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The genome-wide association studies (GWAS) aim to identify genetic variants, typically

single nucleotide polymorphisms (SNPs), associated with a disease/trait. A commonly used

analytic strategy in GWAS is to test for association with one single SNP at a time. However,

such a strategy lacks power to detect associations that are caused by joint effects of multiple

variants, each with a modest effect of its own. Pathway analysis jointly tests the combined

effects of all SNPs in all genes belonging to a molecular pathway. This analysis is usually

more powerful than single-SNP analyses for detecting joint effects of variants in a pathway.

Moreover, due to biological functionality of pathways, a significant result lends itself more

easily to interpretation.

In this dissertation, we develop a Bayesian hierarchical model that fully models the natural

three-level hierarchy inherent in pathway structure, namely SNP—gene—pathway, unlike

most other methods that use ad hoc ways of combining such information. We model the effects

at each level conditional on the effects of the levels preceding them within the generalized

linear model framework. This joint modeling allows detection of not only the associated

vi



pathways but also testing for association with genes and SNPs within significant pathways and

significant genes in a hierarchical manner, which can be useful for follow-up studies. To deal

with the high dimensionality of such a unified model, we regularize the regression coefficients

through an appropriate choice of priors. We fit the model using a combination of Iteratively

Weighted Least Squares and Expectation-Maximization algorithms to estimate the posterior

modes and their standard errors. The inference is carried out in a hierarchical manner from

pathways to genes to SNPs. Hierarchical false discovery rate (FDR) is used for multiplicity

adjustment of the entire inference procedure. We also explore the utility of effective number

of parameters proposed in the Bayesian literature in our context of multiplicity adjustment

using the hierarchical FDR.

To study the proposed approach, we conduct simulations with samples generated under

realistic linkage disequilibrium patterns obtained from the HapMap project. We find that our

method has higher power than some standard approaches in several settings for identifying

pathways that have multiple modest-sized variants. Moreover, it can also pinpoint associated

genes once a pathway is implicated, a feature unavailable in other methods. We also find

that the use of the effective number of parameters can boost the power to detect associated

genes and helps in distinguishing them from the null genes. We apply the proposed method

to two GWAS datasets on breast and renal cancer.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In the last decade, the genome-wide association studies (GWAS) have identified many SNPs

associated with complex common diseases. However, for most diseases, the implicated SNPs

explain only a small fraction of the genetic risk (Manolio et al., 2009). One of the reasons

for limited success in unraveling the genetic basis stems from the fact that the commonly

used analytic approach in GWAS tests for association with each SNP individually. Such

an approach has little power for uncovering associations that are caused by joint effect of

multiple variants, each with a modest effect of its own. There is growing evidence that many

SNPs and genes within a biologically defined pathway or gene-sets (defined based on criteria

not using the data under study) function in tandem to produce a larger effect on a complex

trait compared to their own individual effects (Cantor et al., 2010; Fridley and Biernacka,

2011). In such situations, jointly analyzing the combined effects of all variants/genes in a

pathway will typically lead to more power (Menashe et al., 2010; Torkamani et al., 2008;

Ramanan et al., 2012). Further, due to biological relevance and functionality of pathways,

significant results are much more amenable to interpretation and further validation. An

example of SDC1 pathway is shown in Figure 1.1.

Recognizing this potential of pathway analysis, several statistical methods have been

proposed in the last several years. Some early ones are adaptations of the methods used in

gene expression studies. Adaptations are needed because there are many SNPs within a gene
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Figure 1.1. Example of SDC1 pathway structure (Menashe et al., 2010). Ellipses represent
genes and blue diamonds represent the cellular processes induced by the pathway.

and information over all the SNPs needs to be combined to get a gene-level measure for each

gene. The different adaptations combine SNP- and gene-level information in different ways

(Wang et al., 2007; Holmans et al., 2009; Purcell et al., 2007; Holden et al., 2008; O’Dushlaine

et al., 2009; Zhang et al., 2010; Weng et al., 2011; Yu et al., 2009; Chen et al., 2010). In

general, the pathway analysis approaches can be broadly classified based on the type of null

hypothesis — competitive or self-contained — depending on whether the pathway of interest

is compared with other pathways in the genome (competitive) or a non-associated, i.e., null

pathway (self-contained). One issue with competitive tests is that any significance has to be

interpreted with respect to the comparison (reference) sets. Also, the resulting p-values across

different pathways are dependent, complicating the multiplicity adjustment issue. Moreover,

a non-significant result does not provide direct evidence that the SNP/genes in the pathway

are not associated with the trait (Cantor et al., 2010; Fridley and Biernacka, 2011; Schaid
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et al., 2012). For these reasons, self-contained pathway analysis may be preferable and is also

the focus of this dissertation.

Pathway analysis methods can also be classified based on whether they take the input

data of SNP p-values or raw genotype data. An obvious advantage of the former is their

simplicity and portability across studies, nonetheless, there are some limitations as well

(Cantor et al., 2010; Fridley and Biernacka, 2011; Schaid et al., 2012). For example, they

cannot appropriately account for dependency among SNPs and genes, and use ad hoc

corrections. Further, there is the issue of determining an appropriate cutoff for declaring

SNPs to be significant. Besides, the multiplicity adjustment for different genes/pathways of

different sizes is not straightforward. Some methods that use p-values for calculating the test

statistics, in fact, require raw genotype data to assess significance using permutations (Wang

et al., 2007; Purcell et al., 2007). The permutation method is also used by several methods

that directly use the raw genotype data for modeling the joint effects of SNPs and/or genes

(Schaid et al., 2012; Chen et al., 2010; Shahbaba et al., 2012).

In our view, a formal modeling approach using raw genotype data is a much more cohesive

way of synthesizing information from various SNPs and genes in a pathway compared to

ad hoc ways of combining these pieces of information to define a pathway level measure.

Some methods have been proposed that utilize a formal model such as a linear model or a

generalized linear model (GLM) at the SNP or gene level (Chen et al., 2010; Schaid et al.,

2012; Shahbaba et al., 2012; Silver et al., 2012). However, to define a pathway level measure,

the different pieces of information are again somehow combined in a piecemeal manner. In

particular, what is lacking is a formal modeling approach to cohesively unify and synthesize

3



the information across the three levels of hierarchy, namely, SNP–gene–pathway. In this

regard, a hierarchical modeling approach can exploit the dependency within and between the

different levels, and has the potential to fully utilize all the information, which would lead to

greater power (Wang et al., 2010). Although few hierarchical approaches have been proposed,

they are either somewhat piecemeal in nature, e.g., involve separate and independent models

for different levels of hierarchy, or integrate out gene/SNP effects, implying that they do

not fully utilize the joint distribution of all components in a pathway (Wang et al., 2011;

Evangelou et al., 2014; Shahbaba et al., 2012).

Further, these approaches typically model a test statistic (such as Cochran-Armitage

trend statistic) at the SNP or gene level rather than directly modeling the genotype data.

Another approach models the mean of SNP-level test statistics such as Cochran-Armitage

trend statistics as a linear mixed effects model with fixed pathway effects and random genes

effects (Wang et al., 2011), and tests for significance of the pathway effect. There is a variation

of this idea in the Bayesian framework that assumes a prior distribution for the SNP-level

statistics and obtains a similar gene-level summary measure, which is then further assumed

to follow a prior distribution and a pathway-level measure is obtained (Shahbaba et al., 2012).

That is, two separate models are used for SNP- and gene-level measures that are not directly

connected through a joint hierarchical model.

Also, most pathway analysis methods test for one pathway at a time, and require

multiplicity adjustment correction when multiple pathways are tested. Joint consideration

of multiple pathways through a single model and analysis can be potentially more powerful

and efficient. Further, many methods are applicable to either a quantitative trait or a binary

4



(case/control) response, and cannot handle both (or more) types of responses in a unified

manner. Finally, there is no pathway analysis approach that allows for a formal inference on

component genes and SNPs once a pathway is found to be significant.

1.2 Organization of the Dissertation

In the remaining of this chapter, we first describe some commonly used standard pathway

analysis methods and then provide an overview of our proposed method. Then we discuss

some key statistical concepts and tools to be used in this dissertation.

In Chapter 2, we describe the proposed method in details. In Chapter 3, we carry out

simulation studies to study the properties of the proposed methodology and compare it

with three commonly used methods for pathway analysis, namely, ALIGATOR, PLINK, and

GRASS (Purcell et al., 2007; Holmans et al., 2009; Chen et al., 2010). In Chapter 4, we

analyze two GWAS datasets on breast and renal cancers obtained from dbGaP (database

of Genotypes and Phenotypes, 2018). The dissertation ends with Chapter 5 providing a

discussion and directions for future work.

1.3 Existing Pathway Association Methods

1.3.1 Gene set Ridge regression in ASsociation Studies (GRASS)

GRASS (Chen et al., 2010) is a self-contained pathway analysis method and utilizes raw SNP

genotype data. It is based on penalized logistic regression and the covariates are eigenSNPs

extracted using principle component analysis as follows. The genotype matrix of SNPs in a
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gene is first standardized, denoted as Z. The principle components of Z are obtained and

referred to as eigenSNPs. Suppose there are a total of m SNPs in a gene. Each eigenSNP that

explains at least 1/m proportion of variation and together with similar eigenSNPs explain

around 95% of the total variance are chosen as covariates for model fitting.

GRASS adds group ridge penalty term to the likelihood function for estimation of β

coefficients of eigenSNPs with the object function to be minimized being Sλ(β) = −l(β) +

λ
∑G

g=1wg(‖β̂g‖1)2, where G is the total number of genes, wg is weight for gth gene, l is the

log-likelihood, and ‖β̂g‖ is as defined below. This penalty term is a combination of L2 norm

at the gene level and L1 norm at the SNP level. In particular, it is a weighted sum of squares

to combine summary statistics at the gene level and sum of absolute values of estimated β

coefficients of eigenSNPs within each gene.

Summary statistic for gene g is calculated as ‖β̂g‖ =
√
β̂2
g1 + β̂2

g1 + · · ·+ β̂2
gkg

, where

β̂g1, · · · , β̂gkg represent estimated coefficients for eigenSNPs in gth gene. By standardiz-

ing ‖β̂g‖ to βg = ‖β̂g‖−µ̂g
σ̂g

using mean µ̂g and standard deviation σ̂g of the null dis-

tribution, whose estimation is explained later, pathway level statistic is calculated as

T obs =
√

(β1)2 + (β2)2 + · · ·+ (βG)2 using standardized gene level statistics (β1, · · · ,βG) for

the G genes in this pathway.

The null distribution is estimated using a permutation method. In particular, by permuting

case/control status once, a ‖β̂bg‖ value for gene g and permutation b is calculated and this

permutation procedure is repeated B times. Then µ̂g and σ̂g are calculated as the mean

and standard deviation of ‖β̂bg‖, b = 1, · · · , B values obtained for gene g. These are used in

previously mentioned formula of βg to standardize ‖β̂g‖ (calculated from observed data) as
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well as ‖β̂bg‖ (calculated from bth permuted sample) for b = 1, · · · , B. At bth permutation, the

pathway test statistic is calculated as T b =
√

(β̂b1)2 + (β̂b2)2 + · · ·+ (β̂bG)2 for b = 1, · · · , B.

The percentage of times that T b, b = 1, · · · , B, exceeds T obs serves as empirical p-value for

testing statistical significance of the pathway.

1.3.2 PLINK set-based test

PLINK (Purcell et al., 2007) set-based test can be used for any set of SNPs, e.g., for SNPs in

a given pathway. It tests for the self-contained null hypothesis and utilizes raw SNP genotype

data. It applies two levels of filtering on the group of SNPs under study. The first level of

filtering is applied to get an independent set of SNPs whose pairwise r2 statistics are below

a certain threshold (default is 0.5). The second level of filtering retains only those SNPs

from the independent set whose p-values of single-SNP analysis (e.g, obtained using χ2 test

statistic) are less than a certain value (default is 0.05). With the final set of selected SNPs,

the average value of the single-SNP test statistics is used as the set-based test statistic.

By permuting the phenotypes, the null distribution of the set-based test statistic is

estimated. The percentage of times that the set-based test statistics calculated from the

permuted samples exceeds the observed set-based test statistic is the empirical p-value for

statistical inference.

1.3.3 Association LIst Go AnnoTatOR (ALIGATOR)

ALIGATOR (Holmans et al., 2009) tests for competitive null hypothesis, unlike PLINK or

GRASS. ALIGATOR considers a SNP to be significant if its p-value from the chi-square test
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is less than a certain threshold (default is 0.05) and a gene is considered as significant if it

contains at least one significant SNP. Thus, ALIGATOR only requires summary statistics (or

p-values) of SNPs for testing association. The original ALIGATOR method was proposed

based on Gene Ontology (GO) annotation database although the method can be applied to

any database of pathways. GO classifies genes into different categories. Once ALIGATOR

identifies all significant genes, the corresponding GO categories are noted. The total number

of significant genes found in a particular GO category is the test statistic for this category. A

gene is counted only once regardless of how many significant SNPs it contains.

The significance of the test statistic is obtained in the following manner. A replicate

sample is created by randomly selecting with replacement the same number of SNPs as in

the original sample. As the p-values of all SNPs are available from the original sample,

the total number of significant genes in each GO category can be found for the replicated

sample. By repeating this process 5000 times, a category-specific p-value is assessed by the

number of times among all the replicate samples that this category contains a larger number

of significant genes than the observed test statistic for the category.

To perform pathway analysis using database other than GO, a pathway can be viewed as

a GO category within which genes are grouped by their biological functionality and statistical

analysis can be carried out using the procedure described above.

1.3.4 Hierarchical Generalized Linear Mixed Model

Similar to ALIGATOR, this method by (Wang et al., 2011) only requires summary statistics

on SNPs as input data. It models log of the Cochran-Armitage trend test statistic yij
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for SNP j in gene i using a mixed model. In particular, yij ∼ χ2
λij

. The model has a

fixed effect β and a random gene effect ui. Then for each SNP j in gene i, the mixed

model is log(λij) = ηij = β + ui i = 1, · · · , g; j = 1, · · · , si for all g genes. Further,

u = (u1, · · · , ug) ∼ N(0, G), where G is gene by gene covariance matrix and β is the mean

of pathway effect. Under the null hypothesis of no association, β = 0 and log(λij) is 0 as

E(ui) = 0. Under H0, a standardized estimate of β, i.e., β̂/SE(β̂) follows t distribution with

d.f. = 1 and its asymptotic p-value indicates the strength of the pathway association.

As an alternative way of calculating pathway significance instead of relying on its asymp-

totic p-value, the authors suggest converting the t-statistic tp of each pathway to a standardized

z-score sp in the following way: For pth pathway, its z-score zp corresponding to the p-value

for t-statistic tp can be obtained as Φ−1(Fd(tp)), where Fd and Φ are the cumulative density

functions of tp and N(0, 1) distributions. Then subtracting both the median of all zp’s

(denoted as m) as well the location parameter (δ) from each of the z-score and then dividing

by the scale parameter (σ) would give the standardized z-score sp as sp = zp−m−δ
σ

. The

p-value of sp is calculated as pp = 1−Φ(sp) and it can then be used as an alternative p-value

for testing statistical significance.

The authors also consider the issue of overlapping SNPs, i.e., when a SNP is mapped

to multiple genes. A value of 1 is assigned in the design matrix whenever a SNP under

study is mapped to a certain gene and 0 otherwise. To be more specific, let us suppose

the SNP j is mapped to both gene m and gene n, then the model for SNP j is written as

log(λj) = β + µm + µn. Reflecting this in the design matrix, the cells corresponding to (SNP
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j, gene m) and (SNP j, gene n) will both be set equal to 1 to indicate membership of SNP j

to both genes.

1.3.5 Adaptive Rank Truncated Product (ARTP)

ARTP (Yu et al., 2009) is a gene-based pathway analysis approach that combines gene-level

association evidence through an adaptive extension of rank truncated product (RTP) method

(Dudbridge and Koeleman, 2003). It tests for competitive null hypothesis and utilizes SNP

p-values, similar to ALIGATOR. The p-value for each SNP is obtained through the Cochran-

Armitage trend test and then ordered from the smallest to the largest. The RTP method

uses the first K (a fixed value) smallest p-values at a given truncation point. However, in the

ARTP method, a truncation point-specific K value for multiple candidate truncation points

are considered.

More specifically, in RTP, single SNP p-values using Cochran-Armitage trend test are

first obtained as p1, · · · , pL for a total of L SNPs and ordered as p(1), · · · , p(L). With a

given truncation point K, the RTP test statistic is W (K) =
∏K

i=1 p(i) as the product

of the first K smallest single-SNP p-values. Pathway association is tested using p-value

of W (K) computed using permutation method and is denoted by ŝ(K). ARTP differs

from RTP in the way that it proposes J different truncation points K1, · · · , KJ and uses

W (K1), · · · ,W (KJ) for all J truncations to formulate a test statistic. Suppose ŝ(Kj) is the

estimated p-value for W (Kj), 1 ≤ j ≤ J . The pathway test statistic used in ARTP method

is MinP = min ŝ(Kj) for 1 ≤ j ≤ J .
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To estimate the null distribution of the pathway test statistic MinP , case/control status

are permuted in the following way. For bth permuted sample at jth truncation point, W (b)
j =∏Kj

i=1 p
(b)
(i) is obtained and its p-value is defined as ŝ(b)

j =
∑B
b∗=0 I(W

(b∗)
j ≤W (b)

j )

B+1
, i.e., the percentage

of times the Wj values in B permuted samples and the original sample (i.e., in B+ 1 samples)

do not exceed the current W (b)
j . Then pathway test statistic MinP (b) at bth permutation is

MinP (b) = min{ŝ(b)
1 · · · , ŝ

(b)
J }. The adjusted empirical p-value of the pathway is then defined

by
∑B
b=0 I(MinP (b)≤MinP (0))

B+1
, where MinP (0) is the value of MinP calculated using the observed

data.

1.3.6 Sequence-Kernel-Association Test — ARTP (SKAT—ARTP)

In the ARTP method mentioned previously, pathway significance is summarized using SNP

level p-values. SKAT-ARTP (Yan et al., 2014) is an approach for two-stage pathway analysis

that combines SNP information using a popular rare variant test statistic used in SKAT (Wu

et al., 2011) to get gene level summary statistics and then uses an extended ARTP statistic to

obtain the pathway p-value. It tests self-contained null hypothesis and the model is flexible

to deal with both binary and continuous traits.

In the first stage, a weighted GLM is fitted using phenotype y as response and genotypes of

SNPs in a gene as input data to obtain gene-level test statistics as follows. SNP j is assigned

a random effect γj , which follows N(0, τwj). The choice of wj will be discussed later. Testing

the null hypothesis of γj = 0 is the same as testing H0 : τ = 0 using a variance-component

test statistic Q = (y − µ̂)′GWG′(y − µ̂) for each gene. Here µ̂ is the average of estimated

response, G is genotype matrix, and W is the diagonal weight matrix for the set of SNPs
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mapped to the gene to be tested. P-value of the gene-level statistic Q can be calculated using

Davies method (Davies, 1980) and the above process can be applied to all genes in a pathway

of interest to obtain the gene-level p-values.

Several ways of assigning SNP-specific weights are proposed, e.g., √wj = Beta(MAFj ; a1;

a2), where a1 and a2 are constants and MAFj is the minor allele frequency of SNP j, or √wj

= 1
0.1+pvalue of SNPj

to assign higher weight to variants with strong signals, or as proposed in

this paper: √wj = 0.5*Beta(MAFj; 1; 25)+ 1.25
0.1+pvalue of SNPj

.

In the second stage, the ARTP method (Yu et al., 2009) is employed to test pathway

significance. Let p(0)
1 , · · · , p(0)

L be p-values for the L genes in a pathway using observed

data and p(b)
1 , · · · , p(b)

L be the ones obtained from bth permuted sample for b = 1, · · · , B by

permuting case/control status. Given each truncation point 1 ≤ j ≤ J , V (b)
j =

∏Kj
i=1 p

(b)
(i) is

calculated as the product of first Kj smallest gene p-values from bth permuted sample and

ŝ
(b)
j =

∑B
b∗=0 I(V

(b∗)
j ≤V (b)

j )

B+1
is the empirical p-value for V (b)

j by comparing it to Vj’s calculated

from both the observed data and B permuted samples.

Pathway-level test statistic for bth permuted sample is defined as MinP (b) = min ŝ
(b)
j for

1 ≤ j ≤ J and the adjusted empirical pvalue of pathway is then defined by
∑B
b=0 I(MinP (b)≤MinP (0))

B+1
.

1.3.7 Bayesian Gene-Set Analysis using SNP data (BGSAsnp)

BGSAsnp (Shahbaba et al., 2012) only requires SNP level test statistics, in particular, Cochran-

Armitage trend test statistics. Let Tj1, · · · , Tjmj be the unsquared Cochran-Armitage trend

test statistics for the mj SNPs in gene j. A hierarchical Bayesian structure is assigned

as Tji ∼ N(0, η2
j ) for i = 1, · · · ,mj, η

2
j ∼ Inv-χ2(κ, ψ2). With T = (Tj1, · · · , Tjmj) given,
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η2
j |T , κ, ψ2 ∼ Inv-χ2(κ + mj,

κψ2+
∑i=mj
i=1 T 2

ji

κ+mj
) with mean E(η2

j |T , κ, ψ2) =
κψ2+

∑mj
i=1 T

2
ji

κ+mj−2
for κ +

mj > 2. Then the summary statistic for gene j is Zj = sign(Tj(1))E(η2
j |T , κ, ψ2), where

Tj(1) = min(Tj1, · · · , Tjmj).

Borrowing the same idea of constructing hierarchical priors to gene level statistic Z =

(Z1, · · · , Zg), it is assumed that gene level test statistic Zsj for gene j in pathway s follows

N(0, τ 2
s ). Rather than using only a single scaled-inv-χ2 as prior for τ 2

s , the authors propose a

mixture distribution to distinguish between relevant and irrelavant pathways. In particular,

a mixture of two scaled-inv-χ2 distributions, F0 and F1, is assigned as prior for τ 2
s . F0 =

Inv− χ2(ν, φ2
0) is assumed to be the distribution of τ 2

s for the irrelevant group of pathways

and F1 = Inv− χ2(ν, φ2
0 + φ2

1) is assumed for the relevant group. More specifically,

τ 2
s |λ, φ0, φ1 ∼ (1− λ)Inv− χ2(ν, φ2

0) + λInv− χ2(ν, φ2
0 + φ2

1),

φ2
0, φ

2
1 ∼ Gamma(aφ, bφ),

ν ∼ Gamma(aφ, bφ), and

λ ∼ Beta(aλ, bλ).

For inference on pathway level significance, a measurement similar to p-value is proposed.

It is given by ps = E[P (T ≥ νφ0/τ
2
s |Z)] with T ∼ χ2

ν and νφ0/τ
2
s ∼ χ2

ν . A smaller value of

ps indicates stronger statistical significance against the null hypothesis based on the following

justification. For an irrelevant pathway, P (T ≥ νφ0/τ
2
s |Z) would have a uniform distribution

and ps would be close to 0.5 while for a relevant pathway ps would be small. This is because

for a relevent pathway, τ 2
s will tend to be large as it is sampled from Inv-χ2(ν, φ2

0 + φ2
1) with
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a larger scale parameter φ2
0 + φ2

1 compared to τ 2
s sampled from Inv-χ2(ν, φ2

0) for an irrelevant

pathway.

1.4 Overview of the Proposed Method

Our goal is to develop a hierarchical model for pathway analysis that addresses the limitations

of the existing approaches described above. The proposed model fully utilizes the SNP—

gene—pathway hierarchy by modeling the effects at each level conditional on the effects

of the preceding level within the generalized linear model (GLM) framework. For such a

hierarchical modeling framework to work in practice, two challenges must be overcome. The

first is dealing with the high dimensionality of the data. For example, the KEGG (Kyoto

Encyclopedia of Genes and Genomes) database (KEGG database, 2018) has 298 pathways

that have genes ranging in number from 10 to 300 (a commonly applied filter for choosing

pathways from a database). These contain a total of about 6,689 unique genes (with ensemble

gene IDs). In a typical GWAS data, these genes may further contain a total of about 124,000

SNPs within ±10 KB upstream and downstream of each gene. To handle this, we work

within a Bayesian framework as it naturally allows modeling of a multi-level hierarchy as

well as regularization of effects through an appropriate choice of priors. Also, the multiple

testing burden can be less severe in a Bayesian hierarchical modeling compared to classical

setting (Gelman et al., 2012).

The second challenge is controlling the computational burden. To this end, we forgo the

full posterior simulation, which requires computationally intensive methods such as Markov

chain Monte Carlo (MCMC) algorithms in favor of estimation of appropriate conditional
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posterior modes. This involves a combination of Iteratively Weighted Least Squares (IWLS)

and Expectation Maximization (EM) algorithms that are computationally efficient and

scalable.

The inference based on the proposed unified model is carried out in a hierarchical

manner from pathways to genes to SNPs. We use hierarchical false discovery rate (FDR) for

multiplicity adjustment of the entire inference procedure. We also explore hierarchical FDR

in conjunction with effective number of parameters (Spiegelhalter et al., 2002). This idea has

not been used in pathway analysis or in genetic association studies in general (to the best of

our knowledge) but can potentially increase the power of detecting associations.

1.5 Preliminaries

This section will briefly go over the statistical concepts, algorithms, and models used in this

dissertation.

1.5.1 Generalized Linear Model Fitted with IWLS Algorithm

In many regression problems, the distribution of the dependent variable Y is not necessarily

normal, but a member of the exponential family of distributions. The generalized linear

model (GLM) is a family of models, which does not require normality and constant variance

assumptions (McCullagh and Nelder, 1989).

Suppose Yi follows a probability distribution from the exponential family with E(Yi) = µi

for i = 1, · · · , n. The mean response µi links Yi to the linear form X ′iβ = β0 + β1x1i + · · ·+
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βp−1xp−1,i through a link function ηi = g(µi) = X ′iβ, where g can be a linear or non-linear

function. Variance of Yi must be a function of xi’s through the mean response µi only.

For fitting a GLM, an iteratively weighted least squares method can be used. It involves

constructing pseudo response zi and pseudo variance σ2
zi

so that the likelihood function

p(yi|X ′iβ) can be approximated by N(zi|X ′iβ, σ2
zi

) (Gelman et al., 2014), and weighted least

squares can be applied in a iterative fashion. Then, in the regression model, the dependent

variable is z instead of Y and the weights are functions of the fitted values µ̂. Pseudo response

z and pseudo weight W can be calculated in the following manner:

z = η + (y − µ)
dη

dµ

and weights

W = V −1

(
dµ

dη

)2

,

where V is variance function. Here z is a linearized form of the link function applied to the

data using the Taylor series expansion to the first order, i.e.,

g(y) ≈ g(µ) + (y − µ)g′(µ)

= η + (y − µ)
dη

dµ
.

To estimate the β coefficients, weighted least squares method is used iteratively using the

pseudo data as the response and the pseudo weights as the weights.

• Step 0: Assign initial values for β.

16



• Step 1: Use current estimates of β to generate z and W .

• Step 2: Regress z on X with the diagonal weight matrix W using weighted least squares

to get the current estimates of β̂ = (XTWX)−1XTWz and V̂β = (XTWX)−1.

• Repeat Steps 1-2 until a convergence criteria is met, which can be the absolute or

relative change in the parameter estimates being less than a certain value.

1.5.2 Expectation-Maximization (EM) Algorithm

EM algorithm is an iterative procedure for finding maximum-likelihood estimators of parame-

ters when the observed data likelihood is difficult to maximize, however, with some “missing

data” filled in, the complete data likelihood is easy to maximize. It makes a clear distinction

between the observed, incomplete data Y and the unobserved, complete data X consisting

of Y and missing data, say Z, i.e., X = (Y, Z) (Lange, 2003). X (and hence Z) should be

chosen in such a manner that the complete data likelihood is trivial to maximize.

The algorithm starts with an initial guess of the parameters and iterates between E-step

and M-step until convergence. The E-step involves taking expectation of the log-likelihood

function of the complete data with respect to the missing data with the missing data replaced

by its current estimate. The M-step finds the parameter estimates that maximize the expected

log-likelihood obtained in the E-step (Casella and Berger, 2002).

When adopted in Bayesian analysis, let φ be the unknown parameter and γ be the missing

data. The EM algorithm can be used to find the mode of the marginal posterior distribution

p(φ|y), averaged over the parameter γ. It is helpful in the situation when it is hard to
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maximize p(φ|y) directly but easy to work with p(γ|φ, y) and p(φ|γ, y). The steps in the EM

algorithm to find estimate of φ are as follows (Gelman et al., 2014):

1. Start with an initial guess, φ0.

2. At tth iteration:

In E-step:

Take expectation of the log posterior density function with respect to γ using the conditional

posterior distribution of γ as

Eold(log p(γ, φ|y)) =

∫
(log p(γ, φ|y))p(γ|φ, y)dγ,

where φold = φt−1, the estimate of φ at (t− 1)th iteration.

In M-step:

Maximize Eold(log p(γ, φ|y) obtained in the E-step to find φt.

3. Iterate between the E- and M-steps to get estimated value of φ at convergence.

1.5.3 Bayesian Hierarchical Priors as Additional Data Points

Consider the GLM described in Section 1.5.1. Under the Bayesian set-up, t prior distributions

can be assigned to the regression coefficients to provide minimal prior information to constrain

the coefficients in a reasonable range (Gelman et al., 2008). The t prior can be represented

hierarchically as a mixture of normal distribution and scaled inverse chi-square distribution.

More specifically, J independent normal priors are assigned to β = (β1, · · · , βJ) as βj ∼

N(µj, σ
2
j ) and σ2

j ∼ Inv-χ2(ν, s2) for j = 1, · · · , J .

With β coefficients following normal distribution given σ2, the prior information can

be added to classical linear regression model as “additional data” and correspondingly an
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augmented X∗ can be formed (Gelman et al., 2008, 2014). With the augmented X∗, the

parameters are identifiable and thus the resulting β estimate is well defined and has finite

variance, even if the original data are high-dimensional and have collinearity or separation

that would result in nonidentifiability of the classical maximum likelihood estimate (Gelman

et al., 2014).

The vector µ = (µ1, · · · , µJ) is added to pseudo response vector z = (z1, · · · , zn) in-

troduced in Section 1.5.1 for n observations to define an augmented response vector z∗

as

z∗ =

 z

µ

 .

Similarly, a J × J identity matrix IJ is appended to the design matrix X to obtain the

augmented design matrix X∗ as

X∗(n+J)×J =

 Xn×J

IJ×J

 .

and an augmented diagonal weight matrixw∗ is formed asw∗ = diag(σ2
z1
, · · · , σ2

zn , σ
2
1, · · · , σ2

J).

With z∗,X∗ and w∗, β coefficients can be estimated using IWLS as described in Section 1.5.1.

For the case when σ2
1, · · · , σ2

J are unknown variables with given prior distributions, β

coefficients could be estimated by using a combination of IWLS and EM algorithms with the

latter one used for estimating σ2
1, · · · , σ2

J by treating β as the missing data (Gelman et al.,

2014).
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1.5.4 Hierarchical False Discovery Rate (FDR)

Hierarchical FDR (Yekutieli, 2008) has been proposed for multiplicity adjustment in situations

where the hypotheses are tested in a hierarchical manner. It involves adopting the Benjamini-

Hochberg (BH) procedure (Benjamini and Hochberg, 1995) to each family of hypotheses under

each node in the hierarchical tree. As an example in the context of pathway analysis, consider

two pathways and genes and SNPs nested hierarchically in Figure 1.2. The hierarchical

testing involves starting with the family of two pathways at the top level and testing them.

Suppose pathway 1 is found to be significant (colored green) while pathway 2 is not (colored

red). For the latter, the testing stops at that point. For pathway 1, we continue to testing

genes 1 to 3 as a family of hypotheses and then go further down to a family of SNPs if

the gene that they belong to is found to be significant. The SNPs at the bottom level are

considered outer-nodes in the tree.

The following steps describe how BH procedure is applied to a family of m hypotheses:

• Step 1: Let P(1) ≤ . . . P(m) denote the set of ordered p-values corresponding to the m

hypotheses being tested.

• Step 2: Let r = max
i
{P(i) ≤ i · q/m} for a given q-value.

• Step 3: If r > 0, then reject the r hypotheses corresponding to P(1), . . . , P(r).

The q-value is used for inference to control the FDR.

Three versions of hierarchical FDR boundaries are proposed depending on which levels

of the hierarchy are of interest for testing. These are full-tree FDR, level-restricted FDR,
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Figure 1.2. Example of hierarchical testing procedure using a two-pathway structure. Nodes
in green are found to be significant and thus the nodes nested below them (if any) are tested
subsequently.

and outer-nodes FDR. Full-tree FDR focuses on the entire set of discoveries in the tree at

all levels. Level restricted FDR is helpful when researchers are interested in discoveries at a

particular level of the tree. Outer-nodes FDR is applicable when discoveries found at the

outer most leaves of the tree are of interest only.

The upper bound for the full-tree FDR is q · δ∗ · 2 and for the outer-nodes FDR, it is

L·q ·δ∗ ·2 for a tree with L levels. There is no theoretical boundary available for level-restricted

FDR. However, (Yekutieli, 2008) provides a universal approximate FDR boundary that is

applicable to all three types of FDR and guarantees that the actual FDR of the entire

hierarchical inference procedure is less than:

q · δ∗ · observed no. of discoveries+ observed no. of families tested

observed no. of discoveries+ 1
,

where δ∗ can be usually chosen as 1.
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1.5.5 Effective Number of Parameters

When testing a family of p hypotheses simultaneously, the total number of hypotheses, i.e., p,

is commonly used in many multiplicity adjustment methods (e.g. Bonferroni method, FDR).

However, under the Bayesian setting, the number of independent hypotheses could be less

than p because of the possible dependency across the parameters, especially in hierarchical

models (Gelman et al., 2012). Using effective number of parameters (Spiegelhalter et al.,

2002) instead of total number of hypotheses, it could potentially account for this dependency

and increase power.

The effective number of parameters (pD) is defined as the difference between the posterior

mean of the deviance and the deviance at the posterior means of the parameters of interest.

To be more specific, pD = Eψ|y[−2 log{π(y|ψ)}] + 2 log[π{y|ψ̄}] for a family of hypotheses

where ψ is the set of parameters under study, ψ̄ is the posterior mean of ψ, and π(y|ψ) is the

distribution of y at ψ.

For the case of general hierarchical normal model (Lindley and Smith, 1972)

y ∼ N(A1θ, C1), θ ∼ N(A2φ,C2),

it is shown that pD = p− tr(C−1
2 V ), where V −1 = AT1C

−1
1 A1 + C−1

2 . Here, 0 ≤ pD ≤ p and

tr(C−1
2 V ) measures the “shrinkage” of the posterior estimates towards the prior means.
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CHAPTER 2

METHODS

Let yi represent the phenotype response and xi represent the vector of genotypes at the

SNPs belonging to one or more pathways under consideration for subject i = 1, . . . , n. We

assume a GLM for the responses y = (y1, . . . , yn) from n independent subjects. We focus on

y being binary responses, e.g., case-control status. However, being in the GLM framework,

the proposed methodology can also be applied to y belonging to an exponential family. We

model µi = E(yi) through a link function ηi = g(µi) = β0 + x′iβ, where β0 is the intercept

and β is the vector of the SNP effects. For fitting a classical GLM, an IWLS algorithm is

employed to find MLEs of the coefficient vector β by fitting ỹ = β0 + x′iβ with diagonal

weight matrix Wy, where ỹ = (ỹ1, . . . , ỹn) is a vector of pseudo responses. We will use a

similar IWLS approach to estimate the posterior mode of β and other model parameters to

be introduced in the following.

2.1 Hierarchical Prior Structure

Suppose there are P pathways under investigation and the pth pathway has Jp genes and

the jth gene in the pth pathway has Sjp SNPs, j = 1, . . . , Jp, p = 1, . . . , P . Thus, there are

a total of J =
∑P

p=1 Jp genes and S =
∑P

p=1

∑Jp
j=1 Sjp SNPs. Denote the effects of SNPs

by βsjp (referred as β in above), the effects of genes by ξjp, and the effects of pathways by

θp, s = 1, . . . , Sjp, j = 1, . . . , Jp, p = 1, . . . , P . The vectors of the effects of SNPs, genes,

and pathways are denoted by β, ξ, and θ, respectively. To build the three-level SNP–gene–

pathway hierarchy, we model the SNP effects βsjp conditional on the gene effects ξjp, the
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gene effects are modeled conditional on the pathway effects θp, and the effects are assumed

to be conditionally independent. Specifically, the hierarchical structure of the model is as

follows: for s = 1, . . . , Sjp, j = 1, . . . , Jp, p = 1, . . . , P ,

SNP level (conditional on gene): βsjp|ξjp, σ2
βjp

ind∼ N(ξjp, σ
2
βjp),

Gene level (conditional on pathway): ξjp|θp, σ2
ξp

ind∼ N(θp, σ
2
ξp), σ

2
βjp|s2

βp
ind∼ Inv-χ2(νβ, s

2
βp),

Pathway level: θp|σ2
θ

ind∼ N(0, σ2
θ), σ

2
ξp

ind∼ Inv-χ2(νξ, s
2
ξ), s

2
βp

ind∼ Gamma(a, b), σ2
θ ∼ Inv-χ2(νθ, s

2
θ).

(2.1)

Thus, the SNPs within the jth gene of the pth pathway share a common mean ξjp and

variance σ2
βjp. These parameters are assigned priors using hyper-parameters θp, σ2

ξp, and s2
p to

capture the shared pathway effect. The hyper-parameters are further assigned priors. This

hierarchy allows accounting for dependence among SNPs within a gene and among genes

within a pathway. Note that SNP (gene) effects are conditionally independent given the mean

and variance parameters that they share. Unconditionally, they are dependent due to the

hierarchical structure.

For β0, we assign a N(0, σ2
0) prior with σ2

0 ∼ Inv-χ2(ν0, s
2
0), which corresponds to a t

marginal distribution with center zero, scale s0, and degrees of freedom ν0. By the same

token, the above hierarchical specification for the effects can be viewed as a marginal t

distribution with mean at each level being zero. This feature serves to regularize the effects

of SNPs, genes, and pathways. The amount of shrinkage at each level is controlled by the

scale parameters and their hyper-priors. Let β∗ = (β0,β, ξ,θ) and φ = (σ2
0,σ

2
β,σ

2
ξ , σ

2
θ , s

2
β)

respectively denote the vectors of mean related and scale related parameters in model (2.1).
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Here β, ξ, θ, σ2
β, σ2

ξ , and s2
β are themselves vectors consisting of relevant elements given in

model (2.1). For example, σ2
β is the vector of prior variances σ2

βjp of the SNP effects. The

hyper-parameters (s2
0, s

2
ξ , s

2
θ, ν0, νβ, νξ, νθ, a, b) will be assigned known values.

Next, in Bayesian analysis, the prior information on regression coefficients can be treated

as additional “data” points, and is combined with the likelihood by augmenting the response

vector and the design matrix by adding extra rows and columns (Gelman et al., 2014). The

model for the augmented data can be written as a linear model Y∗ = X∗β∗ + ε∗, where Y∗

consists of the pseudo data vector ỹ (the one used in fitting a classical GLM) augmented

with a vector 0 of length 1 + S + J + P . That is, Y∗ = (ỹ1, . . . , ỹn, 0, · · · , 0). The matrix

X∗ has n+ 1 + S + J + P rows and 1 + S + J + P columns consisting of the usual design

matrix X and additional rows and columns appended to reflect the prior mean at each level.

In particular,

X∗β∗ =



1n×1 Xn×S 0n×J 0n×P

11×1 01×S 01×J 01×P

0S×1 IS×S −Xβ
S×J 0S×P

0J×1 0J×S IJ×J −Xξ
J×P

0P×1 0P×S 0P×J IP×P





β0

βS×1

ξJ×1

θP×1


, (2.2)

where the matrices Xβ and Xξ consist of 0 and 1’s arranged in such a way that when

combined with the elements of the identity matrices in the same row reflects the membership

of each SNP to its gene and each gene to its pathway. The elements of Xβ and Xξ are

derived as follows.
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Assigning normal prior to βsjp ∼ N(ξjp, σ
2
βjp

) for SNP effect is equivalent to the following

model:

0 = βsjp − ξjp + esjp, esjp ∼ N(0, σ2
βjp

), i = 1, . . . , Sjp, j = 1, . . . , Jp, p = 1, . . . , P.

The value 0 on the left side is present in the regression model as response. Meanwhile,

the coefficients 1 for βsjp and -1 for ξjp will show up in the augemented design matrix

corresponding to the gene that the SNP with index sjp belongs to. Similarly, for the gene

effect ξjp ∼ N(θp, σ
2
ξp

) and pathway effect θp ∼ N(0, σ2
θ), the equivalent models are:

0 = ξjp − θp + ejp, ejp ∼ N(0, σ2
ξp), j = 1, . . . , Jp, p = 1, . . . , P.

0 = θp + ep, ep ∼ N(0, σ2
θ), p = 1, . . . , P.

As a result,

Xβ
S×J =



1 0 . . . 0

...
...

...

1 0 . . . 0

0 1 . . . 0

...
...

...

0 1 . . . 0

...
...

...

0 0 . . . 1

...
...

...

0 0 . . . 1




SNPs in Gene 1


SNPs in Gene 2

...
SNPs in Gene J
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and Xξ
J×P =



1 0 . . . 0

...
...

...

1 0 . . . 0

0 1 . . . 0

...
...

...

0 1 . . . 0

...
...

...

0 0 . . . 1

...
...

...

0 0 . . . 1




J1 Genes in Pathway 1


J2 Genes in Pathway 2

...
JP Genes in Pathway P

2.2 Posterior Mode Estimation

The posterior of β∗ conditional on φ can be written as

π(β∗|φ,y∗) ∝ π(y∗|β0,β)π(β0|σ2
0)π(β|ξ,σ2

β)π(ξ|θ,σ2
ξ )π(θ|σ2

θ)

= constant ·

[
n∏
i=1

(
µyii (1− µi)1−yi

)][
(2π)−

1
2 (σ2

0)−
1
2 exp(− β2

0

2σ2
0

)

]

·
∏
p

∏
j

∏
s

{
(2π)−

1
2 (σ2

βjp
)−

1
2 exp(−(βsjp − ξjp)2

2σ2
βjp

)

}

·
∏
p

∏
j

{
(2π)−

1
2 (σ2

ξp)
− 1

2 exp(−(ξjp − θp)2

2σ2
ξp

)

}

·
∏
p

{
(2π)−

1
2 (σ2

θ)
− 1

2 exp(−(θp − 0)2

2σ2
θ

)

}
. (2.3)

As mentioned previously, to maintain scalability of the method while keeping the computa-

tional burden manageable, we forgo a full posterior simulation in favor of finding mode of
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the conditional posterior distribution of β∗ given appropriate values for φ, and use a normal

approximation for this mode to perform inference.

The vector ε∗ is distributed as N(0,W−1), where W = diag{Wy,W0,Wβ,Wξ,Wθ} is a

weight matrix of order n+ 1 + S + J + P . It is derived by equating the Fisher information

matrix to X∗′WX∗ as shown in the following paragraph. Wy is the usual weight matrix

used in fitting classical GLM, W0 = σ−2
0 , and Wβ, Wξ, and Wθ are diagonal matrices with

elements consisting of σ−2
βjp, σ

−2
ξp , and σ−2

θ , respectively. This linear model representation

allows obtaining the approximate mode of π(β∗|φ,y∗) via an IWLS algorithm by fitting a

classical GLM for which the algorithm available in R is state-of-the-art in terms of efficiency

and scalability. The mode is β̂∗(φ) = (X∗′WX∗)−1X∗′WY ∗ with approximate covariance

matrix Σ(φ) = (X∗′WX∗)−1. The mode is “approximate” due to the normal approximation

of the likelihood. It is exact for a normal response.

Denote l = log π(β∗|φ,y∗) where π(β∗|φ,y∗) is defined in equation (2.3). For simplicity

of mathematical exposition, let ξ(r) and σ2
(r) denote the effects of the gene and pathway

that the SNP r belongs to. We could obtain W by equating Fisher information matrix

Iβ∗ = {−E ∂2 log l
∂βrβs

} with X∗′WX∗ in the following calculation:
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∂l

∂βr
=

n∑
i=1

[(
yi
µi

+
yi − 1

1− µi

)
∂µi
∂βr

]
−

2(βr − ξ(r))

2σ2
(r)

∂2l

∂βr∂βs
= 0

∂2l

∂β2
r

=
n∑
i=1

[(
− yi
µ2
i

∂µi
∂βr
− yi − 1

(1− µi)2

(
−∂µi
∂βr

))
∂µi
∂βr

+

(
yi
µi

+
yi − 1

1− µi

)
∂2µi
∂β2

r

]
− 1

σ2
(r)

=
n∑
i=1

[(
− yi
µ2
i

+
yi − 1

(1− µi)2

)(
∂µi
∂βr

)2

+

(
yi
µi

+
yi − 1

1− µi

)
∂2µi
∂β2

r

]
− 1

σ2
(r)

−E ∂2l

∂β2
r

= −
n∑
i=1

[(
− 1

µi
+

1

µi − 1

)(
∂µi
∂ηi

∂ηi
∂βr

)2

+

(
1 + (−1)

)
∂2µi
∂β2

r

]
+

1

σ2
(r)

= −
n∑
i=1

[
1

µi(1− µi)

(
∂µi
∂ηi

)2

x2
ir

]
+

1

σ2
(r)

=
n∑
i=1

[
1

µi(1− µi)

(
µi(1− µi)

)2

x2
ir

]
+

1

σ2
(r)

=
n∑
i=1

[xirµi(1− µi)xir] +
1

σ2
(r)

.

In the above, we used the following:

ηi = log(
µi

1− µi
) = Xiβ

∗ ⇒ ∂ηi
∂βr

=Xir

µi =
eηi

1 + eηi
⇒ ∂µi

∂ηi
=
eηi · (1 + eηi)− eηi · eηi

(1 + eηi)2

=
eηi · [(1 + eηi)− eηi ]

(1 + eηi)2

=
eηi

1 + eηi
· 1

1 + eηi

=
eηi

1 + eηi
· (1− eηi

1 + eηi
)

=µi · (1− µi).
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UsingX∗ introduced in the hierarchical prior setting, we find W∗ = diag{Wy,W0,Wβ,Wξ,Wθ} =

diag{w1, . . . , wn,
1
σ2
0
, 1
σ2
β
, 1
σ2
ξ

1
σ2
θ
}.

2.3 EM Algorithm for Estimating φ

In contrast with classical GLM where the variance parameters are known, the variance

parameters as well as other hyper-parameters in our case are unknown. EM algorithm

is incorporated with classical GLM in order to get estimates of the unknown parameters

(Gelman et al., 2008, 2014). It involves two steps, E-step and M-step, to obtain estimaters

for φ in our hierarchical model. The joint posterior of β∗ and φ can be written as:
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π(β∗,φ|y∗) ∝ π(y∗|β)π(β0|σ2
0)π(σ2

0|ν0, s
2
0)π(β|ξ,σ2

β)π(ξ|θ,σ2
ξ )

· π(σ2
β|νβ, s2

βp)π(θ|σ2
θ)π(σ2

θ |νθ, s2
θ) · π(σ2

ξ |νξ, s2
ξ)π(s2

βp|a, b)

=

[
n∏
i=1

π(yi|X∗β∗)

] [
(2π)−

1
2 (σ2

0)−
1
2 exp

(
− β2

0

2σ2
0

)](s2
0ν0/2)ν0/2

Γ(ν0/2)

exp

(
− ν0s20

2σ2
0

)
(σ2

0)1+ν0/2


·
∏
p

∏
j

∏
s

{
(2π)−

1
2 (σ2

βjp
)−

1
2 exp

(
− (βsjp − ξjp)2

2σ2
βjp

)}

·
∏
p

∏
j

{
(s2
βp
νβ/2)νβ/2

Γ(νβ/2)

exp

(
−

νβs
2
βp

2σ2
βjp

)
(σ2

βjp
)1+νβ/2

}

·
∏
p

∏
j

{
(2π)−

1
2 (σ2

ξp)
− 1

2 exp

(
− (ξjp − θp)2

2σ2
ξp

)}
·
∏
p

{
(s2
ξνξ/2)νξ/2

Γ(νξ/2)

exp

(
− νξs

2
ξ

2σ2
ξp

)
(σ2

ξp
)1+νξ/2

}

·
∏
p

{
(2π)−

1
2 (σ2

θ)
− 1

2 exp

(
− (θp − 0)2

2σ2
θ

)}
·

(s2
θνθ/2)νθ/2

Γ(νθ/2)

exp

(
− νθs

2
θ

2σ2
θ

)
(σ2

θ)
1+νθ/2


·
∏
p

{
ba

Γ(a)
(s2
βp)

a−1 exp(−bs2
βp)

}
· constant.
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Thus, log of joint posterior density (L.P) is:

L.P =− 1

2
ln(σ2

0)− β2
0

2σ2
0

− ν0s
2
0

2σ2
0

−
(

1 +
ν0

2

)
ln(σ2

0)

+
∑
p

∑
j

∑
s

{
− 1

2
ln(σ2

βjp
)− (βsjp − ξjp)2

2σ2
βjp

}
+
∑
p

∑
j

{
− 1

2
ln(σ2

ξp)−
(ξjp − θp)2

2σ2
ξp

}

+
∑
p

∑
j

{
νβ
2

ln(s2
βp)−

νβs
2
βp

2σ2
βjp

− (1 +
νβ
2

) ln(σ2
βjp

)

}

+
∑
p

{
− 1

2
ln(σ2

θ)−
θ2
p

2σ2
θ

}
− νθs

2
θ

2σ2
θ

−
(

1 +
νθ
2

)
ln(σ2

θ)

+
∑
p

{
−
νξs

2
ξ

2σ2
ξp

−
(

1 +
νξ
2

)
ln(σ2

ξp)

}

+
∑
p

{
(a− 1) ln(s2

βp)− bs
2
βp)

}

+ constant.

In E-step:

To obtain the EM estimates, we use normal approximation in order to get expected log of

joint posterior density (E.L.P) (Gelman et al., 2014) as follows:

β0 ∼ N(β̂0, Vβ̂0), βsjp ∼ N(β̂sjp, Vβ̂sjp), ξjp ∼ N(ξ̂jp, Vξ̂jp), and θp ∼ N(θ̂p, Vθ̂p),

where the means and variances of the normal distributions are the estimates obtained using

IWLS as described in Section 2.2.
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Thus,

E(β0 − 0)2 = [E(β0)]2 + V ar(β0) ≈ β̂2
0 + Vβ̂0 ,

E(βsjp − ξjp)2 = [E(βsjp − ξjp)]2 + V ar(βsjp − ξjp)

≈ (β̂sjp − ξ̂jp)2 + Vβ̂sjp + Vξ̂jp − 2Cov(β̂sjp, ξ̂jp),

E(ξjp − θp)2 = [E(ξjp − θp)]2 + V ar(ξjp − θp)

≈ (ξ̂jp − θ̂p)2 + Vξ̂jp + Vθ̂p − 2Cov(ξ̂jp, θ̂p),

and E(θp − 0)2 = [E(θp)]
2 + V ar(θp) ≈ θ̂2

p + Vθ̂p .

As a result, the expected log-joint posterior density that averages over β∗ using the above

approximations can be expressed as:

E.L.P =− 1

2
ln(σ2

0)−
β̂2

0 + Vβ̂0
2σ2

0

− ν0s
2
0

2σ2
0

−
(

1 +
ν0

2

)
ln(σ2

0)

+
∑
p

∑
j

∑
s

{
−1

2
ln(σ2

βjp
)−

(β̂sjp − ξ̂jp)2 + Vβ̂sjp + Vξ̂jp − 2Cov(β̂sjp, ξ̂jp)

2σ2
βjp

}

+
∑
p

∑
j

{
−1

2
ln(σ2

ξp)−
(ξ̂jp − θ̂p)2 + Vξ̂jp + Vθ̂p − 2Cov(ξ̂jp, θ̂p)

2σ2
ξp

}

+
∑
p

{
−
νξs

2
ξ

2σ2
ξp

−
(

1 +
νξ
2

)
ln(σ2

ξp)

}

+
∑
p

∑
j

{
−
νβs

2
βp

2σ2
βjp

−
(

1 +
νβ
2

)
ln(σ2

βjp
)

}

+
∑
p

{
−1

2
ln(σ2

θ)−
θ̂2
p + Vθ̂p
2σ2

θ

}
− νθs

2
θ

2σ2
θ

−
(

1 +
νθ
2

)
ln(σ2

θ)

+
∑
p

∑
j

{νβ
2

ln(s2
βp)
}

+
∑
p

{
(a− 1) ln(s2

βp)− bs
2
βp)
}

+ constant.
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In M-step:

Taking partial derivatives w.r.t σ2
0, σ

2
βjp
, σ2

ξp
, σ2

θ , and s2
βp
, the maximum likelihood estimators

are obtained by solving the following equations:

∂E.L.P
∂σ2

0

=− 1

2

1

σ2
0

−
β̂0

2
+ Vβ̂0 + ν0s

2
0

2

(−1)

(σ2
0)2
− (1 +

ν0

2
)

1

σ2
0

= 0,

∂E.L.P
∂σ2

βjp

=

[
−
(
νβ
2

+ 1 +
Ns in jp

2

)
1

σ2
βjp

−
νβ · σ2

βp
(−1)

2(σ2
βjp

)2

]

+
∑

s in gene jp

(β̂sjp − ξ̂jp)2 + Vβ̂sjp + Vξ̂jp − 2Cov(β̂sjp, ξ̂jp)

2(σ2
βjp

)2
= 0,

∂E.L.P
∂σ2

ξp

=

[
−
(
νξ
2

+ 1 +
Nj in p

2

)
1

σ2
ξp

−
νξs

2
ξ

2

(−1)

(σ2
ξp

)2

]

−
∑

j in pathway p

(ξ̂jp − θ̂p)2 + Vξ̂jp + Vθ̂p − 2Cov(ξ̂jp, θ̂p)

2(σ2
ξp

)2
(−1) = 0,

∂E.L.P
∂σ2

θ

=

[
−
(
νθ
2

+ 1 +
P

2

)
1

σ2
θ

− νθs
2
θ

2

(−1)

(σ2
θ)

2

]
−
∑
p

θ̂2
p + Vθ̂2p
2(σ2

θ)
2

(−1) = 0, and

∂E.L.P
∂s2

βp

=

(
νβ ∗Nj in p

2
+ a− 1

)
1

s2
βp

− b−
∑

j in pathway p

νβ
2σ2

βjp

= 0,

where Ns in jp is the number of SNPs mapped to gene j in pathway p and Nj in p is the

number of genes in pathway p. The estimators obtained as solutions to the above equations
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are:

σ̂2
0 =

β̂2
0 + Vβ̂0 + ν0s

2
0

ν0 + 3
,

σ̂2
βjp

=
νβ · s2

p +
∑

s in gene jp[(β̂sjp − ξ̂jp)2 + Vβ̂sjp + Vξ̂jp − 2Cov(β̂sjp, ξ̂jp)]

νβ + 2 +Ns in jp

,

σ̂2
ξp =

νξ · s2
ξ +

∑
j in pathway p[(ξ̂jp − θ̂p)2 + Vξ̂jp + Vθ̂p − 2Cov(ξ̂jp, θ̂p)]

νξ + 2 +Nj in p

,

σ̂2
θ =

νθ · ŝ2
θ +

∑
p (θ̂2

p + Vθ̂p)

νθ + 2 + P
, and

ŝ2
βp =

νβ ·Nj in p + 2a− 2

2b+
∑

j in pathway p(
νβ
σ̂2
βjp

)
.

2.4 IWLS-EM Algorithm for Model Fitting

Putting the IWLS and EM algorithm steps together provides an algorithm to fit the model (2.1)

as follows:

• Step 0: Assign initial values to β∗ and φ, and use them to obtain y∗ and W.

• Step 1: Update β∗ by performing an IWLS step to find the mode β̂∗(φ̂) of β∗ given

current value of φ

• Step 2: Update φ by performing an EM step to find the mode φ̂(β̂∗) of φ.

Steps 1 and 2 are iterated until convergence to obtain the final estimates of mode β̂∗(φ̂) and

its covariance matrix Σ. Using the normal approximation of mode, we perform classical tests

of association based on Z or t test statistics for the mean effects of pathways, genes, and

SNPs in a hierarchical manner as follows.
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2.5 Inference and Hierarchical FDR

First, all pathways under study are tested for association using H0 : θp = 0 for all p. The

significant pathways are followed up by testing the genes contained therein using H0 : ξjp = 0

for all j in each significant pathway p. Finally, the SNPs within the significant genes are

tested using H0 : βsjp = 0 for all s in each significant gene j within each significant pathway

p.

An important issue with such a large scale testing is multiplicity adjustment. Even though

the issue is relatively less severe in a Bayesian hierarchical modeling compared to classical

setting (Gelman et al., 2012), we address it using hierarchical FDR (Yekutieli, 2008). It

involves applying a level-q standard Benjamini-Hochberg procedure (Benjamini and Hochberg,

1995) to each family of hypotheses tested hierarchically. Here we have three levels of families

— all pathways (level 1 family), all genes within each significant pathway (level 2 family), and

all SNPs within each significant gene (level 3 family). Our interest lies in full tree FDR, i.e.,

the entire set of discoveries. For this, a theoretical upper bound exists and an approximation

is given by the following (δ∗ can be usually set as 1) (Yekutieli, 2008) :

q. δ∗.
observed # of discoveries + observed # of families tested

observed # of discoveries + 1
. (2.4)

So, by adjusting the q-value, we can achieve a desired FDR for the entire inference procedure.

2.6 Effective Number of Parameters

We also explore a variation of this hierarchical FDR procedure by adjusting the thresholds.

The usual Benjamini-Hochberg thresholds are based onmt, the number of hypothesis tests in a
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family Γt, i.e., the number of independent parameters being tested. In a Bayesian hierarchical

model, the number of independent parameters for a family Γt may be less than mt due to the

dependence across the parameters both within and between the various levels of hierarchy.

For such models, the effective number of parameters (pD) is defined as the difference between

the posterior mean of the deviance and the deviance at the posterior means of the parameters

of interest (Spiegelhalter et al., 2002). Specifically, pD = Eψ|y[−2 log{π(y|ψ)}] + 2 log[π{y|ψ̄}]

for a family of hypotheses with the parameters of focus being denoted by ψ, where ψ̄ is

the posterior mean of ψ and π(y|ψ) is the distribution of y at ψ. When the likelihood is

approximated by a normal likelihood (as in GLM framework), pD for the family Γt can be

written approximately as pD ≈ mt− trace(−P ′′ψ̄Vψ̄), where P ′′ψ = ∂2 log π(ψ)/∂ψ2, π(ψ) is the

prior distribution of ψ, V −1
ψ = −∂2 log π(ψ|y)/∂ψ2, and π(ψ|y) is the posterior distribution

of ψ. A key point in the calculation of pD is that it depends on the family of parameters

(tests) ψ under focus, and varies as the focus of testing shifts from one family to another both

within and between the different levels of hierarchy. The specific expression for each type

of family can be derived by considering the general hierarchical normal model framework

(Lindley and Smith, 1972) to be illustrated below. As pD ≤ mt for a family Γt, using pD in

the FDR thresholds instead of mt can potentially increase power. P ′′ψ is a diagonal matrix of

prior variances since the prior distributions are Normal under our hierarchical structure.

2.6.1 Illustration of Calculation of V −1
ψ

To illustrate how V −1
ψ for any family of parameters under study is calculated for a three-level

hierarchy, we consider a simple example consisting of only two pathways with each pathway
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consisting of two genes and each gene having two SNPs. The overall hierarchical structure

can be described in the following way:

Y = A1β + e1, e1 ∼ N(0, C1),

β = A2ξ + e2, e2 ∼ N(0, C2),

ξ = A3θ + e3, e3 ∼ N(0, C3), and

θ ∼ N(0, C4). (2.5)

Here β, ξ, and θ are coefficient vectors previously introduced in the model. A1 is the

genotype matrix while A2 and A3 are matrices reflecting the membership of SNPs to genes and

genes to pathways. A value of 1 in A2 and A3 indicates that the element for the corresponding

row is mapped to the element for the corresponding column, otherwise, it is 0. e1, e2 and e3

are the error terms. C1 is variance matrix of e1 in fitting response Y . C2, C3, and C4 are

prior variance matrices of β, ξ, and θ, respectively.

Let β1,2 = (β1, β2) be the vector of SNP effects in gene 1 and β3,4 = (β3, β4), β5,6 =

(β5, β6), β7,8 = (β7, β8) be vectors of SNP effects in gene 2, gene 3, and gene 4, respectively.

The gene effects are denoted by ξ1, ξ2, ξ3, and ξ4 with the first two for the genes in the first

pathway and the other two for the genes in the second pathway.

Let A1i denote a submatrix of the genotype matrix A1 whose columns correspond to the

SNPs in gene i for i = 1, 2, 3, 4. For example, A11 consists of the columns for SNP1 and SNP2

in gene 1 from A1.

Let A2i denote a submatrix of A2 corresponding to the SNPs in gene i for i = 1, 2, 3, 4. For

example, A21 contains the rows corresponding to SNP 1, SNP 2 and the column corresponding
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to gene 1 from A2. C2i is the corresponding covariance matrices for the group of SNPs under

study. Similarly, A3i denotes a submatrix of A3 corresponding to the genes in pathway i for

i = 1, 2. For example, A31 is obtained by taking the rows of A3 that correspond to gene 1

and gene 2. C3i is the corresponding covariance matrices for the group of genes under study.

With these specifications, we can write:

β1,2 = A21ξ1 + e21, e21 ∼ N(0, C21),

ξ1 = A31θ + e31, e31 ∼ N(0, C31)

β3,4 = A22ξ2 + e22, e22 ∼ N(0, C22),

ξ2 = A32θ + e32, e32 ∼ N(0, C32),

β5,6 = A23ξ3 + e23, e23 ∼ N(0, C23),

ξ3 = A33θ + e33, e33 ∼ N(0, C33),

β7,8 = A24ξ4 + e24, e24 ∼ N(0, C24), and

ξ4 = A34θ + e34, e34 ∼ N(0, C34) (2.6)

When calculating the effective number of parameters at the pathway level, i.e., corre-

sponding to θ, we consider Y from equation (2.5) being writen as:

Y = e1 + A1[e2 + A2(e3 + A3θ)]

= e1 + A1e2 + A1A2e3 + A1A2A3θ.
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As a result,

E(Y |θ) = A1A2A3θ,

V ar(Y |θ) = C1 + A1C2A
T
1 + A1A2C3A

T
2A

T
1 .

The posterior distribution of θ can be expressed as:

π(θ|Y , A1, A2, A3, C1, C2, C3, C4) ∝ π(Y |θ) · π(θ)

∝ exp

{
−1

2

[
(Y − A1A2A3θ)T (C1 + A1C2A

T
1 + A1A2C3A

T
2A

T
1 )−1(Y − A1A2A3θ)

]}
· exp

{
−1

2

[
(θ − 0)TC−1

4 (θ − 0)

]}
∝ exp

{
−1

2

[
θTAT3A

T
2A

T
1 (C1 + A1C2A

T
1 + A1A2C3A

T
2A

T
1 )−1A1A2A3θ + θTC−1

4 θ

]}
∝ exp

{
−1

2
θT
[
C−1

4 + AT3A
T
2A

T
1 (C1 + A1C2A

T
1 + A1A2C3A

T
2A

T
1 )−1A1A2A3

]
θ

}
.

This quadratic term of θ implies that V −1
ψ would be V −1

ψ (θ) = [C−1
4 + AT3A

T
2A

T
1 (C1 +

A1C2A
T
1 +A1A2C3A

T
2A

T
1 )−1A1A2A3]. Similar idea of finding the quadratic terms in posterior

distributions of ξ and β can be applied in order to get effective number of parameters for a

family of genes within a pathway and a family of SNPs within a gene. In particular, at SNP

level with β1,2, and ξ given based on (2.6), we have:

Y |β1,2, ξ = e1 + A11β1,2 + A12β3,4 + A13β5,6 + A14β7,8

= e1 + A11β1,2 + A12(e22 + A22ξ2) + A13(e23 + A23ξ3) + A14(e24 + A24ξ4)

= A11β1,2 + A12A22ξ2 + A13A23ξ3 + A14A24ξ4 + e1 + A12e22 + A13e23 + A14e24,

E(Y |β1,2, ξ) = A11β1,2 + A12A22ξ2 + A13A23ξ3 + A14A24ξ4,

V ar(Y |β1,2, ξ) = C1 + A12C22A
T
12 + A13C23A

T
13 + A14C24A

T
14.

40



The posterior distribution of β1,2 is then written as:

π(β1,2|Y , ξ,β) ∝ π(Y |β1,2, ξ) · π(β1,2|ξ)

∝ exp

{
− 1

2

[
(Y − A11β1,2 − A12A22ξ2 − A13A23ξ3 − A14A24ξ4)

]T
·
(
C1 + A12C22A

T
12 + A13C23A

T
13 + A14C24A

T
14

)−1

·
[
(Y − A11β1,2 − A12A22ξ2 − A13A23ξ3 − A14A24ξ4)

]}
· exp

{
− 1

2
(β1,2 − A21ξ1)TC−1

21 (β1,2 − A21ξ1)

}
.

Collecting the quadratic terms for β1,2, we get

βT1,2A
T
11(C1 + A12C22A

T
12 + A13C23A

T
13 + A14C24A

T
14)−1A11β1,2 + βT1,2C

−1
21 β1,2

and this implies that V −1
ψ term for β1,2 is

V −1
ψ (β1,2) = C−1

21 + AT11(C1 + A12C22A
T
12 + A13C23A

T
13 + A14C24A

T
14)−1A11

= C−1
21 + AT11(C1 + A1C2A

T
1 − A11C21A

T
11)A11.

Similarly the other V −1
ψ elements are:

V −1
ψ (β3,4) = C−1

22 + AT12(C1 + A1C2A
T
1 − A12C22A

T
12)A12,

V −1
ψ (β5,6) = C−1

23 + AT13(C1 + A1C2A
T
1 − A13C23A

T
13)A13,

V −1
ψ (β7,8) = C−1

24 + AT14(C1 + A1C2A
T
1 − A14C24A

T
14)A14.

41



Thus, we can generalize this formula for any family of SNPs of interest to get V −1
ψ for

this specific group as

V −1
ψ = [prior variance matrix for this family of SNPs]−1

+ (subset of design matrix corresponding to this family)T

·
[
C1 + A1C2A

T
1 − (subset of design matrix corresponding to this family)

· (prior variance matrix for this group) · (subset)T
]−1

(subset of design matrix corresponding to this group).
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Finally, for finding the effective number of parameters at gene level, consider gene family

ξ1,2 =

ξ1

ξ2

 as an example. With ξ1,2 and θ given,

Y |ξ1,2,θ = e1 + A11(e21 + A21ξ1) + A12(e22 + A22ξ2) + A13(e23 + A23ξ3)

+ A14(e24 + A24ξ4)

= e1 + A11e21 + A11A21ξ1 + A12e22 + A12A22ξ2 + A13e23

+ A13A23(e33 + A33θ) + A14e24 + A14A24(e34 + A34θ),

E(Y |ξ1,2,θ) = A11A21ξ1 + A12A22ξ2 + A13A23A33θ + A14A24A34θ

=
(
A11 A12

)A21 0

0 A22


ξ1

ξ2

+
(
A13 A14

)A23 0

0 A24


A33 0

0 A34

θ,
V ar(Y |ξ1,2,θ) = C1 + A11C21A

T
11 + A12C22A

T
12 + A13C23A

T
13 + A13A23C33A

T
23A

T
13

+ A14C24A
T
14 + A14A24C34A

T
24A

T
14

= C1 + A11C21A
T
11 + A12C22A

T
12 + A13C23A

T
13 + A14C24A

T
14

+ A13A23C33A
T
23A

T
13 + A14A24C34A

T
24A

T
14

= C1 + A1C2A
T
1 + A13A23C33A

T
23A

T
13 + A14A24C34A

T
24A

T
14

= C1 + A1C2A
T
1 +

(
A13 A14

)A23 0

0 A24


C33 0

0 C34


A23 0

0 A24


T A13

A14

 .
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As a result, the posterior distribution of ξ1,2 is then written as

π(ξ1,2|Y ,θ) ∝ π(Y |ξ1,2,θ) · π(ξ1,2|θ)

∝ exp

{
−1

2
[Y − E(Y |ξ1,2,θ)]T · V ar−1(Y |ξ1,2,θ) · [Y − E(Y |ξ1,2,θ)]

}

· exp

−
1

2


ξ1

ξ2

−
A31 0

0 A32

θ

T C31 0

0 C32


−1 

ξ1

ξ2

−
A31 0

0 A32

θ

 .

Thus, the quadratic term for ξ1,2 is

− 1

2


(
ξ1 ξ2

)C31 0

0 C32


−1ξ1

ξ2




+

(A11 A12

)A21 0

0 A22


ξ1

ξ2



T

· V ar−1(Y |ξ1,2,θ) ·

(A11 A12

)A21 0

0 A22


ξ1

ξ2


 .

This implies that V −1
ψ (ξ1,2) for ξ1,2 is

C31 0

0 C32


−1

+

(A11 A12

)A21 0

0 A22



T

·V ar−1(Y |ξ1,2,θ)·

(A11 A12

)A21 0

0 A22


.

Similarly, V −1
ψ (ξ3,4) for ξ3,4 is

C33 0

0 C34


−1

+

(A13 A14

)A23 0

0 A24



T

·V ar−1·(Y |ξ3,4,θ)·

(A13 A14

)A23 0

0 A24


.
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2.7 Software

The proposed method has been implemented in an R package BHPathway (Version 1.0)

available at http://www.utdallas.edu/~swati.biswas.
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CHAPTER 3

SIMULATION STUDY

We carry out simulations under different settings to investigate the proposed method BHPath-

way and compare with three commonly used pathway association methods, namely PLINK

(Purcell et al., 2007), ALIGATOR (Holmans et al., 2009), and GRASS (Chen et al., 2010),

which are available in an R package named SNPath (SNPath R package, 2018). The different

settings vary in the number, size, and structure of pathways, number of null and non-null

pathways, effect sizes, and minor allele frequencies (MAF) of SNPs, and these are chosen to

allow us investigate various aspects that may affect the results. The settings will be described

in detail in the following sub-sections.

In general, pathways with larger number of causal SNPs are assigned smaller effect sizes

so that the powers of all methods are not close to 100% for small FDRs. In all settings, we

use a logistic regression model to simulate case-control status with causal SNPs and their

regression coefficients depending on the setting. We use various uniform distributions to

generate effects of the causal SNPs. The effects of the null SNPs in non-null pathways as

well as of all SNPs in null pathways are set to be 0. Thus, the SNP effects are generated

from a mixture distribution of a point mass at 0 and uniform distributions. The data are

deliberately simulated from a distribution different from the assumed model (2.1) to assess

the impact of model mis-specification.

A sample consists of 500 cases and 500 controls. A total of 1000 replications are generated

for each setting. The methods are compared for power of detecting associated pathways, and

for this the inference is carried out using standard Benjamini-Hochberg FDR (Benjamini and
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Hochberg, 1995) for all methods. Hierachical FDR is used for BHPathway in one setting to

examine the power for detecting associated genes once a pathway is implicated. As other

methods do not allow detection at the gene level, they are not considered in this gene-level

power calculation.

3.1 Setting 1

We simulated six pathways with pathways 1 to 3 being non-null and the rest being null

pathways. All pathways have the same structure, each consisting of 20 genes, and each gene

consisting of 10 SNPs. A schematic diagram of the structures of the non-null pathways is

shown in Figure 3.1. In each non-null pathway, 8 (out of 20) genes are associated. The

number of non-null SNPs in each gene in pathways 1, 2, and 3 are varied, and are 8, 6, and 4,

respectively. The corresponding effects of these non-null SNPs are generated from U(0, 0.1),

U(0, 0.15), and U(0, 0.2) distributions. We set the MAF of each SNP to be 0.1. Figure 3.2

shows the powers for detecting the first three pathways plotted against average (empirical)

FDR calculated over the three null pathways as an ROC curve. We see that BHPathway has

higher powers for detecting all three associated pathways.

3.2 Setting 2

Here we consider realistic linkage disequilibrium (LD) patterns and generate one null and one

non-null pathway based on structure of a KEGG pathway hsa04950. There are 13 genes and

192 SNPs in each pathway as shown in Figure 3.3. The MAF of SNPs range from 2.5 ∗ 10−5

to 0.25. We use HAP-SAMPLE software (Wright et al., 2007) to simulate genotypes for the
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Figure 3.1. Setting 1: Structure of the three non-null pathways. There are three additional
null pathways of the same structure with all SNPs being null (not shown). The components
in green (dark shade) are non-null while the ones in gray (light shade) are null.

SNPs in this pathway that match with the CEU population of HapMap. In the associated

pathway, about half of the genes are associated and in each associated gene, about half of the

SNPs are associated. The effect sizes of the non-null SNPs are generated from U(0.15, 0.3)

distribution. Under this setting, three sub-settings are considered for assigning the effect sizes

to causal SNPs: (1) larger effect sizes are assigned to SNPs with larger MAFs (2) larger effect

sizes are assigned to SNPs with smaller MAFs, and (3) causal SNPs are within a contiguous

block with larger effect sizes assigned to SNPs with smaller MAFs. The rest of the features

of the simulation are the same as in Setting 1. In Figures 3.4, 3.5, and 3.6, we plot the ROC

curves for the three sub-settings. The powers are, in general, much higher in sub-setting 1
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Figure 3.2. Setting 1 Results: Power for detecting the three non-null pathways.

compared to the other two, as expected. In all sub-settings, BHPathway has higher power

than the other methods. Among the other methods, there is no method that performs best

in all sub-settings. For example, GRASS performs better than ALIGATOR in sub-setting 3,

however, the vice versa is true in sub-setting 2.

In addition to investigating the power at the pathway level, we also study the power of

detection at the gene level when a pathway is implicated to be significant. For this, we use

the hierarchical inference procedure described in Section 2.5 and choose a q-value such that
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Figure 3.3. Setting 2: Structure of the non-null pathway. There is also a null pathway of the
same structure with all SNPs being null (not shown). The components in green are non-null.

the hierarchical FDR in equation (2.4), averaged over 1000 replications, is approximately 0.1.

We present two sets of results in each of Figures 3.7, 3.8, and 3.9 — (a) without and (b)

with using the effective number of parameters. In these results, the number of times a gene

is found to be significant is out of the total number of times the corresponding pathway is

found to be significant, e.g., in Figure 3.7 (a), gene 1 was found to be significant 881 times

out of 980 times that the pathway was found to be significant. The effective number of

parameters at the pathway level is almost the same as the number of pathways tested in all

settings (in this setting, it is 2), and thus at the pathway level, use of the effective number of

parameters in inference does not make much difference in results. However, at the gene level,

in Figures 3.7, 3.8, and 3.9, we see that using the effective number of parameters increases

the power to detect the associated genes, and helps in distinguishing between the null and

non-null genes once a pathway is found to be significant.
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Figure 3.4. Setting 2, Sub-Setting 1 Results: Power for detecting the non-null pathway.

3.3 Setting 3

In this setting, we consider three KEGG pathway structures hsa00910, hsa00062, and hsa04130

consisting of 6, 14, and 19 genes, respectively, and simulate six pathways, three null and

three non-null of these structures, as shown in Figure 3.10. The range of MAF of SNPs is

from 8.33e-06 to 0.25. As in Setting 2, about half of the genes in each non-null pathway

is associated and in each non-null gene, about half of the SNPs are associated. The effect

sizes are generated from U(0.15, 0.2), U(0.1, 0.15), and U(0.05, 0.1) distributions for the

non-null SNPs in hsa00910, hsa00062, and hsa04130, respectively. The causal SNPs are

within a contiguous block with larger effect sizes assigned to SNPs with smaller MAFs. The
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Figure 3.5. Setting 2, Sub-Setting 2 Results: Power for detecting the non-null pathway.

sample generation procedure for this and subsequent settings is the same as for Setting 2

using HAP-SAMPLE. Figure 3.11 shows the ROC curves for the three associated pathways.

BHPathway has markedly higher powers than the other three methods especially for pathways

2 and 3.

3.4 Setting 4

This setting is based on the same pathway structures as in Setting 3. The difference is in

the generation of associated SNPs. Here one-third (instead of one-half) of the genes are

associated in each non-null pathway and within each associated gene, one-half of the SNPs
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Figure 3.6. Setting 2, Sub-Setting 3 Results: Power for detecting the non-null pathway.

are associated as shown in Figure 3.12 . The uniform distributions used for generating the

effect sizes are U(0.2, 0.4), U(0.1, 0.3), and U(0.05, 0.2) for hsa00910, hsa00062, and hsa04130,

respectively, and SNPs with larger MAF are assigned larger effect sizes. The results are shown

in Figure 3.13, which are somewhat different from the ones found in the previous settings. In

particular, for pathway 1, GRASS has higher power than BHPathway at average FDR of

0.1 although they are similar at low FDR values. For the other two pathways, BHPathway

maintains its power advantage over the other methods as seen in the preceding settings.

53



Figure 3.7. Setting 2, Sub-Setting 1 Results: The number of times each gene is detected once
the pathway is detected (a) without and (b) with using the effective number of parameters.
The numerator in the top row of each table is the number of times the pathway is found to
be significant (out of 1000) and the numbers in the last row are the numbers of times the
genes are found to be significant (out of the number of times the pathway is found to be
significant). The hierarchical FDR of the entire inference procedure is about 0.1.

3.5 Setting 5

This setting is different from the previous ones in several respects. Here we consider a

situation where only one pathway is to be tested. This is a relatively larger pathway following

the structure of KEGG pathway hsa03022, which has 23 genes and 207 SNPs after matching

with CEU population (as in Setting 2) and excluding SNPs with MAF < 0.01. One-half of

the genes are set to be associated and within each associated gene, about one-half of the SNPs

are set to be associated. The effect sizes for the non-null SNPs are generated from U(-0.1,
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Figure 3.8. Setting 2, Sub-Setting 2 Results: The number of times each gene is detected once
the pathway is detected (a) without and (b) with using the effective number of parameters.
The numerator in the top row of each table is the number of times the pathway is found to
be significant (out of 1000) and the numbers in the last row are the numbers of times the
genes are found to be significant (out of the number of times the pathway is found to be
significant). The hierarchical FDR of the entire inference procedure is about 0.1.

0.2) distribution with larger effect sizes assigned to SNPs were smaller MAF. Note that in

this setting, we allow the effects to be negative as well as positive unlike in the previous

settings, where all effects were positive.

As the inference procedure in BHPathway is mean-based, having SNP effects of opposite

directions in a gene can cancel each other out nullifying the overall effect. To overcome

this issue, we use a simple solution of checking the direction of effect of each SNP in a

pre-processing step. For this, a simple logistic regression model is fitted for each SNP with

55



Figure 3.9. Setting 2, Sub-Setting 3 Results: The number of times each gene is detected once
the pathway is detected (a) without and (b) with using the effective number of parameters.
The numerator in the top row of each table is the number of times the pathway is found to
be significant (out of 1000) and the numbers in the last row are the numbers of times the
genes are found to be significant (out of the number of times the pathway is found to be
significant). The hierarchical FDR of the entire inference procedure is about 0.1.

case/control status as the response, and the sign of the regression coefficient is checked. If

the sign is negative, we interchange the minor and major alleles for that SNP so that the

direction of the effect becomes positive. Note that this pre-processing step does not affect

the strength of association and does not involve any statistical testing.

As there is only one pathway tested in this setting, FDR is not relevant. Instead, we

estimate the type I error rate by simulating 1000 null pathways of the same structure, i.e.,

with all SNP effects set to be null. These are analyzed in exactly the same manner as the
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Figure 3.10. Setting 3: Structure of the three non-null pathways. There are also three null
pathways of the same structure with all SNPs being null (not shown). The components in
green are non-null.

non-null pathway. For both the null and non-null settings, we calculate the percentage of

times (out of 1000) that the pathway is found to be significant, which gives us power and type

I error rate at a given cutoff for p-value. The cutoff is then varied to get an ROC curve. In

this setting, we do not include ALIGATOR as it requires at least two pathways to be tested

together to give sensible results (because it tests for competitive null hypothesis). Figure 3.14

shows the results for the other three approaches. Here we see that BHPathway and PLINK

have similar powers while GRASS performs worse.
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Figure 3.11. Setting 3 Results: Power for detecting the three non-null pathways.
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Figure 3.12. Setting 4: Structure of the three non-null pathways. There are also three null
pathways of the same structure with all SNPs being null (not shown). The components in
green are non-null.
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Figure 3.13. Setting 4 Results: Power for detecting the three non-null pathways.
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CHAPTER 4

REAL DATA APPLICATIONS

4.1 Application to Breast Cancer Data

We consider GWAS data CGEMS (Cancer Genetics Markers of Susceptibility) on breast

cancer obtained from dbGaP (accession number phs00147.v3.p1). A total of 555,351 SNP

genotypes were available. We apply commonly used quality control criteria to filter SNPs

using PLINK (Purcell et al., 2007). In particular, SNPs with missing genotype rate higher

than 10%, minor allele frequency lower than 1%, and failing the Hardy-Weinberg equilibruim

test with p-values less than 0.001 were removed. Also, SNPs were pruned based on LD using

R2 threshold of 0.5 to obtain a final set of SNPs for analysis. We started with all pathways

from the KEGG database and those with gene counts between 10 and 300 are selected giving

298 pathways for analysis (Menashe et al., 2010; Chen et al., 2010). The start and end points

of all genes are obtained from the Ensembl genome browser (Ensembl Genome Browser, 2018).

SNPs are mapped to genes if they locate within 10 kb upstream and downstream of a gene

region. A total of 317,643 SNPs are finally used in the analysis.

There are 1,145 cases and 1,142 controls available. However, each SNP has some missing

genotypes among the 2,287 individuals, and so we analyzed each pathway separately using

only the subset of individuals who had no missing genotype on all the SNPs within the

particular pathway. Thus, the total number of individuals with complete genotype used for

analysis is different across the 298 pathways. Summary statistics about the numbers of genes

and SNPs in each pathway and the number of individuals are provided in Table 4.1.
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Table 4.1. Summary on gene counts, SNP counts, and subjects across 298 KEGG pathways
for the Breast Cancer data.

Summary of gene count
Summary
Statistics

Min 1st Median Mean 3rd Max

Overall for 298
pathways

7 33.25 60 71.48 92.75 243

Summary of SNP count
Summary
Statistics

Min 1st Median Mean 3rd Max

Overall for 298
pathways

42 274.5 724 1066 1643 4190

Summary on number of individuals
Summary
Statistics

Min 1st Median Mean 3rd Max

Overall for 298
pathways

218 630.2 1121 1118.8 1554.8 2149

In a preliminary single-SNP analysis using PLINK, we find that Z scores for SNPs could

be both positive and negative. As the inference of BHPathway is mean-based, opposite effects

may cancel out each other. So, for SNPs with negative effect, we interchanged the minor and

major alleles. Note that this pre-processing step does not affect the strength of association of

the SNP or its gene or pathway.

Table 4.2 shows the top two pathways that BHPathway found below 0.05 cutoff for p-value.

Among them, the top pathway hsa04910 is Insulin Signaling pathway. This pathway and its

components have been reported to be associated with breast cancer, and cancer, in general,

in several molecular and gene expression studies (Rostoker et al., 2015; Poloz and Stambolic,

2015; Belfiore and Malaguarnera, 2011; Djiogue et al., 2013). A recent study conducted a

gene-based analyses of genes in several insulin related pathways in relation to breast cancer

and reported several significant genes (Ruiz-Narvaez et al., 2016). It has been reported that
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insulin signaling receptor is often overexpressed in tumor cells, particularly that of the breast

(Poloz and Stambolic, 2015). Indeed therapies have been developed to target insulin-like

growth factor-I receptor and/or insulin receptor pathways for breast cancer (Law et al., 2008).

Our finding of significance of this pathway may be the first of its kind based on GWAS SNP

data.

We also tested this pathway and its components using hierarchical FDR boundary values

of 0.1 and 0.2 (as given in equation (2.4)), both with and without using the effective numbers

of parameters. The pathway was significant at the FDR boundary of 0.1 (both with and

without using effective number of parameters), however, none of its component genes were

found to be significant even at 0.2 FDR value. The two top most significant genes were AKT3

and MAPK1 with BHPathway p-values of 0.043 and 0.082, respectively. These genes regulate

processes such as cell proliferation, cell division, migration, and apoptosis (Rostoker et al.,

2015). AKT3 has been implicated by several studies to be involved with growth of triple

negative breast cancer, an aggressive subtype of breast tumor with a poor outcome, and

therapeutic targeting of this gene has been suggested as a novel treatment option (Chin et al.,

2014; O’Hurley et al., 2014; Grottke et al., 2016; Hu et al., 2018). MAPK1 has been shown

to be associated with breast cancer and other cancers (Slattery et al., 2014; Reyes-Gibby

et al., 2016; Li et al., 2015).

The second pathway found to be significant by BHPathway is hsa04977 named Vitamin

Digestion and Absorption. This result is also consistent with literature reporting connection

of vitamins with cancer (Deeb et al., 2007; Chou et al., 2011; Chen et al., 2014). This pathway

was significant at hierarchial FDR of 0.1, however, its genes were not found to be significant.
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The gene with the smallest p-value (of 0.06) is CUBN. An earlier study had found a SNP in

this gene to be asssociated with breast cancer (Anderson et al., 2011). The gene with the next

smallest p-value of 0.1 is SLC19A3, and this gene has been also implicated in some studies

(Sweet et al., 2010; Cheuk et al., 2015; Ng et al., 2011). As Table 4.2 shows, GRASS and

PLINK do not find these two pathways to be significant. However, GRASS and PLINK find

several other pathways to be significant at 5% level as reported in Table 4.3. An interesting

observation though is that none of the significant pathways detected by one method was

found to be significant by another method. This suggests that perhaps the methods are

complementary in the sense that they have different powers for detecting different types of

pathways with different types of data. We did not apply ALIGATOR to these data as each

pathway is tested individually while ALIGATOR, being a competitive test, requires at least

two pathways to be tested together. Table 4.4 shows the pathways that BHPathway, GRASS,

or PLINK found with p-values between 0.05 and 0.1.

Table 4.2. Pathways with p-values not exceeding 0.05 using BHPathway applied on the
Breast Cancer data.

KEGG pathway ID BHPathway GRASS PLINK
hsa04910 0.009 0.593 0.14
hsa04977 0.041 0.849 0.76

4.2 Application to Renal Cancer Data

We consider the National Cancer Institute’s (NCI) GWAS data on renal cell carcinoma

obtained from dbGaP (accession number phs000351.v1.p1). It consists of four studies with

three being prospective cohort studies and one case-control study. The three cohort studies are
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Table 4.3. Pathways with p-values not exceeding 0.05 using GRASS or PLINK applied on
the Breast Cancer data.

KEGG pathway ID BHPathway GRASS PLINK
hsa05146 0.764 0.008 0.62
hsa00900 0.325 0.01 0.4
hsa00770 0.611 0.014 0.3
hsa00030 0.702 0.022 0.63
hsa05323 0.634 0.029 0.1
hsa04380 0.735 0.031 0.77
hsa00600 0.404 0.039 0.19
hsa04621 0.622 0.041 0.24
hsa04062 0.767 0.044 0.21
hsa04012 0.875 0.044 0.58
hsa00561 0.321 0.681 0.002
hsa00340 0.13 0.418 0.003
hsa04930 0.646 0.841 0.007
hsa04914 0.228 0.266 0.011
hsa00601 0.356 0.542 0.014
hsa04916 0.75 0.124 0.01
hsa04015 0.85 0.281 0.01
hsa00330 0.423 0.851 0.02
hsa05206 0.73 0.22 0.03
hsa05211 0.349 0.437 0.03
hsa00515 0.591 0.759 0.03
hsa04340 0.703 0.98 0.03
hsa00052 0.396 0.097 0.04
hsa00590 0.213 0.362 0.04
hsa05100 0.759 0.83 0.04
hsa00140 0.904 0.84 0.04
hsa00565 0.797 0.563 0.05
hsa04973 0.945 0.737 0.05
hsa00630 0.703 0.919 0.05

Alpha-Tocopherol and Beta-Carotene Cancer Prevention Study (ATBC), American Cancer

Society Cancer Prevention Study-II (CPS-II), and Prostate, Lung, Colorectal and Ovarian

Cancer Screening Trial (PLCO) while the case-control study is NCI’s US Kidney Cancer

Study (USKC). We analyzed 610K subset of the renal cancer data genotyped on Illumina
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610 BeadChips at the NCI Core Genotyping Facility. A total of 537,091 SNPs are mapped to

the same 298 KEGG pathways that we previously analyzed for the breast cancer data. We

applied the same filtering criteria as before to get 258,309 SNPs. There were a total of 1,312

cases and 3,424 controls with genotypes. However, as before, the total number of subjects

used in the analysis of each pathway varied due to subjects having missing genotypes.

When we applied the methods to the combined dataset from all four studies, we got a

highly unexpected result — all 298 pathways were significant using BHPathway, PLINK,

and GRASS (most with extremely small p-values). As this result does not appear to be

reasonable, we examined the four studies closely and found that USKC case-control data

were actually collected using a complex sampling scheme (Colt et al., 2011; Zhang et al.,

2017). Unless a statistical approach explicitly accounts for such a complex sampling design,

the results can be biased and false positive rates can become uncontrollably high (Korn and

Graubard, 1999; Zhang et al., 2017). As BHPathway as well as the other two methods do

not account for complex sampling, we excluded this dataset and analyzed the three cohort

studies, which reduced the sample size to 650 cases and 2,863 controls. Table 4.5 shows the

summary statistics based on the combined dataset from three cohort studies only.

Table 4.6 shows the top two pathways found by BHPathway to be significant at 5% level.

The first pathway hsa03050 is Proteasome pathway. This pathway has been implicated in the

literature for its role in renal cancer and cancer, in general (Mani and Gelmann, 2005; Corn,

2007; Frezza et al., 2011). As in the breast cancer data analyses, we applied hierarchical

FDR criteria to this pathway and found it to be significant at FDR boundary of 0.1 (both

with and without using the effective number of parameters), however, none of its genes were
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significant. On increasing the hierarchical FDR boundary to 0.2 and using the effective

number of parameters, we found 19 genes to be significant (none were significant without

using the effective number of parameters). These genes are listed in Table 4.7. The top most

significant gene in this pathway is PSMB7. A recent study reports that this gene along with

some other constitutive proteasome genes are over-expressed in most cancer types (Rouette

et al., 2016). In fact, three other genes reported in this study, namely, PSMB8, PSMB9, and

PSMB10 are also listed in Table 4.7.

The second pathway in Table 4.6 is Inflammatory Bowel Disease and the most significant

gene found in this pathway is IL4R with p-value of 0.15. The pathway was significant

at hierarchical FDR boundary of 0.1, however, the gene was not significant even at FDR

boundary value of 0.2. Some studies have shown association between renal cancer and this

pathway and IL4R gene (Romano et al., 2016; Derikx et al., 2015; Obiri et al., 1993).

Table 4.8 shows the pathways that GRASS or PLINK found below 0.05 cutoff for p- value

and Table 4.9 shows the pathways that BHPathway, GRASS, or PLINK found with p-values

between 0.05 and 0.1 in the renal cancer data.
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Table 4.4. Pathways with p-values between 0.05 and 0.1 using BHPathway, GRASS, or
PLINK applied to the Breast Cancer data.

KEGG pathway ID BHPathway GRASS PLINK
hsa04659 0.062 0.757 0.85
hsa00072 0.07 0.927 0.38
hsa04130 0.072 0.701 0.86
hsa04657 0.073 0.464 0.73
hsa00910 0.078 0.584 0.3
hsa00062 0.08 0.877 0.85
hsa04976 0.082 0.522 0.48
hsa04915 0.633 0.055 0.96
hsa00230 0.925 0.056 0.77
hsa04142 0.166 0.058 0.69
hsa05210 0.214 0.058 0.22
hsa01524 0.559 0.058 0.39
hsa03022 0.638 0.062 0.06
hsa00534 0.329 0.065 0.12
hsa03420 0.837 0.065 0.69
hsa04742 0.532 0.069 0.5
hsa04975 0.431 0.07 0.45
hsa05224 0.919 0.074 0.39
hsa05030 0.43 0.076 0.83
hsa03040 0.963 0.08 0.07
hsa04921 0.956 0.081 0.61
hsa04210 0.379 0.082 0.1
hsa04922 0.625 0.095 0.48
hsa00052 0.396 0.097 0.04
hsa00860 0.76 0.099 1
hsa03022 0.638 0.062 0.06
hsa00670 0.335 0.197 0.06
hsa05222 0.604 0.667 0.06
hsa05230 0.348 0.79 0.06
hsa00512 0.231 0.991 0.06
hsa03040 0.963 0.08 0.07
hsa04727 0.685 0.329 0.07
hsa05212 0.649 0.42 0.07
hsa05142 0.881 0.694 0.07
hsa04550 0.766 0.189 0.08
hsa03060 0.312 0.257 0.08
hsa04071 0.73 0.347 0.08
hsa01040 0.565 0.148 0.09
hsa03008 0.266 0.607 0.09
hsa05162 0.942 0.657 0.09
hsa00410 0.869 0.677 0.09
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Table 4.5. Summary on gene and SNP counts across 298 KEGG pathways for Renal Cancer
data.

Summary of gene count
Summary
Statistics

Min 1st Median Mean 3rd Max

Overall for 298
pathways

9 34.5 63.5 74.7 99.75 256

Summary of SNP count
Summary
Statistics

Min 1st Median Mean 3rd Max

Overall for 298
pathways

50 282 645.5 866.8 1268.2 3280

Summary on number of individuals
Summary
Statistics

Min 1st Median Mean 3rd Max

Overall for 298
pathways

169 691.2 1003 1016 1369 1878

Table 4.6. Pathways with p-values not exceeding 0.05 using BHPathway applied to the Renal
Cancer data.

KEGG pathway ID BHPathway GRASS PLINK
hsa03050 0.027 0.421 0.61
hsa05321 0.051 0.208 0.39
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Table 4.7. Genes in pathway hsa03050 found to be significant using the effective number of
parameters at hierarchical FDR boundary of 0.2 in the Renal Cancer data.

Entrez Gene ID P-value
5695 0.109
5719 0.117
5700 0.125
5689 0.128
5698 0.128
5684 0.15
9861 0.151
5682 0.152
5721 0.157
5696 0.158
5701 0.162
5699 0.163
11047 0.169
5709 0.170
5706 0.172
5688 0.174
5713 0.178
51371 0.178
5710 0.18
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Table 4.8. Pathways with p-values not exceeding 0.05 using GRASS, or PLINK applied to
the Renal Cancer data.

KEGG pathway ID BHPathway GRASS PLINK
hsa04540 0.956 0 0
hsa04530 0.980 0 0
hsa05416 0.548 0.002 0.01
hsa04520 0.816 0.002 0.01
hsa04550 0.5 0.003 0.02
hsa04512 0.659 0.004 0.02
hsa04510 0.854 0.01 0.04
hsa04210 0.578 0.012 0.04
hsa00310 0.821 0.014 0.04
hsa04921 0.861 0.014 0.05
hsa04911 0.776 0.016 0.05
hsa00430 0.616 0.017 0.06
hsa05210 0.666 0.017 0.06
hsa03013 0.985 0.018 0.07
hsa05340 0.579 0.019 0.08
hsa04114 0.977 0.019 0.09
hsa04660 0.909 0.022 0.1
hsa04621 0.618 0.024 0.1
hsa04340 0.887 0.024 0.11
hsa00511 0.342 0.042 0.12
hsa00052 0.898 0.042 0.13
hsa04664 0.511 0.045 0.13
hsa00563 0.135 0.05 0.13
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Table 4.9. Pathways with p-values between 0.05 and 0.1 using BHPathway, GRASS, or
PLINK applied to the Renal Cancer data.

KEGG pathway ID BHPathway GRASS PLINK
hsa04390 0.056 0.935 0.99
hsa04918 0.057 0.534 0.73
hsa00220 0.058 0.243 0.42
hsa00760 0.080 0.597 0.8
hsa04966 0.092 0.063 0.15
hsa05330 0.096 0.688 0.84
hsa04371 0.991 0.057 0.14
hsa04933 0.964 0.059 0.15
hsa05418 0.605 0.064 0.15
hsa05412 0.574 0.072 0.17
hsa01040 0.989 0.073 0.17
hsa00970 0.997 0.075 0.17
hsa04514 0.719 0.082 0.17
hsa00860 0.709 0.084 0.18
hsa04950 0.613 0.086 0.19
hsa00062 0.359 0.088 0.19
hsa05152 0.574 0.089 0.2
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CHAPTER 5

DISCUSSION AND FUTURE WORK

5.1 Discussion

We have proposed a novel approach, BHPathway, for testing pathway association using GWAS

data. Unlike most current approaches that rely on ad hoc ways of combining information

across various levels of hierarchy, we propose a unified hierarchical model connecting all three

levels of hierarchy naturally inherent in a pathway structure in a seamless manner. This

is achieved by modeling the effects of each level conditional on the effects at the preceding

level in a GLM framework. To handle the high dimensionality, the regression coefficients

are regularized using hierarchical t priors. The computational intensity of fitting such a

large and unified model is controlled by utilizing a combination of IWLS and EM algorithms

to estimate the posterior modes and thereby forgoing the use of computationally intensive

MCMC algorithms.

From our simulation studies, we find that BHPathway can have higher power than the

other commonly used pathway analysis methods in many cases where there are multiple

variants of modest size. On the other hand, it may have comparable or lower power in some

cases. Thus, the methods may be complementary. In fact, this observation is also supported

by our real data analyses wherein we found that the different approaches implicated different

pathways. Thus, in a real data analysis, it may be worth applying several methods to utilize

their strengths in uncovering different types of associations. Nonetheless, BHPathway has the

additional advantage of being able to pinpoint the genes of interest when a pathway is found

74



to be significant as we illustrated in both simulated and real data analyses. For this, the

inference has to be carried out in a hierarchical manner using hierarchical FDR. Moreover,

we found that the use of the effective number of parameters instead of the total number of

parameters in the multiplicity adjustment using hierarchical FDR helps in increasing the

power of detection at the gene level.

Missing data is a major challenge in the analysis of real data. In our datasets, we had to

analyze each pathway individually even though, in principle, BHPathway can analyze several

pathways jointly (as illustrated with simulated data). One possible way to handle missing

genotype data is to make use of the imputed genotypes that come with the GWAS data from

dbGaP. We attempted to do that, however, and found that the imputed set did not overlap

with the observed genotype set so that two sets cannot be merged to find and fill-in the

genotypes of SNPs/individuals missing in the observed data. In such cases, an alternative

could be to abandon the observed genotype set and work with the imputed set only.

5.1.1 Sensitivity Analysis of Hyper-Parameters

The hyper-parameters ν0 = 1, s0 = 10, a = 6.25, b = 1, νβ = 1, νξ = 1, νθ = 1, sξ = 0.04,

and sθ = 2.5 is the set of values we currently choose after sensitivity check on how the change

of these parameters affect the pathway p-values.

Increasing νβ and νξ causes very minor change on pathway p-values. We choose νβ =

1, νξ = 1 as they have been used earlier (Gelman et al., 2008; Yi and Ma, 2012).
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Tuning a, b, νθ, sθ for the top pathways that BHPathway found significant for the renal

cancer data, there is barely any difference observed on the pathway p-values. We choose

νθ = 1, ν0 = 1, s0 = 10 as suggested by (Gelman et al., 2008).

Both s2
βp

and s2
θ are the scale parameters from Inv-χ2 distribution. For sθ, it has been

suggested to use a value of 2.5 by (Gelman et al., 2008). Unlike s2
θ being a fixed value, s2

βp
is

a random variable. As a result, a = 6.25 and b = 1 are chosen to yield a prior mean of s2
βp

from Gamma(a, b) to be 2.52, which is 6.25.

Tuning sξ has a relatively stronger effect on the pathway p-value. For the majority of the

pathways tested using the simulated data as well as real data, a smaller value of sξ leads to a

smaller pathway p-value. As an example, we plot ROC curves in Figure 5.1 by varying sξ

values in a simulated dataset. We see that sξ = 0.04 is a suitable choice. Similar pattern is

present in the two real datasets we analyzed earlier. Table 5.1 shows the change in hsa00760

pathway p-value under different sξ values. We choose to use the sξ value of 0.04 as it exhibits

a reasonable ability in distinguishing between the p-values of null and non-null genes in a

pathway (results not shown).

5.2 Future Work

5.2.1 Overlapping SNPs/Genes in Multiple Genes/Pathways

It is a common situation that a SNP is mapped to multiple genes and/or a gene is mapped to

multiple pathways. To handle this issue, a potential idea is described in the following (Zhang

et al., 2014). In particular, we consider the case of a gene being mapped to three different

pathways. The same ideas may be used for a SNP mapped to multiple genes.
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Table 5.1. Pathway p-value for hsa00760 in the Renal Cancer data under varying sξ values.

sξ value Pathway p-value
0.005 0.073
0.01 0.073
0.015 0.074
0.02 0.074
0.025 0.075
0.03 0.077
0.035 0.078
0.04 0.08
0.045 0.082
0.05 0.084
0.055 0.086
0.06 0.089
0.065 0.091
0.07 0.094
0.075 0.097
0.08 0.1
0.085 0.103
0.09 0.106
0.095 0.109
0.1 0.112

Let gene effect µ ∼ N(θ∗, τ
2
∗ ). Here θ∗ and τ 2

∗ are pathway-specific parameters. Their

values are unclear because the gene maps to three pathways. We define µ1, µ2, and µ3 as the

proportions of µ mapped to pathways 1 to 3. Let µi = wi · µ and µi ∼ N(wiθ∗, w
2
i τ

2
∗ ) for i =

1, 2, 3 with
∑
wi = 1 and

∑
w2
i = 1. Also, as µ1, µ2, and µ3 represent effects of the gene in

pathways 1 to 3, we have µi ∼ N(θi, τ
2
i ), i = 1, 2, 3. Thus, by comparing the prior means
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Figure 5.1. ROC curves with varying sξ values.

and prior variances of µ1, µ2, and µ3, we have:

w1 · θ∗ = θ1, w2
1 · τ 2

∗ = τ 2
1 ,

w2 · θ∗ = θ2, w2
2 · τ 2

∗ = τ 2
2 ,

w3 · θ∗ = θ3, w2
3 · τ 2

∗ = τ 2
3 ,

w1 · θ∗ + w2 · θ∗ + w3 · θ∗ = θ∗, and w2
1 · τ 2

∗ + w2
2 · τ 2

∗ + w2
3 · τ 2

∗ = τ 2
∗ .
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The solutions to the left four equations are wi = θi/θ∗ for i = 1, 2, 3 and θ∗ = θ1 + θ2 + θ3.

The solutions to the right four equations are w2
i = τ 2

i /τ
2
∗ for i = 1, 2, 3 and τ 2

∗ = τ 2
1 + τ 2

2 + τ 2
3 .

However, even though we obtain solutions to θ∗ and τ 2
∗ , the choice of wi is not unique and is

an open question.

5.2.2 Extension to Quantitative Trait

As our method is GLM based, it can easily incorporate phenotypes of continuous, categorical,

or count types. Also, the effects of covariates can be incorporated.

In GLM, an additional dispersion parameter τ 2 can be present depending on the distribu-

tion of response. In that case, var(yi) = τ 2V (µi), where V (µi) is the variance function. Note

that τ 2 = 1 for binomial distribution (in the logistic regression model used earlier). When

τ 2 6= 1, we can assign a uniform prior distribution for τ 2 over a finite, known interval. It can

be estimated as in classical GLM (McCullagh and Nelder, 1989).

5.2.3 Extension to Multiple Dependent Phenotypes

To extend the method to deal with multiple responses, we consider a similar GLM-based

hierarchical model for each response and add a random subject effect in each model to

induce dependence between the responses. Suppose there are Q phenotypes under study,

each having a distribution belonging to an exponential family. The observed responses are

yiq, i = 1, . . . , n, q = 1, . . . , Q. The model allows for some subjects to have missing values on

some phenotypes. Under the GLM framework, for qth phenotype, we define µiq = E(yiq), gq

as the link function, ηiq = gq(µiq) as the linear predictor, Vq(µiq) as the variance function,
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and τ 2
q the dispersion parameter. Let βq be the vector of regression coefficients for effects of

S SNPs on the qth phenotype and β0q be the corresponding intercept. Let ui be the random

effect of the ith subject. We model ηiq = gq(µiq) = β0q + x′iβq + ui, i = 1, . . . , n, q = 1, . . . , Q.

Let yq = (y1q, . . . , ynq), y = (y1, . . . ,yQ), β0 = (β01, . . . , β0Q), β = (β1, . . . ,βQ), and

u = (u1, . . . , un).

Assume that β0|σ2
0 ∼ N(0, σ2

0I), and u|σ2
u ∼ N(0, σ2

uI) with σ2
u ∼ Inv-χ2(νu, s

2
u), where

νu and s2
u are fixed. The hierarchical prior structure for the Q sets of SNP effects in this

model and also the effects of genes and pathways are assumed to be the same as in (2.1). This

allows model parsimony as well as borrowing of information across the related phenotypes.

Specifically, βq has the same prior as that of the SNP effects in model (2.1). Thus, the gene

effects ξjp and pathway effects θp are common to all phenotypes. However, note that as SNP

effects vary by phenotype, by the virtue of the assumed hierarchical structure, it induces the

gene and pathway effects to also vary by phenotype indirectly. The other hyper-parameters,

including σ2
0, σ

2
βjp, σ

2
ξp, and σ2

θ , and their priors are the same as in model (2.1). Let ỹq denote

the pseudodata vector for the qth phenotype, and ỹ = (ỹ1, . . . , ỹQ).

Let β∗ = (β0,β,u, ξ,θ), φ = (σ2
0,σ

2
β, σ

2
u,σ

2
ξ , σ

2
θ , s

2
β), and τ 2 = (τ 2

1 , . . . , τ
2
Q). Now we

proceed asbefore to find the conditional posterior mode of π(β∗|φ, τ 2,y). Consider a linear

model Y ∗ = X∗β∗ + ε∗, where Y ∗ = (ỹ, 0) with 0 of order (Q + QS + n + J + P ), and

X∗ has a similar structure as in (2.2) but it additionally includes the usual design matrices

X for the Q models appended together as a block diagonal matrix and also n rows and

columns associated with u. The matrix X corresponding to each phenotype will be exactly

the same with dimension n× (S + 1). Further, ε∗ is distributed as N(0,W−1), where W =

80



diag {Wy1, . . . ,WyQ,W0,Wβ, . . . ,Wβ,Wu,Wξ,Wθ} is of order nQ+Q+ SQ+ n+ J +P .

Each component of W is itself a diagonal matrix and Wyq has a similar formula as for one

phenotype. The diagonal elements of Wβ are reciprocals of the prior variances σ2
βjp. Likewise,

the diagonal elements of W0, Wu, Wξ, and Wθ are σ−2
0 , σ−2

u , σ−2
ξp , and σ

−2
θ , respectively.

As before, this linear model representation allows using an IWLS algorithm to obtain the

approximate conditional posterior mode of β∗ as β̂∗(φ, τ 2) = (X∗′WX∗)−1X∗′WY ∗ and

its approximate covariance matrix as Σ(φ, τ 2) = (X∗′WX∗)−1.

The parameter φ is estimated by the conditional posterior mode of π(φ|τ 2, y). For this, we

use an approximate EM algorithm as follows (Gelman et al., 2014). Taking β∗ as “missing data”

in the E-step, we find H(φ|φold, τ 2,y), the expectation of log π(φ,β∗|τ 2,y) with respect to

the conditional posterior distribution of β∗ given the current value of φ (denoted by φold)

and τ 2. Approximating this distribution by a normal distribution with mean β̂∗(φold, τ 2)

and variance matrix Σ(φold, τ 2), both obtained via IWLS described earlier, H(φ|φold, τ 2,y)

can be obtained in a closed-form (Gelman et al., 2014). This involves approximations such

as E(βsjpq − ξjp)2 ≈ (β̂sjpq − ξ̂jp)2 + v̂ar(β̂sjpq − ξ̂jp). In the M-Step, we maximize H with

respect to φ to get the updated value φ̂(β̂∗, τ 2) whose elements are explicitly available as

simple expressions, allowing easy scalability of the method. For example,

σ̂2
βjp =

∑
q

∑
s

{
(β̂sjpq − ξ̂jp)2 + v̂ar(β̂sjpq − ξ̂jp)

}
+ νβs

2
βp

QSjp + νβ + 2
, σ̂2

θ =

∑
p

{
θ̂2
p + v̂ar(θ̂p)

}
+ νθs

2
θ

P + νθ + 2
.

Thus, we now have an iterative algorithm for fitting the extended model following the same

steps (IWLS and EM). A normal approximation for the mode β̂∗(φ̂, τ̂ 2) with covariance

matrix Σ(φ̂, τ̂ 2) can be used to perform the needed hypotheses testing.
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