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TOWARDS FASTER SOFTWARE REVISION TESTING

Lingchao Chen, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Dung Huynh, Chair

Software systems have been increasingly prevalent in all facets of our lives over the last few

decades and play a critical role in modern living. They have a significant impact on the

quality of our lives and provide tremendous convenience. However, software faults (also

known as bugs) are unavoidable throughout the development of software systems that can

have a substantial negative impact on the commercial company and result in significant losses.

Numerous researchers have been working on this problem to test software systems during

development and fix bugs after the software systems are established. However, due to the

complexity of these systems, these approaches can be very time consuming. For example,

mutation testing is an important component of software testing which can be very powerful

to evaluate the quality of the test suite, but it can be extremely time consuming due to a

large number of mutant execution. Also, Automated Program Repair (APR) techniques can

reduce software debugging human efforts by advising plausible patches for buggy programs.

However, the APR techniques need to repeatedly execute all the test suites to identify the

plausible patches for the bugs under fixing. This process could be extremely costly. Therefore,

it is essential to explore some approaches to speed up the processes of software testing and

debugging.

In this dissertation, we aim to speed up software testing and debugging via faster software

revision testing. The idea is to decrease the testing time between different revisions to speed
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up software testing and debugging. We explored two scenarios in software testing during the

evolution of software systems: mutation testing and behavioral backward incompatibilities

(BBIs) detection. We applied regression test selection (RTS) techniques to speed up mutation

testing for the first study. Our study showed that both file-level static and dynamic RTS could

achieve efficient and precise mutation testing, providing practical guidelines for developers.

We called the second BBIs detection technique DeBBI which can reduce the end-to-end testing

time for detecting the first and average unique BBIs by 99.1% and 70.8% for JDK compared

to naive cross-project BBIs detection. Additionally, we detected 97 BBI bugs including 19

that were previously confirmed as unknown bugs. Lastly, we explored the application in patch

validation of APR technique to speed up software debugging. We treated every single patch

as a revision to develop a unified on-the-fly patch validation framework, named UniAPR. Our

study demonstrated that on-the-fly patch validation could often speed up state-of-the-art

source-code-level APR by over an order of magnitude, enabling all existing APR techniques

to explore a more extensive search space to fix more bugs in the near future.
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CHAPTER 1

INTRODUCTION

With the rapid development of information technology, software systems have been broadly

adopted in almost all aspects of modern lives. Software bugs are inevitable in modern software

systems, affecting billions of people [45] and costing trillions of dollars in financial loss. In

practice, software testing and debugging is essential to detect, localize, and fix bugs from

software systems. However, software testing and debugging is quite expensive and time

consuming, which utilizes 40%-50% of total resources, 30% of total effort, and 50%-60% of the

total cost of software development [90, 125, 132, 143, 162]. Therefore, it is crucial to explore

approaches to improve the efficiency of software testing and debugging. In this dissertation,

we speed up software testing and debugging via faster software revision testing. We intend to

improve the overall software testing and debugging efficiency by enhancing the speed between

different revisions. In order to achieve this, we explored two scenarios in software testing

and one scenario in software debugging. We worked on mutation testing and BBIs detection

problems for software testing when faced with the evolution of software systems between

different revisions. As for software debugging, we focused on speeding up the patch validation

time of APR technique by treating each patch as a revision. We seek to speed them up by

applying knowledge from various fields such as static program analysis, dynamic program

analysis, and information retrieval.

Our dissertation consists of three sections. First, we suggested the idea of applying traditional

RTS techniques for incrementally collecting mutation test results for evolving software systems

to speed up mutation testing [52] (Section 1.1). Second, we proposed a technique named

DeBBI [49] (Section 1.2) to detect BBI bugs between the different revisions when the system

is upgraded. Third, we treated each patch generated by the APR technique as a revision. We

aimed to speed up the validation time of each revision to reduce the total time utilized by the
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APR technique. To achieve this, we introduced the first unified on-the-fly patch validation

framework, UniAPR [50] (Section 1.3), to empirically study the impact of on-the-fly patch

validation for state-of-the-art source-code-level APR techniques. We explored faster software

revision testing in those three scenarios, implemented the three approaches in automated

tools and evaluated them using extensively used benchmarks. The experimental results

show the value of our techniques, and provide important guidelines to future developers and

researchers.

1.1 Speeding up Mutation Testing via Regression Test Selection: An Extensive

Study (ICST’18)

Mutation testing is one of the most powerful methodologies to evaluate the quality of test

suites, and has also been demonstrated to be effective for various other testing and debugging

problems, e.g., test generation, fault localization, and program repair. However, despite

various mutation testing optimization techniques, mutation testing is still notoriously time-

consuming. Regression Testing Selection (RTS) has been widely used to speed up regression

testing. Given a new program revision, RTS techniques only select and rerun the tests that

may be affected by code changes, since the other tests should have the same results as the

prior revision. To date, various practical RTS tools have been developed and used in practice.

Intuitively, such RTS tools may be directly used to speed up mutation testing of evolving

software systems, since we can simply recollect the mutation testing results of the affected

tests while directly obtaining the mutation testing results for the other tests from the prior

revision. However, to our knowledge, there is no such study. Therefore, in Chapter 3, we

perform the first extensive study (using 1513 revisions of 20 real-world GitHub Java projects,

totalling 83.26 Million LoC) on the effectiveness and efficiency of various RTS techniques

in speeding up mutation testing. Our study results demonstrate that both file-level static

2



and dynamic RTS can achieve precise and efficient mutation testing, providing practical

guidelines for developers.

1.2 Taming behavioral backward incompatibilities via cross-project testing and

analysis (ICSE’20)

In modern software development, software libraries play a crucial role in reducing software de-

velopment effort and improving software quality. However, at the same time, the asynchronous

upgrades of software libraries and client software projects often result in incompatibilities

between different versions of libraries and client projects. When libraries evolve, it is often

very challenging for library developers to maintain the so-called backward compatibility

and keep all their external behavior untouched, and behavioral backward incompatibilities

(BBIs) may occur. In practice, the regression test suites of library projects often fail to

detect all BBIs. Therefore, in Chapter 4, we propose DeBBI to detect BBIs via cross-project

testing and analysis, i.e., using the test suites of various client projects to detect library BBIs.

Since executing all the possible client projects can be extremely time consuming, DeBBI

transforms the problem of cross-project BBI detection into a traditional information retrieval

(IR) problem to execute the client projects with higher probability to detect BBIs earlier.

Furthermore, DeBBI considers project diversity and test relevance information for even faster

BBI detection. The experimental results show that DeBBI can reduce the end-to-end testing

time for detecting the first and average unique BBIs by 99.1% and 70.8% for JDK compared to

naive cross-project BBI detection. Also, DeBBI has been applied to other popular 3rd-party

libraries. To date, DeBBI has detected 97 BBI bugs with 19 already confirmed as previously

unknown bugs.
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1.3 Fast and Precise On-the-fly Patch Validation for All (ICSE’21)

Generate-and-validate (G&V) automated program repair (APR) techniques have been ex-

tensively studied during the past decade. Meanwhile, such techniques can be extremely

time-consuming due to the manipulation of program code to fabricate a large number of

patches and also the repeated test executions on patches to identify potential fixes. PraPR,

a recent G&V APR technique, reduces such costs by modifying program code directly at

the level of compiled JVM bytecode with on-the-fly patch validation, which directly allows

multiple bytecode patches to be tested within the same JVM process. However, PraPR

is limited due to its unique bytecode-repair design, and is basically unsound/imprecise as

it assumes that patch executions do not change global JVM state and affect later patch

executions on the same JVM process. In Chapter 5, we propose a unified patch validation

framework, named UniAPR, to perform the first empirical study of on-the-fly patch validation

for state-of-the-art source-code-level APR techniques widely studied in the literature; further-

more, UniAPR addresses the imprecise patch validation issue by resetting the JVM global

state via runtime bytecode transformation. We have implemented UniAPR as a publicly

available fully automated Maven Plugin. Our study demonstrates for the first time that

on-the-fly patch validation can often speed up state-of-the-art source-code-level APR by over

an order of magnitude, enabling all existing APR techniques to explore a larger search space

to fix more bugs in the near future. Furthermore, our study shows the first empirical evidence

that vanilla on-the-fly patch validation can be imprecise/unsound, while UniAPR with JVM

reset is able to mitigate such issues with negligible overhead.
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CHAPTER 2

BACKGROUNDS AND RELATED WORKS

2.1 Mutation Testing

Mutation testing is a fault-based testing methodology for evaluating the quality of test suites,

which was firstly proposed by DeMillo et al. [59] and Hamlet [76]. Given a program P under

analysis, mutation testing applies a set of mutation operators to generate a set of mutants

M for P . Each mutation operator applies a transformation rule (e.g., negating a conditional

statement from if (x>0) to if (x<=0)) to generate mutants; each mutant m ∈ M is the

same as the original P except the mutated program statement. Then, all the mutants in M

are executed against the test suite T of P to evaluate its effectiveness – for each mutant m,

when the execution of t ∈ T on m has different result from the execution of t on P, m is

killed by t; otherwise, m survives. In this way, mutation testing results can be represented as

a mutation matrix [188]:

Definition 2.1.1 (Mutation Matrix). A mutation matrix is a function MEM : M×T →

{?, ❍, ✓, ✗} that maps a mutant m ∈ M and a test t ∈ T to: (1) ? if t has not been

executed on m and thus the result is unknown, (2) ❍ if the execution of t cannot execute the

mutated statement in m (in this case m cannot be killed by test t and does not even need to

be executed against the test), (3) ✗ if t executes the mutated statement but does not kill m,

and (4) ✓ if t kills m.

To illustrate, Figure 2.1 shows an example program and its corresponding test suite. The

program is changed from an old revision into a new revision by modifying Class C. Following

Definition 2.1.1, the mutation matrix for the old revision of the program is presented in

Table 2.1. Given such mutation testing results, developers can get feedbacks about the

limitations of the existing test suites from the surviving mutants. Based on the mutation
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1
2 public class A {
3 public int m1(int a){
4 return a + 1;
5 }
6 }
7 public class B extends A{
8 public int m1(int a){
9 if (a>0){

10 return a + 2;
11 }
12 else{
13 return C.m3(a);
14 }
15 }
16 public int m2(int a){
17 return a − 1;
18 }
19 }
20 public class C{
21 public static int m3(int a){
22 - return a+2;
23 + return a+3;
24 }
25 }

1
2 public class T1 {
3 public void test1() {
4 A a = new A();
5 assertEquals(11,a.m1(10));
6 }
7 }
8 public class T2 {
9 public void test2() {

10 A a = new B();
11 assertTrue(a.m1(0)>=2);
12 }
13 }
14 public class T3 {
15 public void test3() {
16 A a = new B();
17 assertEquals(9,a.m2(10));
18 }
19 }
20 public class T4 {
21 public void test4() {
22 A a = new B();
23 assertEquals(12,a.m1(10));
24 }
25 }

Figure 2.1: Example code

Table 2.1: Old version mutation test result

Mutant Statement Mutated Statement T1 T2 T3 T4

m1 n3 return a-1; ✓ ❍ ❍ ❍

m2 n3 return 11; ✗ ❍ ❍ ❍

m3 n8 if(a<0) ❍ ✗ ❍ ✗

m4 n16 return a-2; ❍ ❍ ✓ ❍

m5 n21 return (--a)+2; ❍ ✓ ❍ ❍

matrix, the ratio of killed mutants (i.e., mutation score [35]) can be easily computed and has

been widely recognized as one of the most powerful methodologies for test suite evaluation.

Note that in practice, partial mutation matrices [188], which aborts executing remaining tests

against a mutant once the mutant is killed, have been widely used for computing mutation

scores for sake of efficiency, since they return the same mutation scores as the original full

mutation matrices. Besides its original application for evaluating test suite effectiveness, now

it has also been successfully applied in various other testing and debugging problems, e.g.,

it has been applied for simulating real faults for testing experiments [38, 61, 87], guiding
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automated test generation [67, 135, 189], boosting fault localization [102, 123, 134, 190], and

transforming code for automated program repair [58, 140, 149, 172].

2.2 Regression Test Selection

Regression test selection (RTS) [70, 77, 93, 131, 145, 151, 153, 186] is one of the most widely

used approaches to speeding up regression testing. The main purpose of RTS is to reduce

regression testing efforts by just re-running the tests affected by code changes, since the tests

not affected by code changes should not change their outcomes in the new revision. In the

literature, various dynamic and static RTS techniques have been proposed. Dynamic RTS

techniques [70, 77, 131, 145, 151, 186] collect the test dependency information dynamically

when executing tests on the old revision; then any tests whose dependencies overlap with

code changes get selected. Although widely studied and used, dynamic RTS may not be

suitable when dynamic test dependencies are not available, challenging to collect (e.g., code

instrumentation for collecting dynamic test dependencies may cause timeouts or interrupt

normal test run for real-time systems), or even unsafe (e.g., dynamic test dependencies for

code with non-determinism may not cover all the possible traces, thus making RTS unsafe).

Therefore, researchers have also proposed static RTS techniques [93, 98, 146, 153] to use

static analysis to over-approximate the test dependencies. For both static and dynamic RTS,

test dependencies and code changes can be computed at different granularities (e.g., file and

method levels). Since prior work has demonstrated that file-level RTS performs the best for

both static and dynamic RTS [70, 98], we introduce the basics of state-of-the-art file-level

RTS techniques in the rest of this section.

2.2.1 Static RTS

STARTS [98] is state-of-the-art static file-level RTS technique based on class firewall analysis.

STARTS computes the set of classes that might be affected by the changes and builds a
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“firewall” around those classes; then, any test classes within the class firewall can potentially

be affected by code changes and are selected as affected tests. The notion of firewall analysis

was first proposed by Leung et al. [99] to compute the code modules that might be affected

by code changes. Then, Kung et al. [93] further proposed the notion of class firewall analysis

by considering the characteristics of object-oriented languages, such as inheritance. STARTS

performs class firewall analysis based on the Intertype Relation Graph (IRG) proposed by

Orso et al. [131] to consider the specific features of the Java programming language. Formally,

IRG can be defined as follows:

Definition 2.2.1 (Intertype Relation Graph). The intertype relation graph of a given program

is a triple ⟨N , Ei, Eu⟩ where:

• N is the set of nodes representing all classes or interfaces;

• Ei ⊆ N × N is the set of inheritance edges; there exists an edge ⟨n1, n2⟩ ∈ Ei if type n1

inherits from n2, or implements the n2 interface;

• Eu ⊆ N ×N is the set of use edges; there exists an edge ⟨n1, n2⟩ ∈ Eu if type n1 uses any

element of n2 (e.g., via field accesses and method invocations).

Based on IRG, the class firewall can be computed as:

Definition 2.2.2 (Class Firewall). The class firewall for a set of changed types τ ⊆ N

is computed over the IRG ⟨N , Ei, Eu⟩ using as the transitive closure: firewall(τ) = τ ◦ E∗,

where ◦ is the relational product, E denotes the inverse of all use and inheritance edges, i.e.,

(Ei ∪ Eu)−1, and ∗ denotes the reflexive and transitive closure.

To illustrate, class C is changed during software evolution for the example program in Figure 2.1.

Here, we apply STARTS to select the affected tests to test the revision. Figure 2.2(a) shows

the class firewall analysis results using STARTS. In the IRG, the use and inheritance edges

are marked with labels “u” and “i”, respectively. The dashed area is the class firewall analysis

results, i.e., all the classes within the dashed area can potentially reach the changed class
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(a) STARTS (b) Ekstazi

Figure 2.2: Static and dynamic RTS example

(marked in gray), and thus be affected by the changed class. In this way, Test T2, T3 and T4

are all within the class firewall, and are selected.

2.2.2 Dynamic RTS

Ekstazi [70] is state-of-the-art dynamic RTS technique based on file-level test dependencies.

When executing the tests on the old program revision, Ekstazi performs on-the-fly bytecode

instrumentation to record the class files used by each test. Then, given the new program

revision, Ekstazi computes the changed class files via Checksum differencing, and selects

any tests whose file-level dependencies involve the changed classes. Although a number of

dynamic RTS techniques based on finer-granularity analysis have been proposed, they may

incur large overhead due to the finer-grained analysis. The Ekstazi work [7] shows that

compared with the method-level dynamic FaultTracer technique [186], Ekstazi can greatly

save the end-to-end testing time, i.e., including both test execution time and RTS overhead.

The Ekstazi tool now has been integrated with various build systems (including Ant, Maven,

and Gradle), and has been adopted by practitioners from the Apache Software Foundation.

To illustrate, Figure 2.2(b) presents the RTS process using Ekstazi. Shown in the figure, for

each test, Ekstazi dynamically traces the set of class files used by it in the old revision. Then,

Ekstazi simply selects the tests that execute changed classes as the affected tests. In this
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example, only T2 executes the changed class (marked in gray) in the old revision, and thus is

selected for rerun. Note that Ekstazi may select less tests than STARTS since STARTS use

static dependency information to over-approximate the potential test dependencies.

2.3 Test Prioritization

Test-case prioritization is a well studied research area. As for generic prioritization strategies,

the total and additional strategies are the most widely-used prioritization strategies [152], and

reported empirical results show that the additional strategy is more effective than the total

strategy in most cases. There also have been a number of research efforts seeking for other

optimal prioritization strategies. For example, Li et al. [103] proposed a 2-optimal strategy

based on two different strategies: hill-climbing, and genetic programming. respectively. Jiang

et al. [83] proposed an adaptive random strategy for test-case prioritization. Bryce and

Memon [47] proposed to prioritize test cases (i.e., event sequences) for event-based GUI

software. As each test case is an event sequence in GUI testing, their approach tries to select

event sequences to cover different event interactions as early as possible. Zhang et al. [184]

proposed a generic strategy that has flavor of both total and additional strategies.

Besides proposing generic prioritization strategies, researchers have also investigated test

prioritization using different levels of code coverage. There have been research work based

on statement and branch coverage [152], function coverage [64], block coverage [62], mod-

ified condition/decision coverage [62], etc. There have also been research [91] on test-case

prioritization using coverage of system models. Mei et al. [119] investigated criteria based

on dataflow coverage for testing service-oriented software. More recently, Saha et al. [155]

utilized the textual similarity between tests and code changes based on IR to perform test

prioritization. In this dissertation, we are prioritizing client software projects instead of test

cases, and thus we face two very different challenges. First, since it takes huge amount of time
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to execute tests of all client software projects, our approach must be static (i.e., not using

any runtime information). Second, compared with test cases which are designed to cover

different parts of a software project, client software projects contain much more redundancy.

Therefore, to overcome these challenges, we developed an IR-based approach and further

optimized it considering the diversity of term coverage (based on MMR) and test relevance

(via extending static RTS).

2.4 Automated Test Generation

Another area that is related to our work is test generation based on existing client code.

Suresh et al. [168] proposed an approach to automatically generate test cases by mining

source code from client software projects, and later extended the technique with mining

of dynamic execution traces [167, 169]. Bozkurt and Harman [46] proposed an approach

to generate test cases from web service transactions. Pradel and Gross [139] combined

specification mining from client code and test generation to detect API usage bugs. More

recently, Ma et. al. [113] proposed to use library test cases to guide test-case generation for

client software. Reiss [144] proposed to use semantic code search to find potential client code

for test generation. Research efforts in this area focuses on generating test cases for one

software project based on source code or test code of the current or other software projects.

Therefore, they actually solve a different problem, and suffer from the general problems

of test generation, such as the test oracle and unrealistic test (i.e., exploration of method

invocation sequences that never happens in reality) problems, when directly used for library

code testing. In contrast, our prioritization technique opens a new dimension via utilizing

the large number of existing client project tests in the wild for detecting library BBIs, and

can be complementary to these existing test generation techniques.
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2.5 Automatic Program Repair

Automatic program repair (APR) aims to suggest likely patches for buggy programs to

reduce the manual effort during debugging. The widely studied generate-and-validate (G&V)

techniques attempt to fix bugs by first generating a pool of patches and then validating the

patches via certain rules and/or checks [69, 85, 95, 107, 108, 115, 126, 175]. Generated patches

that can pass all the tests/checks are called plausible patches. However, not all plausible

patches are the patches that the developers want. Therefore, these plausible patches are

further manually checked by the developers to find the final correct patches (i.e., the patches

semantically equivalent to developer patches). G&V APR techniques [69, 84, 85, 95, 109,

115, 126, 175] have been extensively studied in recent years, since it can substantially reduce

developer efforts in bug fixing. According to a recent work [105], researchers have designed

various APR techniques based on heuristics [85, 95, 106], constraint solving [63, 117, 126, 180],

and pre-defined templates [69, 88, 104]. Besides automated bug fixing, researchers have also

proposed Unified Debugging [43, 110] to leverage various off-the-shelf APR techniques to

help with manual bug fixing. In this way, the application scope of APR techniques has been

extended to all possible bugs, not only the bugs that can be automatically fixed.

Meanwhile, despite the spectacular progress in designing and applying new APR techniques,

very few techniques have attempted to reduce the time cost for APR, especially the patch

validation time which dominates repair process. For example, JAID [51] uses patch schema to

fabricate meta-programs that bundle several patches in a single source file, while SketchFix

[81] uses sketches [100] to achieve a similar effect. Although they can potentially help with

patch generation and compilation, they still require validating each patch in a separte JVM,

and have been shown to be rather costly during patch validation [69]. More recently, PraPR

[69] uses direct bytecode-level mutation and HotSwap to generate and validate patches

on-the-fly, thereby bypassing expensive operations such as AST manipulation/compilation
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on the patch generation side as well as process creation and JVM warm-up on the patch

validation side. This makes PraPR substantially faster than state-of-the-art APR (including

JAID and SketchFix). However, PraPR is limited to only the bugs that can be fixed via

bytecode manipulation, and can also return imprecise patch validation results due to potential

JVM pollution.

2.6 Java Agent and HotSwap

A Java Agent [55] is a compiled Java program (in the form of a JAR file) that runs alongside

of the JVM in order to intercept applications running on the JVM and modify their bytecode.

Java Agent utilizes the instrumentation API [55] provided by Java Development Kit (JDK)

to modify existing bytecode that is loaded in the JVM. In general, developers can both (1)

statically load a Java Agent using -javaagent parameter at JVM startup, and (2) dynamically

load a Java Agent into an existing running JVM using the Java Attach API. For example, to

load it statically, the manifest of the JAR file containing Java Agent must contain a field

Premain-Class to specify the name of the class defining premain method. Such a class is usu-

ally referred to as an Agent class. The Agent class is loaded before any class in the application

class is loaded and the premain method is called before the main method of the application

class is invoked. The premain method usually has the following signature: public static

void premain(String agentArgs, Instrumentation inst). The second parameter is an

object of type Instrumentation created by the JVM that allows the Java Agent to analyze

or modify the classes loaded by the JVM (or those that are already loaded) before executing

them. Specifically, the redefineClasses method of Instrumentation, given a class defini-

tion (which is essentially a class name paired with its “new” bytecode content), even enables

dynamically updating the definition of the specified class, i.e., directly replacing certain

bytecode file(s) with the new one(s) during JVM runtime. This is typically denoted as the
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JVM HotSwap mechanism. It is worth mentioning that almost all modern implementations

of JVM (especially, so-called HotSpot JVMs) have these features implemented in them.

By obtaining Instrumentation object, we have a powerful tool using which we can implement

a HotSwap Agent. As the name suggests, HotSwap Agent is a Java Agent and is intended to

be executed alongside the patch validation process to dynamically reload patched bytecode

file(s) for each patch. In order to test a generated patch during APR, we can pass the patched

bytecode file(s) of the patch to the agent, which swaps it with the original bytecode file(s) of

the corresponding class(es). Then, we can continue to run tests which result in executing the

patched class(es), i.e., validating the corresponding patch. Note that subsequent requests to

HotSwap Agent for later patch executions on the same JVM are always preceded by replacing

previously patched class(es) with its original version. In this way, we can validate all patches

(no matter generated by source-code/bytecode APR) on-the-fly sharing the same JVM for

much faster patch validation.
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CHAPTER 3

SPEEDING UP MUTATION TESTING VIA REGRESSION TEST

SELECTION: AN EXTENSIVE STUDY

Mutation Testing [59, 76] was originally proposed to evaluate the quality of software test

suites. During mutation testing, a number of mutants, each of which has small syntactic

changes compared to the original program to simulate potential faults, will be generated based

on a set of mutation operators, e.g., Removing Method Invocations (RMI) [10]. Then, each

mutant will be executed against the test suite to check whether the test suite has different

outcomes on the mutant and the original program. If the test suite can distinguish the two,

the mutant is denoted as killed ; otherwise, the mutant survived. Based on the correlation

between mutants and real faults, if a test suite can kill more mutants, it may also detect

more real faults.

Mutation testing is often considered as one of the most powerful methodologies in evaluating

test suite quality [37, 66, 157, 185]. To date, mutation testing has been used for test-suite

evaluation in a large number of software testing studies in the literature [82]; mutation testing

is also gaining more and more adoptions among practitioners, e.g., mutation testing has been

used by developers of The Ladders, Sky, Amazon, State Farm, Norways e-voting system, and

the Linux kernel [10, 36, 54, 74]. Furthermore, mutation testing has also been successfully

applied for various other testing and debugging problems, e.g., real fault simulation for

software-testing experimentation [38, 61, 87, 111], automated test generation [67, 135, 189],

fault localization [102, 123, 134, 190], and program repair [58, 140, 149, 172].

Despite the effectiveness of mutation testing, the application of mutation testing on real-world

systems can still be quite challenging. One of the major challenges is that mutation testing

can be extremely time consuming due to mutant execution – it requires to execute each

mutant against the test suites under analysis. Researchers have proposed various techniques
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to speed up mutation testing, e.g., selective mutation testing that executes a subset of mutants

to represent all the mutants [129, 161, 177, 183, 185], weakened mutation testing that executes

each mutant partially [80, 178], and predictive mutation testing that predicts mutation

testing results based on some easy-to-obtain features (without actual mutant execution) [182].

Although such techniques can speed up mutation testing to some extent, they may provide

rather imprecise mutation testing results.

Researchers have also proposed the regression mutation testing (ReMT) technique [188] to

speed up mutation testing of evolving software systems while providing precise mutation

testing results (i.e., producing mutation results close to the traditional un-optimized mutation

testing). The basic idea of ReMT is that the high cost of mutation testing can be amortized

during software evolution. Based on dynamic coverage collection and static control-flow graph

reachability analysis, ReMT incrementally updates the mutation testing results for a new

revision based on the mutation testing results of an old revision. ReMT has been shown to

be effective in reducing mutation testing cost, and can be combined with other optimization

techniques for even faster mutation testing. However, due to the fine-grained analysis and

complicated design, there is no practical tool support for ReMT.

Regression Test Selection (RTS) aims to speed up regression testing via only selecting and

rerunning the tests that are affected by code changes during software evolution [70, 77, 93, 131,

145, 151, 153, 186]. A RTS technique is safe if it selects all the tests that may be affected by

the code changes. A typical RTS technique computes test dependencies at certain granularity

(e.g., method or file level) and then selects all the tests whose dependencies overlap with

code changes. Various dynamic and static RTS techniques at different granularities have

been proposed: while dynamic RTS techniques [70, 186] trace test dependencies dynamically

via code instrumentation, static RTS techniques [98] use static analysis to over-approximate

test dependencies. To date, various mature RTS tools (e.g., Ekstazi [7], STARTS [11], and
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FaultTracer [187]) have been publicly available, and have been adopted by practitioners (e.g.,

Ekstazi has been applied to Apache Camel [4], Apache Commons Math [5], and Apache

CXF [6]). Our key insight is that we can simply rerun the mutation testing results for the

affected tests computed by such mature RTS tools for practical regression mutation testing.

The reason is that the unaffected tests do not cover code changes, and thus may have the

same mutation testing results as the prior revision. Therefore, in this paper, we perform

the first extensive study on speeding up mutation testing via RTS techniques using 1513

revisions of 20 real-world GitHub Java projects, totalling 83.26 Million LoC. Since different

RTS techniques may perform differently for mutation testing, we consider state-of-the-art

dynamic and static, as well as file-level and method-level RTS techniques.

This paper makes the following contributions:

• Insight We propose the first attempt to directly apply RTS techniques for practical

regression mutation testing.

• Study: We perform an extensive study of various practical RTS techniques (e.g.,

Ekstazi, STARTS, and FaultTracer) on speeding up mutation testing (using the PIT

tool) of 20 open-source GitHub Java programs with 1513 revisions, totalling 83.26

Million LoC. To our knowledge, this is the largest scale study on mutation testing.

• Findings: We find that surprisingly both file-level static and dynamic RTS techniques

can be used for precise and efficient regression mutation testing, while the dynamic

method-level RTS tends to be less precise, providing important guidelines for practical

mutation testing.
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Algorithm 1: RTS-based mutation testing
Input: Old program P1, new program P2, test suite T , old mutation matrixMEM1, partial matrix tag Partial
Output: New mutation matrixMEM2

1 begin
// Initialize the new mutant execution matrix

2 MEM2 ← ∅
// Perform RTS to selected affected tests

3 Ts ← RTS(P1,P2, T )
// Generate mutants for P2

4 M2 ←MutGen(P2)
5 for m ∈M2 do
6 for t ∈ T do
7 if t ∈ Ts then

/* Execute the test against the mutant, and record results */

8 MEM2 ← Execute(t,m)

9 else
/* Copy mutant execution results from the old version */

10 MEM2 ←MEM1(t,m)

/* Only enabled for collecting partial mutant execution matrix: abort test execution

against a mutant once the mutant is killed */

11 if Partial ∧M× T = ✓ then
12 Break;

13 returnMEM2 // Return the final mutation matrix

3.1 Approach

3.1.1 Overview

Algorithm 1 presents the overview of RTS-based regression mutation testing. The inputs

include two program revisions during software evolution (i.e., P1 and P2), the regression test

suite (i.e., T ), the mutation matrix collected on the old revision (denoted as MEM1), and

the configuration argument indicating whether to collect partial mutation matrices (denoted

as Partial). The output is the mutation matrix for the new program revision. Shown in

the algorithm, Line 2 first initializes MEM2 as empty. Line 3 then performs RTS to select

the affected tests. Note that the algorithm is general for Ekstazi, STARTS, or any other

RTS techniques. Line 4 generates all the mutants for P2. Then, for each mutant of P2, the

algorithm tries to collect its mutation testing results. For each test, the algorithm checks

whether it is selected as affected tests. For each selected affected test, the algorithm runs the

test on the mutant and store the mutant execution results in MEM2 (Lines 6-7). Note that

most modern mutation testing tools (e.g., PIT [10], Major [9], and Javalanche [8]) will be
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Table 3.1: New version mutation test result

Mutant Statement Mutant Statement T1 T2 T3 T4

m1 n3 return a-1; ✓ ❍ ❍ ❍

m2 n3 return 11; ✗ ❍ ❍ ❍

m3 n8 if(a<0) ❍ ✗ ❍ ✓

m4 n16 return a-2; ❍ ❍ ✓ ❍

m5 n22 return (--a)+3; ❍ ✗ ❍ ❍

able to skip executing a test on a mutant when the test does not cover the mutated statement

of the mutant, and thus here we apply the same optimization. For each unselected test, the

algorithm simply copies its mutant execution results from prior revision into MEM2 (Line 9).

Note that Lines 10-12 are only enabled when collecting partial regression mutation matrix,

i.e., aborting test execution for each mutant as soon as the mutant is killed. Finally, the

algorithm returns the collected MEM2 as the resulting mutation matrix.

Note that although the algorithm is surprisingly simple, it actually supports both full and

partial mutation testing. Furthermore, it handles various corner cases in practice: (1) when

a test is newly added, a practical RTS tool (such as STARTS and Ekstazi) will always select

it, thus its mutation testing results can be collected by the algorithm; (2) when a test is

deleted during software evolution, it will not be within the current test suite T , thus its

mutation testing results will not be collected; (3) when a mutant is newly added due to code

modifications, tests covering the code modifications will be selected, and thus its mutation

testing results will be collected; (4) when a mutant is deleted due to code modifications, all

the tests covering it will be selected, making it no longer available in the resulting mutation

matrix. However, it does not mean that the algorithm always provides the same results

as simply rerunning all tests on all mutants. We will provide detailed analysis in our next

subsection.

3.1.2 Analysis and Illustration

We now illustrate the RTS-based regression mutation testing using the example program in

Figure 2.1. Note that we only illustrate the full mutation matrix collection, since the partial
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Table 3.2: Regression mutation testing via STARTS

Mutant Statement Mutant Statement T1 T2 T3 T4

m1 n3 return a-1; ✓ ❍ ❍ ❍

m2 n3 return 11; ✗ ❍ ❍ ❍

m3 n8 if(a<0) ❍ ✗ ❍ ✓

m4 n16 return a-2; ❍ ❍ ✓ ❍

m5 n22 return (--a)+3; ❍ ✗ ❍ ❍

Table 3.3: Regression mutation testing via Ekstazi

Mutant Statement Mutant Statement T1 T2 T3 T4

m1 n3 return a-1; ✓ ❍ ❍ ❍

m2 n3 return 11; ✗ ❍ ❍ ❍

m3 n8 if(a<0) ❍ ✗ ❍ ✗

m4 n16 return a-2; ❍ ❍ ✓ ❍

m5 n22 return (--a)+3; ❍ ✗ ❍ ❍

matrices can be collect in similar ways. The two program revisions and the test suite are

already shown in Figure 2.1, the full mutation matrix for the old version has already been

shown in Table 2.1. The expected full mutation matrix for the new revision (via running

all mutants against all tests for the new revision) is shown in Table 3.1. Note that due to

software revision, mutation testing results for mutant m3 have changed, while both mutant

m5 itself and its mutation results have changed. We now show how STARTS and Ekstazi

can be applied for regression mutation testing.

Shown in Section 2.2.1, the STARTS technique selects tests T2, T3, and T4. Therefore, for

each mutant of the new revision, its execution results on T1 can be directly copied from the

old revision, while its execution results on all the other tests have to be recollected. In this

way, we have the resulting mutation matrix shown in Table 3.2. Shown in the table, with

STARTS, only 4 out of the 6 mutant-test cells need to be collected via mutation testing,

and the mutation results for both mutants m2 and m5 (which are the only two mutants

with different results in the two revisions) are correctly updated. On the contrary, shown in

Section 2.2.2, the Ekstazi technique only selects test T2 for the new revision. Therefore, for

each mutant of the new revision, only T2 needs to be executed for mutation testing. The

resulting matrix is shown in Table 3.3. Shown in the table, with Ekstazi, only 2 out of the
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6 mutant-test cells need to be recollected, even faster than regression mutation testing via

STARTS. However, although Ekstazi is able to correctly update the mutation results for

mutant m5, it fails to correctly update the mutation results for mutant m3, which should be

killed by T4.

We further analyze the different performance by Ekstazi and STARTS in terms of both

time savings and mutation testing precision. Shown in prior work [98], STARTS uses static

analysis to over-approximate test dependencies, and selects any test that may potentially

reach code changes. In terms of time savings, STARTS may perform worse than Ekstazi due

to the more conservative selection (for both regression testing and mutation testing). This is

also confirmed in our example, on which STARTS runs 4 mutant-test cells, while Ekstazi

runs only 2. However, in terms of mutation testing precision, the conservative selection by

STARTS may actually be beneficial. For two program revisions P1 and P2, if test t’s dynamic

dependencies (e.g., computed by Ekstazi) on P1 do not touch code changes between P1 and

P2, t’s execution on P2 should be the same as P1 (unless the code is non-deterministic),

thus Ekstazi is safe for regression testing. However, t’s execution on a mutant of P1 may

be diverged (e.g., the mutant may negate a branch statement) and execute code changes.

Therefore, the mutation testing results of t may change for P2, making Ekstazi unsafe for

mutation testing. On the contrary, when test t’s static dependencies (e.g., computed by

STARTS) do not touch code changes, the execution of t on a mutant also may not touch code

changes. The reason is that traditional mutation operators (e.g., all the mutation operators

used by modern mutation tools such as PIT [10], Major [9], and Javalanche [8]) change

program statements within method bodies, and usually cannot diverge program execution to

the statically unreachable code. In our study, we further investigate the mutation testing

precision issues in real-world systems.
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Table 3.4: Projects used in study

ID Project Name SHA Tests Revs kLOC

p1 HikariCP 980d8d 1922.31 92 14.89
p2 commons-io fedbfc 99.00 74 55.43
p3 OpenTripPlanner 3cb177 138.55 86 145.81
p4 commons-functor 5d6b05 156.51 40 38.98
p5 commons-lang 013621 142.06 100 136.86
p6 commons-net 2b0f33 42.78 100 58.46
p7 commons-text aa2a77 42.20 96 26.13
p8 commons-validator 4f60e5 69.04 97 31.12
p9 compile-testing e4269a 9.57 73 6.07
p10 invokebinder 004d2f 3.07 100 4.31
p11 logstash-logback-encoder 4336fd 40.76 95 15.28
p12 commons-codec 1a4d9c 51.65 79 34.15
p13 commons-dbutils 633749 26.28 66 12.44
p14 commons-scxml eac3f6 353.22 37 27.47
p15 commons-csv ed6adc 14.18 89 10.15
p16 commons-jexl f4babe 43.00 39 36.02
p17 la4j db2041 39.00 39 59.64
p18 commons-cli b486fb 24.48 96 11.28
p19 commons-math 79c471 436.48 72 316.22
p20 asterisk-java 684be6 39.00 40 81.98

3.2 Experiment Setup

In this section, we first described our dataset (Section 3.2.1), followed by our experiment

settings (Section 3.2.2), and evaluation metrics (Section 3.2.3).

3.2.1 Dataset

We used 20 real-world Java projects from GitHub as our subject systems. The selected

subject systems have been widely used on regression testing or mutation testing research [54,

72, 159, 182]. Following prior work on regression test selection [98], for each project, we start

from the HEAD revision, and obtain the 100 most recent revisions. Then, we keep all the

revisions on which we can successfully run (1) mvn test, (2) the used PIT mutation testing

tool, and (3) the studied RTS tools (e.g., Ekstazi, STARTS, and FaultTracer). Table 3.4

shows the detailed information about the used projects. In the table, Columns 1 and 2
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present the project IDs and names. Column “SHA” presents the SHA for the HEAD revision of

each project, while Column “REVS” presents the number of revisions used for each project.

Column “TESTS” presents the average number of tests for all the used revisions of each

project. Finally, Column “kLOC” presents the average size information for all the revisions

of each project. Shown in the table, the sizes of our subject systems range from 4.31K

lines of the code (LoC) per revision (invokebinder, with 100 revisions) to 316.22K LoC per

revision (commonsmath, with 72 revisions). In total, all the 1513 studied revisions have in

total 83.26 Million LoC, and represent the largest experimental study for mutation testing to

our knowledge.

3.2.2 Experiment Setting

In this study, we use the PIT [10] mutation testing tool (with all its 16 mutation operators

in Version 1.1.5), since it has been demonstrated to be one of the most robust and efficient

mutation testing tools for Java, and has been widely used in prior mutation-testing-related

studies [54, 72, 159, 182]. The original PIT implementation aborts test execution for a

mutant once it is killed and thus only supports partial mutation testing; to also support

full mutation testing, following August et al. [159], we force PIT to execute each mutant

against the remaining tests even after the mutant is killed. To study the effectiveness and

efficiency of static/dynamic RTS tools on regression mutation testing, we apply STARTS

and Ekstazi, since they have been shown to represent state-of-the-art RTS tools [70, 98].

Since both STARTS and Ekstazi are file-level RTS techniques, to further explore the impact

of RTS with different test dependency granularities on regression mutation testing, we also

study state-of-the-art dynamic method-level RTS technique, FaultTracer [186]. Note that we

do not study the static method-level RTS since prior work has demonstrated that it is both

imprecise and unsafe compared with the file-level RTS STARTS [98].
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We now briefly describe our experimental setup. Our goal is to study the effectiveness and

efficiency of various state-of-the-art RTS techniques on mutation testing. For each studied RTS

technique on each subject system, we first obtain the SHA list of studied revisions of the subject

system from GitHub. Then for every revision of the subject, we go through the following

steps. (1) We make sure mvn test can pass all the tests. (2) We then perform full mutation

testing using PIT (e.g., with command mvn org.pitest-maven:mutationCoverage) to get

the actual mutation testing results for the revision. (3) We run the studied RTS techniques

to select the affected tests for the revision (e.g., with command mvn ekstazi:ekstazi for

Ekstazi, and command mvn starts:starts for STARTS). (4) We collect the regression

mutation testing matrices via only rerunning the affected tests for each mutant while copying

the results for other tests from the prior revision (Algorithm 1). (5) Finally, we compare

our RTS-based mutation testing matrix with the actual mutation testing matrix to get

effectiveness and efficiency metrics. For time reduction, we record both the RTS-based

mutation testing time and the RTS overhead.

3.2.3 Evaluation Metrics

We now talk about the metrics to evaluate the effectiveness and efficiency of the RTS-based

regression mutation testing.

Effectiveness

• Error Cells In the mutation matrix, each test has an execution result on each mutant.

Thus, a test and a mutant can compose a mutant-test cell. The error cell metric

measures the number of cells with different execution results between the actual and

the RTS-based mutation matrices. To illustrate, there is one error cell (m3-T4) between

Ekstazi mutation matrix (Table 3.3) and the actual new mutation matrix (Table 3.1).

On the contrary, the regression mutation matrix collected by STARTS (Table 3.2) is

exactly the same as the actual mutation matrix, and does not have any error cell.
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• Error Mutation Score The users often use the mutation score information (e.g.,

the ratio of mutants killed by tests) to evaluate test effectiveness. Therefore, we also

compute error mutation score as the difference in mutation scores of the actual mutation

matrix and the mutation matrix collected via RTS, i.e., |MSactual − MSRTS|. For

our example, 3 out of the 5 mutants are killed in the actual mutation matrix of the

new revision, i.e., mutation score is 60%. When using both Ekstazi and STARTS, the

regression mutation score is also 60%, indicating 0% error mutation score.

Efficiency

• Test-level Reduction shows the ratio of tests reduced by RTS. For example, Ekstazi

and STARTS select 1 and 3 out of the 4 tests, respectively; thus, the test-level reduction

for Ekstazi/STARTS is 75%/25%.

• Mutant-level Reduction indicates the ratio of mutants requiring at least one test

execution. For example, for STARTS, 3 of the 5 mutants require at least one test

execution, indicating a mutant-level reduction of 40%; for Ekstazi, 2 of the 5 mutants

require at least one test execution, i.e., 60% reduction.

• Cell-level Reduction measures the ratio of mutant-test cells requiring execution. Note

that we only consider the mutant-test cells where the tests executes the corresponding

mutated statements, since the other cells cannot be killed and do not need execution.

For example, for STARTS, 4 out of 6 mutant-test cells require execution, indicating a

cell-level reduction of 33.3%; for Ekstazi, 2 out of 6 mutant-test cells require execution,

indicating a cell-level reduction of 66.7%.

• Time Reduction All the above efficiency metrics do not consider the actual mutation

testing time savings. Therefore, this metric measures the actual mutation testing time

reduction.
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Table 3.5: Effectiveness of Ekstazi and STARTS

Project Name Mutation Score Ekstazi STARTS

Error Cells Error Mutation Score Error Cells Error Mutation Score
min max avg min max avg min max avg min max avg

commons-cli 79.05% 0 3621 128.08 0.0% 10.48% 0.4005% 0 2128 52.94 0.0% 6.26% 0.1941%
commons-validator 41.8% 0 3522 209.5 0.0% 11.32% 0.8371% 0 3286 198.92 0.0% 10.14% 0.7821%
commons-dbutils 50.36% 0 1026 107.22 0.0% 7.35% 0.9823% 0 1026 93.11 0.0% 7.35% 0.8215%
asterisk-java 12.95% 0 1109 324.03 0.0% 10.02% 2.2991% 0 993 299.85 0.0% 9.33% 2.2177%

commons-cli 84.43% 0 2355 85.42 0.0000% 0.00% 0.0000% 0 2355 83.37 0.0000% 0.00% 0.0000%
commons-dbutils 46.23% 0 3398 418.51 0.0000% 0.50% 0.0276% 0 3398 391.57 0.0000% 0.50% 0.0276%
commons-validator 67.73% 0 6191 97.35 0.0000% 0.00% 0.0000% 0 6191 97.39 0.0000% 0.00% 0.0000%
asterisk-java 17.88% 0 2 0.28 0.0000% 0.00% 0.0000% 0 2 0.28 0.0000% 0.00% 0.0000%

Table 3.6: Efficiency of Ekstazi and STARTS

Project Name Results Ekstazi STARTS

Tests Mutants Cells Test Level Mutant Level Cell Level Test Level Mutant Level Cell Level

commons-cli 24.48 1926 5886 92.03% 91.14% 91.46% 90.09% 89.83% 89.35%
commons-validator 69.04 5573 7419 96.92% 97.05% 97.23% 96.46% 96.0% 96.18%
commons-dbutils 26.33 1146 1689 90.54% 90.27% 89.97% 86.52% 88.55% 86.4%
asterisk-java 39.0 12487 12721 96.78% 98.9% 98.88% 89.41% 98.78% 98.66%

commons-cli 24.48 2767 1480348 92.03% 90.36% 97.78% 90.09% 89.03% 97.25%
commons-dbutils 26.28 2037 1309638 90.68% 91.36% 99.02% 86.72% 89.41% 98.63%
commons-validator 69.04 6680 2858829 96.92% 94.97% 98.79% 96.46% 94.42% 98.79%
asterisk-java 57.00 18774 716054 96.78% 97.91% 96.18% 89.41% 96.54% 93.93%

3.3 Result Analysis

This section, we are working on the following four research questions.

3.3.1 RQ1: how do state-of-the-art static and dynamic RTS techniques perform

in terms of regression mutation testing effectiveness?

Table 3.7 shows the effectiveness of Ekstazi and STARTS in regression mutation testing. In

the table, Columns 1 and 2 present the project name and the average mutation score for all

the revisions of each project. The mutation scores range from 6.77% to 84.43%, indicating

that we cover a variety of test suites with different effectiveness for evaluating RTS-based

mutation testing. Columns 3-5 and Columns 6-8 present the error cell and error mutation

score metrics when using Ekstazi. Similarly, Columns 9-11 and Columns 12-14 present the

error cell and error mutation score metric values when using STARTS. Based on the table,

we have the following observations. First, surprisingly, the average error mutation score

values across all projects are only 0.0423% and 0.0364% when using Ekstazi and STARTS,
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Table 3.7: Effectiveness of Ekstazi and STARTS

Project Name Mutation Score Ekstazi STARTS

Error Cells Error Mutation Score Error Cells Error Mutation Score
min max avg min max avg min max avg min max avg

HikariCP 23.24% 0 861 20.3 0.0000% 1.61% 0.0418% 0 197 2.16 0.0000% 0.51% 0.0056%
commons-io 32.03% 0 3479 289.32 0.0000% 0.07% 0.0052% 0 3921 449.67 0.0000% 0.09% 0.0131%
OpenTripPlanner 6.89% 0 107 8.26 0.0000% 0.14% 0.0109% 0 26 3.01 0.0000% 0.05% 0.0037%
commons-functor 6.77% 0 1 0.36 0.0000% 0.01% 0.0024% 0 1 0.36 0.0000% 0.01% 0.0024%
commons-lang 78.75% 0 6036 320.88 0.0000% 0.07% 0.0238% 0 6036 260.51 0.0000% 0.07% 0.0206%
commons-net 23.16% 0 3319 116.74 0.0000% 0.03% 0.0048% 0 3319 116.74 0.0000% 0.03% 0.0048%
commons-text 74.08% 0 322 19.47 0.0000% 0.08% 0.0106% 0 322 19.47 0.0000% 0.08% 0.0106%
commons-validator 67.73% 0 6191 97.35 0.0000% 0.00% 0.0000% 0 6191 97.39 0.0000% 0.00% 0.0000%
compile-testing 56.22% 0 704 19.19 0.0000% 0.14% 0.0038% 0 704 19.19 0.0000% 0.14% 0.0038%
invokebinder 42.65% 0 677 11.12 0.0000% 0.05% 0.0005% 0 677 16.64 0.0000% 0.05% 0.0005%
logstash-logback-encoder 54.24% 0 109 12.55 0.0000% 0.62% 0.1160% 0 192 18.21 0.0000% 0.38% 0.1108%
commons-codec 77.90% 0 262 19.71 0.0000% 0.08% 0.0170% 0 262 19.71 0.0000% 0.08% 0.0170%
commons-dbutils 46.23% 0 3398 418.51 0.0000% 0.50% 0.0276% 0 3398 391.57 0.0000% 0.50% 0.0276%
commons-scxml 44.50% 0 10275 314.22 0.0000% 0.47% 0.0558% 0 10275 301.08 0.0000% 0.47% 0.0325%
commons-csv 71.87% 0 2507 94.41 0.0000% 0.75% 0.1456% 0 2507 94.2 0.0000% 0.75% 0.1405%
commons-jexl 46.10% 0 8364 855.47 0.0000% 0.63% 0.0960% 0 8364 693.63 0.0000% 0.63% 0.0759%
la4j 57.62% 0 367 40.79 0.0000% 0.02% 0.0030% 0 17 1.54 0.0000% 0.01% 0.0007%
commons-cli 84.43% 0 2355 85.42 0.0000% 0.00% 0.0000% 0 2355 83.37 0.0000% 0.00% 0.0000%
commons-math 71.47% 265 60361 4894.31 0.0523% 0.57% 0.2800% 3 60361 4535.89 0.0026% 0.57% 0.2572%
asterisk-java 17.88% 0 2 0.28 0.0000% 0.00% 0.0000% 0 2 0.28 0.0000% 0.00% 0.0000%

Average 49.19% 13 5485 381.93 0.0026% 0.29% 0.0423% 0 5456 356.23 0.0001% 0.22% 0.0364%

Table 3.8: Effectiveness of mutation testing without RTS

Project Name Mutation Score Error Cells Error Mutation Score

min max avg min max avg

HikariCP 23.24% 5 5794 731.98 0.0000% 11.42% 0.6342%
commons-io 32.03% 9 8102 2897.43 0.0030% 0.74% 0.2899%
OpenTripPlanner 6.89% 0 107 12.61 0.0000% 0.13% 0.0143%
commons-functor 6.77% 0 43 1.46 0.0000% 0.26% 0.0214%
commons-lang 78.75% 14 13160 1137.78 0.0010% 0.41% 0.0256%
commons-net 23.16% 0 6466 248.81 0.0000% 0.40% 0.0132%
commons-text 74.08% 0 2395 265.85 0.0000% 1.58% 0.1226%
commons-validator 67.73% 0 12381 439.29 0.0000% 0.53% 0.0271%
compile-testing 56.22% 0 5971 413.96 0.0000% 16.77% 0.4462%
invokebinder 42.65% 0 1352 126.87 0.0000% 16.77% 0.5993%
logstash-logback-encoder 54.24% 3 743 122.62 0.0000% 2.33% 0.2397%
commons-codec 77.90% 0 1497 107.67 0.0000% 1.07% 0.0640%
commons-dbutils 46.23% 0 5184 890.42 0.0000% 3.06% 0.1805%
commons-scxml 44.50% 0 38543 22354.63 0.0000% 1.79% 0.4094%
commons-csv 71.87% 0 5002 306.98 0.0000% 1.88% 0.1766%
commons-jexl 46.10% 1755 143337 74685.79 0.0209% 1.96% 0.6944%
la4j 57.62% 8 43602 5846.15 0.0000% 2.02% 0.2297%
commons-cli 84.43% 0 4710 365.23 0.0000% 0.52% 0.0192%
commons-math 71.47% 750 102228 7398.85 0.0016% 2.86% 0.1520%
asterisk-java 17.88% 0 170 16.77 0.0000% 0.06% 0.0083%

Average 49.19% 127 20039 5919 0.0013% 3.33% 0.2183%

respectively. Similarly, the average error cell values are only 381.93 and 356.23 when using

Ekstazi and STARTS, respectively. The observation demonstrates the effectiveness of using

both Ekstazi and STARTS for regression mutation testing. The reason is that even using

dynamic file-level RTS (such as Ekstazi), mutations that diverge test execution may not

incur the test to touch a new class/file, making file-level RTS relatively safe for mutation
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testing. Second, we observe that STARTS has less error mutation score or error cell values

than Ekstazi. As also shown in Section 3.1.2, the reason is that STARTS relies on static

test dependencies computed via over-approximation which may not be diverged to touch

code changes after mutation if the original static dependencies cannot reach code changes.

Finally, even STARTS can also incur imprecision in mutation score (although it is negligible),

while STARTS may not have any imprecision issue according to our analysis in Section 3.1.2.

We look into the code, and find that the imprecision was due to the unsafe STARTS test

selection incurred by the use of Java reflections (also observed in prior RTS study [98]). In

summary, both dynamic and static file-level RTS can be used for precise regression mutation

testing, and STARTS tends to be slightly more precise.

To further investigate the effectiveness of RTS-based mutation testing, we also study the

effectiveness of directly copying entire mutation matrices from the previous version. Table 3.8

shows the results for this baseline technique. Columns 1-2 present the project names and

average mutation scores of all versions for each subject. Columns 3-5 show error cells of

directly copying mutation matrices from the previous version. Here, the average number

of error cells is 5919, much larger compared with Ekstazi (381.93) and STARTS (356.23).

Columns 6-8 show the error mutation scores, and there are three projects with maximum

error mutation scores of even over than 10%. When further investigating the detailed reason,

we found that there are massive code changes between such versions. For example, for project

compile-testing, the maximum error mutation score is 16.77% due to the massive changes

between version 5015d6 (with mutation score of 38.15%) and version bf6de0 (with mutation

score of 54.92%). In contrast, when we apply regression mutation testing here, the error

mutation score is 0% using both Ekstazi and STARTS, since all tests are affected here.
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Table 3.9: Efficiency of Ekstazi and STARTS

Project Name Results Ekstazi STARTS

Tests Mutants Cells Test Level Mutant Level Cell Level Test Level Mutant Level Cell Level

HikariCP 1922.31 5523 672782 80.23% 78.84% 74.06% 75.41% 77.86% 71.93%
commons-io 99.00 10435 791820 39.04% 80.48% 79.24% 38.56% 79.37% 78.02%
OpenTripPlanner 138.55 12679 374177 81.92% 96.93% 88.24% 53.01% 95.14% 81.29%
commons-functor 156.51 7775 105144 93.23% 99.81% 98.76% 90.62% 99.63% 97.67%
commons-lang 142.06 37353 7274165 93.08% 91.27% 97.10% 80.97% 83.79% 93.92%
commons-net 42.78 14826 1017258 95.92% 98.96% 98.65% 95.83% 98.92% 98.56%
commons-text 42.20 7518 1281577 94.94% 92.89% 98.03% 95.12% 93.21% 98.11%
commons-validator 69.04 6680 2858829 96.92% 94.97% 98.79% 96.46% 94.42% 98.79%
compile-testing 9.57 3137 677448 75.60% 80.29% 93.24% 75.42% 80.04% 93.07%
invokebinder 3.07 1546 98889 63.22% 85.04% 91.77% 64.65% 87.22% 92.96%
logstash-logback-encoder 40.76 4068 698856 93.14% 92.76% 97.14% 94.44% 92.37% 97.04%
commons-codec 51.65 10533 2762729 97.46% 98.49% 99.58% 96.46% 97.69% 99.40%
commons-dbutils 26.28 2037 1309638 90.68% 91.36% 99.02% 86.72% 89.41% 98.63%
commons-scxml 353.22 9276 8911911 27.90% 61.70% 81.41% 17.41% 59.72% 79.94%
commons-csv 14.18 1336 352518 88.23% 84.55% 95.38% 85.35% 84.18% 95.01%
commons-jexl 43.00 33077 17435853 21.79% 61.70% 80.29% 17.75% 61.25% 79.73%
la4j 39.00 13561 3703834 49.64% 54.55% 79.95% 37.15% 49.43% 77.01%
commons-cli 24.48 2767 1480348 92.03% 90.36% 97.78% 90.09% 89.03% 97.25%
commons-math 436.48 113838 47057392 94.25% 91.99% 96.83% 85.28% 86.53% 93.80%
asterisk-java 57.00 18774 716054 96.78% 97.91% 96.18% 89.41% 96.54% 93.93%

Average 185.56 15837 4979061 78.30% 86.24% 92.07% 73.31% 84.79% 90.80%

3.3.2 RQ2: how do state-of-the-art static and dynamic RTS techniques perform

in terms of regression mutation testing efficiency?

Table 3.9 shows the time savings achieved by Ekstazi and STARTS during regression mutation

testing. In the table, Column 1 lists all the studied projects. Columns 2-4 present the average

number of tests, mutants, and mutant-test cells executed by the original full mutation testing.

Columns 5-7 present the test, mutant, and cell level reduction when using Ekstazi. Similarly,

Columns 8-10 present the test, mutant and cell level reduction when using STARTS. In

terms of test-level reduction, Ekstazi and STARTS reduce the number of tests by 78.30%

and 73.31%, respectively, indicating the effectiveness of both STARTS and Ekstazi in test

selection. We also use this metric to cross validate our execution of STARTS and Ekstazi

with prior RTS study, and find that our numbers are consistent with prior RTS work [98].

In terms of mutant-level reduction, Ekstazi and STARTS reduce the number of executed

mutants by 86.24% and 84.79%, respectively. The difference is smaller than that of the

test-level reduction. In terms of the most precise cell-level reduction, Ekstazi and STARTS

reduce the number of mutant-test cell executions by 92.07% and 90.80%, respectively. Note

that the cell-level reduction values are much higher than the test or mutant level reduction
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values. The reason is that for any unreduced mutant or test, there can still be mutant-test

cells that can be reduced by RTS. In summary, both Ekstazi and STARTS can greatly reduce

mutation testing costs.
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Figure 3.4: commons-validator

We further investigate the actual time savings achieved by state-of-the-art file-level RTS. Since

both Ekstazi and STARTS achieved similar reduction, here we only present the actual time

savings for Ekstazi on two example projects, asterisk-java and commons-validator. The

experimental results on the other projects show similar trends. Figures 3.1 and 3.2 present

the mutation testing time costs before and after using RTS. In each figure, the x-axis presents

the number of revisions studied for the project, the y-axis presents the mutation testing

time in seconds, the solid and dashed lines present the actual time when applying original

mutation testing and Ekstazi-based mutation testing, respectively. From the figures, we can

observe that Ekstazi-based regression mutation testing can significantly speed up mutation

testing. For example, the original mutation testing costs 1035.22 seconds on average for
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Table 3.10: Effectiveness and Efficiency of Faulttracer

Project Name Efficiency Effectiveness

Test Level Cell Level Mutant Level Error Cells Error MS
min max avg min max avg

HikariCP 80.33% 78.74% 74.09% 0 8 15.13 0.0000% 1.61% 0.0510%
commons-io 42.46% 81.67% 80.55% 0 9 395.08 0.0000% 0.07% 0.0052%
OpenTripPlanner 85.99% 97.39% 90.07% 0 9 8.69 0.0000% 0.14% 0.0115%
commons-functor 93.37% 99.81% 98.76% 0 1 0.36 0.0000% 0.01% 0.0024%
commons-lang 96.99% 95.97% 98.79% 0 87 403.97 0.0000% 0.07% 0.0254%
commons-net 97.01% 99.18% 98.96% 0 99 119.93 0.0000% 0.03% 0.0048%
commons-text 95.45% 92.89% 98.05% 0 97 19.47 0.0000% 0.08% 0.0106%
commons-validator 98.24% 96.35% 99.32% 0 93 187.07 0.0000% 0.00% 0.0000%
compile-testing 91.30% 92.58% 97.60% 0 98 117.22 0.0000% 0.14% 0.0038%
invokebinder 70.29% 87.91% 93.34% 0 677 14.6 0.0000% 0.05% 0.0005%
logstash-logback-encoder 94.87% 93.99% 97.78% 0 9 17.19 0.0000% 0.38% 0.1108%
commons-codec 99.23% 99.42% 99.88% 0 9 28.18 0.0000% 0.08% 0.0172%
commons-dbutils 93.89% 93.97% 99.21% 0 86 399.98 0.0000% 0.50% 0.0276%
commons-scxml 30.24% 62.33% 81.74% 0 9 401.53 0.0000% 0.47% 0.0774%
commons-csv 93.64% 89.84% 97.79% 0 9 124.45 0.0000% 0.75% 0.1550%
commons-jexl 37.03% 63.72% 82.97% 1217 8459 1728.55 0.0000% 0.77% 0.1792%
la4j 74.03% 67.81% 87.03% 1080 914 563.03 0.0000% 0.10% 0.0111%
commons-cli 94.65% 92.62% 98.44% 0 962 97.61 0.0000% 0.00% 0.0000%
commons-math 97.50% 95.80% 98.31% 1084 8740 5123.69 0.0523% 0.89% 0.2944%
asterisk-java 99.41% 99.75% 99.64% 0 9 4.03 0.0000% 0.00% 0.0000%

Average 83.30% 89.09% 93.62% 169 1019 448.49 0.0026% 0.31% 0.0494%

asterisk-java, while Ekstazi-based mutation testing only costs 54.37 seconds, indicating a

reduction of 94.75%. Similarly, the original mutation testing costs 1372.35 seconds on average

for commons-validator, while Ekstazi-based mutation testing only costs 48.50 seconds,

indicating a reduction of 96.47%.

In addition, we also investigate the RTS overhead. Figures 3.3 and 3.4 show the Ekstazi and

STARTS overhead (i.e., end-to-end time including RTS analysis, selected test execution, and

dependency collection) for asterisk-java and commons-validator. From the figure, we

can observe that the cost of both static and dynamic RTS are negligible compared to the

mutation testing time, e.g., the average Ekstazi and STARTS overhead for asterisk-java

is only 7.71 seconds and 13.62 seconds, respectively.

In summary, file-level RTS techniques can significantly speed up mutation testing with

negligible overhead.

31



Table 3.11: Effectiveness of Partial Regression Mutation

Project Name Mutation Score Ekstazi STARTS

Error Cells Error Mutation Score Error Cells Error Mutation Score
min max avg min max avg min max avg min max avg

HikariCP 23.24% 0 104 3.56 0.0000% 1.61% 0.0418% 0 248 3.15 0.0000% 0.51% 0.0092%
commons-io 32.03% 0 17 3.26 0.0000% 0.14% 0.0071% 0 17 2.03 0.0000% 0.14% 0.0151%
OpenTripPlanner 6.89% 0 18 1.39 0.0000% 0.14% 0.0109% 0 6 0.47 0.0000% 0.05% 0.0037%
commons-functor 6.77% 0 1 0.18 0.0000% 0.01% 0.0024% 0 1 0.18 0.0000% 0.01% 0.0024%
commons-lang 78.75% 0 138 12.28 0.0000% 0.07% 0.0238% 0 27 9.64 0.0000% 0.07% 0.0206%
commons-net 23.16% 0 24 0.97 0.0000% 0.03% 0.0048% 0 24 0.97 0.0000% 0.03% 0.0048%
commons-text 74.08% 0 110 2.21 0.0000% 1.43% 0.0276% 0 110 2.21 0.0000% 1.43% 0.0276%
commons-validator 67.73% 0 2 0.44 0.0000% 0.00% 0.0000% 0 18 0.84 0.0000% 0.00% 0.0000%
compile-testing 56.22% 0 656 10.88 0.0000% 0.14% 0.0038% 0 656 10.88 0.0000% 0.14% 0.0038%
invokebinder 42.65% 0 1 0.01 0.0000% 0.05% 0.0005% 0 1 0.01 0.0000% 0.05% 0.0005%
logstash-logback-encoder 54.24% 0 100 6.46 0.0000% 0.62% 0.1160% 0 22 5.8 0.0000% 0.38% 0.1108%
commons-codec 77.90% 0 84 3.08 0.0000% 0.08% 0.0170% 0 84 3.08 0.0000% 0.08% 0.0170%
commons-dbutils 46.23% 0 258 12.22 0.0000% 0.50% 0.0276% 0 258 12.22 0.0000% 0.50% 0.0276%
commons-scxml 44.50% 0 349 121.25 0.0000% 0.96% 0.1779% 0 200 41.78 0.0000% 0.96% 0.1546%
commons-csv 71.87% 0 17 2.8 0.0000% 0.75% 0.1456% 0 17 2.66 0.0000% 0.75% 0.1405%
commons-jexl 46.10% 0 303 43.61 0.0000% 0.63% 0.0960% 0 295 32.34 0.0000% 0.63% 0.0759%
la4j 57.62% 0 26 1.1 0.0000% 0.02% 0.0030% 0 2 0.1 0.0000% 0.01% 0.0007%
commons-cli 84.43% 0 188 2.21 0.0000% 0.00% 0.0000% 0 188 2.21 0.0000% 0.00% 0.0000%
commons-math 71.47% 84 1471 422.46 0.0523% 0.57% 0.2820% 3 1471 380.32 0.0026% 0.57% 0.2572%
asterisk-java 17.88% 0 0 0.0 0.0000% 0.00% 0.0000% 0 0 0.0 0.0000% 0.00% 0.0000%

Average 49.19% 4.2 193.35 32.52 0.0026% 0.39% 0.0494% 0.15 182.25 25.54 0.0001% 0.32% 0.0436%

3.3.3 RQ3: how do different test dependency granularities impact the effective-

ness and efficiency of RTS-based regression mutation testing?

To further study the impact of RTS with different granularity, we further apply FaultTracer,

state-of-the-art dynamic method-level RTS, for regression mutation testing. We present the

effectiveness and efficiency of FaultTracer-based RTS in Table 3.10. In the table, Column

1 lists all the projects. Columns 2-4 present the test, mutant, and cell level reductions.

The remaining columns present the effectiveness metrics including both error cells and error

mutation scores. From the table, we can observe that although FaultTracer has a higher

test-level reduction (83.30%) than Ekstazi and STARTS (consistent with prior work [7]), the

cell-level reduction is actually quite close to that of Ekstazi and STARTS. This observation

demonstrates that finer-grained RTS does not provide clear benefits in efficiency. Furthermore,

FaultTracer incurs more severe mutation testing precision issues. For example, on average,

FaultTracer incurs 448.49 error cells while Ekstazi/STARTS only incurs 381.93/356.45 error

cells. The reason is that a test whose method-level dependencies do not touch code changes

may very likely be diverged to cover other changed method-level entities (whereas it is harder
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to diverge a test execution to execute other changed file-level entities). Therefore, finer-grained

RTS brings more severe mutation testing precision issues without clearly improving mutation

testing efficiency.

3.3.4 RQ4: how do state-of-the-art static and dynamic RTS techniques perform

in partial regression mutation testing?

In this RQ, we further investigate the effectiveness of regression mutation testing under the

partial mutation testing scenario. In Table 3.11, Columns 1 and 2 show the project names

and the average mutation scores. They are the same as Table 3.7. Columns 3-5 present the

error cells and Columns 6-8 present the error mutation scores when using Ekstazi. Similarly,

Columns 9-11 and Columns 12-14 present the error cells and error mutation scores under

STARTS. Based on the table, we have the following observations. First, the average error cells

are 32.52 and 25.55 when using Ekstazi and STARTS. The average error cells are much fewer

than those in the full regression mutation testing scenario (381.93 and 356.23 for Ekstazi and

STARTS). Note that this is not because it is more accurate, but because the partial mutation

testing scenario at most only has one killed test for each mutant, resulting in a much smaller

total number of mutation cells than full mutation testing. Second, the average error mutation

scores are only slightly higher than those in the full regression mutation testing scenario, e.g.,

0.0494% and 0.0436% compared to 0.0423% and 0.0364% when using Ekstazi and STARTS,

respectively. The slightly more inaccurate results here is because partial mutation only

collects one killing test for each mutant, making imprecise results copied from pior versions

have large impact on mutation scores. Note that overall RTS-based regression mutation

testing still performs rather precisely in the partial scenario, demonstrating its effectiveness

for both scenarios.
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3.4 Threats to Validity

3.4.1 Internal

To reduce the threats to internal validity, we use state-of-the-art mature tools/techniques in

our study. For example, we choose Ekstazi and STARTS to represent file-level dynamic and

static RTS, and FaultTracer to represent dynamic method-level RTS. We also use state-of-

the-art PIT mutation testing tool with all its 16 mutation operators. Furthermore, we also

cross-validate our results with prior RTS or mutation studies.

3.4.2 External

Our experimental results might not generalize, since the projects used in our study are just

a subset of all software systems and may not be representative. To reduce the threats, we

used 1513 revisions of 20 real-world GitHub Java projects varying in size, application domain,

number of tests, and running time. Also, all the used projects are single-module Maven

projects for the ease of experimentation, and the results might be different for multi-module

Maven projects. However, to our knowledge, this study already represent the largest scale

study in the mutation testing literature.

3.4.3 Construct

Construct validity is mainly concerned with whether the used measurements are well designed

and suitable for our study. To reduce this threat, we apply widely used effectiveness and

efficiency measurements for mutation testing. For effectiveness, we use both the detailed

error cell metric, and the error mutation score metric, both of which have been used in prior

mutation testing work [182, 188]. For efficiency, we study the actual time reduction, as well

as the reductions at the test, mutant, and cell levels.
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CHAPTER 4

TAMING BEHAVIORAL BACKWARD INCOMPATIBILITIES VIA

CROSS-PROJECT TESTING AND ANALYSIS

In Chapter 3, we have presented our approach to speed up mutation testing when software

systems evolve. However, there are many other problems in the software testing field that

are very time consuming and need to be made more efficient. In this chapter, we apply our

faster revision testing in BBI bug detection to speed up the process of software testing.

As software products become larger and more complicated, library code plays an important role

in almost any software. For example, while the sample Android app “Hello World” contains

only several lines of source code, when it is executed on an Android mobile phone, it actually

invokes libraries from the Android Software Development Kit (SDK), Java Development Kit

(JDK), as well as the underlying Linux system. Third-party libraries such as Apache [22]

and Square [21] libraries are also widely used in both open source and commercial software

projects. The prevalent usage of software libraries has significantly reduced the software

development costs and improved software quality.

At the same time, the asynchronous upgrades of software libraries and client software often

result in incompatibilities between different library versions and client software. As techniques

of computation evolve faster and faster, libraries are also upgraded more frequently, so do

the occurrences of software incompatibilities. For example, Google releases a new major

version of Android averagely every 11 months. After each major release, an outbreak of

incompatibility-related bug reports will occur in GitHub, so do the version-upgrade-related

negative reviews in the Google Play Market [116].

To avoid incompatibilities, for decades, “backward compatibility” has been well known as

a major requirement in the upgrades of software libraries. However, in reality, “backward
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compatibility” is seldom fully achieved, even in widely used libraries. Some early research

efforts (e.g., Chow and Notkin [53], Balaban et al. [40], and Dig and Johnson [60]) have

confirmed the prevalence of backward incompatibility between two consecutive releases of

software libraries. More recently, Cossette and Walker [56] identified 334 signature-level

backward incompatibilities in 16 consecutive version pairs from 3 popular Java libraries:

struts [13], log4j [20], and jDOM [19]. McDonnell et al. [116] identified 2,051 changes on

method signatures in 13 consecutive Android API level pairs from API level 2-3 to API level

14-15. These studies all show that backward incompatibilities are prevalent. Furthermore,

a recent study [124] found averagely over 12 test errors / failures from each version pair

when performing cross-version testing on 68 consecutive version pairs of 15 popular Java

libraries. This fact shows that, on top of signature-level backward incompatibilities, behavioral

backward incompatibilities that may cause runtime errors instead of compilation errors are

also prevalent.

Library incompatibilities may result in runtime failures both during the software development

phase and after the software distribution. If the upgraded library is statically packaged in

the client software product, the client developers may face some test failures when they try

to incorporate the new release of the library. Thus they must perform extra changes and

bug fixes if they want to take advantage of the new release of the library. In such a case,

client developers may not be affected because they can still build the software product with

the earlier library version. The case becomes worse when the upgraded library belongs to

the runtime environment (e.g., operating system libraries, Java runtime libraries, platform

libraries for plug-ins such as Chrome/Firefox/Eclipse libraries). In such cases, a software user

may simply perform a system/platform update (the user may even not notice it if she turns

on automatic updates) during the night, and suddenly find one or more software applications

no longer working next morning. For example, Windows Vista is considered to be not very

successful, and its failure has been largely ascribed to its backward incompatibility with
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Windows XP [1]. More recently, an upgrade of Android platform from 4.4 to 5.0 broke

SougouInput, the most popular Chinese-input software with more than 200 million users [2].

Users could not input any Chinese character after they upgraded to Android 5.0, until a

patch was released 4 days later.

This paper proposes to apply cross-project testing and analysis to overcome the challenges in

BBI detection with the following two insights. First, the large number of open source client

software projects residing in open software repositories can serve as a natural knowledge base

of common usage scenario and expected semantics of software library APIs. Second, it is

difficult for natural language documents (e.g., release notes) to achieve comprehensiveness

and preciseness in describing semantic changes of library APIs. In contrast, code (including

library and client code, source and test code) can be better media to transfer knowledge from the

library side to the client side. In particular, to avoid BBI-related software runtime failures, to

accelerate software upgrading process, and to reduce developers’ effort in software migration,

we propose DeBBI to detect BBIs on library side. Simple cross-version regression testing

with built-in library test code may miss a lot of BBIs. For better detection of BBIs, DeBBI

leverages the large number of existing client software projects in open software repositories,

and performs large-scale testing on these projects with their built-in test code on the newer

library version. Such largely expanded test suites may incur high costs. Therefore, we propose

to transform the problem of cross-project BBI detection into a traditional information retrieval

(IR) problem. More specifically, we treat the library-side API upgrades as the query, and the

project-side usage of the library APIs as the document collection. Then, the projects with

more intensively upgraded API uses will be prioritized for early execution to detect potential

BBIs faster. Also, different projects may share similar API uses and thus detect similar BBIs.

Thus, we further consider the diversity between client projects using the diversified Maximal

Marginal Relevance (MMR) technique [48]. Finally, for each client project, we also optimize
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test executions by skipping the tests that may not touch the upgraded APIs. The paper

makes the following contributions:

• Idea. We propose to solve the BBI detection problem via cross-project testing and

analysis, and further transform the problem into a traditional IR problem.

• Implementation. We implement the proposed approach for testing library BBIs based

on the ASM bytecode analysis framework [14] and the Indri IR framework [16].

• Optimization. We further propose to use MMR to consider the diversity of different

client projects, and also extend traditional static regression test selection to the cross-

project scenario to automatically skip the tests useless for BBI detection.

• Study. We present an extensive study on testing JDK and other popular 3rd-party

library (such as Apache libraries) upgrades using tens of thousands of GitHub client

Java projects. The experimental results show that DeBBI can reduce the end-to-end

testing time for detecting the first and average BBI clusters by 99.1% and 70.8% for

JDK, and detect 97 real BBI bugs (19 has been confirmed as previously unknown bugs).

4.1 Approach

In this section, we first present the overview of our DeBBI approach (Section 4.1.1). Then, we

illustrate how to apply IR techniques for efficient and effective BBI detection (Section 4.1.2).

Finally, we show how to extend traditional Regression Test Selection (RTS) to the cross-project

setting to further speed up DeBBI (Section 4.1.3).

4.1.1 Overview

Our DeBBI is a general approach for taming BBIs via cross-project testing, and can be applied

to any library, including Android Software Development Kit (SDK) [12], Java Development

38



Figure 4.1: DeBBI structure

Kit (JDK) [17], and third-party libraries such as Apache Software [22]. Figure 4.1 shows the

overall architecture of our DeBBI. DeBBI takes two versions of the library under test and a

set of client projects that directly use the library as input to find BBIs. DeBBI first extracts

the changes (e.g., file changes) among the two library versions via static analysis. They are

considered as queries in our IR model. Meanwhile, DeBBI preprocesses the source code for

all the client projects to obtain the library APIs used by each project, and uses that to serve

as the document for each project during IR. Then, DeBBI queries the library changes against

the source code for all the client projects, so that the client projects accessing more changed

APIs are tested earlier to detect BBIs faster.

Following prior work [112, 114, 154, 191], we performed stop word removal [78], stemming [138]

for the IR document preparation. Note that we use all Java key words as our stop word since
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they are common for all Java projects. For each client project, we consider the class/file-level

dependencies on the library under test as the document contents. For each class/file, we

split its fully-qualified name into different words in the document or query. For example, we

split java.lang.String into java, lang and String. These three words are all fed into our

document or query. To ensure DeBBI effectiveness and efficiency, we further explore various

IR models in this work, including traditional and topic-model-based IR models (Details shown

in Section 4.1.2). Furthermore, the client projects ranked high in the prioritization results

may reveal similar or even the same BBIs. Therefore, we further consider the diversity of the

IR results to detect different unique BBIs faster. To this end, we further use the Maximal

Marginal Relevance (MMR) algorithm [48] to rank client projects with diverse library API

uses.

IR models can help greatly reduce the number of client projects for finding BBIs. However,

for each client project, all its tests are still executed. Therefore, in Section 4.1.3, we further

use static analysis to compute the library APIs reachable from each test, and then compute

the subset of tests which can potentially access changed library APIs as affected tests. In

this way, for each client project, we only execute the affected tests to further speed up BBI

detection.

4.1.2 DeBBI via Information Retrieval

Various IR models have been applied to solve software engineering problems, such as the

Vector Space Model (VSM) [156], Latent Semantic Indexing (LSI) [94], and Latent Dirichlet

Allocation (LDA) [44]. In theory, any IR model can be applied to DeBBI. In this work, we

mainly consider two widely used IR models, VSM and LDA, due to their effectiveness [97, 174].

For each model, we studied state-of-the-art variants for effective BBI detection. Further-

more, for each studied variant, we further apply the Maximal Marginal Relevance (MMR)

algorithm [48] to rank client projects with diverse library API uses.
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Vector Space Model

Vector Space Model (VSM) [156] is an algebraic model for representing text documents and

queries as vectors of indexed terms. TF.IDF (short for Term Frequency-Inverse Document

Frequency) is a numerical statistic widely used to reflect word importance for a document

under VSM. To date, TF.IDF and its variants (e.g., state-of-the-art Okapi BM25 [148]) have

been widely recognized as robust and effective IR models [147]. Therefore, it has been widely

studied and used in both IR and software engineering areas [133, 158, 171, 181]. Formally,

assume that each document and query are represented by a term frequency vector d⃗ and q⃗

respectively, and n is the total number of terms or the size of vocabulary:

d⃗ = (x1, x2, . . . , xn) (4.1)

q⃗ = (y1, y2, . . . , yn) (4.2)

Element xi and yi are the frequency of term ti in document d⃗ and query q⃗ respectively.

Generally, query and document terms are weighted not just by their raw frequencies. There

is a heuristic TF.IDF weighting formula to weight query and document term frequency (TF).

Also, the inverse document frequency (IDF) is used to increase the weight of terms with low

frequencies in the document and diminish the weight of terms which have high frequencies.

Weighted vectors for d⃗ and q⃗ are computed as:

d⃗w = (tfd(x1)idf(t1), tfd(x2)idf(t2), . . . , tfd(xn)idf(tn)) (4.3)

q⃗w = (tfd(y1)idf(t1), tfd(y2)idf(t2), . . . , tfd(yn)idf(tn)) (4.4)

Given a set D of source files for the client projects considered by DeBBI, the simplest and

classic TF formulation just uses the raw count of each term in the document, i.e., the number
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of times that term t occurs in a document, which is given by ft,d. Similarly, one simplest way

to calculate IDF is given by idf(t) = log N
nt
, where nt is the number of documents with term t

and N is the total number of documents in document collection D. Thus, one of the simplest

ways to get TF.IDF score is to just multiply ft,d and log N
nt

to get term t’s score in document

d⃗, and then compute the vector similarity with query q⃗ to get document d⃗’s priority.

As we mentioned before, various TF.IDF variants have been proposed in practice. In this

work, we use the Indri [16] framework, which includes various advanced algorithms to achieve

more accurate models. The Indri’s TF.IDF variant is based on Okapi BM25, which is a

probabilistic retrieval framework model initially developed by Robertson et al. [148]. As to

avoid division by zero, when a particular term appears in all documents, the IDF value here

is: idf(t) = log N+1
nt+0.5

. Meanwhile, the TF value is:

tfd(x) =
k1x

x+ k1(1− b+ b lend

lenD
)

(4.5)

There are two tuning parameters k1 and b. k1 is used to calibrate document term frequency

scaling. When k1 is just a small value, the term frequency value will quickly saturate; on

the contrary, a large k1 value corresponds to using raw term frequency. b(0 ≤ b ≤ 1) is used

to determine the scaling by document length. When value b is 1, it corresponds to fully

scaling the term weight by the document length, while b = 0 corresponds to no length scaling.

Finally, lend and lenD represent the current document length and average document length

for the entire document collection, respectively.

Meanwhile, for the query’s TF function, the length normalization is unnecessary because

retrieval is applied with respect to a single fixed query. Therefore, we just set b as 0 here:

tfq(y) =
k3y

x+ k3
(4.6)
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Thus, the similarity score of document d⃗ against query q⃗ is:

S(d⃗, q⃗) =
n∑

i=1

tfd(xi)tfq(yi)idf(ti)
2 (4.7)

There are various configurations that we can choose in the Indri framework. One of them is

the basic TF.IDF variant using BM25TF term weighting. It sets k3 as 1000 in the equation

6. The only two parameters left for tuning are k1 (for term weight) and b (for term weight).

We directly use their default values, i.e., 1.2 and 0.75, respectively. Another variant is Okapi,

which performs retrieval via Okapi scoring. There are three parameters k1 (for term weight),

b (for term weight), and k3 (for query term weight) in the variant. The default value of them

are 1.2, 0.75 and 7 respectively. We also use these default values in our experiment. In this

work, we use both models and denote them as TF.IDF and Okapi, respectively.

Latent Dirichlet Allocation

Different from VSM that directly represents documents with indexed terms, LDA further

implements topic modeling in the retrieval process and computes generative statistical models

to split a set of documents into corresponding topics with certain probabilities. In this way,

each document is represented by the set of relevant abstract topics rather than the raw

indexed terms. In the software engineering literature, researchers have applied LDA to deal

with bug localization [191], software categorization [170], or software repository analysis [166].

In those prior works, project source code is usually treated as LDA input documents. In

contrast, in this work, DeBBI treats each client project’s class-level dependency on the library

under test as LDA input documents. Based on the input documents, LDA computes different

topics for each of the client projects. The different topics indicate that there are different

clusters of projects. When projects use very similar library APIs, they are assigned into

similar topics.
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Figure 4.2: Graphical model for LDA

Figure 4.2 shows the graphical model of LDA. The outer box D represents the documents.

The inner box T represents the repeated choice of topics and words in a document. The

generative process of model can be described as follows:

(1) Choose T ∼ Poisson(ϵ)

(2) Choose a topic vector θ ∼ Dir(α) for document D

(3) For each of the T terms wi:

(a) Choose a topic zj ∼ Multinomial(θD)

(b) Choose a term wi from p(wi|zj, β)

For here, α is a smoothing parameter for document-topic distributions, and β is a smoothing

parameter for topic-term distributions. The multinomial probability function p is:

p(θ, z, w|α, β) = p(θ|α)
T∏

n=1

p(zn|θ)p(wn|zn, β) (4.8)

In this way, given a set of client projects, we first generate a term-by-document matrix

M⃗ . Then we use wij to represent the weight of ith term in the jth document. Note that

following prior work [79, 92], we take TF.IDF as our weighting function, which can give more
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importance to words with high frequency in the current document and appearing in a small

number of documents. LDA further takes the M⃗ as input, and produces a topic-by-document

matrix R⃗. For here, the probability that the jth document belongs to the ith topic is denoted

by Rij in this matrix. Because the number of topics is much smaller than the number of

indexed terms in the corpus. LDA is mapping a high-dimensional space of documents into

a low-dimensional space (represented using topics). The latent topics can be clustered by

shared topics.

In the implementation, we apply the fast collapsed Gibbs sampling generative model [137]

for LDA. The reason is that it is much faster and has the same accuracy compared against

the standard LDA implementation [44]. There are the following parameters in the model

which may affect its performance:

• t, which is the number of topics in the result. Follow the prior work [39], we set topic

number as 10 in our experiment.

• n, which denotes the number of Gibbs iterations to train our model. And we set it as

10000 in the experiment following prior work [142].

• α, which influences the topic distributions per document. The topics will have a better

smoothing effect when the α value is higher. We use the default value of 5.5.

• β, which influences the term’s distribution per topic. The distribution of terms per

topic will be more uniform with a higher β value. We use the default value of 0.01.

Maximal Marginal Relevance

Both the VSM and LDA techniques above will rank the most relevant client projects high

in the list. However, the highly ranked projects may access similar library APIs and reveal

the same BBIs repetitively. Therefore, in this work, we further consider the diversity among
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the search results to detect different unique BBIs faster. More specifically, we combine both

VSM and LDA models with Maximal Marginal Relevance (MMR) [48] to solve this diversity

issue to explore their performance. MMR has been widely studied in the IR community for

diversified searching [71, 75, 89, 96]. Traditional IR models rank the retrieved documents in

the descending order of relevance to the user’s query. In contrast, MMR tries to measure

relevance and novelty independently and consider them together via a linear combination

to solve the diversity problem. For example, it maximizes marginal relevance in retrieval

and summarization when a document is both relevant to the query and contains minimal

similarity to the previously ranked documents. The MMR score equation can be formally

defined as:

Arg max
di∈D\S

[λ(Sim1(di, q)− (1− λ)max
dj∈S

Sim2(di, dj))] (4.9)

where D is the document collection (i.e., the set of considered client projects for testing a

library using DeBBI) and q is the query (i.e., the changes among different library versions). S

is the subset of documents which are already selected by IR. D\S is the set of not yet selected

documents in D. Sim1 and Sim2 are the methods to measure similarity between documents

and query. They can be the same or different. For here, we uniformly use BM25 [173] as our

similarity calculation method. In the above definition, when parameter λ = 1, MMR gives us

a standard relevance-ranked list. On the contrary, when λ = 0, MMR gives us a maximal

diversity result. In addition, the sample information space is around the query when λ is

a small number, whereas the larger value of λ will produce a result focusing on multiple

potentially overlapping or reinforcing relevant documents. In our experiment we set λ as 0.5

which gives documents and queries the same weight.

4.1.3 Faster DeBBI via Testing Selection

Since the basic DeBBI only ranks client projects, all the tests within each tested projects

still have to be executed. Therefore, we further extend DeBBI to reduce the number of test
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executions within each project. More specifically, we extend the traditional Regression Test

selection (RTS) approach [150] to further enable even faster BBI detection. To date, various

static and dynamic RTS techniques have been proposed in the literature [65, 70, 98, 160, 186].

In this work, we build DeBBI on top of state-of-the-art static RTS technique STARTS [98].

We chose STARTS since it has been demonstrated to be state-of-the-art static file-level RTS

technique and can be competitive to state-of-the-art dynamic RTS technique Ekstazi [70].

Also, STARTS does not require prior dynamic execution information for each client project,

which may not be available during BBI detection. STARTS is based on the traditional class

firewall analysis firstly proposed by Leung et al. [93, 99]. To further consider the specific

features of the Java programming language, STARTS performs class firewall analysis on the

Intertype Relation Graph (IRG) defined by Orso et al. [131]. The following presents the

formal definition:

Definition 4.1.1 (Intertype Relation Graph). The intertype relation graph of a given Java

program can be formulated as a triple ⟨E ,Ni,Nu⟩. In the triple, N denotes the set of nodes

representing all programs’ classes or interfaces. Ei ⊆ N ×N denotes the set of inheritance

edges. There exists an inheritance edge ⟨n1, n2⟩ ∈ Ei if type n1 inherits from class n2, or

implements interface n2. Eu ⊆ N × N denotes the set of use edges. There exists an edge

⟨n1, n2⟩ ∈ Eu if type n1 accesses any element of n2, e.g., field references and method calls.

There are two inputs for STARTS to select affected tests: (1) the set of changed files during

software evolution, (2) the static dependency for each test computed based on the IRG graph,

i.e., the files that can potentially be reached from each test based on IRG. Then, STARTS

computes all files that can potentially reach the changed files within the class firewall, and

all tests within the firewall will be selected for execution. Formally, the class firewall can be

computed as:

Definition 4.1.2 (Class Firewall). The class firewall for a set of changed types τ ⊆ N is

computed over the IRG ⟨N , Ei, Eu⟩ using as the transitive closure computation: firewall(τ) =
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Figure 4.3: Example IRG

τ ◦ E∗, where ◦ is the relational product, ∗ denotes the reflexive and transitive closure, and E

denotes the inverse of all use and inheritance edges, i.e., (Ei ∪ Eu)−1.

Note that the prior STARTS approach only analyzes the nodes within a project (ignoring all

third-party and JDK libraries). On the contrary, in this work, we explicitly consider library

changes, and aim to select the tests affected by library changes. Therefore, we augment the

STARTS analysis to include library nodes. Note that (1) DeBBI only considers the nodes

for the client projects and the library under test, and ignores all the other library nodes,

and (2) DeBBI only considers the library nodes directly reachable from client projects. The

reason is that the nodes for other libraries are not of interest, and the library nodes not

directly reachable from the client projects may not have clear impact on the current project.

For example, when applying DeBBI to detect JDK BBIs, we don’t consider the third-party

library dependencies and only collect the source code and test code JDK dependencies

through jDeps [18]. Then we set the changed JDK library files as our code changes for test

selection. Note that, we further filter out the top 200 most widely used JDK files, such as

java.lang.String and java.util.List. The reason is that these files are almost used by

all projects/tests and cannot help much in test selection. Note that we empirically validated

that after filtering these JDK classes, our test selection is still safe, i.e., not missing any

unique BBI.
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Figure 4.3 illustrates how we adapt RTS for detecting BBIs for JDK. In the example IRG,

the inheritance and use edges are marked with label ”i” and ”u”. L denotes a third-party

library node, which uses JDK node JDK5; C is a client project node which inherits library L

and uses JDK1 and JDK2. There are three tests T1, T2 and T3 all using JDK3. According

to our approach, we do not consider the dependencies of third-party library, and thus JDK5

will not be considered in our dependency result (pruned by red cross mark). In addition, we

just consider one layer JDK dependency. For example, we only collect JDK dependencies

of C, T1, T2 and T3. We do not consider the further dependencies of JDK1, JDK2, JDK3

and JDK4. From the figure, T2 uses client C and T3 uses JDK4, respectively. JDK1, JDK3

and JDK4 are the changed JDK classes (marked with gray shadow). Note that JDK3 is

one of the 200 most commonly used JDK classes, and it will not be considered in JDK diff

results as discussed before (marked with dashed oval). In this way, T2 can potentially reach

JDK1 and T3 is using changed class JDK4. Thus, T2 and T3 are affected tests in our RTS

technique, marked within the dashed area (i.e., our class firewall).

4.2 Experimental Setup

In this section, we first described our dataset for detecting JDK BBIs (Section 4.2.1), followed

by our evaluation environment (Section 4.2.2), and evaluation metrics (Section 4.2.3).

4.2.1 Dataset

To construct the dataset for detecting JDK BBIs, we first collect all the most-forked Java

projects with over 20 forks from the GitHub repository. It returns a collection of 8,481 unique

Java projects. In these resulting projects, 4,928 of them support the Maven build system.

Finally, we use all the 2,953 remaining projects can pass the build and test phases successfully

under JDK 8 as the dataset for this study.
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Table 4.1: Dataset summary

Description Min Max Avg.

# Number of Java Files per Project 1 12979 130.37
# Number of Test Cases per Project 0 665028 329.68

Table 4.1 describes the dataset in more details. In particular, the number of Java source files

in a project ranges from 1 to 12,979, and the number of test cases in a project ranges from 0

to 665,028. The average number of Java source files and the average number of test cases are

130.37 and 329.68, respectively. Since we would like to find BBI issues for different versions

of JDK, the same dataset is applied to build and test with different JDK versions.

4.2.2 Experiment Settings

To perform our experiment, we need a set of confirmed JDK BBI bugs as ground truth. We

use the dataset described in Section 4.2.1 to detect such confirmed BBI bugs. The intuition

is that, we can confirm a BBI bug by checking whether it is fixed in the later versions of

JDK. If a test case passes in JDK 8 but fails in JDK 9.0.0, then it reveals a BBI between

JDK 8 and 9.0.0. However, we are not sure whether this BBI is an intended behavior change

by JDK developers or a BBI bug. To confirm that such a BBI is a BBI bug, we further run

the test case on 9.0.1, and if the BBI disappears, we confirm that the test failure in JDK 9

reveals a BBI bug. To categorize duplicated BBI bugs, we manually cluster all the reported

BBIs caused by the same root issues to identify unique BBI bugs. In this way, we define

every reported BBI as a raw BBI bug and every clustered BBI as a unique BBI bug. Note

that we consider both raw and clustered bugs to better measure DeBBI effectiveness.

When performing the build and testing, we use Maven 3.3.9 to build and test each project.

For the JDK version, we use JDK 8.0.161, 9.0.0 and 9.0.1. We use a computer with Intel(R)

Xeon(R) CPU 2.60GHz with 528GB of Memory, and Ubuntu 16.04.3 LTS operating system.
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4.2.3 Evaluation Metrics

We use each of the following three metrics to evaluate the number of projects tested, the

number of test executions and amount of time taken to identify BBIs:

• First: This metric reports the number of client software projects tested, the number

of tests executed, or time (in second) taken to identify the first BBI bug. This metric

emphasizes fast detection of the first BBI, which is essential for the developers to start

debugging earlier.

• Average: This metric is the average number of client software projects tested, tests

executed, or average time taken to find each BBI. This metric emphasizes fast detection

of BBIs in average cases.

• Last: Like the First metric, this metric reports the number of client software projects

evaluated, the number of tests executed and time taken to identify the last BBI. This

metric emphasizes fast detection of all BBIs.

4.3 Result Analysis

In this section, we seek to answer the following five research questions.

4.3.1 RQ1: Is DeBBI more effective than random project prioritization in

identifying BBI issues?

To evaluate DeBBI on detecting BBIs for JDK, we compared the basic IR-based DeBBI

with the Random technique, which randomly sorts client projects to identify BBIs. Also, the

Random technique results are averaged over 5 runs to isolate the impact of random factors.

We compared our results with the Random technique from three aspects: i) effectiveness

in the number of tested client software projects, ii) effectiveness in the number of executed
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Table 4.2: Effectiveness of the basic DeBBI

Without Bug Clustering With Bug Clustering
Client Software Projects Test Case Execution Time(sec) Client Software Projects Test Case Execution Time(sec)

First Last Average First Last Average First Last Average First Last Average First Last Average First Last Average

Random 63 2702 1607 1253 961050 776892 1494.97 109005.21 73360.5 63 2402 1663 1253 947219 758567 1494.97 103965.45 76463.23

TF.IDF
3

(95.2%)
2487
(8.0%)

1322
(17.7%)

32
(97.4%)

964053
(-0.3%)

399301
(48.6%)

53.9
(96.4%)

110727.5
(-1.6%)

77340.8
(-5.4%)

3
(95.2%)

1901
(20.9%)

1135
(31.7%)

32
(97.4%)

948943
(-0.2%)

413608
(45.5%)

53.9
(96.4%)

88637.3
(14.7%)

67582.5
(11.6%)

Okapi
5

(92.1%)
2379

(12.0%)
1375

(14.4%)
48

(96.2%)
962737
(-0.2%)

457375
(41.1%)

91
(93.9%)

109132.7
(-0.1%)

74956.7
(-2.2%)

5
(92.1%)

1888
(21.4%)

982
(41.0%)

48
(96.2%)

949122
(-0.2%)

241894
(68.1%)

91
(93.9%)

87215.6
(16.1%)

60150.7
(21.3%)

LDA
43

(31.7%)
2445
(9.5%)

1532
(4.7%)

573
(54.3%)

727141
(24.3%)

167110
(78.5%)

263.9
(82.3%)

94113.1
(13.7%)

48290.1
(34.2%)

43
(31.7%)

2332
(2.9%)

1747
(-5.1%)

573
(54.3%)

711989
(24.8%)

108083
(85.8%)

263.9
(82.3%)

90799.8
(12.7%)

64822.2
(15.2%)

tests, and iii) effectiveness in test execution time. For each aspect, we measure the First,

Average, and Last metrics of both the Random and our IR-based techniques. The results

are presented in Table 4.2. In the left half of the table, we present the First, Last, and

Average values on client software projects, test executions, and execution time without bug

clustering. The values in the bracket are the relative reduction for the corresponding metrics

compared with the Random technique. The best technique for each metric has also been

marked in gray.

We have following observations for the bugs without clustering: First, all IR-based techniques

perform much better than the Random technique on the First values, with mostly 60% to

90% reduction on all three aspects. However, if we consider Average and Last values, the

enhancement of IR-based techniques is not that significant, especially for execution time.

This can be due to the lack of diversity in IR-based prioritization results. Second, there is

none IR-based technique that outperforms all other techniques, but LDA is performing better

(with 4.7% to 82.3% reduction) than Random technique on all values from all aspects.

As same BBI bugs can appear in multiple projects and test cases, we also performed BBI

clustering to check how different techniques compare on identifying different unique BBI

bugs. The right half of Table 4.2 shows the effectiveness of IR based techniques and Random

technique on unique BBI bugs. The data presentation is the same as the left half. We have

similar observations compared with left half of the table: IR-based techniques perform much

better on First values, but not so good on Last and Average values. Furthermore, in

general, IR-based techniques perform better than the Random technique on all values in test
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Table 4.3: Effectiveness of DeBBI with MMR

Without Bug Clustering With Bug Clustering
Client Software Projects Test Case Execution Time(sec) Client Software Projects Test Case Execution Time(sec)

First Last Average First Last Average First Last Average First Last Average First Last Average First Last Average

Random 63 2702 1607 1253 961050 776892 1494.9 109005.2 73360.5 63 2402 1663 1253 947219 758567 1494.9 103965.5 76463.2

TF.IDF+MMR
28

(55.6%)
2404

(11.0%)
1306

(18.7%)
5791

(-362.2%)
961604
(-0.1%)

515462
(33.7%)

4104.5
(-174.6%)

109603.5
(-0.5%)

79052.8
(-7.8%)

28
(55.6%)

1591
(33.8%)

867
(47.9%)

5791
(-362.2%)

944968
(0.2%)

369206
(51.3%)

4104.5
(-174.6%)

85428.7
(17.8%)

59618.8
(22.0%)

Okapi+MMR
25

(60.3%)
2398

(11.3%)
1324

(17.6%)
5759

(-359.6%)
963338
(-0.2%)

559859
(27.9%)

4057.2
(-171.4%)

109540.7
(-0.5%)

81400.4
(-11.0%)

25
(60.3%)

1672
(30.4%)

878
(47.2%)

5759
(-359.6%)

949900
(-0.3%)

450257
(40.6%)

4057.2
(-171.4%)

86264.9
(17.0%)

59906.6
(21.7%)

LDA+MMR
1

(98.4%)
2340

(13.4%)
1243

(22.7%)
1

(99.9%)
959254
(0.2%)

759536
(2.2%)

12.7
(99.1%)

105832.7
(2.9%)

55970.2
(23.7%)

1
(98.4%)

1029
(57.2%)

616
(63.0%)

1
(99.9%)

931735
(1.6%)

553400
(27.0%)

12.7
(99.1%)

42645.6
(59.0%)

26433.9
(65.4%)

execution time for unique BBI bugs. The reason is that for unique BBI bugs DeBBI only

need to find the first raw BBI bug in each cluster, making it easier for IR-based DeBBI to

find unique BBI bugs faster.

4.3.2 RQ2: How does diversity resolution technique help improve the perfor-

mance of DeBBI?

To check whether diversity enhancement techniques such as Maximal Marginal Relevance

(MMR) can enhance IR-based project prioritization, we combine MMR with all IR-based

techniques TF.IDF, Okapi and LDA. Table 4.3 shows the effectiveness of MMR-integrated

IR-based techniques. From the table, we can see that although MMR is not very helpful on

some IR techniques (TF.IDF and Okapi) in all aspects, it is able to enhance the LDA-based

technique significantly. LDA+MMR outperforms all other techniques on almost all values

from all aspects. Comparing with results in Table 4.2, we can see that MMR technique can

enhance LDA-based technique on five of nine evaluated metrics without bug clustering and

seven of nine metrics with bug clustering. In particular, when it comes to bug clustering,

LDA+MMR is able to reduce 99.1%, 59.0%, and 65.4% of test execution time to detect the

First, Last, and Average unique BBI bugs, which is a huge enhancement over the Random

technique.

4.3.3 RQ3: Can we further boost DeBBI via extending traditional static Re-

gression Test Selection (RTS)?

When a library gets updated, not all the tests from its client projects are affected by the

library code changes. If we can remove such irrelevant test cases, we may further enhance
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Table 4.4: Effectiveness of DeBBI with RTS

Without Bug Clustering With Bug Clustering
Test Case Execution Time(sec) Test Case Execution Time(sec)

First Last Average First Last Average First Last Average First Last Average

Random 1253 961050 776892 1494.9 109005.2 73360.5 1253 947219 758567 1494.9 103965.5 76463.2

Random+RTS
337

(73.1%)
27016
(97.2%)

14402
(98.1%)

1257.5
(15.9%)

71083.7
(34.8%)

40856.8
(44.3%)

337
(73.1%)

23985
(97.5%)

15039
(98.0%)

1257.5
(15.9%)

62587.8
(39.8%)

41810.2
(45.3%)

TF.IDF+RTS
6

(99.5%)
28013
(97.1%)

21564
(97.2%)

303.6
(79.7%)

74613.8
(31.6%)

52714.6
(28.1%)

6
(99.5%)

27021
(97.1%)

18918
(97.5%)

303.7
(79.7%)

67659.2
(34.9%)

46428.2
(39.3%)

TF.IDF+MMR+RTS
1474

(-17.6%)
27987
(97.1%)

23073
(97.0%)

3260.2
(-118.1%)

74642.2
(31.5%)

54315.2
(26.0%)

1474
(-17.6%)

26298
(97.2%)

18922
(97.5%)

3260.2
(-118.1%)

63198.1
(39.2%)

41769.4
(45.4%)

Okapi+RTS
2

(99.8%)
27719
(97.1%)

22009
(97.2%)

82.9
(94.5%)

98866.6
(9.3%)

76910.7
(-4.8%)

2
(99.8%)

26787
(97.2%)

17881
(97.6%)

278.3
(81.4%)

66228.2
(36.3%)

43050.3
(43.7%)

Okapi+MMR+RTS
739

(41.0%)
27996
(97.1%)

23457
(97.0%)

3038.8
(-103.3%)

74678.5
(31.5%)

55316.7
(24.6%)

739
(41.0%)

26698
(97.2%)

18636
(97.5%)

3038.8
(-103.3%)

64302.9
(- 38.1%)

42449.7
(44.5%)

LDA+RTS
210

(83.2%)
9284

(99.0%)
4020

(99.5%)
507.3

(66.1%)
50285.1
(53.9%)

27010.3
(63.2%)

210
(83.2%)

7535
(99.2%)

4221
(99.4%)

507.3
(66.1%)

46847.2
(54.9%)

31159.9
(59.2%)

LDA+MMR+RTS
1

(99.9%)
26287
(97.3%)

22274
(97.1%)

197
(86.8%)

69353.1
(36.4%)

46072.8
(37.2%)

1
(99.9%)

22692
(97.6%)

18003
(97.7%)

12.7
(99.1%)

33241.9
(68.0%)

22300.2
(70.8%)

the reduction on the number of test executions and execution time. Therefore, we further

exclude the test cases that will not be affected by JDK code changes via RTS. The results of

techniques with RTS combined are presented in Table 4.4, where the Random technique is

used as the baseline for comparison. From the table, we can see that, with RTS combined,

even Random+RTS also achieves good effectiveness (average execution time reduced from

more than 70K seconds to about 41K seconds); meanwhile, DeBBI models tend to have even

larger improvements. In addition, on detecting clustered unique BBI bugs, the LDA+MMR

technique, which has achieved best effectiveness without RTS, still achieves significant

enhancement over the Random technique when RTS is combined. Specifically, LDA+RTS

can achieve 63.2% reduction on detecting raw BBI bugs and LDA+MMR+RTS can achieve

70.8% reduction on detecting unique BBI bugs compared with the Random technique on

Average execution time. In other words, DeBBI can save 1017.1 hours to find all raw BBI

bugs and 120.4 hours to find all unique BBI bugs.

In reality, detecting a new unique BBI bug is apparently more important than finding another

instance of a known BBI bug. Therefore, we believe LDA+MMR+RTS is the best technique

that we recommend to be used by default in reality. To make it more convenient to check

the necessity of each used component (i.e., LDA, MMR, and RTS) compared to baseline

techniques, we present the comparison among four selected techniques: Random technique,

LDA, LDA+MMR, and LDA+MMR+RTS on clustered unique BBIs in Figures 4.4 to 4.6.
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Figure 4.4: Client project execution Figure 4.5: Test case execution Figure 4.6: Test execution time

In particular, Figure 4.4 compares all four techniques on their First, Last, and Average

values on the number of client project executions. Figure 4.5 and Figure 4.6 present similar

comparison on the number of test executions and execution time. As shown in Figure 4.4, for

prioritization of the client software projects, since RTS does not optimize project selection,

LDA+MMR and LDA+MMR+RTS show same effectiveness. However, if we compare

LDA+MMR+RTS with Random approach, it shows 98.4% 57.2% and 63.0% reduction on

First, Last, and Average values respectively over the Random technique. As shown in

Figure 4.5, from the aspect of test cases, LDA+MMR+RTS achieves 99.9%, 97.6%, and 97.6%

for First, Last, and Average values over the Random technique. As shown in Figure 4.6,

from the aspect of execution time, LDA+MMR+RTS achieves 99.1%, 68.0%, and 70.8%

reduction First, Last, and Average values over the Random technique.

4.3.4 RQ4: How does DeBBI perform in case of parallel execution?

We further utilized the multiprocessing package of Python for parallel project execution.

We used Python Pool to control the different processes to start or join in the main process and

used Manager and Queue to control the shared resource between processes. In our experiments,

the ranked project list from our IR-based result is the shared resource. Sub-processes try to

get the project from queue and run it. As soon as one process finishes execution, it starts

to get the next one to run. Here, we use 5 sub processes in our experiment to evaluate our

technique. Table 4.5 shows the results of DeBBI with and without bug clustering during
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parallel execution. The left part is the execution time without bug clustering and right part

is the execution time with bug clustering. Column 1 list all techniques. Columns 2-7 list

First, Last and Average value of execution time to find raw BBI bugs and unique BBI bugs

respectively. We use the Random technique with multiprocessing as our baseline technique.

From the results, we can see that TF.IDF with MMR, Okapi and LDA with MMR all can find

first raw BBI bug and unique BBI bug in 12.7 seconds with the 84.7% reduction compared

to Random. LDA has the best performance in Last and Average with 11.8 % and 38.4 %

reduction without bug clustering. Meanwhile, TF.IDF with MMR has the best performance

in Last and Average with 80.9 % and 63.2 % reduction with bug clustering.

Table 4.6 shows the results when combining our IR-based techniques with RTS during parallel

project execution. We still use the Random technique with multiprocessing as our baseline

to check the results. From the results, all techniques combined with RTS can have a huge

enhancement in Last and Average value of execution time. The reason LDA+RTS is better

than Random in First is that RTS does not have too much help here. Random and most

techniques can find first bug fast without RTS and executing RTS needs extra overhead1.

Thus, the performance of First is not very good here. However, LDA+MMR+RTS is able to

have 71.4 % and 83.1 % reduction in Last without and with bug clustering. LDA+RTS can

have 64.4 % and 60.8 % average time reduction to find raw BBI bugs and unique BBI bugs.

To sum up, LDA+MMR+RTS is still one of the most effective techniques in the setting of

parallel project execution. It can save 129.3 hours to find all raw BBI bugs and 9.9 hours to

find all unique BBI bugs compared to the Random technique with parallel execution.

1Note that all the RTS overhead costs, including computing dependencies and performing RTS analysis,
are considered in our DeBBI time measurement.
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Table 4.5: DeBBI for parallel project execution

Without Bug Clustering With Bug Clustering
Execution Time(sec) Execution Time(sec)

First Last Average First Last Average

Random 83.5 53122.1 15026.5 83.5 51898.8 7695.1

TF.IDF
53.9

(35.2%)
68041

(-28.1%)
15916.4
(-5.9%)

53.9
(35.2%)

42494.4
(18.1%)

9024.3
(-17.3%)

TF.IDF+MMR
12.7

(84.7%)
49746.5
(6.4%)

15634
(-4.0%)

12.7
(84.7%)

9905.3
(80.9%)

2832.8
(63.2%)

Okapi
12.7

(84.7%)
51973.8
(2.2%)

15536.1
(-3.4%)

12.7
(84.7%)

50407.9
(2.9%)

7483.5
(2.7%)

Okapi+MMR
548

(-558.9%)
52171.3
(1.8%)

16080.9
(-7.0%)

548
(-558.9%)

49159.6
(5.3%)

8037.3
(-4.4%)

LDA
57

(31.4%)
46837.4
(11.8%)

9262.9
(38.4%)

57
(31.4%)

46180.8
(11.0%)

6948.8
(9.7%)

LDA+MMR
12.7

(84.7%)
47886.4
(9.9%)

10530.2
(29.9%)

12.7
(84.7%)

18754.7
(63.9%)

3386.2
(56.0%)

Table 4.6: DeBBI with RTS for parallel project execution

Without Bug Clustering With Bug Clustering
Execution Time(sec) Execution Time(sec)

First Last Average First Last Average

Random 83.5 53122.1 15026.5 83.5 51898.8 7695.1

Random+RTS
150.9

(-80.7%)
19495
(63.3%)

8072.8
(46.3%)

150.9
(-80.7%)

17712.4
(65.9%)

4477.7
(41.8%)

TF.IDF+RTS
303.6

(-263.6%)
21391.5
(59.7%)

10575.2
(29.6%)

303.6
(-263.6%)

15991.7
(69.2%)

5299.4
(31.1%)

TF.IDF+MMR+RTS
197

(-135.9%)
18115.2
(65.9%)

10785.8
(28.2%)

197
(-135.9%)

12176.8
(76.5%)

4142.7
(46.2%)

Okapi+RTS
197

(-13.6%)
17437
(67.2%)

10656
(29.1%)

197
(-13.6%)

14250.2
(72.5%)

5019.6
(34.8%)

Okapi+MMR+RTS
889

(-964.7%)
20250.1
(61.9%)

11076.6
(26.3%)

889
(-964.7%)

16087.6
(69.0%)

5593.4
(27.3%)

LDA+RTS
95.7

(36.6%)
17016.2
(68.0%)

5352.6
(64.4%)

95.7
(36.6%)

11141
(78.5%)

3014.7
(60.8%)

LDA+MMR+RTS
197

(-135.9%)
15180.3
(71.4%)

9135.5
(39.2%)

197
(-135.9%)

8757.4
(83.1%)

3257.4
(57.7%)

4.3.5 RQ5: Can DeBBI be generalized to other popular 3rd-party libraries

besides JDK?

Besides JDK, we further use other popular libraries to thoroughly evaluate the performance

of our approach. For this experiment, we cloned all Maven-based Java projects that are

created between August 2008 and December 2019 on GitHub with at least one star, and
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finally included 56,092 unique projects that can successfully pass the build and test phases in

our dataset. In total, there are 40,191 3rd-party libraries used by the projects in our client

project dataset. We then sort all libraries by use frequency and randomly choose 100 libraries

from the top 300 to detect BBI bugs through DeBBI.

During our manual inspection, we found there are three types of false positives reported by

DeBBI: (1) failures triggered by Maven POM file specifications (e.g., the specific updated

library versions are prohibited by POM.xml), (2) failures triggered by intended changes (e.g.,

due to deprecated methods/implementations), and (3) failures triggered by dependency

conflicts (e.g., the library updates are not compatible with specific versions of other libraries).

Types (1) and (2) have their corresponding specific stack traces with fixed patterns. Thus,

we were able to develop a rule-based method in DeBBI to automatically filter them out.

However, we cannot avoid the false positives from Type (3). After manually removing 22

Type (3) false positives, DeBBI reported 97 unique BBI bugs. To date, 19 bugs have been

confirmed as previously unknown bugs. 54 bugs have been confirmed as previously known

bugs (e.g., for COLLECTIONS-721 [24]), while all the other bug reports are still under active

discussion. Interestingly, among the bug reports still under discussion, some reports have

already been confirmed by other users (e.g. ”Experiencing same issue.” for reflection-277 [31])

even though not yet confirmed by the actual library developers.

Quantitative analysis. Due to the space limitation, we only present partial experimental

results for the library projects with confirmed previously unknown BBI bugs in Table 4.7.

In the table, Columns 1-4 list all the libraries, the number of corresponding GitHub Stars,

the number of client projects from our dataset using the corresponding libraries, and the

revision ranges that we use to detect BBIs. Columns 5-7 further present the number of

unique unknown, known, and under discussion BBI bugs reported by DeBBI for this subset

of libraries. Columns 8-13 present the First, Last, and Average values in terms of the
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number of test executions and execution time for our default LDA+MMR+RTS technique

(with improvement over the Random technique shown in the parenthesis). The experiment

parameters used are the same as our JDK experiment. From the table, we can observe that

DeBBI can consistently improve the BBI detection efficiency in all traced metrics, further

demonstrating the effectiveness of DeBBI.

Qualitative analysis. For the 19 confirmed previously unknown BBI bugs, developers quickly

fixed the buggy code for 4 of them, and even added our reported test case in their regression

test suites for 3 of them. For example, Figure 4.7 shows the test for issue Assertj-core-

1751 [23]. Method containsOnlyKeys cannot handle the case when the containsOnlyKeys

API is invoked on a Map with key type Path. This test is challenging to generate automatically

due to the special corner case, while DeBBI is able to directly obtain such tests for free

from client projects, demonstrating the promising future of DeBBI. Interestingly, at first one

developer found it too difficult to fix it and wanted to just add a breaking-change notice;

later on, another developer proposed a solution to finally fix it. Issue Commons-vfs-739 [32]

is triggered when using Apache Commons-vfs to parse a MapR File System file path (shown

in Figure 4.8). It is also challenging to generate this test automatically since the bug will

be triggered only when the first two parameters for method parseUri are both null and

URI includes the substring ”:///”. Furthermore, issue Jsoup-1274 [28] from library Jsoup,

a widely used Java HTML parser, is incurred by the change of the method select – the

developers forgot to deal with the situation when the end of the string in method select is a

space (shown in Figure 4.9). The method select should trim the space first and continue to

parse the string, but it throws an exception. DeBBI is able to detect it through a special test

case that used Jsoup to parse a specific string followed by a whitespace. The developers were

also quite active in fixing issue mybatis-spring-427 [30] reported by DeBBI, saying: ”Thanks

for your report! This issue is bug(This issue was included by 5ca5f2d). We will revert it at

2.0.4.”
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1 @Test
2 public void demo() {
3 Map<Path, String> test = new HashMap<Path, String>();
4 Path path = Paths.get(”/tmp/test/file”);
5 test.put(path, ”pathMD5”);
6 assertThat(test)
7 .containsOnlyKeys(path)
8 .containsValue(”pathMD5”);
9 }

Figure 4.7: Assertj-core-1751 [23] triggering test

1 @Test
2 public void demo() throws FileSystemException{
3 final String URI = ”maprfs:///”;
4 UrlFileNameParser parser = new UrlFileNameParser();
5 FileName name = parser.parseUri(null, null, URI);
6 assertEquals(URI, name.getURI());
7 }

Figure 4.8: Commons-vfs-739 [32] triggering test

1 @Test
2 public void demo(){
3 String content = ”<p> Select Test”;
4 StringBuilder bodyHtml = new StringBuilder();
5 bodyHtml.append(content);
6 Document document = Jsoup.parse(bodyHtml.toString());
7 StringBuilder nav = new StringBuilder();
8 Elements bodyElements = document.select(”body > ∗ ”);
9 }

Figure 4.9: Jsoup-1274 [28] triggering test

11 other confirmed BBI bugs are mitigated by the developers via changing the documents,

since the developers did not realize they were BBI bugs until we submitted the reports and

could not undo the change or fix the code. These BBI bugs were mitigated by adding an

announcement in the corresponding documents. For example, the following comment is from

the issue java-jwt-376 [26]:

“You are correct that this would be a breaking change, so should have been targeted at a future

major version or at the very least called out the breaking change in the CHANGELOG.md
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Table 4.7: Effectiveness of DeBBI for Other Libraries

Project Stars Client Num Revision
Bug Num Execution Time(min) Test Case

Unkown Known Discussion First Last Average First Last Average

Commons-io 616 4,308 2.1 - 2.6 1 0 3 5.29 (99.62%) 408.45 (93.50%) 181.6 (95.37%) 245 (99.39%) 3525 (97.49%) 1428 (98.44%)
assertj-core 1,689 1,129 3.8.0 - 3.14.0 2 8 0 0.04 (99.99%) 211.6 (89.01%) 130.86 (88.60%) 1 (99.99%) 5252 (96.01%) 3767 (93.66%)
lombok 8,832 2,721 1.16.14 - 1.18.10 1 10 0 0.34 (99.31%) 227.74 (92.20%) 72.21 (95.39%) 1 (99.79%) 421 (99.25%) 175 (99.41%)

commons-vfs 103 39 2.2 - 2.6.0 1 0 0 0.96 (98.21%) 0.96 (98.21%) 0.96 (98.21%) 112 (92.21%) 112 (92.21%) 112 (92.21%)
jsoup 7,650 575 1.9.2 - 1.12.1 1 2 0 1.64 (99.60%) 39.49 (93.96%) 17.8 (96.56%) 81 (98.18%) 399 (96.25%) 243 (96.46%)

mybatis-spring 1,992 987 1.3.2 - 2.0.3 1 2 0 1.67 (97.30%) 48.29 (91.64%) 32.68 (90.23%) 1 (99.12%) 9 (99.92%) 6 (99.92%)
HttpAsyncClient 904 125 4.1.3 - 4.1.4 1 1 0 4.14 (97.27%) 7.9 (94.91%) 6.02 (96.08%) 55 (98.66%) 78 (98.14%) 66 (98.41%)

JENA 618 59 3.12.0 - 3.14.0 1 0 0 1.27 (98.52%) 1.27 (98.52%) 1.27 (98.52%) 13 (98.57%) 13 (98.57%) 13 (98.57%)
ognl 111 70 3.1 - 3.2.12 1 2 0 0.8 (97.28%) 3.52 (95.66%) 2.34 (95.81%) 5 (99.03%) 37 (98.20%) 19 (98.26%)

asciidoctorj 445 27 1.5.3 - 2.2.0 2 0 0 3.92 (92.09%) 4.4 (92.86%) 4.16 (92.52%) 6 (98.18%) 6 (98.27%) 6 (98.22%)
mybatis 12,730 1,135 3.1.1 - 3.5.3 1 7 0 1.18 (97.85%) 54.67 (93.57%) 11.88 (96.30%) 13 (92.61%) 106 (99.26%) 68 (98.71%)
java-jwt 3,323 119 3.2.0 - 3.6.0 1 1 0 0.63 (85.80%) 4.47 (96.87%) 2.55 (96.53%) 7 (77.42%) 21 (98.47%) 14 (98.00%)

mybatis-generator 4,105 202 1.3.5 - 1.4.0 1 1 1 0.27 (95.15%) 0.66 (98.95%) 0.51 (97.95%) 3 (62.50%) 3 (97.35%) 3 (93.18%)
jOOQ 3,646 88 3.9.0 - 3.12.4 1 1 1 0.74 (97.49%) 6.14 (97.22%) 3.75 (97.11%) 3 (99.23%) 27 (98.77%) 16 (98.75%)

bcpkix-jdk15on 1,110 122 1.5.9 - 1.6.4 1 0 0 12.3 (94.66%) 12.3 (94.66%) 12.3 (94.66%) 169 (97.67%) 169 (97.67%) 169 (97.67%)
activiti-engine 6,239 39 6.0.0 - 7.1.0 1 0 0 0.67 (96.20%) 0.67 (96.20%) 0.67 (96.20%) 1 (98.15%) 1 (98.15%) 1 (98.15%)
extentreports 517 43 3.0.7 - 4.1.2 1 0 0 3.22 (70.51%) 3.22 (70.51%) 3.22 (70.51%) 36 (86.86%) 36 (86.86%) 36 (86.86%)

file. Unfortunately, at this point we cannot undo the change without breaking others who

are not handling the UnsupportedEncodingException. We should update the Change log, so

keeping this issue open to address that. Apologies for the inconvenience, and thank you for

raising this.”

For the remaining 4 confirmed BBI bugs, issues lombok-2320 [29] and HttpAsyncClient-

159 [25] cannot be easily fixed by the developers for the moment. For example, the Apache

HttpAsyncClient developers said:

“There is no much we can do about it now. If we remove the offending constructor to restore

full compatibility with 4.1.3 we will break full compatibility with 4.1.4.”

The other 2 unfixed bugs are from Apache Commons-io and Apache Jena. They confirmed our

reported BBI bugs are source incompatibility, but cannot afford to fix them. For example,

the Apache Jena [27] developers said:

“We try to migrate gracefully, and it is a compile time error. There is a balance between

compatibility and building up technical debt. Change away from use of FastDateFormat was

forced on the code (staying at the old version forever is not an option). Sometimes, our

understanding of what users do, and do not use, is incomplete. ”
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4.4 Discussions

Availability of Client Software In our experiment, due to the prevalent usage of JDK, we

were able to collect 2,953 client software projects, and ran unit testing on them over JDK 8

and 9 to detect failures. One doubt on the applicability of our approach is whether there are

also many client software projects for other libraries so that prioritization is necessary. Our

observation is that the popular frameworks that require extensive incompatibility detection

typically have lots of client software project available. For example, Android SDK, Apache

software, Eclipse API, and Chrome API all have thousands of client projects in GitHub

(as confirmed in RQ5). On the other hand, due to the popularity of modern build systems

(Gradle/Maven) and the corresponding central repositories, even ordinary projects can have

a large number of client projects on the central repositories. Such modern build systems

support fully automated client project retrieval, build, and test. Thus, we can easily apply

DeBBI in a fully automated way2.

Effectiveness of Client Software Testing Another issue with client software testing

is whether it is helpful when a large regression test suite is already available. From our

experiment, we can see that 79 JDK incompatibility bugs can be detected if client software

testing is applied before Java 9.0.0 is released. These bugs are confirmed by JDK developers

in 9.0.1, and cannot be detected by the large regression test suite of JDK. Another benefit

of client software testing is that it always finds real bugs. Although regression testing may

also detect incompatibilities, the ones detected may be on a cold spot of API that is never

used by real client software, or triggered by a method-invocation sequence that is never used

by client software developers. In contrast, the incompatibilities detected by client software

testing usually indicate important bugs of the library or the client software.

Why does DeBBI work? A naive approach for ranking client projects would be simply
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Figure 4.10: Example changed JDK query

Figure 4.11: Project hmm-lib JDK usage

Figure 4.12: Project ummalqura-calendar JDK usage

counting the number of API terms used by each client project. In contrast to simply counting

API term frequency, our DeBBI adopts information retrieval, which not only counts API

term frequency, but also considers API importance, diversity, and textual information. For

example, there are two JDK client projects hmm-lib [3] and ummalqura-calendar [15] from

our data set. Figure 4.10 shows the portion of changed JDK query which is related to these

two client projects, while Figures 4.11 and 4.12 show the JDK usage of the client projects.

Interestingly, we can see many terms (highlighted in bold) matching terms in query. If we

only count the term frequency, hmm-lib with 125 term matches should have a higher priority

than ummalqura-calendar that only has 67 term matches. However, in our DeBBI(TF.IDF),

2We can also afford discarding failing client projects as online repositories provide a huge candidate project
set.
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Figure 4.13: Accumulated bugs detected

hmm-lib is ranked at 2,760 with no bug and ummalqura-calendar is ranked at 442 with a

real BBI issue (BugID: JDK-80085773, triggered by the different English locale date-time

long formats between JDK 8 and JDK 9). The reason is that TF.IDF also considers the

importance of low-frequency terms Locale and Date.

Why do we need diversity enhancement?

For a given query, an information retrieval system can give us a ranked list of documents all

of which are relevant to the query. However, they might be all the same or very similar. This

is a classic diversity or novelty issue in information retrieval. In our scenario, if DeBBI uses

only traditional information retrieval technique, the top-ranked client projects might detect

the same bugs repeatedly. Therefore, we use the MMR algorithm to solve this issue to detect

more unique bugs faster. In Figure 4.13, the solid and dashed lines present the effectiveness

of detecting unique BBI bugs for JDK when applying LDA and LDA+MMR, respectively.

The x-axis is the number of projects we need to run, the y-axis is the percentage of unique

JDK BBI bugs we can detect. We observed that LDA+MMR found the first unique bug

3https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8008577
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at the 1st position and the last unique bug at the 1029rd position, while LDA found the

first/last unique bug at the 43rd/2333rd position, demonstrating the effectiveness of diversity

enhancement for further boosting DeBBI.

4.5 Threats to Validity

The major internal threat to our evaluation is whether our ground truth on incompatibility

bugs is correct. For JDK, although large-scale client testing reveals a lot of test failures,

their causes are different and may not always indicate incompatibilities of JDK. For example,

Raemaekers et al. [141] observed that library-breaking changes have a huge impact on project

compilation. To reduce this threat, we use the test failures that are fixed when using Java 9.0.1

as the ground truth because they are incompatibility issues confirmed by JDK developers.

This solution is not perfect as we may miss some real JDK incompatibilities and bugs that

are not noticed and confirmed by JDK developers. For the popular 3rd-party libraries, we

manually inspected all the reported cases (since they are more affordable than the JDK

experiments) to confirm the ground truth, and also filed corresponding bug reports for the

software developers to confirm. The major external threat to our evaluation is whether our

approach may be generalized to libraries other than the studied ones. It should be noted

that JDK is not a single library but a collection of tens of Java packages and even libraries

developed by the 3rd-party such as SAXP libraries by XML-DEV and DOM libraries by

W3C. To reduce such threats, we have also applied DeBBI to detect BBIs for other widely

used 3rd-party libraries from GitHub. In the future, we further plan to further apply our

DeBBI to other widely-used libraries such as the Android SDK.
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CHAPTER 5

FAST AND PRECISE ON-THE-FLY PATCH VALIDATION FOR ALL

Besides exploring speeding up software testing in Chapter 3 and Chapter 4, we also applied

our faster revision testing in software debugging. We aim to decrease the patch validation

time to speed up APR approaches.

Software bugs are inevitable in modern software systems, costing trillions of dollars in

financial loss and affecting billions of people [45]. Meanwhile, software debugging can be

extremely challenging and costly, consuming over half of the software development time and

resources [162]. Therefore, a large body of research efforts have been dedicated to automated

debugging techniques [68, 120, 176]. Among the existing debugging techniques, Automated

Program Repair [73] (APR) techniques hold the promise of reducing debugging effort by

suggesting likely patches for buggy programs with minimal human intervention, and have

been extensively studied in the recent decade. Please refer to the recent surveys on APR for

more details [68, 120].

Generate-and-validate (G&V) APR refers to a practical category of APR techniques that

attempt to fix the bugs by first generating a pool of patches and then validating the patches

via certain rules and/or checks [68]. A patch is said to be plausible if it passes all the

checks. Ideally, we would apply formal verification [127] techniques to guarantee correctness

of generated patches. However, in practice, formal specifications are often unavailable for

real-world projects, thus making formal verification infeasible. In contrast, testing is the

prevalent, economic methodology of getting more confidence about the quality of software

[37]. Therefore, the vast majority of recent G&V APR techniques leverage developer tests as

the criteria for checking correctness of the generated patches [68], i.e., test-based G&V APR.

Two main costs are associated with such test-based G&V APR techniques: (1) the cost of

manipulating program code to fabricate/generate patches based on certain transformation
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rules; (2) repeated executions of all the developer tests to identify plausible patches for the

bugs under fixing. Since the search space for APR is infinite and it is impossible to triage

the elements of this search space due to theoretical limits, test-based G&V APR techniques

usually lack clear guidance and often act in a rather brute-force fashion: they usually generate

a huge pool of patches to be validated and the larger the program the larger the set of

patches to be generated and validated. This suggests that the speed of patch generation

and validation plays a key role in scalability of the APR techniques, which is one of the

most important challenges in designing practical APR techniques [57]. Therefore, apart

from introducing new and/or more effective transformation rules, some APR techniques have

been proposed to mitigate the aforementioned costs. For example, JAID [51] uses mutation

schema to fabricate meta-programs that bundle multiple patches in a single source file, while

SketchFix [81] uses sketches [100] to achieve a similar effect. However, such techniques mainly

aim to speed up the patch generation time, while patch validation time has been shown to be

dominant during APR [118]. Most recently, PraPR [69] aims to reduce both patch generation

and validation time by modifying program code directly at the bytecode level with on-the-fly

patch validation, which directly allows multiple bytecode-level patches to be tested within the

same JVM process. However, bytecode-level APR is not flexible (e.g., large-scope changes

can be extremely hard to implement at the bytecode level) and fails to fix many bugs that

can be fixed at the source-code level [69]; furthermore, PraPR requires decompilation (which

may be imprecise or even fail) to decompile the bytecode-level patches for manual inspection.

In fact, all other popular general-purpose G&V APR techniques fix at the source code level.

In this paper, we propose a unified test-based patch validation framework, named UniAPR,

to empirically study the impact of on-the-fly patch validation for state-of-the-art source-code-

level APR techniques. While existing source-code-level APR usually restarts a new JVM

process for each patch, our on-the-fly patch validation aims to use a single JVM process for

patch validation, as much as possible, and leverages JVM’s dynamic class redefinition feature
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(a.k.a. the HotSwap mechanism and Java Agent technology [55]) to only reload the patched

bytecode classes on-the-fly for each patch. In this way, UniAPR not only avoids reloading

(also including linking and initializing) all used classes for each patch (i.e., only reloading the

patched bytecode files), but also can avoid the unnecessary JVM warm-up time (e.g., the

accumulated JVM profiling information across patches enables more and more code to be

JIT-optimized and the already JIT-optimized code can also be shared across patches).

UniAPR has been implemented as a fully automated Maven [33] plugin (available at [165]),

to which almost all existing state-of-the-art Java APR tools can be attached in the form

of patch generation add-ons. We have constructed add-ons for representative APR tools

from different APR families. Specifically, we have constructed add-ons for CapGen [175],

SimFix [85], and ACS [179] that are modern representatives of template-/pattern-based [? ?

], heuristic-based [41, 95], and constraint-based [126, 180] techniques. Our empirical study

shows for the first time that on-the-fly patch validation can often speed up state-of-the-art

APR systems by over an order of magnitude, enabling all existing APR techniques to explore

a larger search space to fix more bugs in the near future.

Furthermore, our study (Section 5.3.1) shows the first empirical evidence that when sharing

JVM across multiple patches, the global JVM state may be polluted by earlier patch executions,

making later patch execution results unreliable. For example, some patches may modify

some static fields, which are used by some later patches sharing the same JVM. Therefore,

we further propose the first solution to address such imprecision problem by isolating patch

executions via resetting JVM states after each patch execution using runtime bytecode

transformation. Our experimental results show that our UniAPR with JVM reset is able

to the avoid imprecision/unsoundness of vanilla on-the-fly patch validation with negligible

overhead.

We envision a future wherein all existing APR tools (like SimFix [85], CapGen [175], and

ACS [179]) and major APR frameworks (like ASTOR [115] and Repairnator [122]) are
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leveraging this framework for patch validation. In this way, researchers will only need to

focus on devising more effective algorithms for better exploring the patch search space, rather

than spending time on developing their own components for patch validation, as we can have

a unified, generic, and much faster framework for all. In summary, this paper makes the

following contributions:

• Framework. We introduce the first unified on-the-fly patch validation framework,

UniAPR, to empirically study the impact of on-the-fly patch validation for state-of-the-

art source-code-level APR techniques.

• Technique. We show the first empirical evidence that on-the-fly patch validation can

be imprecise/unsound, and introduce a new technique to reset the JVM state right

after each patch execution to address such issue.

• Implementation. We have implemented on-the-fly patch validation based on the

JVM HotSwap mechanism and Java Agent technology [55], and implemented the JVM-

reset technique based on the ASM bytecode manipulation framework [128]; the overall

UniAPR tool has been implemented as a practical Maven plugin [165], and can accept

different APR techniques as patch generation add-ons.

• Empirical Study. We conduct a large-scale study of the effectiveness of UniAPR on

its interaction with state-of-the-art APR systems from three different APR families,

demonstrating that UniAPR can often speed up state-of-the-art APR by over an order

of magnitude (without validation imprecision/unsoundness). Furthermore, the study

results also indicate that UniAPR can serve as a unified platform to naturally support

hybrid APR to directly combine the strengths of different APR tools.
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Figure 5.1: UniAPR workflow

5.1 Approach

5.1.1 Overview

Figure 5.1 depicts an the overall flow of our UniAPR framework. According to the figure,

given a buggy project, UniAPR first leverages any of the existing APR tools (integrated as

UniAPR add-ons) to generate source-code level patches (marked with ❶). Then, UniAPR

performs incremental compilation to compile the patched source file(s) by each patch into

bytecode file(s) (marked with ❷). Note that, UniAPR is a unified framework and can also

directly take the bytecode patches generated by the PraPR [69] (and future) bytecode APR

technique (marked with the dashed line directly connecting APR tools into bytecode patches).

In this way, UniAPR has a pool of bytecode patches for patch validation. Also note that

besides constructed before patch validation, the patch pool can also be continuously generated

during the patch-validation process1; in either way, UniAPR’s reduction on patch-validation

time is also not affected.

1If patches are continuously generated, the patch-validation component needs to obtain the live stream of
patch information from the running patch-generation component (e.g., via lightweight socket connections).
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During the actual patch validation, UniAPR first compiles the entire buggy project into

bytecode files (i.e., .class files), and then loads all the bytecode files into the JVM through

JVM class loaders (marked with ❸ and ❹ in the figure). Note that these two steps are exactly

the same as executing the original tests for the buggy project. Since all the bytecode files for

the original project are loaded within the JVM, when validating each patch, UniAPR only

reloads the patched bytecode file(s) by that particular patch via the Java Agent technology

and HotSpot mechanism, marked with ❺ (as the other unpatched bytecode files are already

within the JVM). Then, the test driver can be triggered to execute the tests to validate

against the patch without restarting a new JVM. After all tests are done for this patch

execution, UniAPR will replace the patched bytecode file(s) with the original one(s) to revert

to the original version. Furthermore, UniAPR also resets the global JVM states to prepare a

clean JVM environment for the next patch execution (marked with the short dashed lines).

The same process is repeated for each patch. Finally, the patch validation results will be

stored into the patch execution database via socket connections (marked with ❻). Note that

for any plausible patch that can pass all the tests, UniAPR will directly retrieve the original

source-level patch for manual inspection (marked with ❼) in case the patch was generated by

source-level APR.

We have already constructed add-ons for three different APR tools representing three dif-

ferent families of APR techniques. These add-ons include CapGen [175] (representing

pattern/template-based APR techniques), SimFix [85] (representing heuristic-based tech-

niques), and ACS [179] (representing constraint-based techniques). Of course, users of

UniAPR can also easily build new patch generation add-ons for other APR tools. For existing

APR tools, this can be easily done by modifying their source code so that the tools abandon

validation of patches after generating/compiling them.

Next, we will talk about our detailed design for fast patch validation via on-the-fly patching

(Section 5.1.2) as well as precise patch validation via JVM reset (Section 5.1.3).
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5.1.2 Fast Patch Validation via On-the-fly Patching

Algorithm 2 is a simplified description of the steps that vanilla UniAPR (without JVM-reset)

takes in order to validate candidate patches on-the-fly. The algorithm takes as inputs the

original buggy program P , its test suite T , and the set of candidate patches P generated by

any APR technique2. The output is a map, R, that maps each patch into its corresponding

execution result. The overall UniAPR algorithm is rather simple. UniAPR first initializes all

patch execution results as unknown (Line 2). Then, UniAPR gets into the loop body and

obtains the set of patches still with unknown execution results (Line 4). If there is no such

patches, the algorithm simply returns since all the patches have been validated. Otherwise,

it means this is the first iteration or the earlier JVM process gets terminated abnormally

(e.g., due to timeout or JVM crash). In either case, UniAPR will create a new JVM process

(Line 7) to evaluate the remaining patches (Line 8).

We next talk about the detailed validate function, which takes the remaining patches, the

original test suite, and a new JVM as input. For each remaining patch P ′, the function

first obtains the patched class name(s) Cpatched and patched bytecode file(s) Fpatched within

P ′ (Lines 11 and 12). Then, the function leverages our HotSwap Agent to replace the

bytecode file(s) under the same class name(s) as Cpatched with the patched bytecode file(s)

Fpatched; it also stores the replaced bytecode file(s) as Forig to recover it later (Line 13). Note

that our implementation will explicitly load the corresponding class(es) to patch (e.g., via

Class.forName()) if they are not yet available before swapping. In this way, the function

can now execute the tests within this JVM to validate the current patch since the patched

bytecode file(s) has already been loaded (Lines 14-26). If the execution for a test finishes

normally, its status will be marked as Plausible or Non-Plausible (Lines 16-19); otherwise,

2Note that here we assume that P is available before patch validation for the ease of presentation, but our
overall approach is general and can also easily handle the case where P is continuously constructed during
patch validation.
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Algorithm 2: Vanilla on-the-fly patch validation
Input: Original buggy program P, test suite T , and set of candidate patches P
Output: Validation status R : P→ {PLAUSIBLE, NON− PLAUSIBLE, ERROR}

1 begin
2 R← P× {UNKNOWN} ; // initialize result function

3 while True do
4 Pleft ← {P ′ | P ′ ∈ P ∧R(P ′) = UNKNOWN}// get all the left patches not yet validated

5 if Pleft = ∅ then
6 return R // return if no left patches

7 JVM← createJVMProcess()// create a new JVM

8 validate(Pleft, T ,JVM)) // validate the left patches on the new JVM

9 function validate(Pleft, T ,JVM):
10 for P ′ in Pleft do
11 Cpatched ← patchedClassNames(P ′)
12 Fpatched ← patchedBytecodeFiles(P ′) // Swap in the patched bytecode files

13 Forig ← HotSwapAgent.swap(JVM, Cpatched,Fpatched)
14 for t in T do
15 try:
16 if run(JVM, t) = FAILING then
17 status← NON− PLAUSIBLE

18 else
19 status← PLAUSIBLE

20 catch TimeOutException, MemoryError :
21 status← ERROR

22 R← R∪ {P ′ → status}
23 if status = NON-PLAUSIBLE then
24 break // continue with the next patch when current one is falsified

25 if status = ERROR then
26 return // restart a new JVM when this current one timed out or crashed

// Swap back the original bytecode files

27 HotSwapAgent.swap(JVM, Cpatched,Forig)

the status will be marked as Error, e.g., due to timeout or JVM crash (Lines 20-21). Then,

P ′’s status will be updated in R (Line 22). If the current status is Non-Plausible, the

function will abort the remaining test executions for the current patch since it has been

falsified, and move on to the next patch (Line 24); if the current status is Error, the function

will return to the main algorithm (Line 26), which will restart the JVM. When the validation

for the current patch finishes without the Error status, the function will also recover the

patched bytecode file(s) into the original one(s) to facilitate the next patch validation (Line

27).
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Example challenge: monitor/reset JVM

P1 P2 P3 P4 …

write:
C.f=3;

Objs

w
rit
e

re
ad

Objs

w
rit
e

re
ad read:

assertEquals(C.f,1)

public class C{
static int f;
static Object o;
<clinit>(){
f=1;
o=new Object();

}
}

Figure 5.2: Imprecision under vanilla UniAPR

5.1.3 Precise Patch Validation via JVM Reset

Limitations for vanilla on-the-fly patch validation

The vanilla on-the-fly patch validation presented in Section 5.1.2 works for most patches of

most buggy projects. The basic process can be illustrated via Figure 5.2. In the figure, each

patch (e.g., from P1 to P4) gets executed sequentially on the same JVM. It would be okay if

every patch accesses and modifies the objects created by itself, e.g., P1 and P2 will not affect

each other and the vanilla on-the-fly patch validation results for P1 and P2 will be the same

as the ground-truth patch validation results. However, it will be problematic if one patch

writes to some global space (e.g., static fields) and later on some other patch(es) reads from

that global space. In this way, earlier patch executions will affect later patch executions, and

we call such global space pollution sites. To illustrate, in Figure 5.2, P3 write to some static

field C.f, which is later on accessed by P4. Due to the existence of such pollution site, the

execution results for P4 will no longer be precise, e.g., its assertion will now fail since C.f is

no longer 1, although it may be a correct patch.

Technical challenges

We observe that accesses to static class fields are the main reason leading to imprecise

on-the-fly patch validation. Ideally, we only need to reset the values for the static fields that
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// org.joda.time.TestYearMonthDay_Constructors.java

public class TestYearMonthDay_Constructors extends TestCase {

private static final DateTimeZone PARIS = DateTimeZone.forID("Europe/Paris");

private static final DateTimeZone LONDON = DateTimeZone.forID("Europe/London");

private static final Chronology GREGORIAN_PARIS =

GregorianChronology.getInstance(PARIS);

...

Figure 5.3: Static field dependency

// org.joda.time.TestDateTime_Basics.java

public class TestDateTime_Basics extends TestCase {

private static final ISOChronology ISO_UTC = ISOChronology.getInstanceUTC();

...

// org.joda.time.chrono.ISOChronology.java

public final class ISOChronology extends AssembledChronology {

private static final ISOChronology[] cFastCache;

static {

cFastCache = new ISOChronology[FAST_CACHE_SIZE];

INSTANCE_UTC = new ISOChronology(GregorianChronology.getInstanceUTC());

cCache.put(DateTimeZone.UTC, INSTANCE_UTC);

}

...

Figure 5.4: Static initializer dependency

may serve as pollution sites right after each patch execution. In this way, we can always have

a clean JVM state to perform patch execution without restarting the JVM for each patch.

However, it turns out to be rather challenging:

First, we cannot simply reset the static fields that can serve as pollution sites. The reason

is that some static fields are final and cannot be reset directly. Furthermore, static fields

may also be data-dependent on each other; thus, we have to carefully maintain their original

ordering, since otherwise the program semantics may be changed. For example, shown in

Figure 5.3, final field GREGORIAN_PARIS is data-dependent on another final field, PARIS,

under the same class within project Joda-Time [34] from the widely studied Defects4J dataset

[86]. The easiest way to keep such ordering and reset final fields is to simply re-invoke the

original class initializer. However, according to the JVM specification, only JVM can invoke

such static class initializers.
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Second, simply invoking the class initializers for all classes with pollution sites may not

work. For example, a naive way to reset the pollution sites is to simply trace the classes

with pollution sites executed during each patch execution; then, we can simply force JVM

to invoke all their class initializers after each patch execution. However, it can bring side

effects because the class initializers may also depend on each other. For example, shown in

Figure 5.4, within Joda-Time, the static initializer of class TestDateTime_Basics depends on

the static initializer of ISOChronology. If TestDateTime_Basics is reinitialized earlier than

ISOChronology, then field ISO_UTC will no longer be matched with the newest ISOChronology

state. Therefore, we have to reinitialize all such classes following their original ordering as if

they had been executed on a new JVM.

Based on the above analysis, we basically have two choices to implement such system: (1)

customizing the underlying JVM implementation, and (2) simulating the JVM customizations

at the application level. Although it would be easier to directly customize the underlying

JVM implementation, the system implementation will not be applicable for other stock JVM

implementations. Therefore, we choose to simulate the JVM customizations at the application

level.

JVM reset via bytecode transformation

We now present our detailed approach for resetting JVM at the the application level. Inspired

by prior work on speeding up traditional regression testing [42], we perform runtime bytecode

transformation to simulate JVM class initializations for patch execution isolation for the first

time. The overall approach is illustrated in Figure 5.5. We next present the detailed three

phases as follows.

Static Pollution Analysis. Before all the patch executions, our approach performs

lightweight static analysis to identify all the pollution sites within the bytecode files of all
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P1 P2 P3 P4 …

public class C {
static int f;
static Object o;
<clinit>(){
f=1;
o=new Object();

}
}

Runtime Bytecode Transformation

Static Pollution Analysis

public void resetJVM(){
for(Class c :statusMap.keySet())
statusMap.put(c, false);

resetJDKSystemProperties();
…

}

Dynamic State Reset

public static boolean check(Class c){
if(!statusMap.get(c)){

statusMap.put(c, true);
return false;

}
return true;

}

public class C {
static int f;
static Object o;
<clinit>(){
uniapr_clinit()

}
public static void uniapr_clinit(){
synchronized(C.class){
if(!UniAPR.check(C.class)){
f=1;
o=new Object();

}
}

}
}

Figure 5.5: On-the-fly patch validation via JVM reset

classes for the project under repair, including all the application code and 3rd-party library

code. Note that we do not have to analyze the JDK library code since JDK usually provides

public APIs to reset the pollution sites within the JDK, e.g., System.setProperties(null)

can be used to reset any prior system properties and System.setSecurityManager(null) can

be leveraged to reset prior security manager. The analysis basically returns all classes with

non-final static fields or final static fields with non-primitive types (their actual object

states in the heap can be changed although their actual references cannot be changed), since

the states for all such static fields can be changed across patches. Shown in Figure 5.5, the

blue block denotes our static analysis, and class C is identified since it has static fields f and

o that can be mutated.

Table 5.1: Class initialization conditions

C1 T is a class and an instance of T is created
C2 T is a class and a static method declared by T is invoked.
C3 A static field declared by T is assigned
C4 A static field declared by T is used and the field is not a constant variable
C5 T is a top level class, and an assert statement lexically nested in T is executed

Runtime Bytecode Transformation. According to Java Language Specification (JSL) [130],

static class initializers get invoked when any of the five conditions shown in Table 5.1 gets

satisfied. Therefore, the ideal way to reinitialize the classes with pollution sites is to simply

follow the JSL design. To this end, we perform runtime bytecode transformation to add class

initializations right before any instance that falls in to the five conditions shown in Table 5.1.
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Note that our implementation also handles the non-conventional Reflection-based accesses to

such potential pollution sites. Since JVM does not allow class initialization at the application

level, following prior work on speeding up traditional regression testing [42], we rename the

original class initializers (i.e., <clinit>()) to be invoked into another customizable name

(say uniapr_clinit()). Meanwhile, we still keep the original <clinit>() initializers since

JVM needs that for the initial invocation; however, now <clinit>() initializers do not need

to have any content except an invocation to the new uniapr_clinit(). Note that we also

remove potential final modifiers for pollution sites during bytecode transformation to enable

reinitializations of final non-primitive static fields. Since this is done at the bytecode level

after compilation, the original compiler will still ensure that such final fields cannot be

changed during the actual compilation phase.

Now, we will be able to reinitialize classes via invoking the corresponding uniapr_clinit()

methods. However, JVM only initializes the same class once within the same JVM, while

now uniapr_clinit() will be executed for each instance satisfying the five conditions in

Table 5.1. Therefore, we need to add the dynamic check to ensure that each class only gets

(re)initialized once for each patch execution. Shown in Figure 5.5, the orange blocks denote

different patch executions. During each patch execution, the classes with pollution sites will

be transformed at runtime. For example, class C will be transformed into the code block

connected with the P3 patch execution in Figure 5.5; the yellow line in the transformed

code denotes the dynamic check to ensure that C is only initialized once for each patch. The

pseudo code for the dynamic check is shown in the top-right of the figure: the check maintains

a ConcurrentHashMap for the classes with pollution sites and their status (true means the

corresponding class has been reinitialized). The entire initialization is also synchronized based

on the corresponding Class object to handle concurrent accesses to class initializers; in fact,

JVM also leverages a similar mechanism to avoid class reinitializations due to concurrency

(despite implementing that at a different level). (Note that this simplified mechanism is just
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for illustration purpose; our actual implementation manipulates arrays with optimizations

for faster and safe tracking/check.) In this way, when the first request for initializing class

C arrives, all the other requests will be blocked. If the class has not been initialized, then

only the current access will get the return value of false to reinitialize C, while all other

other requests will get the true value and skip the static class initialization. Furthermore,

the static class initializers get invoked following the same order as if they were invoked in a

new JVM.

Dynamic State Reset. After each patch execution, our approach will reset the state

for the classes within the status ConcurrentHashMap. In this way, during the next patch

execution, all the used classes within the ConcurrentHashMap will be reinitialized (following

the check in Figure 5.5). Note that besides the application and 3rd-party classes, the JDK

classes themselves may also have pollution sites. Luckily, JDK provides such common APIs

to reset such pollution sites without the actual bytecode transformation. In this way, our

implementation also invokes such APIs to reset potential JDK pollution sites. Please also

note that our system provides a public interface for the users to customize the reset content

for different projects under repair. For example, some projects may require preparing specific

external resources for each patch execution, which can be easily added to our public interface.

In Figure 5.5, the green strips denote the dynamic state reset, and the example reset code

after P3’s execution simply resets the status for all classes within the status map as false

and also resets potential JDK pollution sites within classes.

5.2 Experimental Setup

5.2.1 Dataset

We choose the Defects4J (V1.0.0) benchmark suite [86], since it contains hundreds of real-

world bugs from real-world systems, and has become the most widely studied dataset for
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Table 5.2: Defects4J V1.0.0 statistics

Sub. Name #Bugs #Tests LoC

Chart JFreeChart 26 2,205 96K
Time Joda-Time 27 4,130 28K
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Closure Google Closure compiler 133 7,927 90K

Total 357 20,109 321K

program repair [51, 63, 69, 85, 175] or even software debugging in general [43, 101, 102].

Table 5.2 presents the statistics for the Defects4J dataset. Column “Sub.” presents the project

IDs within Defects4J, while Column “Name” presents the actual project names. Column

“#Bugs” presents the number of bugs collected from real-world software development for each

project, while Columns “#Tests” and “LoC” present the number of tests (i.e., JUnit test

methods) and the lines of code for the HEAD buggy version of each project.

Being a well-developed field, APR offers us a cornucopia of choices to select from. According to

a recent study [105], there are 31 APR tools targeting Java programs considering two popular

sources of information to identify Java APR tools: the community-led program-repair.org

website and the living review of APR by Monperrus [121]. 17 of those Java APR tools are

found to be publicly available and applicable to the widely used Defects4J benchmark suite

(without additional manually collected information, e.g., potential bug locations) as of July

2019. Note that all such tools are source-level APR, since the only bytecode-level APR tool

PraPR was only available after July 2019. Table 5.3 presents all such existing Java-based

APR tools, which can be categorized into three main categories according to prior work [105]:

heuristic-based [85, 95, 106], constraint-based [63, 180], and template-based [104, 175] repair

techniques. In this work, we aims to speed up all existing source-level APR techniques via

on-the-fly patch validation. Therefore, we select one representative APR tool from each

of the three categories for our evaluation to demonstrate the general applicability of our

UniAPR framework. All the three considered APR tools, i.e., ACS [179], SimFix [85], and
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Table 5.3: Available Java APR tools for Defects4J [105]

Tool Category Tools

Constraint-based ACS, Nopol, Cardumen, Dynamoth
Heuristic-based SimFix, Arja, GenProg-A, jGenProg,

jKali, jMutRepair, Kali-A, RSRepair-A
Template-based CapGen, TBar, AVATAR, FixMiner,

kPar

CapGen [175] are highlighted in bold font in the table. For each of the selected tools, we

evaluate them on all the bugs that have been reported as fixed (with correct patches) by their

original papers to evaluate: (1) UniAPR effectiveness, i.e., how much speedup UniAPR can

achieve, and (2) UniAPR precision, i.e., whether the patch validation results are consistent

with and without UniAPR.

5.2.2 Implementation

UniAPR has been implemented as a publicly available fully automated Maven plugin [165],

on which one can easily integrate any patch generation add-ons. The current implementation

involves over 10K lines of Java code. As a Maven plugin, the users simply need to add the

necessary plugin information into the POM file. In this way, once the users fire command:

mvn org.uniapr:uniapr-plugin:validate, the plugin will automatically obtain all the

necessary information for patch validation. It will automatically obtain the test code, source

code, and 3-rd party libraries from the underlying POM file for the actual test execution.

Furthermore, it will automatically load all the patches from the default patches-pool

directory (note that the patch directory name and patch can be configured through POM

as well) created by the APR add-ons for patch validation. The current UniAPR version

assumes the patch directory generated by the APR add-ons to include all available patches

represented by their patched bytecode files, i.e., the patch pool is constructed before patch

validation. Note that, each patch may involve more than one patched bytecode file, e.g., some

APR tools (such as SimFix [85]) can fix bugs with multiple edits.
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During patch validation, UniAPR forks a JVM and passes all the information about the test

suites and the subject programs to the child process. The process runs tests on each patch

and reports their status. We use TCP Socket Connections to communicate between processes.

UniAPR repeats this process of forking and receiving report results until all the patches are

executed. It is worth noting that it is very easy for UniAPR to fork two or more processes to

take maximum advantage of today’s powerful machines. However, for a fair comparison with

existing work, we always ensure that only one JVM is running patch validation at any given

time stamp.

5.2.3 Experiment Settings

For each of the studied APR tools, we perform the following experiments on all the bugs

that have been reported as fixed in their original papers:

First, we execute the original APR tools to trace their original patch-validation time and

detailed repair results (e.g., the number of patches executed and plausible patches produced).

Note that the only exception is for CapGen: digging into the decompiled CapGen code

(CapGen source code is not available), we observed that CapGen excluded some (expensive)

tests for certain bugs via unsafe test selection. Such unsafe test selection is inconsistent with

the original paper [175], and can be dangerous (i.e., it may fail to falsify incorrect patches).

Therefore, to enable a fair and realistic study, for CapGen, we build a variant for vanilla

UniAPR that simply restarts a new JVM for each patch (same as CapGen) to simulate the

original CapGen performance. Note that if we had presented the performance comparison

between UniAPR and the original CapGen using the same reduced tests, the UniAPR speedup

can be even larger because UniAPR mainly reduces the JVM-restart overhead — similar

reduction on JVM overhead would yield larger overall speedup given shorter test-execution

time (as the overall patch-validation time includes JVM overhead and test-execution time).

For example, the average speedup achieved by UniAPR with JVM-reset on Chart bugs
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is 15.7X compared with the original CapGen (on the same set of reduced tests) and 8.4X

compared with our simulated CapGen.

Next, we modify the studied tools and make them conform to UniAPR add-on interfaces,

i.e., dumping all the generated patches into the patch directory format required by UniAPR.

Then, we launch our UniAPR to validate all the patches generated by each of the studied

APR tools on all the available tests, and trace the new patch validation time and results.

Note that we repeat this step for both variants of UniAPR (i.e., vanilla UniAPR and UniAPR

with JVM reset) to evaluate their respective performance.

To evaluate our UniAPR variants, we include the following metrics: (1) the speedup compared

with the original patch validation time, measuring the effectiveness of UniAPR, and (2) the

repair results compared with the original patch validation, measuring the precision of our

patch validation (i.e., checking whether UniAPR fails to fix any bugs that can be fixed via

traditional patch validation). All our experimentation is done on a Dell workstation with

Intel Xeon CPU E5-2697 v4@2.30GHz and 98GB RAM, running Ubuntu 16.04.4 LTS and

Oracle Java 64-Bit Server version 1.7.0 80.

5.3 Result Analysis

To thoroughly evaluate our UniAPR framework, in this study, we aim to investigate the

following two research questions.

5.3.1 RQ1: How does vanilla on-the-fly patch validation perform for automated

program repair?

Effectiveness

For answering this RQ, we evaluated vanilla UniAPR (i.e., without JVM-reset) that is

configured to use the add-on corresponding to each studied APR tool. The main experimental
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(a) ACS (b) SimFix (c) CapGen

Figure 5.6: Speedup achieved by vanilla UniAPR

(a) ACS (b) SimFix (c) CapGen

Figure 5.7: Speedup achieved by UniAPR with JVM reset

(a) ACS (b) SimFix (c) CapGen

Figure 5.8: JVM-reset overhead over vanilla UniAPR

results are presented in Figure 5.6. In each sub-figure, the horizontal axis presents all the bugs

that have been reported to be fixed by each studied tool, while the vertical axis presents the

time cost (s); the solid and dashed lines present the time cost for traditional patch validation

and our vanilla UniAPR, respectively.

From the figure, we can observe that the vanilla UniAPR can substantially speed up the

existing patch validation component for all state-of-the-art APR tools with almost no

slowdowns. For example, when running ACS on Math-25, the traditional patch validation
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Table 5.4: Inconsistent fixing results

Tool # All # Mismatch Ratio (%)

CapGen 22 3 13.64%
SimFix 34 1 2.94%
ACS 18 0 0.00%

All 74 4 5.41%

costs 698s, while on-the-fly patch validation via vanilla UniAPR takes only 2.3s to produce

the same patch validation results, i.e., 304.89X speedup; when running SimFix on Lang-60,

the traditional patch validation costs 924s, while vanilla UniAPR takes only 4s to produce the

same patch validation results, i.e., 229.96X speedup; when running CapGen on Math-80, the

traditional patch validation costs 18,991s, while vanilla UniAPR takes only 1582s to produce

the same patch validation results, i.e., 12.00X speedup. Note that we have further marked

various peak speedups in the figure to help better understand the effectiveness of UniAPR.

To our knowledge, this is the first study demonstrating that on-the-fly patch validation can

also substantially speed up state-of-the-art source-level APR.

Precision

We further study the number of bugs that vanilla UniAPR does not produce the same repair

results as the traditional patch validation (that restarts a new JVM for each patch). Table 5.4

presents the summarized results for all the studied APR tools on all their fixable bugs. In

this table, Column “Tool” presents the studied APR tools, Column “# All” presents the

number of all studied fixable bugs for each APR tool, Column “# Mismatch” presents the

number of bugs that vanilla UniAPR has inconsistent fixing results with the original APR

tool, and Column “Ratio (%)” presents the ratio of bugs with inconsistent results. From

this table, we can observe that vanilla UniAPR produces imprecise results for 5.41% of the

studied cases overall. To our knowledge, this is the first empirical study demonstrating that

on-the-fly patch validation may produce imprecise/unsound results compared to traditional
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patch validation. Another interesting finding is that 3 out of the 4 cases with inconsistent

patching results occur on the CapGen APR tool. One potential reason is that CapGen is a

pattern-based APR system and may generate far more patches than SimFix and ACS. For

example, CapGen on average generates over 1,400 patches for each studied bug, while SimFix

only generates around 150 on average. In this way, CapGen has way more patches that may

affect the correct patch execution than the other studied APR tools. Note that SimFix has

only around 150 patches on average since we only studied its fixed bugs; if we had considered

all Defects4J bugs studied by the original SimFix paper (including the bugs that cannot be

fixed by SimFix), SimFix will produce many more patches, exposing more imprecise/unsound

patch validation issues as well as leading to much larger UniAPR speedups.

5.3.2 RQ2: How does on-the-fly patch validation with jvm-reset perform for

automated program repair?

Effectiveness

We now present the experimental results for our UniAPR with JVM-reset. The main

experimental results are presented in Figure 5.7. In each sub-figure, the horizontal axis

presents all the bugs that have been reported to be fixed by each studied tool, while the

vertical axis presents the time cost (s); the solid and dashed lines present the time cost for

traditional patch validation and UniAPR with JVM reset, respectively. From the figure, we

can observe that for all the studied APR tools, UniAPR with JVM reset can also substantially

speed up the existing patch validation component with almost no performance degradation.

For example, when running ACS on Math-25, the traditional patch validation costs 698s,

while on-the-fly patch validation via UniAPR with JVM reset takes only 2.6s to produce the

same patch validation results, i.e., 264.47X speedup. Note that we have also marked various

peak speedups in the figure to help better understand the effectiveness of UniAPR with JVM

reset. While we observe clear speedups for the vast majority of the bugs (and almost no
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slowdowns), the achieved speedups vary a lot for all the studied APR tools on all the studied

bugs. The reason is that the speedups are impacted by many different factors, such as the

number of patches executed, the number of bytecode files loaded for each patch execution,

the individual test execution time, and so on. For example, we observe that UniAPR even

slows down the patch validation for ACS slightly on one bug (i.e., for 1min). Looking into

the specific bug (i.e., Math-3), we find that ACS only produces one patch for that bug, and

there is no JVM sharing optimization opportunity for UniAPR on-the-fly patch validation.

To further confirm our finding, we perform the Pearson Correlation Coefficient analysis [136]

between the number of patches for each studied bug and its corresponding speedup for ACS.

Shown in Figure 5.9, the horizontal axis denotes the number of patches, while the vertical

axis denotes the per-patch speedup (X) achieved; each data point represents one studied bug

for ACS. From this figure, we can observe that UniAPR tends to achieve significantly larger

speedups for bugs with more patches with a clear positive coefficient R of 0.51 and a p value

of 0.031 (which is statistically significant at the significance level of 0.05), demonstrating

that UniAPR with JVM reset can also substantially outperform existing patch validation,

with larger speedups for larger systems with more patches.

Meanwhile, we observe that UniAPR with JVM reset has rather close performance compared

with the vanilla UniAPR (shown in Figure 5.6 and Figure 5.7), indicating that UniAPR with

JVM reset has negligible overhead compared with the vanilla UniAPR on all the studied

bugs for all the studied APR systems. To confirm our finding, Figure 5.8 further presents the

time cost comparison among the two UniAPR variants on the three APR systems. In the

figure, the horizontal axis presents all the bugs studied for each system while the vertical

axis presents the time cost; the solid and dashed lines present the time cost for UniAPR with

JVM-reset and vanilla UniAPR, respectively. Shown in the figure, JVM reset has incurred

negligible overhead among all the studied bugs for all three systems on UniAPR, e.g., on

average 8.33%/7.81%/1.72% overhead for ACS/CapGen/SimFix. The reason is that class
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reinitializations only need to be performed at certain sites for only the classes with pollution

sites. Also, we have various optimizations to speed up JVM reset. For example, although our

basic JVM-reset approach in Figure 5.5 performs runtime checks on a ConcurrentHashMap,

our actual implementation uses arrays for faster class status tracking/check. Furthermore,

we observe that the overhead does not change much regardless of the bugs studied, e.g.,

our UniAPR with JVM-reset has stable overhead across bugs with different number of

patches. To further confirm our finding, we perform the Pearson Correlation Coefficient

analysis [136] between the number of patches for each studied bug and the corresponding

JVM-reset overhead (over vanilla UniAPR) on the ACS tool with the highest overhead.

Shown in Figure 5.10, the horizontal axis denotes the number of patches, while the vertical

axis denotes the overhead (%) incurred; each data point represents one studied bug for ACS.

From this figure, we can observe that there is no clear correlation (at the significance level

of 0.05), i.e., JVM-reset overhead is not affected by the numbers of patches. In summary,

UniAPR with JVM-reset only incurs negligible and stable overhead (e.g., less than 8.5% for

all studied tools) compared to the vanilla UniAPR, demonstrating the scalability of UniAPR

with JVM-reset.

Precision

According to our experimental results, UniAPR with JVM-rest produces exactly the same

APR results as the traditional patch validation, i.e., UniAPR with JVM-reset successfully

fixed all the bugs that vanilla UniAPR failed to fix, mitigating the imprecision/unsoundness

of vanilla UniAPR. We now discuss all 4 bugs that UniAPR with JVM reset can fix while

vanilla UniAPR without JVM reset cannot fix:

Figure 5.11 presents the test that fails on the only plausible (also correct) patch of Lang-6

(using CapGen) when running UniAPR without JVM-reset. Given the expected resulting

string ‘‘bread &[] butter’’, the actual returned one is ‘‘bread &[amp;] butter’’. Digging
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Figure 5.9: Correlation between patch number and speedup achieved by UniAPR with JVM
reset

Figure 5.10: Correlation between patch number and overhead incurred by JVM-reset over
vanilla UniAPR

// org.apache.commons.lang3.StringEscapeUtilsTest.java

public void testUnescapeHtml4() {

for (int i = 0; i < HTML_ESCAPES.length; ++i) {

String message = HTML_ESCAPES[i][0];

String expected = HTML_ESCAPES[i][2];

String original = HTML_ESCAPES[i][1];

// assertion failure: ampersand expected:<bread &[] butter> but was:<bread &[amp;] butter>

assertEquals(message, expected, StringEscapeUtils.unescapeHtml4(original));

...

Figure 5.11: Test failed without JVM-reset on Lang-6

into the code, we realize that class StringEscapeUtils has a static field named UNESCAPE_HTML4

, which is responsible for performing the unescapeHtml4() method invocation. However,
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during earlier patch executions, the actual object state of that field is changed, making

the unescapeHtml4() method invocation return problematic result with vanilla UniAPR. In

contrast, when running UniAPR with JVM-reset, field UNESCAPE_HTML4 will be recreated

before each patch execution (if accessed) and will have a clean object state for performing

the unescapeHtml4() method invocation.

// org.apache.commons.math3.EventStateTest.java

public void testIssue695() {

FirstOrderDifferentialEquations equation = new FirstOrderDifferentialEquations();

...

double tEnd = integrator.integrate(equation, 0.0, y, target, y);

...

private static class ResettingEvent implements EventHandler {

private static double lastTriggerTime = Double.NEGATIVE_INFINITY;

public double g(double t, double[] y) {

// assertion error

Assert.assertTrue(t >= lastTriggerTime);

return t - tEvent;

}

...

Figure 5.12: Test failed without JVM-reset on Math-30/41

Figure 5.12 shows another test that fails on the only plausible (and correct) patch of Math-30

when running vanilla UniAPR with CapGen patches, and fails on the only plausible (and

correct) patch of Math-41 when running vanilla UniAPR with SimFix patches. Looking into

the code, we find that the invocation of integrate() in the test will finally call the method

g() in class ResettingEvent (in the bottom). The static field lastTriggerTime of class

ResettingEvent should be Double.NEGATIVE_INFINITY in Java, which means the assertion

should not fail. Unfortunately, the earlier patch executions pollute the state and change

the value of the field. Thus, the test failed when running with vanilla UniAPR on the two

plausible patches. In contrast, UniAPR with JVM-reset is able to successfully recover that.

There are four plausible CapGen patches on Math-5 (one is correct) when running with the

traditional patch validation. With vanilla UniAPR, all the plausible patches failed on some

tests. Figure 5.13 shows the test that fails on three plausible patches (including the correct
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// org.apache.commons.math3.genetics.UniformCrossoverTest.java

public class UniformCrossoverTest {

private static final int LEN = 10000;

private static final List<Integer> p1 = new ArrayList<Integer>(LEN);

private static final List<Integer> p2 = new ArrayList<Integer>(LEN);

public void testCrossover() {

performCrossover(0.5);

...

private void performCrossover(double ratio) {

...

// assertion failure: expected:<0.5> but was:<5.5095>

Assert.assertEquals(1.0 - ratio, Double.valueOf((double) from1 / LEN), 0.1);

...

Figure 5.13: Test failed without JVM-reset on Math-5

// org.apache.commons.math3.complex.ComplexTest.java

public class ComplexTest {

private double inf = Double.POSITIVE_INFINITY;

...

public void testMultiplyNaNInf() {

Complex z = new Complex(1,1);

Complex w = z.multiply(infOne);

// assertion failure: expected:<-Infinity> but was:<Infinity>

Assert.assertEquals(w.getReal(), inf, 0);

...

Figure 5.14: Another test failed without JVM-reset on Math-5

one) on Math-5. The expected value of the assertion should be 0.5, but the actual value

turned to 5.5095 due to the change of variable from1. After inspecting the code, we found the

value of from1 is decided by two static fields p1 and p2 in class UniformCrossoverTest. The

other earlier patch executions pollute the field values, leading to this test failure when running

with vanilla UniAPR. Figure 5.14 presents another test that fails on one plausible patch on

Math-5. The expected value from invocation w.getReal() should be Infinity, which should

be the same as field inf defined in class ComplexTest; however, the actual result from the

method invocation is -Infinity. The root cause of this test failure is similar to the previous

ones, the static fields NaN and INF in class Complex are responsible for the result of method

invocation getReal(). In this way, getReal() returns a problematic result because the earlier

patch executions changed the corresponding field values. In contrast, using UniAPR with

JVM-reset, all the four plausible patches are successfully produced.
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5.4 Discussion

Having single JVM session for validating more than one patch has the immediate benefit of

skipping costly JVM restart, reload, and warm-up. As shown by our empirical study, this

offers substantial speedups in patch validation. On the other hand, this approach might have

the following limitations:

First, the execution of the patches might interfere with each other, i.e., the execution of some

tests in one patch might have side-effects affecting the execution of other tests on another

patch. UniAPR mitigates these side-effects by resetting static fields to their default values

and resetting JDK properties. Although our experimental results demonstrate that such JVM

reset can fix all bugs fixed by the traditional patch validation and opens a new dimension for

fast&precise patch validation, such in-memory JVM state reset for only class fields might not

be sufficient to handle all cases. Also, the side-effects could propagate via operating system

or the network. Our current implementation provides a public interface for the users to

resolve such issue between patch executions (note that no subject systems in our evaluation

require such manual configuration). In the near future, we will study more subject programs

to fully investigate the impact of such side effects and design solutions to address them fully

automatically.

Second, HotSwap-based patch validation does not support patches that involve changing the

layout of the class, e.g. adding/removing fields and/or methods to/from a class. Luckily,

the existing APR techniques mainly target patches within ordinary method bodies, and

our UniAPR framework is able to reproduce all correct patches for all the three studied

state-of-the-art techniques. Another thing worth discussion is that HotSwap originally does

not support changes in static initializers; interestingly, our JVM-reset approach can naturally

help UniAPR overcome this limitation, since the new initializers can now be reinvoked

based on our bytecode transformation to reinitialize the classes. In the near future, we will
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further look into other promising dynamic class redefinition techniques for implementing our

on-the-fly patch validation, such as JRebel [164] and DCEVM [163].
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CHAPTER 6

CONCLUSION

Both software testing and debugging are essential steps during software development and

after the software is established. However, they can be quite time consuming due to the size

and complexity of software systems and it is critical to find some approaches to speed up

them. My dissertation is to apply faster software revision testing to decrease the time used

for software testing and debugging between different revisions. Applying regression testing to

mutation testing and BBI bug detection can largely speed up the process of software testing

when systems evolve. Additionally, our unified on-the-fly patch validation framework UniAPR

can improve the efficiency of patch validation of APR technique which ultimately speeds up

software debugging. The contributions of this thesis are as follows. First, we propose the

idea of directly applying traditional RTS techniques for incrementally collecting mutation

testing results for evolving software systems. We evaluate it on 20 real-world GitHub projects

(ranging from 4.31 KLoC to 316.22 KLoC) totalling 1513 revisions and 83.26 Million LoC of

code with both state-of-the-art static and dynamic RTS techniques. The experimental results

show that surprisingly both file-level static and dynamic RTS can provide rather precise and

efficient regression mutation testing supports, while RTS based on finer-grained analysis tends

to be imprecise. Secondly, DeBBI can detect library backward incompatibilities using the

large number of client project test suites in the wild, i.e., cross-project library upgrade testing.

We further optimize it via using information retrieval, considering API-use diversity (based on

MMR), and test relevance (via extending static RTS) to reduce testing efforts. Our evaluation

shows that, compared with the baseline random project prioritization, our approach can

reduce the time to detect the first and average unique BBI bug by 99.1% and 70.8% for

JDK. Also, we detect 97 real BBI bugs (19 has been confirmed as previously unknown

bugs). Finally, we have proposed a unified on-the-fly patch validation framework for all
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JVM-based APR systems. Compared with the existing on-the-fly patch validation work [69]

which only works for bytecode APR, we generalize on-the-fly patch validation to all existing

state-of-the-art APR systems at the source code level. We show the first empirical results

that on-the-fly patch validation can speed up state-of-the-art representative APR systems,

including CapGen, SimFix, and ACS, by over an order of magnitude. Furthermore, we also

show the first empirical evidence that on-the-fly patch validation can incur imprecise/unsound

patch validation results, and further introduce a new technique for resetting JVM state for

precise patch validation with negligible overhead. I believe our works in this dissertation can

provide a lot of practical guidance in broad scenarios for automated software testing and

debugging.
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