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One of the most formative theories in neuroscience is the Hierarchical Theory of Cortex

(HTC), which postulates a hierarchy of simple and complex cells within each cortical visual

area. The Deep Convolutional Neural Networks (DCNN) architecture is the most compu-

tationally successful implementations of HTC, and has been adopted as a tool for linking

cognition to neural processes. However, DCNNs are exceedingly abstract models of cortical

learning. First, DCNNs use fixed connectivity, whereas cortical connectivity is plastic. Sec-

ond, DCNNs use convolutional weight-sharing, whereas simple cells in visual cortex learn

using local competition rules. Third, DCNNs use fixed pools, whereas complex cells in visual

cortex may learn their pooling structure. This means that DCNNs do not develop an ana-

logue to the cortical maps developed by cortex. In addition, differences in feature learning

may mean that DCNNs learn very different high-level unit representations compared to the

high-level visual cortex. In this dissertation, I introduce a biologically inspired framework

for understanding unsupervised visual category learning, called the Temporal Relation Man-

ifold TRM framework, which extends the object manifold framework of vision. With this

new framework, I develop a model of hierarchical cortical learning that integrates biologi-

cally plausible models of axon development, simple cell learning, and complex cell learning,

vi



into a single model called the Integrated Cortical Learning Model (ICL). As part of these

efforts I also introduce novel methods for incorporating axonal learning and development

into artificial neural networks called the Axon Game and the Arbor Layer. I examined the

utility of this new cortical model in three main sets of simulation studies. First, I explored

its ability to develop high-level cortical maps organized by semantic categories. Second, I

explored whether the ICL model would develop functionally specialized unit representations

or unspecialized unit representations. Third, I tested the performance of several versions of

the model on two image recognition benchmarks (Fashion-MNIST & ImageNette). These

simulation studies showed three main results. First, that the ICL model developed contin-

uous topological maps in its upper layers, but these maps were not substantially different

from the maps developed in its lower layers in key ways. Second, the ICL model developed

unspecialized unit representations similar to those of DCNNs, though this result may be due

to propagation of shallow representations. Third, the ICL model performed at a comparable

level to similarly-sized DCNNs with very modest tuning (91% accuracy for Fashion-MNIST,

and 40% accuracy for ImageNette). Post-hoc analyses suggested that the proposed complex

cell model may have been a limiting factor, highlighting an area for future study. The deep

ICL model built for this dissertation showed the novel ability to learn hierarchical cortical

maps, agreement with DCNN work on unit-level representations, and promising performance,

all while using more biologically motivated unsupervised learning rules. In summary, this

dissertation introduces a framework (TRM) and bio-inspired model (ICL) as an alterna-

tive to DCNNs, and evaluates this new model in terms of cortical map development, unit

representations, and classification performance.
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CHAPTER 1

INTRODUCTION

Deep Convolutional Neural Networks or (DCNNs) have demonstrated that with a relatively

small number of mechanisms, some of which are directly inspired by cortex, models can per-

form quite well at visual object recognition and classification (Fukushima, 1980; Krizhevsky

et al., 2012). Although today’s DCNNs are not usually explicitly considered models of visual

cortex, their computational success and the fact that they have a similar structure of lay-

ers and local connections, has prompted researchers to compare the representations learned

by DCNNs and to those learned by high-level ventral visual cortex (Khaligh-Razavi and

Kriegeskorte, 2014; Rajalingham et al., 2018; Yamins and DiCarlo, 2016b). Despite their

atheoretical usage, the computational success and neural predictive power of DCNNs have

made them the de facto model of choice for understanding computation in the ventral stream

at both a neural and cognitive level. However, there are critical issues with treating DCNNs

as the default model of the ventral stream that need to be addressed.

First Issue: DCNNs Rely on Implausible Architectural and Learning As-

sumptions. Most computationally successful DCNN models use a strong form of super-

vised learning and require a massive number of images with high-level semantical labels to

train effectively (Yamins and DiCarlo, 2016b). In contrast, humans learn using extensive

amounts of unstructured and unsupervised experience, without the need for huge amounts of

externally applied labels (Yamins and DiCarlo, 2016b). Many unsupervised DCNN learning

algorithms have actually been proposed, but the representations learned by these models

are largely inconsistent with our knowledge of neural representation in higher-level visual

cortex, and exhibit poor classification performance (Khaligh-Razavi and Kriegeskorte, 2014;

Yamins and DiCarlo, 2016b).

The learning issues with DCNNs go beyond reliance on supervised learning. In both

supervised and unsupervised learning in DCNNs, the network computes an error signal in
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its final layer and propagates this signal back through all of its layers. The results of this

error propagation are used to modify the connection weights within each layer. This learning

method is called backpropagation. Although there are ongoing efforts to find neurally plau-

sible implementations of this scheme (Scellier and Bengio, 2017), backpropagation requires

the close coordination of many neural layers that are not directly linked. Even prominent

researchers using these techniques acknowledge that it is unlikely that cortex implements a

form of backpropagation like the one used with most DCNNs (Yamins and DiCarlo, 2016b).

Further, DCNNs share information in a largely implausible fashion. Each neuron in a

DCNN layer’s feature map shares its weights with all of the other neurons in that feature

map. This mechanism is called convolutional weight-sharing. Neuroscience suggests that

convolutional weight-sharing is almost certainly implausible (Yamins and DiCarlo, 2016b).

Researchers usually tolerate weight-sharing as a computationally efficient stand-in for more

local and neurally plausible learning mechanisms that will learn similar features under the

right conditions.

Finally, DCNNs use a highly artificial handcrafted fixed connectivity structure between

their layers, usually based on the retinotopy of the early visual cortex. Generally, neuro-

science suggests that the connectivity between layers in cortex develops and adapts in highly

reactive ways due to many forces (Benson et al., 2001). Presumably because of these forces

and others, the connectivity and features of the visual cortical hierarchy become progres-

sively less retinotopic in higher layers. Given this, fixed convolutional connectivity may

poorly model the structure of higher-level vision on a fundamental level.

It is important from a neuroscience standpoint to develop bio-inspired algorithms with

good performance, while avoiding biologically implausible mechanisms like supervised learn-

ing and weight sharing (Yamins and DiCarlo, 2016b). These biologically implausible mecha-

nisms may be interpreted as highly abstract biological models, but the degree of abstraction

used limits their ability to make specific qualitative predictions. Models with more biolog-

ically motivated mechanisms would allow for more specific qualitative predictions, as their
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mechanisms would have a more direct neural interpretation. Further, testing more bio-

plausible models on image recognition tasks can better help us understand if the proposed

mechanisms are computationally powerful enough to address real world visual tasks.

In this dissertation, I introduce a special class of neurally plausible learning architec-

tures which are referred to as neurally conservative. Neurally conservative means the core

mechanisms of a model are commonly theorized as plausible or well-accepted from a neu-

roscience standpoint. For illustration, the learning mechanisms used to train both super-

vised and unsupervised DCNNs would not generally be considered neurally conservative, as

their core mechanisms (convolutional-weight-sharing and fixed pooling) are not supported

by neuroscience, and can only be viewed as modeling cortical learning in a highly abstract

way. Although DCNNs are not neurally conservative as cortical models, they make specific

qualitative predictions. The stronger claims of a more neurally conservative model provide

opportunities for making a richer set of qualitative predictions. Towards this end, this dis-

sertation explores the behavioral and functional predictions of a more neurally conservative

model and whether this model can achieve strong object recognition performance similar to

DCNNs.

Second Issue: DCNN Units may be Selective yet not Specialized. Recent

research into DCNNs has shown that they appear to learn functionally unspecialized unit

representations in their upper levels even though they demonstrate apparent selectivity using

conventional neuroscience measurement methodologies (Parde et al., 2021; Szegedy et al.,

2014a). Here, an unspecialized unit representation means that each individual unit would be

used in a broad array of category discriminations rather than a few. This contrasts with the

long-held view that high-level ventral stream neurons are quite specialized (Grill-Spector and

Weiner, 2014). Parde et al. (2021) goes further and suggests that the apparent selectivity

of high-level ventral visual neurons may be a methodological artifact given that functional

specialization is not required to achieve a high-level of discriminative performance. These
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clashing views have given rise to an emerging debate about the level of specialization of high-

level ventral visual neurons. However, the idea that functional neural specialization in high-

level ventral visual cortex does not exist, and that selectivity could be a mere measurement

artifact should be viewed skeptically as work in the field of neuroscience suggests that the

extreme version of this hypothesis is almost certainly wrong given that injuries to category

selective regions of ventral cortex (such as FFA) lead to specific and reproducible behavioral

deficits (Farah, 2004). Further, DCNNs and most other deep learning models lack many

well-established biological mechanisms that would promote both selectivity and functionally

specialized unit representations in the ventral stream. Likely, the debate around specialized

vs. unspecialized representations will be one of degree and whether specialization plays a

major role in how the ventral stream functions.

Third Issue: Cortical Maps are not Learned in DCNNs. The responses properties

of cortical neurons tend to vary smoothly across the cortical sheet in structures called cortical

maps (Bednar and Wilson, 2016). Here “vary smoothly” means that cortical neurons in close

physical proximity respond similarly. Researchers consider this aspect of cortical representa-

tion important because cortical maps have long been used as a window into understanding

the structure of cortical feature spaces (Bednar and Wilson, 2016). DCNNs arrange their

neurons in a completely arbitrary physical arrangement that is not influenced by the feature

space learned by the model. Because of their arbitrary physical arrangement, researchers

cannot directly compare the representations of DCNNs to the cortical map representations

found in primate brains. Given the goal of developing computational models of primate

visual cortical development, the absence of cortical maps in DCNNs is a serious limitation.

While there are many models for the cortical maps of low-level vision, there is a lack

of high-level cortical map models that also demonstrate high performance on behavioral

measures. Contemporary DCNNs show high classification performances, but their lack of

cortical maps means that they are very limited in making physiological predictions about the
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location of neural representation. Given this, there is a need for an alternative to DCNNs

that can generate biologically realistic cortical mapping behavior.

1.1 Aims and Research Questions

The overall goal of this study is to develop a neurally conservative computational model

of visual cortical learning, as an alternative to DCNNs and to test whether or not it ad-

dresses these issues via simulation. Towards this end, a new framework called the Temporal

Relation Manifold (TRM) framework and computational mechanism called Temporal Auto-

Untangling are introduced for understanding unsupervised category learning in visual cortex.

Also, a specific model that implements this theory, called the Integrated Cortical Learning

(ICL) model, is introduced and evaluated in a series of simulation studies. These simulation

studies in this dissertation are designed to address the three questions listed below.

Question 1: Do the mechanisms proposed in the new ICL model produce

high-level cortical maps that are organized by abstract category-like semantic

features?

To answer this question, I tested if the model developed physical groupings or regions of

neurons that were selective for the same high-level category on its cortical sheet. Further, I

tested if these category-selective regions could have been generated due to chance.

Question 2: Do the mechanisms proposed in the new ICL model learn more

specialized high-level units than would be predicted by DCNNs?

To answer this question, I used a procedure adapted from Parde et al. (2021) in which

units were deleted from the higher levels of DCNNs in order to better understand the func-

tional significance of individual units. Networks that are dependent on specific neurons

to encode specific categories (i.e. specialized) will degrade quickly when units are deleted,

whereas networks that don’t depend on specific units to encode specific categories (i.e. un-

specialized) will tend to degrade more gracefully. For this investigation I developed a novel
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way to compare a network’s actual deletion curve to the expected deletion curve it would

have if it had a perfectly unspecialized representation. This comparison allowed for a test

to determine if a network’s representation was fully unspecialized or not.

Question 3: Can the neurally conservative mechanisms proposed in the ICL

model perform visual category learning at a high level without supervision or

deep backpropagation?

To answer this question, I trained train the neurally conservative ICL model on multiple

image recognition benchmark datasets commonly used to train supervised and unsupervised

DCNN models and test if it could perform object classification at an acceptable level. This

was done entirely without the use of labels given to the network, or any form of deep error

propagation within the model.

1.2 Impact

First, the development of the TRM framework gives direction and guidance for building

more biologically inspired models of unsupervised visual learning, such as the ICL model.

But it can also be used to generate any number of new models, whether biologically focused

or more abstract, as it provides a rich set of theoretical ideas and constructs with which to

view unsupervised visual learning in general.

Second, although models of cortical map behavior are commonly used to understand

low-level vision, very little modeling work has been done to understand the cortical maps of

high-level vision. If successful, the ICL model developed in this project could open the door

to predicting the behavior of high-level cortical maps and understanding their functional

relevance.

Third, very few models that feature high performance can also make predictions about

the relationship between high-level unit selectivity unit specialization besides DCNNs cur-
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rently. If successful, the ICL model could give a more biologically relevant counterpoint to

predictions made with DCNNs.

Fourth, if successful, the ICL model developed in this project would be the first non-

DCNN architecture to demonstrate strong unsupervised learning on real-world datasets.

Further, it would demonstrate that more biologically inspired models can achieve high levels

of performance using far more neurally conservative learning mechanisms than DCNNs. This

would have scientific and practical consequences, as strong unsupervised learning has long

been a goal for both computational neuroscience and computation vision.

1.3 Dissertation Overview

The rest of the dissertation is organized in the following manner:

Chapter 2 consists of an unpublished manuscript draft that introduces a new conceptual

framework for supporting the development and evaluation of a new class of theories of higher-

level visual object recognition in the primate visual cortex. This new conceptual framework

is called the Temporal Relation Manifold (TRM) framework and it is designed to explicitly

incorporate temporal environment statistics as powerful cues for unsupervised visual category

learning using biologically plausible mechanisms. The TRM framework is an extension of the

DiCarlo and Cox (DiCarlo and Cox, 2007) object manifold framework. Although the DiCarlo

and Cox (2007) object manifold framework provides important insights into how the visual

hierarchy can identify objects by performing a series of successive transformations, it does

not provide an explicit proposal regarding how ”temporal statistics” might support learning

these transformations in an unsupervised manner. Temporal statistics refers to the general

tendencies of how an environment changes in time, such as how visual features and views of

objects tend to evolve in time (i.e. a view of cat tends to be followed by another view of a cat,

shifted rotated, scaled, or with a changed pose). In theory, these temporal statistics could be

a rich source of information about object and category identities. The TRM framework seeks
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to extend the object manifold framework with the use of temporal statistics. Within the

TRM framework, I developed a theory for unsupervised category learning called Windowed-

TAU, which can be implemented within more biologically plausible models of cortex.

Chapter 3 is a version of a second published manuscript that provides a new explicit

proposal of how known biological mechanisms that guide axonal development and plasticity

may be used to support computationally powerful unsupervised connectivity learning in

computational models of primate visual cortex. Although Chapter 3 provides an essential

in-depth examination of a particular aspect of the ICL model, the discussion in Chapter 3 is

not restricted to either the ICL model or the more general TRM framework. Rather the focus

in Chapter 3 is primarily on the possible biological and computational consequences of these

known mechanisms of axonal development and plasticity under specific implementations.

Chapter 4 introduces a specific biologically plausible model for implementing Windowed

- TAU theory within the TRM framework from Chapter 2. I call this model the Integrated

Cortical Learning (ICL) model because it integrates axonal, simple cell, and complex cell

learning with biologically motivated implementations. Further, the axonal model introduced

here called the arbor model is heavily inspired by concepts from the axon game model

introduced in Chapter 3. This chapter also gives a more in-depth description of the different

ICL models that were explored in the dissertation. The different variations of the ICL model

are referenced heavily for disambiguation in the following chapters.

Chapter 5 presents a series of simulation studies designed to develop and evaluate the

ICL model introduced in Chapter 4. Simulation Study 1 examines whether the cortical maps

in the ICL model tend to organize semantically related features together physically, similar

to the cortical maps of the high-level visual cortex. Simulation Study 2 examines whether

the cortical units in the ICL model become as specialized as dominant theories of primate

visual cortex suggest. Experiment 3 examines if the ICL models can perform unsupervised

category learning on real-world image classification tasks using widely accepted biological
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mechanisms. Simulation Study 1 showed that the ICL model did in fact learn topologically

contiguous cortical maps for category selectivity, but that there were caveats for interpreting

the finding. Simulation Study 2 showed that the ICL model actually learned surprisingly

unspecialized neural representations similar to DCNNs. Finally, Simulation Study 3 showed

that the unsupervised ICL model is already competitive with simple supervised DCNNs on

some image recognition tasks, but that it is also quite far from state-of-the-art. Code for

running versions of these simulation studies can be found here https://bitbucket.org/

jryland/icl-dissertation/.

Chapter 6 provides a brief summary and evaluation of the contributions of this disser-

tation as well as concluding remarks and suggestions regarding future research. One area

of future research proposed, focuses on improving the complex cell models used in with the

ICL architecture, which appeared to be a limiting factor in the simulation studies.
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CHAPTER 2

A FRAMEWORK, THEORY, & MODEL OF CORTICAL LEARNING

2.1 Preface

Chapter 2 is part of a separate manuscript. Chapter 2 includes the development of a new

framework and computational theory of cortical learning that extends DiCarlo and Cox

(2007) to account for how temporal variation of the environment could be used to support

unsupervised category learning compatible to their Object Manifold Framework. The frame-

work is called Temporal Relation Manifolds (TRM) and the computational theory is called

Windowed Temporal Auto-Untangling (Windowed-TAU). The development and explanation

of this new framework and theory are important contributions of this dissertation.

Further, this chapter is relevant to how the ICL model (which attempts to implement

the new framework and the new theory) will address all three of the critical issues laid out

in the aims section of the paper: unsupervised learning, the unit specialization debate, and

the development of cortical maps.

Relevance to Cortical Map Formation. While not explicitly required by the TRM

framework or the Windowed-TAU theory, the more efficient and neurally plausible imple-

mentations of these concepts will be composed of different types of Self-Organizing Map

(SOM) models (e.g. Kohonen (1982)). SOM models are commonly used to make explicit

predictions about the structure of actual cortical maps (Bednar and Wilson, 2016). In theory,

Windowed-TAU suggests a new type of multi-layer cortical map learning that may be suc-

cessful at developing high-level cortical maps and successful unsupervised category learning.

This new type of multi-layer SOM learning is central to the ICL model’s conception.

Relevance to Unit Specialization. Several core mechanisms of TRM-based ap-

proaches should induce specialized neural representations. Since ICL seeks to implement

the ideas from Windowed-TAU and TRM, I expected that it would produce more special-

ized unit representations than would be expected from DCNNs. But, I found this was not the
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case with the current implementation of ICL, however this result may be due to limitations

with the complex cell model used.

Relevance to Unsupervised Learning. TRM framework and Windowed-TAU theory

offer an explanation for how a model like ICL can learn category structure hierarchically

across layers without labels. First, Temporal Relation Manifold (TRM) framework, which

extends the DiCarlo and Cox (2007) Object Manifold framework to more explicitly incorpo-

rate the use of temporal statistics in an environment to spontaneously separate categories.

In other words this framework explicitly uses the way objects and visual features change over

time in order to define and learn the identity of objects and the nature of categories. Second,

Windowed Temporal Auto-Untangling (Windowed-TAU) specifies a set of computational be-

haviors that satisfy the TRM framework’s requirements and that can be implemented using

commonly theorized and accepted cortical mechanisms. Finally, this chapter introduces a

simplified model for illustration of the TRM and Windowed-TAU concepts.

2.2 Abstract

In this paper, we extended the DiCarlo and Cox (2007) tangled object manifold framework

of object recognition to better address the unsupervised nature of category learning. We

developed a novel Markov chain-based similarity metric that formally connects aspects of

manifold untangling with trace learning. Using these developments, we replaced unobserv-

able labels and artificial category boundaries with our observable Markov chain walk-based

similarity metric as a theoretically grounded target for unsupervised category untangling.

Further, we developed a new rationale for how neuronal input windows should be chosen for

an untangling algorithm using this new framework. This new framework for manifold untan-

gling and trace learning allowed us to synthesize aspects of simple cell learning, complex cell

learning, and axonal development theories, into a high-level theory of how the visual cortex

learns to separate object categories at a computational level. These ideas are relevant to
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the development of more powerful unsupervised machine learning methods and the general

study of the ventral visual pathway.

2.3 Introduction

DiCarlo and Cox (2007) popularized the concept of Tangled Object manifolds, which refers

to the idea that the viewing state of a visual object traces a high-dimensional manifold in

image space, tangling it with other object manifolds. Under this framework, the primary

goal of object recognition is to untangle these object manifolds from one another. This

idea has become a touchstone in computer vision, machine learning, and visual neuroscience

communities. Despite its popularity, the object manifold framework has changed relatively

little since its introduction. In this paper, we will integrate the concept of object manifolds

with trace theory to produce a new framework for understanding object recognition. Using

this new framework, we will synthesize several theories of cortical learning into a novel

computational theory of object recognition.

2.4 Re-Defining the Problem

DiCarlo and Cox (2007) provided a now classic way to understand the problem of object

recognition. DiCarlo and Cox (2007) envisioned the visual environment as a series of discrete

object categories combined with viewing parameters that produce a visual image. Under this

framework, an object at a particular location away from the viewer represents the state of the

environment. The environment state maps to a point in a sensory space that is experienced

as a visual image. All the possible ways an object or category of objects can vary in the

state space project to a tangled high-dimensional sheet of points in the sensory space. These

tangled sheets of images are called Object Manifolds.

According to DiCarlo and Cox (2007), the central problem of object recognition is that

these object category manifolds are tangled with one another in sensory space and no simple
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decision boundary will separate them. They suggest the goal of object recognition is to learn

a function that projects these manifolds into a new space where they are linearly separable or

untangled from one another DiCarlo and Cox (2007). This viewpoint can be easily applied

to the current state of the art supervised deep-learning with visual neural network models

with observable labels (Krizhevsky et al., 2012; Yamins and DiCarlo, 2016b). However,

(DiCarlo and Cox, 2007) are somewhat vague about how concepts from object manifold

framework could be applied to unsupervised category learning, though the paper did suggest

this possibility.

Many authors, including DiCarlo and Cox, have proposed that the temporal statistics of

the environment could be used instead of labels to learn an appropriate transformation from

the sensory representation space to support object recognition, but none have integrated

these ideas with object manifolds in detail (DiCarlo and Cox, 2007; Einhäuser et al., 2005;

Földiák, 1991). In this paper, we will extend the object manifold framework by replacing the

unobservable categories and labels as the organizing force in state space with an observable

metric of nearness that fits with classic concepts from unsupervised temporal learning such

as trace theory. To do this we will develop a new kind of object called a “temporal relation

manifold” that combines object manifolds with temporal information.

2.5 Temporal Relation Manifolds

In a philosophical sense, we can define the identity of an event in the universe (a cluster

of particles in a specific location and configuration) by the fact that similar events proceed

and follow it. To borrow from a well-trodden metaphor, the only reason we say a ship is

“Theseus’s Ship” is that there was a ship there yesterday called Theseus’s Ship that looked

very similar. This view is reductive, but useful in a practical sense, as it suggests that object

identity and category are derivatives of the temporal nature of a world that has no true

boundaries between events.
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Picture a simplified model of the visual environment where an observer sees one object

category at a time with variable viewing parameters (see Fig 2.1). This environment could

be thought of as a simple Markov chain where each unique combination of object category

and viewing condition is a state x in the environment state space Ω. For now, we will assume

that the state-space is organized topologically by category and viewing conditions as it is

in the object manifold framework, but this will change later. The observer cannot directly

experience the environment state x. Instead, the observer experiences the environment state

through a sensory space such as a retinal image space that severely tangles the environ-

ment state space Ω (see Fig. 2.1). More precisely, there is a function z that projects the

environment state x into a real-valued high-dimensional sensory space Z, z : Ω → Z, in a

roughly continuous way. As a complication, there may be noise on the dimensions of the

sensory space and nuisance axes of the environment state-space that chaotically perturb the

projection from state space to sensory space, making the projection function stochastic z̃

from a practical perspective.

Right now, this perspective is only a minor modification of the object manifold framework,

moving from projecting separate object state spaces into sensory space to projecting one

unitary environment state space into sensory space with additional temporal assumptions.

We are about to extend the concept of an object manifold much further.

In the object manifold framework, the goal of the observer was to learn a projection from

Z to a new space that linearly separates the object manifolds. In our new conceptualization,

the observer will try to learn a projection from the sensory space into a new space where

each axis reacts to a region of the state space. We will call this a region space R. A region

space is composed of a set of overlapping region functions, where a region function ri(z)

takes a point in Z and estimates whether that a sensory pattern originated from a region

of the state space Ω around some point xi (see Fig. 2.1). An ideal region function ri(z(x))

is a bell-shaped function on the state space Ω with a range between 0 and some max value.

14



Further, the level sets of a region function are convex regions on Ω. Fig. 2.1 shows what an

approximation of a region function might look in state space.

Because a set of ideal region functions will tend to group semantically related sensory

patterns, the region space will promote linear separability between meaningful categories (see

Fig. 2.1). In biology, these region functions would be implemented by a cascading series of

cortical areas that build towards high-level neurons whose selectivity resembles these region

functions.

To learn an ideal set of region functions, an observer will need a target for learning

that tells it what regions should look like. This target can be knowledge of the topology of

the state space or a measure of nearness that can be directly observed. Up until now, we

assumed that the environment state space has an innate idealized semantic organization, but

this organization is not directly observable in an unsupervised learning paradigm. Instead,

we will be using the fact that the environment generates short sequences, which tend to be

of the same or related objects, to help us define a new notion of the local organization on the

environment state space Ω that is observable (see Fig. 2.2). In theory, this will reproduce

many desirable qualities of the unobservable ideal semantic organization we used previously.

Before defining a nearness metric on Ω we need to introduce some terms and constructs.

First, a sequence of states generated by a Markov chain (like our environment) is often

called a random walk or just a walk. Second, the probability of transitioning between states

in a Markov chain is usually denoted with the matrix P , where Pij is the probability of

transitioning from state xi to xj. Further, the probability of transitioning between states

over multiple steps is denoted with Pτ , where P τ
ij is the likelihood of transition from xi to

xj in τ steps.

We define nearness between states xi and xj in Ω as the likelihood that they will occur

near each other in time. More precisely, we will say there is a similarity metric on Ω, called

M(xi, xj) (see Eq. 1 and Fig. 2.2), that defines the similarity between two states in Ω as
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Figure 2.1. Projections from State Space to Sensory Space
This figure shows how the static and dynamic aspects of our state space are constructed
for our simplified object recognition problem. (TOP) Shows the state space of separate
object categories varied across viewing parameters and how it is projected into a tangled
sensory space which makes the categories linearly inseparable. (MIDDLE) Shows how the
environment state transitions over time moving across viewing parameters most frequently,
but sometimes across category. (BOTTOM) The nearness between points for our states will
be defined as the likelihood that a walk will cross between them in a small approximate
span of time. This can be used to define contiguous and convex regions of the state space
via a metric function called M . Further, topology and regions given by M can be observed
via walks in the sensory space. Note that projecting walks associated with a region in state
space tends to highlight points in Z associated with a category.
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Figure 2.2. Defining Region Functions and the Temporal Relation Metric
This figure gives an overview of what the region functions would look like, and how they
can be calculated using an integral over all possible walks. (LEFT) The goal of our newly
re-defined problem is to find a series of overlapping region functions on the state-space. Here
a region function is a function on the sensory space that react softly to a convex region of
state space. Note that the region functions tend to be densely packed on states corresponding
to each category. Using a simple linear method each category could be discriminated using
only the values of the region functions. (RIGHT) These region functions are defined as the
likelihood of crossing between a central point and all other points in an approximate span
of time, see Eq. 1 and Eq. 2. This can also loosely be thought of as an integral over all the
vertices of all possible paths leaving or coming to a point weighted by the likelihood of that
path and by the temporal weighting function φ.
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the likelihood of a random walk going between xi and xj in approximately Ω steps, given

that the walk starts at either xi or xj. In Eq. 1 the temporal weighting Ω function weights

the probability of crossing from xi to xj in σ steps highly but gives progressively less weight

to the probability of crossings in fewer or greater than Ω steps. The specific choice for φ

is not important, but φ needs to converge to 0 as τ becomes large to avoid a known issue,

namely that walk expectations tend to be dominated by longer walks, which may mix to

the stationary distribution under common conditions (Von Luxburg et al., 2014). When this

happens a metric no longer relates to the concept of similarity in any meaningful way. A

convenient choice for φ used for demonstrations in this paper is the gamma density function

reparametrized to have its peak at σ.

M(xi, xj)
∞∑
τ

(
P τ
ij + P τ

ji

)
(2.1)

ri((z)) ≈ f(M(xi, x)) (2.2)

Note: f is some strictly positive monotonically increasing function.

This new metric gives a concept of nearness on our state space that can directly guide

region learning in several ways. Eq 2.2 shows how M can be used to directly define what a

region function ri centered on xi should look like. However, we are only using the similarity

metric M as a tool for defining the topology of the environment state space in an observable

way. But, by simply defining the topology of Ω, the metric M also defines what constitutes

a convex region on Ω, the learning of which is the main goal in our framework.

This new similarity metric can apply to points in a sensory space M(zi, zj). If two points

in sensory space appear similar according to the metric M, they may not look at all similar

according to a Euclidean or angular distance metric. Therefore, convex regions defined by M
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will look quite different than regions defined using Euclidean or angular metrics in sensory

space (see Fig. 2.1).

Similarity and distance metrics defined using walk expectations on Markov chains have

been used for finding missing links between items and deleting spurious links in graph-like

datasets, like social networks, word relations, and paper citations (Hashimoto et al., 2015).

However, using a walk-based similarity metric to theoretically ground the topology of the

state space for object views and categories is novel to our knowledge.

Let us recap our new conceptualization of the problem of object recognition (see Fig. 2.3).

First, we have an environment state-space called Ω with states like xi. Further, this state

space is organized topologically by a nearness or neighborhood metric called M which relates

how close two states are M(xi, xj). The state-space X projects into a sensory space Z that

makes it difficult to tell which part of the state space generated an observation in Z, such

as z(x0). The goal will be to find a transformation from sensory space into a region space

R that allows us to approximate the region of state space that generates each observation

in sensory space using only linear decision boundaries.

These new definitions make the relationship between temporal statistics and manifolds

more explicit than was stated in (DiCarlo and Cox, 2007). Under our extension of the

object manifold framework, the sensory space embeds not just the state-space, but also its

temporal statistics via its topology. Further, we are now defining the environment state

space’s topology using the similarity metric M(xi, xj), rather than idealized semantic axes.

We will refer to this topologically organized state space embedded in a sensory space as a

temporal relation manifold.

The temporal relatedness metric M allows us to bridge the concept of regions on the

temporal relation manifold, with the target of “trace learning”. Trace rules attempt to teach

a layer of cells to become less sensitive to change in their inputs over time, and hopefully

category and view variability, by making their target for learning a temporal average of past
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Figure 2.3. The Goal of Untangling the Temporal Relation Manifold
This figure gives an overview how the various spaces project to one another and what they
do. Reading from left to right, we start out with the state space Ω that projects into the
tangled sensory space Z through the function z(x). The goal of our hypothetical observer
is to learn another projection function r(z) that untangles the environment state space into
linearly separable regions in what we call region space R. This transformation from sensory
space to region space would be implemented as a cascade of neural layers. Importantly, the
concept of nearness between states is defined by the temporal relation metric.

activations (Földiák, 1991; Wallis, 1996). In practice, this means a layer of cells will broaden

their receptive fields so that each cell will respond to events that are happening and events

that are likely to happen soon in the same manner. This should sound familiar because

the receptive fields learned by cells using a trace rule will model the temporal similarity

metric M on a sensory space. In effect when a trace rule pushes a cell to learn to respond

invariantly to a temporally related group of inputs, it is attempting to learn a region of a

temporal relation manifold defined by a specific M and φ function.

Our goal is still to find a projection that differentiates single stimuli or snapshots in

time from one another in a useful fashion (i.e. we are still just doing category learning, not

sequence learning), despite introducing temporal statistics.
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Later we will discuss how temporal relation manifolds can lead to a new view of how

simple and complex cells untangle categories from one another (called Temporal Auto-

Untangling), but first, we need to discuss how the real world prevents us from learning

untangling functions directly on the sensory space and how to address these issues.

2.5.1 Folding on Window Spaces

If a sensory space has few dimensions (i.e. few pixels or receptors), and the temporal relation

manifold in sensory space is not too convoluted, then learning a projection to a region space

is somewhat trivial. For human vision, this is rarely the case, as our senses embed the

temporal relation manifold in a high dimensional space in a convoluted way, which makes

learning a direct untangling function intractable. For this reason, many techniques such

as convolutional networks (Krizhevsky et al., 2012), instead untangle on small groupings of

the original sensory dimensions or windows making the task locally tractable and then stack

these solutions in hierarchical layers. However, these window spaces “fold” the manifold. We

introduce the term folding here to mean that many stimuli have become indistinguishable

in a window space because of the loss of dimensionality compared to the full sensory space

(see Fig. 2.4).

Because of the folding problem, a windowed untangling algorithm must integrate infor-

mation across windows, usually via layering. But first, the untangling algorithm needs to

choose good windows, as some window choices will fold the temporal relation manifold too

severely, while others will make portions of the manifold fold in a useful way. A good window

structure can make an algorithm more efficient at untangling the temporal relation manifold

by requiring less representation and fewer training examples.

2.5.2 Choosing Appropriate Windows

It turns out that sparsely activating neurons that are highly predictive of one another make

better windows than sparsely activating neurons that are independent of one another. By
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Figure 2.4. Folding (Dimesnionality Loss) on Windows
This figure illustrates the general concept of folding, whereby when a full sensory space is
projected into a window space, many stimuli that were differentiable in the full space become
inseparable in the window space. (A) Shows two sensory images z(a) and z(b) of the objects
a and b (shown in blue/green), while also highlighting the window image on dimensions
ω. (B) Shows how in the full space z the objects a and b are easily separable despite tangling.
(C) Shows how the window dimensions ω fold the sensory space z such that objects a and b
are indistinguishable. Once stimuli have been folded together in the window space nothing
can separate them except information from other windows.

“sparse activity”, we mean that a given neuronal unit will rarely be active. We will call

groups of sparsely activating units that are mutually predictive sparse predictive windows,

and we will call groups of sparsely activating units that are independent sparse independent

windows. As sparse units are the default, we will often omit the term when describing

windows.

To better understand why window predictiveness influences untangling it is useful to use

a geometric view (see Fig. 2.5). The neurons of sparse independent windows rarely activate

at the same time, and for the majority of the time, none are active. This implies that most

of the sensory patterns cluster near the origin or the axes of the window’s activation space.

These regions compress many patterns to the same location in window space, as they have
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a low dimensionality. As such, these regions of the window’s activation space severely fold

the temporal relation manifold. We will label these highly folded regions origin folds and

axis folds respectively (see Fig. 2.5).

In a sparse predictive window, there will be a tendency for many neurons within the

window to fire at various levels of activation. This implies that a subset of sensory patterns

will spread out into the middle range of the window space. Because this middle region of

window space has a much higher dimensionality than the origin or the axis fold (roughly the

same dimensionality as the window itself), fewer patterns will project to the same location.

As such, the temporal relation manifold is far less folded there than in an origin or axis folds.

We will call this region of a predictive window space that comparatively expands parts of

the temporal relation manifold the expanded fold (see Fig. 2.5).

Because the expanded fold only represents parts of the full manifold and in a less folded

manner, it is generally more computationally tractable to ignore everything outside of the

expanded fold, when performing local untangling on a window. We will call this ignored

region the null response region.

When the right units are chosen to be part of a window, sparse predictive windows and

folding synergize to increase the power of untangling algorithms. To see how this happens,

we need to talk about how the temporal relation manifold is convoluted in the sensory

space. Real temporal relation manifolds twist in ways that are often self-similar, meaning

many parts of the manifold have the same shape along certain dimensions (see Fig. 2.6).

This self-similarity comes about because objects share features that themselves transform in

similar ways across sensory dimensions. Window spaces will often compress these self-similar

portions of the temporal relation manifold together, creating what we term an apparent

manifold. An untangling function on this apparent manifold untangles multiple self-similar

portions of the manifold in parallel (see Fig. 2.6), while the folding can be undone by

integrating information from other windows later. This parallelized untangling operation
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Figure 2.5. Anatomy of Folding in Sparsely Active Windows
Gives an overview of the parts of sparsely activating independent and predictive window
probability distributions. (LEFT) Shows how sparsely activating neurons distribute their
activation levels mostly at 0. (MIDDLE) Shows how an independent window formed from
two sparsely activating neurons creates a specific joint PDF, that has two prominent parts,
namely the origin fold which resides at the origin and the axis folds which reside along the
axes of the window space. The null fold and the axis folds are severely tangled because they
compress the entire state space into small slivers of the window space. Intuitive, neighbors
in the expanded fold share little in common as it compresses virtually all of the state space
to a point, and the neighbors on the axis fold tend to share little in common as well as they
are related by only a single sensory unit activation. (RIGHT) Shows how predictive windows
have another prominent part, namely the expanded fold which is a small subset of the state
space which is flares into a larger portion of the available window space. The expanded fold
is low density and neighbors in it tend to be generated by states with some strong relation
(such as sharing an edge or high-level feature in a common position). Further, neighbors in
the expanded fold will often be generated by neighbors on the temporal relation manifold.
Because of these qualities, the expanded fold is far less folded than either the axis folds or
the origin fold, making it ideal to perform untangling on.
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is the main advantage of using a windowed form of untangling, as it can vastly reduce the

computational requirements and number of learning examples needed to develop effective

representations.

In short, predictive window learning takes advantage of statistical redundancies in real-

world to vastly simplify the goal of progressively untangling temporal relation manifolds and

object manifolds.

2.5.3 Untangling Across Windows and Layers

To better understand how information is integrated across windows we need to discuss how

biological sensory systems are organized. A hallmark of low-level biological sensory systems

is that they tend to densely sample on some set of physical axes. For example, early human

vision densely samples across position and scale using features that are sparsely sensitive

to contrasts at different positions and spatial frequency. Because of this sampling, small

clusters of sensory dimensions or neurons will tend to be highly predictive of one another.

This tends to be true at every level of representation in the human ventral stream. We can

use this predictive structure to understand how information is hierarchically integrated.

We can imagine each sensory dimension or neuron zi of the sensory space Z as a node on

a lattice or a graph, where each sensory dimension zi acts as a random variable. Neighbors

on this graph are highly predictive of one another, and distant variables on the lattice are

approximately independent of one another. We call this lattice structure a predictive lattice.

Given this, we can interpret learning predictive windows as learning neighborhoods on the

predictive lattice.

The evolution of the predictive lattice across multiple layers of representation is what

drives integration across windows. A windowed untangling algorithm takes inputs organized

by one predictive lattice and produces outputs organized by a new predictive lattice. This

new predictive lattice tends to add new feature axes and contract old feature axes. For a
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Figure 2.6. Parallel Untangling as Windows
This figure gives a brief overview of the parallel untangling property of predictive windows.
The full temporal relation manifold for real sensory spaces and real sensory environments
will tend to have large amounts of self-similarity in its shape in Z. As such, when the
temporal relation manifold is projected into a window space it will often cause many sections
of the temporal relation manifold to overlap in a parallel manner, producing an apparent
manifold. This means that untangling the apparent manifold can untangle the self-similar
portions of the full temporal relation manifold that have been overlaid on one another. In
practice, information from other untangled window representations will be necessary to split
these untangled representations apart again. This property means windows can enhance the
efficiency and generalization potential of an untangling algorithm.
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visual neuroscience example, V1 introduces the feature axis of edge orientation and reduces

the sensitivity to position inherited from the inputs it receives from LGN (see Fig. 2.7). This

example shows how outputs of the new predictive lattice constructed from distant regions

of the original sensory lattice can become neighbors, and outputs derived from neighbors

on the original sensory lattice can become distant. The creation and contraction of feature

axes across multiple stacked layers allow the top-level neurons of a windowed-untangling

algorithm to integrate information across original sensory lattice (see Fig. 2.7).

While the predictive lattice is mostly a theoretical concept meant to characterize how

systems of predictive windows will tend to be learned on an input representation, it can be

used to more clearly conceptualize and guide discussions about how information is integrated

across layers of representation that perform some kind of predictive window learning. Model-

ing the predictive lattice of sensory representations directly could also be a major component

of predictive window learning architectures or a diagnostic tool for better understanding the

behavior of such systems.

2.5.4 Context on Windowed Connectivity

While the concept of the temporal relation manifold is a straightforward extension of the

existing object manifold framework, predictive window and predictive lattice learning are

major extensions to the existing view of object recognition. Unfortunately, window choice

is a neglected problem in the field of artificial neural networks (Quinlan, 1998). This lack of

development may be blocking progress in modeling human ventral visual pathways.

Currently, the state of the art is to use Deep-Convolutional Neural Networks as prox-

ies for deep cortical representation, however, these use fixed windows based solely on the

retinotopy of low-level visual cortex (Fukushima, 1980). Researchers believe that experience

during critical periods and adulthood refines the axonal windows of higher-level cortical ar-

eas (Innocenti and Price, 2005; Price et al., 2006). Further, research shows consistently that
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Figure 2.7. Predictive Lattice Development
This figure illustrates how predictive lattices evolve across layers, using human visual cortex
as an example. (A) shows an illustration of the predictive lattice for LGN to V1. Note
that neighbors are highly predictive but inputs that are distant on the lattice are not. (B)
Illustrates how the outputs of V1 add new feature axes of organization to their predictive
lattice and compress feature axes that were present in the input, note that output dimensions
derived from distant inputs may now be neighbors on the new predictive lattice. (C) Shows
how if this trend was continued out across multiple layers of cortex, IT level units would
take inputs derived from inputs spread across the original sensory lattice. Each step of
integration and window building is guided by the predictive lattice of the preceding layer’s
output, progressing from a space whose predictive lattice resembles the physical position
of sensing units to a space with a predictive lattice that resembles a map of the temporal
relation manifold.
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high-level cortical areas become progressively less retinotopic (Grill-Spector and Malach,

2004). This suggests that high-level connectivity is probably not well described using sim-

ple convolutional windows. Because of this, the next generation of models should explore

dynamics that develop learned window structures motivated by neuroscience. The concepts

of sparse predictive windows and predictive lattices can guide these developments.

As discussed, a full-fledged windowed untangling algorithm needs to learn windows and

integrate information across them. Later we will discuss a theory for how this may be

accomplished (called Windowed Temporal Auto-Untangling) that integrates the problems of

window choice and manifold untangling together and integrates information across windows

via layering.

2.6 Synthesizing a Solution from Theories of Cortex

2.6.1 The Hierarchical Theory of Cortex as Temporal Auto-Untangling

Early studies of primary visual cortex suggested the existence of a hierarchy between two

types of cells called simple cells and complex cells (Hubel and Wiesel, 1962). This theory

came to be called the Hierarchical Theory of Cortex (HTC)(Hubel and Wiesel, 1962). Under

this theory, simple cells respond to specific activation patterns while complex cells respond to

multiple simple cell inputs generating invariance to mild changes in the stimulus. This theory

has inspired many computational models such as neo-cognitron, the H-MAX models, and

Deep-convolutional neural networks (Fukushima, 1980; Krizhevsky et al., 2012; Riesenhuber

and Poggio, 1999).

In the following sections, we will detail how this hierarchy of simple and complex cells

can be interpreted as performing a limited untangling operation on window folded temporal

relation manifolds. Under our interpretation, this is done in a two-step process. First, the

simple cells divide the input window space into small pieces, and then the complex cells bind
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these small pieces together into groupings. These groupings are sensitive to regions of the

temporal relatedness manifold (see Fig. 2.8 and 2.10 for an overview). We call this two-step

process Temporal Auto-Untangling (TAU).

To understand these roles, let us first examine our goal. The ideal for untangling the

temporal relation manifold would be to learn how every point in the sensory space Z is

related to every other point according to the temporal relatedness metric on the environment

state space Ω so that we can learn a projection into a region space. In practice, doing this

individually for every point is intractable, given that there may be a practically infinite

number of observable points in the sensory space Z and only a finite number of observations

with which to relate them. However, the projection is roughly continuous on a small scale,

meaning we can bin observations for small regions of the sensory space Z. With this setup,

we can instead relate the finite set of bins to one another, which is computationally tractable

with finite observations. We will call the process of finding these bins z-binning. The next

step is relating the bins together.

We call the process of relating the bins together z-gluing. In the z-gluing process, a set

of units learn to respond to a temporally related group of bins. These groups of temporally

related bins attempt to be sensitive to specific regions of the temporal relation manifold.

Together, these overlapping groups of bins create a model of the topology of the temporal

relation manifold in Z by learning to respond to a web of overlapping region functions spread

across the temporal relation manifold.

At a high level, z-binning and z-gluing conform to the behavior of simple and complex

cells. The z-binning process learns narrow receptive fields similar to the receptive fields of

simple cells. The z-gluing process learns receptive fields that tolerate minor variations similar

to the receptive fields commonly proposed for complex cells.

Actual simple and complex cells work in a windowed context. Meaning that a proper

theory for how cortex implements Temporal Auto-Untangling would need to address how
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neuronal windows are chosen. Conveniently, current theories and models of axonal develop-

ment fit neatly with the concept of predictive window learning.

In the following sections, we will go into more detail about z-binning, z-gluing, predictive

window learning, and how they relate to theories of simple cell learning, complex cell learning,

and axonal development.

Figure 2.8. Z-Binning
This figure shows an overview of what a TAU untangling algorithm need to accomplish in
a simple low-dimensional environment. Starting at the top, we have a state space Ω on a
temporal relation manifold, with four points A, B, C, and D, highlighted in red. Next, the
projection into sensory space warps and adds noise to the state space producing a PDF on
the sensory space, causing the neighborial relationships between A, B, C, and D to change
significantly. Also note that walks observed on the sensory space almost never intersect
(i.e. the same exact stimulus will never be seen twice). Next the simple cells bin nearby
locations on the sensory space together, which if small enough will tend to contain observation
generated nearby regions of the state space. Walks on the bins of the sensory space will
frequently converge and intersect.
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2.6.2 SOM Models of Simple Cells as Z-Binning

For half a century, research has shown that the sensitivities of cortical neurons tend to vary

continuously across the cortical surface in maps known as cortical maps (Hubel and Wiesel,

1974; Obermayer et al., 1990). These cortical maps tend to be representative of the stimulus

distribution living on their input space. For instance, V1 representatively samples all the

possible edge positions, orientations, and scales that tend to occur in its input space with

more representation for more common combinations (Carreira-Perpiñán and Goodhill, 2002;

Swindale, 2004).

Kohonen (1982) introduced the concept of Self Organizing Maps (SOM) models, many

of which make excellent models of simple cell learning (Bednar and Wilson, 2016). In a

SOM model, physically neighboring neurons constrain each other to have similar response

properties and competitive learning forces these neurons to spread their response selectivity’s

across the input distribution in a representative manner (Bednar and Wilson, 2016; Kohonen,

1982; Swindale, 1996). As a direct consequence of these constraints, these models produce

topographical maps very similar to cortical maps.

It turns out that many of the fundamental behaviors of SOM theories and models of

simple cell learning are exactly those required for a strong z-binning algorithm.

As a reminder, the binning divides the input window space into small pieces, and gluing

connects these pieces to better reflect the temporal relation manifold. In a simple analogy,

TAU learning can be thought of as a connect the dots puzzle, where z-binning finds the dots,

and the z-gluing finds the lines that connect them. If the z-binning process learns well-spaced

dots, the z-gluing process can connect them into a coherent picture. On the other hand, if

the z-binning process learns badly spaced dots, then the z-gluing process will have a hard

time discovering useful connections between them. Next, we will discuss necessary behaviors

for a z-binning process to find well-spaced dots and relate these behaviors to theories of

simple cell learning.
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The spreading behavior of SOM models of simple cells is the central behavior that a

z-binning algorithm needs. This behavior causes the units of a SOM model to spread their

receptive fields across the entire input distribution. To be effective, a z-binning algorithm

also needs to learn a set of bins spread across all of the portions of Z generated by the

environment. Without this, the bin representation could become functionally blind to many

stimuli generated by the environment. As an exception to this, certain regions of window

spaces should be ignored.

The distribution matching behavior of SOM models of simple cells is another critical

behavior for the z-binning process. Distribution matching refers to the tendency for simple

cells to distribute their receptive fields in a manner in proportion to the occurrence of input

patterns. As a consequence, simple cells represent more frequently generated patterns with

a higher sampling resolution. The z-binning process needs to perform distribution matching,

as the density of bins will need to follow the density of the temporal relation manifold in

sensory space. Essentially, areas with more of the temporal relation manifold will tend to

be more highly convoluted, needing more bins to represent. On the other hand, areas with

less of the temporal relation manifold will tend to be less convoluted, needing fewer bins to

represent.

As a simple strategy to guarantee that the bin density follows the density of the temporal

relation manifold, each bin can change its size and location to have the same overall likelihood

of catching input patterns as every other bin (see Fig. 2.8). This also has theoretical benefits,

as guaranteeing that the bins are roughly equal in likelihood makes it more conceptually

consistent to use the temporal relation metric as a target for learning as it would otherwise

need to incorporate the stationary distribution. The temporal relation metric M intentionally

does not use the stationary distribution, because this would severely weaken it as a similarity

metric. For an infinite continuous state space, the stationary distribution can be avoided

simply by using an arbitrary measure that gives each point a uniform probability density,
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and as a theoretical construct, this has little practical consequence. However, in the sensory

space, an unequal stationary distribution across stimulus locations will need to be addressed.

Bin size is an effective way to combat this issue.

In many SOM theories of simple cell learning, the activation of multiple neurons can be

used to interpolate the position of a stimulus in sensory space more precisely. This also has a

practical benefit for z-binning, as making the bins too small to increase accuracy will lead to

an unwieldy number of bins per window and making the bins too large will make it difficult

to approximate relationships between points accurately.

A simple way to implement bin interpolation is to use soft bins. Soft bins are bins that

have degrees of membership for observations and with borders that fade gradually into one

another. This means that an attribute of a point in sensory space can be approximated or

interpolated by using a weighted average of that attribute for bins the point belongs to.

Bin interpolation has a second benefit. An interpolated bin function can preserve more

information than a simple bin function, because a bin function is a piecewise discontinuous

projection, while a bin interpolation function can be a continuous projection. This preserva-

tion of information is important because, in a multi-layer approach, the expectation is that

the first layer cannot reach the desired transformation, and thus preserving information that

may eventually be critical to the full untangling function is key.

While z-binning could in theory bin locations of a window or sensory space using some-

thing like competitive radial basis units, most models of simple cells assume that the direction

of stimulus patterns is the chief concern. This can be accomplished using the typical weighted

summation followed by non-linearity unit type found in most neural networks today. How-

ever, to make the output of such units act like directional bins, we need to apply some sort

of competition between them to reduce the activity of distant bins and enhance the activity

nearby bins. This can be accomplished using soft-max like operations or lateral inhibition

and recurrent activation schemes. Generally, all the logic developed so far concerning z-
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binning and z-gluing still applies even when the bins are spread on directions rather than

locations within a space.

Some models seek to reduce their sensitivity to the length of vectors explicitly by soft

normalizing the window activations. When using soft normalization on a window space,

many activation vectors will explicitly be pushed to the unit hypersphere, while a large

majority of patterns will still be folded at the origin (see Fig. 2.9). Because of this it makes

sense for a Z-binning algorithm to treat the region near the origin as a dead zone as it is

too compressed to learn useful bins on (see Fig. 2.9). Under a soft normalization, scheme

the expanded fold will be mostly compressed to the surface of a hypersphere (see Fig.2.9).

All of the logic developed so far also applies to binning near the surface of a hypersphere, or

more complicated hypersurfaces.

To wrap-up the discussion of z-binning, it would be useful to give an example of how a

specific simple cell model can implement z-binning. As an example, consider the LISSOM

model (Sirosh and Miikkulainen, 1994) on acting on single input window. The LISSOM or

Laterally interconnected synergistically self-organizing map model, was originally designed

to be a more biologically plausible alternative to the more widely known Kohonen SOM

model (Kohonen, 1982). LISSOM will learn to distribute its units’ receptive fields according

to the distribution of input patterns, satisfying the dynamic resolution requirement of a

z-binning algorithm. LISSOM does this by picking a subset of the neurons in a 2D map to

learn to respond more strongly to the current input activation pattern, after every training

stimulus. These neurons are chosen through competitive interactions mediated by use of

lateral inhibition, excitation, and recurrent activation. Further, when presented a stimulus,

only a small number of neurons whose weights are near the stimulus will be activated due

to this lateral inhibition, this can be thought of as a soft-bin representation for the direction

of the stimulus in sensory space. Given these behaviors, models of simple cell learning like

LISSOM are powerful z-binning mechanisms.
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Figure 2.9. Z-Gluing
This figure show how soft normalization distorts the activation distribution of a window
space. Soft normalization will often push most of the non-zero activation values to the
surface of the unit hypersphere (Note, that in a sparse predictive window the vast majority
of values will still be close to zero). Note that for the volume containing non-zero value this
is only a small drop in dimensionality, and thus the expanded fold of a predictive window
will still fold the temporal relation manifold far less than the origin or axis fold. Given this,
the bins should be restricted to responding to the area near the unit hypersphere’s surface.
As an interesting side note, the bins on the unit sphere’s surface can be regarded as a type
of Voronoi cell system.
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To improve the dynamic resolution aspect of LISSOM, we could go a step further and use

mechanics from the GCAL extension of LISSOM (Stevens et al., 2013). GCAL features a

homeostatic adaptation that causes each of the units on its map to attempt to have the same

average firing rate, by adjusting each unit’s pre-threshold bias term. This can be interpreted

as units widening or narrowing the size of their bins in order to have approximately the same

probability of being entered, which is another desirable quality for a Z-binning mechanism.

GCAL also includes something called gain control, which loosely approximates a soft nor-

malization scheme for the window spaces, although it distorts the activation distribution in

much more complicated manner.

2.6.3 Trace Rule Theories of Complex Cells as Z-Glueing

There have been many theories proposed for what complex cells do in the visual hierarchy

and how they learn, but here we will focus on trace theories. Trace theories of complex

cell learning assume that images which appear next to each other in time tend to come

from the same object or event, and that this can teach complex cells a limited form of

invariance (Földiák, 1991; Wallis, 1996). Trace theories accomplish this by having a complex

cell attempt to predict a running average of or temporally smoothed version of its recent

activations using only its current input (Michler et al., 2009; Rolls and Stringer, 2001; Wallis,

1996). This causes complex cells to learn receptive fields that are less sensitive to time

than their simple cell inputs, and in theory less sensitive to natural image variation within

categories and for common view transformations.

To understand how trace theories of complex cell learning connect to z-gluing it would

be useful to recall where the simple cells left off. The simple cell layer divides the sensory

space Z into many bins on a sensory or window space, but we do not know which of these

bins represent neighboring regions on the temporal relation manifold. We can learn this

by observing how temporal sequences generated by the environment travel across the bins.
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Figure 2.10. Z-Gluing continued from Z-Binning
Continuing the process from the z-binning figure, the complex cells group sensory space
bins together that tend to be visited close together in time. The red gradient indicates the
membership for a single complex cell, note that that complex cell’s response approximates a
region function over the state space. Altogether, the competing complex cells will spread their
approximate regions functions across the visible portions of the state space projected into
the sensory space. This system of complex cells and their membership overlaps can be used
to approximate the topology of the environment state space and the temporal relatedness
metric. While this example shows a simple temporal relation manifold embedding without
the need for windowing, it also demonstrates how powerful a TAU algorithm is at linearly
untangling state space regions.
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These temporal sequences or walks will trace the structure of the temporal relation manifold

linking bins that represent neighboring areas of the temporal relation manifold. We can use

trace learning to encode the linkages or glue between the bins.

Trace learning models the temporal relation manifold in a straightforward manner. In

learning to make their activity more stable, a complex cell will distribute its weights across

all of the simple cells or bins that are likely to activate in a short time span from its own

activation (Michler et al., 2009; Rolls and Stringer, 2001; Wallis, 1996). The way trace

learning distributes the weights of complex cells, is directly analogous to the way the temporal

relatedness metric M evaluated around a point highlights points in state space or sensory

space that are likely to occur within short time spans (see Fig. 2.1 & Fig. 2.10). Given this,

complex cells can be understood as learning to respond to regions of the temporal relation

manifold defined by M . Further, competitive dynamics will cause complex cells to distribute

their sensitivities across the available regions of the temporal relation manifold defined by

M (see Fig. 2.10). As a result of their coverage and overlap, the regions learned be used to

approximate the nearness between any two stimuli Z on the temporal relation manifold (see

Fig. 2.10).

To give an explicit example of how a trace rule can be used to implement z-gluing, we will

consider a simple LISSOM model where its Hebbian update rule has been modified to use

a “delayed trace rule” and its inputs are z-bin membership values. Here delayed trace rule

refers to a trace rule where the temporal average or trace of a layer’s activity is dominated by

a small time period before the current time step. This has the impact of reducing a complex

cell’s bias towards reinforcing only its most preferred input pattern (as the standard trace

rule does) and corresponds to modeling a more general temporal relatedness metric M with

a nonzero σ delay parameter. Similar delayed trace rules have been examined and proposed

in the past, and researchers have shown they bear strong relations to temporal difference

learning and error correction (Rolls and Milward, 2000; Rolls and Stringer, 2001). A complex
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cell modeled by such a delayed trace LISSOM model would learn to activate in response to

a subset of z-bins that were highly temporally related to one another according to an M like

metric, and the competitive interactions of the LISSOM model would push each complex

cell to learn a unique group of temporally related z-bins. Together, these mechanisms would

implement z-gluing quite efficiently.

Researchers have long proposed that complex cells may perform a Max like operation

(Riesenhuber and Poggio, 1999). So, as an additional modification of our implementation

it might be useful to change the activation function of the complex cells from a weighted

sum to a weighted max function. Here meaning weighted by each bin’s membership in a

complex cell’s group. This would also make a z-gluing algorithm correspond more to the

pooling layers of contemporary convolutional neural networks which typically use spatial

maxpooling operations (Krizhevsky et al., 2012; Yamins and DiCarlo, 2016b).

2.6.4 Axonal Plasticity as Predictive Window Learning

The role of axonal plasticity in understanding the cortical algorithm has mostly been ignored

in neural network modeling circles, even though axonal plasticity has a huge impact on what

neurons can represent.

For decades, research has shown that axon tracts connecting to cortical areas and be-

tween cortical areas tend to project in orderly maps that often preserve the projecting area’s

topology, while also being sensitive to the activation dynamics between the areas (Benson

et al., 2001). When long-range primary axons reach their destination tissue they branch out

into axonal arbors, think a literal tree of axon branchlets. The branchlets of these arbors will

grow and shrink in specific directions while maintaining the same overall size of the arbor

(Gogolla et al., 2007; Meyer and Smith, 2006; Portera-Cailliau et al., 2005; Ruthazer et al.,

2003). This means the axonal arbors effectively move across their target tissue in response

to certain cues. For our purposes, we will focus on the activity-dependent mechanism. Due
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to the activity-dependent mechanism axonal arbors migrate towards other axonal arbors

and possibly towards the dendritic arbors of neurons that tend to fire together (Jamann

et al., 2018; Katz and Shatz, 1996). This mechanism organizes the small-scale wiring of

cortical projection maps with a high precision on top of other forces which tend to organize

projection maps on a larger scale.

Axonal plasticity with emphasis on the activity-dependent mechanism appears to imple-

ment a sophisticated form of predictive window learning. When axonal arbors group with

other co-activating axonal or dendritic arbors it changes the structure of neuronal windows

for the receiving tissue. When axonal arbors group this way, a receiving dendritic arbor will

only be able to synapse with axons that are highly predictive of one another forming a pre-

dictive window. At a higher level, the collection of these windows will model the predictive

lattice for a set of inputs. This is because other forces in axonal learning, such as competi-

tion for dendritic real estate, will force a model to learn windows sampled from across the

predictive lattice in a manner that is representative of the available neighborhoods.

We can implement predictive window learning in neuro-plausible manner using a modified

multi-factor axonal development model. The Fraser and Perkel (1990) multi-factor model

was the first to integrate the activity-dependent mechanism with other forces in axonal

development. Unfortunately, the original Fraser and Perkel (1990) model did not feature

neural activation dynamics and instead used a stand-in to control the attractive force on

axonal projections targeting a layer of cortex. The endpoints of the axonal projections

are called axonal arbors. We would propose updating the model to have explicit neural

activation dynamics. Further we would propose using a fully differentiable Hebbian like

rule for modeling how co-activating axonal arbors can be attracted to one another and

to co-activating post-synaptic dendritic arbors. Allowing axonal arbors to co-locate as a

result of co-activation will implicitly build post-synaptic neural windows that are linearly

predictive and will thus implement a type of predictive window learning all on its own. But if
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axonal arbors can co-locate as a result of co-activation with post-synaptic neurons, then even

more complexly related axonal arbors can be pulled together into windows. Together, these

mechanisms would make an updated Fraser and Perkel style model a powerful predictive

window learner.

2.6.5 Putting TAU and Window Learning Together

When predictive window learning and TAU (z-binning and z-gluing) are combined, they

allow successive cortical layers to both untangle and unfold the temporal relation manifold

of the environment into representative convex regions of the environment state space (see

Fig. 2.11). Working together these mechanisms should be able to untangle the temporal

relation manifold because each successive layer will have complex cells that respond to fewer

and fewer discrete regions of the state space as more layers are added, converging to complex

cells that only respond to one region each of the environment state space after a finite number

of layers (see Fig. 2.11). After this state has been reached, categories should be linearly

separable in the region space if the temporal statistics of the environment support strong

categorical distinctions. In practice meaningful categories may be linearly separable well

before the temporal relation manifold has been fully untangled into an ideal region space.

Together, these mechanisms constitute a novel computational theory of how visual cortex

may separate object categories in a layer-wise unsupervised fashion. We will call this full

theory windowed-TAU or W-TAU.

2.6.6 The Potential Benefits of Windowed-TAU

Implementing Windowed-TAU could advance cognitive neuroscience and machine learning

in several important ways, but in this paper, we will focus on two.

W-TAU models may advance unsupervised learning and be far more data efficient than

contemporary models in general. Current state of the art supervised learning models require
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Figure 2.11. Putting TAU and Window Learning Together
This figure gives a simplified overview of how the complex cells of a hierarchy of Window-
TAU layers respond to more and more convex regions of the state space as more layers are
added. The temporal relation manifold is only modestly tangled in the full sensory space z,
but it is folded on the available windows. The first TAU layer learns complex cells on window
1 and window 2, but each of the first layers’ complex cells ci respond to multiple regions of
Ω folded together. The second TAU learns complex cells on the window 1′, but its complex
cells c′j can respond to singular regions of Ω. Note that this example is for visualization only,
and aspects have been simplified. For example, the input units are not sparsely activating,
and the windows are chosen in a completely arbitrary fashion, to make it easier to follow.
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vast amounts of cleanly labeled data to learn effective representations, while unsupervised

machine learning models are simply not effective to the same degree even with large amounts

of data. To understand how W-TAU might address this it is useful to look at how contem-

porary models are built.

Most state-of-the-art models today use an abstract measure of behavior and deep error

propagation down through their layers in order to learn. For example, most networks use deep

gradient descent with a simple classification objective that measures the difference between a

model’s guess and the ground truth. By definition, these techniques will seek a path of least

resistance to raise their performance and do not care about the nature of the features that

they learn. We theorize that this behavior may ultimately cause deep neural networks to

learn large collections of low-level image statistics rather than high-level information about

object categories. This would happen because low-level image statistics are a kind of plentiful

low hanging fruit in natural image datasets that are easy to learn. Research suggests that this

learning of facile features does indeed happen and may be endemic to today’s architectures

(Ilyas et al., 2019; Jo and Bengio, 2017; Szegedy et al., 2014b). We theorize that this ‘low-

hanging-fruit’ form of learning requires large amounts of labeled stimuli to recover enough

low-level image statistics to reach a reliable level of performance. If this theory is correct,

then data crunch may be a persistent problem for conventional deep-learning models with

no simple fix.

W-TAU models, on the other hand do not use deep error propagation. Every, neuron and

connection in W-TAU is competing to learn something useful and unique from all its com-

panions, with ‘useful’ being fully locally defined. Further, W-TAU is not trying to optimize

an abstract behavioral metric, rather each successive layer of neurons is independently trying

to improve its mapping of the underlying state space. Because of this, W-TAU is unlikely

to take advantage of ‘low-hanging fruit’ or facile image statistics when choosing features. In

fact, it may be pre-disposed to progressively ignore low-level regularities as more layers are
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added, because low-level regularities will not help it learn a good mapping of the state-space

using purely bottom-up local mechanisms.

Interestingly, high-level neurons in deep neural networks such as deep convolutional neu-

ral networks tend to learn semantic information at the space level (Parde et al., 2020). From

a purely computational perspective, the objectives and top-layer architectures for these net-

works make no distinction between different rotations of feature sets. Thus, it would be

highly unlikely for a network like this to learn a feature space where the meaningful directions

in the space happen to be along the space’s main axes (i.e. meaningful unit representation).

This may even help these networks perform better per-unit, but it also means they may not

be very appropriate for modeling high-level learning in the ventral stream where neurons

are generally thought to be somewhat specialized. In contrast, the units of W-TAU models

learn regions of the temporal relation manifold. Under, the right circumstances these regions

will be semantically meaningful, making W-TAU a potentially better candidate for modeling

high-level visual learning on a unit level.

Given W-TAU’s unique qualities, it may hold significant advantages over current conven-

tional models. However, W-TAU models are untested, and it is quite possible that they may

not work at all. If they do work, implementations of W-TAU could face other challenges.

2.6.7 Challenges for Windowed-TAU

While z-binning, z-gluing, and predictive window learning can be implemented by many

existing algorithms with only mild modification and combination, there will likely be some

difficulties associated with building and training algorithms that fully implement windowed-

TAU.

Firstly, today’s hardware and software libraries are optimized for convolutional opera-

tions, not dynamically changing sparsely connected neuronal windows. While clever math

can be used to make fully connected layers behave like dynamic window layers, this approach
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is orders of magnitude less efficient and does not scale well on today’s hardware. Impor-

tantly, implementations that approach the efficiency of convolution are possible, as we have

implemented them repeatedly, but they rely on operations which have not been thoroughly

optimized to work with today’s parallel computing architectures.

Second, most of the models mentioned that implement z-binning, z-gluing, and predictive

window learning, tend to be finicky and hyper-parameter sensitive with no clear way to

optimize these hyper-parameters past first layers where early visual cortex can be used as a

guide. In theory, this might best be addressed by updating these models to auto-tune their

hyper-parameters online using simple heuristics, but this will take experimentation.

Third, the choice of datasets that would truly leverage windowed-TAU learning is poor.

Most datasets intended for object category classification do not contain natural tempo-

rally related observations for all their subjects. On the other hand, most sequence learning

datasets do not contain a rich array of object categories as their focus. In the short term,

this could be addressed in several ways. Datasets which do not include temporal observation

could have faux temporal observations created by using progressive image transformations

and arranging related categories to be presented serially with a high likelihood. Alterna-

tively, a windowed-TAU algorithm could focus on learning to differentiate specific identities

within an object category, such as learning to recognize faces from a dataset of short video

clips. These dataset problems that will likely be solved as datasets evolve naturally.

These challenges suggest that the first tests of windowed-TAU will probably be on a small

scale and that it may be some time before the wider benefits of windowed-TAU algorithms

can be examined fully, if it can be implemented successfully at all.
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2.7 Simple Implementations of Windowed-TAU

2.7.1 Basic TAU Example

Here, we will provide a brief sketch of a temporal-auto untangling model that lacks window

learning. Fig. 2.12 shows a two-layer model where each layer is a Kohonen self-organizing

map. The first layer or simple cell layer spreads radial basis units out into the sensory space

to detect small regions of the temporal relation manifold. The second layer or complex cell

layer looks at a weighted temporal average or trace of the first layer’s activations, which

allows it to learn groups of simple cell units that are related.

While this model can learn to represent the topology of a simple temporal relation man-

ifold, it will struggle with the complexity of a real-world situation because it cannot take

advantage of the self-similarity of more complex temporal relation manifolds via window

learning. Further, without window learning there is little reason to stack this model hierar-

chically as information does not need to be integrated across windows. To compensate for

the lack of windows or window learning this model will need to be prohibitively wide and

see an excessive number of examples to be effective in real world environments.

While this basic TAU model is unlikely to be useful in more demanding situations, it

does outline the loose layer structure that more sophisticated W-TAU modules will use and

how the TAU process can work in simplified low and high-dimensional environments.

2.8 Discussion

In the re-defining the problem section, we extended the object manifold framework by replac-

ing unobservable labels and artificial category boundaries with an observable Markov chain

walk based similarity metric. This similarity metric formally captures many heuristic ideas

about trace theory and allows concepts from object manifolds to be directly integrated with

unsupervised temporal learning theories. In this section, we also used this new framework
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Figure 2.12. Shallow TAU model
Shows a basic TAU model, where z is the input sensory space, s is output of the simple cell
layer, c is the output of the complex cell layer, and η refers to the lateral influence of neurons
on one another as a function of the current activation of the layer. s̄ calculates a trace for the
activations of s weighted by the φ function. Finally, note that the weight update function
for the complex cell layer is dependent on the best match for the current trace ctr, while the
actual output of the network is only dependent on the current activation of the simple cells
s.
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to understand why windows should be built from sparse predictive units, as seen in real

sensory systems, rather than sparse independent units or random selections of units. Predic-

tive windows “fold” the temporal relation manifold far less than non-predictive windows and

leverage the self-similarity of the temporal manifold to reduce training and representation.

Further, the global structure that the windows follow, namely the predictive lattice, directly

guides how information is integrated across layers.

In the synthesizing a solution section, we used the temporal relation manifold framework

to conjecture potential roles for axonal learning, simple cell learning, and complex cell learn-

ing, in learning a cascaded untangling function. These roles are predictive window learning,

z-binning, and z-gluing. Taken together these roles constitute a novel computational theory

of object recognition. This theory which we call W-TAU can be implemented by combining

existing models with modest adaptation. The potential advantages of W-TAU models sug-

gest they may be a useful avenue for future model development. However, they are untested

and may have their own practical drawbacks.

In summary, we extended the DiCarlo and Cox (2007) object manifold framework of ob-

ject recognition to robustly integrate theories of unsupervised object category learning, which

was lacking their previous framework. This extension introduced several novel fundamental

concepts: temporal relation manifolds, predictive windows, and predictive lattices. Using

this new framework, we developed a new theory of cortical learning called windowed-TAU,

that integrates aspects of simple cell learning, complex cell learning, and axonal development

theories, within the temporal relation manifold and predictive sensory lattice framework. We

hope that these concepts and theories can provide a new way of looking at the problem of

object recognition and investigating the solutions visual cortex may use.
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CHAPTER 3

A MODEL OF AXONAL PLASTICITY

3.1 Preface

Chapter 3 is a version1 of the published article Ryland (2021), which gives a brief review of

axonal plasticity phenomena and introduces a model to better integrate these phenomena

into typical artificial neural network architectures. The integration of axonal plasticity with

other cortical learning dynamics is a major contribution of the ICL model. Although Chapter

2 briefly discusses axonal plasticity, it requires a more in-depth treatment as it is a very major

addition to the standard neural network framework. As an additional note, the axonal

plasticity model introduced in this article directly inspired the axonal plasticity model that

will be used in the ICL model, but it is substantially different in implementation. However

this article should give a good overview of the types of concerns axonal models of connectivity

need to address. The specific axonal model used in ICL will be discussed in detail in chapter

4.

This chapter is also directly relevant to how the ICL model addresses the three issues

raised in Chapter 1: unsupervised learning, the unit specialization debate, and the develop-

ment of cortical maps.

The ICL model address these issues by adapting its connectivity using an axonal devel-

opment model similar to the one featured in this article. In theory, this means that the ICL

model should build appropriate window structures for feature development at every level of

representation and in a fully unsupervised manner.

Relevance to Cortical Map Formation. Many axonal development models including

the ones developed in this manuscript are cortical map models. This paper demonstrates

1Chapter 3 is adapted from Ryland (2021) first published in Neural Processing Letters, 53, pages
1119–1146 (2021) by Springer Nature. Reproduced with permission from Springer Nature.
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that axonal learning supports the development of many low-level topologically organized

cortical feature maps like those seen in V1 simultaneously. The use of this kind of axonal

plasticity model in the ICL architecture will help it learn topologically organized high-level

feature maps like those seen in the high-level ventral visual cortical areas.

Relevance to Unit Specialization. Although this topic is not addressed in the article,

the use of axonal plasticity dynamics forces the ICL model to use narrow windows at all levels

of representation. As a consequence of these axonal learning dynamics, a single unit can only

connect to a small number of units in the next layer that are physically adjacent. As such,

even though the connections are learnable, they are highly constrained in a manner that

likely promotes the development of more specialized feature representations and inhibits the

development of less specialized feature representations.

Relevance to Unsupervised Learning. From a neural mechanism perspective, DC-

NNs lack what may be a critical type of plasticity. Real cortical layers are connected by

axonal projections, which form by a complicated process guided by multiple interacting

forces (Benson et al., 2001). These axonal projection maps are highly plastic, guided by

both genetic predispositions and sensory experience (Innocenti and Price, 2005; Price et al.,

2006), as will be discussed in this article. On the other hand, DCNNs use a fixed connec-

tivity (or window) structure that partially models the retinotopically organized connectivity

learned by primary visual cortex V1 (Fukushima, 1980). However, this simple connectiv-

ity structure is likely a poor model of higher-level cortical connectivity, as higher areas are

nowhere near as retinotopically organized (Grill-Spector and Malach, 2004). The use of these

inappropriate connectivity structures may actively impede strong unsupervised learning as

connectivity can be viewed as a critical guide to effective feature development.
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3.2 Abstract

Axonal growth and pruning are the brain’s primary method of controlling the structured

sparsity of its neural circuits. Without long-distance axon branches connecting distal neu-

rons, no direct communication is possible. Artificial neural networks have almost entirely

ignored axonal growth and pruning, instead relying on implicit assumptions that prioritize

dendritic/synaptic learning above all other concerns. This project proposes a new model

called the axon game, which allows biologically-inspired axonal plasticity dynamics to be in-

corporated into most artificial neural network models in a computationally efficient manner.

First, we demonstrate that the axon game replicates multiple previously defined pre-synaptic

cortical maps. Second, we demonstrate that the axon game integrated with a synaptic

learning model similar to the Laterally Interconnected Synergetically Self-Organizing Map

(LISSOM), can simulate the interaction of axonal plasticity and synaptic plasticity within

one model creating both pre-synaptic and post-synaptic cortical maps. Finally, I show that

pre-synaptic and post-synaptic maps can be decoupled from one another dependent on the

relative sizes of dendritic and axonal arbors. This coupling phenomenon indicates a novel

theoretical prediction about how axonal and synaptic dynamics interact.

3.3 Introduction

Humans integrate myriad sensory signals into high-level understandings of their environment.

To aid integration from one layer of cortex to another, neurons in a given layer receive input

from only small groups of neurons in a preceding cortical layer (Hubel and Wiesel, 1962,

1965). In this paper, we define a group of neurons that forms the input to a particular

neuron as its window. The main constraint on a neuron’s window are the axons that project

to that neuron. Axons fundamentally limit which neurons can synaptically communicate

with one another. In order to form synapses, the short-range dendrites of the receiving
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neuron must make contact with the long-range axonal branches of the input neurons. In

this sense, axonal development is of critical importance because it specifies which neurons a

given neuron is capable of forming synapses with during gestation, early development, and

maturation. The structure of axon projections can be represented abstractly as a mask on

an artificial neural network’s sparsity structure.

Axonal development and plasticity contrasts with synaptic development and plasticity.

Once an axon has made contact with the dendrites of a neuron, synapses can form, change

in number, and change in efficiency. As such, axons are often thought to have a roughly bi-

nary influence on whether one neuron can talk to another (Quinlan, 1998), whereas synapse

plasticity affects how one neuron influences another in a roughly continuous fashion. Synap-

tic/dendritic learning is abstractly represented in most artificial neural networks as weight

changes that are determined by gradient descent, Hebbian dynamics, or other learning rules.

Given these basic aspects of neuroscience, it seems like the biological processes that sub-

serve axonal growth/pruning and synaptic plasticity are largely distinct. In this project, we

propose that the computational goals of axonal growth/pruning and synaptic plasticity may

also be distinct. The existing literature has largely considered this to be a single process, and

the vast majority of architecture development has been focused on abstractly modeling the

synaptic qualities of neural development. This paper explores axonal-development modeling

as a companion to synaptic/dendritic development.

In Section 3.4, we briefly review some of the basic findings of the field of axonal devel-

opment for the purpose of relating some of the known principles of axons to artificial neural

network architectures.

In Section 3.5, we will review how current artificial neural network architectures approach

axonal development, and how models in computational biology have already approached

axonal development with greater emphasis.

In Section 3.6, we introduce a direct model of axonal development called the axon game.

The axon game is a model that allows for the incorporation of abstract versions of many

53



of the behaviors of axonal development, which can then be incorporated into many modern

neural network architectures.

In Section 3.6, we further outline the axon game with more specific detail.

In Section 3.7, we demonstrate that the axon game allows for the development of many

different cortical maps using a single, large-scale cortical area simulation of axonal arbor

development. These maps include visual field maps, spatial frequency maps, and ocular

dominance maps.

Finally, in Section 3.8, we use the axon game in combination with a modified version of

a common neural network model of cortical map development to demonstrate the feasibility

of jointly simulating axonal map and synaptic map dynamics efficiently within the same

model. We show the development of pre-synaptic ocular dominance maps post-synaptic

ocular dominance maps and post-synaptic orientation maps within the same simulation.

We also discuss a novel prediction that arose from my simulations of axonal and synaptic

dynamics, namely that axonal arbor maps and corresponding synaptic cortical maps can be

highly coupled or decoupled with one another depending on several factors under this model.

3.4 Axonal Development and Plasticity Review

One of the primary types of evidence used to understand the structure of neuronal windows

is axon tracing (McLaughlin and O’Leary, 2005). Axon tracing is a type of staining method-

ology that allows the axon branches of a particular neuron to be traced to the neurons they

project to. This method has been used extensively to understand how axons from one area

of cortex (or sub-cortex) grow towards another area in response to either initial chemical

signaling, early noise patterns generated during gestation, experiential cues during critical

periods, or experiential cues into adulthood.

Another important type of evidence that informs neuroscientists about cortical window

structures are cortical maps. The representations of neurons in adult cortex are topologically
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organized on the surface of the cortical sheet in most mammals. To use V1 as an example,

neurons that represent local visual features that are adjacent to each other in the visual field

will tend to be adjacent to each other on V1’s cortical surface. This further suggests that

the windows for neighboring neurons on the cortical sheet are similar too.

Evidence from developmental axon tracing and cortical map studies together have painted

a compelling picture of axonal development over the life spans and many species. Here we

focus on axons projecting to the cortex from subcortical areas, as well as axons projecting

from one cortical area to another. Particular emphasis is placed on axonal projections in

the visual system, as it is more studied than other sensory domains. Further, we will focus

on summarizing the aspects of axonal development that are preserved across both human

development and the development of many mammalian species (e.g., mice, rats, cats, and

monkeys). The major phenomena discussed will include (1) the initial directed growth

of axons guided by chemical gradients, (2) the subsequent exuberant arborization of axon

branches, (3) growth/pruning guided by spontaneous activity, (4) the critical period, and

finally (5) adult axonal plasticity. For a far deeper review of these topics, see Price et al.

(2006); McLaughlin and O’Leary (2005).

3.4.1 Initial Projection and Chemical Gradients

The first stage of axonal development is largely governed by chemoaffinity (Sperry, 1963), a

process in which axons are guided by a form of molecular identification referred to as a tag.

These tags guide the axon toward cortical areas marked by attractive molecular markers,

and away from areas with repulsive markers. Interestingly, these tags and markers stick

around after gestation and are thought to allow the healing process to guide new axons to

project to the correct areas. In this process axons occasionally project to the wrong cortical

areas but are mostly pruned during early gestation.

Later research into chemoaffinity has shown that the systems of tags and markers goes

beyond simply telling projecting axons which gross areas of neural tissue to project to, and
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can further specify location within that area of neural tissue using gradients of attracting

chemicals and counter gradients of repellents, as studied in sub-cortical vision. This is true

both for subcortical (Gierer and Lewis, 1983; Gierer, 1987) as well as cortical projections

(Bishop et al., 2000, 2002, 2003; Fukuchi-Shimogori and Grove, 2001; Hamasaki et al., 2004).

This process allows the axons projecting to V1 to create an initial retinotopic map completely

independent of neural activity. Similar processes likely guide axonal development in all

primary sensory areas (possibly excepting olfactory cortex). It is likely that this chemical

signaling provides initial retinotopy for higher layers of visual cortex, too.

3.4.2 Exuberant Arborization

In most species studied, once the main branches of the projecting axons reach the correct

destination tissue, they start to grow exploratory branches laterally within the tissue. Ev-

idence suggests branch growth is almost balanced out by branch retractions, leading to a

gradual adjustment of the arbor location (Gogolla et al., 2007; Meyer and Smith, 2006;

Portera-Cailliau et al., 2005; Ruthazer et al., 2003). This exploratory lateral branching fur-

ther enhances the retinotopic mapping governed by chemoaffinity both in sub-cortical vision

(Simon and O’Leary, 1992; Simon and Leary, 1992; Yates et al., 2004) and early cortical

vision (Bishop et al., 2000, 2002, 2003; Hamasaki et al., 2004). This process also creates an

excess of broadly tuned axonal connections in the target tissue.

3.4.3 The Critical Period

Recent work suggests that many of the high-level properties of cortical maps are already

present in primary visual cortex before experience driven growth and pruning take place

(Crair et al., 1998; Crowley and Katz, 2000). For example, in most studied species, ocular

dominance columns (stripes of cortex that respond preferentially to input from a specific

eye) are already present in V1 before infants of that species first open their eyes. This is
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possibly driven by spontaneous patterns of retinal activity. However, during a period after

gestation, these maps and the axonal structures that support them can be greatly altered.

For instance, preventing the brain from receiving input from one eye during this period for

V1 will cause the ocular dominance columns to be altered or destroyed (Chapman et al.,

1986). This period of development, marked by extreme sensitivity to exterior stimuli, is

called a critical period. The timing of critical periods appear to be staggered for different

cortical areas in the visual hierarchy, with high-level visual areas ending their critical period

later than earlier visual areas. For review, see Innocenti and Price (2005).

As the critical period gradually ends, the excessive axonal branches created by the exu-

berant arborization phase are extensively pruned in response to experience-driven activity.

At this point, axonal branches begin to approximate what they will look like for most of the

mature phase of development.

3.4.4 Adult Axonal Plasticity

Axonal plasticity in the adult brain is significantly slower than in young brains (Qiao et al.,

2016). Axonal growth and pruning is not eliminated after the developmental phases of a

cortical area, but happens far less frequently under normal circumstances. In particular, the

rate of growth and elimination of axonal branches in adults decreases and takes place on a

longer time scale (Marik et al., 2010; De Paola et al., 2006). These reductions in plasticity

are mirrored by cortical map stability at this point in an organism’s life span. At this point,

manipulations such as removing the input from one eye will no longer affect cortical map

structures as greatly as they would during the critical period.

3.5 Related Model Review

To our knowledge, no existing abstract neural network models implement biologically mo-

tivated axonal dynamics driven by genetics or environmental experience. More than two
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decades ago, (Quinlan, 1998) raised many of the same concerns addressed here with the

models at the time. Quinlan (1998) examined neural networks that changed their structure

over the course of learning. In particular, Quinlan (1998) emphasized models that grew and

pruned connections. In modern terms, these networks had specific rules for determining

when a connection should become sparse or not. Typically, these networks either started

with random sparsity or full connectivity, then tentatively grew or removed connections.

Simple decision rules pruned or grew connections based on how important they deemed a

connection to the weight learning process. This way of modeling implicitly describes sys-

tems in which synaptic plasticity completely controls axonal plasticity. This contradicts the

bounty of neuroscience evidence regarding axonal development.

Today, abstract neural networks often use combinations of weight decay and sparsity

inducing objective functions to drive small weights in a network to zero. Additionally, it has

been shown that using dropout and Gaussian noise on unit activation tends to push unneces-

sary weights to zero (Srivastava et al., 2014). Dropout and additive noise methods can cause

the features learned in fully-connected networks to become local in nature, producing a form

of sparsity reminiscent of early visual cortex (Srivastava et al., 2014). It is important to note

that all of these methods generally cause neural networks to learn and converge several times

slower than networks that do not use these methods, even though these approaches usually

achieve better generalization performance. These current techniques still describe systems

where the dendritic qualities of plasticity completely control all aspects of axonal plasticity.

The most recent advancement in neural network architectures that incorporates knowl-

edge of cortical axonal structure was the development of convolutional neural networks

(CNNs) (Fukushima, 1980). Modern versions of CNN’s have dominated the field of computer

vision, starting with the architectures introduced by Krizhevsky et al. (2012). These archi-

tectures have demonstrated that hard-wired sparsity patterns, that are appropriate to the

domain of the inputs, combined with weight sharing, can greatly increase the effectiveness

of neural networks compared to existing fully connected or random-sparsity networks.
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Although they are useful for modeling the brain in certain contexts, CNNs do not properly

account for many important aspects of axonal development. Primarily, CNNs typically

use a completely fixed window structure. Sparsity-inducing methods are often applied to

modern CNNs, but this is typically implemented by pruning an already-severely-limited

set of initially available connections. Further, the structure of these initial connections

is in no way influenced by the model’s experience. This fixed-window structure may be

acceptable for modeling early visual cortex, as the gross features of axonal development

are mostly developed prior to obtaining visual experience. However, axonal development

in higher visual cortex presumably depends far more on post-natal experience (for review,

see Innocenti and Price (2005)), which would have compounding effects up the hierarchy of

representation. Additionally, the weight sharing used by CNNs does not relate plausibly to

feature learning in human cortex (Yamins and DiCarlo, 2016a). Actual cortex is thought

by most neuroscientists to learn features through local, competitive interactions that are

better illustrated in a cortical map context. These issues act as limiting factors on the

appropriateness of using CNNs to model human cortical representations.

Axonal learning and development has been extensively modeled in the field of computa-

tional biology (Fraser and Perkel, 1990; Gebhardt et al., 2012; Godfrey et al., 2009; Simpson

and Goodhill, 2011). Within this sub-domain, simulations typically emphasize how pre-

synaptic axonal arbor maps form rather than the interactions with post-synaptic learning.

As time has progressed, these models have become increasingly biologically detailed. Models

that do feature both pre-synaptic and post-synaptic development tend to be more focused

on small-scale interactions (Godfrey et al., 2009).

The model proposed by Fraser and Perkel (1990) is the seminal multi-factor axonal

development model. Further it is a relatively abstract model that introduces many of the

fundamental dynamics that later models would further elaborate. In their model, Fraser

and Perkel (1990) treated axonal arbors as disks which move about a pre-synaptic cortical
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sheet in order to minimize a fitness function composed of a weighted sum of tissue adhesion

(C), arbor competition (R), activity dependent attraction (N), dorsal-ventral adhesion (DV),

and anterior posterior adhesion (AP). Within this relatively simple simulation framework,

many previously irreconcilable neuroscience results fit together neatly (Benson et al., 2001;

Fraser and Perkel, 1990). Later models greatly expanded the detail of these forces, but many

feature similar designs (Benson et al., 2001).

3.6 The Axon Game

In order to make axonal development dynamics accessible to the broader neural network

modeling community, we created a model called the axon game. The essential concept of the

axon game is that there is restricted connectivity between two layers in a neural network,

and that the structure of this connectivity is directly determined by the axonal dynamics

within an axonal development simulation. Fundamentally, the axon game takes the classic

(Fraser and Perkel, 1990) multi-factor design and adapts it into a cellular automata, where

individual axon branchlets grow and prune on a grid that represents a pre-synaptic sheet of

blocks that belong to the dendritic arbors of post-synaptic neurons (see Fig. 3.1).

In more detail, axonal arbor branchlets can grow new branchlets based on a neighborhood

function and can prune depending on their overall fitness within their axonal arbor. This

fitness is derived from local information, such as the number of competing axon branchlets in

the grid square (R), whether it is within a target region (C), the correlation or co-activation

of an axon with other axon branchlets in same grid square (N), and the density of chemo-

affinity signals (AP & DV) on the surrounding neighborhood of grid squares. Because of

the local nature of the fitness rules, the axon game can be implemented with fast serial or

parallel optimization in mind.

There are several possible ways to optimize the model’s objective(s) or fitness function(s),

such as using a Monte-Carlo Markov Chain method, simulated annealing, or an evolutionary
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algorithm. For our purposes, we used a special kind of evolutionary algorithm where each

axonal arbor is treated as its own population, and every branch within an arbor is given

an individual fitness relative to the other branches in the arbor. This allows rapid parallel

optimization. With this design, the Axon Game is intended to be an accessible but powerful

tool for incorporating well-accepted axonal development dynamics into contemporary neural

network architectures. The code that generates the demonstrations for this paper can be

downloaded at https://bitbucket.org/jryland/axon-game-paper-repo. The model is

implemented in written in python and makes extensive use of the TensorFlow package. For

speed, we recommend using GPU acceleration. Next, we will discuss the Axon Game in

more rigorous detail.

3.7 The Axon Game Algorithm

3.7.1 Branchlet Growth

In this version of the axon game, each branchlet of every axonal arbor randomly chooses one

neighboring dendritic block to grow a new branchlet into during each update step. In some

situations, it can be useful to allow only a portion of the existing branchlets to grow new

branchlets. The fitness of each proposed new branchlet is evaluated afterwards in the pruning

phase. Proposed branchlets are automatically deleted if they are either in invalid areas or

are redundant. All valid proposed branchlets are immediately added to both their respective

axonal arbor branchlet lists and their respective dendritic arbor branchlet lists. An axonal

arbor branchlet list for a pre-synaptic neuron is the list of all of the axonal branchlets that

project from that neuron to the post-synaptic sheet. A dendritic arbor branchlet list is the

list of all the axonal branchlets within a dendritic arbor block associated with a post-synaptic

neuron. A new branchlet represents a potential connection between a pre-synaptic neuron

and a post-synaptic neuron and receives a small randomly initialized weight wab, for use in

synaptic learning.
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Figure 3.1. Axon Game Representation
This diagram illustrates how pre-synaptic neurons and post-synaptic neurons interface with
one another using an axon game model to manage the connections between them. Each
post-synaptic neuron has a dendritic arbor represented by the (dendritic arbor blocks). Each
pre-synaptic neuron has an axonal arbor, which is a collection of individual axonal branchlets
represented by the (Axonal Branch Blocks). The AP and DV axes indicate chemo-affinity
signals associated with both the presynaptic sheet and the postsynaptic sheet. An axon
branchlet inherits its AP/DV target from their originating pre-synaptic neuron. The summed
branchlet activity in a region of dendritic arbor blocks is used to derive the activity-dependent
plasticity (N).
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Table 3.1. Axon Game Symbols
Symbol Definition

a arbor index
b branchlet index
d dendrite block index
t time index
k number of time steps of exuberant arborization
ab+ new branchlet proposed by branchlet ab
xab cortical position

Ypre chemo-affinity pre-synaptic target
Ypost chemo-affinity post-synaptic target
cpost border target
C border penalty
R competition penalty
N co-activation reward

APDV anterior posterior & dorsal-ventral chemo affinity penalty
S seniority reward

wab connection weight
α? strength of reward or penalty
EXt exuberance
Pgrow proportion of branchlets that can propose
B target branch number
ηiu normalized pre-synaptic activity for neuron i observation u
σdiffy diffusion of chemo-affinity signal
σdiffn diffusion of regional neural activity

Branchlet growth is segregated into two phases. The first phase uses a 2D discrete Gaus-

sian, with a standard deviation of EXt, as a position-proposal function for new branchlets.

A wide proposal function mimics the exuberant arborization seen in most mammal species

early in early cortical development. In the second phase, the candidate proposal function is a

simple Moore neighborhood around each branchlet, which promotes slow changes like those

seen in mature cortical projections. Importantly as t progress from 0 to k, EXt linearly

interpolates from EX0 to EX1. Several other values are allowed to change in the same man-

ner, such as P 0
grow and P 1

grow. Finally, the seniority reward can be raised gradually during

the adult phase. For this, αS is linearly interpolated between α0
S and α1

S as t progresses from

k to tend.
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xab =


t < k : g̃ (xab, EXt)

t >= k : M̃oore(xab)

(3.1)

3.7.2 Branchlet Pruning

In this version of the axon game, each projecting axonal arbor is updated in parallel using

a simple axonal branchlet fitness function. Each branchlet is evaluated with the fitness

function fab, and then all of the branchlets are ordered within an arbor according to their

fitness values. The top B branchlets within an arbor will be kept, and all other branchlets

will be pruned. The fitness function is defined in Eq. 3.2 using the notation in Table 3.1.

fab = αNNab + αSSab − αRRab − αCCab − αAPDVAPDVab (3.2)

3.7.3 Algorithm Steps

1. Initialize with 1 randomly placed branchlet for each arbor

2. Loop:

(a) Each branchlet proposes a new branchlet with probability P t
grow

(b) Valid candidates are added to respective arbor branch lists

(c) Branchlets within each arbor, a, are ordered according to fitness measure fab

(d) Keep top B branchlets within each arbor, prune all others

(e) Increment t

3.7.4 Penalties & Rewards in Detail

Here we define the terms used in Eq. 3.2. To find qualities of branches in a dendritic block

at a particular cortical location we will use the notation Qb(x), where Qb is some quality of
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a branch at location x. If the notation is Q(x), then this is a quality of the post-synaptic

sheet or the dendritic block at location x.

APDVab is the retinotopic organizing force of the axon game model, as seen in Eq. 3.2.

It combines an anterior/posterior positional signal (AP) and a dorsal/ventral signal (DV)

across the simulated cortical sheet (see Fig. 3.1). Further, it combines a local continuity

signal and target position signal. The superscript diff for ypost−diff and ypre−diff indicates

that these values have been diffused by convolving them with a Gaussian kernel over the

dendritic blocks with standard deviation σdiffy . The APDVab penalty is divided into two

sub-penalties; 1) a distance from the local average of the targets of the axonal branches

themselves, APDV local
ab , and 2) a branch’s distance from its target defined by the receiving

tissue’s gradients, APDV global
ab .

APDV local
ab =

∥∥∥∥yprea − ypre−diff (xab)

∥∥∥∥ (3.3)

APDV global
ab =

∥∥∥∥yprea − ypost−diffa (xab)

∥∥∥∥ (3.4)

APDVab = αglobalAPDV
global
ab + αlocalAPDV

local
ab (3.5)

From Eq. 3.2, Nab is the activity dependent force in the axon game. η̄(xab) is a vector

over time of average axonal branchlet activity at cortical block position xab that has been

unit normalized across the cortical blocks. ηdiff (xab) is the result of convolving η̄(xab) with

a Gaussian kernel over the dendritic blocks with standard deviation σdiffn . This can be

thought of as a diffuse version of the neural signal. The activity dependent force may be

implemented as a co-activation (Eq. 3.6) or correlation measure (Eq. 3.7), depending on

the input assumptions. Typically the co-activation method is more appropriate when only

positive activations are allowed, whereas the correlation method would be more appropriate

in the general case.
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Nab =
∣∣η̄(xab) · ηdiff (xab)

∣∣ (3.6)

Nab =

∣∣∣∣Corr
(
η̄(xab), ηdiff (xab)

) ∣∣∣∣ (3.7)

From Eq. 3.2, Rab is the competition force in the axon game that encourages the branch-

lets to spread out across the arbor blocks.

Rab = #branchlets at xab (3.8)

From Eq. 3.2, Cab is the border force of the axon game. This border force encourages

the axon game to limit branchlets to specific regions of the dendritic block grid where cpost

is equal to one.

Cab = cpost(xab) (3.9)

From Eq. 3.2, Sab is a seniority force in the axon game. The default definition of Sab

starts at 0, when a branch is created, and is incremented for each time-step it is alive. Smax

is the maximum number of increments allowed for the default Sab.

Sab(t+ 1) = Sab(t) + 1 (3.10)

Alternatively, Sab can be defined as a running average of the Nab reward, with an update

speed of βs that initializes at zero when a branchlet is created.

Sab(t+ 1) = Sab(t)(1− βs) +Nab(βs) (3.11)
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3.7.5 Important Variations

In some instances, we found it useful to modify the basic update rules or the principal

representations used in the Axon Game model. Some useful modifications are listed below.

Plexing: When representing larger cortical map projections with larger receptive win-

dows, computation can be reduced by running the Axon Game with a reduced dendritic

arbor block sheet. The dendritic arbor branchlet lists for each arbor block can be dupli-

cated to form a mapping that is a multiple of the dimensionality of the original sheet. This

representation is referred to as plexing, or a plexed Axon Game. Importantly, the duplicate

branchlets need their own independent weights to be maintained during the simulation if

axon learning and synaptic learning need to happen in parallel.

Dendritic Windows: When simulating larger cortical maps that require large input

windows for the post-synaptic neurons, it can be advantageous to allow each post-synaptic

neuron to connect to the branchlets of a window of dendritic blocks around the neuron’s

cortical location. This simultaneously allows for the manipulation of the scale of pre-synaptic

maps and post-synaptic maps independently. This also allows for a large decrease in the

overall amount of computations by using a reduced number of branchlets per pre-synaptic

neuron to produce the same window sizes. Unfortunately, dendritic windows also create

duplicate connections between pre- and post-synaptic neurons, which makes representing

the weights much more difficult. As such, our implementation generates a random set of

weights for each unique connection when dendritic window larger than one is used. From a

biological perspective, dendritic windows would be analogous to the size of dendritic arbors

for cortical neurons.

Co-Activation vs. Covariance: Depending on the input activation types, the activity-

dependent reward can be based on co-activity or a covariance like measure. A co-activity

reward is more appropriate when the pre-synaptic activations are restricted to be positive.
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Squared correlation or the absolute value of covariance may be more appropriate when the

pre-synaptic activations are real valued.

Seeding: Researchers have suggested that some amount of rough topography may be

present in a cortical area due to how the fibers of the projecting area will tend to travel

in parallel, this tendency is called fasciculation (for review see Benson et al. (2001)). For

simulations of smaller amounts of cortex, it may make sense to seed the initial topology

with additive noise. When seeding a map, we introduce the parameter σseed, which adds

Gaussian noise to a seeded starting position at the minimums of each axon arbor’s APDV

target. Seeding could also be interpreted as the result of a period of arbor development that

is largely activity independent.

Temporal Smoothing: For certain situations, it may be useful to blur the pre-synaptic

activations across time. This would allow windows to optimize co-activation or correlation

over a smoothed temporal window.

3.8 Simulated Axonal Maps

In this section, we will qualitatively illustrate the axonal projection maps formed by the axon

game and how they arise using a series of demonstrative simulations with specific parameter

settings. Some of these results can be viewed as replications of previous simulation results

from Fraser and Perkel (1990). Further, the development of retinotopic projections have

been modeled robustly in the axonal modeling literature. To the best of our knowledge

however, the simultaneous combination of maps simulated here are novel.

For this simulation, we calibrated the parameter settings to cause the Axon Game to

mimic a relatively large portion of a V1 map. The main parameters of interest are the initial

exuberance size EX0 relative to the size of the cortex in units, and the branch depth of the

cortex. We set the EX0 to 1, and the branch depth was 8. The simulated map resolution

was 170 by 250 simulated dendritic blocks. The algorithm was run for 300 steps, 200 of
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which were in the exuberant growth phase and 100 of which were in the adult phase. For

the exact model settings see section 3.11.

The goal of this simulation was to demonstrate that visual field maps, ocular dominance

maps, and spatial frequency maps can arise under the same parameters within the axon

game. To achieve this, we ran multiple simulations under different parameter settings to

find values that produced all of the relevant pre-synaptic maps simultaneously and reliably.

The results of the particular parameter settings shown here are not a characterization of

a specific species’ visual pathway. However, the parameters of the axon game have direct

axonal and neural analogues that researchers could adjust to fit known information about

a particular species in order to conduct more specific simulation experiments, rather than

simple demonstrations.

3.8.1 Methods

3.8.1.1 Stimulus Generation

We generated synthetic stimuli that were 1600 by 1600 pixels in size. Each stimulus con-

tained 32 Gaussians, randomly placed such that each spatial frequency sampled by a foveal

representation would be statistically invariant from the other spatial frequencies. This was

achieved by generating each Gaussian at a specific scale, making the allowable region for

the random center to be proportional to the scale of the Gaussian, and manipulating the

intensity. The aspect ratio of the Gaussians was 1 by 4, with the longest dimension pointing

along a random direction. In total, 2000 stimuli were generated for this simulation.

3.8.1.2 LGN-like Input Representation

The Lateral Geniculate Nucleus (LGN) is one of the primary waystations on the route

from the retina to visual cortex and will be treated as the input to our model. To mimic

the spatial-frequency-sensitive (i.e., center-surround) inputs of LGN into V1, we created a
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simple Laplacian image pyramid by using the standard differences of Gaussians and down-

sampling method (Burt and Adelson, 1983). Further, to mimic the foveated nature of visual

inputs, we also cropped each scale level of the pyramid to have a constant size of 50 by 50.

Each pixel represents an on-off center-surround cell. Unrectified on-off cells were sufficient

here, but for synaptic-learning rectified on-off and off-on center-surround cells would be more

appropriate. The initial input images are 1600 by 1600, which produces 6 scale levels where

each successive scale level looks at a central crop that is 1/2 the size along each dimension

as the previous scale level. These values were duplicated, and the duplicates were weighted

by the random uniform values ũ1 and ũ2 such that ũ ∈ [−.5, 1] . The randomly weighted

duplicates are intended to simulate the imperfect correlation between the receptors of the

left and right eye due to stereopsis and spontaneous retinal activity. Figure 3.2 depicts the

different scale levels for a stimulus viewed by one eye.

Scale 1 Scale 1/2 Scale 1/4 Scale 1/8 Scale 1/16 Scale 1/32

Figure 3.2. Foveated LOG Image Pyramid
This figure shows an example of one of the synthetic stimuli processed by different levels of
the LOG image pyramid. From left to right the images depict the largest to smallest scale
levels.

3.8.1.3 Chemo-Affinity Gradient Specification

For these demonstrations we tagged the incoming axonal projections by their radius and

polar angle from the original visual representation. We tagged the cortical map using simple

linear coordinates for the vertical axis and exponential coordinates for the horizontal axis.

Each set of tag coordinates were normalized between the values of 0 to1. Further, only the left

70



visual field was included in the simulation and the boundary was set to be a simplified V1-like

shape. The chemo-affinity tags for the projecting axons associated with visual eccentricity

were calculated to evenly distribute the axons across the receiving cortical sheet. Because

this is a large-scale simulation, we seeded the initial locations of the axonal projections to

match their chemo-affinity tags as best as possible.

3.8.2 Simulation Results and Discussion

3.8.2.1 Visual Field Map Development

Examinations of different species have shown that multiple areas along the visual cortical hi-

erarchy, including V1, contain retinotopic organization. For review, see Wandell et al. (2007).

Importantly, the mapping from visual angle to cortical representation is non-Euclidean. The

fovea receives far more representation than the peripheral field, and the mapping from visual

eccentricity to cortical position is well approximated by an exponential function (Dougherty

et al., 2003; Engel et al., 1997; Qiu et al., 2006). Figure 3.3 shows an example of real human

visual-field maps in V1, while Figures 3.4 and 3.5 show the visual-field maps developed by

the axon game under these settings. Importantly, chemo-affinity is the main driver in the

creation of these maps, and the maps will develop with or without the presence of neural

activity.

3.8.2.2 Spatial Frequency Map Development

V1 cortical cells tend to respond selectively to stimuli containing specific spatial frequencies.

Further, although there is contention, experiments have suggested that spatial frequency is

organized in a continuous topological fashion on the cortical sheet (Issa et al., 2000; Ribot

et al., 2013). At a fine-grained level, this topology appears patchy. However. at a larger

scale, this topology appears to be related to visual eccentricity (see Fig. 3.6), something that

would be expected given the foveated inputs received by V1. Figure 3.6 shows an example of
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Figure 3.3. Human Visual Field Maps
This figure shows fMRI measurements of the retinotopic organization of V1. Note that the
area of representation of foveal view regions is massively larger than the actual area of the
visual field it represents. Reprinted with permission from (Wandell et al., 2007).

Figure 3.4. Axon Game Visual Field Eccentricity
This figure shows an example of the polar eccentricity maps that develop in the axon game
under this demonstration’s settings.
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Figure 3.5. Axon Game Visual Field Angle
This figure shows an example of the polar angle maps that develop in the axon game under
this demonstration’s settings.

a real spatial-frequency map, while figure 3.7 shows an example of a spatial-frequency map

developed in the axon game under our experimental settings.

3.8.2.3 Ocular Dominance Map Development

Early examinations of monkey brains identified cortex in V1 that showed bands of neurons,

innervated preferentially by one eye or the other, spaced about .2-.4mm apart (Hubel and

Wiesel, 1972; Le Vay et al., 1980; LeVay et al., 1975). These bands are referred to as ocular

dominance columns and are shown to alternate in a particular kind of stripe pattern that

was first pictured by LeVay et al. (1975) (see Figure 3.8).

Our example simulation produces ocular dominance columns similar to those seen in

primates and other species, as seen in Figure 3.9. The size and spacing of the ocular domi-

nance columns is highly dependent on the nature of the inputs (i.e. the size of the on-center
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Figure 3.6. Cat Spatial Frequency Map
This figure shows a spatial frequency map for cat V1. Reprinted with permission from
(Ribot et al., 2013). The red indicated high-frequency sensitive neurons that tend to be
more represented near the fovea and the blue indicates low-frequency sensitive neurons that
tend to be represented more towards the periphery. Note the patchy gradient from high
frequency representation to low-frequency representation.

Figure 3.7. Axon Game Spatial Frequency Map
An example of the spatial frequency maps that develop in the axon game under this demon-
stration’s settings. The red indicated high-frequency sensitive neurons that tend to be more
represented near the fovea and the blue indicates low-frequency sensitive neurons that tend
to be represented more towards the periphery. Note that the axon game simulation shows
a similar sort of patchy gradient from high-frequency to low-frequency representation across
the V1 surface.
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off-surround cells, and their resolution across a scale) and the size of the axonal arbors. The

qualities of the ocular dominance columns also depend on developmental parameters, such as

the width of initial exuberance EXt and the relative weight placed on the activity dependent

force αN .

Figure 3.8. Macaque Ocular Dominance Columns
An example of real ocular dominance columns sampled from macaque visual cortex. The
ticks on the scale reference line at the bottom of the figure are in intervals of 5 mm. Reprinted
with permission from LeVay et al. (1975). Note the long stripe like patterns black and white
that represent neurons sensitive to the left and right eye respectively.

3.8.2.4 Successes & Limitations

The version of the axon game that produced these maps simultaneously is loosely based on

the earlier, less detailed model described by (Fraser and Perkel, 1990). If researchers wish to

use the axon game to study more specific aspects of axonal development with more biological

detail, they may wish to adapt concepts from more recent models of axonal learning.

Despite the simplicity of the model, the axon game still develops all of the classic cortical

maps that, in theory, can be defined by axonal dynamics alone. To our knowledge, this is

the first time the visual field, binocularity, and spatial frequency maps have been generated

in a pure axonal development model under a single set of parameters and settings.

75



Figure 3.9. Axon Game Ocular Dominance Columns
An example of ocular dominance columns that develop in the axon game under these pa-
rameter settings. Note that the axon game simulation of V1 develops similar long stripe like
patterns of eye sensitive neurons to that of real visual cortex.

3.9 Simulated Axonal & Neuronal Feature Maps

Previous dendritic models of cortical map development have produced post-synaptic cortical

maps that resemble ocular dominance columns and orientation maps (Sirosh and Miikku-

lainen, 1994; Stevens et al., 2013; von der Malsburg, 1973). In this section, we demonstrate

that a model that accounts for the interaction between axonal and synaptic plasticity can ex-

hibit qualitatively similar cortical map development. This is by no means the first simulation

model to contain both axonal and synaptic dynamics, as this is done routinely in the fields of

computational neuroscience and computational biology (Godfrey et al., 2009). However, the

axon game is designed to make integrated dendritic-axonal dynamics more generally accessi-

ble to the wider neural network audience, including the cognitive and cognitive-neurosciences.

Correspondingly, the axon game is designed to facilitate larger-scale phenomena that require
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higher data-throughputs, such as hierarchical cortical map development and the development

of behaviorally functional feature hierarchies.

In order to demonstrate axonal and synaptic dynamics working in conjunction, we paired

the axon game with an appropriate model of synaptic learning. Many popular models

of cortical learning exist that have specific characteristics of the cortex they emphasize.

The Laterally Interacting Synergetically Self-Organizing Map (LISSOM) family of models

(Sirosh and Miikkulainen, 1994) emphasizes biologically inspired Hebbian learning, lateral

interactions and cortical map learning. Models like LISSOM generally assume either a fixed,

un-learnable axonal structure, or unrealistic fully synapse driven axonal development. Here

we show how more realistic synaptic and axonal learning dynamics can be simulated at

the same time, by using the Axon Game paired with a variant of the LISSOM framework.

For this demonstration, we model projections from the LGN to V1, where the axon game

determines how LGN projects to V1 and a novel variant of LISSOM we created called H-

LISSOM simulates neural representation learning for V1.

3.9.1 H-LISSOM Overview

LISSOM is a model of cortical map development and feature-learning (Sirosh and Miikku-

lainen, 1994). The LISSOM model makes use of several main principles, including Hebbian

weight updates and lateral connections that are both excitatory and inhibitory. The range

of the allowable excitatory connections is usually much smaller than the range of allow-

able inhibitory connections. In LISSOM-like models, both the input weights and the lateral

connections are typically learnable. However, sometimes both the lateral excitatory and

inhibitory connections are held fixed. Our novel variation of LISSOM is called Homeo-

LISSOM, or H-LISSOM, because it includes additional homeostatic dynamics designed to

make it easier to use. The main symbols used to describe H-LISSOM’s dynamics can be

found in Table 3.2.
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Table 3.2. Axon Game Symbols
Symbol Definition

d dendrite block index
ηd activity of neuron d on cortical sheet
ηa activity of input neuron via axon arbor a
wdi weight associated with i-th branchlet connected to corti-

cal neuron d
ωdi the activity of the i-th branchlet connected to cortical

neuron d
xd cortical location of neuron d
σE spread of excitatory lateral connections
σI spread of inhibitory lateral connections
Ā estimated average length of cortical input window activ-

ities
Ū estimated activity given random weights
ε values near this will not be normalized
θd activation bias

reps number of recurrent activation steps

The main activation function of H-LISSOM ηd is similar to using LISSOM with a Relu

function that modifies a weighted summation of the current input to a neuron, d, plus the

neuron’s incoming lateral excitation Ed and lateral inhibition Id. We found that running

versions of H-LISSOM with either fixed or non-fixed lateral connectivity resulted in similar

maps, so for efficiency we used fixed Gaussian lateral connectivity. It should be noted that

although learned lateral connectivity resulted in sharper transitions across the simulated

cortex, it greatly increased training time. LISSOM models are recurrent networks in that the

activation function will be calculated multiple times, taking lateral interaction as new inputs.

For H-LISSOM, we only update the weights after a fixed number of recurrent activations

that we refer to as reps. The following equations specify the H-LISSOM model, using the

notation in Table 3.2.

ω̂di =
ωdi√∑

i(ωdi)
2 + εĀ

(3.12)
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ηd(t+ 1) = ReLu

(∑
i

ωdiwdi − θd + Ed(t)− Id(t)

)
(3.13)

Ed1(t) =
∑
d2

ηd1g(xd1 − xd2 , σ
E) (3.14)

Id1(t) =
∑
d2

ηd1g(xd1 − xd2 , σ
I) (3.15)

wdi(t+ 1) =
wdi + δwω̂di√∑
j(wdj + δwω̂dj)

(3.16)

The main difference between the LISSOM model and H-LISSOM is that it includes a

homeostatic activation bias, θd. This activation bias is similar to that of both the GCAL

variation of LISSOM (Stevens et al., 2013), and a soft normalization of the length of the

input window activations. In a further change to the GCAL model, the θd bias term is set

to hit a target, uŪ , which is proportional to the statistic, Ū . This Ū statistic estimates the

overall activity that cortical neurons would be expected to have if the weights of each neuron

were randomly selected from the unit sphere with a bias of 0, ˆ̄wi. This expected value is

estimated by a running average. In addition, the soft normalization target α is modified by

Ā, which is the estimated average length of the non-zero activations coming into the cortical

neurons through their input windows. This can be thought of as adjusting what the network

considers to be noise, given prior activations. To accomplish this, Ād only updates when

neuron d currently has a window with a non-zero activity.

θd(t+ 1) = θd(t)− δθ(η̄d − uŪ) (3.17)

η̄d(t+ 1) = (1− βη)η̄d(t) + (βη)ηd(t) (3.18)
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Ū(t+ 1) = (1− βu)Ū(t) +
βu
D

∑
i

(
ω̂di ˆ̃wi

)
(3.19)

ε(t+ 1) = ε(t)− δε(ε(t)− αĀ) (3.20)

Ād(t+ 1) = (1− βa)Ād(t) + βA

√∑
i

(ω̂di)
2 (3.21)

The additional homeostatic dynamics discussed above are meant to alleviate some of

the difficulties of calibrating LISSOM-like models. LISSOM models are not typically able

to handle variable intensities and often require hand-tuning to get consistent results. We

address this unpredictability by soft-normalizing the inputs to each neuron, ensuring that

input patterns beyond a certain magnitude will saturate with a length of 1 and that patterns

below a certain magnitude will be ignored in a graded fashion. In addition, GCAL-like target

activity levels are often difficult to set when the overall activation levels of the network are

not known beforehand. H-LISSOM addresses this by estimating what the overall activation

levels would look like without any learning, as well as by enforcing the target activity level

to be a fraction of that value, ensuring that the selectivity of each cortical neuron narrows

over time.

3.9.2 Methods

3.9.2.1 Stimulus Generation

For the creation of our stimuli, we used the same random Gaussian method as used in the

first simulation. However, for this simulation the aspect ratio of the Gaussians was set to be

1 by 8. This led to better columnar organization in the orientation map.
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3.9.2.2 LGN-Like Input Representation

The input representation used in this simulation modeled the type of center-surround cell

processing seen in LGN neurons. Unlike the first simulation, however, this input represen-

tation only featured center-surround cells that were calibrated to respond maximally to a

specific spatial frequency. Two random offset versions of each image were generated to rep-

resent input from each eye. The input had a resolution of 50 by 50 on-off cells and 50 by 50

off-on cells. Approximately 10,000 images were generated for this simulation.

3.9.2.3 Axon Game Parameter Settings

To encourage the growth of larger input windows, we increased the relative fidelity of the axon

game by tweaking the growth parameters in the model. This axon game was on a 100x100

grid and featured much larger axonal arbor sizes. We also increased the exuberance and the

activity-dependent reward weight. Further, we used simple linear AP and DV gradients for

the chemo-affinity targets. For the exact settings, see section 3.12.

3.9.2.4 Interaction between Axon Game and H-LISSOM

The axon game supports continuous, simultaneous learning with H-LISSOM, but can only

do so when the dendritic arbor radius is set to 1. The quality of the neuronal windows was

higher when the dendritic arbor radius was larger than 1, so we chose to forgo simultaneous

learning in favor of higher-quality windows. As such, we chose to have the Axon Game model

learn its connections first to create a window structure, and then passed this structure to

the H-LISSOM model for use in synaptic learning. Given that axonal arbor plasticity is

vastly reduced in adulthood and during the critical period post-gestation, we expected that

sequential development of axonal and synaptic dynamics would still capture many important

aspects of the interaction between axonal maps and synaptic maps.
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3.9.3 Results and Discussion

3.9.3.1 Orientation Map Development

Cells in V1 tend to be selective for specific orientations of contrast gradients. The organi-

zation of this selectivity in the cortex is mostly continuous across orientation. Researchers

have discovered large, columnar regions of V1 that respond to the same orientations and

dubbed them orientation dominance columns (Hubel et al., 1978). The global organization

of these columns is often called an orientation map. These orientation maps tend to contain

singularity points called pinwheels, where multiple orientation dominance columns come to-

gether and terminate (Blasdel, 1992; Bonhoeffer and Grinvald, 1991). These pinwheels may

be a requirement for the development of an efficient orientation map (Durbin and Mitchison,

1990). See figure 3.10 for an example of a real V1 orientation map.

Orientation maps are a common milestone for models of cortical learning, both for ab-

stract as well as more biologically motivated cortical models of V1 (Goodhill and Cimponeriu,

2000; Miikkulainen et al., 2005; Stevens et al., 2013; von der Malsburg, 1973). However, all

of these models either assume a fixed connectivity, or that connections will be determined by

random exploration and pruning based on synaptic learning principals. Importantly, these

models have been very successful in demonstrating many phenomena of interest, but none

have used a biologically plausible set of axonal learning dynamics.

Here we demonstrate that simulating axonal and synaptically driven map development is

feasible with the axon game and the H-LISSOM model. Fig. 3.10 shows an example of a real

orientation map, while Fig. 3.11 shows an orientation map developed by the Axon Game and

H-LISSOM. Our simulation displays both orientation dominance columns and pinwheels, as

seen in Fig. 3.11. To our knowledge, this is the first model to use biologically motivated

axonal and synaptic principals to learn both pre-synaptic and post-synaptic cortical maps

for V1.
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While this test is just a demonstration of feasibility, there are many interesting applica-

tions of such a model. For instance, it would be useful to understand under what conditions

the maps of binocularity and orientation become orthogonal in this model. Orthogonality

happens when the contours between separate cortical maps intersect at steep angles, such

as orientation and ocular dominance maps. Orthogonality promotes good feature coverage

between two or more feature maps (Blasdel, 1992; Issa et al., 2008). Further, combining

models of axonal development, simple cell learning, and complex cell learning, could allow

researchers to build multi-layer cortical models without requiring biologically implausible

window assumptions.

Figure 3.10. Axon Game Ocular Dominance Columns
B shows a real V1 orientation map sampled from a tree shrew brain. The small squares in
C show examples of pinwheels. Reprint with permission from (Bosking et al., 1997).

3.9.3.2 Map Decoupling: A Novel Prediction

While testing the axon game and H-LISSOM combination model, we observed an interesting

and possibly new theoretical phenomenon. In order to discuss this finding, some method-

ological clarification is required.
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Figure 3.11. Axon Game Ocular Dominance Columns
Shows an overlay of an orientation map and an ocular dominance map spontaneously learned
by simulating axonal and synaptic learning, using the axon game and H-LISSOM. This map
was developed with dendritic radius of 4. The colors indicate regions that respond to the
same directionality of edges, and the black lines indicate the transitions between left and
right eye sensitive ocular dominance columns. Note the presence of pinwheels and strips of
iso-orientation selective regions similar to those seen in actual V1 cortex.

Cortical map measurements can be broadly segregated into two categories. Some methods

measure cortical maps as axonal arbor organization (pre-synaptic maps) and some methods

measure receptive fields (post-synaptic maps). A reasonable assumption of axonal develop-

ment research and cortical map research is that pre-synaptic measures and post-synaptic

measures of cortical maps largely measure the same structures. This assumption seems

valid given that ocular dominance columns, spatial frequency maps, and visual field maps

tend to have similar qualitative characteristics, regardless of whether they are measured

as pre-synaptic axonal arbor organization or post-synaptic receptive fields. However, our

simulations suggest this may not always be the case.

During our simulations of simultaneous pre-synaptic and post-synaptic development, we

discovered that some of our model’s pre-synaptic and post-synaptic cortical maps can be

completely uncorrelated with one another despite having similar qualitative characteristics
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(see Fig. 3.13). We will refer to this lack of correlation between maps as map decoupling.

Specifically, we observed that the post-synaptic ocular dominance columns could desynchro-

nize from the pre-synaptic ocular dominance columns. This appears to happen when the

width of the dendritic arbors is large enough to span multiple pre-synaptic ocular dominance

columns. When post-synaptic dendritic windows span multiple ocular dominance columns,

the post-synaptic neurons have the choice of which eye to represent, and thus dominate

post-synaptic column development (see Fig. 3.12). Because the width of pre-synaptic ocular

dominance columns is largely driven by axonal arbor size in this model, this phenomenon

can also be predicted from the relative sizes of the dendritic arbors and axonal arbors.

As a side-effect of coupling, the scale of map features can become sensitive to different

parameters. For example, the width of post-synaptic ocular dominance columns depended on

axonal arbor size when there was a high degree of coupling, but depended mostly on the radii

of lateral excitation and inhibition when there was a low degree of coupling. This may provide

an indirect way of observing map decoupling, as axonal arbor size and excitation/inhibition

radii may support conflicting, testable predictions in real tissue (see the progressive change

in column width in Fig. 3.13).

Whether the conditions necessary for map decoupling can arise in real cortex probably

depends on the species and the cortical area in question and additional factors. In V1 for

macaques and higher order primates, the width of the ocular dominance stripe varies between

395µm to 670µm (Horton and Hocking, 1996). However, it is unclear whether this reflects

axonal or synaptic organization. Measures of axonal arbor area suggest that the diameter of

incoming axonal arbors could be as large as 800µm (Humphrey et al., 1985). On the other

hand, V1 dendritic arbors seem to have diameters around 200µm to 300µm, depending on

the neuronal population studied and the technique used (Elston and Rosa, 1997; Levy et al.,

2014). Given these loose estimates, our model would suggest that V1 in human and higher

primates features strong coupling between pre-synaptic and post-synaptic maps.

85



Figure 3.12. Axon Game Ocular Dominance Columns
This diagram shows how arbor size and map coupling are related. Neurons (A) and (B)
have dendritic arbors that intersect the pre-synaptic axonal arbors, which group into pre-
synaptic ocular dominance columns, pictured as the columns labeled (L) and (R) for left-eye
representing and right eye representing. Neuron (A) has a dendritic arbor that is smaller than
the width of the pre-synaptic ocular dominance columns while neuron (B) has a dendritic
arbor that is much larger than the width of the pre-synaptic ocular dominance columns.
Because neuron (A)’s dendrites only span one ocular dominance column it can only learn
to represent a visual information from one eye. This small dendritic arbor size leads to a
tight coupling between pre-synaptic and post-synaptic maps. On the other hand, neuron
(B)’s dendrites spread over multiple pre-synaptic ocular dominance columns, meaning that
neuron (B) can learn to represent information from either eye. This large dendritic size leads
to low coupling between pre-synaptic and post-synaptic maps.

While axons projecting from the LGN to V1 appear to have relatively large arbors com-

pared to their dendritic targets, some mathematical models have suggested that connections

from V1 to higher areas may have smaller axonal arbors (Chklovskii, 2000). Unfortunately,

much less is known about higher order cortical maps, and additional research is required to

make further predictions about higher order map decoupling under this model.

As an additional factor, the model used in this paper featured no backwards stabilizing

force from the dendritic arbors to the axonal arbors. Depending on whether this force
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Figure 3.13. Axon Game Ocular Dominance Columns
Shows a progression of post-synaptic ocular dominance maps as the dendritic radius increases
(dRad), and each map’s correlation with the pre-synaptic ocular dominance map. The pre-
synaptic ocular dominance map remained constant for each of these sub-simulations and
had an approximate arbor radius of 6. Also, note that the widths of the ocular dominance
columns change as the post-synaptic dynamics begin to dominate. The Pearson R2 for
correlations between the maps within this simulation all had exceedingly low p-values, but
this is somewhat misleading as the simulation would need to be re-run many more times
to get a proper estimate of the expected correlation across simulations. As such, these
R2 statistics are mainly here to illustrate a trend, further simulation would be required to
estimate that trend with enough precision to find a function that maps arbor size to expected
correlation precisely.

is present in real cortex and what its relative strength is, pre-synaptic post-synaptic map

coupling could be affected. These effects have yet to be explored in detail.

These simulation results, based on biologically motivated hyper-parameters, suggest that

researchers should consider the use of convergent measures of presynaptic and postsynaptic

map organization, as their synchrony may not be guaranteed. Our simulations predict that

whenever dendritic arbors are close to the same size or are larger than the axonal arbors, post-

synaptic columns could be highly decoupled from their pre-synaptic counterparts. To our

knowledge, it is not standard practice to use both pre-synaptic and post-synaptic sensitive

methods within the same tissue sample and may be methodologically difficulty. Thus, the

degree of pre-synaptic and post-synaptic map coupling may be unknown for even the most

well-studied maps.
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Models of synaptic development or axonal development in isolation do not predict the

sensitivity of map coupling to arbor size. Synaptic models typically assume each neuron

has an equivalent ability to access connections from either eye, often eschewing representa-

tions of axonal-dendritic proximity and arbor sizes. Conversely, axonal models often only

simulate axonal arbor development while eschewing representations of dendritic arbors and

synaptic strengths. Representation of axonal arbors, dendritic arbors and synaptic strength

is necessary to see the map coupling interaction. However, it is also necessary for a model to

be at the right scale to observe this interaction’s effect on cortical maps. The fact that the

Axon Game can be combined with models like H-LISSOM to allow this, makes it a unique

contribution to cognitive neuroscience.

3.10 General Discussion

We built a novel axonal development model called the Axon Game that incorporates many

of the well-known aspects of axonal dynamics in cortex, with the goal of integrating axonal

dynamics into existing neural network designs and synaptic learning models for modeling

large scale cortical learning phenomena. First, we demonstrated that a wide variety of corti-

cal maps that can be defined through axonal organization can be developed using the axon

game. Second, using a combination of the Axon Game and H-LISSOM, we demonstrated

that a model of the interaction between axonal and synaptic dynamics on a large scale can

largely replicate maps generated purely from synaptic cortical map models. Further, these

simulations made the novel theoretical prediction that under certain biological conditions,

pre-synaptic and post-synaptic cortical maps can be completely decoupled despite possessing

similar qualitative characteristics. This map de-coupling prediction can be tested in future

studies of human cortex, which can in turn be used to refine or reject future models.

The axon game also has implications for computational modeling. In preliminary work,

we integrated the axon game with a simple deep learning architecture in order to learn
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the sparse connectivity between layers as a pre-training step. This allows a deep model

to learn flexible projection topologies that distribute connections synergistically with and

in anticipation of weight learning. We found that a simple deep network augmented with

the axon game could achieve state of the art performance for non-convolutional networks

on the CIFAR-10 benchmark. Axon-game-augmented deep learning could be useful in a

number of domains, particularly in situations that may benefit from structured sparsity but

are resistant to convolutional methods.

Today, many researchers conceptualize neural circuits on both large and small scales

in terms of the connections themselves (axo-dendritic contact), and the weights of those

connections (efficacy and number of synapses). However, to date, abstract neural network

modeling efforts have tended to focus on the latter. Models like the Axon Game make

simulations of paired axonal and synaptic learning more accessible to a wider neural modeling

audience. By providing tools to model how these plastic processes interact, we hope to

advance the understanding of cortical development and neural systems in general.

3.11 Article Appendix A: Simulation Settings for Section 3.8

This section contains the parameter settings for the axon game used in the section titled

“Simulated Axonal Maps”. The version of the axon game implemented for this paper uses

a simple auto-scale feature whereby some of the input parameters are adjusted to produce

results that can be compared to a standard 100x100 scale simulation. The αAPDV is mul-

tiplied by a factor of the largest simulation dimension divided by 100 when an axis of the

simulation is larger than 100. Additionally, the starting exuberance EX0 is also scaled by

the same factor.
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Table 3.3. Simulation Settings Axon Game Only
Symbol Definition

Res 170x250
Co-Act Covariance
Seed True
σseed 0
σdiffy 10
σdiffη 1
αN 6
α0
S .002
α1
S .04

αR .08
αC 50
αglobal .3
αlocal .08
βs .1
B 8
k 200
tend 100
EX0 1.5
EXk .025
P grow
0 1
P grow
1 1

3.12 Article Appendix B: Simulation Settings for Section 3.9

This section contains the simulation parameters used for the second set of demonstrations

that combined the Axon game with H-LISSOM.
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Table 3.4. Simulation Settings Axon Game Only
Symbol Definition

Res 100x100
Co-Act Covariance
Seed True
σseed .1
σdiffy 10
σdiffη 1
αN 500
α0
S .001
α1
S .5

αR .016
αC 5
αglobal .3
αlocal .16
βs .1
B 114
k 200
tend 300
EX0 4
EXk .05
P grow
0 1
P grow
1 .4

Table 3.5. H-LISSOM
Symbol Definition
σE 1
σI 6
βη .004
βU .0004
βA .004
u .5
α .5
δw .25
δθ .001
δε .001

Reps 10

91



CHAPTER 4

INTEGRATED CORTICAL LEARNING MODELS

4.1 Introduction

For this dissertation, I developed a model which combined axonal learning, simple cell learn-

ing, and complex cell learning, which I called an Integrated Cortical Learning Model (ICL).

A major goal in designing the ICL architecture was to create a model which avoids biolog-

ically implausible assumptions inherent in Deep Convolutional Neural Networks (DCNNs).

The ICL architecture replaces fixed convolutional connections with axonal learning, global

weight-sharing with simple cell map learning, and fixed pooling layers with complex cell

learning. As a further goal I wanted the ICL architecture to be entirely unsupervised, since

unsupervised visual learning is likely the dominant form of visual learning in mammals.

From a theoretical perspective ICL models can be thought of as an attempt to more

rigorously implement functional versions of the hierarchical theory of cortex (Hubel and

Wiesel, 1962). The basic idea behind the hierarchical theory of cortex is that there are two

special populations of cells in V1 called simple cells and complex cells. The simple cells

learn to encode stimuli as inflexible, but highly selective features, such as edges at particular

locations and angles. The complex cells integrate inputs from multiple simple cells in order

to respond more broadly, such as to edges at a particular angle anywhere within a large

visual region. Under this theory, the pattern of simple cell layers feeding into complex

cell layers may be repeated in higher-level cortical areas, such as V2 through IT, creating

incrementally more tolerant and sophisticated representations of objects (Hubel and Wiesel,

1962; Riesenhuber and Poggio, 1999).

DCNNs originated from early models of the hierarchical theory of cortex(Fukushima,

1980), where convolutional feature units acted like simple cells and pooling units acted like

complex cells. With the ICL architecture, I am essentially making another model of the
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hierarchical theory of cortex, but using more detailed models of connectivity development,

simple cell learning, and complex cell learning. Given that DCNNs, with their very schematic

implementation of the hierarchical theory of cortex, have already greatly advanced the study

of human vision and the brain, ICL models which incorporate more detailed forms of cortical

plasticity should also advance the field.

It is important to understand the relationship between the theoretical constructs intro-

duced in Chapter 2 and the practical simulation models introduced in this chapter. The

Temporal Relation Manifold (TRM) framework introduced in Chapter 2 is a framework

for understanding how unsupervised category learning can work, and Windowed-Temporal-

Auto-Untangling (W-TAU) is a theory for how this might be accomplished using neural

mechanisms. The full ICL model developed for this project attempts to implement W-TAU

using a combination of axonal, simple cell, and complex cell learning. I define the general

ICL family of models to include any model which combines axonal, simple cell, and com-

plex cell learning. When the term ICL model is used in this dissertation, I will usually be

referring to one of the particular ICL models built for this dissertation project. Finally,

an ICL module is a sub-group of neural network layers that implement axonal, simple, and

complex cell learning as a unit and can be thought of as simulating learning in a discrete

visual cortical area such as V1 or V2.

Chapter Overview. In Section 4.2, I will discuss several of the specific issues with

DCNN mechanisms that ICL models seeks to address. In Section 4.3, I will discuss the

general form of an ICL module and how its components address the issues with DCNNs laid

out. In Section 4.4, I will provide additional context about to help motivate and interpret

trace learning. In Section 4.5, I will discuss the reprocessing strategies used for the two

datesets used in Chapter 5, as well as a layer-wise normalization method used for the model.

In Section 4.6, I will describe the specific variations of the full ICL module structure that will

be investigated in later chapters. In Chapter 5, I will empirically evaluate several versions

of a particular ICL model.
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Code for Replication. A complete codebase for the models used in Chapter 5 can be

found here https://bitbucket.org/jryland/icl-dissertation/. The models can all be

run in google colab as of this writing, removing the need for specialized hardware or a local

tensorflow environment. Thus using a free google colab environment is highly recommended.

4.2 Issues With DCNN Mechanisms that ICL Addresses

DCNNs models are valuable both to computer vision and to computational cognitive neuro-

science. Although DCNNs have a quite simple architecture, they demonstrate exceptionally

good performance on object recognition dataset. As previously mentioned though, DCNNs

are often not intended to be neurally plausible models of cortical understanding their com-

penents are rarely intended to have direct biological interpretations. With the development

of the ICL model, I intend to build a model which is not too much more complicated than

a basic DCNN, but which captures some of the details of today’s understanding of cortical

learning better. To help motivate our discussion of the ICL model developed in this disser-

tation, this section takes a closer look at the standard components of DCNN models which

do not have direct neural interpretations.

4.2.1 Issue 1: Convolutional Windows

DCNNs use a fixed form of connectivity between their layers called convolutional windows,

where each neuron is situated on a grid and sees a slightly shifted set of inputs units in the

input image compared to its neighbors. This is called a convolutional window structure.

Convolutional windows loosely model the retinotopic nature of connectivity to V1 and other

early visual areas.

While convolutional windows are probably fine for loosely modeling early visual areas like

V1, as they are strongly retinotopic, convolutional windows will likely not suffice for more

detailed modeling of V1 or for higher-level visual areas. Connectivity in cortex is controlled
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by axonal development. Further, axonal development is reactive to learning amongst other

forces (Benson et al., 2001) leading to the development of connectivity structures, such as

ocular dominance columns, which are dependent on environmental exposure. But low-level

structures like ocular dominance columns in V1 and their high-level analogues in late visual

cortex cannot be modeled by DCNN connectivity due to its fixed nature.

In Section 4.3.2, I outline how my ICL model implements a model of axonal development

that is both reactive to genetic forces and to environmental exposure as a replacement for

the fixed convolutional windows of DCNNs.

4.2.2 Issue 2: Convolutional Weight-Sharing

DCNNs exploit the grid-like nature of of artificial images and of their features neurons in

order to share learning between neurons. Essentially, within a feature map each neuron will

share the same set of weights, only shifted to the location of that neuron in the map. This is

called convolutional weight-sharing. Weight-sharing has the advantage that a feature learned

on one side of the visual field will also be automatically learned all across the visual field.

Convolutional weight-sharing loosely imitates an important quality of V1 in that the same

visual features seem to be learned for all visual locations.

Convolutional weight-sharing is fine for abstractly modeling simple cell learning V1 and

later visual areas, but it is insufficient for more detailed modeling of the ventral stream. First,

the retinal image is not laid out on a regular grid, and it is sampled continuously across scale

space in a foveated fashion. This makes any weight-sharing scheme based around the actual

retinal image necessarily more complicated. Second, such a weight sharing scheme would

require a huge number of long range lateral connections spanning each visual area. There is

no evidence for and extensive network of lateral connections that perform this role.

Instead of weight-sharing, visual cortex seems to use a set of local competitive learn-

ing rules implemented via short range lateral connections and the relatively shift invariant
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statistics of visual exposure to guarantee that a useful features learned in one visual location

will tend to be learned for all visual locations (von der Malsburg, 1973; Stevens et al., 2013;

Sirosh and Miikkulainen, 1994). The local competitive method has the added advantage

that it it can deal with irregularly sampled inputs easily and that it will not over generalize

and learn features in locations and configurations where they never occur.

As a consequence of local cortical learning rules, V1 develops regions of specialized neu-

ral selectivity like iso-orientation columns, and late visual areas may develop some sort of

analogue for high-level features. On the other hand DCNNs, with their rigid weight-sharing

method, do not develop structures like iso-orientation columns and potential analogues of

these structures in high-level cortex.

In Section 4.3.3, I outline how my ICL model implements a model of simple cell learning

that makes use of local competitive rules as a replacement for convolutional weight-sharing.

4.2.3 Issue 3: Fixed Pooling Methods

DCNNs further exploit the grid-like nature of artificial images and of their feature maps

in order to generate tolerance to small shifts and deformations in image features. DCNNs

accomplish this by pooling or summarizing the activity of non-overlapping squares of neurons

in their feature maps. Essentially, this means that the activation of neurons that detect

slightly shifted versions of a feature over a specific region of visual space will be summarized

by a single output neuron called a pooling neuron. As such, a pooling neuron can be thought

of as detecting a specific image feature anywhere within a visual region. Again, this method

depends on a grid-like structure for both input neurons and for feature map neurons, whereas

cortex must pool over a highly irregular input and feature structure. In theory, cortex may

learn pools using a similar sort of local competitive interaction between neighboring neurons.

Cortex may even use the temporal statistics of its environment in order to learn its pooling

structure, as suggested by trace learning theories (Földiák, 1991). An advantage of learned
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pooling approaches, such as trace learning, is that they can learn to be tolerant to a wide

spectrum of feature variations beyond just shifting.

In Section 4.3.4, I outline how my ICL model implements a model of complex cell learning

built on trace learning as a replacement for the fixed pools of DCNNs.

4.3 Overview of the Integrated Cortical Learning Model
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Figure 4.1. ICL Module Structure
This figure shows the layer structure of a full ICL module. The RED/BLUE layers represent
the arbor model simulation of axonal connectivity between the neural layers. The YELLOW
layer is the simple cell layer, and the PINK layer is the complex cell layer. A layer key has
been provided in the upper left corner for reference in later diagrams.

4.3.1 Module Structure and Training

Like a DCNN, the ICL model is composed of a series of Modules stacked on top of one

another. A DCNN module is composed of a convolution and a pooling layer. On the other
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hand, an ICL module is composed of axonal learning layers, a simple cell learning layer, and

a complex cell learning layer. Each can be thought of as addressing a specific implausible

mechanism within DCNN architectures as will be discussed in the following sections.

Figure 4.2. Training Phases of the ICL Model
This figure shows the training phases of the ICL model. In phase 1, the first ICL module
uses its internal unsupervised dynamics to learn how to represent features in the input layer.
In phase 2, the second ICL module learns to represent more complex features in the first ICL
layer, while the weights of ICL module 1 are held fixed. This proceeds until the final layer N
is trained, after which, the testing phase begins. During the testing phase, a soft-max layer
is added and trained for classification on a training set, while the weights of all previous ICL
modules are held fixed. Finally, the fully trained model is run on a validation set or put
through an experimental protocol.

When training an ICL model, a series of ICL modules are stacked and trained according

to their individual local learning rules similar to stack auto-encoder training (Bengio et al.,

2007) (i.e. only one module is training at a time). The individual learning rules for the

layers within each ICL module will be discussed in the following sections. Finally, for certain

testing purposes, a final Softmax classification layer can will be added to the top of the

ICL model and trained using supervised learning, while all of the ICL model’s parameters

are held fixed. This final classification layer is called a readout layer, in that its purpose is
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to demonstrate how the top layer of the ICL model has encoded observed categories, while

keeping the underlying representations of the ICL model fixed.

4.3.2 The Connectivity Model: Arbor Layer

In order to address the issue of using convolutional windows to model cortical connectivity

(Sec. 4.2.1), I instead based the connectivity of my ICL model on a semi neuro-plausible

model of axonal development, that would allow the model to radically change its structural

connectivity also supporting weight learning. The model developed is called the arbor model,

but as a part of the ICL module it is called the arbor layer. In general, the arbor layer

should be compatible with many diverse neural network architectures, imbuing them with

the ability to adjust their structural connectivity adaptively. Further, given its simplicity,

the arbor layer could easily be adapted for more biologically motivated simulations for more

abstract neural network usages. Below I will discuss how the arbor layer works and integrates

with the ICL module.

The Arbor Layer simulates axonal connections growing from one population of neurons

to another. These axonal connections terminate in axonal arbors which are represented as

Gaussian influence fields (See Fig. 4.4 & 4.3.2.1). The dendritic arbors are also represented

as Gaussian influence fields (See Fig. 4.4). The amount that arbors influence one another is

dependent on the degree of overlap between their Gaussian influence fields. There are three

forces acting on arbors which are directly inspired by neuroscience and the classic multi-

factor model of axonal development (Fraser and Perkel, 1990), and include competition,

activity dependent plasticity, and chemo-affinity.

4.3.2.1 Gaussian influence field

A Gaussian influence field is a 2D Gaussian function centered on the location of an axonal or

dendritic arbor set within in a 2-dimensional interaction space, g(xi, σj). Arbors influence
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Figure 4.3. Interaction of Pre-Synaptic and Post Synaptic Arbors
This figure shows how pre and post synaptic arbors interact with the arbor model. The RED
disk on the LEFT in the interaction layer depicts the Gaussian influence field of pre-synaptic
neuron i. The RED disk on the RIGHT in the interaction layer depicts the Gaussian influence
field of post-synaptic neuron h. The GREY-BROWN arrow indicates repulsion between pre-
syanptic neuron i and post-synaptic neuron j, proportional to the overlap between their
Gaissian influence fields. The GREEN arrows represent the chemoaffinity force, with DV
representing a chemical gradient from dorsal to ventral and AP representing a chemical
gradient from Anterior to Posterior.

each other proportional to the overlap of their Gaussian influence fields. The overlap is

defined as the integral of both Gaussian influence functions multiplied by one another (see,

Eq. 4.1). Conveniently, this is equivalent to the equation for convolving one Gaussian

function with another, which reduces to a simple 1D Gaussian formula, with a new σk =√
σ2
i + σ2

j (see, Eq. 4.2). In practice, I typically directly manipulate σk instead of σi and

σj, but for more biologically oriented simulations it would make sense to manipulate them

separately.
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For the following equations, xi refers to the center of an arbor i (axonal or dendritic)

on a 2-dimensional cortical sheet and. σi refers to the standard deviation of the Gaussian

influence fields of arbors i and j respectively.

Ginf(xi,xj) =

∫
g(x− xi, σi)g(x− xj, σj) dx (4.1)

Ginf(xi,xj) = g
(
‖xi − xj‖,

√
σ2
i + σ2

j

)
(4.2)

4.3.2.2 Arbor Forces in Detail

The arbor layer simulates three forces that move the axonal arbors: chemo-affinity, compe-

tition, and activity dependent plasticity, by minimizing a layer objective function (see, Eq.

4.3). The chemo-affinity force minimizes the distance between each arbor and its ideal posi-

tion for developing a retinotopic map (see Eq. 4.4 & Fig. 4.3). Chemo-affinity is generally

set to be very weak in order to match cortical observations (Fraser and Perkel, 1990). The

competition term pushes axonal arbors away from one another depending on their influence

function overlap (see Eq. 4.5 & Fig. 4.3). The activity dependent plasticity moves axonal

arbors towards dendritic arbors depending on their influence function overlap and on how

often they co-activate or on how correlated their activity over time is (see Eq. 4.6 or 4.7 &

Fig. 4.4). Activity dependent plasticity is usually set to be a very strong force in order to

match general qualitative findings from neuroscience (Fraser and Perkel, 1990).

The following function L(X) in Eq. 4.3 is the global objective function for an arbor layer.

X contains the location of each arbor and is the set of parameters that are optimized in the

model. The γ constants weight the forces relative to one another. Minimizing, this function

via standard gradient descent or with momentum will simulate the forces discussed in the

following sections.

L(X) = chemo(X)γchemo + comp(X)γcomp + coact(X)γcoact (4.3)
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4.3.2.2.1 Chemo-Affinity Force Chemo-affinity was one of the earliest forces hypoth-

esized to drive axonal arbor placement in developing cortex (Sperry, 1963). The general idea

is that chemical gradients along the cortical sheet allow axonal arbors to detect where they

are in a cortical area and to roughly adjust themselves towards a predetermined location.

Here I implemented chemo-affinity with a simple sum squared error penalty, with x0
i

being the target location for axonal arbor i and xi being its current location.

chemo(X) =
∑
i

‖xi − x0
i ‖ (4.4)

4.3.2.2.2 Competition Force During several studies of axonal development, it was

discovered that axonal arbors try to distribute themselves more or less evenly within a

bounded cortical or sub-cortical region like the LGN or V1 (Fraser and Perkel, 1990). Further,

re-segmentation work showed that axonal projections to halved neural areas would compress

their representations accordingly. One hypothesis for why this behavior happens is that

axonal arbors within an area like V1 are in competition with one another. This means they

will try to avoid clumping together and will adjust towards a uniform coverage and density

over an area.

I implemented a competition force in the arbor layer by penalizing each axonal arbor

i by the amount of overlap it has with every other arbor j using the Gaussian influence

function Ginf(xi,xj) given their locations. Conveniently, the local nature of the Gaussian

influence function means that this penalty prevents clumping and promotes uniform distri-

bution without generating large gradients from distant arbor interactions.

comp(X) =
∑
i

∑
j

Ginf(xi,xj) (4.5)
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4.3.2.2.3 Activity Dependent Plasticity Many researchers were not convinced that

the precise locations of axonal arbors in areas like V1 could be arrived at solely based on

chemical gradients, and further fixed chemical gradients would not explain the development

of clusters of arbors carrying information from the same eye that depend on spontaneous

activity or experience (i.e. ocular dominance columns) (Fraser and Perkel, 1990). Katz

and Shatz (1996) reviewed evidence that the brain uses both spontaneous neural activations

before gestation and actual experience in order to develop ocular dominance columns. The

general idea was that arbors which tended to activate together would migrate towards one

another and stabilize. Earlier the Fraser and Perkel (1990) model showed that incorporating

activity dependent plasticity with other forces could rectify a large amount of seemingly

conflicting experimental data. Now activity dependent forces are commonly used in axonal

plasticity models (Benson et al., 2001).

Here I provide two different implementations for activity dependent plasticity. The first

method shown in Eq. 4.6 is generally more appropriate when the activations of pre-synaptic

neuron are sparse and strictly positive. The second method shown in Eq. 4.7 is generally

more appropriate to when the activations of the pre-synaptic neurons are non-spare or are

both positive and negative.

The first version of the activity dependent plasticity reward term coact(X) in Eq. 4.6

implements a simple local attractive force between each pre-synaptic axonal arbor i and

each post-synaptic dendritic arbor j dependent on their current co-activity, with ηprei (t)

being the current activity of pre-synaptic axonal arbor i at time t and ηpostj (t) being the

current activity of pre-synaptic axonal arbor j at time t. The reward for axonal arbors to

move towards co-activating dendritic arbors is scaled by the overlap between their Gaussian

influence functions, given by Ginf(xi,yj). yj refers to the center of post-synaptic neuron i’s

dendritic arbor. Note, that the locations of the dendritic arbors do not move, and that they

are typically arranged in a regular grid pattern.
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Figure 4.4. Example of different types of activation maps
This figure shows how pre and post synaptic arbors interact with the arbor model. The RED
disk in the interaction layer depicts the Gaussian influence field of pre-synaptic neuron j.
The BLUE disk in the interaction layer depicts the Gaussian influence field of post-synaptic
neuron i. The PURPLE arrow indicates attraction between pre-syanptic neuron j and post-
synaptic neuron i, proportional to the overlap between their Gaissian influence fields and
their level of mutual activity.

coact(X) = −
∑
i

∑
j

[
Ginf(xi,yj)

∑
t

ηprei (t)ηpostj (t)

]
(4.6)

The second version of the activity dependent plasticity reward term coact(X) in Eq.

4.7 implements a simple local attractive force each pre-synaptic axonal arbor i and each

post-synaptic dendritic arbor j dependent on how correlated they are, with ηprei being the

activation history of pre-synaptic neuron i over a set time period and ηpostj being the activa-

tion history of pre-synaptic dendritic arbor j over the same time period. Again, the reward

for axonal arbors to move towards correlated dendritic arbors is scaled by the overlap of
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their Gaussian influence functions given by Ginf(xi,yj). Note that yj refers the center of

post-synaptic neuron i’s dendritic arbor, and that the dendritic arbors are stationary.

coact(X) = −
∑
i

∑
j

Ginf(xi,yj) Corr(ηprei ,ηpostj ) (4.7)

4.3.2.2.4 Arbor Layer Window Functions During an update step, a post-synaptic

neuron connects to the pre-synaptic neurons whose axonal arbors that are closest to its

dendritic arbor. This is implemented as a Top-K sorting operation on the distance between

the dendritic arbors and the axonal arbors. For efficiency and stability, only a fraction of

the axonal arbor positions and the dendritic arbor Top-K windows are updated per-step,

usually between 1% and 10%. Importantly, the weights associated with each connection

are non-destructively preserved through window changes to ensure stability. It should be

noted that the re-ordering of weights due to the Top-K operation means that momentum

like learning objectives may be unstable for weight learning (though not for arbor position

learning).

To represent the changing list of weights and input units to each neuron I will use two

window functions. In Eq. 4.8 Arbinηposti
(z) gives the current inputs to post-synaptic neuron i,

with z being the vector of all inputs for the layer. In Eq. 4.9 Arbwηposti
(W) gives the current

weights of neuron i, with W being the matrix of all weights for the layer. Although Arbin

and Arbw are both dependent on the locations of the axonal arbors X, this relationship is

not directly differentiable and is a fairly complicated dynamic process, so it is omitted as

an input to the function. With some minor modifications, however X can be added as a

differentiable term.

zi = Arbinηposti
(z) (4.8)

wi = Arbwηposti
(W) (4.9)
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4.3.2.3 Arbor Layer Demonstration & Observations

As a note of comparison between the axon game in Chapter 3 and the arbor model introduced

here, the arbor model is generally much faster than the axon game. This is for two reasons.

First, in the arbor model the size of dendritic and axonal arbors is represented by two

constants that simply adjust an influence function, while in the axon game, larger axonal

arbors and dendritic arbors increase the number of objects to be managed proportional to

their area. Second, the forces in the arbor model are very direct (i.e. via gradient descent),

whereas the axon game uses random exploration in a genetic algorithm, which is more

wasteful. Generally, this means the arbor model can learn large scale connectivity maps

much faster than the axon game, as seen in Fig. 4.5.

Start Finish

Left Eye

Right Eye

OD Columns

Figure 4.5. Arbor Model Learning Ocular Dominance Columns
This figure shows an example of the axon game taking an input image of 50x50 pixels and
learning a 50x50 output ocular dominance map. The (WHITE) dots are axonal arbors
belonging to inputs from the right eye, and the (BLACK) dots are axonal arbors that belong
to the inputs from the left eye.

Fig. 4.5 shows an example of a small map being learned. This demonstration used simple

winner take all activations for the post-synaptic layer where if the majority of inputs to a

cell were on it turned on and vice versa. Note that this simulation quickly develops ocular

dominance columns quite similar to those seen in V1.
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4.3.3 The Simple Cell Model: Simple Layer

The simple layer was largely inspired by LISSOM, GCAL, Malsburg and Kohonen Map

models of V1 simple cell feature map learning (Sirosh and Miikkulainen, 1994; von der

Malsburg, 1973; Stevens et al., 2013; Kohonen, 1982).

First, the weight update mechanism borrows from both the Kohonen Map method and

the LISSOM method. Essentially, a simple cell’s weight update attempts to minimize the

distance between the current weight vector and the current normalized input activation

pattern with a speed proportionate to the activity of the unit (see Eq. 4.16). After that,

the weight vector is normalized to the unit sphere (see Eq. 4.17). This method is essentially

a conjunction of both the LISSOM and Kohonen map update methods. Using this method

has the advantage that it can handle both positive and negative input values while keeping

weights fixed to the unit sphere, whereas the kohonen map method does not restrict weights

to the unit sphere, and the LISSOM method has stability issues with negative activations.

Second, the lateral inhibition and excitation is somewhat similar to the Malsburg and

Kohonen models in that their influence functions are fixed. Each simple cell has an excitatory

and inhibitory Gaussian influence on its neighbors (see Eq. 4.15). Usually, the inhibitory

influence σinh is much wider than the excitatory influence σexc. For learning the lateral

interaction modulated activity is used as the target. For the simple layer, the raw activation

of the simple cells is passed as the output for the layer (i.e. without the lateral influences)

(see Eq. 4.12). This is different from the Malsburg and Kohonen models in that the Kohonen

method (Kohonen, 1982) only uses a shrinking excitatory Gaussian influence for learning,

and the Malsburg model (von der Malsburg, 1973) uses rectified hyperbolas in order to build

its lateral interaction weights.

Using fixed Gaussian lateral inhibition and excitation functions instead of learned lateral

influence functions or rectified hyperbolas greatly increased the speed of the simulation.

This is because 2D Gaussian filtering can be implemented in a two step process, where a
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horizontal 1D Gaussian filter is applied and then a second vertical 1D Gaussian filter can be

applied. This happens because a 2D Gaussian filter can be written the product of two 1D

Gaussians (i.e. it is a separable filter). Further, I observed that Gaussian lateral influences

still produced the desired V1 map qualities for lower-level simulations.

Input Layer

Simple Cell Layer

Symbol:Description:

Input Neuron k

Arbor 
Simulation

Lateral 
Inhibition

Lateral 
Excitation

Simple Cell i 𝑠𝑖

Exc𝑖(𝒔)

𝒘𝑖 , 𝒛𝑖

Inh𝑖(𝒔)

z𝑘

Figure 4.6. Diagram of the Simple Cell Layer
This figure shows how the simple cell layer is structured and how neighboring simple cells
interact. The GREEN layer is the input layer for the model or input from another ICL
module. The RED and BLUE disks denote the connection between input neuron k and
simple cell i mediated by the interaction of their axonal (RED) and dendritic (BLUE) arbors
respectively in an arbor simulation. The YELLOW layer is the simple cell layer. The WHITE
disk indicates that simple cell i laterally excites its neighboring neurons. The BLACK disk
indicates that simple cell i latterly inhibits its neighbors over a larger distance than it excites.
Combined with hebbian learning and lateral interactions, the simple cell layer will learn a
smoothly varying set of features.
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4.3.3.1 Simple Cell Layer Equations in Detail

4.3.3.1.1 Simple Cell input Window Functions The simple cell layer takes input

from the input layer or from the output of a previous ICL module. The pattern of activity

coming into the layer is called z. Each simple cell’s weights and input window are managed

by an arbor layer simulation, (i.e. the order of the weights and the membership of the input

window will be changing). Here the input window of simple cell si is given by zi in Eq. 4.10,

and the current weights for simple cell si are given by in Eq. 4.11, where W is the matrix

of all weights for the simple cell layer.

zi = Arbinsi(z) (4.10)

wi = Arbwsi(W) (4.11)

4.3.3.1.2 Simple Cells Activation and Lateral Interaction The simple cell layer

uses the standard ReLu activation function defined in Eq. 4.12. ReLu which is short for

Rectified Linear Unit and returns 0 when its inputs are negative and the original input value

when positive, ReLu(u) = max(u, 0). Note that si is the actual activation that will be passed

to the next layer. The lateral interactions defined next are only used for learning purposes.

si(wi, zi) = ReLu(wT
i zi) (4.12)

For the purposes of learning, the activations of the simple cell layer are modified by

lateral excitation and inhibition given by Eq. 4.13 and 4.14 respectively. Exci(s) in Eq. 4.13

is excitatory influence of neighboring neurons on simple cell si, where xi is the location of

simple cell si, xj is the location of simple cell sj on the cortical sheet, and g(xi − xj, σexc) is

a 2D Gaussian function centered on xi and with a standard deviation of σexc. Inhi(s) in Eq.
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4.14 is inhibitory influence of neighboring neurons on simple cell si, where xi is the location

of simple cell si, xj is the location of simple cell sj on the cortical sheet, and g(xi− xj, σinh)

is a 2D Gaussian function centered on xi and with a standard deviation of σinh. EIi(s) in

4.15, gives the combined influence of lateral excitation and inhibition on simple cell si. Note

that an additional ReLu operation is performed removing any negative values.

Exci(s) = αexc

∑
j

g(xi − xj, σexc)sj (4.13)

Inhi(s) = αinh

∑
j

g(xi − xj, σinh)sj (4.14)

EIi(s) = ReLu(Exci(s)− Inhi(s)) (4.15)

4.3.3.1.3 Simple Cell Learning The weight update step for simple cell learning is

divided into two steps. First, the weights of cell si move in the direction wtarg
i given by Eq

4.16, where ε is a term used to prevent arbitrarily large enhancement of small values. Note

that the weights si of a simple cell move towards a unit normalized version of the current

input activation on the window zi, and the speed of their movement is proportional to the

lateral interaction modified activity of the simple cell given by EIi(si). Second, the weights

of each simple cell si are hard-normalized to have a length of one in Eq. 4.17.

wtarg
i = EIi(si)

(
zi

‖zi‖+ ε
−wi

)
(4.16)

wi(t+ 1) =
wi(t) + σlratew

targ
i (t)

‖wi(t) + σlratew
targ
i (t)‖

(4.17)
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4.3.3.2 Simple Cell Layer Demonstration & Observations

As a note, we actually developed many versions of the simple cell layer with different activa-

tion functions and tweaked learning dynamics. For the purposes of illustration the version

of the simple cell layer I chose to use for this dissertation a minimalist version that still

implemented most of the expected dynamics of a simple cell model.
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Figure 4.7. Demonstration of Simple Layer Simulation
The TOP row shows the evolution of orientation selectivity across a set of simple cells in
a simple cell layer. The BOTTOM row shows the development of learned features for cells
in the simple cell layer. Each color in the top row represents neurons which are sensitive
to a particular orientation of edge contrasts, see the legend on the LOWER RIGHT. TOP
RIGHT shows an example of a typical orientation map structure adapted from Bosking
et al. (1997). Note that the simple cell layer develops similar strip and blob like regions of
iso-orientation selectivity.

As a further note, I generally found that the recurrent activation used in many simple

cell models (von der Malsburg, 1973; Sirosh and Miikkulainen, 1994; Stevens et al., 2013),

was not strictly necessary to for good feature development or orientation map development.

For reference, Orientation Columns are strips of neurons in V1 that respond to edges at the

same orientation. This would make sense if the primary purpose of the recurrent activation
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in V1 was simply to narrow down or sharpen the activity of already active neurons. It is

possible that by omitting this mechanism my simple cell model may feature slightly poorer

coverage of the feature space or lower stability than other typical simple cell models, in favor

of mechanical simplicity and easier tuning.

Fig. 4.7 shows a simulation of a version of a simple cell layer. The particular version used

for this demonstration actually used a competitive local winner take all function in order to

restrict the output values to zero or one and a slightly different learning method. Regardless,

all of the models learned quite similar features and produced quite similar orientation column

maps.

4.3.4 The Complex Cell Model: Complex Layer

The complex cell layer uses a form of trace rule pool learning to learn the weights of its pools

(Földiák, 1991). A trace is a temporal average of activations for a layer or set of units. For

a more in depth explanation of Trace Learning and it’s motivation see Sec. 4.4. Chapter 5

also incorporates a high-level interpretation Trace Pool Learning.

For the complex cell layer’s form of trace learning, the pool weights of each complex cell

are additively re-normalized. Here, additive re-normalization means that the target is added

to the weights, then the weights are re-normalized to have a sum of 1 4.27. The target of

learning is the trace of the activation after lateral interactions (see Eq. 4.25, Eq. 4.24 & Eq.

4.26).

Much like the simple cell layer, the raw output of the complex cell layer is passed along

as the output (see Eq. 4.28). Here the initial activation used for each complex cell is a form

of weighted Maxpooling operation.

This version of the complex cell update rule tended to generate edge effects. To correct

for this and to encourage stability, the output of the complex cells was modified by an average

normalization operation, where the average activation of each cell is normalized to 1 using a
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Figure 4.8. Diagram of the Complex Cell Layer
This figure shows the structure and interactions of the complex cell layer. The YELLOW
layer represents a lower simple cell layer. The RED and BLUE disks denote the connection
between simple cell neuron k and complex cell i mediated by the interaction of their axonal
(RED) and dendritic (BLUE) arbors respectively in an arbor simulation. The PINK layer
is the complex cell layer. The WHITE disk indicates that simple cell i laterally excites
its neighboring neurons. The BLACK disk indicates that simple cell i laterally inhibits its
neighbors over a larger distance than it excites. Combined with hebbian learning and lateral
interactions, the complex cell layer will competitively learn groups of simple cells which tend
to belong to the same temporal trajectories, and which hopefully represent variation due to
minor image transformations.
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running mean estimate of its typical activity during training (see Eq. 4.28). For comparison,

this is very similar to a type of batch-normalization.

4.3.4.1 Complex Cell Equations in Detail

4.3.4.1.1 Complex Cell Window Functions Much like the simple cell layer the input

window and weights of the complex cell layer are managed by an arbor layer model. vi in

Eq. 4.18 gives the vector of current vector of input simple cell activities to complex cell ci,

where s is the vector of all simple cell activities. vi in Eq. 4.19 gives the current weight

vector for complex cell ci, where V is the matrix of all weights for the complex cell layer.

hi = Arbinci(s) (4.18)

vi = Arbwci(V) (4.19)

4.3.4.1.2 Complex Cell Lateral Interactions Similar to the simple cell layer the

complex cells compete with one another using lateral interactions. Excci(c) in Eq. 4.20 gives

the net excitatory input from other complex cells to complex cell ci, with excc as the width

of influence. Excci(c) in Eq. 4.21 gives the net inhibitory input from other complex cells to

complex cell ci, with inhc as the width of influence. clati in Eq. 4.23 gives the combined effect

lateral inhibition and excitation on complex cell ci. c is the complete activation vector for

all of the complex cells.

Excci(c) = αcexc
∑
j

g(xi − xj, σ
c
exc)cj (4.20)

Inhci(c) = αcinh
∑
j

g(xi − xj, σ
c
inh)cj (4.21)
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EIci(c) = ReLu (Excci(c)− Inhci(c)) (4.22)

clati (vi,hi) = EIci(v
T
i hi) (4.23)

4.3.4.1.3 Complex Cell Trace Dynamics The hallmark of trace learning is that a

temporal average of activations is used to create a target for learning. ctracei (t) in Eq. 4.24 is

the temporal average of a complex cell’s activation after lateral interaction clati , where βc is

the speed of the running average. htrace
i (t) in Eq. 4.25 is the temporal average of a complex

cell’s current input window hi(t), where βh is the speed of the running average.

ctracei (t) = ctracei (t− 1)(1− βc) + clati (t)βc (4.24)

htrace
i (t) = htrace

i (t− 1)(1− βh) + hi(t)βh (4.25)

4.3.4.1.4 Complex Cell Learning Dynamics The complex cell learning dynamics use

an additive re-normalization scheme with two steps. First, vtarg
i , the current learning target

for complex cell ci, is generated by multiplying its current trace activity ctracei by the unit

normalized version of the trace of its input window activations. Second, the target vtarg
i is

added to the current weights after being multiplied by the learning rate σlrate, and the weight

vector is normalized such that it sums to one.

vtarg
i = ctracei

(
htrace
i

‖htrace
i ‖

)
(4.26)

vi(t+ 1) =
vi(t) + σlratev

targ
i (t)∑

j vij(t) + σlratev
targ
ij (t)

(4.27)
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4.3.4.1.5 Complex Cell Output Finally, the output of the complex cell layer is given

by couti (vi,hi), where the AvgNorm operation normalizes each unit to have a mean activation

of one, and the Maxpool operation returns the maximum value of its input vector. Note �

is used to indicate element-wise multiplication.

couti (vi,hi) = AvgNorm(Maxpool(vi � hi)) (4.28)

4.3.4.2 Complex Cell Demonstration and Observations

Much like the simple cell layer, I tried many versions of the complex cell layer learning

dynamics. Again the version selected for this project was chosen for its simple dynamics.

Generally, performance and the features learned were qualitatively similar.

Fig. 4.9 shows a demonstration of a complex cell layer learning pools of simple cells. In

this demonstration notice that the orientation columns learned by the complex cell layer are

significantly wider than the orientation columns of the simple cell layer, suggesting that they

aggregate simple cells with similar orientation tuning over wide regions of the visual field.

Also, based on my observations the learned complex cell pools appear to follow similarly

tuned iso-orientation columns in the the simple cell layer.

The structure of these pools is influenced by a complex interplay of input stimuli, tem-

poral speed, and temporal dynamics. Increasing the temporal speed of the environment will

increase the width of tuning across position, but will require a slower complex cell learning

rate, while applying a threshold to the weights of the complex cells for activation dynamics

will narrow the orientation selectivity. Finding a good rule of thumb or a way to automat-

ically set these hyper-parameters will likely take focused study, observation, and possibly

the development of a special hyper-parameter search algorithm. A future study to examine

these issues is proposed in Chapter 6 Sec. 6.4.5.1.
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Figure 4.9. Demonstration of Complex Layer Simulation
The TOP row shows the evolution of orientation selectivity across an entire 50x50 complex
cell layer, that takes input from the 100x100 simple cell layer that develops simultaneously
as shown in the BOTTOM row. The BLACK and WHITE DISK shows the development of
a single complex cell’s pool, where the lighter areas correspond to simple cells that belong
in its pool. For the orientation maps each color in the top row represents neurons which are
sensitive to a particular orientation of edge contrasts, see the legend on the TOP RIGHT.
TOP RIGHT shows an example of a typical orientation map structure adapted from Bosking
et al. (1997). Note that the orientation columns of the complex cell layer are much wider
than the orientation columns of the simple cell layer, meaning that they aggregate simple
cell edge detectors over large regions of the input visual field.

4.4 Review of Trace Rule Learning for Complex Cells in Depth

Trace rule pool learning was first introduced conceptually by Földiák (1991), but many

researchers have developed their own versions of it (Rolls and Stringer, 2001; Wallis, 1996;

Einhäuser et al., 2002; Michler et al., 2009). Mechanically, trace rule pool learning was

introduced to explain the odd behavior of complex cells in early visual cortex. Namely, many

complex cells appear to react in a phase invariant manner when seeing local edge contrasts

and/or Gabor filter batteries, while maintaining selectivity to orientation (see Fig. 4.10B).

In contrast, simple cells react in a fairly straightforward manner, with a peak activation for
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Figure 4.10. Simple and Complex Response Properties, and Feature variation due to Tem-
poral Image Variation
(A) shows how the response of simple cells is narrow over the phase and position of input edge
stimuli or contrast stimuli. (B) shows how the response of a complex cell is roughly invariant
over a wide range of positions and phases for input edge or contrast stimuli. (C) shows how
small image features that belong to objects will vary mildly in there presentation as the view
of the object they belong to varies over short time intervals, and how this variation does not
change the semantic meaning of the image feature within the image context (i.e. the edge
still belongs to a dog).

a specific phase, location, and orientation for edge stimuli (see Fig. 4.10A). Simple cell like

unit response properties can be learned with artificial neurons that feature simple Hebbian

learning rules, and rectified linear units. Complex cells response properties are generally

more difficult to learn and represent.

Computationally, complex cells are often thought to reduce the differences present in

neural representation of an object over the many ways it can present on the retina, when its

position, scale, rotation, posing, and other viewing factors are changed. This would allow

semantically identical stimuli to seem more similar under simple image variations (Hubel and

118



Wiesel, 1962). For example, pooling edge across small shifts in position would be very useful

for classification. The orientation of the lines and edges and their conjunctions would still be

clear in relation to one another, but the relative location of each feature would be somewhat

tolerant to visual translation. When hierarchically compounded, local tolerances to transla-

tion and other image variability can greatly improve a system’s recognition performance, as

DCNNs have demonstrated.

A B

Trajectories of Simple Cell Activations 
through Central Simple Cell

Complex Weights as an Average of 
converging Trajectories

Figure 4.11. (A) Trajectories of Simple Cell Activation and (B) Complex cell weights over
Input Simple Cells
(A) shows how the sparse activations of individual simple cells will follow trajectories of
serially active units, as image features move/vary in the input image over time. Each contrast
grating represents a simple cell. Importantly, many different trajectories (BLUE, GREEN,
ORANGE ARROWS), due to temporal image variation will tend to pass through each simple
cell. (B) shows how an average over all of the trajectories passing through a single simple
cell can be used as the weights for a complex cell’s pool. The weight of each simple cell is
represented by its visibility. Importantly, this weighting of simple cells likely represents the
effects of small image perturbations rather than changes affecting the semantic meaning of
the image.
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The hierarchical theory of cortex (Hubel and Wiesel, 1962) suggests that complex cells

achieve their more tolerant tuning curves by “Pooling” the activations of multiple simple

cells (see Martinez and Alonso (2003) for a review of this theory and its competitors). This

can be done by a divisive normalization, maxpooling, or average pooling over the inputs to

a complex cell. However, this theory does not explain how the memberships of these pools

are learned (if they are even learned in the first place).

An image feature such as an edge contrast presented to the retina, will tend to move

across the retina due to several factors: body motion, visual saccades, and the movement

of the object to which it belongs (see Fig. 4.10C). Because of this, the visual system has

access to statistical information about which visual transformations of a feature do not

change its overall meaning or relationship to other features (i.e. a series of edges that

belong to a dog, still probably belong to that dog after being shifted slightly due to a

small movement or saccade) (see Fig. 4.10C). These statistics go beyond just shift, as

the temporal environment can give information about rotation, scaling, and more complex

feature transformations for more complex features. However, the mechanical nature of the

eye and the properties of the real world would suggest that simple image shifts would be

the most common form of temporal variance and would need to be addressed first. Trace

rule pool learning methods allow complex cells to learn about these visual transformation

statistics from temporal observations.

Under trace rule pool learning, a complex cell uses a running temporal average of its own

activation for use with hebbian learning. The complex cell can also use running temporal

averages of their inputs for the purposes of learning. If the speed of learning is set correctly,

the weights learned by the complex cell will be an average of all the trajectories of simple cell

activations over time that tend to activate some central group of simple cells (see Fig. 4.11).

If used with an average pool or weighted maxpool operation the activation of this neuron

should resemble the activation of real complex cells in the right statistical environment.
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Some form of cap on the weights may also be helpful in order to encourage a flatter peak

response over common feature variability, and a threshold before a weight acts as non-zero

would allow for a sharper selectivity of less common feature variability.

4.5 Input Pre-Processing for ICL Models: LGN like processing

4.5.1 Difference of Gaussians and Low-Pass Spatial Filtering

Before being fed to the ICL model proper visual images need to be processed in a manner

similar to how the Lateral Geniculate Nucleus (LGN) process stimuli. In mammal brains,

visual images pass from the retina to the LGN and then to V1 and other cortical/sub-cortical

areas. One of the main ways that the LGN encodes information is by using on-center off-

surround cells. The receptive field of these cells resembles a donut, where the center of the

donut excites the neural firing and the outer ring of the donut inhibits neural firing (see

Fig. 4.12). For completeness, the LGN has both on-center off-surround cells and off-center

on-surround cells with some form of rectification. However, for modeling purposes only one

set may be necessary, as is the case for this version of the ICL model.

The receptive fields of on-center off-surround cells are often modeled as a difference of 2-

dimensional Gaussian filters (see, Fig. 4.12). These filters are also sometimes called Mexican

Hat filters after their resemblance to the sombrero de charro, a traditional hat of Mexico’s

horsemen (see, Fig. 4.12D). A special property of difference of Gaussian filters is that they

isolate features in an image associated with a specific spatial scale (see Fig. 4.13). This is

directly analogous to the way in which sine waves and wavelet filters can be used to isolate

the contribution of different frequencies to a particular one dimensional signal or sound. This

property stems from the fact that 2D Gaussian filters eliminate information below a specific

spatial frequency. Thus a Difference of Gaussian filters act as simple band-pass filters (see

Fig. 4.13).
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Figure 4.12. Composition of Difference of Gaussian Filters
(A) Shows the excitatory (LIGHT GRAY) and inhibitory (DARK GRAY) Gaussian en-
velopes that added together form a basic 1-Dimensional difference of Gaussian filter. (B)
shows the combined envelope of a standard 1-Dimensional difference of Gaussian filter used
for image processing. (C) shows the excitatory (RED) and inhibitory (BLUE) envelopes of a
2D Gaussian filter. (D) shows the combined envelope of a standard 2-Dimensional difference
of Gaussian filter.

For the ICL models in this paper, I actually used a filter similar to a difference of Gaussian

band pass filter, but with notable differences. For computer images, the width of a pixel

already acts as an upper limit on high-frequency information. As such, I used a simple

high-pass filter instead instead of a band pass filter. This is accomplished by subtracting an

image across all channels by a version of itself that has passed through a Gaussian filter (see

Eq. 4.29). As a receptive field, this looks like a single on pixel surrounded by a negative

122



Original

A B C D

Octave 1 Octave 2 Octave 3

Figure 4.13. Using DoF filters to Isolate Spatial Frequencies
(A) shows an image for the ImageNette dataset. (B) shows the contribution of a band of
frequencies to the original image in A. These frequencies were isolated by passing a Difference
of Gaussian (DoF) filter over the original image. This filter had an excitatory width of 1 and
an inhibitory width of 2. (C) shows the contribution of the next lowest octave of frequencies
(1/2 the frequency range present in C). This was isolated by passing a DoF filter similar to
the first one but scaled up by a factor of 2. (D) shows the next lowest octave of frequencies
after the one present in C. This was accomplished using a filter similar to the first one but
scaled up by a factor of 4. For reference, this is the same kind of octave seen in music, as
an octave difference between notes corresponds to either a doubling or halving of a note’s
frequency.

Gaussian. In practice, this acts like a difference of Gaussian filter for selecting the highest

available frequencies in a discrete image.

For the following equation Z is an image, G0 is a Gaussian filter, and ∗ the discrete

convolution operator. Zhigh is the result of the high-pass operation.

Zhigh = Z −G0 ∗ Z (4.29)

4.5.2 Layer-wise Gain Control

The LGN and retina have other dynamics that enhance their representations of images. One

such mechanism is called local gain control. In natural images, when difference of Gaussian

processing is done, some regions of the image will have large activation contrast while others

will have very small activation contrasts. Most cortical models are quite sensitive to the

123



magnitude of local contrasts between input units. This means that locations with smaller

contrasts tend to be poorly represented, despite carrying important visual cues. To combat

this, gain control scales local contrasts competitively, so that regions of slight contrast will

be enhanced and regions of large contrast will be reduced (see Fig. 4.14).

From a computational perspective, this is quite useful. (Stevens et al., 2013) demon-

strated that adding local gain control to the LGN inputs for a V1 model greatly stabilized

its feature learning and tolerance to different contrast levels. Further, local gain control

helped stabilize learning in our implementations of Deep ICL models when used as a nor-

malization process between ICL modules. Here local gain control played an analagous role to

”batch normalization methods” in DCNNs, by keeping the range of activation values within

a semi-consistent distribution.

In the following equation, G1 refers to a Gaussian filter of a lower spatial frequency than

G0 used in Eq. 4.20 to generate the high-pass image Zhigh. εgain is a constant that prevents

the contrast adjustment from boosting values that are too close to zero. Note that the

division operator and the absolute value function used here are element-wise operations.

Zgain =
Zhigh

G1 ∗ |Zhigh|+ εgain
(4.30)

4.5.3 Color Pre-Processing

LGN like pre-processing for gray-scale inputs is relatively straightforward, but color process-

ing has several unique demands. Firstly, color is processed in an opponent fashion in the

LGN, with different channels inhibiting one another. Secondly, most of the color gradient

information is contained within the lower-frequency bands of an image. And third, because

color contrasts correspond to smaller deviations over larger portions of the image, color in-

formation tends to have a lower variance than luminance information on a per-pixel basis.

Together these qualities of color contrasts in images means they need to be processed in a
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Original Grey Scale Center Surround (CS) CS + Gain Control

Figure 4.14. Enhancing Low Contrast Areas with Local Gain Control
This figure shows the effects of local gain control in adjusting the activations of on-center off-
surround cells. The LEFT set of images show original images from the ImageNette dataset.
The MIDDLE image shows the output of on-center off-surround cells. The RIGHT images
are the result of the local gain control operation modulating the activity of the on-center
off-surround cells. The RED boxes highlight that areas of low contrast in the on-center
off-surround images are boosted in the gain control images, allowing for the perception of
additional image features.

slightly different manner in order to encourage the first level of an ICL model pay attention

to color contrasts.

I developed a simple method to encourage ICL models to give more representation to

color contrasts in their early layers, called the color splice method. In the color splice method,

the inputs are divided between normal High-Pass + Gain Control inputs tuned to pick up on

high-frequency contrasts across RGB, which will tend emphasize luminance contrasts, and

inputs that use a lower-frequency cutoff where the RGB channels are in opposition with one

another using a similar setup to the local gain control process, which will tend to emphasize

color contrasts. These two types of inputs are then spliced together in a single input image
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where every fourth pixel in a bloc of four is a low-frequency color emphasizing unit, and the

rest are the higher frequency luminance emphasizing units, see Fig. Finally, the activations

of the lower-frequency units are amplified to promote color contrast learning. 4.15.

Original (RGB) Color Splice

4x4 Pixel Block

H H

H L

Figure 4.15. Enhancing Color Input using Color Splicing
This figure shows how the color splice operation can enhance the visibility of color contrasts
in an image. On the LEFT an image from the ImageNette dataset is shown. In the MIDDLE
the result of the color splice operation is shown. The UPPER RIGHT image shows a blown
up portion of the color splice image, highlighting that every 4th pixel carries clear color
contrast information, while the neighboring pixels appear black and white. In fact, the each
pixel in the color splice image is color sensitive, however, color contrasts vary at a slower
rate and with a lower amplitude than luminance contrasts. To account for this, every 4th
pixel in a block of pixels is sensitive to low frequency information and is also boosted by
some fixed amplification constant. This is useful for ensuring that color contrast information
will be represented adequately alongside luminance contrast information in the first layer of
representation for ICL-like models.
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4.6 Model Variations

In this dissertation we explored three major variations on the ICL module design: simple

cells only, simple cells + axonal learning, and fixed pools.

In the Simple Cells Only variation the the complex cell layer and its associated axonal

layer were removed entirely. Further, the initialization of the arbor layer was fixed to be a

proper retinotopic mapping and left constant.

In the Simple + Axonal variation the the complex cell layer and its associated axonal

layer were removed entirely as with the last variation, but the simple layer’s associated arbor

layer was left unchanged from the full model.

In the Fixed Pools variation the only modification from the full model was changing

arbor layer associated with the complex layer to be fixed at a retinotopic initialization state.

The reason I used these different versions of the ICL model was to better examine the

relative contributions each component of the model was making to performance and feature

development. Generally, in the Simulation Study portion of the dissertation I started with

the most basic model (Simple Only), then progressed to the Simple+Axonal model, then

moved to the full ICL model. The Fixed Pool variation was mostly used internally for testing

and to speed up prototyping.
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Figure 4.16. Variations of the ICL Module
This figure shows different configurations of the ICL module architecture. (A) shows the
Simple Only variation which only uses the the simple cell layer and a fixed arbor simulation
initialized to a simple retinotopic mapping. (B) shows the Simple + Axonal variation of the
ICL model, where the simple cell layer has learned connections via the arbor layer simulation.
(C) shows the Fixed Pool variation of the full ICL module, in which the arbor layer feeding
into the complex cell layer is held fixed and initialized to a default retinotopic mapping.
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CHAPTER 5

SIMULATION STUDIES OF THE INTEGRATED CORTICAL

LEARNING MODEL

5.1 Introduction

5.1.1 Rational

From a computational modeling perspective, Deep Convolutional Neural Networks (DCNNs)

have broken new ground in enabling computers to recognize objects and make inferences

from visual images (Krizhevsky et al., 2012). Also, DCNNs are considered the state-of-

the-art cognitive-neuroscience methodology for modeling higher-order object identification

in the ventral visual cortex (Yamins and DiCarlo, 2016b). Both lines of research suggest

DCNNs are potent models for understanding the computational principles of human object

recognition. Historically many of the core mechanisms of DCNNs were originally directly

motivated by attempts to model cognitive functions in the visual cortex (Fukushima, 1980).

However, recent research suggests DCNNs possess serious shortcomings both as computa-

tional models of human vision and as potential models of the visual cortex, and, further

several core mechanisms of DCNNs are highly implausible from a neuroscience perspective

even at an abstract level. Such shortcomings support the consideration of alternatives to

DCNN modeling approaches.

Here, the generic terminology DCNN refers to a large generic and widely used class of

deep convolutional neural networks described in Yamins and DiCarlo (2016b) and Krizhevsky

et al. (2012).

This chapter will examine if the more neurally conservative Integrated Cortical Learning

(ICL) model, introduced in Chapter 4, addresses three of the important shortcomings of

DCNNs as models of human visual cortex: 1) their lack natural analogs of cortical maps; 2)

their lack of biologically mechanisms in making predictions about unit specialization; and 3)
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their reliance on biologically implausible supervised learning and global information sharing.

These issues are detailed more below.

5.1.1.1 DCNNs are Not Designed to Model Cortical Maps

The human cortex is a two-dimensional sheet of neural tissues. Further, response selectivity

for neurons varies continuously across this cortical surface. On a large scale, the physical

organization of this response selectivity forms contiguous regions of the cortex that code

for related features and categories (Bednar and Wilson, 2016). The physical organization

of feature selective neurons within a cortical area is called a cortical map. Because cortical

maps mostly group features and attributes that are implicitly similar, they provide insight

into the structure of the feature space learned by a cortical area. As such, the study of

cortical maps is critical to neuroscience.

However, there is a serious problem in cortical map modeling, in that there is a lack of

cortical map models that can perform real-world sensory discrimination tasks. This would

seem to be a natural fit for DCNNs, which feature strong real-world discrimination perfor-

mance, but DCNNs do not have a natural analog to the cortical maps developed in visual

cortex.

While DCNNs use two-dimensionally organized convolutional feature maps, they seg-

regate these features into separate hardcoded channels with a fixed topology (Fukushima,

1980; Krizhevsky et al., 2012). In contrast, the primate cortex is highly-plastic and maps

all its features to the same cortical surface competitively (Bednar and Wilson, 2016). As

a further disconnect, DCNNs typically use multiple fully-connected layers, which have no

physical topological organization, for their top layers. These fully connected layers are even

less appropriate as stand-ins for cortical maps. As architectures, contemporary DCNNs are

simply not designed to model cortical maps. From a neuroscience perspective, it would be

useful for a model to make explicit predictions regarding the structure of high-level visual

cortical maps.

130



The ICL architecture proposed in Chapter 4 features cortical map mechanisms at each

of its representational stages. These mechanisms include self-organizing maps to represent

the simple cell layer and complex cell layers (Ch. 2), and axonal plasticity maps to control

the connectivity between layers (Ch. 3). Each of these mechanisms encourages continuous

representation of concepts and features across the simulated cortical sheet. If the ICL model

develops high-level cortical maps, then it could be a useful tool with which to study many

poorly understood phenomena, such as how and why functional areas form, and howthe or-

ganization of high-level feature units arises. Further, this would allow researchers to better

understand the relationship between high-level feature spaces and their physical manifesta-

tion on the cortical sheet.

5.1.1.2 The Unit selectivity of DCNNs appears to be spurious.

Researchers often conceptualize neural representations on two levels, namely, the unit-level

and the space-level. A unit-level analysis examines the response properties of individual

neurons or the receptive fields of individual neurons. A Space-level analysis examines the

pattern of responses generated by a collection of neurons, where the vector of their combined

activation levels exists in a geometric space. Correspondingly, a unit-level analysis examines

the unit-level representation of a system, and a space-level analysis examines the space-level

representation of a system.

Computational neuroscientists often compare representations in the high-level ventral

cortex with high-level layers of DCNNs at both the space and unit-levels. However, several

recent analyses of high-level DCNN units suggest their unit-level encoding may not be that

meaningful (Szegedy et al., 2014a; Parde et al., 2021). Furthermore, these studies question

the conclusions drawn from the unit-level analysis of the brain. In neuroscience, a neuron’s

selectivity and preferred stimulus are conventionally used to probe its representation within a

neural system. Unit selectivity is widely thought of as an indirect measure of the specializa-

tion or role a neuron plays in information processing. However, these recent computational
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results can be thought of as leading to two competing hypotheses regarding whether the

apparent selectivity of neurons and presence of preferred stimuli in high-level visual areas

truly indicate functional unit specialization.

The first hypothesis is that high-level ventral stream neurons are selective and spe-

cialized. Studies of the organization of the visual cortex in primates show that the receptive

fields of high-level ventral stream neurons are highly selective for semantic categories and at-

tributes, even if they are not so-called “grandmother cells” (Grill-Spector and Malach, 2004;

Grill-Spector and Weiner, 2014). For instance, the high-level ventral stream has multiple

clusters of neurons that tend to be roughly selective for faces, bodies, places, different objects,

visual wordforms, and attributes of these categories (Grill-Spector and Weiner, 2014). These

results suggest that neurons in high-level ventral cortex serve specialized roles in representing

stimuli.

The second hypothesis is that high-level ventral stream neurons appear selective but

do not serve a functionally specialized role in stimulus representation. Szegedy et al. (2014a)

showed that high-level DCNN neurons appear specialized using traditional methods, such as

examining maximally activating stimuli and selectivity, but that their selectivity and pre-

ferred stimuli seem indistinguishable from those of a randomly chosen linear combination of

the responses of high-level DCNN neurons. Essentially, this means that current measures

like selectivity may and presence of preferred stimuli may not be a good indicators of spe-

cialization. Such findings and others have led several authors (Parde et al., 2021; Szegedy

et al., 2014a) to suggest DCNNs may encode most of their semantic information at the

space-level and that unit selectivity is possibly spurious. Further, they suggest that some of

the apparent selectivity in high-level visual cortex could be spurious as well.

A more neurally plausible alternative to DCNNs could give differential predictions regard-

ing unit selectivity and specialization. The DCNN architecture’s preference for developing

functionally unspecialized units may emerge for architectural reasons that have little to do
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with neuroscience. Chiefly, DCNNs lack any of the biological constraints which might push

actual neural representations to learn more functionally specialized unit representations.

Without these constraints, DCNNs will naturally learn unspecialized space-level rather than

specialized unit-level representations as these representations are more computationally ef-

ficient for encoding categories (Foldiak, 2003). Further, it is unclear that including such

constraints would confer any computational benefits to the DCNN architecture. However,

the lack of these constraints casts doubts on whether the unit-level representations of DCNNs

are useful for making predictions about the specialization properties of high-level neurons in

actual ventral visual cortex.

The ICL architecture proposed in Chapter 4 contains biologically motivated learning

constraints that may cause it to learn specialized unit representations in its highest layers,

such as trace learning (Ch. 2), self-organizing map learning (Ch. 2), and axonal plasticity

modeling (Ch. 3). Trace learning makes it the goal of individual neurons to learn spe-

cialized representations of parts of the temporal environment. Self-organizing map learning

forces neurons to compete and avoid representing concepts too redundantly. Axonal plas-

ticity forces each neuron to use limited inputs that are already highly related, which should

encourage further specialization.

Current evidence and biological theories of primate visual representation in ventral cortex

(Grill-Spector and Malach, 2004; Grill-Spector and Weiner, 2014) support a more specialized

view of neuronal representation in the brain. If the ICL architecture learns a specialized unit

representation, then it would give support for Hypothesis 1, that the apparent selectivity

of neurons in the brain reflects a real functional specialization of those neurons, and that

the additional biological learning constraints used by ICL may be the determiner for this

phenomenon.

For clarification, when talking about high-level layers in DCNNs, I are typically referring

to layers before the classification layer with a specific focus on the penultimate or second to
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the last layer. For reference, the classification layer typically includes both a modifiable linear

transformation followed by a softmax transformation (Goodfellow et al., 2016). Because the

output of the final linear transformation and the outputs of the softmax transformation are

directly constrained to approximate match a simple categorical output (i.e. one-hot coding),

these representations are not viewed as meaningful to compare to neural representations. The

inputs to the final modifiable linear transformation are the chief representation of interest

because they are not explicitly constrained to follow a simple categorical representation and

are instead influenced chiefly by the computational demands of the task and the learning

architecture.

5.1.1.3 DCNNs Rely on Supervised Learning and Global Coordination

Most computationally successful DCNN models use a strong form of supervised learning

that requires massive numbers of images with high-level semantical labels to train effectively

(Yamins and DiCarlo, 2016b). In contrast, humans learn extensively with large amounts of

unstructured and unsupervised experience, without the need for huge amounts of externally

applied labels. From a computational neuroscience standpoint, more biologically plausi-

ble unsupervised learning algorithms need to be developed that achieve high performances

(Yamins and DiCarlo, 2016b).

Researchers have actually proposed many unsupervised DCNN learning algorithms, but

these models largely fail to fit measures of high-level representation in the ventral stream.

More specifically, unsupervised models do not predict the similarity matrix between items

computed using the activation space of high-level ventral cortex, and further they usually

suffer from weaker overall performance (Khaligh-Razavi and Kriegeskorte, 2014; Yamins

and DiCarlo, 2016b). In general, supervised learning models have been far more successful

at fitting high-level representations seen in the ventral stream, despite the likelihood that

this amount of supervision is cortically implausible (Khaligh-Razavi and Kriegeskorte, 2014;

Yamins and DiCarlo, 2016b).
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The learning issues with DCNNs go beyond reliance on supervised learning. In both

supervised and unsupervised learning, most DCNNs generate an error signal in their final

layer and propagate it back through all of the layers of the network. The results of this

error propagation are used to modify the connection weights within each layer. This learn-

ing method is called backpropagation. Although researchers continue to try to pose neurally

plausible implementations of this scheme (Scellier and Bengio, 2017), it is hard to ignore that

backpropagation requires the close coordination of many neural layers that are not directly

linked. As a further problem, the core mechanism of DCNNs involves sharing the weights of

one neuron in a layer’s feature map with all the neurons in that map in a method called con-

volutional weight-sharing. As such, neurons within a convolutional layer communicate their

weights directly over the full layer laterally in a way that is not supported by neuroscience.

Importantly, the notion that backpropagation and weight sharing are not neurally conser-

vative is uncontroversial among even prominent researchers using these techniques (Yamins

and DiCarlo, 2016b). Generally, these methods are tolerated as abstract stand-ins for more

local but neurally plausible processes.

In a further expansion of this point, DCNNs also use either fixed convolutional connectiv-

ity schemes or fully connected connectivity schemes in their later layers. Here connectivity

refers to the arrangement of connections between one layer of neurons and another layer of

neurons, where neurons that are not connected cannot talk to one another or form synaptic

weights. For future reference the set of input neurons that connect to a neuron of interest

are that neuron’s window. Windows are another way to refer to the connectivity between

neurons. As discussed in Chapter 3, neither fixed convolutional windows nor full connectivity

is not an accurate portrayal of how the cortex develops its connections and may ultimately

limit feature learning. Further, convolutional connectivity and full connectivity likely do not

describe connections between higher-level cortical well at all; This problem may compound

as DCNNs are tasked with learning higher and higher-order features.
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In contrast to DCNNs, the core mechanisms of the ICL model are derived from common

and accepted theories in neuroscience, making it neurally conservative. These mechanisms in-

clude but are not limited too Hebbian learning, lateral inhibition, trace rules, self-organizing

maps, and multi-factor axonal development mechanics. Further, the ICL model only gen-

erates learning signals between neighboring layers and neurons, which means it does not

coordinate behavior over long distances like DCNNs do. Further still, the inclusion of ax-

onal learning dynamics constitutes a strong move in the direction of neural plausibility, as

these mechanisms are almost entirely omitted from the current modeling literature for the

ventral visual pathway.

A pivotal challenge of this proposal is to examine if these more neurally conservative

mechanisms in the ICL model are sufficient to generate performance comparable to the

mechanisms used in standard DCNNs that feature global coordination, supervised back-

propagation, and fixed connectivity.

Evaluating the Challenge and Looking Forward. Very few learning algorithms

have ever demonstrated a strong ability to learn deep multi-layer neural representations

while also achieving high-performance on challenging datasets. Supervised backpropagation,

while not particularly cortically plausible, is by far the most successful algorithm for this

to date and for a number of reasons. Creating a new class of algorithms based on cortical

learning mechanisms that compete with or surpass supervised backprop would be a major

achievement, and should be viewed as an aspiration of computational cognitive neuroscience

that will require a large amount of research and development in the field. As I will discuss

later, the ICL model I developed is a first step, but not the last step in achieving this goal.

ICL should be viewed as one attempt to move towards the goal of more cortically plausible

deep learning methods, rather than the final word on whether it is feasible or not. As such,

I hope that ICL’s progress towards this goal can illustrate better ways forward for future

cortically inspired deep learning methods.
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5.1.2 Overview of Simulation Studies

This project explored how the ICL model deals with the problems of unsupervised learning,

unit-level encodings, and cortical maps. In Simulation Study 1, I examined whether the ICL

model learns continuous topographic maps of category-selective units similar to high-level

cortical map representations. In Simulation Study 2, I examined whether the ICL model

learns specialized unit representations or unspecialized unit representations using a method

that examines the relationship between the unit-level and space-level encodings within a

representation. In Simulation Study 3, I tested if the ICL model could perform unsupervised

visual category learning, using common object recognition datasets.

5.2 Simulation Study 1: Cortical Map Development

5.2.1 Introduction

While cortical maps have been a hallmark of neuroscience research (Bednar and Wilson,

2016; Grill-Spector and Weiner, 2014), today’s high-performing models largely omit them.

For example, the top levels of today’s DCNNs are fully connected, meaning that their units

have no representation of their physical relation to one another. Because of this, the physical

topology of unit selectivity is simply not a relevant point of comparison. However, given the

ubiquity of cortical maps in cognitive neuroscience, it would be useful to have a model that

featured high-performance like DCNNs and also provided an analog to cortical maps. If the

ICL model groups neurons that represent similar categories of objects, like what is found in

high-level visual cortex (Grill-Spector and Weiner, 2014), it would mean that ICL may be

useful for modeling high-level cortical maps.

The goal of Experiment 1 was to test whether the top-level feature maps of the ICL model

exhibit cortical mapping behavior, specifically whether the ICL model’s top-level group neu-

rons that encode features which select for similar categories together. To accomplish this
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goal, I measured the area of contiguous regions of units that were preferentially selective

for each category within layers of the model. Then I tested if this organization could have

arisen out of chance. In theory, the ICL model should generate contiguous regions larger

than would be expected by chance, if it was displaying high-level cortical map development.

5.2.1.1 Predictions

Given that the ICL model is explicitly a deep multilayer self-organizing map, I predicted

that it would develop a high-level category contiguous cortical map structure (i.e. grouping

features that tend to select for similar categories together). If this structure was found I

planned to do several followup explorations.

For future studies, it would be useful to know how factors like the radius of lateral

excitation affect the structure and size of category contiguous regions. I assume that larger

radii of lateral excitation will lead to more contiguous maps with fewer discrete regions. This

is generally the result observed in low-level cortical map models.

5.2.2 Simulation Methods

5.2.2.1 Object Recognition Dataset: MNIST-F

For this Simulation Study, the ICL model was trained on a temporally augmented version of

Fashion-MNIST which contains 28 by 28 gray scale images of 10 categories of clothing items

(Xiao et al., 2017). Fashion-MNIST is designed to be a replacement for the original MNIST

for the purposes of prototyping and developing new neural networks, because MNIST was

generally too easy for modern machine learning techniques to be validated on. Fashion-

MNIST should suffice to see if the model is learning interesting cortical map topology.
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5.2.2.2 Model Configuration for MNIST-F

For the versions of the ICL model run on MNIST-F, I kept the native resolution of the

dataset, which was 28 x 28 pixels gray scale. As pre-processing, I performed a high-pass

Gaussian filter operation (similar to on-center off-surround processing), then a gain control

operation in order to scale these LGN like inputs. See Chapter 4 Sec. 4.5.1 and Sec. 4.5.2

for more information about LGN like processing for ICL like models.

For the MNIST dataset, I used 4 stacked ICL modules with either a maps resolution of

100 x 100 for each module or a narrowing series of resolutions (100x100, 80x80, 60x60, 40x40)

for each module. These setups were used for the ICL-Lat-Optimal and ICL-Map-Optimal

model configurations respectively. For this dataset I also explored the Simple-Only, Simple

+ Axonal, and Full ICL module (referred to as the simple + complex configuration in this

chapter) configurations, see Chapter 4 Sec. 4.6 for more information on the different module

configurations.

5.2.2.3 Temporal Augmentation

The ICL must be exposed to statistical environments where the images evolve since, unlike

DCNNs, the ICL model uses the temporal dynamics of the statistical environment as an

important hint for developing its pooling structure. The datasets used in these experiments

do not include natural temporal observations. To address this, I introduced artificial tem-

poral relations by applying progressive image transformations such as rotation, scaling, and

translation to the individual images to create sequences of images. The beginning state

of the input image was pulled randomly from a uniform distribution across rotation, scale,

and position. The speed of these transformations was included as a set of special hyper-

parameters that controlled the training environment. Further, the probability of switching

to an object within the same category or to a new category was included as an additional

hyper-parameter.
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Figure 5.1. Network Diagram: ICL-Map-Optimal: MNIST-F
This diagram shows the layer setup for the ICL-Map-Optimal model trained on MNIST-
F. Note that the windows (RED) connecting neurons from one layer to the next are not
static given that they will be adjusted by the arbor layer’s learning dynamics when axonal
learning is enabled, and are only roughly disk-like in practice. The red number next to each
window indicates the total number of connections in each window. For the ICL-Map-Optimal
model the layer sizes progressively shrink, while the window sizes progressively grow. This
increased the scale structures in the high-level cortical maps considerably, but appeared to
lower performance considerably.

It is important to note that there was fine-tuning of the temporal augmentation method

for each dataset in addition to fine-tuning the structure of the ICL model for each dataset.

Finally, I would like to emphasize that the addition of temporal dynamics to a collection

of static images was designed to create a more realistic model of the statistical learning

environment. In the real world, the statistical environment does not consist of a collection of

isolated static images which are then sampled with replacement. Rather, dynamic temporal

transformations are an integral part of the statistical learning environment of the real world.
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Figure 5.2. Network Diagram: ICL-Lat-Optimal: MNIST-F
This diagram shows the layer setup for the ICL-Lat-Optimal model trained on MNIST-F. For
the ICL-Lat-Optimal model the layer sizes and window sizes remain constant. This layer-
diagram generally increased performance significantly over the ICL-Map-Optimal model.

5.2.2.4 ICL Training Procedure

The training methods for the ICL model were substantially different from those of DCNNs

and or standard deep learning models. See Fig. 4.2 for a graphic overview of the training

process.

5.2.2.4.1 ICL: Layer-wise Learning Rules The ICL model was composed of a stacked

series of modules, where each module could have 4 component layers: arbor layer 1, simple

layer, arbor layer 2, and a complex layer. Each of these layers learned in an unsupervised

fashion using only local information, such as the activity of its inputs and the activity of the

layers it directly connects to.

The Arbor layers used local gradient descent to move the axonal arbors of pre-synaptic

neurons towards the dendritic arbors of correlated or co-activating neurons, while also min-
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imizing overlap between axonal arbors and lightly encouraging a rough retinotopy. The ob-

jective function for this layer only took activations from the pre-synaptic and post-synaptic

cells as input, and no backpropagation learning signals were sent to external layers.

Each Simple layer used a form of laterally competitive hebbian learning that encour-

aged it to learn a map of neural feature detector units that have good coverage over the

distribution of input patterns coming into the layer. The learning method was not imple-

mented using gradient descent, and only uses the activity of the layer’s inputs and the layers

current activity.

Each Complex layer used a form of Trace Learning to learn sets of simple cells that

tended to be temporally related (i.e. tend to co-activate near one another in time) (See

Sec. 4.4 for a quick overview). The complex layer’s learning rule only relies on a running

temporal average of the input activations to the complex cell layer and a running temporal

average of the current activation of the complex cell layer.

5.2.2.4.2 ICL: Module-wise Learning Rules Each module within an ICL model was

trained one at a time in order according to its internal unsupervised learning rules, similar

to stacked-auto encoding (Bengio et al., 2007), see Fig. 4.2.

5.2.2.4.3 Readout Layer When classification performance needed to be examined a

final softmax classification layer was placed on top of the ICL model (or on top of the layer

of interest within the ICL model). This classification layer was trained separately to catego-

rize labeled object images, using supervised learning via the Adam optimizer method with

dropout on its inputs to prevent over-fitting. While training the weights of this classification

layer, the weights of the ICL model were held fixed. This final classification layer is called a

readout layer, as its purpose is not to change the underlying representations present in the

model via deep backprop, but to make the model’s categorical representation more accessible
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for analysis. Although the readout layers were not used in Simulation Study 1 they were

used heavily in Simulation Studies 2 and 3.

5.2.2.5 Testing Procedure

To test if the ICL model groups neurons that represent the same category together on the

cortical surface, I developed a novel procedure. Under this procedure, I tagged each high-

level unit with the categories they are selective for. After the tagging process, I found each

contiguous region of units that are selective for a category and recorded their area. These

areas were aggregated to find a mean region size statistic for all of the map’s contiguous

category-selective regions.

As a second measurement, I calculated the mean region size statistic repeatedly for

randomly permuted maps of the same ICL units. This gave me an estimate of the expected

mean region size statistic’s distribution for category-selective regions that would occur due

to chance with the same set of units.

5.2.2.6 Defining Unit Selectivity

I used the ratio of the mean activation of a neuron for a category versus the mean activation

of that neuron to all other categories to determine if a neuron was selective for a category.

This is a common measure of selectivity in both fMRI studies and multi-unit recording

studies. When weighted by the standard deviation of activity for non-categories of interest,

a p-test for significance can also be done. In one of our followups, I also used this weighting

in order to rank the relative selectivity of neurons for visualization purposes.

5.2.2.7 Defining Contiguous Regions

For my purposes two units were contiguous if they shared selectivity for a category and were

part of a von Neumann neighborhood, which is simply up, down, left, and right of a unit on
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a gridded cortical sheet. To find contiguous regions, I used a variant of the common flood-fill

algorithm (Torbert, 2016) to group together linked units that select for the same category.

5.2.3 Data Analysis

The purpose of this statistical analysis was to estimate the probability that the average size

for category selective regions could occur by chance when the units were actually arranged

in a purely random fashion. I performed a non-parametric hypothesis test where the mean

area statistic for the normal ICL model’s contiguous regions was compared to the mean area

statistic’s distribution for random maps. Here the area distribution for random maps was

calculated by resampling randomly permuted versions of the units in the normal ICL map

and recalculating the mean area statistic. This allowed me to compare the average area

of contiguous regions in the normal ICL map to the expected distribution of areas from

random maps in a Monte-Carlo permutation test. I expected the formation of non-spurious

contiguous regions to be all or none, thus I anticipated a very large effect size.

I also be visualized the activation characteristics of the high-level cortical maps using

several methods. Firstly, I looked the ratio of the mean activation to each category to other

categories in order to label each neuron with the category (indicated by color) that it was

most traditionally selective for in a selectivity map (SEL map) (see Sec. 5.2.2.6 X & Fig.

5.3). Second, I looked at each neuron’s Maximally Exciting Stimulus and their combined

map structure in a Maximally Exciting Stimulus map (MES map) (see Fig. 5.4B). Third, I

re-labeled the MES maps by the category of each neuron’s MES using the same color coding

used with the selectivity maps (see Fig. 5.4C). Importantly, these visuals will only be used

for qualitative comparison in this study.

For an intuitive reference, a Selectivity Map (SEL map) can be thought of as visualizing

the category of items that activate each neuron most strongly on average, whereas the

Maximally Exciting Stimulus Map displays the single item that caused each neuron to reach
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Figure 5.3. Illustration of contiguous and random maps.
These pictures are somewhat simplified, as each unit can actually be selective for multiple
categories and thus a unit can be a part of multiple contiguous category selective regions.
Also note that the randomly organized maps still develop contiguous regions, but these tend
to be small when there are numerous categories and are purely generated by chance.

its peak activity. For better comparison to the Selectivity Maps, I often recolored the MES

maps by the category of each neuron’s maximally exciting stimulus.

5.2.4 Results

In the main part of Simulation Study 1 I wanted to examine if the mean category selective

region size or MRS is larger than would be expected due to chance. To test this hypothesis

I performed a non-parametric bootstrap test for the MRS statistic on an ICL-Map-Optimal

model trained on the Fashion-MNIST image dataset. I found that the MRS statistic was

significantly above chance, p < .001 (Fig. XB). Further, the size of the effect was very large

indicating that a less powerful test could be used in the future. As a sanity check (given

that this is a new method) I also tested what the MRS statistic would be for an untrained

version of the ICL-Map-Optimal network. For the untrained network the MRS statistic was
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Figure 5.4. Examples of Map Visualization
(A) Show an example neuron’s activation histogram by category. The (RED) circle star shows
the activity and category of the Maximally Exciting Stimulus (MES) (i.e. the stimulus item
that caused a neuron to reach its peak activation). The (BLUE) dashed box indicates the
category for which the neuron is most selective as given by. Further, (A) also shows the color
coding for each category in the map visualizations. (B) shows a picture of each neuron’s
MES located where the neuron is positioned on the cortical surface. (C) shows the category
of each neuron’s MES color coded by its category. (D) shows the category for which each
neuron on the map is most selective. For reference, the MES and SEL maps by category are
two different ways of characterizing the activation characteristics of a set of neurons, where
the SEL map visualizes the categories that neurons activate most strongly to on average,
and the MES map by category visualizes the category of the item which causes each neuron
to reach its peak activation over the entire dataset.
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Figure 5.5. Visualizing Category Representation with Standard Methods
(A) shows a representation of how the neurons in a map respond to different categories
of objects by color coding each unit according to the category it is most selective for (i.e.
responds most to on average). Often this kind of map will be abbreviated as a SEL-map.
(B) shows a representation of how neurons in a map respond to different categories by color
coding according to the category of the stimulus item which caused each neuron to reach its
peak activity. Often I will refer to this map as a MES-map. Note that highly similar kinds
of object categories are usually given similar colors for visualization purposes.

not above chance, p = N.S., and was in fact slightly below the chance distribution (Fig.

5.6).

I also visualized the activation characteristics of these maps relative to the 10 categories

in the dataset. I noted several qualitative comparisons. First, the agreement between the

MAS and SEL maps for both the untrained and trained ICL-Map-Optimal networks was

generally quite low, at 19.6% and 19.0% respectively. Second, the untrained networks

displayed speckle or noise like patterns of selectivity with little to no contiguity of category

selective regions, while the trained network displayed large regions of contiguous category

selective neurons, some with around 30 neurons (see Fig. 5.7).

While the large effect size for the MRS statistic and the qualitative map characteristics in

the top layer of the ICL-Map-Optimal network could indicate the development of hierarchical
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Figure 5.6. MRS Boostratp Test: Untrained vs. Trained ICL
(A) the distribution of the randomly permutation map MRS statistic (BLUE) for the un-
trained ICL model and its actual value (ORANGE). Note that the MRS statistic is below
the permutation distribution. (B) shows the distribution of the permuted MRS statistic
(BLUE) for the trained ICL model and its actual value (ORANGE). Note that the MRS
statistic is significantly above the permutation distribution.

categorical features, I wanted to examine if this apparent map structure could be caused by

propagation of low-level feature representations and biases in the dataset through multiple

layers. To test this I performed the same non-parametric bootstrap test on another version

of the ICL model where the lateral-interactions and size of each layer in the model were kept

constant called ICL-Lat-Optimal. If the model is learning sophisticated categorical features

I would expect that the MRS statistic would increase from layer 1 to layer 4 of the model.

In theory, the MRS statistic would grow because each layer would introduce incrementally

more specialized features selective for objects that would tend to co-activate more than local

simple features, causing the cortical map forces to aggregate them together in larger groups.

I found that the MRS statistic tended to go down from layer S1 to layer S4 of this model,
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Figure 5.7. MAS and SEL-maps: Untrained vs. Trained Map-Optimal-ICL
(A) shows the side by side MAS and SEL-maps for the untrained Map-Optimal-ICL model.
Note that both maps show speckle patterns and very little regular structure. (B) shows
the side by side MES and SEL-maps for the trained Map-Optimal-ICL model. Note that
contiguous regions of category selectivity and MES organization have formed due to learning.

with the MRS = 2.1 and MRS = 1.96, for layers S1 and S4 respectively (see Fig. 5.8),

suggesting that more sophisticated categorical features were not developing. Because of the

nature of this comparison, a proper bootstrap test is less feasible.

Visualizing the selectivity and MES map for layers S1 and S4 of the ICL-Lat-Optimal

network revealed one main qualitative characteristic. The overall distribution of category

selective units is different between layers S1 and S4, with the selectivity and MES maps of

layer S1 appearing to display edge effects, while layer S4 grouped categories by selectivity

and MES in more or less evenly distributed clumps across the map (see Fig. 5.9). This likely

indicates that dataset biases drive the locations of category selective units in layer S1, while

this is less the case for layer S4.

Further following up on these results, I wanted to see if the addition of complex cell

layers would change the region size characteristics. Using a version of the ICL-Lat-Optimal

network with complex cell layers interleaved between the simple cell layers I again computed

the MRS statistics for the layer C1 and layer C4. With the addition of complex cells the
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Figure 5.8. Comparison of MRS: Layer S1 vs Layer S4: Simple-Only
This figure shows a comparison of the MRS statistic and permutation distributions between
the first simple cell layer and the 4th simple cell layer in a version of the model where lateral
interaction are uniform across layers. Note that actual MRS statistic (YELLOW) tends to
shrink from layer S1 to layer S4. This suggests that the nature of category selectivity from
layer S1 to S4 may not have changed much.

areas appeared to grow from layer C1 to C4, with MRS = 2.1 and MRS 2.4 respectively (Fig.

5.10). This suggests that the complex cells could be causing the network to develop more

sophisticated category selective features across its layers. Further, layer C1 and layer C4 of

the simple only and simple + complex networks display markedly different map structures,

with the MES-map for the simple + complex network displaying large regular patches of

units that activate maximally to the same category (Fig. 5.11). In addition, the MES-map

for the top layers of the simple cell only network vs. the complex+simple network look vastly
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Figure 5.9. MES and SEL Maps: Layer S1 Vs. layer S4 : Simple Only
(A) shows the MES and SEL maps for layer S1 of the LAT-Optimal-Simple Only ICL model
(B) shows the MES and SEL maps for layer S4 of the LAT-Optimal-Simple Only ICL model.
Note that both the MES and SEL maps change from layer S1 to S4. S1 appears to have
more regional selectivity, but this may be due to edge effects in the dataset. Additionally,
layer S4 may simply be reducing the appearance of these edge effects via its effectively larger
receptive fields.

different, with the simple network displaying small MES patches, and the complex network

displaying very MES patches (Fig. 5.12).

5.2.5 Discussion

Simulation Study 1 shows that more biologically plausible learning rules can in fact lead

to the development of cortical map structures that are seemingly contiguous for category

selectivity. However, it is highly possible that the development of category continuous map

structures may be an artifact of the contiguous feature learning constraints of the ICL model

and of the low-level stimulus regularities present in the test dataset.

I did several follow-up examinations to get a better sense if this the maps were due

to lower level interactions. When I examined map development across multiple layers of

representation, it appeared that the size of the categorically selective regions did not grow

substantially from layer S1 to layer S4, in the models without complex cells, when controlling

for lateral interaction and map size (see Fig. 5.8). This lends credence to the idea that
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Figure 5.10. Comparison of MRS: Layer S1 vs Layer S4: Simple+Complex
This figure shows a comparison of the MRS statistic between layer C1 and layer C4 of the
LAT-Optimal-Simple+Complex version of the ICL model. Note that the MRS statistic tends
to grow from layer C1 to layer C4. This suggests that contiguous representation of categories
may enhance as more layers of this form of ICL are added.

appearance of categorically organized maps was due to low-level artifacts and biases in the

dataset. When complex cells were added however the size of categorically selective regions

typically grew (see Fig. 5.10). Further, the addition of complex cells greatly changed the

character of the maps (see. Fig. 5.12). However it remains to be seen if the complex cells

will change the more computational characteristics of the of the network with respect to

categories.

Looking at the top-selective neurons I found “classically” selective neurons (see Fig.

5.13), but when I varied the input locations of stimuli the appearance of “classically” se-
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Figure 5.11. MES and SEL Maps: Layer C1 Vs. layer C4 : Simple + Complex
This figure shows the MES and SEL maps for layer C1 (A) and layer C4 (B) of the LAT-
Optimal-Simple+Complex ICL model. Note that the MES map for layer C4 takes on a
patchy structure where neurons activating most strongly to stimuli within a particular cat-
egory group quite strongly. The SEL-map for layer C4 appears to show some form of edge
effect.

lective neurons reduced as I increased the positional variability. At half stimulus width

variability, selectivity was greatly reduced and at full image width selective neurons all but

disappeared. This suggests that even if these neurons are encoding high-level features, they

are not particularly invariant which again may suggest that these high-level feature maps are

not organized by category so much as low-level stimulus features. The results of Simulation

Study 2 which get to the heart of ideas about selectivity vs. functional specialization, and

may further cast doubt on the idea that these maps are strongly category based.

Importantly, Simulation Study 1 shows that more neurally inspired architectures like

the ICL model can be used as a basis for starting to investigate and build better models

of hierarchical maps along the ventral visual stream. ICL is likely a first-of-its-kind model

in its ability to develop deep topographic cortical maps, which should hopefully encourage

more development in this area.
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Figure 5.12. Comparison of MES-maps: Layer S4 Vs. layer C4
This figure shows a direct MES-map comparison between layer S4 of the simple only model
(LEFT) and layer C4 of the simple+complex model (RIGHT). There appears to be larger
more regular grouping of neurons which have their MES in the same category. This might
suggest that the addition of complex cells in the ICL model changes the high-level represen-
tation of categories to be more continuous on the cortical surface.

5.3 Simulation Study 2: Unit Specialization

5.3.1 Introduction

Researchers have long been interested in whether specific neurons in the brain serve special-

ized functional roles in the high-level ventral cortex. For example, is a neuron that reacts

strongly to “houses” utilized by the nervous system to represent that a “house” has been

identified or are the neuron’s weaker responses to other categories equally important from

an information processing perspective? If so, this would call into question the entire concept

of unit specialization in the field of neuroscience.
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Figure 5.13. Apparent Selectivity as a Function of Stimulus Variability
This figure shows how the the apparent selectivity of neurons changes as a function of
image position variability in the testing dataset. When images are centered (TOP ROW),
the network appears to have highly selective neurons. When the images are uniformly
distributed across different shifts in position that span half the image width (MIDDLE
ROW), the apparent selectivity of neurons appears to drop significantly. At full image
width shift variability (BOTTOM ROW), the strong selectivity seen earlier appears to largely
disappear and also appears to be driven more by outlier stimuli. The disappearance of strong
selectivity, as image presentation variability is increased, suggests that these neurons may
not be learning strongly categorical representations and that at least part of their apparent
selectivity is due to lower-level image regularities.
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Neuroscientists often try to understand a neuron’s functional specialization by measuring

its so-called selectivity. Selectivity is usually just a measure of whether a neuron tends to

activate more strongly for some classes of stimuli or situations than others. While selective

neurons may be specialized, selectivity is a highly imperfect measure of specialization and

does not imply specialization without further information.

Going as far back as 1981, connectionists were showing that simple neural networks could

represent, recall, and distinguish between stimuli without the need for functionally special-

ized units (Anderson and Mozer, 1981). Further, they demonstrated that conventional neu-

roscience measures of selectivity would almost always show that these networks have highly

selective neurons, even though the functional role of those neurons was provably unspecial-

ized. Recently, this line of reasoning has been revived with modern experiments using much

more sophisticated neural network models like DCNNs (Parde et al., 2021; Szegedy et al.,

2014a). Essentially this new work has demonstrated that functionally specialized units in

the upper layers of these networks are not required to generate state-of-the-art performance

for real-world image recognition benchmarks, and that similarly deceptive highly selective

neurons are still found in the advanced networks.

If computational experiments were the only line of evidence for specialization in high-level

cortical areas, then the hypothesis that high-level cortical units are relatively unspecialized

might be more common in neuroscience. However, many lines of research suggest this is an

overly simplistic view of how neurons represent stimuli in the brain. Generally, research has

shown that the brain physically groups neurons that are selective for related stimuli together.

For example, these groupings include but are not limited to retinotopy, ocular dominance

columns, orientation columns, FFA, FBA, VFWA, and PPA (Bednar and Wilson, 2016;

Foldiak, 2003; Grill-Spector and Malach, 2004; Grill-Spector and Weiner, 2014). Further,

when these physical groupings of related neurons are injured, humans tend to exhibit specific

behavioral deficits related to the selectivity of the damaged neurons. For example, damag-
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ing the peripheral portion of V1 impairs peripheral visual perception, and damaging FFA

specifically impairs face perception (Farah, 2004; Schiltz et al., 2005).

This evidence strongly suggests that, at least at a large-scale, areas of the ventral path

serve functionally specialized roles. However, at a smaller scale, the evidence that individual

units are serving specialized roles within functional domains like FFA, VWFA, or object

selective fusiform cortex, is more lacking. For instance, it is still reasonable to ask if individual

neurons within the Visual Word Form Area (VWFA) are specialized to represent specific

semantically meaningful features of words and letters or if every neuron is participating

holistically in the representation of word forms despite their apparent selectivity. Further,

even at a large scale the actual degree of functional specialization is still very open for debate.

The smaller scale question of specialization within specific functional domains is a fer-

tile ground for simulation work using today’s state-of-the-art DCNN models. Szegedy et al.

(2014a) showed that DCNNs trained for numeral recognition and general object recognition

had interpretable unit selectivities, but that these selectivities were just as interpretable

as those of random linear combinations of the same units. Further, (Parde et al., 2021)

demonstrated that deleting high-level units in networks trained for face recognition caused

performance degradation more in-line with units that were unspecialized for particular iden-

tities while still making identities highly separable (it should be noted that their results for

other stimulus axes such as gender and head rotation were less clear cut, but the expectation

for these categories is also unclear). In other words, while each individual unit tended to

encode all the identities, their activation was so predictive that only a small number were

needed in order to effectively separate individual identities. I will call these performance

curves over unit deletion unit deletion curves (UD).

However, these results should be cautiously interpreted, as DCNNs and other state-of-

the-art models today generally lack any of the biological mechanisms that would be expected

to generate unit specialization in the first place. This leads to the question of Simulation
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Study 2: does a model that features many of these omitted biological mechanisms learn

functionally specialized units, contrary to DCNN models, or will it reproduce the work with

DCNNs?

Simulation Study 2 follows a relatively simple logic. First, the main operating assump-

tion of this field is that the high-level ventral cortex’s goal is in part to make relevant

categories separable so they can be readily available to other neural systems (DiCarlo and

Cox, 2007). Second, applying a random rotation to a unit representation fully preserves

separability between categories, while removing any functional specialization for the units

within a representation. Third, unit deletion affects representations with specialized units

and unspecialized units in very different ways.

Given these stipulations, the unit-deletion curve of the normal model can be compared

to the distribution of unit-deletion curves for randomly rotated versions of the same model.

These randomly rotated representations are guaranteed to be unspecialized while preserving

the original model’s ability to separate categories. This comparison constitutes a simple

hypothesis test where the distribution of unit-deletion curves for randomly rotated versions

of the model acts as the null distribution for the level of specialization expected.

5.3.1.1 Definitions

Before discussing Simulation Study 2 in detail, I will clarify the terms selectivity and special-

ization. Selectivity can have several meanings in neuroscience, but the general assumption

is that a neuron is more selective for a type of stimulus if it responds more strongly to that

stimulus type relative to other stimuli. Given this general assumption, there is an abun-

dance of measures of selectivity, which mostly give similar results. Specialization, on the

other hand, connotes that a neuron serves a specific functional role within a representation.

As discussed earlier, selectivity is often assumed to capture specialization, but this need not

be the case from a computational perspective.
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To better understand how selectivity and specialization are related I will introduce the

concept of activation-space. When a stimulus is presented to a set of neurons, the neurons

will activate to different degrees. Each neuron’s level of activation can be regarded as an

axis of geometric space or activation space. Each stimulus would be represented as a point

in activation space, or equivalently as a vector whose elements are the unit activation levels.

In activation-space, selectivity only implies that certain groups of stimuli tend to cluster

about a particular axis, but it does not imply how this occurs. Fig. 5.14 shows that neurons

can be selective in very different ways that may or may not imply specialization. Thus,

it is important to make a careful conceptual distinction between unit selectivity and unit

specialization.

Selectivity is a measurable quantity, while specialization is more concerned with how the

brain uses a neuron’s response properties. It is quite difficult to say with certainty what role

any specific neuron plays in information processing in the brain. Generally, neuroscientists

instead try to characterize how a neuron could be used by the brain to process information.

To answer this weaker question, researchers often use the concept of separability. For our

purposes, separability measures how easily a single neuron’s activity or a set of neuron’s

activation space can separate different groups in a geometric sense. Fig. 5.15 shows how

selectivity does not necessarily imply specialization as measured by separability.

In practice, separability requires more sophisticated measures than selectivity, often re-

quiring the training or fitting of a model which I will call a decision function. Essentially

this model draws boundaries on a high-level activation space with some limitations depend-

ing on the type of decision function used. For example, a linear decision function can only

separate groups using high-dimensional planes, and a nearest-neighbor decision function can

only separate an activation space into a set of convex tiles called a Voronoi system. Dif-

ferent kinds of decision functions can be used to characterize how difficult it is to separate

categories within an activation space. Importantly, this measure confounds two sources of
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Figure 5.14. Activation Space: Specialized Vs. Unspecialized Neurons
This figure shows how neurons can be selective for the same groups of stimuli while having
quite different response properties in activation space. In the first activation space, group A
can only be identified using the activity of neuron 1 and group B can only be identified using
the activation of neurons 2, which implies that these neurons serve specialized functions. In
the second activation space, the responses of both neuron 1 and 2 can be used four different
stimulus categories, meaning these neurons do not have to serve a specialized function.

separation difficulty. Some groups may be difficult because they require a more complex

decision boundary to be separated, and some groups may be difficult to separate because

their distributions overlap substantially in activation space.

For this paper, I will use a soft-max readout layer as my decision function to estimate how

well the neural activation spaces in the ICL model separate groups of stimuli. Importantly

this kind of readout layer is mostly insensitive to the magnitude of input patterns and can be

thought of as a form of nearest neighbor function for direction rather than location. I chose

this decision function because its similarity measure is closely related to many commonly
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Figure 5.15. Activation Space: Separability
This figure shows how selectivity does not necessarily imply specialization, while separability
can be regarded as a more reliable indicator of the level of specialization neurons might have.
In the first activation space, the activation of neuron 1 can separate group A from the other
groups and the activation of neuron 2 can completely separate group B from the other groups.
However, even in the combined activation space groups C and D cannot be separated from
one another, suggesting that neuron 1 and neuron 2 are specialized for group A and group
B respectively because those are the only groups these neurons can separate reliably. In
the second activation space, groups A B C & D can be completely separated, although
the partitions between groups may be complex and each individual neuron only partially
separates the groups, implying that these neurons do not have to be used in a specialized
way.
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used decision functions for interpreting neural activation patters. In addition, this particular

parametric form of decision function supports a more direct comparison with current DCNN

classification research (Parde et al., 2021; Yamins and DiCarlo, 2016b). It is important

to emphasize that typical DCNNs simultaneously adjust the parameters of the soft-max

readout layer and the parameters of the DCNN to optimize read-out performance. In the

model proposed here, the parameters are estimated independently of the parameters of the

soft-max readout layer in all use cases
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Figure 5.16. Unit Loadings: Specialized Vs. Unspecialized
This figure shows an illustration of what the selectivity of specialized units and unspecialized
units might look like in terms of their selectivity. Here I use the term loading to refer to
how much a unit activates for a category on average minus its normal activity. The dotted
line represents a chance or spurious level of loading, that is effectively zero. The specialized
unit has a strong positive loading for Car and a strong negative loading for Truck, this
neuron might be conventionally labeled a “Car not Truck” neuron and it is only useful for
separating cars and trucks. The Unspecialized unit has positive and negative loadings for all
of the categories, some weak and some strong. This neuron might be conventionally labeled
a “Plane not Truck” neuron, but it can participate in discrimination of all categories.

Later in this paper, I will often use the term specialization to refer to how specialized a

set of neurons must be given their separability characteristics as measured by the accuracy
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that a trained a soft-max readout layer can achieve when using that neural representation

as input.

The crux of the emerging debate about selectivity and specialization is the issue that

standard measures of selectivity do not necessarily imply that a neuron serves a specialized

role in the brain Parde et al. (2021). Fig. 5.16 shows how two neurons can both be selective

and how both can be semantically interpreted, while only one is constrained to serve a

specialized functional role. DCNNs appear to learn the more unspecialized representations,

and given their performance it suggests that unit specialization is not a requirement for

strong object recognition (Parde et al., 2021). However, it remains to be seen if other high

performing models with additional biological constraints learn more specialized units.

5.3.1.2 Objective

The goal of Stimulation Study 2 was to examine whether the ICL model learns specialized

unit representations as current theories of cortex suggest or if it learns more unspecialized

unit representations like DCNNs. To achieve this goal, I performed an analysis similar to

the (Parde et al., 2021) method for characterizing the level of specialization individual units

have for a set of categories. This method simply examined the discriminative power of

random sets of units for a set of categories. When a representation features an explosive

growth in discriminative power as the number of units increases, it indicates that all the

units partially encode all the categories. The extreme of this behavior indicates a lack of

unit specialization. Knowing what the extreme of this behavior would look like for a model,

it can then be compared to the model’s actual behavior to determine if the model is learning

more specialized unit representations.

Intuitively, unit specialization exists on a continuum. On the specialized end of the

continuum, each unit only participates in the representation of one category. In this case,

the number of categories that can be represented increases linearly with the number of
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units (Fig. 5.17). On the unspecialized end of the continuum, each unit participates in the

representation of all categories. In this case, the number of categories that can be effectively

represented grows combinatorially with the number of units (see Fig. 5.17).

Using this information, where a model falls on the continuum can be found by examining

how well increasingly large subsets of a model’s units perform at a classification task. Models

with highly specialized units will reach their peak performance at a slower rate (almost linear

under certain circumstances). On the other hand, models with less specialized units will reach

their peak performance very quickly.

I used the Parde et al. (2021) unit deletion curve or UD curve, which simply measures

the categorization capacity of different numbers of random units in a model to characterize

how specialized the units within the representation were for a set of categories. For fully

unspecialized units, the UD curve should show a strong elbow shape, as its exponential

categorization capacity would cause its performance to rise quickly and saturate after only

using a small number of units (see Fig. 5.18A). For specialized units, the UD curve should

show a much less pronounced elbow, as its capacity per unit grows much slower (see Fig.

5.18A). In this experiment, I modified the Parde et al. (2021) procedure to compare the UD

curve of the ICL model to the UD curve that it was be expected to have if its units were

completely unspecialized.

While it would be possible to directly compare the normal ICL model UD curve with the

curve it would have if its units were unspecialized, I instead compared the area under the

curves (AUC) for both UD curves. The area under the curve for the UD curve will be denoted

with the acronym UD-AUC. I chose the UD-AUC statistic for comparing the two PPU

curves because it adequately captures the speed with which a model reaches its performance

saturation point as the number of units increases. A model with specialized units should

show a smaller UD-AUC than an identically performing model with unspecialized units (see

Fig. 5.18).
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5.3.1.3 Predictions

Decades of research have led to the hypothesis that high-level ventral stream neurons are

highly specialized (Foldiak, 2003; Grill-Spector and Malach, 2004; Grill-Spector and Weiner,

2014). Yet experimental observations have often been based upon unit selectivity measures

rather than stricter measure of unit specialization. Following Parde et al. (2021), this obser-

vation raises the concern that experimental evidence for unit selectivity may have sometimes

been misinterpreted as evidence for unit specialization. The UD-AUC statistic provides a

helpful tool for more clearly identifying situations where unit specialization is present. In

particular, if unit specialization is present in actual high-level ventral cortex, I would expect

it to show a softer elbowed UD curve. On the other hand, DCNNs show high levels of

performance can be achieved with completely unspecialized units, which produce severely

elbowed UD curves (Parde et al., 2021). If the ICL model produces UD curves that indicate

specialization, it would suggest that biological constraints may cause the high-level ventral

cortex to learn more specialized unit representations than experiments with DCNNs show is

strictly necessary.

The ICL model has several mechanisms that should cause it to narrow the functional

specialization of all of its units. As such I expected that the ICL model’s normal-UD-AUC

would be much smaller than the rotated-UD-AUC on average (see, Fig. 5.20). This result

would indicate the ICL model learns a specialized unit representation in contrast to DCNNs.

If the ICL model shows specialized representations, then it would be worthwhile to do a

minimal exploratory analysis to see what kind of features the ICL model is learning at its

top levels.
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Figure 5.17. Visualization of Unit Discrimination Power: Specialized Vs. Unspecialized
This figure shows how unspecialized neurons can increase the number of categories they can
represent exponentially as the number of neurons grows and how the number of categories
that specialized neurons can represent grows much slower. For simplicity, each neuron in
this diagram is assumed to only have high and low activation values.

5.3.2 Simulation Methods

5.3.2.1 Stimuli & Training Procedures

Generally, the stimuli and the training procedures were the same as those in Simulation

Study 1. Again, I used the MNIST-F dataset because it contained a large set of real-world

images with large amounts of inter-item variation. Note that a readout layer was added to

the ICL models used in this Simulation Study and trained separately from the ICL model

to discriminate categories based on labeled images. Refer to Sec. 5.2.2.4 for a full overview
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Figure 5.18. Expected UD and PPU-AUC Graphs
This figure describes the expected PPU curves and AUCs for representations with unspe-
cialized and specialized units. (A) shows how the distribution of unspecialized unit curves
(Purple) has a strong elbow and follows the top left corner of the UD graph, and how the
specialized unit UD curve will be somewhere below. Similarly (B) shows how the area un-
der the curve for unspecialized units will be much higher than the area under the curve for
specialized units.

of the training procedure for the ICL model, and Sec. 5.2.2.4.3 for an explanation of the

readout layer and it’s separate training.

5.3.2.2 UD Curve & AUC in Detail

To measure a UD curve for a model, I randomly sampled the top-level units in groups of

different sizes. Following Parde et al. (2021), I used increasing powers of 2 for group sizes

(e.g. 16, 32, 64, 128, 256). To measure the discrimination performance of each random

group, I trained a simple softmax classifier using each subset of units as inputs and measure

its performance on the validation set for each dataset. A softmax classifier here means a

learnable linear transformation followed by a softmax transformation. Because the perfor-

mance for each group size is a mean of performances for different random sets of units, I will
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also report the standard deviation for the performance of each group size. I then measured

the UD-AUC using the mean performance values for each group size. This can be easily

accomplished using the trapezoidal rule for approximate integrals.

While it may seem computationally intensive for a large number of UD curves to be

estimated, this is not the case. The full ICL model will only be trained once for each

dataset, and its outputs for every stimulus will be recorded. A special random rotation

transformation, which is relatively inexpensive, will be applied to the activation records,

to estimate an unspecialized comparison curve (this method will be detailed more in the

following section). Only the softmax classification layer needed need to be retrained or run

to calculate the performance for each group size.

5.3.2.3 Measurements

In my adaptation of the Parde et al. (2021) UD method, I measured two versions of the

high-level representation in one ICL model. In the first measurement, I estimated the ICL

model’s normal UD curve. In the second measurement, I estimated the distribution of UD

curves that the ICL model would be expected to have if its units were fully unspecialized.

To produce the second measurement, I transformed the representation of the ICL model

to be unspecialized while maintaining its original performance. This can be accomplished

by randomly rotating the axes of the high-level unit space of the ICL model. Rotating a

unit-space will distribute an individual unit’s loadings (i.e. linear discriminative power for

each category) to all of the new units in the rotated space (see Fig. 5.19). Further, this

random rotation should not affect the maximum accuracy, as a proper rotation will preserve

all of the relative separability information within a representation.

Sampling from all possible rotations of the ICL model’s top-level unit-space is equivalent

to sampling from all linearly equivalent representations without a bias towards unit special-

ization. Comparing the normal ICL model’s UD curve to the distribution of UD curves of

168



the random rotations can effectively determine whether the ICL model’s constraints cause it

to learn a specialized unit representation or not without the need to train a separate model.
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Figure 5.19. Random Rotation Unspecializes Neural Representations
This figure shows how performing a random basis rotation on the axes of a specialized unit
space will result in a new unit-space that no longer has specialized units, as the rotation will
distribute the selectivities or loadings of each of the specialized units randomly across all of
the units in the new space.

5.3.3 Data Analysis

The purpose of this statistical analysis was to estimate the probability that the observed

UD-AUC for the normal ICL model could occur by chance when its units are actually

fully unspecialized. To accomplish this, I compared the UD-AUC of the normal ICL model

with the distribution of UD-AUCs for the rotated versions of the ICL model, which were
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guaranteed to be unspecialized while maintaining performance. From here on I will refer

to these values as the normal-UD-AUC and the rotated-UD-AUC distribution. I performed

a form of Monte Carlo permutation test, where the distribution of the rotated-UD-AUCs

was re-sampled repeatedly. As a part of this, I tracked the percentage of times the rotated-

UD-AUCs were below the normal-UD-AUC. This percentage estimates the likelihood that

a model with no bias towards linearly specialized units would generate the UD-AUC of the

normal ICL model by chance.
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Figure 5.20. Expected Results: UD-AUC Monte-Carlo permutation test.
(A) shows a sketch of the expected rotated-ICL UD curve and the normal-ICL UD curve.
Note that I expect the rotated-ICL model to feature a strongly elbowed UD curve and
the normal-ICL model to feature a much less elbowed curve. (B) shows a sketch of the
expected result of the permutation test comparing the UD-AUC of the normal ICL model
the permuted distribution of the rotated ICL models UD-AUC.

5.3.4 Results

For the main part of Simulation Study 2, I wanted to examine whether ICL learned more

specialized unit representations than would be expected from a standard DCNN or DNN. To

test this hypothesis, I sampled the UD curve for the ICL-Map-Optimal model and compared
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its AUC to an estimate of its unspecialized AUC, using 15 samples for every point on the

UD curve, 1 random rotation, and 1000 re-samplings. I found that the AUC for the normal

trained version of the network was lower than its estimated unspecialized AUC distribution,

but not enough to reach significance, p < .1 (see Fig. 5.22). As a baseline I also compared

the AUC of an untrained version of the ICL-Map-Optimal model to its untrained AUC

distribution. I found that the two distributions were not significantly different, p < .19 (see

Fig. 5.21).

UD Curve: ICL-Untrained UD -AUC: ICL-UntrainedA B

Figure 5.21. UD-AUC: ICL-Untrained
This figure shows the UD curve (A) and UD-AUC distributions (B) for the untrained MAP-
Optimal model. For (A), note that there is very little separation between the untrained
model’s standard UD curve (BLUE) and the models rotated UD curve (YELLOW), where
the error bars are 95% confidence intervals. For (B), note that the permuted standard and
rotated AUC distributions overlap highly. This suggests that the untrained model’s unit
representations is virtually unspecialized.

As a followup, I wanted to examine if the apparent specialization in the ICL-Map-Optimal

model could be due to its wide radius of lateral interaction in its top layers. To test this I
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Figure 5.22. UD-AUC: ICL-Map-Optimal Trained
This figure shows the UD curve (A) and UD-AUC distributions (B) for the trained MAP-
Optimal ICL model. For (A), note there is a small divergence between the model’s standard
curve (BLUE) and its rotated curve (YELLOW), where the error bars are 95% confidence
intervals. For (B), note there is some separation between model’s standard AUC (BLUE)
and its rotated AUCs (YELLOW). This suggests that there may be a small amount of unit
specialization compared to the virtually unspecialized rotated representation.

performed the same test using the ICL-Lat-Optimal model which features very small radii of

lateral interactions to see if the effect was eliminated, and performed the test with 1 random

rotation and 1000 re-samplings. I found that AUC for the ICL-Lat-Optimal model was still

under its estimated unspecialized AUC distribution, this time the effect reached significance,

p < .001 (see Fig. 5.23). However, the qualitative difference between the curves is minor.

As a further followup, I wanted to examine whether the addition of complex cell dynamics

would increase the specialization. To test this, I sampled the PPU curve for the ICL-Complex

model and compared its AUC to an estimate of its unspecialized AUC distribution, 15

samples for every point on the UD curve, 1 random rotation, and 1000 re-samplings. I
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Figure 5.23. UD-AUC: ICL-Lat-Optimal
This figure shows the UD curve (A) and UD-AUC distributions (B) for the trained LAT-
Optimal ICL model. For (A) note that there is a consistent gap between the standard
(BLUE) and rotated (YELLOW) UD curves, where the error bars are 95% confidence inter-
vals. For (B) note that there is an even more substantial deviation between the standard
(BLUE) and the rotated (YELLOW) distributions for the ICL-Lat-Optimal model. This sug-
gests that the ICL-Lat-Optimal model features some amount of unit specialization, though
again it is still minimal.

found that the AUC for the ICL-Complex modes was under its estimated unspecialized

AUC distribution, p < .025 (see Fig. 5.24).

Finally, I noticed that the UD curves of each of the trained models appeared to separate

from their estimated unspecialized UD curves when fewer units were used. To test if this was

more pronounced for smaller numbers of units, I re-calculated the ICL-Lat-Optimal model’s

UD curve and AUC and compared it to its estimated AUC distribution, but only calculated

for 2, 4, 8, and 16 unmasked units. Additionally, because small numbers of units will behave

less consistently, I increased the number of samples for every number of unmasked units to 40.
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Figure 5.24. UD-AUC: LAT-Optimal-Complex
This figure shows the UD curve (A) and UD-AUC distributions (B) for the trained LAT-
Optimal-Complex ICL model. For (A) note that there is a consistent gap between the
standard (BLUE) and rotated (YELLOW) UD curves, where the error bars are 95% confi-
dence intervals. For (B) note that there is an even more substantial deviation between the
standard (BLUE) and the rotated (YELLOW) distributions for the ICL-Lat-Optimal model.
This suggests that the ICL-Lat-Optimal model features some amount of unit specialization,
though again it is still minimal.

I found that the ICL-Lat-Optimal model’s AUC was not significantly under the estimated

unspecialized AUC distribution, p < .07 (see Fig. 5.25).

5.3.5 Discussion

The past several decades of research have led to the hypothesis that high-level ventral stream

neurons are highly specialized (Bednar and Wilson, 2016; Farah, 2004; Foldiak, 2003; Grill-

Spector and Malach, 2004; Grill-Spector and Weiner, 2014; Schiltz et al., 2005), but DCNNs

demonstrate that high performance can be achieved with apparently unspecialized units

within a domain (Parde et al., 2021; Szegedy et al., 2014a). I predicted that the ICL model

174



UD Curve: ICL-Lat-Optimal
2-16 Units

UD -AUC: ICL-Lat-Optimal
2-16 Units

A B

Figure 5.25. UD-AUC: Small Number of Non-Deleted Units: ICL-Lat-Optimal
This figure shows the UD curve (A) and UD-AUC distributions (B) for the trained LAT-
Optimal ICL model. For (A) note that there is a consistent gap between the standard
(BLUE) and rotated (YELLOW) UD curves, where the error bars are 95% confidence inter-
vals. However for (B), note that the overlap between the standard (BLUE) and the rotated
(YELLOW) distributions for the ICL-Lat-Optimal model at these unit counts was not large.
This result fits with the earlier results with large numbers of units taken into account.

would form specialized units more inline with current neuroscience theories. However, I

generally did not find that to be the case.

In the first comparison made, I found that the ICL model with simple cell units does

not seem to learn highly-specialized units (see. Fig. 5.22). Although the AUC distributions

are somewhat separated, the difference between the ICL model’s normal UD curve and its

unspecialized curve were rather small, which suggests that there is not a qualitative difference

in the level of specialization present compared to what would be expected in a standard deep

neural network. Further, adding complex cells to the model did not greatly change the results

(see. Fig. 5.24). Even at the lower unmasked unit numbers the models tend to very closely

follow the idealized unspecialized UD curves (see. Fig. 5.25).
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All together, the results of Simulation Study 2 suggest that the ICL model does not

develop more specialized features than a DCNN model, which might indicate that biological

constraints do not encourage unit specialization. However, these results should be taken

with some skepticism as unit specialization would only really be expected when the over-

all representation become specialized for discriminating set of categories. However, as the

results in the mapping portions of Simulation Study 1 suggest that high-level units of our

implementations of the ICL model may largely represent low-level non-categorical features

(despite depth of representation). In essence, this means that even if the units were becom-

ing specialized that specialization may have had little to do with the category structure of

this dataset and more to do with local edge detection.

This may seem somewhat paradoxical as all the ICL networks show highly selective neu-

rons, like the one in Fig. 5.26. But, when I compared the top most selective neurons of

the ICL model to a version that had been completely untrained the selectivities were gen-

erally indistinguishable (see. Fig. 5.27 ). As such, the appearance of “highly selective”

neurons may be somewhat inevitable with large deep networks regardless of whether those

neurons are actually functionally specialized, as a random network with no learning could

not develop functional specialization. This follow-up suggests that the appearance of se-

lective neurons in the ICL model may simply be due to the statistical tendencies of large

networks rather than real unit specialization. Further, this suggests that the development

of apparently categorically organized cortical maps does not imply unit specialization, as

might be expected.

Given the results of the cortical map development experiments and the unit specialization

experiment it would be useful to know what the computational properties of the ICL model

are. Is it learning progressively more discriminative representations as more layers are added

without supervision? How discriminative are its early layers and how do the feature it learns

compare to early DCNN features and V1 features? If the performance does not increase
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Example of a Highly-Selective Neuron

Figure 5.26. Example of a highly-Selective Neuron
This figure shows an example of the activation distributions across category for a highly
selective neuron. Note that the activation distribution for ”sneaker” extends much higher
than all other categories and that the maximally enervating stimulus also belongs to the
”sneaker” class. In neuroscience parlance this might be called a “sneaker neuron”.

with each layer on classification tasks it would suggest that the unit representations are

not becoming specialized because the network hierarchy as a whole simply is not becoming

specialized for the task at all, beyond developing good low-level representations.

5.4 Simulation Study 3: Unsupervised Learning

5.4.1 Introduction

The ICL model was designed to support a form of unsupervised learning that does not

require labeled images and does not require a mechanism for backpropagating error signals

177



A BHighly Selective Neuron
From Trained Network

Highly Selective Neuron
From Untrained Network

Figure 5.27. Highly selective Neurons, from Trained and Untrained Networks
(A) shows an example of a highly selective ”Top” neuron from a trained ICL model. (B)
shows an example of a highly selective ”Top” neuron from an untrained ICL model. Note,
that it is challenging to find a meaningful difference between these two neuron’s activation
distributions. Untrained and random network will tend to have many highly selective neurons
like this. As such, the presence of such neurons does not guaranteed that units are being
utilized in a specialized manner.
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through multiple layers of the network. This is desirable from a computational neuroscience

perspective, as human learning appears to use large amounts of unlabeled stimuli and because

the backpropagation methods used in most deep neural networks are not thought to be

neurally plausible (Yamins and DiCarlo, 2016b). However, the computational performance

of a deep bio-inspired model like ICL has not been evaluated. If the ICL model can perform

unsupervised visual category at a high-performance level, and improves its performance as

it becomes deeper, it would suggest that ICL would be a promising alternative architecture

to DCNNs.

The goal of Simulation Study 3 was to test whether a more neurally conservative model

like ICL could learn category structure in a fully unsupervised manner (i.e. entirely with-

out labels) and without deep backpropagation. To achieve this goal, I exposed the ICL

model to a series of object recognition datasets augmented with temporal dynamics until its

representations stabilized, and then I trained a separate readout network independently to

examine the classification performance of each layer in the ICL model. Further I looked at

the impacts of including axonal development dynamics and complex cell learning dynamics

on the network’s performance.

5.4.1.1 Predictions

Based on the novel mechanisms of the ICL model, I predicted that my implementation of

the ICL model would learn high-level representations of the categories in these datasets that

support a high level of classification accuracy, even without supervised labels.

I tuned the ICL model and the temporal augmentation scheme for each dataset in an

attempt to maximize performance. At a high-level TRM-Trace learning requires that acti-

vations in the simple cell layers and the complex cell layers have a certain level of sparse

activation. If too many neurons are active, then the temporal trace will experience something

called whiteout where all inputs lead to indistinguishable activation patterns. Further, if the
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activation patterns in the simple and complex cell layers are too sparse in their activity and

the temporal patterns evolve too slowly, then the trace learning will be unable to successfully

link related simple cell representations correctly. Many factors affect activation sparsity such

as timescale, trace rule parameters, and radius of inhibition/excitation. Understanding what

settings are successful could be useful from both neuroscience and practical standpoints.

5.4.2 Simulation Methods

5.4.2.1 Datasets

For Simulation Study 3 the first dataset I trained the model on Fashion-MNIST which

contains 28 by 28 gray scale images of 10 categories of clothing items (Xiao et al., 2017)

(see Fig. 5.28A). Fashion-MNIST is designed to be a replacement for the original MNIST

for the purposes of prototyping and developing new neural networks, because MNIST was

generally too easy for modern machine learning techniques to be validated on. The second

dataset will be Imagenette which contains 160 by 160 color images of 10 real world objects

categories (Howard, 2019) (see Fig. 5.28B). Imagenette is a much smaller sample of the well

known ImageNet dataset designed to be easy to use, while still having the difficulty of real

world object recognition built in.

5.4.2.2 Model Configuration For MNIST-F

For the MNIST-F dataset, I followed the same simulation setup as in Simulation Study 1

Sec. 5.2.2.2

5.4.2.3 Model Configuration For ImageNette

First I scaled the original input images stored in values of 0-255 RGB to between 0 and 1,

then I performed a square root on these values to make the values approximately linear so

that color-mixing and blurring assumptions would be better satisfied. For more information
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Figure 5.28. Examples of the Fashion-MNIST and ImageNette Datasets
(A) shows example images for several categories in the Fashion-MNIST dataset. (B) shows
example images for several categories in the ImageNette dataset.

on why the square root is helpful it is important to know that most digital images are

stored in the sRGB format, also called gamma color coding, which takes linear color value

reading and applies and raises them to the power of 2.2 1 in order to better utilize available

storage by taking advantage of the non-linear nature of luminance perception in human

vision (Anderson et al., 1996). Unfortunately, raising luminance values to a power breaks

the assumptions of additivity usually assumed when performing many image operations such

as convolutions with different spatial filters. For the ICL model, correcting for the gamma

color coding lead to a modest 1% performance increase.

1This is actually an oversimplification as the RGB channels are passed through a matrix multiplication
first and then further scaled before the power is applied
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After scaling the RGB values, I re-scaled the size of the images down from 160 x 160 to

64 x 64 for the ICL model. Then I processed them using a special combination of the simple

low-pass filter and a special color-openent filter that I will detail below.

The color opponent process I used subtracted each color channel from an average of the

other channels that had been Gaissian filtered. Further, the width of these Gaussian filters

were twice the size of the filters used in the simple high-pass filter typically use. This lower-

frequency color opponent result was then spliced with the standard high-pass filter output

such that every fourth pixel in a block of 4 pixels would be a color-opponent outputs and

the other three would be the simple high-pass outputs. I call this pre-processing method the

color splice method See Chapter 4 Sec. 4.5.3 for more information.

The color splice method was used for ImageNette because color information is processed

by the LGN in an opponent fashion, and more color information tends to be contained at

lower spatial frequencies than for luminance information. Further, the contribution of the

color-opponent information needs to be scaled up so that V1-like simple cells will afford

more representation to color contrasts. Otherwise, I found that luminance contrasts will

completely dominate the learned V1 representations, leading to an information bottleneck

early in the network.

For the ImageNette dataset I used 4 stacked ICL modules with a map resolution of 200

x 200 for each ICL module. For this version of the model I chose to use only the Simple

Only configuration of the ICL module as testing with the easier dataset suggested that this

configuration would perform best and take less training time.

5.4.2.4 Training & Testing Procedure

The benchmarking process consisted of two training stages. First, a multi-layer ICL model

was exposed to image sequences from a dataset, with no labels, until all its layer represen-

tations stabilized. Second, a linear readout layer was added to the top of the ICL model
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Figure 5.29. Network Diagram: ICL-Lat-Optimal: ImageNette
This diagram shows the layer setup for the ICL-Lat-Optimal model trained on ImageNette.
As the Simple Only version of the ICL module was the only one tested on this dataset
the windows connecting each layer (RED) are essentially fixed disks. The RED NUMBER
indicates the total number of connections in each window. This layer structure was found
to work reasonably well, though I was only to do minimal hyper-parameter tuning.

and trained to discriminate categories based on labeled images. While the readout layer was

trained, the weights of the ICL model were held fixed, (i.e. no deep backpropagation). Then

I measured the accuracy of the combined ICL and readout layer on a validation set. For an

overview of the training procedure see Sec. 5.2.2.4 and for a graphic overview of the training

process see Fig. 4.2.

5.4.3 Results

As part of the main question of Simulation Study 3, I wanted to understand if ICl could

produce computationally useful representations (i.e. learn representations which could clas-

sify categories in its environment). To examine this I trained the ICL-Lat-Same model on

two different datasets, MNIST-F and ImageNette, and tested its performance on the test
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splits. For MNIST-F, I found ICL performed quite well at a maximum performance of around

91.4% (see Table 5.30). This is well below the State of the Art (SotA) of 96% (Tanveer et al.,

2020), but well in line with average DCNN performance on this dataset. For example, a sim-

ilarly sized DCNN network I implemented with batch normalization and top-level dropout

achieved a similar performance of 91% (see Table 5.30). For ImageNette, ICL only manged

to achieve a maximum performance of 40.2%. By comparison a similarly sized DCNN I built

achieved 48% and a similarly sized Deep Locally Connected Network I built achieved 62%.

Both of these comparison networks were only modestly refined for the task. The SotA for

ImageNette is generally much higher, between 90%-95% (Howard, 2019), but this may be

more typical for networks that process ImageNette at a much higher resolutions than those

used for the models of this paper.

There is a caveat to this performance however. The highest performance for both datasets

appeared to occur in the lowest layers of the network. To follow up on this I examined the

performance for each layer on the MNIST-F dataset. I generally found that performance

diminished for every layer added to the ICL-Lat-Same model with performances at 89.7%,

89.1%, 88.21%, and 87.9%, for each consecutive layer. Adding axonal learning appeared to

have little effect with performances at 89.5%, 88.8%, 88.3%, and 88.0%, for each consecutive

layer. Adding complex cell learning also had no positive effect, with performances at 89.1%,

87.7%, 87.5%, and 86.1%, for each consecutive layer.

The lack of improvement over layers with complex cells enabled suggested that they

may not be improving generalization over feature variability. To examine this further I

re-ran the experiments, but varied the test dataset by specific pixel shifts laterally, which

gave generalization curves over image translation. Generally, the addition of complex cells

did not improve generalization over translation, even when the best performing layers were

chosen (see Fig. 5.33). Additionally, generalization performance appeared to go down as

more layers of complex cells were added (see Fig. 5.34).
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Figure 5.30. Table of Performances
This table shows a comparison of typical performances the ICL models developed for this
study and several comparison models. BLUE rows indicate classification performance for
the novel ICL models. BLACK BOLD performance estimates were generated as a part of
this study. BLACK NON-BOLD performance ranges were reported in Howard (2019) and
Tanveer et al. (2020). As a general note the ICL model performances reflect the maximum
observed performances during the course of the study. In practice, the performance of the
ICL models tended to fluctuate within a range of approximately one percentage point.

5.4.4 Discussion

The primary result of Simulation Study 3 shows that at least on some datasets ICL based

models can perform fairly quite well compared to DCNNs of similar complexity and tuning.

For example, on the MNIST-F dataset top-tier performance is only 96% and seriously focused

work is usually needed to break past 90% with our basic comparison DCNN performing well

below that. Both the full ICL model and the ICL-Simple model performed close to 90%

on the MNIST-F dataset within their first layers typically, suggesting that even as shallow

models they might have practical utility. Overall, this finding shows that ICL-like models can

perform well enough to be considered worth studying further as a possible bridge between
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Performance Per Layer
ICL-Lat-Same (Simple Only)

Figure 5.31. Performance Per Layer: Simple Only
This figure shows the performance of the Lat-Optimal ICL model with simple cells only as
a function of the number of ICL modules it has. Note performance generally decreases as
the number of modules increases.

studying the biology of the brain and contemporary deep-neural network approaches. Further

it suggests that unsupervised/biologically motivated learning paradigms can be successful

on difficult datasets common in today’s literature.

The second most important result in Simulation Study 3 shows that performance gen-

erally decreases with the number of layers added to a ICL based model on MNIST-F. This

suggests that ICL, with the its current simple cell and complex cell implementations, is ei-

ther missing a critical mechanism or some kind of specialized tuning required to improve

category separation as more representational depth is added. This contrasts with typical
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Figure 5.32. Performance Per Layer: Axon and Complex cell Learning
(A) This figure shows the performance of the Lat-Optimal ICL model with simple cells and
axonal learning as a function of the number of ICL modules it has. Note performance gen-
erally decreases as the number of modules increases. (B) This figure shows the performance
of the full Lat-Optimal ICL model as a function of the number of ICL modules it has. Note
performance generally decreases rapidly as the number of modules increases.

deep-supervised networks whose classification performance generally increase (up to a point)

when more layers are added to their representations.

The lack of improvement for the models which only included simple cell learning is not

too surprising. The simple cells tend to expand an input representation into a new over

complete set of features that are more complex than the original features. However, these

simple cell features need some method of reduction such that features which tend to belong

to the same object are conjoined in some way. This is what the complex cells are supposed

to do; without this mechanism the simple cells have no way of building tolerance to image
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Figure 5.33. Generalization across image shifting: Simple Vs Complex
This figure compares the generalization curves over pixel image shift for an ICL model with
simple cells and an ICL model with simple+complex cells. I picked the best generalization
curve generated from the layers of each model (here the 4th layer for the simple only model
and the 1st layer for the complex only model). Generally, the simple only model is almost
identical to the complex cell model for narrow pixel shifting and slightly better for wide
pixel shifts. This suggests that the complex cell layers are not building tolerance to image
variability (which is their functional purpose in the architecture).
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Figure 5.34. Generalization performance of ICL Complex Layers
This figure shows the generalization curve over pixel shifting for each layer of an ICL model
with simple and complex cell learning. Generally, the generalization curves become more
narrow and show worse performance at all levels of shift as the layer number increases.
Again, this suggests that the complex cells are not performing their intended function.

variation. However, in our experiments the addition of complex cells did not help the ICL

models’ performance either.

The lack of improvement over multiple layers that included complex cell learning may

indicate that some level outside information about category structure is needed to shape

the visual pathway in a top-down fashion. This result also may indicate that observations

of objects over their own visual variability is not enough to improve category separability.

However, these results may simply indicate that the Trace learning used these models was

insufficient to produce good pooling properties in the complex cell layers. In support of this

notion, I generally found that most forms of classic trace learning produced overly redundant
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pooling regimes, pooling either identical features or exceedingly correlated features rather

than using the temporal signals to develop more useful pools. This result seems to be a prod-

uct of existing Trace-Rules being poorly suited to learning environments with windowed local

connectivity and large numbers of non-sparse simple cell activation (for a concise definition

of trace rules and trace learning see Sec. 4.4). Many of these algorithms were conceptualized

in fully-connected learning environments with only one simple cell activation at a time. In

future studies, these observations about complex cell function within a deep architecture may

be useful for designing new forms of trace-learning that are better suited to using windowed

local connectivity and multiple simple cell activation’s.

Additionally, axonal learning made little impact on performance in Simulation Study 3.

This may happen for a simple reason. The axonal learning is directed by the correlational

statistics of its axonal arbors. If the representation from the lower-level layers (which have

correlations that encourage retinotopy) are simply being propagated to later layers, then

the axonal learning will have little incentive to deviate from strongly retinotopic mappings.

Given that the initialization for the ICL model’s connectivity is already retinotopic, it is

unsurprising that performance is not strongly affected, as the connectivity will not change

much under these circumstances.

One central challenge in progressing models like ICL to be better hierarchical models,

is that our understanding of what constitutes a good representation each layer of the ICL

model is gated by our understanding of the ventral visual hierarchy. It is relatively easy to

see if the simple cell representation is learning correctly in the V1 analogue of the model

because the representation in V1 is very well studied. On the other hand the V2 is much less

well understood and V3-IT are poorly understood in terms of their neural representations.

A model which simply arrives at a good V1-like representation is not guaranteed to do the

same for V2 through IT, even if the cortical algorithm for these areas in the brain is largely

similar. One of the benefits of testing the performance of each layer as I did in the followup
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to Simulation Study 3 is that this approach could be useful for validating if other cortical

models are actually learning more sophisticated and specialized representations.

Overall, the lack of improvement over multiple layers on this study’s implementations

of the ICL model signals that more conceptual and algorithmic development is needed.

Conveniently, the ICL platform developed in this study would serve as an excellent test bed

for solving these issues.
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CHAPTER 6

GENERAL DISCUSSION

6.1 Introduction

In this chapter, I will summarize the work performed in this dissertation and its contributions.

The chapter will be divided into three main sections: an overview of the simulation work

in context, a discussion of theoretical contributions and ramifications, future directions, and

general conclusion.

6.2 Simulation Work in Context

6.2.1 Simulation Study 1: Cortical Map Development

6.2.1.1 Overview

In Simulation Study 1, I wanted to understand if the integrated cortical learning (ICL) model

developed for this project could learn high-level cortical feature maps similar to late areas

of the ventral pathway. I specifically wanted to know if the ICL model developed contiguous

representations at its top level that were selective for categories in its training dataset.

The simulations generally showed that the basic ICL model (with only simple cells)

developed for this project learns category selective representations that varied continuously

across its top-level cortical surface. However, when I examined these maps for all layers of

representation, I generally found that they did not appear to change much from the first layer

to the last layer of internal representation. This suggested the model simply preserved the

early Gabor-like representation, into higher layers. Further, it suggested that the apparent

organization by high-level categories in its top layer may be due to biases in the dataset and

to the continuous change of features over the cortical surface.

When complex cells were added to the model, some of the qualitative aspects of the maps

changed, and the overall size of the category selective regions increased with more layers.
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But the difference was not large. This suggested that the complex cells mildly increased the

development of category based topology in the top layer.

ICL may be one of the first deep cortical map based learning architectures in cognitive

modeling, and Simulation Study 1 demonstrates that these architectures are viable in that

both their lower and upper layers can generate interesting cortical map organization that

can be related to the kinds of topology found in visual cortex. Simulation Study 1 only

investigated a limited range of learning dynamics, but the space of possible cortical map

learning algorithms is vast and variation of these dynamics could lead to large differences in

cortical map development. Exploring the untapped potential of deep cortical map learning

algorithms, like ICL, can help us better understand the types of dynamics at play across the

ventral stream.

6.2.1.2 Related Work

Our work on creating deep cortical maps was greatly inspired by the ongoing work in cre-

ating models of V1 cortical maps. One of the first to do this was von der Malsburg (1973),

which introduced the idea of using narrow local excitation and wider local inhibition, com-

bined with hebbian learning and reciprocal activation to develop orderly arrangements of

orientation selective neurons. This work later inspired larger and more advanced models like

LISSOM (Sirosh and Miikkulainen, 1994) and GCAL (Stevens et al., 2013). LISSOM incor-

porated learned lateral connections, and GCAL incorporated gain control and homeostatic

mechanisms. My ICL model uses simplifications of several of the concepts in LISSOM and

GCAL. Versions of ICL used in these simulation studies did not include reciprocal activation

or learned lateral connections, as I found that the maps and features learned without these

mechanisms were largely sufficient. Our work greatly expands the capability to simulate

these types of models at a large scale and on real world data. Further, ICL addresses the

biologically implausible connectivity assumptions used by most of these models models by

incorporating axonal learning via the axon game and the arbor model.
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More recently, the most similar study to this dissertation work on deep cortical map

modeling I could find was Lee et al. (2020). In Lee et al. (2020), the researchers augmented

a standard DCNN model with a self-organizing map model at its top layer that minimized a

version of the wire-length objective. Their model was able to demonstrate the development

of high-level cortical map features such as face and object selective areas, which is very

reminiscent of the findings in IT cortex. While the authors posit that their work is a large

step forward, they acknowledge that the next step would be building a model that uses

self-organizing map dynamics at all levels of representation as its primary form of learning,

without the use of convolution layers. The ICL model can be viewed as an attempt to

build that next step of this work, and further as a step towards more biologically plausible

unsupervised learning in conjunction with self-organizing map learning. Based on Lee et al.

(2020) it may be interesting to place an ICL module on top of a traditional supervised DCNN

network and to see if it develops a more interesting categorical cortical map than our current

experiment indicated.

6.2.2 Simulation Study 2: Unit Specialization

6.2.2.1 Overview

In Simulation Study 2, I wanted to understand if the ICL models developed more specialized

unit representations than would be expected from standard deep neural networks or DCNNs.

Based on its unique cortical learning inspired dynamics I expected that it would develop more

categorically specialized unit representations at its top level, but not necessarily an extremely

specialized representation. I expected this because ICL and cortex both have competitive

learning dynamics which may lead to unit specialization as a byproduct, but demonstrations

with neural networks also reveal that unit specialization is not needed for strong functional

performance.
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To examine this, I designed a method of characterizing unit specialization in terms of how

the network resisted unit deletion. Essentially, networks that depend on highly-specialized

categorical units will tend suffer more when large numbers of units are deleted 1, whereas

networks that depend on units which randomly distribute categorical representation will

suffer less when units are deleted. In order to generate a baseline for comparison, I also

developed a method for “un-specializing” unit representations while preserving their overall

performance. This form of analysis is general enough to be easily applied to arbitrary neural

network architectures and to real multi-channel neuronal recordings.

Using this new analysis to examine the ICL model, I generally found that it did not

produce strongly specialized units compared to its baseline unspecialized representation.

While the units were slightly more specialized than the baseline it did not amount to a

qualitatively different level of specialization. As a follow-up we also checked to see if this

apparent level of specialization could be due to the redundancy of features caused by wide

lateral interactions, by retesting with the ICL-Lat-Optimal model which had short lateral

interactions. Again the model displayed only a small amount of specialization compared to

baseline, suggesting that the model is developing a very small amount of unit specialization.

This is actually quite similar to the amount of unit specialization found in DCNNs when I

conducted a similar pilot study. The presence or absence of complex cell and axonal learning

did not appear to affect unit specialization substantially.

The lack of categorical unit specialization developed by the models, despite the presence

of dynamics which should encourage unit specialization, could be explained in several ways.

1In practice, the unit deletion curves of specialized encodings can be quite diverse, depending on the exact
nature of the code, the number of categories, and the number of units. For example, a specialized one-hot code
with 100 neurons and 100 units would see linear degradation, while one-hot code with duplicates with 100
neurons and 10 categories would feature variable deletion curves depending on the reliability of the units.
In extreme cases, highly specialized representations can feature better deletion curves than unspecialized
representations, due to an excess of redundant highly reliable units. Given this, it is worth noting that the
equivalent unspecialized version of a representation will tend to have a very consistent unit deletion curve,
and thus a large difference between the normal representation and its unspecialized variant will still indicate
the presence of specialization, even if its normal deletion curve is an extreme one
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The most likely explanation is that the units did in fact become specialized, but for features

that are only tangentially related to categories. As suggested earlier, I theorize that the ICL

models simply propagated low-level feature representations, such as Gabor wavelets, to their

top-layers. Features like these, though not adept at representing semantic categories, can

be still be thought of as representing semantic categories in a distributed or unspecialized

fashion. Given these shortcomings, it would be useful to perform similar tests on an ICL

like model that developed more sophisticated hierarchical relationships.

The results of Simulation Study 1 and 2 suggest an interesting conundrum. The simulated

high-level cortical area appears to develop contiguous category selective regions, yet its

neurons are not particularly specialized for categories. This appears to be possible due to

the difference between neuroscience measures of specialization (i.e. selectivity & preferred

stimulus), which are typically used for visualizing cortical maps, and our deletion-curve based

computational measure of unit specialization. Similar conflicts might arise when comparing

both types of measure on cortical recordings in actual tissue. As such, it would be useful to

use the deletion curve paradigm in Simulation Study 2 to better understand the functional

unit specialization in IT cortex overall and within specific functional areas like FFA. It is

possible that despite the strong domain specific topological organization of IT (i.e. faces,

places, object, .etc), that its units could be quite unspecialized in a strict computational

sense. The same may also be true within specific functional areas.

6.2.2.2 Related Work

The approach to unit specialization for this dissertation was largely inspired by both Szegedy

et al. (2014a) and Parde et al. (2021).

In Szegedy et al. (2014a), the researchers noticed that DCNNs learned top-level neurons

that appeared to have semantically meaningful selectivites, such as selecting for sun flowers

or particular shapes. However, they also noted that transforming these features with a
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random basis transformation also produced units with apparently meaningful individual

selectivity. As such, this work advocated skepticism towards interpreting the presence of

seemingly semantically meaningful unit selectivity to mean that the networks actually learn

functionally specialized units.

Parde et al. (2021) approached specialization from a different angle. In their work,

they examined unit deletion curves for various SotA face recognition networks, and found,

amongst other things, that the networks could maintain high levels of accuracy for clas-

sifications of identity and viewing angle, even when huge numbers of their top level units

were deleted. This suggested that their high-level units were not particularly specialized for

either of these characteristics (i.e. small populations representing small regions of these state

spaces). They generally suggest that information in these networks is largely encoded at the

ensemble or space-level, which also corresponds to a distributed code in some circumstances

(Foldiak, 2003). This inspired an unpublished work where I discuss how the standard classi-

fication objectives for today’s DCNNs actively encourage distributed coding by default, and

how it is an optimal solution for the problem they are trying to solve.

The criticisms regarding strong interpretations of neural selectivity are actually quite old.

In the 80s Anderson and Mozer (1981) demonstrated that a neural network that was known

a-priori to have a distributed unspecialized unit code would still display many units with

semantically interpretable selectivity, simply as a matter of statistical inevitability. Further,

Anderson and Mozer (1981) showed that eigan analysis and singular value decomposition of

weight vectors was a more fruitful approach to understanding distributed codes and unspe-

cialized representations.

Our work in Simulation Study 2 can be viewed as a synthesis of ideas from Szegedy

et al. (2014a), Parde et al. (2021), and my own unpublished work. Effectively, perfectly

distributed unspecialized representation for a set of categories should have a very specific
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resistance to unit deletion2. I realized that if this resistance could be estimated then I

could measure deviation of a network’s actual resistance to that value in the form of a

statistical test. Conveniently this form of analysis is very general and could be potentially

applied to other neural networks and the potentially neural recordings. Finally, the results of

Simulation Study 1 seem to support the view that visual cortical neurons may not actually

be functionally specialized suggested by Szegedy et al. (2014a), Parde et al. (2021), and

Anderson and Mozer (1981).

6.2.3 Simulation Study 3: Unsupervised Learning Classification Performance

6.2.3.1 Overview

The main goal of Simulation Study 3 was to test if the ICL model’s unsupervised learning

was successful and if it has potential as a more biologically founded alternative to DCNNs

for cognitive modeling research. To test this I compared the performance of the ICL model

developed for this project to other models such as supervised DCNNs and supervised DLCNs,

in order to get a relative understanding of its performance.

For the simpler dataset (MNIST-F) the model was trained on, ICL performance was quite

strong. Generally, it performed as well as a typical DCNN with the same number of layers.

However, most of this performance appeared to come from the ICL model’s early represen-

tation (i.e. V1-like features), while subsequent layers appeared to hinder performance.

On the more difficult dataset (ImageNette), the model performed significantly worse than

a basic DCNN with the same number of layers. Here the task almost certainly required a

2In practice, the deletion curves of highly unspecialized representations, will depend on factors such
as the number of units that actually have useful loadings for the categories and the relative strength of
their loadings, as was seen in Parde et al. (2021). When I refer to a perfectly distributed unspecialized
representation, I am referring to a representation where the loadings for the categories in question have
been completely randomly and indiscriminately distributed across the units. It is almost surprising, given
the opportunities for variability, that both DCNNs and ICL can follow unit deletion curves for perfectly
distributed and unspecialized representations so closely as was seen in this study and the pilot.
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more sophisticated hierarchical representation these ICL models did not develop. Although

the ICL models performed poorly, it should be noted that they achieved 40% accuracy

compared to the baseline DCNN which achieved 48% accuracy. State-of-the-art for DCNNs

on this dataset are closer to 90% accuracy, suggesting that the issues of ICL may be related

to tuning of hyper parameters similar to the DCNN I tested. I also had to hand tune and

engineer the input pre-processing for the ICL model on this dataset so that it would actually

learn color sensitive image features. As learned features generally perform better than hand-

crafted input features, this suggests that inefficiencies in the first layer’s input representation

may have created an additional bottleneck for overall performance.

More importantly, the addition of complex cell learning did not improve the performance

compared to the simulations which only featured simple cell learning. This suggested that the

complex cell model may not be performing its core theoretical function, namely increasing

tolerance to image variability. When testing the generalization performance of the ICL model

for image translation, with and without complex cells, I found that the complex cells did not

improve generalization over translation. Similarly, axonal learning did not seem to contribute

to better performance, which makes sense if the ICL model was largely propagating its low-

level representation upwards, as it would cause the axonal simulation to stay close to its

retinotopic initialization. See Sec. 6.4.5 for more discussion about complex cell issues and a

proposed study to address the shortcomings of the implementations used in this project.

6.2.3.2 How does ICL compare to Early work with DCNNs?

It may seem like DCNN based models have been the state of the art champion of image

recognition for a long time. But in reality, the original performances that made them seem

promising were quite modest improvements over earlier approaches. For example, specialized

SIFT models were actually within 10% points of early DCNNs trained on the ImageNet

database for both top-1 and top-5 performances (Krizhevsky et al., 2012). These early
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performance gains were indicative a new fundamental capability that DCNNs offered, namely

greatly improved generalization over image variation. But it took a long time to to see

the benefits of that new capability emerge, as the precursors of today’s DCNNs, such as

NEOCOGNITRON (Fukushima, 1980), were never really considered powerhouses of object

recognition performance in their time. Getting DCNNs to their current status required

multiple advancements over decades of work.

Earlier DCNNs were plagued with numerous issues. One of the main problems was

training multiple layers of a DCNN successfully, as was also a probel for deep networks in

general. NEOCOGNITRON (Fukushima, 1980), used a simple layerwise hebbian method,

and later the much more successful Deep belief Convolutional Networks used a layer-wise

Restricted Boltzmann Machine learning algorithm (Krizhevsky and Hinton, 2010). But It

wasn’t until the revival of deep gradient descent or backpropagation, which had largely fallen

out of favor in the 2000s, that DCNNs really started to rapidly increase in performance.

One pernicious issue that remained was that the training signals from the top-layer would

either vanish or explode as they traveled down the network. Pre-training with stacked auto-

encoding and careful scaling of weight initializations helped, but did not fully alleviate the

problem. It wouldn’t be till the invention of batch normalization that a very accessible

solution to this problem was available for a wide array of DCNN architectures (Ioffe and

Szegedy, 2015).

I would argue that models like ICL are likely in their nascent phase. The fact that they

can perform well at all compared basic DCNNs, which benefit from a decades of improve-

ments, suggests that ICL-like models are worth exploring further. Unfortunately, as I found

in this work, many of the same methods that have enhanced DCNN performance over the

years do not help with ICL models. For instance, something that serves the role of batch

normalization is necessary to stabilize learning in deep ICL models, but standard batch

normalization actually hinders their performance. Further, the design of layer-wise learn-

200



ing methods still lag far behind those of deep gradient descent and similar global learning

methods.

At a high-level, ICL has a similar problem to DCNNs before batch normalization. Where

DCNNs had trouble passing stable learning signals down to their lower layers, ICL had trou-

ble passing progressively more useful representations upward. The problem is likely caused

by the statistical environment differing significantly from the first layer to the proceeding

layers, which leads to unstable or trivial learning. This may be caused by or exacerbated by

problems with the temporal learning of the complex cell model (see Sec. 6.4.5). New nor-

malization processes are likely to be necessary in order to regularize the statistical landscape

between the layers appropriately, and more work is needed to address the issues regarding

complex cell learning.

If steady progress is made on ICL’s issues, then ICL-like models will likely improve

greatly over time. As unsupervised models that can handle the data-throughput of real

world stimuli, ICL-like models could one day have an edge over machine learning techniques

that rely heavily on supervised training and non-local learning rules.

6.3 Overview of Theoretical Work

6.3.1 Towards a Robust Theory of Unsupervised Visual Category Learning

In DiCarlo and Cox (2007) the authors introduced the idea that when objects are varied

over their viewing parameters they trace a geometric surface through pixel activation space

or neural activation space. DiCarlo and Cox (2007) called these geometric surfaces Object

manifolds. With these object manifolds as the bedrock, they proposed that object recognition

in visual cortex could be viewed as a series of feed forward transformations which flatten

and separate tangled object manifolds in sensory space. One of the interesting predictions

of this theory/framework was that the use of broadly tuned neurons which separate object
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manifolds more so at the space level rather than at the unit level could be a valid encoding

scheme for high-level ventral visual cortex. Object manifolds have proved invaluable as a

framework for understanding how supervised deep learning in feed-forward DCNNs can be

so successful.

Despite its success, a major limitation of the object manifold framework is that it did not

propose a clear explanation of how the hierarchical transformations of visual cortex could

be learned without explicit labeling or training. Arguably the object manifold framework

is agnostic about learning methods, but its most successful implementations to date have

all been supervised learning models. Given that supervised learning likely only accounts for

a very small portion of visual cortical learning, it suggests that an extension of the object

manifold framework might be needed.

I set out to address this limitation by proposing an extension of the object manifold

framework into called the Temporal Relation Manifold (TRM) framework in Chapter 2.

A central idea from the TRM framework is that human labels and categories emerge

from the way objects and their features evolve over time in the environment. Objects tend

to be perceived as a series of non-static images due to the viewer’s motion, eye saccades,

the object’s motion, or other changes in the environment. As such, we are exposed to

a consistent statistical signal for which minor visual changes still retain the meaning or

identity of objects within our visual field. Essentially, TRM uses this tendency to redefine

object manifolds not as a priori constructs, but as parts of an emergent statistical object

called a Temporal Relation Manifold.

In a sensory space, a point on a Temporal Relation Manifold (which corresponds to a

view of an object) is most likely to transition to neighboring points on the the temporal

relation manifold (which will tend to correspond to views of the same object or category).

Learning the topology of the Temporal Relation Manifold leads to category learning, because

views of the same object or category will tend to map to neighboring parts of the temporal
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relation manifold, while views of different categories will tend to map to highly separated

points on the surface of the temporal relation manifold (even if they are close in sensory

space). Further, the temporal relation manifold’s structure can be learned through simple

observation, which makes it directly accessible to unsupervised learning techniques. This

new TRM framework can be seen as a companion to other ways of looking at the ventral

stream, such as Object Manifold Untangling (DiCarlo and Cox, 2007) and I-Theory (Poggio

and Anselmi, 2016).

Along with the TRM framework I proposed a novel computational theory called Windowed-

Temporal Auto-Untangling (W-TAU) for how an algorithm could efficiently learn the topol-

ogy of or untangle the Temporal Relation Manifold for a given environment under cortex

like constraints. The ICL model was developed with the intent of implementing the W-TAU

theory in an explicit biologically plausible model. I would argue that the version of ICL

that I developed for this project was only a partially successful implementation of W-TAU.

Nevertheless, the TRM framework and the Windowed-TAU theory are a rich set of ideas.

As such, alternative implementations consistent with TRM and Windowed-TAU can easily

be developed and are worth exploring further.

6.3.2 Towards a General Theory of Cortical Sensory Learning

6.3.2.1 A Unified View of Cortical Learning

In “Lightning is always seen, thunder always heard” Swindale (2000) the authors review

research showing that when the inputs to V1 and A1 are surgically reversed, they do some-

thing quite interesting. A1 develops maps and selectivities that are stereo-typical of V1, and

V1 develops maps and selectivities that are stereotypical of A1. Further, behavior seems

qualitatively similar. This supports a fascinating conjecture, that at least for sensory cortex,

there may be one relatively unmodified cortical algorithm rather than several domain specific

ones.
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While the existence of a unified algorithm for cortical sensory learning would be a great

boon to AI and brain research, it presents several challenges:

From a modeling perspective, the best algorithms we have for performing human

like sensory inference are highly tailored to their specific sensory domains. In modeling,

we generally see algorithmic specialization for both the domain and the level of abstract-

ness for input representations (specialized DCNNs for vision, specialized DCNNs for sound,

Transformers for Language). While this has lead to major advancements in artificial intelli-

gence and brain understanding, these advancements have been relatively narrow and rarely

integrative across sensory domains beyond a shallow extent.

From a brain perspective, research has generally focused on studying the way indi-

vidual sensory pathways learn and develop as separate phenomena rather than as different

end results of the same more fundamental process. This makes sense given that the features

learned by cortex for different sensory domains seem so vastly different. But if these differ-

ences are more a consequence of the different input statistics for each sensory domain, then

it suggests that we should be studying cortical representation of the senses in a more unitary

way. However, without strong domain independent cortical sensory models and theories,

unitary study of cortical sensory representations is difficult.

6.3.2.2 Integrated Cortical Learning as a Starting Point

When broken down, ICL can be thought of as an attempt to use low-level neural mechanisms

such as axonal plasticity, simple cell learning, and complex cell learning, to build a cortical

architecture which is domain independent, and TRM can be viewed as a theory for what

architectures like ICL are computing.

Axonal plasticity shows that the structural connectivity of cortical areas can be vastly

influenced by the statistics of its inputs. In contrast, the vast majority of neural network

models today assume structural connectivity is constant. The pattern of structural con-

nectivity between layers in a model is a fundamental source of its domain adaptability and
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specialization. When combined with delay line coding, axonal plasticity opens up the possi-

bility of learning even temporal input windows.

Cortical map learning shows that feature learning across early sensory cortex may

use a similar system of hierarchical and lateral, Hebbian anti-Hebbian dynamics. Such

learning is extremely adept at distributing neuronal receptive fields throughout a space of

possible input patterns. With the right supporting structural input connectivity, cortical

map learning could be a powerful domain general form of feature learning.

Complex receptive field learning. In theory, cells that learn to tolerate minor feature

variations in incoming stimulus representations, like V1 complex cells are thought to do,

would be useful in all modalities. Further, the ability to learn these receptive fields could let

them specialize to each modality.

While not the main goal of this dissertation, ICL serves as a first attempt to build a

model that is domain general, and that can adaptively specialize itself to the domain it is

exposed to. ICL opens the door to modeling multi-sensory integration within a more unified

framework.

6.4 Future Directions

The work on the ICL model for this dissertation is by no means comprehensive. In effect

it could not be, because ICL is an attempt to make an entirely new class of models both

computationally and scientifically viable for study. As a first attempt to build an ICL model,

this work featured many limitations that future work could overcome.

6.4.1 Axonal Learning

The Arbor Model used for the simulations of axonal plasticity dynamics in the ICL networks

has large potentials outside of this work. It is already useful for creating connectivity in
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supervised or unsupervised pre-training for stacked models. But with a minor augmenta-

tions of its design, the arbor model could allow for connectivity itself to be approximately

differentiable. This would allow deep locally connected models to effectively learn their own

large-scale connectivity structure as part of their objective function. This development could

have wide-reaching affects on the field of Deep Learning.

6.4.2 Abstractions of ICL

As mentioned earlier, there are some significant advantages to posing an algorithm in terms

of minimizing objective functions via gradient descent, even if those objective functions

are local in nature. Developing a version of ICL based on local layer-wise or unit-wise

objective minimization could yield a more stable and easily tuned model. The current

version of ICL appeared to maintain its low-level representations through 3 additional layers

of representation suggesting that better tuning may be all that a model with ICL like learning

dynamics needs in order to improve performance past its first layer. Gradient based ICL

might make that tuning more feasible.

6.4.3 Replicating V1 Complex Cell Work

Much simulation and theory work has been conducted to understand how simple cells and

complex cells might interact with one another in V1 (see Martinez and Alonso (2003) for a

review of some of these theories and other related work). But most of this work has been

done using very simplified models only designed to work on simple artificial stimuli. Most of

them look at small populations of simple cells and complex cells with full fixed connectivity.

The ICL models used in this paper are a major advance over prior models in that they

allow for simulation of a V1 model with axonal plasticity and windowed connectivity, and

do so at a large scale on real world stimuli. As such, ICL could form the basis of a new

generation of V1 models that seek to explain more nuanced interactions between classically
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studied phenomena with more biological detail and do so at larger scale than previous models

allowed.

6.4.4 New Measures of Neural Specialization

The analysis used for Simulation Study 2, namely comparing a neural representations unit

deletion (UD) curve to its artificially un-specialized UD curve, could be used to better un-

derstand neural specialization in real cortex. This would be very informative, as the current

understanding of unit specialization in the brain is largely based on notions of selectivity and

preferred stimulus, which as seen in this dissertation’s experiments do not actually imply

strong functional specialization. Using the unit deletion specialization test on a sampling of

neurons across IT and within functional areas like FFA, with respect to relevant categories,

would give an estimate of the upper bound on unit specialization in the high-level ventral

visual stream.

6.4.5 Improving Models of Complex Cell Learning

As mentioned earlier, the specific implementation of the complex cell models based on the

TRM framework for this project were not as successful as hoped.

From a theoretical perspective, there are three main ways that complex cells might not

contribute to generalization. First, if complex cells learn pools which are too narrow, they will

effectively just propagate the simple cell representation. Second, if the complex cells learn

pools which are too wide, they may lose useful discriminative information more than they

eliminate non-discriminative information. Third, if the pool membership is ill-chosen (i.e.

does not actually conjoin correctly related features) then the complex cells will be unlikely

to contribute to better generalization. Paradoxically, in the second and third situations the

next level of simple cells may still ”recover” enough of the original simple-cell representation

in order to propagate similar unit selectivities to higher layers. Unfortunately, diagnosing if
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one of these problems is occurring in the ICL model, is beyond the scope of this dissertation.

However, it is grounds for proposing a small follow-up study to examine these matters.

This dissertation focused on broadly testing if the ICL models we developed would be

useful as tools for future computational cognitive neuroscience research. As such, we did

not test the model on so-called toy problem datasets which are of decreasing interest for

neuroscience or cognitive science. Models that are calibrated and perform well on toy datasets

rarely perform well on difficult or real-world datasets, so we opted to build our model with

more difficult datsets for calibration.

Critically though, well constructed toy-datasets are powerful tools for understanding if

a model is actually correctly implementing a theory it is supposed to represent. This is

because a toy dataset with simple stimuli give rise to predictable responses and representa-

tions at different levels within a model, whereas, more complex datasets with more complex

stimuli rarely give rise to tidy (or actionable) predictions about representation and response

characteristics.

6.4.5.1 Proposal for Complex Cell Calibration Study

I propose that several candidate models based on ICL should be trained on a simple shape

dataset. To start with, This simple shape dataset could include squares, triangles, and

circles. The training would include temporal sequences of these shapes being shifted across

the image space, using a Gaussian random walk to simulate fixations. Then there would be

two kinds of testing: low-level tolerance tests and generalization tests.

For the low-level tolerance tests, the network would be exposed to a battery of Gabor

wavelets, and each units responses would be recorded. Using this this stimulus battery,

we would build a tuning profile for the simple cell units and the complex cell units. If the

complex cell model is working correctly, the complex cell units should be more broadly tuned

than their simple cell counterparts even after lateral inhibition and competition effects have
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taken effect. These tuning profiles would be calculated for every level of representation in

the network.

For the generalization tests, the network would have a classification layer added as output

for every layer in the network and trained on centered stimuli. Next the network would be

tested on battery of shifted images in order to build generalization curves for each layer of

representation within the model. If the complex cells are functioning correctly (i.e. increasing

tolerance, and not eliminating discriminative information), then these generalization curves

should increase in width without dropping in peak performance (see. Fig. 6.1 ).

6.4.5.2 Alternate Implementations of Complex Cell Learning

Gradient Descent Based Learning. One reason why it is difficult to tune the complex cell

model is that biologically inspired dynamics lack explicit objectives that are guaranteed to be

minimized as the network learns. Gradient descent algorithms like traditional deep learning,

have a remarkable ability to tune themselves to a degree and will often tolerate poorly

chosen hyperparameter values. However, complex cell learning poses a challenge to being

expressed as an unsupervised objective function. Essentially, a TAU compatible complex

learning object would need to minimize the expected discriminability between features that

are temporally close to one another, while maximizing the discriminability of features that

are only little further away temporally. Further, maxpooling like operations in general limit

the amount of useful gradient information, as only a single input to the maxpooling operation

can have a substantial gradient.

Critically, the addition of gradient descent dynamics is also not inherently biologically

implausible if each objective is manipulating local variables in a plausible way. For instance,

the Arbor Model uses gradient descent to efficiently implement known forces in axonal de-

velopment with only local communication.

Adversarial Learning. It is possible that a version of the complex cell model that used

adversarial learning could alleviate some of the limitations of the current complex cell model.

209



Figure 6.1. Study for calibrating sophisticated complex cell models integrated into cortical
models
This figures outlines a potential Simulation Study for better understanding and calibrating
the behavior of trace rule complex cell learning models that are integrated into large cortical
learning models. In the pre-training phase a simplified dataset is temporally augmented
using pixel shifting and presented to an ICL like model until all layers are trained. Then a
test battery featuring images shifted along a single axis. The neuron which respond most
strongly, will be recorded and displayed to better understand its tuning curves, for both the
simple cell layers and complex cell layers in each module. If the complex cell tuning curves
are wider than the simple cell curves in every layer, and the width increases in higher modules
then the complex cells are likely functioning correctly at least at a low level. Discrimination
performance will also be tested to see the if complex cell behavior corresponds to better
generalization performance functionally. This paradigm would be useful for both studying
complex cell model behavior and tuning it to achieve desired results within deep cortical
models.
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Essentially, one population of cells could take windowed input from a complex cell layer and

act as local discriminators whose jobs detecting if the input image has actually changed

locally. However, the complex cell’s objective, would be to make minor perturbations of

an image generated by temporal sampling look identical. It should be noted that there is

no evidence for this kind of learning to my knowledge in the neuroscience literature, and it

would sitting in as an abstraction for a biologically plausible form of learning.

Binary-ICL. The simple and complex cell models implemented for this project have real

continuous neural activations. This makes it somewhat more difficult to tune a model to meet

the various temporal dynamics and sparsity requirements of Windowed-TAU successfully. By

making the the inputs to the simple cells binary and their outputs binary, the sparsity of

the system would be easier to control. Further, the binary outputs of the simple cells could

almost be treated as the state of a Markov process. If the windows to complex cells were

altered so that only one unit within the window registered as on, each complex cell window

could explicitly be treated as a simple state-machine and markov analysis could be used

for fine-tuning their learning. Finally, if the output of the complex cells is binary, it would

be easier to adapt the sparsity settings such that the complex cell layer produced similar

activation statistics to the initial input of the simple cell layer. This would mean that

stacked Binary-ICL modules would be more likely to learn progressively more sophisticated

representations without stalling out, as higher layers would be exposed to similar conditions

which lead to strong learning in lower layers.

The main downside to Binary-ICL is that large amounts of information would be lost

from the input image to the first simple cell layer. This may make Binary-ICL less suitable

for processing real-world data depending on the specific input transformation used. However,

Binary-ICL may prove to be a versatile way if checking if the assumptions of an ICL-like

model can successfully implement Windowed-TAU.
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6.5 Main Conclusion & Impact

In this dissertation, I introduced a new platform for modeling visual cortex, that is ground

breaking in a number of ways. Further, this dissertation demonstrated that the new platform

offers inherently new ways for comparing theories of visual cortex to actual visual cortex via

modeling. In this section, I will outline why the Integrated Cortical Learning Model is both

groundbreaking as a model and critical as a first step in opening up new frontiers of cortical

research.

6.5.1 Objectives Revisited

When I started this dissertation I had several main objectives. First, I wanted to introduced

a high-level theory that explained how an architecture of composed of multiple modules of

simple and complex cell layers could learn hierarchical representations of categories. Second,

I wanted to develop implementations of these concepts, and evaluated if a model based on

these concepts could be useful for studying study several cognitive neuroscience phenomena

of interest, specifically, cortical map development, unit specialization, and unsupervised

learning. In the chapters of the dissertation, I have largely accomplished these objectives.

In Chapter 2, I introduced the Temporal Relation Manifold (TRM) framework for

understanding unsupervised category learning as a product of connectivity learning, simple

cell-like learning and complex cell-like learning.

In Chapter 3, I introduced a new form of model that allowed deep networks to learn

their connectivity in an unsupervised fashion. This new model called the Axon Game also

generates cortical map like analogues. The Axon Game served as a proof of concept and

a template for building the more advanced connectivity learning mechanisms employed for

this dissertation known as the Arbor models.

In Chapter 4, I introduced the Arbor Model for connectivity learning, a hierarchical

simple cell cortical map learning model, and a hierarchical complex cell cortical map learning
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model, and several full implementations of the ideas in the TRM framework called Integrated

Cortical Learning (ICL) models.

In Chapter 5, I tested if our implementations of the ICL models developed high-level

cortical maps and specialized units, and if they learned categories in an unsupervised fashion.

The results of these studies should be useful in developing better versions of the ICL model

and demonstrating that ICl models have strong potential for cognitive neuroscience modeling,

despite their limitations.

6.5.2 Motivation Revisited

My work started as a reaction to the realization that cortex is one of the slipperiest substances

known to mankind. By this I mean that it is incredibly plastic in ways that few if any current

models can mimic, and its plasticity makes detailed theoretical predictions quite difficult at

the system level.

When I began this work, DCNNs had already become the dominant model in visual

neuroscience. This was for good reason, as they provided an excellent platform for testing

out ideas, for example whether the feed-forward object manifold view of object recognition

as discussed in (Yamins and DiCarlo, 2016b), was a useful starting point for understand

visual cortex. Research with DCNNs has thoroughly demonstrated that looking at visual

cortex as a hierarchical series of transformations is an incredibly useful perspective to take

(Khaligh-Razavi and Kriegeskorte, 2014; Khaligh-Razavi et al., 2017; Yamins and DiCarlo,

2016b). While alternative architectures, like transformers (Vaswani et al., 2017; Dosovitskiy

et al., 2020), are starting to become competitive for visual tasks, its unclear if they will have

the same impact on neuroscience.

Despite their success, DCNNs are actually quite inflexible in a number of important ways

compared to even our most basic understanding of visual cortex. First, their features are

rigidly segregated into separate feature channels, with a fixed weight-sharing assumption
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that bears little resemblance to cortical constraints. Second, their pools are rigidly defined

as blocks of of neighboring units within their maps, whereas their counterpart complex

cells may learn their pools in a sophisticated manner. Finally, the underlying structural

connections between layers are fixed in DCNNs, whereas axonal development in cortex can

be phenomenally plastic.

If, DCNNs can be thought of as learning to drive a car, then visual cortex is like learning

to drive, while simultaneously building the car and paving the road.

As a result of these differences, there are a number of physiological and computational

comparisons between cortex and DCNNs that simple can’t be made. For instance, DCNNs

do not have an analogue to cortical map development, despite their study being one of the

fundamental methods for assessing neural representations in the brain. Alongside this, the

differences between DCNNs and cortex make certain comparisons difficult to interpret.

To address these issues, computational neuroscience needs new modeling platforms that

can both incorporate ignored but fundamental kinds of cortical plasticity, and that can

allow for more detailed physiological comparisons. But developing these new platforms will

require experimentation, risk taking, and substantial engineering development. Further, new

theories and frameworks are needed to understand how these new models can learn visual

object categories without supervision. This dissertation is an important first step in that

direction.

6.5.3 Engineering Plasticity

One of the central challenges of developing new architectures that better reflect the plasticity

of actual cortex, is that real cortex has surprisingly few fundamental representational con-

stants. For example, visual cortex may use the same fundamental rules as auditory cortex,

but they look vastly different at a fundamental feature level. Yes, V1 and A1 have four

laminae and later cortical sensory areas have six, and the wiring is very similar from area
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to area, but representationally and structurally there is so much that changes depending

on the nature of the inputs and due to experience. As section 6.3.2 highlights, this level of

structural and representational flexibility may be critical to understanding cortical sensory

function more deeply.

6.5.3.1 Introducing Axons and Structural Plasticity

Many visual models make strong assumptions about the neighborhood relationship between

pixels in incoming images. For instance, convolutional models assume that input images

are arranged in pixels in a strict grid formation. In contrast, deep fully connected networks

and random connected networks, which were popular in the past for visual tasks, essentially

assume that there is no neighborly relationship between the inputs. But a convenient aspect

of both DCNNs and deep fully connected or random sparse networks is that they are straight-

forward to implement and they use a small number of operations, which are well optimized

for today’s hardware and software.

Visual cortex, appears to learn a structural connectivity to match the topological struc-

tures and relationships within its inputs, whatever they may be. This is somewhat like

learning a convolutional structure with only a hint about how images are organized in the

first place, from just looking at jumbles of pixels over time. Further, implementing a model

with this kind of flexibility and speed close to a DCNN, is non-trivial. Unfortunately, that

speed is a practical necessity for widespread adoption. It took me three wholly separate

iterations and projects built around this concept before I developed a technique which was

fast enough to make training times truly practical.

The axon game and its progeny the arbor model are the results of many years of work

to develop models which can support cortex like structural plasticity with DCNN like ef-

ficiency. Even on their own, these models make an important contributions to library of

neural network components and may yet provide excellent models for cortical neuroscience.
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But farther reaching, these models are a foundational step towards building architectures

with the kind of underlying flexibility seen in real sensory cortex.

6.5.3.2 Bringing Cortical Map Modeling in to the Present & Beyond V1

Simple cells allow cortex to learn sets of largely uniform features across the visual field and

across spatial frequencies, with very little prior assumption. This is an impressive feat, given

that DCNNs need many constraints and assumptions to accomplish the same thing (i.e.

convolutional weight-sharing and explicit separation of input and feature channels).

Models such as Malsburg (von der Malsburg, 1973), LISSOM, (Sirosh and Miikkulainen,

1994), and GCAL (Stevens et al., 2013), were pivotal to advancing our understanding of

how features and cortical maps are learned via simple cells in early visual cortex. In theory,

these models should be a good starting point for understanding how hierarchical cortical

learning effectively distributes feature representation throughout its layers. However, most

models of cortical map learning were implemented with programming environments and

with assumptions that make them incompatible with the demands of today’s deep neural

models. Deep learning of any variety is incredibly computationally demanding and requires

high-throughput and efficient processing to be practical. Further, DCNNs have permanently

raised the bar for cognitive neuroscience modeling, requiring that new models are at least

comparable in terms of data throughput and the ability to learn on real world data. These

cortical map models were never designed with this in mind, and this has limited their use as

deep neural models.

With the codebase for this project, I have demonstrated and outlined how to bring the

ideas from these simple cell cortical map models into the modern era of deep learning, using

modern environments like tensorflow and GPU computing. Further, I demonstrated that

variations of these cortical map models can work well on large real world images, and with

simplified dynamics that are compatible with modern necessities like batch learning.
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My work shows that cognitive models built on cortical map learning architectures are

viable, and that increasing performance is likely just a matter of experimenting with differ-

ent learning rules and hyper-parameter settings. With this work, I provide a platform for

building the first generation of hierarchical cortical map models of cognitive function, much

as NEOCOGNITORON (Fukushima, 1980) provided a conceptual platform for the powerful

DCNNs of today.

6.5.3.3 Complex cells In Situ

Complex cells learn to pool semantically related and identical features together, in order to

build more tolerant representations over multiple cortical layers. This requires learning the

structure of the visual world and its myriad transformations, only by visual experience. In

theory, trace learning could allow complex cells to do this using temporal observations.

Currently, there are many models of complex cell learning, such as trace rule models

(Földiák, 1991; Rolls and Stringer, 2001; Wallis, 1996; Einhäuser et al., 2002; Michler et al.,

2009). Complex learning offers a kind of plasticity that could greatly contribute to useful

perception of categories and events. While, DCNNs are only able to use their pooling neurons

(complex cell stand-ins) to build incremental tolerance to image shifts, learned complex cells

could offer far more general forms of incremental tolerance, while also catering to the specific

variabilities of unique categories and objects.

Unfortunately, what most complex cell models have in common, is that they are generally

small scale demonstrations meant to isolate or highlight complex cell functions. This means

that most of them do not work on real world data and do not scale to larger populations of

neurons. It also means that most of these models were never meant to be situated between

other learned layers of neurons, as would be required for deep cortical learning.

With this dissertation, I demonstrate that trace rule based complex cell learning methods

can be implemented at scale and that they can learn stable pool structures with relatively

217



simple learning rules, within deep hierarchical models. Further, this work demonstrates

that these temporal models are very compatible with batch learning and can be easily be

incorporated into cortical map learning frameworks.

However this work also demonstrates that complex cell learning is not a fully solved

problem from a functional and computational perspective. Though not discussed in this

work, I implemented and tested many different versions of complex cell learning (trace based

and others) during the course of this project. All of them demonstrated clear shortcomings for

the purpose of building progressively more sophisticated hierarchical representations within

a deep framework. This work has started the process of exploring which combinations of

complex cell models and learning rules can contribute successfully to hierarchical learning.

Encouragingly, the ability of the ICL models built for this project to maintain high-levels

of performance over multiple layers with only minor degradation, suggests that existing

complex cell learning rules may only need modest revisions before they can demonstrate real

performance improvements. Critically, the ICL architecture and its variations developed for

this project offer the necessary platform for conducting these investigations, and for building

the next generation of complex cell models to support deep cortical learning.

6.5.4 New Horizons for Cortical Comparisons

One of the major contribution of the ICL model, is in how it opens the door to radically

different kinds of neural comparisons to visual cortex.

The 2010s were dominated by abstract comparisons to neural network models, such as

representational dissimilarity matrices (Khaligh-Razavi and Kriegeskorte, 2014; Khaligh-

Razavi et al., 2017; Yamins and DiCarlo, 2016b). But, with the help of the technologies

and methods developed for ICL, the next decade may start to see more direct physiological

comparisons between models and visual cortex. With more direct comparisons researchers

will be able to study far more fine grained questions about neural function, and future

modelers will receive far more useful information for refining future models in the process.
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6.5.4.1 Cortical Maps

Up until recently (Lee et al., 2020), deep neural networks predicted very little about the

actual physiological structure and layout of features on the cortical surface. This is a problem

because studying the structure of feature selectivity across the cortical surface has been a

major contributor to our understanding of how cortex organizes and compartmentalizes

information. From low-level ocular dominance columns and orientation columns (LeVay

et al., 1975; Hubel et al., 1978), to high-level functional areas such as FFA (Kanwisher

et al., 1997; Sergent et al., 1992), the topological grouping of neural selectivity has inspired

many theories and debates about cortical function (von der Malsburg, 1973; Sirosh and

Miikkulainen, 1994; Grill-Spector et al., 2017; Wandell et al., 2007; Weiner and Zilles, 2016).

Models that build their hierarchical representations on a homolog to the cortical sur-

face, using plausible cortical interactions, could give us important insight into what cortical

maps and functional groupings actually mean from a computational perspective. But a

pre-requisite for building such models is the development of deep cortical map learning ar-

chitectures and the technologies needed to support them. This dissertation demonstrates

that deep cortical map architectures are viable with today’s technology. Further, ICL can

provide a platform for building these models and training them on real world ecologically

valid training data.

6.5.4.2 Unit Level Representations

Right now, it is of great interest to link the development of high-level unit representations

for DCNNs to high-level unit representations found in IT cortex. However, there are some

reasons to be skeptical of these comparisons. First, the top-level representations of state-of-

the-art DCNNs are typically fully connected. Second, their learning schemes are completely

divorced from many of the local lateral interactions that dominate cortical learning. Third,

without much more severe algorithmic constraints, there is very little reason to assume that
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top-down learning for categories or bottom up generative learning will cause the represen-

tations of high-level DCNNs units to match their cortical counterparts. That being said,

this training should cause substantial similarities to emerge at the space-level of represen-

tation between DCNNs and IT cortex, which has indeed been found (Khaligh-Razavi and

Kriegeskorte, 2014; Khaligh-Razavi et al., 2017; Hong et al., 2016; Yamins and DiCarlo,

2016b).

But in order to go beyond these abstract comparisons, we need models of deep corti-

cal learning that are not built on rote supervised learning, and whose learning rules and

constraints better reflect the local nature of cortical learning.

This dissertation demonstrates that models built on unsupervised learning and around

local cortical constraints can learn deep neural representations. While I would argue that

the high-level representations this project’s ICL implementations could be improved, ICL

provides a platform for testing and building new learning rules and constraints with a more

cortically plausible foundation. With ICL and the future models it enables, we can begin

the work of probing the differences between high-level neural representations between our

models and IT cortex more deeply.

It may very well turn out that more abstract models, like DCNNs, are actually good

predictors of unit-level representations in high-level cortex, or it could turn out that more

traditional notions of highly specialized neurons will win out. But, it is also possible that new

models enabled by the ICL will point the way to as-yet unimagined styles of representation

hidden within the neurons of high-level visual cortex.

6.5.4.3 Computational Performance

Since the introduction of DCNNs capable of exhibiting human level classification performance

on certain datasets, new process models of cognitive phenomena are often expected to exhibit

human level classification performance on real world datasets as well. Many models can
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predict human recognition performance from various viewing angles with only five or six

parameters, but exceedingly few models can actually perform object recognition at anywhere

near human levels, regardless of the number of free parameters. Thus testing with messy

real-world datasets can be an important tool for highlighting promising architectures and

learning rules in an increasingly crowded landscape.

But real-world data testing is a double edged sword, as the reality of model development is

often messy, long, and nonlinear. Often there is a significant exploratory engineering period

that can last years before new architectures and approaches show impressive results on

real world data. Highlighting architectures because they are conceptually and theoretically

interesting, even in the absence of strong real world performance, is still an important part

of moving our understanding of visual cognition forward.

Further, it is quite difficult to predict which models will eventually become dominant and

which models will fall by the wayside, even with good “real world” performance estimates.

Essentially, this sets research communities up for a strong bias favoring currently compu-

tationally successful models. For example, in the first decade of the 21st century, SIFT

features (Lowe, 1999; Geng and Jiang, 2009; Bicego et al., 2006) and HOG filters (Dalal and

Triggs, 2005; Wang et al., 2009; Pang et al., 2011) were at the top of performance charts,

while at the same time “Convolutional Neural Networks” and “neural network” approaches

in general were not taken seriously by many experts in the field of human visual processing

and computer vision. Yet, SIFT and HOG filters have largely fallen out of favor and deep

neural networks approaches are now favored as potential models of human visual processing.

By 2020 state-of-the-art standards, ICL is not yet a highly competitive class of models.

But ICL already works as well or close to as well as basic DCNNs on real-world images. As

such, ICL shows strong promise that it can improve substantially with more development

and iteration. Further, it clearly demonstrates that architectures based on more fundamental

cortical principles can handle the data and speed requirements needed in order to train highly

competitive models.
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Real-world classification performance of more biologically realistic models of cortical map

development and axonal development is rarely tested. On the other hand, DCNNs are very

abstract implementations of the hierarchical theory of cortex, but show excellent perfor-

mance on object recognition and visual understanding tasks. With this study I have shown

that the ICL model can perform roughly at the same order of magnitude as DCNNs for

image recognition, while providing a more biologically detailed implementation of current

theories of cortex. This is a critical niche of models that needs more attention in the field of

computational cognitive neuroscience.

At this point, it would make sense to compare the ICL architecture to other highly

similar architectures from a computational perspective. However, there is to my knowledge,

no precedent for components like those used in ICL being combined together in this manner.

At an abstract level, ICL is a member of the deep locally connected neural network DLCNN

class of models, but it shares very little in common with most DLCNNs. Most DLCNNs are

trained using supervised gradient descent and do not feature connectivity learning or specific

layers of neurons that serve as simple and complex cell surrogates. On the other hand, ICL

is conceptually similar to DCNNs, but DCNNs are so mechanistically different that very few

principles of DCNNs appear to apply to ICL models. This makes the challenge of developing

and tuning the ICL architecture a unique one, as there are few models which can be used as

guides for making informed development choices or for direct comparison.

Given historical context, the special niche it fills, and ICL’s unique challenges, I would

argue that for its first demonstration in cognitive modeling, ICL shows strong potential. But

evaluating that potential further is going to require more work, more engineering, and more

studies. However, this effort is well offset by the prospect that models like ICL can move

us towards an understanding of the brain that more tightly anchors visual cognition to the

underpinnings of visual neuroscience.
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6.5.5 Addressing the Paradox of Unsupervised Category Learning

The DiCarlo and Cox (2007) object manifold framework has been invaluable for understand-

ing how feed forward deep neural networks can decode object categories from visual images.

But how the brain transforms images into perceptions of categories is only one part of the

puzzle, the other part of the puzzle is how the brain learns these transformations in the first

place.

Supervised deep gradient descent has provided many poofs of concept over the past

decade that the layer-wise windowed structure of DCNNs and other similar models are

capable of encoding successful transformations from visual images to categorical labels. But,

very few scientists consider supervised deep gradient descent as a plausible explanation

for the majority of visual learning. Firstly, deep gradient descent is largely considered

neurally implausible (Yamins and DiCarlo, 2016b). Second, and more importantly, the

amount of supervision (i.e. labeled examples) required for the most successful of these models

is excessive and appears to be orders of magnitude larger than what animals or humans need

in order to successfully learn visual categories. Importantly, unsupervised methods of deep

learning are improving consistently, and more efficient forms of deep gradient descent that

need fewer and fewer examples are constantly being developed. But it remains to be seen

whether this trajectory will ever reach the level of unsupervised category learning seen in

humans or whether it will ever provide a good explanation for visual category learning in

humans.

With the temporal relation manifold framework, I have introduced an alternate ap-

proach to tackling the problem of unsupervised visual category learning. This new approach

gives tacit acknowledgement to a conundrum that previous approaches have largely ignored.

Namely, the system of categories learned by the human brain is also largely created by the

human brain. As such, the categories themselves need to be viewed as an emergent phenom-
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ena, one that the human brain is simultaneously learning and creating through its particular

method of perception.

The categories that define Object Manifolds as separate entities must be defined external

to the system learning them, essentially they are a-priori assumptions held to be self-evident.

This makes the development of unsupervised learning methods difficult, because it inevitably

involves looking for an objective or goal for learning, that just happens to tease events apart

in the right way to support human-like categories, often without a strong theory of what

informs the structure of those categories.

On the other hand, Temporal Relation Manifolds (TRMs) do not need external definition,

TRMs are tangible observable statistical objects with measurable topology and structure.

Further, the way that a temporal relation manifold will be untangled will be specific to the

particular method of untangling, and can be engineered to emphasize particular kinds of

distinctions. In other words, a theory for untangling TRMs is both a theory of learning and

a theory of category genesis that can make specific qualitative predictions when implemented

by models.

As an important qualification, the structures built by unfolding TRMs might be best de-

scribed as a proto-categorical space that supports category-like discriminations, rather than

an explicit system of categories like the ones we verbalize. However, this proto-categorical

space would vastly improve learning for socially generated categories, as individuals would

already tend to share roughly similar ways of structuring their environment.

With the right scope of application, the TRM framework can provide a valuable new

viewpoint for designing and understanding visual learning systems as both category learners

and as an integral part of the category creation process.

6.5.6 Parting Words

In conclusion, I developed a framework and theory of unsupervised visual learning, and

using that theory I built a novel model of deep cortical learning designed to offer an im-
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proved platform for studying deep cortical research in terms of bringing models closer to the

neuroscience of visual cortex. With this new model, I demonstrated that deep cortical map

models with learned connectivity and complex cell pools are viable with today’s software and

hardware. Further, I demonstrated that this platform offers new capabilities for comparing

our theories of cortical learning to the physiological organization of information in actual

visual cortex. As an example, ICL enabled the investigation of cortical map representation

and unit level specialization in ways not offered by traditional DCNNs.

This project has been remarkably successful as an introduction for a new platform to

support cognitive neuroscience modeling. But this work has also demonstrated areas of cor-

tical modeling research that need more theoretical and modeling development. For instance,

there is ample room for future work regarding the development of more appropriate complex

cell learning rules for deep cortical learning. This dissertation has also raised concerns that

researchers should be even more skeptical about interpreting the presence of selectivity and

preferred stimuli to mean that high level neurons are at all functionally specialized.

I look forward to seeing how future models inspired by the ICL platform and the TRM

framework of unsupervised learning, can improve upon the results of this dissertation, and

to seeing how they can expand the borders of visual cortical research beyond what was

previously thought possible.
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