 511.2518 540.5866 0.0199 0.0374

0.0042 302 0.0052 174.7202 174.7202 151.6189 0.0026 0.0027

Rural 0.1997 903 0.1994 374.6068 374.5782 374.7222 0.0204 0.1462
0.0041 168 0.0053 176.9589 176.8717 177.1875 0.0043 0.0050

Urban 0.2229 359 0.2228 658.1510 357.3200 357.6046 0.0304 0.9980
0.0092 168 0.0009 227.5936 8.9762 9.9289 0.0005 0.0000

West Bengal
All 0.2320 878 0.2316 529.8012 527.2098 528.3812 0.0215 0.1524

0.0051 158 0.0047 170.4682 164.0081 162.7237 0.0033 0.0051

Rural 0.1812 551 0.1811 337.3440 337.1524 337.1660 0.0197 0.0546
0.0048 138 0.0042 92.0419 91.5658 91.6090 0.0028 0.0032

Urban 0.2609 327 0.2609 460.0384 325.2216 325.3178 0.0255 0.9930
0.0077 142 0.0007 85.7729 8.1272 0.0007 0.0004 0.0012

α = 0.05

Utter Pradesh
All 0.2163 1262 0.2159 698.7892 695.6476 709.7158 0.0213 0.1336

0.0042 302 0.0040 254.9395 246.8035 234.0947 0.0032 0.0048

Rural 0.1997 903 0.1993 476.1066 476.1066 475.9842 0.0214 0.1758
0.0041 197 0.0041 157.4488 157.4488 158.1605 0.0035 0.0054

Urban 0.2229 359 0.2229 850.5696 358.9922 358.9976 0.0362 1.0000
0.0092 177 0.0002 212.7411 0.5515 0.1697 0.0001 0.0000

West Bengal
All 0.2320 878 0.2316 730.4786 686.8248 686.7118 0.0225 0.2094

0.0051 186 0.0033 232.2337 167.1106 167.6879 0.0029 0.0058

Rural 0.1812 551 0.1809 452.0266 432.7092 432.7040 0.0208 0.0688
0.0048 163 0.0028 116.9002 87.0609 87.1087 0.0024 0.0036

Urban 0.2609 327 0.2609 628.6992 327.0000 327.0000 0.0303 1.0000
0.0077 162 0.0000 104.9581 0.0000 0.0000 0.0000 0.0000

For each of the datasets, the upper bound of the confidence interval width ω and the

confidence level 1 − α are pre-specified. The pilot sample size for each sth stratum is then

computed by using the pilot sample size formula. For example, for ω = 0.02 and α = 5%,

we start with a pilot sample size of ts = max
{

2,min
{

600,
⌈

2asz0.05/2
0.02

⌉}}
= 66 for s = 1, 2, 3.

Thus, the initial number of clusters to be taken from the population is t =
∑3

s=1 ts = 198.

Now, a simple random sample of ts clusters is drawn from stratum s. Then for each selected
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cluster, a simple random sample of k = 4 households is drawn. The per capita monthly

expenditure xscsh of the hth household belonging to the cths cluster from the sth stratum is

recorded and weighted with wscsh = MscsHs
kts

νscsh. The estimator of ξ2, V 2
t is computed.

Now we apply the purely sequential procedure and the two-stage procedure for α =

0.05, 0.10, ω = 0.020, 0.025 and m
′
= 1, 10, 20 with replication size being 5000.

Tables C.1 through C.12 in Appendix C show the results of the Monte Carlo simulations

on the three pseudo populations using the purely sequential procedure. The second column

of the tables gives the theoretical Gini index (G) given the distribution in the first column.

N̄ and sN indicate the estimate of the average optimal sample size and its standard error

respectively. The coverage probability (p) of the 5000 confidence intervals is displayed in

column 4 with its corresponding standard error being sp. The average length of the confidence

intervals (w̄N) is in column 5 and swN is its standard error. The last column denotes the

proportion of confidence intervals that were wider than the specified upper bound ω (p(wN >

ω)).

Results in Tables C.1 to C.12 show that the average widths were all less than the pre-

specified value of ω. Since p(wN > ω) = 0 for all the results, the width of the confidence

intervals will be less than ω. This was also indicated while replicating the procedure using

NSS data. The coverage probabilities obtained were approximately equal to 1− α.

The results in Tables C.13 – C.16 (in Appendix C) show the properties of the Monte

Carlo simulations on the three pseudo populations using the two-stage methodology. The

second column of the tables gives the theoretical Gini index (G) given the distribution in the

first column. The average final sample size after 5000 replications is denoted as Q̄ along with

the corresponding standard error sQ. The coverage probability (p) of the 5000 confidence

intervals is in column 4 with its standard error being sp. The average length of the confidence

intervals (w̄Q) is in column 5 and swQ is its standard error. The last column denotes the

proportion of confidence intervals that were wider than the specified upper bound ω.
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The results in Tables C.13 through C.16 show that the width of the confidence intervals

may not be less than ω. This was also indicated while replicating the procedure using NSS

data. However, the coverage probabilities obtained were approximately equal to 1− α.

From the simulations, we find that the coverage probability for the confidence intervals

for both purely sequential procedure and the two-stage procedure are approximately close to

the desired confidence level provided that the cluster size (in all strata) is large, which is also

a basic criterion while proving the asymptotic normality in Equation (4.8). However, the

width of the confidence intervals for the two stage procedure, unlike the purely sequential

procedure, may result in confidence intervals of width larger than the pre-specified value of

ω. This outcome is not surprising since the two-stage procedure is based on only the pilot

sample which is usually taken to be small. So, there is a higher variability in the estimate

of ξ2. The optimal cluster sizes for the purely sequential procedure is less than that of the

two-stage procedure.

4.8 Concluding Thoughts

Working within the asymptotic purview for complex survey data, developed by Bhattacharya

(2005, 2007), we have developed purely sequential and two-stage procedures for constructing

sufficiently narrow confidence intervals for the Gini index which is one of the most popular

measure of economic inequality. Our procedure may be applied for surveys when the stratified

clustered sample data are drawn from a large number of clusters per stratum, which is a

reasonable assumption to make.

It turns out that the two-stage procedure is practically more feasible under this survey

design than the purely sequential procedure. The confidence intervals of both procedures

yielded a coverage probability closer to the desired confidence level, however, the purely

sequential procedure produces confidence intervals whose width is always less than the de-

sired bound ω. The two-stage procedure is also known to over-estimate the optimal sample
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size than the purely sequential procedure (see Mukhopadhyay and De Silva, 2009) and this

property can be seen in results from the simulation and the application to the NSS data.

Furthermore, the estimated optimal sample sizes have smaller standard error under purely

sequential procedure as compared to two-stage procedure.

After the first stage, the purely sequential procedure requires observations from additional

m′ clusters every time the condition in the stopping rule is not met. Thus, there is a need to

fix the value of m′. In some situations, it is as easy to collect observations from more than

one cluster as it is to collect observations from a single cluster at every stage. So, as per

convenience, the value of m′ should be accordingly decided based on economic considerations.

In fact, the purely sequential procedure is not affected by the choice of m′, the larger the

value of m′, the lesser will be the number of stages.

We believe, this is the first article to make developments on having sufficiently narrow

confidence interval of economic inequality index based on complex household survey. Devel-

oping a survey design that takes economic factors into account was a very important issue

that was raised by Bhattacharya (2005). We feel that our work is a first step to address

that important issue in the sense of achieving a sufficiently narrow confidence interval. This

work can be extended to include simultaneous confidence intervals or confidence ellipsoids

for several economic indices that are can be obtained from sample surveys.
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CHAPTER 5

SUMMARY AND CONCLUSION

5.1 Summary

The reporting of effect sizes and their respective confidence intervals in research have gain

more traction in recent years within statistics and related research fields. However, re-

searchers do not report their confidence intervals due to intervals being embarrassingly wide.

A wider confidence interval indicates more uncertainty as compared to a narrower one with

all things being equal. Thus, researchers prefer narrower confidence intervals. A narrower

confidence interval can be achieved by increasing the sample size. Thus the interval becomes

more accurate given the same confidence level. To achieve sufficiently narrow confidence

intervals, sample size calculation approaches could be used to obtain the necessary sample

size. However, these methods also required the knowledge of population parameters or the

distribution of the data which are unknown in advance.

To resolve the drawbacks of these approaches, we developed a purely sequential procedure

to construct sufficiently narrow confidence intervals at a pre-specified level in a distribution-

free environment. We do this for effect sizes that are ratios of linear combinations of param-

eters. Some of these effect sizes include standardized mean difference, coefficient of variation

and simple linear regression slope. We also developed purely sequential procedures to con-

struct sufficiently narrow confidence intervals for different measures of correlation including

multiple R2. We proposed both purely sequential and two-stage procedures for obtaining

a narrow confidence interval for Gini index under a complex survey. Unlike fixed sample

size procedure, in all our procedure, we defined stopping rules that indicate whether further

sampling is required or should be terminated after sampling at a pilot stage. Moreover, apart

from multiple R2 where data were assumed to be normally distributed due to our limitation

to available literature, we did not make distributional assumptions for the effect sizes or the

Gini index. Instead, we relied on their asymptotic distributions.
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Using theorems and simulation studies, we showed that our multi-stage sampling proce-

dures achieved the desired narrow width and at that same time are asymptotically consistent

and efficient. That is, they produced confidence intervals whose width did not exceed the

targeted upper bound ω and had 100(1 − α)% coverage probability. More so, the ratio of

their average final sample sizes to their respective optimal sample sizes were close to 1 as

the sample size increased.

5.2 Concluding Remarks

This work adds to and expands the existing literature on sequential methodology. It is the

first work to provide a general framework for a general class of effect size and different types of

correlation measures under purely sequential procedure. It is also the first work to develop

both the purely sequential and the two-stage procedures for estimating and constructing

bounded-width confidence interval width for the Gini index under complex household survey

design. Even though other types of multi-stage sampling were not discussed, the procedures

developed in this work can easily be extended to include their respective two-stage, three-

stage, and other procedures that were mentioned in Section 1.3.

5.3 Future Work

An area of this work that needs future consideration is the choice of m′, that is, the size of

the additional sample added at each stage after the pilot stage. Currently in this work, m′

is chosen arbitrarily without considering the rate of convergence of the procedure. A smaller

choice of m′ may lead to longer purely sequential procedure while a larger choice may lead

to oversampling. Thus, formulating m′ to be a function that depends on data sampled could

be one way to solve this problem. Also, another way is to design m′ as a function of the

sampling cost.
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Furthermore, as discussed in this work, the choice of estimators for the unknown popula-

tion parameters could affect the estimation of the final sample size. In this regard, bootstrap

could be employed in the multi-stage sampling, especially the second stage of the two-stage

procedure, to improve the estimation of the final sample size. This in effect can guaran-

tee that oversampling is reduced, confidence intervals are robust, and final sample sizes are

asymptotically efficient.

Sampling and estimation cost which are vital part of any research work were not con-

sidered in procedures developed in this work. This is another extension of this work that

could be considered for future research, especially in the case of Gini index estimation where

national budgets are mostly assigned to the surveys.

Last but not least, it is our hope to provide, in the near future, an R package for imple-

menting all the procedures that have been developed and discussed in this manuscript, as

well as other sequential procedures not mentioned here, to aid in their implementation and

application.
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APPENDIX A

CENTRAL LIMIT THEOREM FOR SOME EFFECT SIZES

A.1 Standardized Mean Difference

Theorem A.1. If the parent distribution for both groups is such that the corresponding fourth

moments exists, then the stopping rule (2.32) adapted for the standardized mean difference

yields the asymptotic consistency property, that is:

√
n (dn − δ)

L−→ N(0, ξ2),

where

ξ2 = 2− (µ1 − µ2)(µ13 − µ23)

σ4
+

(µ1 − µ2)2

4σ6

(
µ14 + µ24

4
− σ4

2

)
Proof. The asymptotic joint distribution of the sample mean difference X̄1n − X̄2n and the

pooled sample variance s2
pn =

√
1
2
(s2

1n + s2
2n) is given as

√
n

 (X̄1n − X̄2n)− (µ1 − µ2)

s2
pn − σ2

 L−→ N2 (0,Σ)

where

Σ =

 2σ2 1
2
(µ13 − µ23)

1
2
(µ13 − µ23) 1

4
(µ14 + µ24 − 2σ2)

 .
Applying the delta method, we have the asymptotic distribution of the sample standardized

mean difference dn = (X̄1n − X̄2n)/spn, an estimator of the population standardized mean

difference δ = (µ1 − µ2)/σ, to be

√
N (dN − δ)

L−→ N(0, ξ2),

where

ξ2 = 2− (µ1 − µ2)(µ13 − µ23)

σ4
+

(µ1 − µ2)2

4σ6

(
µ14 + µ24

4
− σ4

2

)
and µij is the jth central moment of distribution Fi, for i = 1, 2. �
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An estimator based on U-statistics for the population third central moment, that is,

µi3 = E[Xi − µi]3 and population fourth central moment µi4 = E[Xi − µi]4 are

µ̂i3n =
n

(n− 1)(n− 2)

n∑
k=1

(Xik − X̄in)3, (A.1)

and

µ̂i4n =
n2

(n− 1)(n− 2)(n− 3)

n∑
k=1

(Xik − X̄in)4 − 2n− 3

(n− 1)(n− 2)(n− 3)

n∑
k=1

X4
ik +

8n− 12

(n− 1)(n− 2)(n− 3)
X̄in

n∑
k=1

X3
ik −

6n− 9

n(n− 1)(n− 2)(n− 3)

(
n∑
k=1

X2
ik

)2

, (A.2)

respectively.

Theorem A.2. If the parent distribution for both groups is such that the corresponding fourth

moments exist, then the stopping rule (2.32) adapted for the standardized mean difference

yields:

Part 1: P

(
dN −

zα/2ξ̂N√
N

< δ < dN +
zα/2ξ̂N√

N

)
→ 1− α as N →∞.

Part 2:
2zα/2ξ̂N√

N
≤ ω (A.3)

Proof. This can be proved by using the proof of Theorem 2.2. �

A.2 Coefficient of Variation

Using Heffernan (1997) or Abbasi et al. (2010), an estimator based on U-statistics for the

population third central moment, that is, µ3 = E[X − µ]3 and population fourth central

moment µ4 = E[X − µ]4 are respectively given by:

µ̂3n =
n

(n− 1)(n− 2)

n∑
i=1

(Xi − X̄n)3, (A.4)
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and

µ̂4n =
n2

(n− 1)(n− 2)(n− 3)

n∑
i=1

(Xi − X̄n)4 − 2n− 3

(n− 1)(n− 2)(n− 3)

n∑
i=1

X4
i +

8n− 12

(n− 1)(n− 2)(n− 3)
X̄n

n∑
i=1

X3
i −

6n− 9

n(n− 1)(n− 2)(n− 3)

(
n∑
i=1

X2
i

)2

. (A.5)

The quantity µ̂3n is a U-statistic of degree 3 and is an unbiased and consistent estimate of

µ3, whereas µ̂4n is a U-statistic of degree 4 and is an unbiased and consistent estimators of

µ4.

Theorem A.3. If the parent distribution F is such that the fourth moment exists, then the

stopping rule (2.32) adapted for the coefficient of variation yields:

Part 1: P

(
kN −

zα/2ξ̂N√
N

< κ < kN +
zα/2ξ̂N√

N

)
→ 1− α as N →∞.

Part 2:
2zα/2ξ̂N√

N
≤ ω (A.6)

Proof. This can be proved by using the proof of Theorem 2.2. �

A.3 Regression Coefficient: Simple Linear Model

Theorem A.4. Suppose for i, j = 0, 1, 2, 3, 4, µij = E[(X − µx)i(Y − µY )j], σX , σXY and

σY all exist. Then, the central limit theorem corresponding to the regression coefficient β1 of

the simple linear model is

√
n (b1n − β1)

L−→ N(0, ξ2), (A.7)

where

ξ2 =
µ22

σ4
X

− 2σXY µ31

σ6
X

+
σ2
XY µ40

σ8
X

.
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Proof. For proving a central limit theorem for the regression coefficient in simple linear

model, defined in Equation (2.53), we first find the asymptotic joint distribution of the

sample covariance sXY n and the sample variance of X, s2
Xn. This is given by

√
n
(
sXY n − σXY , s2

Xn − σ2
X

)′ L−→ N2 (0,Σ) (A.8)

where the asymptotic variance of sample correlation coefficient is given by

Σ =

 µ22 − σ2
XY µ31 − σXY σ2

X

µ31 − σXY σ2
X µ40 − σ4

X

 . (A.9)

An application of the delta method will give the central limit theorem for β as in Equa-

tion (A.7). �

A consistent estimator for ξ2 is given by

ξ̂2
n = max

{
V 2
n , n

−3
}
, (A.10)

where,

V 2
n =

µ̂22n

s4
Xn

− 2sXY nµ̂31n

s6
Xn

+
s2
XY nµ̂40n

s8
Xn

. (A.11)

Theorem A.5. If the error distribution is such that E[ξ̂2
n] exist, then the stopping rule (2.32)

adapted for the regression coefficient β1 yields:

Part 1: P

(
b1N −

zα/2ξ̂N√
N

< β1 < b1N +
zα/2ξ̂N√

N

)
→ 1− α as N →∞.

Part 2:
2zα/2ξ̂N√

N
≤ ω (A.12)

Proof. This can be proved by using the proof of Theorem 2.2. �
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APPENDIX B

CONSISTENT ESTIMATOR FOR ASYMPTOTIC VARIANCE OF

PEARSON’S CORRELATION COEFFICIENT

Using Lee (1990), a consistent estimator of ξ2
ρ is ξ̂2

ρn = max
{
V 2
ρn, n

−3
}

, where V 2
ρn is

V 2
ρn =

r2
n

4

(
µ̂40n

S4
Xn

+
µ̂04n

S4
Y n

+
2µ̂22n

S2
XnS

2
Y n

+
4µ̂22n

SXY n
− 4µ̂31n

SXY nS2
Xn

− 4µ̂13n

S2
XY nS

2
Y n

)
. (B.1)

µ̂40n and µ̂04n are the respective unbiased estimators of the fourth central moment of X (µ40)

and Y (µ04) which are given respectively as:

µ̂40n =
n2

(n− 1)(n− 2)(n− 3)

n∑
i=1

(Xi − X̄n)4 − 2n− 3

(n− 1)(n− 2)(n− 3)

n∑
i=1

X4
i +

8n− 12

(n− 1)(n− 2)(n− 3)
X̄n

n∑
i=1

X3
i −

6n− 9

n(n− 1)(n− 2)(n− 3)

(
n∑
i=1

X2
i

)2

(B.2)

and

µ̂04n =
n2

(n− 1)(n− 2)(n− 3)

n∑
i=1

(Yi − Ȳn)4 − 2n− 3

(n− 1)(n− 2)(n− 3)

n∑
i=1

Y 4
i +

8n− 12

(n− 1)(n− 2)(n− 3)
Ȳn

n∑
i=1

Y 3
i −

6n− 9

n(n− 1)(n− 2)(n− 3)

(
n∑
i=1

Y 2
i

)2

. (B.3)

According to Cook (1951) and Fisher (1930), the remaining estimators can be defined as

µ̂13n = k13 + 3k02k11 (B.4)

µ̂22n = k22 + k20k02 + 2k2
11 (B.5)

µ̂31n = k31 + 3k20k11 (B.6)
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where

Wpq =
∑
i

Xp
i Y

q
i

k02 =
1

n− 1

(
W02 −

1

n
W 2

01

)
= S2

Y n

k11 =
1

n− 1

(
W11 −

1

n
W10W01

)
= SXY n

k13 =
n

(n− 1)(n− 2)(n− 3)

{
(n+ 1)W13 −

n+ 1

n
W03W10 −

3(n− 1)

n
W11W02

−3(n+ 1)

n
W12W01 +

6

n
W11W

2
01 +

6

n
W02W01W10 −

6

n2
W10W

3
01

}
k20 =

1

n− 1

(
W20 −

1

n
W 2

10

)
= S2

Xn

k22 =
n

(n− 1)(n− 2)(n− 3)

{
(n+ 1)W22 −

2(n+ 1)

n
W21W01 −

n+ 1

n
W12W10

−n− 1

n
W20W02 −

2(n− 1)

n
W 2

11 +
8

n
W11W01W10 +

2

n
W02W

2
10 +

2

n
W20W

2
01 −

6

n2
W 2

10W
2
01

}
k31 =

n

(n− 1)(n− 2)(n− 3)

{
(n+ 1)W31 −

n+ 1

n
W30W01 −

3(n− 1)

n
W11W20

−3(n+ 1)

n
W21W10 +

6

n
W11W

2
10 +

6

n
W20W10W01 −

6

n2
W01W

3
10

}
(B.7)
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APPENDIX C

SIMULATION RESULTS FOR CONFIDENCE INTERVAL FOR THE GINI

INDEX

C.1 Pure Sequential Procedure

Table C.1. Simulation results for purely sequential procedure (α = 10%, ω = 0.02, m′ = 1)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 273.3894 0.9020 0.0155 0.0000
(scale=20000, shape=5) (41.2829) (0.0042) (0.0012) (0.0000)

Lognormal 0.3089 441.5382 0.8944 0.0184 0.0000
(mean = 2.185, sd = 0.562) (49.2216) (0.0043) (0.0003) (0.0000)

Gamma 0.3308 403.3110 0.8976 0.0182 0.0000
(shape = 2.649, rate = 0.84) (25.5081) (0.0043) (0.0002) (0.0000)

Table C.2. Simulation results for purely sequential procedure (α = 5%, ω = 0.02, m′ = 1)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 354.2580 0.9484 0.0163 0.0000
(scale=20000, shape=5) (55.5185) (0.0031) (0.0010) (0.0000)

Lognormal 0.3089 602.5182 0.9448 0.0188 0.0000
(mean = 2.185, sd = 0.562) (61.3798) (0.0032) (0.0002) (0.0000)

Gamma 0.3308 546.0798 0.9514 0.0186 0.0000
(shape = 2.649, rate = 0.84) (32.2857) (0.0030) (0.0002) (0.0000)
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Table C.3. Simulation results for purely sequential procedure (α = 10%, ω = 0.025, m′ = 1)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 199.3122 0.8952 0.0181 0.0000
(scale=20000, shape=5) (29.6017) (0.0043) (0.0019) (0.0000)

Lognormal 0.3089 300.9054 0.8942 0.0223 0.0000
(mean = 2.185, sd = 0.562) (36.0870) (0.0043) (0.0006) (0.0000)

Gamma 0.3308 278.0940 0.8940 0.0219 0.0000
(shape = 2.649, rate = 0.84) (18.6691) (0.0044) (0.0004) (0.0000)

Table C.4. Simulation results for purely sequential procedure (α = 5%, ω = 0.025, m′ = 1)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 253.7610 0.9486 0.0191 0.0000
(scale=20000, shape=5) (38.1767) (0.0031) (0.0016) (0.0000)

Lognormal 0.3089 404.7870 0.9408 0.0229 0.0000
(mean = 2.185, sd = 0.562) (46.0777) (0.0033) (0.0005) (0.0000)

Gamma 0.3308 370.9584 0.9484 0.0226 0.0000
(shape = 2.649, rate = 0.84) (23.9455) (0.0031) (0.0003) (0.0000)

Table C.5. Simulation results for purely sequential procedure (α = 10%, ω = 0.02, m′ = 10)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 288.3120 0.9020 0.0152 0.0000
(scale = 20000, shape = 5) (43.1982) (0.0042) (0.0012) (0.0000)

Lognormal 0.3089 456.3240 0.8976 0.0182 0.0000
(mean = 2.185, sd = 0.562) (49.8155) (0.0043) (0.0004) (0.0000)

Gamma 0.3308 417.1740 0.8950 0.0179 0.0000
(shape = 2.649, rate = 0.84) (26.9280) (0.0043) (0.0003) (0.0000)
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Table C.6. Simulation results for purely sequential procedure (α = 5%, ω = 0.02, m′ = 10)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 368.7300 0.9466 0.0160 0.0000
(scale = 20000, shape = 5) (55.9612) (0.0032) (0.0010) (0.0000)

Lognormal 0.3089 615.7560 0.9450 0.0186 0.0000
(mean = 2.185, sd = 0.562) (61.8045) (0.0032) (0.0003) (0.0000)

Gamma 0.3308 558.6360 0.9516 0.0184 0.0000
(shape = 2.649, rate = 0.84) (33.2710) (0.0030) (0.0002) (0.0000)

Table C.7. Simulation results for purely sequential procedure (α = 10%, ω = 0.025, m′ = 10)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 213.9060 0.8996 0.0175 0.0000
(scale = 20000, shape = 5) (30.8347) (0.0043) (0.0018) (0.0000)

Lognormal 0.3089 315.6540 0.8984 0.0218 0.0000
(mean = 2.185, sd = 0.562) (37.4517) (0.0043) (0.0007) (0.0000)

Gamma 0.3308 291.9000 0.8924 0.0213 0.0000
(shape = 2.649, rate = 0.84) (20.6367) (0.0044) (0.0006) (0.0000)

Table C.8. Simulation results for purely sequential procedure (α = 5%, ω = 0.025, m′ = 10)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 268.6380 0.9488 0.0187 0.0000
(scale = 20000, shape = 5) (39.6310) (0.0031) (0.0016) (0.0000)

Lognormal 0.3089 418.0260 0.9400 0.0226 0.0000
(mean = 2.185, sd = 0.562) (47.0880) (0.0034) (0.0005) (0.0000)

Gamma 0.3308 383.4900 0.9478 0.0222 0.0000
(shape = 2.649, rate = 0.84) (25.1437) (0.0031) (0.0004) (0.0000)
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Table C.9. Simulation results for purely sequential procedure (α = 10%, ω = 0.02, m′ = 20)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 305.1360 0.8984 0.0148 0.0000
(scale=20000, shape=5) (45.3104) (0.0043) (0.0013) (0.0000)

Lognormal 0.3089 471.8640 0.8980 0.0179 0.0000
(mean = 2.185, sd = 0.562) (52.4671) (0.0043) (0.0005) (0.0000)

Gamma 0.3308 432.0480 0.8954 0.0176 0.0000
(shape = 2.649, rate = 0.84) (31.5691) (0.0043) 0.0004 (0.0000)

Table C.10. Simulation results for purely sequential procedure (α = 5%, ω = 0.02, m′ = 20)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 384.3720 0.9484 0.0157 0.0000
(scale=20000, shape=5) (59.4090) (0.0031) (0.0011) (0.0000)

Lognormal 0.3089 631.2240 0.9442 0.0184 0.0000
(mean = 2.185, sd = 0.562) (63.9250) (0.0032) (0.0004) (0.0000)

Gamma 0.3308 573.5520 0.9516 0.0182 0.0000
(shape = 2.649, rate = 0.84) (36.2823) (0.0030) (0.0003) (0.0000)

Table C.11. Simulation results for purely sequential procedure (α = 10%, ω = 0.025,
m′ = 20)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 226.2000 0.8984 0.0171 0.0000
(scale=20000, shape=5) (37.8894) (0.0043) (0.0017) (0.0000)

Lognormal 0.3089 331.5240 0.9010 0.0213 0.0000
(mean = 2.185, sd = 0.562) (39.7815) (0.0042) (0.0009) (0.0000)

Gamma 0.3308 308.9280 0.8940 0.0208 0.0000
(shape = 2.649, rate = 0.84) (20.8713) (0.0044) (0.0008) (0.0000)
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Table C.12. Simulation results for purely sequential procedure (α = 5%, ω = 0.025, m′ = 20)

Distribution G N̄ p w̄N p(wN > ω)
(sN) (sp) (swN ) se(p(wN > ω))

Pareto 0.1111 285.5040 0.9480 0.0182 0.0000
(scale=20000, shape=5) (42.7734) (0.0031) (0.0017) (0.0000)

Lognormal 0.3089 433.5600 0.9412 0.0222 0.0000
(mean = 2.185, sd = 0.562) (49.7480) (0.0033) (0.0007) (0.0000)

Gamma 0.3308 398.8440 0.9530 0.0218 0.0000
(shape = 2.649, rate = 0.84) (27.4951) (0.0030) (0.0006) (0.0000)

C.2 Two-Stage Procedure

Table C.13. Simulation results for two-stage procedure (α = 10%, ω = 0.02)

Distribution G Q̄ p w̄Q p(wQ > ω)
(sQ) (sp) (swQ) se(p(wQ > ω))

Pareto 0.1111 342.0360 0.8996 0.0141 0.0068
(scale = 20000, shape = 5) (86.7413) (0.0043) (0.0017) (0.0012)

Lognormal 0.3089 546.3234 0.8968 0.0167 0.0140
(mean = 2.185, sd = 0.562) (97.0866) (0.0043) (0.0013) (0.0017)

Gamma 0.3308 499.1904 0.9034 0.0164 0.0000
(shape = 2.649, rate = 0.84) (47.0225) (0.0042) (0.0007) (0.0000)

Table C.14. Simulation results for two-stage procedure (α = 5%, ω = 0.02)

Distribution G Q̄ p w̄Q p(wQ > ω)
(sQ) (sp) (swQ) se(p(wQ > ω))

Pareto 0.1111 447.1206 0.9474 0.0148 0.0112
(scale = 20000, shape = 5) (111.9348) (0.0032) (0.0017) (0.0056)

Lognormal 0.3089 737.7720 0.9432 0.0172 0.0190
(mean = 2.185, sd = 0.562) (126.1189) (0.0033) (0.0012) (0.0019)

Gamma 0.3308 670.0152 0.9512 0.0169 0.0002
(shape = 2.649, rate = 0.84) (60.5521) (0.0030) (0.0007) (0.0020)
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Table C.15. Simulation results for two-stage procedure (α = 10%, ω = 0.025)

Distribution G Q̄ p w̄Q p(wQ > ω)
(sQ) (sp) (swQ) se(p(wQ > ω))

Pareto 0.1111 246.1068 0.8980 0.0165 0.0052
(scale = 20000, shape = 5) (63.1499) (0.0043) (0.0021) (0.0010)

Lognormal 0.3089 375.8364 0.8968 0.0201 0.0098
(mean = 2.185, sd = 0.562) (69.7613) (0.0043) (0.0016) (0.0014)

Gamma 0.3308 345.9612 0.8990 0.0197 0.0000
(shape = 2.649, rate = 0.84) (33.8431) (0.0043) (0.0008) (0.0000)

Table C.16. Simulation results for two-stage procedure (α = 5%, ω = 0.025)

Distribution G Q̄ p w̄Q p(wQ > ω)
(sQ) (sp) (swQ) se(p(wQ > ω))

Pareto 0.1111 316.3188 0.9476 0.0174 0.0068
(scale = 20000, shape = 5) (79.7332) (0.0032) (0.0021) (0.0012)

Lognormal 0.3089 502.0482 0.9454 0.0208 0.0120
(mean = 2.185, sd = 0.562) (90.2360) (0.0032) (0.0016) (0.0015)

Gamma 0.3308 459.2406 0.9512 0.0204 0.0000
(shape = 2.649, rate = 0.84) (43.7022) (0.0030) (0.0009) (0.0000)
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The Indian Journal of Statistics , 511–530.

Mahalanobis, P. C. (1967). The sample census of the area under jute in bengal in 1940.
Sankhya: The Indian Journal of Statistics, Series B (1960-2002) 29 (1/2), 81–182.

Maxwell, S. E., K. Kelley, and J. R. Rausch (2008). Sample size planning for statistical
power and accuracy in parameter estimation. Annual Review of Psychology 59, 537–563.

Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance tests
by confidence intervals and quantify accuracy of risky numerical predictions. In L. L.
Harlow, S. A. Mulaik, and J. H. Steiger (Eds.), What if there where no significance tests?,
pp. 393–426. Mahwah, NJ: Lawrence Erlbaum Associates.

139



Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psy-
chological Bulletin 105, 156–166.

Moinester, M. and R. Gottfried (2014). Sample size estimation for correlations with pre-
specified confidence interval. The Quantitative Methods for Psychology 10 (2), 124–130.

Morrison, D. E. and R. E. Henkel (1970). The Significance Test Controversy. New Brunswick,
CT: Aldine Transaction.

Mukhopadhyay, N. (1976). Fixed-width confidence intervals for the mean using a three-stage
procedure. Unpublished report .

Mukhopadhyay, N. (1980). A consistent and asymptotically efficient two-stage procedure to
construct fixed width confidence intervals for the mean. Metrika 27 (1), 281–284.

Mukhopadhyay, N. (1996, jan). An alternative formulation of accelerated sequential proce-
dures with applications to parametric and nonparametric estimation. Sequential Analy-
sis 15 (4), 253–269.

Mukhopadhyay, N. and B. Chattopadhyay (2012). A tribute to Frank Anscombe and random
central limit theorem from 1952. Sequential Analysis 31 (3), 265–277.

Mukhopadhyay, N. and B. Chattopadhyay (2013). On a new interpretation of the sample
variance. Statistical Papers , 827–837.

Mukhopadhyay, N. and B. Chattopadhyay (2014). A note on the construction of a sample
variance. Sri Lankan Journal of Applied Statistics 15 (1), 71–80.

Mukhopadhyay, N. and S. Datta (1994). Replicated piecewise multistage sampling with
applications. Sequential Analysis 13 (3), 253–276.

Mukhopadhyay, N. and B. M. de Silva (1998). Multistage partial piecewise sampling and its
applications. Sequential Analysis 17 (1), 63–90.

Mukhopadhyay, N. and B. M. De Silva (2009). Sequential methods and their applications.
Boca Raton, FL: CRC Press.

Mukhopadhyay, N. and P. K. Sen (1993). Replicated piecewise stopping numbers and se-
quential analysis. Sequential Analysis 12 (2), 179–197.

Mukhopadhyay, N. and T. K. S. Solanky (1991, jan). Second order properties of accelerated
stopping times with applications in sequential estimation. Sequential Analysis 10 (1-2),
99–123.

Murphy, K. R. and B. Myors (2004). Statistical Power Analysis: A Simple and General
Model for Traditional and Modern Hypothesis Tests (2nd ed.). Mahwah, NJ: Erlbaum.

140



Nadarajah, S. and A. K. Gupta (2006). Some bivariate gamma distributions. Applied
Mathematics Letters 19 (8), 767 – 774.

National Sample Survey Organization (2007). Note on estimation procedure of NSS 64th
round. http://catalog.ihsn.org/index.php/catalog/1906/download/35538.

O’Brien, R. G. and J. Castelloe (2007). Sample-size analysis for traditional hypothesis
testing: Concepts and issues. In A. Dmitrienko, C. Chuang-Stein, and R. D’Agostino
(Eds.), Pharmaceutical statistics using SAS: A practical guide, pp. 237–272. SAS Institute.

Olkin, I. and J. D. Finn (1995). Correlations redux. Psychological Bulletin 118 (1), 155 –
164.

Pornprasertmanit, S. and W. J. Schneider (2014). Accuracy in parameter estimation in
cluster randomized designs. Psychological Methods 19 (3), 356–379.

Preacher, K. J. and K. Kelley (2011). Effect size measures for mediation models: Quantitative
strategies for communicating indirect effects. Psychological Methods 16 (2), 93–115.

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Ransom, M. R. and J. S. Cramer (1983). Income distribution functions with disturbances.
European Economic Review 22 (3), 363–372.

Ray, W. D. (1957). Sequential confidence intervals for the mean of a normal population
with unknown variance. Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 19 (1), 133–143.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bull. Amer. Math.
Soc. 58 (5), 527–535.

Schwarz, B. (2004). The paradox of choice: Why more is less, Volume 6. Harper Collins,
New York.

Sen, P. K. (1981). Sequential nonparametrics: Invariance principles and statistical inference.
Wiley New York.

Sen, P. K. and M. Ghosh (1981). Sequential point estimation of estimable parameters based
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