


mES,ΔE, andF , as described in Sec. IV B 1, yields 2441�
91þ41

−54 correctly reconstructed signal Bþ → Kþπ−πþγ
events in data. This translates into a branching fraction of

BðBþ → Kþπ−πþγÞ ¼ ð24.5� 0.9� 1.2Þ × 10−6: ð33Þ

In both cases, the first uncertainty is statistical and the
second is systematic. The latter is discussed in Sec. IV D 3.
This result is in good agreement with the previous world
average [18] and supersedes that of Ref. [12]. Figure 3
shows signal-enhanced distributions of the three discrimi-
nating variables in the fit: mES, ΔE, and F . Using 331
generated pseudoexperiments with embedded signal events
drawn from fully simulated MC samples, we checked that
the parameters of interest exhibit no significant biases.
Figure 4 shows the extracted mKππ sPlot distribution.

The magnitudes and phases of the signal model compo-
nents, as well as the widths of the K1ð1270Þ and K�ð1680Þ
resonances, are extracted directly from a binned maximum-
likelihood fit to the sPlot distribution of mKππ . Using
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Eqs. (10) and (11), we further compute the FF correspond-
ing to the different resonances and the interference among
those with the same JP. The fitted parameters and FFs are
listed in Table V. The statistical uncertainties on the
magnitudes and phases, as well as on the widths of the
K1ð1270Þ and K�ð1680Þ resonances, come directly
from the fit. The central values of these widths are in
good agreement with the corresponding world average
values [18].
As the fit fractions are functions of the complex

amplitudes ck, the statistical uncertainties on the FF are
estimated in a different way. From the full fit result
information (including correlations between fitted param-
eters) obtained using the nominal model, 105 sets of values
of the resonance amplitudes ck are randomly generated. We
then compute the corresponding fit fractions for each set
and obtain the FFðkÞ distributions. The �1σ statistical
uncertainties are taken as the values at �34.1% of the FF
distribution integral around the FF value extracted from the
nominal fit results. We also performed likelihood scans of
the fitted parameters, as shown in Fig. 5, in order to check
for the presence of multiple solutions. It appears that the
fitted solution is unique. Each of these scans is obtained by
fixing the corresponding parameter at several consecutive
values and refitting the rest of the parameters. Each of the
fits is repeated 30 times with random initial values of the
varying parameters and always converge to the same
likelihood solution.
Inserting the FF values listed in Table V into Eqs. (14)

and (16), we obtain the weighted efficiency hϵþi ¼
0.2068þ0.0010

−0.0017 and the branching fractions listed in
Table VI. In the calculation of the branching fractions,
we use both the fitted signal yield and the corresponding fit
fraction. Since these two quantities come from measure-
ments on the same data sample, we assume that the

corresponding statistical uncertainties are 100% correlated
when calculating the statistical uncertainty on each branch-
ing fraction. This is a conservative approach of determining
the total statistical uncertainty.

2. The mKπ spectrum

Figure 6 shows the efficiency-corrected mKπ sPlot
distribution that is also extracted from the unbinned
maximum-likelihood fit tomES,ΔE, andF and is corrected
for efficiency effects (see Sec. IV B 3). The figure shows
the contributions of the different two-body resonances, as
extracted from the fit to the mKπ spectrum itself. Table VII
summarizes the relative magnitudes and phases of the
different components of the signal model, measured
directly from the fit to the mKπ spectrum, as well as the
corresponding fit fractions computed using Eqs. (10) and
(11). The statistical uncertainties on the magnitudes and
phases come directly from the fit while the statistical
uncertainties on the fit fractions are estimated in the same
way as those obtained in the fit to themKππ spectrum. As in
the fit to themKππ spectrum, we perform likelihood scans of
the fitted parameters, shown in Fig. 7, in order to check for
multiple solutions. The fitted solution appears to be unique.
Table VIII summarizes the branching fractions via

intermediate Kþρð770Þ0, K�ð892Þ0πþ and ðKπÞ�00 πþ
decays that are obtained after inserting the two-body
resonance fit fractions into Eq. (17). Since the ðKπÞ�00
component is modeled by the LASS parametrization,
which consists of a NR effective range term plus a
relativistic Breit-Wigner term for the K�

0ð1430Þ0 resonance,
we report a separate branching fraction for the K�

0ð1430Þ0
of BðBþ→K�

0ð1430Þ0πþγÞ¼ð1.44�0.19þ0.26
−0.34 �0.14Þ×

10−6 after correction for the BðK�
0ð1430Þ → KπÞ [18]

and the isospin factor of 2=3. The first uncertainty is

TABLE V. Results of the fit to the correctly reconstructed signal sPlot of mKππ . The first uncertainty is statistical
and the second is systematic (see Sec. IV D 1). The uncertainties on the K1ð1270Þ and K�ð1680Þ widths are
statistical only. Interferences for both JP ¼ 1þ and 1− resonances are destructive.

JP Kres Magnitude α Phase ϕ (rad) Fit fraction

1þ
K1ð1270Þ 1.0 (fixed) 0.0 (fixed) 0.61þ0.08

−0.05
þ0.05
−0.05

K1ð1400Þ 0.72� 0.10þ0.12
−0.08 2.97� 0.17þ0.11

−0.12 0.17þ0.08
−0.05

þ0.05
−0.04

1−
K�ð1410Þ 1.36� 0.16þ0.20

−0.16 3.14� 0.12þ0.02
−0.04 0.42þ0.08

−0.07
þ0.08
−0.04

K�ð1680Þ 2.10� 0.28þ0.27
−0.26 0.0 (fixed) 0.40þ0.05

−0.04
þ0.08
−0.06

2þ K�
2ð1430Þ 0.29� 0.09þ0.09

−0.11 0.0 (fixed) 0.05þ0.04
−0.03

þ0.05
−0.06

Sum of fit fractions 1.65þ0.18
−0.14

þ0.12
−0.08

Interference
JP ¼ 1þ∶ fK1ð1270Þ − K1ð1400Þg −0.35þ0.10

−0.16
þ0.05
−0.05

JP ¼ 1−∶ fK�ð1410Þ − K�ð1680Þg −0.30þ0.08
−0.11

þ0.09
−0.06

Line-shape parameters
Kres Mean (GeV=c2) Width (GeV=c2)
K1ð1270Þ 1.272 (fixed) 0.098� 0.006
K�ð1680Þ 1.717 (fixed) 0.377� 0.050
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statistical, the second is systematic, and the third is due to
the uncertainty on the secondary branching fraction. Since
in this analysis the K�

0ð1430Þ0 contribution is modeled
exclusively in the decay process Bþ → K1ð1270Þþ ×
ð→ K�

0ð1430Þ0πþÞγ, we extract a branching fraction of
BðK1ð1270Þþ → K�

0ð1430Þ0πþÞ ¼ ð3.34þ0.62þ0.64
−0.54−0.82 Þ× 10−2,

where the first uncertainty is statistical and the second is
systematic. This result is in good agreement with the
measurement performed by the Belle Collaboration in

the analysis of B → J=ψðψ 0ÞKππ decays [35], while it is
significantly smaller than the value given in Ref. [18]. In
the present analysis, the relative fraction between the
resonant and NR part of the LASS is fixed while the
overall ðKπÞ�00 contribution is a free parameter in the fit.
The NR contribution, described by the effective range
part of the LASS parametrization, is found to be
ð11.0þ1.4

−1.5
þ2.0
−2.5Þ × 10−6. As in the case of the three-body

resonance branching fraction measurement, we assume a
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100% correlation between the fitted signal yield and the fit
fraction when calculating the statistical uncertainty on each
branching fraction.
We compute the dilution factor defined in Eq. (1)

by inserting the FFs extracted from the fit to the mKπ
spectrum into the expressions listed in Appendix A, which
show the relations between amplitudes and the FFs.
To optimize the sensitivity to SK0

Sργ
, we impose in the

dilution factor calculation the mass requirements 600 ≤
mππ ≤ 900 MeV=c2 and mmin

Kπ ≤ mKπ ≤ 845 MeV=c2 or
945 MeV=c2 ≤ mKπ ≤ mmax

Kπ , where mmin
Kπ and mmax

Kπ denote

the allowed phase-space boundaries in the mKπ dimension.
Themππ mass requirement accounts for the distortion of the
ρð770Þ0 line shape towards the low invariant mass region
due to phase-space effects. Using the integration region
defined above in the mππ and mKπ dimensions, we obtainZ

jAρK0
S
j2dmππdmKπ ¼ 0.269� 0.028;Z

jAK�þπ− j2dmππdmKπ ¼ 0.078� 0.002;Z
jAðKπÞ�þ

0
π− j2dmππdmKπ ¼ 0.141þ0.029

−0.027 ;Z
2ℜðA�

ρK0
S
AK�þπ−ÞdmππdmKπ ¼ −0.090� 0.006;Z

2ℜðA�
ρK0

S
AðKπÞ�þ

0
π−ÞdmππdmKπ ¼ −0.149þ0.052

−0.040 ;

where the uncertainties account for both statistical and
systematic uncertainties, which are summed in quadrature.
Inserting the above results into Eq. (1) yields

DK0
Sργ

¼ −0.78þ0.19
−0.17 ; ð34Þ

where the uncertainties are statistical and systematic
uncertainties added in quadrature. The systematic uncer-
tainties contribution are discussed in Sec. IV D.

D. Systematic uncertainties

Since the main purpose of the analysis of Bþ →
Kþπ−πþγ decays is to extract the dilution factor DK0

Sργ
,

we have studied the systematic effects that influence its
value. The dilution factor uncertainties depend on uncer-
tainties of the two-body amplitudes obtained from a fit to
the mKπ spectrum (see Sec. IV D 2), themselves depending
on the uncertainties of the kaonic-resonance amplitudes
obtained from a fit to the mKππ spectrum (see Sec. IV D 1).
Finally, in Sec. IV D 3, the systematic uncertainties

TABLE VI. Branching fractions of the different Kþπ−πþ resonances extracted from the fit to the mKππ spectrum. The listed numbers
are averaged over charge-conjugate states. They are obtained using the fit fraction of each component and the corresponding efficiency.
To correct for the secondary branching fractions, we use the values from Ref. [18]. The first uncertainty is statistical, the second is
systematic (see Sec. IV D 3), and the third, when present, is due to the uncertainties on the secondary branching fractions. When the
symbol “n/a” is quoted, it indicates that the corresponding branching fraction was not previously reported.

Mode
BðBþ → ModeÞ×

BðKres → Kþπþπ−Þ × 10−6 BðBþ → ModeÞ × 10−6
Previous world

average [18] ð×10−6Þ
Bþ → Kþπþπ−γ · · · 24.5� 0.9� 1.2 27.6� 2.2
K1ð1270Þþγ 14.5þ2.1

−1.4
þ1.2
−1.2 44.1þ6.3

−4.4
þ3.6
−3.6 � 4.6 43� 13

K1ð1400Þþγ 4.1þ1.9
−1.2

þ1.2
−1.0 9.7þ4.6

−2.9
þ2.8
−2.3 � 0.6 <15 at 90% C.L.

K�ð1410Þþγ 11.0þ2.2
−2.0

þ2.1
−1.1 27.1þ5.4

−4.8
þ5.2
−2.6 � 2.7 n/a

K�
2ð1430Þþγ 1.2þ1.0

−0.7
þ1.2
−1.5 8.7þ7.0

−5.3
þ8.7
−10.4 � 0.4 14� 4

K�ð1680Þþγ 15.9þ2.2
−1.9

þ3.2
−2.4 66.7þ9.3

−7.8
þ13.3
−10.0 � 5.4 <1900 at 90% C.L.
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FIG. 6. Distribution of mKπ for correctly reconstructed Bþ →
Kþπ−πþγ signal events (sPlot), extracted from the maximum-
likelihood fit to mES, ΔE, and F . Points with error bars give the
sum of sWeights. The blue solid curve corresponds to the total
PDF fit projection. The small-dashed red, medium-dashed green
and dotted magenta curves correspond to the K�ð892Þ0, ρð770Þ0
and ðKπÞ�00 contributions, respectively. The dashed-dotted gray
curve corresponds to the interference between the two P-wave
components, i.e. the K�ð892Þ0 and the ρð770Þ0, and the dashed-
triple-dotted light blue curve corresponds to the interference
between the ðKπÞ�00 and the ρð770Þ0. Below the mKπ spectrum,
we also show the residuals normalized in units of standard
deviations, where the parallel dotted and full lines mark the one-
and two-standard-deviation levels, respectively.
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corresponding to the branching fractions measurements are
described. For the combination of asymmetric systematic
uncertainties, the method described in Ref. [36] was used.

1. Kaonic resonance amplitudes

Table IX gives the systematic uncertainties on the kaonic
resonance amplitude parameters and Table X gives the
systematic uncertainties on the corresponding fit fractions.
The dominant sources of systematic uncertainty are the
fixed parameters of the resonance line shapes in the mKππ

fit model. The large relative effect of fixed line-shape
parameters on the magnitude and the fit fraction of the
K�

2ð1430Þ are due to its small contribution.
To assign systematic uncertainties due to the fixed

parameters in the fit to mES, ΔE and F , we vary each
of the fixed parameters within its uncertainty, based on a fit
to the simulated event sample, and we repeat the fit. Since
the mES-ΔE distribution of B0 → K�0ð→ KπÞγ þ B0 →
Xsdð→ KπÞγ background events is described by a two-
dimensional histogram, the fit is performed fluctuating the
bin contents according to a Gaussian distribution centered
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TABLE VII. Results of the fit to the correctly reconstructed signal sPlot ofmKπ . The first uncertainty is statistical
and the second is systematic (see Sec. IV D 2).

Module α Phase ϕ (rad) Fit fraction

K�ð892Þ0 1.0 (fixed) 0.0 (fixed) 0.637þ0.011
−0.009

þ0.017
−0.013

ρð770Þ0 0.717� 0.015þ0.017
−0.022 3.102þ0.036

−0.035
þ0.055
−0.066 0.331þ0.015

−0.013
þ0.031
−0.028

ðKπÞ�00 0.813þ0.044
−0.050

þ0.048
−0.060 3.182þ0.132

−0.125
þ0.117
−0.108 0.423þ0.039

−0.041
þ0.055
−0.076

Sum of fit fractions 1.391þ0.048
−0.042

þ0.094
−0.057

Interference
fK�ð892Þ0 − ρð770Þ0g −0.176þ0.004

−0.006
þ0.010
−0.008

fðKπÞ�00 − ρð770Þ0g −0.215þ0.029
−0.044

þ0.047
−0.033
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on the nominal bin content and with a width given by the
corresponding statistical uncertainty. The procedure is
repeated 50 times. The root mean square (rms) of the
resulting distribution of fitted parameter values is taken as
the systematic uncertainty. The fixed yields are varied
according to the corresponding branching fraction uncer-
tainties taken from Ref. [18]. For the categories describing
a sum of modes, the fraction of each mode is varied
according to the relative branching fraction uncertainties
taken from Ref. [18]. The misreconstructed signal yield is
varied according to the uncertainties due to the sample size
of simulated events and the signal branching fraction
uncertainty in Ref. [18]. The fixed yield of the generic
B-background category, describing a sum of several small
contributions from various B-background modes, is varied
within the uncertainties due to the sample size of simulated
events. For each new fit performed this way, we derive the
corresponding mKππ sPlot distribution that we then fit
using the nominal mKππ model. Assuming no correlations
among the fixed parameters, we combine each of the
negative (positive) difference between the new fit value

and nominal fit value of each free parameter and take
the resulting values as negatively (positively) signed
uncertainties.
To assign systematic uncertainties due to the choice of

bin size in the fitted data set, we perform new fits using
either 60 or 100 bins, instead of 80 in the nominal fit model.
To assign systematic uncertainties due to the fixed

parameters of the line-shape resonances in the mKππ fit
model, we vary each of the eight fixed parameters accord-
ing to its uncertainties, taken from Ref. [18], and redo the fit
to the nominal CR signal mKππ sPlot distribution.
For the systematic uncertainties due to the fit model (i.e.

the resonances describing the mKππ spectrum), we vary the
nominal model by adding other kaonic resonances at high
masses to the fit model. We considered three additional
resonances, the K2ð1770Þ, the K�

3ð1780Þ, and the
K2ð1820Þ, whose parameters are given in Table XI. We
add each of these resonances in turn to the model and
reperform the fit to the CR signal mKππ sPlot distribution.
We observe no variations on the parameters of the fit to the
mKππ spectrum when the K2ð1820Þ is added to the

TABLE VIII. Branching fractions of the resonances decaying to Kπ and ππ extracted from the fit to the mKπ

spectrum. The listed results are averaged over charge-conjugate states. They are obtained using the “fit fraction” of
each component and the corresponding efficiency. R denotes an intermediate resonant state and h stands for a final
state hadron: a charged pion or kaon. To correct for the secondary branching fractions, we used the values from
Ref. [18] and BðK�ð892Þ0 → Kþπ−Þ ¼ 2

3
. The first uncertainty is statistical, the second is systematic (see Sec. IV D

3), and the third (when applicable) is due to the uncertainties on the secondary branching fractions. The last two
rows of the table are obtained by separating the contributions from the resonant and the nonresonant part of the
LASS parametrization. Integrating separately the resonant part, the nonresonant part, and the coherent sum we find
that the nonresonant part accounts for 95.6%, the resonant contribution 7.92%, and the destructive interference
−3.52%. When the symbol “n/a” is quoted, it indicates that the corresponding branching fraction was not previously
reported.

Mode
BðBþ → ModeÞ×
BðR → hπÞ × 10−6 BðBþ → ModeÞ × 10−6

Previous world
average [18] ð×10−6Þ

K�ð892Þ0πþγ 15.6� 0.6� 0.5 23.4� 0.9þ0.8
−0.7 20þ7

−6
Kþρð770Þ0γ 8.1� 0.4þ0.8

−0.7 8.2� 0.4� 0.8� 0.02 <20 at 90% C.L.
ðKπÞ�00 πþγ 10.3þ0.7

−0.8
þ1.5
−2.0 · · · n/a

ðKπÞ00πþγ (NR) · · · 9.9� 0.7þ1.5
−1.9 <9.2 at 90% C.L.

K�
0ð1430Þ0πþγ 0.82� 0.06þ0.12

−0.16 1.32þ0.09
−0.10

þ0.20
−0.26 � 0.14 n/a

TABLE IX. Systematic uncertainties of the parameters of the kaonic resonance amplitudes extracted from a fit to the mKππ spectrum.
The symbol ∅ denotes a systematic uncertainty of zero, while 0.0 indicates that the corresponding systematic uncertainty is less than
0.05%.

Source

� signed deviation (%)

Magnitude Phase

K1ð1400Þ K�ð1410Þ K�
2ð1430Þ K�ð1680Þ K1ð1400Þ K�ð1410Þ

Fixed parameters in the fit performed to mES, ΔE and Fisher 2.7=2.3 3.7=2.1 5.8=6.4 4.2=2.2 0.6=0.5 0.3=0.2
Fixed line-shape parameters of the kaonic resonances 16=11 12=11 31=39 12=12 3.6=3.9 0.6=0.6
Number of bins in the fitted data set 0.4=0.2 0.4=0.2 0.5=1.9 0.4=0.2 0.1=0.1 0.0=0.0
sPlot procedure 0.4=∅ ∅=1.3 ∅=2.0 ∅=2.5 0.1=∅ 0.0=∅
mKππ fit model (add and remove kaonic resonances) 0.0=0.3 11.6=∅ ∅=20.8 4.8=∅ ∅=0.3 0.1=1.3
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resonance model. Using the method described in Ref. [36],
we combine each of the negative (positive) difference
between the new fit value and nominal fit value due to
the presence of either the K2ð1770Þ or the K�

3ð1780Þ in the
resonance model.
If the yields of one or more event categories are fixed in

the fit to an sPlot spectrum, a correction is necessary (see
Ref. [19]) to extract the CR signal sPlot. This correction
implies that the distributions of the variable of interest for
the fixed categories are well known. ThemKππ distributions
of the event categories with fixed yields cannot be
considered to completely fulfill this criterion since they
are taken from simulation. A detailed description of the
evaluation of the systematic uncertainties due to the sPlot
technique is given in Appendix B.

2. Two-body resonances

Table XII summarizes both the systematic uncertainties
on the intermediate state resonance amplitude parameters
and those on the corresponding fit fractions. The dominant
sources of systematic uncertainty are the weights of the
kaonic resonances extracted from the fit to the mKππ
spectrum. The relatively large systematic uncertainties on
the ðKπÞ�00 parameters and fit fraction are due to the low
sensitivity to this component.
We account for two sources of systematic uncertainties

from the number of bins: the first in the fitted sPlot (90

bins in the nominal fit model) and another in the two-
dimensional histograms used to create the PDF (450 × 100
bins in the nominal fit model for mKπ ×mππ). We estimate
the effect of the bin size of the sPlot from fits performed
with 75 and 105 bins, while the bin size of the PDF is fixed
to its nominal value. We associate one systematic uncer-
tainty to the bin size in mKπ and another to that in mππ. We
estimate the effect of the bin sizes of the PDF, in the
mKπðmππÞ dimension, from fits performed with alternative
PDFs with 270(50) and 630(150) bins in mKπðmππÞ, and
the nominal number of bins in the other dimension. For
each of these sources we take the lower and upper
deviations from the nominal value of each FF as the
corresponding uncertainty. We add the uncertainties com-
ing from the bin size in mKπðmππÞ in quadrature assuming
no correlations between them.
To assign systematic uncertainties due to the fixed param-

eters in the fit to mES, ΔE and F , we use the procedure
described in Sec. IV D 1. We derive a set of newmKπ sPlot
distributions that we fit using the nominal model.
To account for systematic effects due to the fixed

parameters of the resonances in the mKπ fit model, we vary
each of them according to the uncertainties given in Table IV.
These parameters appear both in the line shapes used to
generate the histograms of the resonances as well as in the
corresponding analytical expressions of the phases.
Therefore, for each parameter variation in a given line
shape, we generate a new distribution of the corresponding
resonance and use the same parameter value in the analytical
phase expression. For each variation we perform a new fit to
the nominalmKπ sPlot distribution. The largest effect is due
to the line-shape parameters of the K�

0ð1430Þ part of the
LASS parametrization, while effects coming from the
ρð770Þ0 and K�ð892Þ0 line-shape parameters are negligible.
To account for systematic effects due to the weights of

kaonic resonances used to construct the PDF, we generate
104 sets of weights from the fullmKππ correlation matrix of
fit fractions (taking into account the corresponding

TABLE XI. Additional resonances considered in the mKππ fit
model. The pole mass m0

k and width Γ0
k are fixed to the values

taken from Ref. [18].

JP Kres Mass m0
k (MeV=c2) Width Γ0

k (MeV=c2)

2−
K2ð1770Þ 1773� 8 186� 14
K2ð1820Þ 1816� 13 276� 35

3− K�
3ð1780Þ 1776� 7 159� 21

TABLE X. Systematic uncertainties on the kaonic resonance fit fractions extracted from a fit to the mKππ spectrum. The symbol ∅
denotes a systematic uncertainty of zero, while 0.0 indicates that the corresponding systematic uncertainty is less than 0.05%. The term
“Sum” represents the sum of all fit fractions without interference terms, which can deviate from unity.

� signed deviation (%)

Fit fraction

Interference
Source K1ð1270Þ K1ð1400Þ K�ð1410Þ K�

2ð1430Þ K�ð1680Þ Sum JP ¼ 1þ JP ¼ 1−

Fixed parameters in the fit performed to mES,
ΔE and Fisher

1.1=1.3 2.9=2.8 3.1=2.2 16=18 1.6=1.5 0.6=0.5 3.1=1.7 2.7=3.9

Fixed line-shape parameters of the kaonic
resonances

8.0=8.2 28=20 10=7.6 79=87 18=11 7.0=4.8 15=15 17=29

Number of bins in the fitted data set 0.1=1.4 4.0=0.6 1.3=1.4 5.0=3.1 1.4=0.1 0.1=0.1 0.6=0.4 0.3=0.3
sPlot procedure 1.4=∅ 3.3=∅ ∅=0.1 ∅=1.7 ∅=2.0 ∅=0.2 ∅=2.5 1.6=∅
mKππ fit model (add and remove kaonic
resonances)

0.0=2.1 0.1=4.2 20=∅ ∅=41 0.2=12 1.0=∅ 3.2=0.1 ∅=9.3
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statistical and systematic uncertainties). Then, using each
of these sets of weights as a new parametrization of the
PDF, we perform a fit to themKπ spectrum. From the results
of these fits we obtain a distribution for each free parameter
and for each of the fit fractions. We take the values at plus
and minus 34.1% of the integral of the corresponding
distribution on either side of the value obtained using the
nominal fit model as the signed uncertainties, respectively.
The distortions of the ρð770Þ0 and K�ð892Þ0 resonances,

taken into account in the fit model by histograms generated
using simulated events from exclusive kaonic resonance
decays, are correlated with the parameters of the kaonic-
resonance line shapes in the Monte Carlo generator. To
study systematic effects from the fixed values of these
parameters, we generate new simulated event distributions
of the ρð770Þ0 and K�ð892Þ0 for each kaonic resonance.
The only significant effect for the ρð770Þ0 distribution is
found in the K1ð1270Þ → Kρð770Þ0 decay channel. To
estimate the systematic uncertainty coming from the
K1ð1270Þ resonance parameters, we vary its mean and
width, taken from Ref. [18], within the uncertainties
obtained from the fit to the mKππ spectrum. For each
variation we generate a new PDF to perform a fit to the
nominal mKπ sPlot distribution.
To account for systematic effects coming from the sPlot

extraction procedure on the parameters of the fit to the mKπ
spectrum, we use the procedure described in Appendix B.

3. Branching fractions

To assign systematic uncertainties on the yield for the
CR signal category due to the fixed parameters in the fit to
mES, ΔE and F , we use the same procedure as the one
described in Sec. IV D 1. For each new fit, we obtain a new
value of the CR signal event category yield. Using the
method described in Ref. [36] and assuming no correlations
among the fixed parameters, we combine each of the
negative (positive) difference between the new fit
value and nominal fit value of each free parameter and
take the resulting values as negatively (positively) signed
uncertainties.
We use 0.6% as the systematic uncertainty on NBB̄,

corresponding to the uncertainty on the official BB̄ count
for the full BABAR data set [37]. Similarly to Ref. [12],
to account for possible differences between data and
simulation in the tracking and particle identification
efficiencies, we assign for each charged particle in the
final state a systematic uncertainty of 0.24% and 1%,
respectively.
The high energy photon selections applied in the present

analysis are identical to those used inRef. [12], except for the
additional likelihood ratio vetoes applied against π0 and η
decays.Weadopt a2%uncertainty for the requirement on the
distance of the reconstructed photon energy cluster and the
other energy clusters in the calorimeter and a 1%uncertainty
due to the π0 and η vetoes, similarly to Ref. [12].

TABLE XII. Systematic uncertainties of the parameters of the intermediate state resonance amplitudes and on the corresponding fit
fractions extracted from a fit to the mKπ spectrum. The symbol ∅ denotes a systematic uncertainty of zero, while 0.0 indicates that the
corresponding systematic uncertainty is less than 0.05%. The term “Sum” represents the sum of all fit fractions without interference
terms, which can deviate from unity. The quoted systematic uncertainties due to the number of bins in the fitted PDF correspond to the
combined systematic uncertainties from the bins in mKπ and mππ , which were estimated separately as described in Sec. IV D 2.

� signed deviation (%)

Magnitude Phase Fit fraction

Interference
Source ρð770Þ0 ðKπÞ�00 ρð770Þ0 ðKπÞ�00 K�ð892Þ0 ρð770Þ0 ðKπÞ�00 Sum K�0 − ρ0 ðKπÞ�00 − ρ0

Fixed parameters
in the fit performed
to mES, ΔE and F

1.5=2.2 4.0=3.5 0.6=0.5 1.8=1.1 0.8=0.7 3.1=4.2 7.9=6.7 0.3=0.4 2.5=1.9 5.3=4.5

Fixed line-shape parameters
of the intermediate
state resonances

0.3=0.2 0.9=0.6 0.4=0.6 1.1=1.4 0.3=0.5 1.6=2.5 3.7=1.9 0.4=0.6 1.2=0.8 5.3=3.2

Fixed line-shape parameters
of the kaonic resonances
(in EVTGEN)

0.5=0.3 1.1=1.4 1.1=1.7 1.7=2.1 0.5=0.8 0.1=0.1 1.8=2.7 0.2=0.1 0.9=1.5 3.4=2.9

Number of bins
in the PDF

0.0=0.6 2.4=0.0 0.4=0.0 0.4=0.0 0.0=1.0 0.0=0.8 3.6=0.0 0.0=1.6 0.6=0.0 3.5=0.0

Number of bins in
the fitted data set

0.8=0.0 0.0=4.3 0.0=0.3 0.0=0.5 1.8=0.0 4.2=0.0 0.0=7.1 3.8=0.0 0.0=3.3 0.0=9.4

sPlot procedure ∅=2.6 3.7=∅ ∅=0.5 ∅=1.3 0.2=∅ ∅=8.0 10=∅ ∅=3.5 2.1=∅ 6.9=∅
Kaonic resonance weights
(taken from a fit to the
mKππ spectrum)

1.5=0.5 1.2=6.0 1.0=1.1 2.6=1.5 2.2=1.2 8.8=2.1 3.1=17 6.3=2.2 3.0=4.6 11=20
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The input branching fractions, as well as the correspond-
ing uncertainties, used in the computation of the branching
fractions, are taken from Ref. [18] and are summarized in
Table XIII.

V. TIME-DEPENDENT ANALYSIS OF
B0 → K0

Sπ
−πþγ DECAYS

In Sec. VA, we describe the proper-time PDF used to
extract the time-dependent CP asymmetries. In Sec. V B,
we describe the selection requirements used to obtain
the signal candidates and to suppress backgrounds. In
Sec. V C, we describe the fit method and the approach used
to account for experimental effects. In Sec. V D, we present
the results of the fit and finally, in Sec. V E, we discuss
systematic uncertainties.

A. Proper-time PDF

The time-dependentCP asymmetries are functions of the
proper-time difference Δt ¼ trec − ttag between a fully
reconstructed B0 → K0

Sρ
0γ decay (B0

rec) and the other B
meson decay in the event (B0

tag), which is partially recon-
structed. The time difference Δt is obtained from the
measured distance between the decay-vertex positions of
B0
rec and B0

tag. The distance is transformed to Δt using the
boost βγ ¼ 0.56 of the eþe− system.
The PDF for the decay rate is

Pi
sigðΔt; σΔt; qtag; cÞ

¼ e−jΔtj=τB0

4τB0

�
1þ qtag

ΔDc

2

þ qtaghDicðS sinðΔmdΔtÞ − C cosðΔmdΔtÞÞ
�

⊗ Rc
sigðΔt; σΔtÞ; ð35Þ

where τB0 is the mean B0 lifetime, Δmd is the mixing
frequency [38], S ðCÞ is the magnitude for mixing-induced
(direct) CP violation, qtag ¼ 1ð−1Þ for Btag ¼ B0

(Btag ¼ B̄0), hDic is the average tagging imperfection for
determining the correct B flavor using tagging category c
and ΔDc is the difference between Dc for B0 and B̄0 tags.
We use a B-flavor tagging algorithm [39] that combines
several signatures, such as particle type, charges, momenta,
and decay angles of charged particle in the event to achieve
optimal separation between the two B flavors, producing
six mutually exclusive tagging categories. We assign the
untagged events into a seventh category. Although these
events do not contribute to the measurement of the time-
dependent CP asymmetry, they do provide additional
sensitivity for the measurement of direct CP violation
[40]. The exponential decay distribution modulated by
oscillations due to mixing is convolved with the per-event
Δt resolution functionRc

sigðΔt; σΔtÞ, which is parametrized
by three Gaussian functions that depend on Δt and its error
σΔt. The parameters of the resolution function can vary for
each tagging category.

B. Event selection and backgrounds

The reconstruction of B0 → K0
Sπ

−πþγ candidates is
identical to that of Bþ → Kþπ−πþγ candidates except
for replacing the Kþ with a K0

S. The K
0
S → πþπ− candidate

is required to have a mass within 11 MeV=c2 of the
nominal K0

S mass and a signed lifetime significance of at
least five standard deviations. The latter requirement
ensures that the decay vertices of the B0 and the K0

S are
well separated. In addition, combinatorial background is
suppressed by requiring the cosine of the angle between the
K0

S flight direction and the vector connecting the B
0 and the

K0
S vertices to be greater than 0.995. Moreover, the B0

candidates with jΔtj > 20 ps are rejected, and so are
candidates for which the uncertainty on Δt is larger
than 2.5 ps. The additional selection criteria 0.6 <
mππ < 0.9 GeV=c2, mKπ < 0.845 GeV=c2 or mKπ >
0.945 GeV=c2 are applied for consistency with the corre-
sponding requirements in the dilution factor calculation.
The set of variables used to build the Fisher discriminant

in the analysis of Bþ → Kþπ−πþγ decays (see Sec. IVA) is
also found to be optimal here. Therefore, we only update
the coefficients in the linear combination to optimize the
separation between signal and continuum background
events. The requirement on the Fisher discriminant output
value is optimized to minimize the statistical uncertainty on
the CP asymmetry parameters, CK0

Sπ
þπ−γ and SK0

Sπ
þπ−γ .

Furthermore, we again use the likelihood ratio, LR, defined
in Eq. (2), in order to reduce backgrounds from misrecon-
structed π0 and η mesons.
We use simulated events to study the B backgrounds.

Only the channels with at least one event expected
after selection are considered. We observe that the main

TABLE XIII. Input branching fractions with their correspond-
ing uncertainties taken from Ref. [18] and used in the branching
fractions computation.

Mode BðModeÞ
ϒð4SÞ → BþB− 0.513� 0.006
K1ð1270Þþ → Kþπþπ− 0.329� 0.034
K1ð1400Þþ → Kþπþπ− 0.422� 0.027
K�ð1410Þþ → Kþπþπ− 0.407� 0.041a

K�
2ð1270Þþ → Kþπþπ− 0.139� 0.007

K�ð1680Þþ → Kþπþπ− 0.238� 0.019
ρð770Þ0 → πþπ− 0.990� 0.001
K�

0ð1430Þ0 → Kþπ− 0.620� 0.067
aSince only upper and lower limits are reported in Ref. [18] for

BðK�ð1410Þ→KρÞ and BðK�ð1410Þ→K�ð892ÞπÞ, respectively,
we take the BðK�ð1410Þ → KρÞ value as the reported upper limit
for the calculation of BðK1ð1400Þþ → Kþπþπ−Þ, to which we
assign a total uncertainty of 10%.
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B backgrounds originate from b → sγ processes. B-
background decays are grouped into classes of modes with
similar kinematic and topological properties. However, we
distinguish B backgrounds with different proper time
distributions (see Sec. V C 1).
Table XIV summarizes the seven B-background classes

that are used in the fit. If the yield of a class is allowed to
vary in the fit, the quoted number of events corresponds to
the fit results. For the other classes, the yields are estimated
from efficiencies derived from the simulation together with
the world average branching fractions [6,18]. When a B-
background class contains a collection of many individual
decay modes, as for the two generic B backgrounds
originating from either Bþ or B0 mesons, respectively,
the expected numbers of selected events are estimated
solely from Monte Carlo. The yield of the Bþ → K0

Sπ
þγ

class, which has a clear signature in mES, is free to vary in
the fit. The remaining background yields are fixed.

C. The maximum-likelihood fit

We perform an unbinned extended maximum-likelihood
fit to extract the B0 → K0

Sπ
−πþγ event yields along with the

time-dependent CP asymmetry parameters S and C.
The PDFs in the fit depend on the variables:mES,ΔE,F ,

Δt, and σΔt. The selected on-resonance data sample is
assumed to consist of signal, continuum background, and
backgrounds from B decays. The likelihood function Li for
event i is the sum

Li ¼
X
j

NjPi
jðmES;ΔE;F ;Δt; σΔt; qtag; cÞ; ð36Þ

where j stands for the event species (signal, continuum
background, one for each B background category) and Nj

is the corresponding yield.
The PDF for the event species j evaluated for event i is

given by the product of individual PDFs:

Pi
jðmES;ΔE;F ;Δt; σΔt; qtag; cÞ
¼ Pi

jðmESÞPi
jðΔEÞPi

jðF ÞPi
jðΔt; σΔt; qtag; cÞ: ð37Þ

The total likelihood is given by

L ¼ exp

�
−
X
j

Nj

�Y
i

Li: ð38Þ

Using isospin symmetry, we assume that the fraction and
phase of each Kπþπ− resonance channel in the B0 decay is
the same as that in the Bþ decay. Therefore, we model the
PDFs for signal events with a mixture of exclusive samples
from simulated events weighted according to the branching
fractions extracted from the analysis of Bþ → Kþπ−πþγ.

1. Δt PDFs

The signal PDF for Δt is given in Eq. (35). The
parameters of the resolution function as well as hDic,
ΔDc and qc are taken from the analysis of B → cc̄Kð�Þ
decays [38]. The same resolution function parameters hDic
and ΔDc are used for both correctly and misreconstructed
signal events. The total yield of signal events (i.e. the sum
of correctly and misreconstructed events) is a free param-
eter in the fit. Using simulated events, we assign a fraction

TABLE XIV. Summary of B-background modes included in the fit model to B0 → K0
Sπ

−πþγ decays. If the yield is left free in the fit,
the listed number of events corresponds to the fit results. Otherwise the expected number is given, which take into account the branching
fractions (if applicable) and efficiencies. The functions used to parametrize the B-background PDFs are also given. The term “Exp”
corresponds to the exponential function. The PDFs for the Δt distributions are discussed in Sec. V C 1. The terms “XsuðsdÞð↛KπÞ”
denote all decays to XsuðsdÞ final states except for the Kπ final state.

Mode

PDFs

Varied Number of eventsmES ΔE F

Bþ → Xsuð↛KπÞγ ARGUS
Chebychev

Gaussian No 94� 17
(2nd order)

B0 → Xsdð↛KπÞγ ARGUS
Chebychev

Gaussian No 51� 12
(2nd order)

Bþ → K�þð→ K0
Sπ

þÞγ Two-dimensional
Gaussian Yes 42� 22

Bþ → Xsuð→ K0
Sπ

þÞγ Nonparametric

B0 → fneutral generic decaysg ARGUS
Chebychev

Gaussian No 35� 13
(2nd order)

Bþ → fcharged generic decaysg ARGUS
Chebychev

Gaussian No 34� 13
(2nd order)

B0 → K�0ð→ K0
Sπ

0Þγ
ARGUS

Chebychev
Gaussian No 30� 11

B0 → Xsdð→ K0
Sπ

0Þγ (2nd order)
B0 → K�0ð→ K�π∓Þγ

ARGUS
Chebychev

Exp. No 4� 3
B0 → Xsdð→ K�π∓Þγ (1st order)
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of misreconstructed events to each tagging category and fix
these fractions in the fit to the data.
For backgrounds from charged B meson decays, the Δt

PDF is modeled as an exponential decay with an effective
lifetime τj:

Pi
B�ðΔt; σΔt;qtag; cÞ ¼

e−jΔtj=τj

4τj
×

��
1 − qtagAj

2

�
ωc

þ
�
1þ qtagAj

2

�
ð1 − ωcÞ

�
⊗ Rc

B�ðΔt; σΔtÞ; ð39Þ

where the index j refers to the background event category,
Aj is the asymmetry accounting for possible differences
between B0 and B̄0 tags and ωc is the mistag rate for
tagging category c. For the background from neutral B
meson decays to flavor eigenstates (i.e. B0 → K�π∓γ), a
Δt PDF similar to that for charged B backgrounds is used,
where mixing terms are added:

PB0
Flv
ðΔt; σΔt;qtag; cÞ

¼ e−jΔtj=τj

4τj

��
1 − qtagAj

2

�
ωcð1 − cosðΔmdΔtÞÞ

þ
�
1þ qtagAj

2

�
ð1 − ωcÞð1þ cosðΔmdΔtÞÞ

�
⊗ Rc

B0
Flv
ðΔt; σΔtÞ: ð40Þ

For backgrounds from neutral B meson decays to CP
eigenstates, we account for possible CP violation effects
using a similar Δt PDF as for signal with an effective
lifetime

Pi
B0
CP
ðΔt; σΔt; qtag; cÞ

¼ e−jΔtj=τj

4τj

�
1þ qtag

ΔDc

2

þ qtaghDicðS sinðΔmdΔtÞ − C cosðΔmdΔtÞÞ
�

⊗ Rc
B0
CP
ðΔt; σΔtÞ: ð41Þ

Each B background Δt PDF is convolved with a similar
resolution function as the signal one.
We describe the Δt PDF for the continuum background

as a combination of “prompt” decays and “lifetime” decays
coming from charmed mesons

PbgðΔt; σΔtÞ ¼
�
fpδðΔt0 − ΔtÞ þ ð1 − fpÞ exp

�
−
jΔtj
τbg

��

⊗ Rbg; ð42Þ

where fp corresponds to the fraction of prompt events and
τbg corresponds to an effective lifetime. The resolution
function, Rbg, is defined as the sum of a “core” and an
“outlier” Gaussian function. The outlier Gaussian function
has the bias fixed to bout ¼ 0, while the width and the bias
of the core Gaussian function are scaled by the event-by-
event uncertainty on Δt. The small contribution from
eþe− → cc̄ events is well described by the tails of the
resolution function.
All the continuum background Δt PDF parameters,

except for bout, are extracted from a fit to the off-resonance
data sample. All hDic and ΔDc values, tagging category
fractions and asymmetries and all the σΔt parameters are
fixed in the fit to the data. All resolution function
parameters are fixed in the fit except for that of the
continuum background for which the mean and width of
the core Gaussian function as well as the width and the
fraction of the outlier Gaussian function are free parameters
in the fit. Furthermore, the S and C parameters for signal are
left free in the fit, while those for the CP -eigenstate neutral
B backgrounds are fixed to zero.

2. Description of the other variables

ThemES distribution of CR signal events is parametrized
by the CB function defined in Eq. (6). The ΔE distribution
of CR signal events is parametrized by a modified Gaussian
defined in Eq. (7). The σl and σr parameters are free in the
fit to the data, while the other parameters are fixed to values
determined from simulated events. Correlations between
mES and ΔE in CR signal events are taken into account
through a two-dimensional conditional PDF identical to the
one used in the analysis of Bþ → Kþπ−πþγ. The depend-
ences of the CB parameters μ and σ onΔE are parametrized
by two second-order polynomials for which all the param-
eters are left free in the fit to the data, while the depend-
ences of α and n are parametrized by first- and second-order
polynomials, respectively, for which all the parameters are
fixed to values determined from fits performed to simulated
events.
The F distribution of CR signal events is parametrized

by a Gaussian function for which the mean is left free in the
fit to the data. No significant correlations were found
between F and either mES or ΔE.
All misreconstructed signal PDF shape parameters are

fixed to values determined from simulated events. The mES
PDF of misreconstructed signal events is parametrized by
the sum of a first-order Chebychev polynomial and an
ARGUS shape function. The ΔE PDF is parametrized by a
fourth-order polynomial and F PDF is parametrized by the
sum of a Gaussian function and an exponential.
The mES, ΔE and F PDFs for continuum events

are parametrized by an ARGUS shape function, a
second-order Chebychev polynomial and an exponential
function, respectively. The parameters of the second-order
Chebychev polynomial are left free in the fit to the data. All
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the other shape parameters are fixed to the values deter-
mined from a fit to the off-resonance data.
The mES, ΔE and F PDFs for all the categories of B-

background events, given in Table XIV, are described by
parametric functions, except for the Bþ → K0

Sπ
þγB back-

ground mES and ΔE PDFs, for which significant correla-
tions are present. These correlations are taken into account
through a nonparametric two-dimensional PDF, defined as
a histogram constructed from a mixture of Bþ → K�þð→
K0

Sπ
þÞγ and Bþ → Xsuð→ K0

Sπ
þÞγ simulated events. All

shape parameters of the B-background PDFs are fixed to
values determined from simulation.
No significant correlations were found among the fit

variables for the other event species in the fit.

3. Branching fraction determination

The branching fraction to the K0
Sπ

þπ−γ final state is
determined from the fitted yield of the correctly recon-
structed signal event category, NCR

sig ¼ Nsig × fCR, the

weighted signal efficiency hϵ0i, and the number of neutral
B events NB0 :

BðB0 → K0
Sπ

þπ−γÞ ¼ NCR
sig

hϵ0i × NB0

; ð43Þ

where hϵ0i ¼ 0.0553þ0.0010
−0.0009 is obtained from Eq. (14)

replacing the efficiencies ϵþk by those of the neutral kaonic
resonances listed in Table XV and, assuming isospin
symmetry, using the FFs listed in Table V. The small value
of hϵ0i compared to that of hϵþi is due to the additional
requirements on mππ and mKπ (see Sec. V B). The term
fCR ¼ 0.728� 0.004 is the fraction of correctly recon-
structed signal events. The term NB0 is obtained from the
total number of BB̄ pairs in the full BABAR data set, NBB̄,
and the corresponding ϒð4SÞ branching fraction taken
from Ref. [18]:

NB0 ¼ 2 × NBB̄ × Bðϒð4SÞ → B0B̄0Þ
¼ ð458.7� 6.3Þ × 106: ð44Þ

D. Results

Requiring mK0
Sππ

≤ 1.8 GeV=c2, the unbinned maxi-
mum-likelihood fit to the data for the B0 → K0

Sπ
−πþγ

decay mode yields Nsig ¼ 243� 24þ21
−17 events and in turn a

branching fraction of

BðB0 → K0πþπ−γÞ ¼ ð20.5� 2.0þ2.6
−2.2Þ × 10−6; ð45Þ

where the first uncertainty is statistical and the second is
systematic. This result is in good agreement with the
previous world average [18]. The same convention holds
for results in Eqs. (46)–(48). The systematic uncertainties
are discussed in detail in Sec. V E 2. To check the presence
of biases on the parameters of interest, 351 pseudoexperi-
ments were generated with embedded signal events drawn
from fully simulated MC samples and analyzed. No
significant biases were found. Figure 8 shows signal-
enhanced distributions of the four discriminating variables
in the fit: ΔE, mES, F , and Δt. The result of the fit to the
data for the time-dependent CP violation parameters in
signal events is

SK0
Sπ

þπ−γ ¼ 0.14� 0.25� 0.03; ð46Þ

CK0
Sπ

þπ−γ ¼ −0.39� 0.20þ0.03
−0.02 : ð47Þ

To obtain the value of SK0
Sργ

, we divide SK0
Sπ

þπ−γ by the
dilution factor given in Eq. (34) and obtain

SK0
Sργ

¼ −0.18� 0.32þ0.06
−0.05 : ð48Þ

Table XVII shows the correlation matrix for the stat-
istical uncertainty obtained from the fit to the data.

E. Systematic uncertainties

1. CP asymmetry parameters

In order to assign systematic uncertainties due to the
fixed parameters in the fit to mES, ΔE, F and Δt, we vary
each of the fixed parameters within its uncertainty, which
are taken from different sources that are detailed below, and
reperform the fit. The fixed shape parameters of mES, ΔE
and F PDFs are varied according to the uncertainties
obtained in the fit to the simulated event samples from
which they are extracted. Since the mES-ΔE distribution of
Bþ → K�þð→ K0

Sπ
þÞγ þ Bþ → Xsuð→ K0

Sπ
þÞγ back-

ground events is described by a two-dimensional histo-
gram, we fluctuate the bin contents using the same
procedure as described in Sec. IV D. The fixed yields
are varied according to the corresponding branching

TABLE XV. Efficiencies ϵ0k for correctly reconstructed signal
candidates for each kaonic resonance from simulations without
the applied requirement mKππ < 1.8 GeV=c2. The efficiencies in
the neutral mode are significantly smaller to the ones in the
charged mode (see Table III) due to the additional requirements
on mππ and mKπ . The difference between the ϵ0 values is due to
the difference in branching fractions of each kaonic resonance to
the K�ð892Þþπ− and K0

Sρð770Þ0 decay modes.

Kres ϵ0k

K1ð1270Þ0 0.0631� 0.0003
K1ð1400Þ0 0.0335� 0.0003
K�ð1410Þ0 0.0318� 0.0005
K�

2ð1430Þ0 0.0471� 0.0002
K�ð1680Þ0 0.0742� 0.0004
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fraction uncertainties taken from Ref. [18]. For the cat-
egories describing a sum of modes, the fraction of each
mode is varied according to the relative branching fraction
uncertainties taken from Ref. [18]. The misreconstructed
signal fractions are varied according to the uncertainties
due to the sample size of the simulated events and the signal
branching fraction uncertainties in Ref. [18]. The fixed
yields of B0B̄0 and BþB− generic B backgrounds, describ-
ing a sum of several small contributions from various
B-background modes, are varied according to the uncer-
tainties due to the sample size of the simulated events. The
fixed parameters of the Δt PDFs are varied according to the
uncertainties that are either taken from other BABAR

measurements or are extracted from simulated event dis-
tributions. Using the method described in Ref. [36] and
assuming no correlations among the fixed parameters, we
combine each of the negative (positive) difference between
the new fit value and nominal fit value of each of the time-
dependent CP -asymmetry parameters, and take the result-
ing values as negatively (positively) signed uncertainties.
The corresponding values are given in Table XVI. Note that
these uncertainties are small compared to the statistical
uncertainties.

2. Branching fraction

We take the same sources of systematic uncertainties as
described in Sec. IV D 3 when applicable. A few sources,
which are described below, differ from the analysis of
Bþ → Kþπ−πþγ decays.
From the procedure described in Sec. V E 1, and assum-

ing no correlations among the fixed parameters, we
combine each of the negative (positive) difference between
the new fit value and nominal fit value of each of the total
signal yield and take the resulting values as negatively
(positively) signed uncertainties.

TABLE XVI. Systematic uncertainties on the time-dependent
CP -asymmetry parameters resulting from the fixed parameters in
the fit to mES, ΔE, F and Δt.

Parameter þ signed deviation − signed deviation

SK0
Sπ

þπ−γ 0.025 0.027
CK0

Sπ
þπ−γ 0.027 0.022
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Using Eq. (44), we compute the number of B0B̄0 pairs
using as input the branching fraction: Bðϒð4SÞ → B0B̄0Þ ¼
0.487� 0.006 taken from Ref. [18]. The branching fraction
BðK0 → K0

S → πþπ−Þ is well measured [18] and we assign
no systematic uncertainty due to this input. We apply a
systematic uncertainty of 0.7% due to theK0

S reconstruction
efficiency, as estimated using simulated events.

VI. SUMMARY

We have presented a measurement of the time-dependent
CP asymmetry in the radiative-penguin decay B0 →
K0

Sπ
þπ−γ, using a sample of 470.9 × 106 ϒð4SÞ → BB̄

events recorded with the BABAR detector at the PEP-II2
eþe− storage ring at SLAC. Using events with mKππ <
1.8 GeV=c2, 0.6 < mππ < 0.9 GeV=c2 and with mKπ <
0.845 GeV=c2 or mKπ > 0.945 GeV=c2, we obtain the CP
-violating parameters SK0

Sπ
þπ−γ ¼ 0.14� 0.25� 0.03 and

CK0
Sπ

þπ−γ ¼ −0.39� 0.20þ0.03
−0.02 , where the first uncertainties

are statistical and the second are systematic. From this
measurement, assuming isospin symmetry, we extract the
time-dependent CP asymmetry related to the B0 → K0

Sρ
0γ

decay and obtain SK0
Sργ

¼ −0.18� 0.32þ0.06
−0.05 . This meas-

urement of time-dependent asymmetries in radiative B
decays is in agreement with previously published results
[8–10] and is of equivalent precision. In this statistics-
limited measurement, no deviation from the SM prediction
is observed.
We have studied the decay Bþ → Kþπ−πþγ to measure

the intermediate resonant amplitudes of resonances
decaying to Kππ through the intermediate states ρ0Kþ,
K�0πþ and ðKπÞ�00 πþ. Assuming isospin symmetry, these
results are used to extract SK0

Sργ
from SK0

Sπ
þπ−γ in the neutral

decay B0 → K0
Sρ

0γ. In addition to the time-dependent CP
asymmetry, we gain information on the Kππ system which
may be useful for other studies of the photon polarization.
We have measured the branching fractions of the different
Kres → Kππ states and the overall branching fractions of
the ρ0Kþ, K�0πþ and ðKπÞ�00 πþ components, listed in
Tables VI and VIII, respectively.
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APPENDIX A: EXTRACTION OF THE
DILUTION FACTOR

Using the hypothesis of isospin conservation, we assume
that B0 decays have the same amplitudes as Bþ decays.
This allows us to use the results extracted from the fit to the
mKπ spectrum in Bþ → Kþπþπ−γ decays from the mea-
sured amplitudes to obtain the dilution factor for the time-
dependent analysis.
In the analysis of the Bþ decay, the amplitude of a

resonance is modeled in m12 as

Fres ¼ cres
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hresðm12; m23Þ

p
eiΦðm12Þ; ðA1Þ

where cres is a complex constant and Hres is a real
distribution,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hresðm12; m23Þ

p
eiΦðm12Þ being the line shape.

Note that here m12 ¼ mKπ and m23 ¼ mππ . The total event
rate [given here without the ðKπÞ S wave for simplicity] is
written as

jFj2 ¼ jFρ þ FK� j2: ðA2Þ

In the analysis, we consider the total event rate from Bþ and
B− in the mKπ-mππ plane. If the charge-specific amplitudes
are denoted as Fþ

res and F−
res, this implies the underlying

assumption

jFρ þ FK� j2 ¼ jFþ
ρ þ Fþ

K� j2 þ jF−
ρ þ F−

K� j2; ðA3Þ

or

jFρj2 þ jFK� j2 þ 2ℜðFρF�
K�Þ

¼ jFþ
ρ j2 þ jF−

ρ j2 þ jFþ
K�þ j2 þ jF−

K�− j2
þ 2ℜðFþ

ρ F
þ�
K�þÞ þ 2ℜðF−

ρF−�
K�−Þ: ðA4Þ

Assuming no direct CP violation in the considered
transition,

P. DEL AMO SANCHEZ et al. PHYSICAL REVIEW D 93, 052013 (2016)

052013-26



Fρ ¼
ffiffiffi
2

p
Fþ
ρ ¼

ffiffiffi
2

p
F−
ρ ; ðA5Þ

FK� ¼ eiδrescat
ffiffiffi
2

p
Fþ
K�þ ¼

ffiffiffi
2

p
F−
K�− ; ðA6Þ

with δ ¼ δrescat ¼ 0 or π. Given that we measure a sizable
interference between the ρ and the K� (see Table VII), we
keep δrescat ¼ 0. Indeed, δrescat ¼ π would result in zero
interference, as can be deduced from Eqs. (A4) and (A5).
Identical expressions are obtained for the ðKπÞ S-wave
terms.
Using these conventions, the term jAρK0

S
j2 in Eq. (1) can

be expressed as

jAρK0
S
j2 ¼ jFþ

ρ j2 þ jF−
ρ j2

2
¼ jFρj2

2
; ðA7Þ

whose contribution to the dilution factor is

1

2

Z
jFρj2 ¼

1

2
jcρj2

Z
m12

Z
m23

jHρðm12; m23Þj2dm12dm23

¼ 1

2
FFρ; ðA8Þ

where FFρ is the measured fit fraction of the ρ resonance in
the considered mKπ-mππ domain.
The term jAK�þπ− j2 is expressed as

jFþ
K�þ j2 þ jF−

K�− j2
2

¼ jFK� j2
2

; ðA9Þ

and its contribution to the dilution factor is

1

2

Z
jFK� j2 ¼ 1

2
jcK� j2

Z
m12

Z
m23

jHK� ðm12; m23Þj2dm12dm23

¼ 1

2
FFK� ; ðA10Þ

where FFK� is the measured fit fraction of the K� resonance
in the considered mKπ-mππ domain.
Analogously, the term jAðKπÞ�þ

0
π− j2 is expressed as

jFþ
ðKπÞ�þ

0

j2 þ jF−
ðKπÞ�−

0
j2

2
¼

jFðKπÞ�0
0
j2

2
; ðA11Þ

and its contribution to the dilution factor is

1

2

Z
jFðKπÞ�0

0
j2

¼ 1

2
jcðKπÞ�0

0
j2
Z
m12

Z
m23

jHðKπÞ�0
0
ðm12; m23Þj2dm12dm23

¼ 1

2
FFðKπÞ�0

0
; ðA12Þ

where FFðKπÞ�0
0

is the measured fit fraction of the ðKπÞ
S-wave component in the considered mKπ-mππ domain.
The term 2ℜðA�

ρK0
S
AK�þπ−Þ is expressed as

ℜðFþ�
ρ Fþ

K�þÞ þℜðF−�
ρ F−

K�−Þ

¼ 2ℜ

�
1ffiffiffi
2

p F�
ρ
1ffiffiffi
2

p FK�

�
¼ ℜðF�

ρFK� Þ
¼ ℜðc�ρcK�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hρðm12; m23ÞHK�ðm12; m23Þ

q
× eiðΦK� ðm12Þ−Φρðm23ÞÞÞ: ðA13Þ

With the notation cres ¼ αreseiϕres , the contribution of the
terms in Eq. (A13) to the dilution factor is given by
Eq. (A15), where FFinterfK�−ρ. is the measured fit fraction of
the interference between the K� and the ρ resonances in the
considered mKπ-mππ domain, with the convention αK� ¼ 1
and ϕK� ¼ 0. Analogously, the term 2ℜðA�

ρK0
S
AðKπÞ�þ

0
π−Þ is

expressed as

ℜðFþ�
ρ Fþ

ðKπÞ�þ
0

Þ þℜðF−�
ρ F−

ðKπÞ�−
0
Þ

¼ 2ℜ

�
1ffiffiffi
2

p F�
ρ
1ffiffiffi
2

p FðKπÞ�0
0

�
¼ ℜðF�

ρFðKπÞ�0
0
Þ

¼ ℜðc�ρcðKπÞ�0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hρðm12; m23ÞHðKπÞ�0

0
ðm12; m23Þ

q
× e

iðΦðKπÞ�0
0

ðm12Þ−Φρðm23ÞÞÞ; ðA14Þ

αραK�

Z
m12

dm12

Z
m23

dm23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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whose contribution to the dilution factor is given by
Eq. (A16), where FFinterfðKπÞ�0

0
−ρ is the measured fit fraction

of the interference between the ðKπÞ�00 and the ρ resonances
in the considered mKπ-mππ domain.

APPENDIX B: sPlot TECHNIQUE

The sPlot technique corresponds to a background-
subtracting method. It takes place in the context of an
unbinned extended maximum-likelihood fit, making use of
the discriminating variables denoted y. The aim of sPlot
technique is to unfold the true distribution, MnðxÞ, of a
variable x, whose distributions are unknown for signal
events. An estimate of the x distribution, denoted s

~Mn, can
be defined as the sum of the sWeights in each bin, as
described in Ref. [19]. If one or more event categories have
their yields fixed in the maximum-likelihood fit, we need to
apply a correction to reproduce a good estimate of the x
distribution. This correction consists of adding to the s

~Mn
histogram the normalized distributions of each fixed
category scaled by the factor cn ¼ Nn −

P
jVnj, where

V is the covariance matrix resulting from the fit and N the
expected yield of category n. This procedure, which is used

in the present analysis to extract the CR signal sPlot,
implies that the x distributions of the fixed categories are
well known. The mKππ distributions of the event categories
with fixed yields cannot be considered to completely fulfill
this criterion since they are taken from simulation.
Therefore, we perform a new fit to mES, ΔE and F , with
all the previously fixed-yield categories merged to a single
one to check for possible effects on the parameters of the fit
to the mKππ and mKπ spectra. Since the shape of PDFs for
the generic B background and that of the merged category
are very similar, we add the former to the latter and consider
them as a single “large background” category. This way, we
can perform a fit with four event categories [i.e. CR signal,
continuum, B0 → K�0ð→ KπÞγ þ B0 → Xsdð→ KπÞγ and
this new large background] where all the yields are left free
in the fit. We observe good agreement between the fitted
yields in the present and the nominal fit configurations.
Thus, we extract the CR signal sPlot distributions, where
no corrections need to be applied since no event category
yield is fixed in this configuration. We perform a fit to the
new mKππ (mKπ) sPlot distributions, using the nominal
mKππ (mKπ) fit model, and take the deviation from the
nominal value of each free parameter as the corresponding
signed uncertainty.
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