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The semiconductor manufacturing industry is one of the most technologically advanced and

cost-intensive industries. It has been a key driver for economic development and has powered

the growth in computers, consumer electronics and the internet industry. Semiconductors are

becoming indispensable in health-care, cars, defense and telecommunications. The rapidly

growing and dynamically changing electronics market introduces interesting and complex

challenges for semiconductor manufacturing companies. One such challenge is identifying

production problems and increasing the yield of integrated circuits (ICs), which is getting

more difficult due to the complexity of new technology nodes. Another major challenge is

the cost that can be devoted to testing each die before it is shipped to a customer. This

is important because continuous pressure for superior performance, along with intensified

process variations in the latest technology nodes, have resulted in stringent limitations in

the test cost. A most recent challenge in the semiconductor industry is security concerns

regarding integrity of the electronics supply chain due the globalization of the economy and

the gain in pervasiveness of the fab-less paradigm.

To address these challenges, researchers have developed solutions based on statistical tech-

niques and machine learning methods. The range of these solutions are from pre-silicon
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simulation-based methods to data analytic techniques that utilize post-silicon high-volume

production data. In simulation-based domain, a rich dataset is available to examine and

evaluate the proposed solutions. However, these methods are very time-consuming and have a

limited view of process statistics, as their grounding to silicon is established only through the

variation models reflected in the process design kit (PDK). On the other hand, silicon-based

learning methods are often impractical because of extra cost/overhead and new modifications

in the production line.

The aim of this work is to address these challenges and provide fast, accurate and feasible

solutions using high-volume production data. More specifically, this dissertation introduces

an adaptive test cost reduction method that successfully reduces the test cost significantly

while abiding the industry principles in order to be readily deployable with minimal test

operations support. A fast and accurate yield learning methodology is proposed to forecast

high volume manufacturing (HVM) yield of a device based on production datasets from few

engineering wafers. Finally, an advanced machine learning approach is proposed to attest the

fabrication facility that manufactures a given IC.
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CHAPTER 1

INTRODUCTION

Semiconductor manufacturing is one of the most technologically advanced industrial sectors.

The advent of the modern integrated circuit has created an immense market for semiconductor

devices, surpassing the $338.9 billion market in 2016, and the year 2017 is predicted to be

strong with 6.5% growth to $361 billion. In modern societies, human life extensively depends

on electronic devices such as smart phones, wearable devices, laptops, TVs, tablets, cars, etc.

These products present dramatically different design constraints. For consumer electronics,

low cost is the key driver; despite high manufacturing volume, profit margins are typically

small. On the other hand, automotive and defense applications demand high reliability and

security, with considerably lower manufacturing volume.

The process of creating integrated circuits (ICs) is called wafer fabrication. It is a

sequence of chemical and photographic steps (like lithography, etching, deposition, oxidation

and diffusion) in which the circuits are constructed on a semiconductor material typically

called a wafer. Figure 1.1 presents an overview of the manufacturing cycle of an IC.

To keep pace with Moore's Law, the semiconductor industry has relied upon many

innovations and its complexity has grown extensively. The technological advances have been

accompanied by an exponential growth in the size of data collected and stored during the

manufacturing process. The semiconductor manufacturing data comprises lot transactions

and process and equipment data, in line data, electrical test (e-test), wafer sort data, and final

electrical test/performance binning. The granularity of these measurements range from lot

level all the way to block level in order to guarantee the fabricated device meets performance,

reliability and security requirements. The availability of this data is laden with opportunities

for improving the manufacturing flow with statistical and machine learning methods.
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Figure 1.1. IC design and manufacturing cycle.

1.1 Motivation

Traditional statistical approaches have been widely used in semiconductor manufacturing

industry for many years and will continue to have an important place in production. Often,

a simple correlation plot, linear regression, wafer-map plot or variance analysis will tell an

important story and enables the needed process discovery and controls. However, the rapidly

growing and dynamically changing consumer electronics market introduces new challenges for

IC production. New technology nodes are complex and require more than a thousand process

steps which jeopardize the production yield. Continuous pressure for superior performance,

along with intensified process variations in the latest semiconductor manufacturing technology

nodes, are imposing an immense pressure on test and testability and have resulted in stringent

limitations in the cost that can be devoted to testing each die, in order to ensure that it

functions correctly before it is shipped to a customer. Security is a recent challenge in

semiconductor manufacturing industry. As the supply chain grows more complex, with

parts being sourced from various suppliers across the globe, ensuring authenticity and
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trustworthiness of each part becomes very challenging. Indeed, IC counterfeiting has become

a profitable activity and a major headache which poses a significant threat to end applications,

especially when deployed in sensitive domains such as military, financial, health, etc.

Addressing these complex challenges by employing traditional statistical and machine

learning approaches is not feasible. Therefore, advanced learning methods are needed to

process semiconductor data which have high dimensionality, multi-modal distributions and

various granularity.

1.2 Contribution

This dissertation presents the following methodologies that utilize semiconductor manufac-

turing data for test cost reduction, yield prediction and fab-of-origin attestation of ICs:

I. Chapter 2 introduces an adaptive test cost reduction methodology for dynamically

selecting an optimal probe-test flow which reduces test cost without jeopardizing test

quality. The proposed method offers flexibility by optimizing test flow per process

variation signature and its implementation is simple and compatible with most commonly

used Automatic Test Equipment (ATE). Furthermore, unlike static test elimination

approaches, whose agility is limited by the relative importance of the permanently

dropped tests, the proposed method is capable of exploring test cost reduction solutions

which achieve very low test escape rates. Decisions are made by an intelligent system

which maps every point in the e-test signature space to the most appropriate probe-test

flow.

II. Yield estimation is an indispensable piece of information at the onset of high-volume

production of a device, as it can inform timely process and design refinements in order

to achieve high yield, rapid ramp-up and fast time-to-market. To date, yield estimation

is generally performed through simulation-based methods. However, such methods are
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not only very time-consuming for certain circuit classes, but also limited by the accuracy

of the statistical models provided in the process design kits (PDKs). In contrast, this

work proposes yield estimation solutions which rely exclusively on silicon measurements

and applies them towards predicting yield during (i) production migration from one

fabrication facility to another, and (ii) transition from one design generation to the next.

These solutions are applicable to any circuit, regardless of process design kit accuracy

and transistor-level simulation complexity, and range from rather straightforward to

more sophisticated ones, capable of leveraging additional sources of silicon data.

III. A machine learning methodology is introduced for distinguishing between ICs fabricated

in a ratified fabrication facility and circuits originating from an unknown or undesired

source based on parametric measurements. Unlike earlier approaches, which seek to

achieve the same objective in a general, design-independent manner, the proposed

method leverages the interaction between the idiosyncrasies of the fabrication facility

and a specific design, in order to create a customized fab-of-origin membership test for

the circuit in question.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: the details of test cost reduction method

and its effectiveness using industrial datasets are explained in Chapter 2. Chapter 3 elaborates

the yield estimation methodology along with its experimental evaluation using high volume

production data. In Chapter 4, Fab-of-Origin attestation problem is introduced as well as the

details of the proposed methodology to address this challenge in semiconductor manufacturing.

Finally, this dissertation is concluded in Chapter 5.
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CHAPTER 2

TEST COST REDUCTION1

2.1 Overview

Continuous pressure for superior performance, along with intensified process variations and

non-idealities in the latest semiconductor manufacturing technology nodes, have resulted in

stringent limitations in the cost that can be devoted to testing each die, in order to ensure

that it functions correctly before it is shipped to a customer. Especially in the analog/RF

domain, where industrial practice still relies largely on lengthy test procedures and expensive

instrumentation to explicitly measure the performances of a device and compare them to

its specifications, test cost reduction has become a crucial requirement for maintaining

profitability. Various directions have been explored towards reducing test cost such as

leveraging spatial and temporal correlation, measuring low cost test and use machine learning

algorithms to predict high cost tests and customize the test list per die/wafer/lot. Next

Section provides a brief review of recent researches on test cost reduction.

2.2 Related Work

There has been an intensified effort from semiconductor industry to reduce the test cost

especially for Analog/RF devices due to the expensive and sophisticated automated test

equipment that is required. Leveraging spatial and temporal correlation is one of the well-

studied research directions toward test cost reduction which has shown great promise in

12016 IEEE Adapted/Reprinted, with permission, from Ali Ahmadi, Constantinos Xanthopoulos, Amit
Nahar, Bob Orr, Michael Pas and Yiorgos Makris, “Harnessing Process Variations for Optimizing Wafer-level
Probe-Test Flow”, in Proceedings of IEEE International Test Conference©2016 IEEE

12016 IEEE Adapted/Reprinted, with permission, from Ali Ahmadi, Amit Nahar, Bob Orr, Michael
Pas and Yiorgos Makris, “Wafer-Level Process Variation-Driven Probe-Test Flow Selection for Test Cost
Reduction in Analog/RF ICs”, in Proceedings of IEEE VLSI Test Symposium ©2016 IEEE
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capturing wafer-level spatial variation and, thereby, reducing test cost of electrical measure-

ments [1, 2, 3, 4, 5, 6, 7, 8]. Specifically, these methods identify test items which exhibit high

such correlation and only perform these tests on a small sample of die across the wafer, from

which they build the correlation model [9, 10, 11]. These tests are, then, omitted for the rest

of the die on the wafer and their value is predicted through the learned model, as a function

of die coordinates on the wafer. Extensions to spatio-temporal correlation across an entire

lot have also been investigated [12]. Besides being limited only to test items which exhibit

spatial correlation, such methods also require a two-pass approach (for sampling and testing)

and/or may need to delay the die-level test decisions until the entire wafer or the entire lot

has been processed, thereby complicating logistics.

Along a different direction towards leveraging spatial/temporal correlation, various meth-

ods have been proposed to customize the test list. A very simple and commonly practiced

approach to test cost reduction is to monitor the relative effectiveness of each test and drop

the ones which contribute little or not at all to the overall test effectiveness [13, 14, 15].

Such decisions are usually static and are easy to implement on the ATE by exclusion of the

relevant portion of the test program. However, the agility of such methods is insufficient to

support solutions which offer savings yet maintain very low test escapes; essentially, they

are bound by the percentage of faulty die that the dropped tests uniquely detect. Advanced

versions of this idea, wherein statistical correlation between the dropped and retained tests

is leveraged to predict the outcome of the former, have also been proposed [16, 14, 17, 18].

While additional ATE or external support is required to run the statistical models on-the-fly

during test, these methods have demonstrated marked improvement in test quality. Still,

the decision models remain static or only infrequently retrained to account for major events

which can change the statistical profile of the production.

As a first step towards dynamic test adaptation, re-optimization of the test list on a

per-lot basis based on the data obtained from the first few wafers, on which the complete

6



flow is applied, was explored in [19]. Taking adaptation a step further, the method in [20]

identifies, through sampling and clustering, wafer regions which have been affected similarly

by process variations, and customizes the test list and test order to each such region. While

this method was demonstrated in the context of final test, it could be readily applied at

probe-test. However, it would complicate test floor logistics, as it would require two passes

(for sampling and testing) and ATE support for applying different test programs to each

region of the wafer. In fact, any adaptive solution at a finer granularity than the wafer-level

would require such support, which is often missing or cumbersome to implement in ATE

platforms.

This Chapter introduces an adaptive test cost reduction method which reduces the test

cost significantly, while abiding by the industry principles in order to be readily deployable

with minimal test operations support.

2.3 Adaptive Probe-Test Flow Selection

As mentioned in the previous section, there are several industry constraints and principals

for any test cost reduction method in order to utilized in semiconductor industry. These

principals are as follows:

� The granularity at which test elimination decisions are made is at the test group

level. The underlying assumption here is that the bulk of the cost incurred by a test

group is related to switching into the appropriate test configuration. Accordingly, the

incremental savings of eliminating a few measurements within a group are negligible.

� The granularity of the adaptation decision is at the wafer level, i.e., all die on a wafer

are subjected to the same test flow, either the complete set of test groups or a subset

thereof.
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� Test has to be performed in one pass. In other words, solutions which first apply a

reduced test flow and subsequently apply selectively more test items to die for which

the decision confidence is low, such as the two-tier test method in [21], are not within

scope.

� The decision has to be driven by a signature which reflects how process variations

have affected a particular wafer. This is justified by historical evidence documenting

that the necessity of a test group is strongly correlated with the operating point of the

fabrication process.

� The decision has to be available prior to insertion of the wafer in the probe station and

cannot be informed by measurements taken at probe. Inevitably, this leaves e-test as

the only source available for capturing the impact of process variations on a particular

wafer.

� The ATE supports multiple test flows, where test groups can be dynamically included

or excluded based on an input provided before test commences for a wafer.

Consistent with the above constraints, an overview of the proposed wafer-level process

variation-driven probe-test flow selection method is depicted in Figure 2.1. For each wafer,

this approach provides a decision as to select the appropriate probe-test flow. Each wafer

is subjected to the complete probe-test flow or one of reduced test flows, in which some of

the test groups are eliminated. This decision is made at an early stage, before the wafer

reaches the probe station, driven through e-test measurements.2 Indeed, depending on how a

wafer has been impacted by process variations, a different reduced test flow may offer the

best option. Therefore, this work seeks to investigate the utility of test flow optimization per

2The term e-test is referred to electrical measurements, which are typically performed on a few select
locations across the wafer, using process control monitors (PCMs) included on the wafer scribe lines.
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Figure 2.1. An overview of wafer-level probe-test flow selection.

process signature, towards achieving test cost reduction. To accomplish this, an optimization

algorithm is employed to statistically select the best test flow for each signature such that

test cost reduction is maximized while the required test quality is achieved. The trained

test flow selection engine processes the e-test measurements of a wafer, extracts its process

signature, and accordingly selects the most appropriate test flow for that signature during

probe testing of this wafer. It should be noted that the complete test flow remains one of

the possible choices, especially for outlier wafers, i.e., those whose e-test signatures have not

been encountered in the past.

2.3.1 Preprocessing

Before addressing the problem of deciding an appropriate test flow for a wafer, the initial

elements that are required prior to such a decision are discussed. These elements are: (i)

identifying an appropriate subset of test groups which could potentially be applied to a

wafer, and (ii) crafting a wafer signature from its e-test measurement vector. In the following

sections, details of these two components are provided.
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2.3.2 Reduced Test Flow Selection

A reduced test flow is a subset of the complete flow, wherein one or more test groups are

eliminated. The first challenge that naturally arises is the selection of the test groups which

should be omitted in a reduced flow, such that the attained test cost reduction does not

compromise test quality beyond a target level of acceptable test escapes. Since the granularity

of elimination is at the test group rather than at the test item level, it may be possible to

exhaustively search the space of solutions. For example, experiments of this work dealt with

a set of 10 test groups, thus exhaustively searching in the power-set of 210 subsets of the

complete test flow to find the optimum subset was feasible and chosen due to its simplicity.

In case of a large number of test groups, however, this approach will not scale. In this case,

heuristic search methods can be employed for effectively searching this space. The use of

Genetic Algorithms has been popular in the literature and very successful when applied to

this task [18], hence it can readily be adopted when exhaustive consideration is infeasible.

For each reduced flow, j, the associated cost and the number of test escapes are considered

when this reduced flow is applied to all wafers in the training set, and a fitness value is

assigned and defined as:

indexj =
tA − tBj

tA
∗ pctgBj

(2.1)

where tBj
denotes the test cost of the j-th reduced flow, tA denotes test cost of the complete

test flow and pctgBj
represents the percentage of wafers that can be tested using the j-th

reduced test flow, while keeping the total number of test escapes remains below a target

Defective Parts Per Million (DPPM) level.

2.3.3 Wafer Signature Extraction from E-tests

E-test data contain many types of parameters, mainly focusing on simple physical/electrical

characteristics reflecting the position of a wafer in the process space. For some of these
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measurements there is no physical connection or reason why they should be correlated with

probe-test outcomes or the necessity thereof. Accordingly, to avoid spurious autocorrelations

and to gain better insight from e-test data, prior to crafting a wafer signature based on

the e-tests a dimensionality reduction algorithm is applied to transform the data onto a

lower count of dimensions. Specifically, this work uses the t-Distributed Stochastic Neighbor

Embedding (t-SNE) technique [22] which is the state-of-the-art non-linear transformation

approach and which is widely used in many applications for unsupervised dimensionality

reduction. In general, t-SNE embeds wafers with similar signatures close to each other on a

2-dimensional map.

Figure 2.2, provides an example where a number of wafers are projected to a 2-dimensional

space after applying the t-SNE algorithm. The various markers used to represent each point

indicate different test escape rates when a randomly selected reduced test flow is applied to

all wafers.3 Wafers with the same marker exhibit a similar level of test escapes. Two key

observations can be made using this figure:

1. Projection of wafers on the e-test space is discontinuous, with most wafers being part

of small clusters in this 2-dimensional space. This reflects the fact that the process

jumps between a finite number of points.

2. Wafers within each cluster, i.e., with similar e-test signature, do not necessarily exhibit

the same test escape rate. This implies that the correlation between device specifications

and e-test parameters is complex and there is no simple boundary to separate wafers

with high test escapes from wafers with low or zero test escapes. A more elaborate

approach is, consequently, required for mapping e-test signatures to the appropriate

test flow.

3The exact values of B-G are not important for this example.
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Figure 2.2. Projection of e-test data onto two dimensions using the t-SNE algorithm.

2.3.4 Test Flow Optimization

Section 2.3.1 described the process of generating all potential reduced test flows as well as

extracting a process signature from the e-test data of a wafer. Now, the objective is to assign

the most appropriate reduced test flow to each process signature, such that it maximizes test

cost reduction while retaining the test escape rate below a target DPPM level.

Bi-Flow Method

This Section explains how to assign a proper probe-test flow to each wafer based on its e-test

signature. First, it discusses a simple version of problem, wherein each wafer is subjected

either to complete test flow or a reduced test flow (it is called Bi-Flow since there are two

choices). Figure 2.3 depicts an overview of Bi-Flow method [23]. Recall that the objective

is to save test cost by applying a reduced test flow to a subset of wafers, while keeping test

escapes below a given DPPM level. Evidently, the more wafers funnel to the reduced test flow,

the higher the test cost reduction can be achieved. Thus, the problem is to map the e-test

signature space to the appropriate test flow, such that it meets both of the above objectives.

12



Figure 2.3. Bi-Flow method overview.

This problem is formulated as an integer linear program (ILP). An ILP consists of a

set of variables, which can only assume integer values, a set of linear constraints on these

variables, and a cost function which is to be maximized or minimized. In this problem, the

constraint is on the total number of test escapes, and cost function is the maximization of

the number of wafers that go through the reduced flow. The ILP is actually a binary (0-1)

version, where the value of each integer variable can only be either 0 or 1. Specifically, in this

ILP, the variable αi is used to indicate whether the wafers that belong to cluster i should be

subjected to the complete test (i.e., αi = 0) or to the reduced flow, αi = 1. Suppose that

I have a reduced test flow, TFB, whose test escape vector for training wafers is, TEB, and

whose test cost is tB. Let also denote the targeted DPPM level as DPPMt. Then the 0-1

ILP is defined as follows:

tei =
∑

j ∈Ci

TEj
B

Ci : all wafers in the cluster i

(2.2)
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Maximize
k∑

i=1

αi.cardi

subject to
k∑

i=1

αi.tei ≤ DPPMt

αi ∈ {0, 1}, i = 1, . . . , k

(2.3)

where k is the number of clusters, and tei and cardi are the total number of test escapes and

the cardinality of the i-th cluster, respectively. This procedure is repeated for all candidate

reduced flows, each time resulting a mapping between clusters in the e-test space and the

appropriate test flow, through the chosen values for the αi variables. This mapping is learned

based on a training set of wafers, on which it ensures maximal test cost reduction while

meeting the required test quality.

For a new wafer, the distance of its e-test signature from the centers of the clusters is

first computed and the wafer is assigned to the nearest cluster. If the decision for this cluster

is to apply the reduced test flow, the wafer will undergo only the preselected subset of test

groups, otherwise it will be tested by the complete test flow.

Limits of The Bi-Flow Method

This Bi-Flow method is simple and can be implemented easily. It is also very effective in

finding the best reduced test flow and assigning either complete or reduced test flow to each

cluster. However, its major limitation is the fact that the same reduced test flow is chosen

for all process signatures (clusters) that will not undergo complete test. This simplifies test

operations, as only two test flows are maintained, but it is also sub-optimal, since different

clusters exhibit dissimilar failure patterns when a test group is removed from the test flow.

Indeed, choosing a different test flow for each cluster holds promise for significantly higher

test cost reduction.

14



Test escapes for test group 1 Test escapes for test group 2

Test escapes for test group 3 Test escapes for test group 4

(a) Test escape rate for selected clusters when
test groups 1-4 were individually removed
from the test flow.

Cluster
symbol

Cluster 
id

Bi-Flow approach
probe-test flow code
{𝑇𝐺1, 𝑇𝐺2, 𝑇𝐺3, 𝑇𝐺4}

This work
probe-test flow code
{𝑇𝐺1, 𝑇𝐺2, 𝑇𝐺3, 𝑇𝐺4}

1 [𝟏 𝟏 𝟎 𝟏] [𝟏 𝟏 𝟎 𝟎]

2 [𝟏 𝟏 𝟎 𝟏] [𝟏 𝟎 𝟎 𝟏]

3 [𝟏 𝟏 𝟏 𝟏] [𝟎 𝟏 𝟏 𝟏]

(b) Comparison of probe-test flow code cor-
responding to part (a) generated by Bi-Flow
method vs. optimum probe-test code for each
cluster.

Figure 2.4. Limitations of the Bi-Flow approach.

To demonstrate this limitation, three clusters from Figure 2.2 are selected and the test

escape rate of each cluster is computed when a test group is removed from the test flow.

Figure 2.4(a) demonstrates the test escape rate due to elimination of test groups 1-4 for

these three clusters. Clusters in red color and enclosed in a red boundary reflect zero test

escapes while gray color represents clusters with a non-zero test escape rate. In the table of

Figure 2.4 (b), the test flow code of each cluster is represented using a binary vector where

inclusion/exclusion of a test group is indicated by value 1/0 respectively. The third column of

the table shows the two test flow codes which are generated by the Bi-Flow method [23], while

the forth column contains the optimum test flow code if chosen individually per each cluster.

As may be observed, the impact of skipping a test group is not identical for all clusters. The

figure corroborates the initial conjecture that each cluster requires individualized test flow

optimization. Therefore, a dynamic approach is required to generate the most appropriate

probe-test flow per process signature, in order to maximize test cost reduction. Next Section

introduces a methodology which addresses this limitation.
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Dynamic Test Flow Generation

Now I proceed to elaborate on how to optimize the test flow per cluster. This methodology

consists of two steps: (i) finding the best reduced test flow for each cluster individually for

any target DPPM level, and (ii) determining the maximum test escape rate of each cluster

through an optimization algorithm. Below I provide details of these two steps [24].

Test Flow Generation per Cluster Let consider cluster Ci, which includes a set of wafers,

and let assume that the goal is to find the best reduced test flow among all n candidates which

are generated using exhaustive search. Let TEi = [te1, · · · , ten] and TTRi = [ttr1, · · · , ttrn]

denote the test escape rate and test cost reduction vectors of the i-th cluster, where tej and

ttrj denote the number of test escapes and the amount of test cost reduction when all wafers

in this cluster are tested by the j-th reduced test flow. For any DPPM level in the range

[0, DPPMt], where DPPMt is the target DPPM level, a reduced test flow is selected such

that its test escape rate for cluster Ci is lower than the DPPM level, while maximizing the

test cost reduction. At the end of this step, each cluster has associated with it a table with

multiple rows and three columns. Each row corresponds to a specific DPPM level and the

three columns correspond to the test escape rate, test cost reduction and index of selected

test flow, respectively.

Optimization Algorithm The second part of the proposed method is an optimization

algorithm, which selects the best probe-test flow for all k clusters while meeting the required

test quality. Let TE = [TE1, · · · ,TEk]T and TTR = [TTR1, · · · ,TTRk]T denote the

test escape rate and test cost reduction matrices, where TEi and TTRi represent the test

escape rate and test cost reduction vectors for the i-th cluster, and teij denotes the test

escape rate for the i-th cluster for the j-th DPPM level. My objective is to distribute the

target DPPM level among k clusters so as to maximize test cost reduction. Looked at from a
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different angle, the maximum acceptable test escape rate for each cluster need to determined.

To do so, this problem is also formulated as an ILP. Similarly, the constraint is on the total

number of test escapes, and my cost function is to maximize test cost reduction. The ILP is

actually a binary (0-1) version, where the value of each integer variable can only be either

0 or 1. Specifically, the variable αij = 1 is used to indicate that the maximum acceptable

test escapes for i-th cluster is teij , and therefore the test flow with index j is selected for this

cluster. Then, the binary ILP is defined as follows:

Maximize
k∑

i=1

m∑
j=1

αij.ttrij

subject to
k∑

i=1

m∑
j=1

αij.teij ≤ DPPMt

m∑
j=1

αij = 1

αij ∈ {0, 1}, i = 1, . . . , k and j = 1, . . . , DPPMt

(2.4)

The constraint
m∑
j=1

αij = 1 is used to select only one test flow for each cluster.

An additional provision is also incorporated in the proposed methodology, in order to

adapt to shifts in the process, which may result in previously unseen wafer signatures in the

transformed e-test space. Specifically, as shown in Figure 2.5, for clusters where the ILP

selects any probe-test flow other than complete test flow, a boundary is established around

the e-test signatures that belong to the cluster. For a new wafer, the distance of its e-test

signature from the centers of the clusters is first computed, and the wafer is assigned to the

nearest cluster. If the decision for this cluster is to apply any reduced test flow, one more

check is performed: if its signature is inside the boundary of that cluster, the recommendation

is followed. Otherwise, despite being nearest to this cluster, the wafer is sufficiently different
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Wafer in the cluster

New wafer (similar signature)

New wafer (dissimilar signature)

Figure 2.5. Tracking process shifts: signatures of wafers belonging to cluster are enclosed
by a boundary. New cluster members with signatures within the boundary are considered
equivalent, and new members with signatures outside the boundary are considered outliers.

and it will be sent to the complete test flow. Based on this information, one can periodically

enhance the set of clusters and rerun the optimization algorithm to better track the process.

2.4 Experimental Results

In order to experimentally evaluate the effectiveness of the proposed methodology, actual

production data from a 65nm analog/RF transceiver is used.4 The dataset comes from 400

wafers, each of which contains approximately 2500 die. E-test is performed on 9 sites across

the wafers, with 250 measurements obtained from each site. On each die, 380 parametric

probe-test measurements are obtained, organized in 10 groups. The percentage by which

each group contributes to the total test cost is also provided. The objective of the proposed

method is to find a subset of the 10 test groups as an optimized reduced test flow for each

process signature and to train an intelligent system which will use the e-test measurements to

select which test flow a wafer should undergo. In these experiments, 5-fold cross validation is

employed. Specifically, the data set is divided into 5 folds, where 4 folds are used for training

and the remaining fold for validation. The procedure is repeated such that all folds are left

4Details regarding the device and exact test escape numbers and DPPM levels may not be released due to
an NDA under which this data has been provided to us.
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out once as a validation set and, in the end, the average test escapes and test cost reduction

across the five iterations is reported. Using this dataset, these experiments seek to:

� Confirm that static test group elimination does not have the agility to support reduced

test flows while maintaining a test escape rate in the very low DPPM region, therefore

adaptivity is required to provide per wafer decision.

� Demonstrate that the effectiveness of the Bi-Flow method, which provides per wafer

decision between a complete and a reduced test flow, is rather limited, thus a dynamic

test flow generation with wafer-level granularity is required to optimize the test flow

per process signature.

� Demonstrate that dynamic test flow generation per wafer based on e-test data can yield

significant test cost reduction at realistic low DPPM levels.

2.4.1 Limits of Static Test Elimination

Figure 2.6 reflects the number of defective die per million which are uniquely detected by

each of the 10 test groups. In other words, this is the number of devices which would escape

detection if each of these 10 test groups were to be statically eliminated from the probe-test

flow. While I cannot reveal the exact number for DPPMmin, its order of magnitude is in the

several tens. Accordingly, static test elimination cannot be used for test cost reduction when

test quality expectations are set below this level. Therefore, exploration of the test cost vs.

test quality trade-off in the sub-DPPMmin realm requires adaptive test flow selection per

wafer.

Figure 2.7 demonstrates the test cost vs. test quality trade-off for various DPPM levels.

The two curves on this graph reflect solutions achievable by the static test elimination and

Bi-Flow approach, which selects between the complete test flow and a single reduced test flow

[23], respectively. Evidently, the Bi-Flow method outperforms static test elimination across
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Figure 2.6. Defective die per million which would escape detection if each of the 10 test
groups were to be statically eliminated from the probe-test flow.

the board. More importantly, it allows higher fidelity in the selection of a desirable point on

this trade-off, starting from solutions with very low DPPM and small test cost reduction,

and progressing at very fine-grained steps towards higher test cost reduction with higher test

escape rates.
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Figure 2.7. Test cost reduction vs. test accuracy for static test elimination and Bi-Flow
method for various DPPM levels.
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2.4.2 Limits of Bi-Flow Technique

In this part, the effectiveness of the Bi-Flow approach, which subjects a wafer either to

a complete or a reduced test flow is examined. To do so, Figure 2.8 compares its test

cost reduction to the upper bound achievable when an oracle that can perfectly select the

appropriate test flow (i.e., the complete or the single reduced test flow) for each wafer is

used, for various target DPPM levels. As may be seen from the gap between the two curves,

this approach leaves significant potential for test cost reduction on the table. To gain better

insight, Figure 2.9 depicts the outcome of the Bi-Flow approach in which the complete test

flow assigned to a set of clusters (i.e., clusters with circle marker in red) and a reduced flow

is selected for the remaining clusters, when the target test escape rate is set to DPPMmin.

The main disadvantage of this approach is the fact that the reduced test flow is generated

collectively for all clusters rather than individually per cluster, based on the process signatures

of wafers in a cluster.
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Figure 2.8. Achieved test cost reduction using the Bi-Flow method vs. maximum possible
test cost reduction for various DPPM levels.

To demonstrate the unique characteristics and test flow needs of each cluster, clusters

C1 − C4 in Figure 2.9 (a) are selected. Then, the test escapes of each cluster is computed
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Figure 2.9. (a) Test flow assignment (either complete or reduced flow) for each cluster in
the e-test space. (b) Number of test escapes for selected clusters when each of the four test
groups are eliminated from the probe-test flow of the cluster.

when a test group is eliminated from the test flow (either complete or reduced test flow)

which is assigned to that cluster. Figure 2.9 (b) shows the number of test escapes for these

clusters when test groups 1, 2, 8 and 10 were removed from the test flow individually. As it

can be seen, the test escape profile of each cluster varies drastically. More specifically, based

on this information, wafers in cluster C1 can skip test group 1, while those in cluster C2

require test groups 1 and 2, yet test groups 8 and 10 can be eliminated from their test flow.

This experiment confirms that a dynamically optimized test flow generation per cluster is

needed to maximize test cost reduction for any target DPPM level.

2.4.3 Dynamic Test Flow Optimization

Figure 2.10 depicts the outcome of the proposed dynamic test flow optimization technique

when the target test escape rate is set to DPPMmin. In this graph, clusters with identical

probe-test flow are represented by the same color; for example, clusters in blue, such as C4,

require the complete test flow. On the bottom right of this graph, the optimized test flow
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Figure 2.10. Final assignment of the optimized probe-test flow code for each cluster (process
signature).

code for clusters C1−C4 is presented. In comparison to Figure 2.9, which shows the outcome

of the Bi-Flow method for the same target DPPM level, the new method provides more

flexibility for test cost savings.

The ability of the proposed dynamic test flow generation method to explore the trade-

off between test cost reduction and test quality, even in the region of very low DPPM, is

demonstrated in Figure 2.11 (a). The three curves on this graph reflect solutions achievable

by static test elimination (blue curve), the Bi-Flow method (gray curve), and the proposed

dynamic test flow generation (dotted black line) for various target DPPM levels. It is evident

that the proposed dynamic test flow optimization approach significantly outperforms the

other two approaches for any DPPM level. This is expected, since the dynamic approach

successfully generates an optimized probe-test flow for each process signature.

Finally, to gain better insight as to how well the proposed method works, Figure 2.11

(b) compares its test cost reduction to the upper bound achievable when an oracle is used,
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Figure 2.11. (a) Test cost reduction vs. test accuracy of three approaches for various DPPM
levels. (b) Test cost reduction vs. test accuracy for three approaches and maximum possible
test cost reduction for various DPPM levels.

for various target DPPM levels. It should be noted that the maximum achievable test cost

reduction, which is demonstrated in Figure 2.11 (b) by the red solid curve, is the upper

bound when only two test flows are allowed (complete or reduced). However, in the new

scenario where several test flows can be handled, the upper bound would be achieved by an

oracle which can perfectly select the best test flow for each wafer. In Figure 2.11 (b), the

new upper bound is represented by the dotted line which is above all other curves.

Note that the gap between the proposed method and the upper bound shrinks as the

targeted DPPM increases. This is explained by the fact that, at very low DPPM levels,

incorrectly channeling a wafer to a reduced instead of a complete flow can be detrimental

and very difficult to recover from. In other words, very low DPPM leaves little room for

error, hence the proposed method acts conservatively, selecting very few e-test signatures for

reduced test flows and, thereby, limiting the achieved test cost reduction. This gap indicates

what is still left on the table as possible further test cost reduction, which more advanced

methods and better statistics may be able to potentially achieve. Therefore, future research

efforts can be directed towards further reducing this gap.
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2.5 Conclusion

Test cost becomes a significant portion of an IC especially for analog/RF devices. Semi-

conductor industry invests and supports several researches that target test cost reduction

while comply with industry principals and constraints. In this chapter, an adaptive test cost

reduction method is proposed to reduce wafer-level probe-test time. Specifically, judicious

harnessing of process variations is utilized to optimize probe-test flow which demonstrates

great promise towards test cost reduction in analog/RF ICs. As presented herein, each

signature in the process space may require its own optimized test flow. The signature of

a wafer can be obtained at an early stage through e-test, reflecting how process variations

have affected a given wafer. Deployment of the proposed method requires minimal test

infrastructure support, yet is capable of identifying solutions with very low test escape rates,

which is not possible through static test elimination. Experimental results using a large

dataset of actual test measurements from a 65nm Texas Instruments RF transceiver confirmed

the aptitude of the proposed method in effectively exploring the trade-off space between test

quality and test cost.
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CHAPTER 3

YIELD LEARNING 1

3.1 Overview

The inherent variation of the semiconductor manufacturing process is a fundamental obstacle

towards achieving high yield, especially for contemporary mixed-signal System-on-Chip (SoC)

designs, wherein digital, analog and RF circuits are integrated together in advanced technology

nodes. Indeed, understanding the complex interaction between design and manufacturing,

and accurately estimating the expected yield prior to high-volume manufacturing (HVM) of

a device in light of such variation, constitutes a challenging yet highly desirable task towards

production and yield ramp-up. To this end, a large number of methods have been proposed

in the past to estimate and optimize yield of a device [25, 26]. The vast majority of these

methods concern yield estimation prior to fabrication and are based on simulation. Therefore,

besides being very time-consuming and, often, impractical for large and complex circuits,

they have a limited view of process statistics, as their grounding to silicon is established only

through the variation models reflected in the PDK.
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3.2 Related Work

In this section, a brief overview of well-known simulation-based techniques for yield estimation

is provided.

3.2.1 Monte Carlo

Monte Carlo (MC) simulation [27, 28] has been the most popular technique for yield estimation.

In the MC method, a large number of random circuit samples are generated based on expected

process variations defined in the PDK; thereafter, these circuit samples are simulated to

estimate yield based on relative frequencies. Simplicity and generality are the advantages

of the MC method. However, it is a time-consuming procedure which makes it prohibitive

for large and complex circuits, as well as for circuits with long simulation times. Even for

circuits with reasonable simulation times, MC ends up being too slow or inaccurate, especially

when yield is very high. Furthermore, its accuracy is often limited due to insufficient process

variation modeling in the PDK. Therefore, the MC method is not always practical for yield

estimation.

3.2.2 Monte Carlo with speed enhancement

Several methods can be used to speed up MC, including Latin hypercube sampling (LHS)

[29], quasi-Monte-Carlo (QMC) [30], and importance sampling [31, 32]. Compared to MC,

which is purely random and requires many samples to cover the design space, LHS and QMC

produce quasi-random sequences of samples that cover the design space much faster, thus

allowing expedited and more accurate estimation of yield. However, LHS and QMC may still

not produce enough samples at the tails of the design distribution where yield loss events

typically occur. By focusing precisely on these distribution tails, importance sampling can

produce better yield estimates with smaller variance. However, importance sampling requires

definition of an optimal sampling distribution which, in general, is very challenging.
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3.2.3 Statistical Blockade

Statistical blockade is a method that also offers significant speedup, as compared to the

classical MC simulation, by focusing the simulation effort on the tails of the design distribution

[33]. Unlike importance sampling, however, it only relies on the PDK and does not impose

any a priori assumptions on the form of process parameter statistics, device models, or

performance metrics. The underlying observation is that sampling a circuit instance is not

time-consuming. What is time-consuming is performing an actual electrical simulation of

the circuit instance. Statistical blockade is, in essence, a MC method, wherein simulation is

blocked for circuit instances that are unlikely to exhibit performances far from the nominal

design point and, thereby, are unlikely to lie at the tails of the design distribution. This

decision of whether to block a simulation or not is taken based on a classifier which is trained

in the space of process parameters. In the end, the simulated “extreme” circuit instances can

be used to estimate yield probabilistically based on extreme value theory [34, 33, 35]. In [36],

a recursive strategy is proposed to further accelerate the simulation effort.

3.2.4 Response surface and symbolic performance modeling

Another popular method for yield estimation is based on performance modeling [37, 38, 39, 40].

The underlying idea is to approximate the mappings between circuit performances and process

parameters. These mappings can, then, replace electrical simulations. In particular, the

process parameter space is sampled, with each sample corresponding to a circuit instance.

Then, the mappings are used to predict the performances of these circuit instances instead of

directly simulating them.

3.2.5 Behavioral modeling

For circuits such as data converters, phase locked loops (PLLs), complete RF transceivers,

etc., a single transistor-level simulation may take hours or days to complete. In this case, none
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of the above methods is practical since they require simulating at least hundreds of circuit

samples at the transistor level. For circuits with long simulation times, yield estimation is

typically carried out by first developing a behavioral model that captures effectively the circuit

functionality and then applying any of the above methods by considering the behavioral-level

description of the circuit instead of the transistor-level or layout-level description [41, 42]. A

behavioral model is constructed by decomposing the circuit into independent sub-circuits,

creating a separate behavioral model for each sub-circuit to reflect its functionality, and then

linking these behavioral models and manipulating the data flow so as to compute the circuit

performances. The key is to capture the correlation amongst the behavioral parameters that

correspond to sub-circuit performances, such that this correlation draws upon the correlation

that exists amongst the low-level process parameters, as these are expressed in the PDK.

3.3 Yield Forecasting Across Semiconductor Fabrication Plants and Design

Generations

The focus of this chapter of dissertation is on yield estimation in two specific scenarios wherein

much more silicon data reflecting process statistics is available:

� Fab-to-Fab Production Migration: Demand fluctuations and other financial, ge-

ographical or political reasons often cause a production to be migrated from one

fabrication plant to another, wherein a device may have never been fabricated before

[43, 44]. Forecasting how well a device will yield in the target plant is extremely valuable

for production planning and yield ramp-up purposes.

� Transition to New Design Generation: In order to remain competitive, offer new

features, and deal with production quality issues, designs are, sometimes, subjected to

re-spins where minor modifications and tweaks are introduced to enhance performance

and robustness [45]. Estimating how well the new device generation will yield when
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it replaces the prior one in HVM production is, again, an indispensable piece of

information.

In principle, these two yield estimation problems may be solved by relying on existing

simulation-based methods. However, in both scenarios, a large volume of relevant silicon

data, such as measurements on devices produced in the source fab, or measurements from

the prior generation of a device, is already available. Therefore, this work seeks to develop

yield forecasting solutions which rely solely on such silicon measurements; thereby these

solutions are not susceptible to PDK accuracy limitations and are applicable regardless of

size, complexity and simulation time of a design.

The type of silicon measurements that the proposed methods are based on are the typical

e-test and probe-test data that is obtained and logged as part of a production. E-tests are

electrical measurements performed on simple structures known as process control monitors

(PCMs), which are typically placed in the scribe lines of the wafer. Probe-tests, on the other

hand, are the measurements performed through standard functional or structural tests on

every die at wafer level.

In the fab-to-fab production migration scenario, consider a device currently being produced

in HVM in a source fab A, whose production will be migrated to a target fab B of the same

technology node. In order to predict how well the device will yield in fab B, various methods

are experimented which make use of one or more of the following data sources: (a) e-test

and probe-test data from HVM production of the device in source fab A; (b) e-test data

from HVM production of a prior device fabricated recently in the same technology node in

fab B; and (c) limited e-test and probe-test data from production of the device in target

fab B, originating from a very small number of characterization wafers, which are typically

produced prior to ramping-up HVM production. In particular, I examine four different

methods, namely model migration, predictor calibration, early learning, and Bayesian Model

Fusion (BMF). As illustrated in Figure 3.1 (a), the model migration and predictor calibration
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methods make use of data sources (a) and (b), the early learning method makes use of data

sources (b) and (c), while the BMF method makes use of all three data sources (a)-(c).

In the transition to a new generation scenario, assume a device N, which stems from minor

modifications to a previous generation device P, and which is to be produced in HVM in the

same fab and technology node as its predecessor. In order to predict how well the device

N will yield, an experiment with various methods is performed which make use of one or

more of the following data sources: (a) e-test and probe-test data from HVM production of

device P; and (b) limited e-test and probe-test data from device N, originating from the few

characterization wafers which are typically produced prior to ramping-up HVM production.

In particular, I consider four different methods, namely averaging, early learning, naive mixing

of data, and Bayesian Model Fusion (BMF). As shown in Figure 3.1 (b), the averaging method

uses only probe-tests from (b), while all other methods make use of e-test and probe-test

data from both (a) and (b).
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Figure 3.1. Yield prediction overview.

All aforementioned methods, except for the averaging method in the scenario of yield

estimation across design generations, establish a model which predicts wafer yield (i.e., the

fraction of devices on a wafer which pass all their specifications) or parametric yield (i.e.,
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the fraction of devices on a wafer which pass a given specification) from the e-test profile of

the wafer. The underlying conjecture is that there exists sufficient correlation between e-tests

and device performances, as they are subject to the same process variations experienced by

the wafer. Therefore, variation of device performances and, by extension, wafer or parametric

yield, can be predicted sufficiently well through the e-test measurements of a wafer. Such

correlations are very intricate and, most often, it is impossible to analyze and explain why

they are in force. For this reason, they are extracted using machine learning.

It is important to stress that the proposed methods can expose yield loss whenever its

root-cause is also reflected by the e-tests. Yield loss can be due to random defects (e.g.,

particle contamination) or process variations, which can be further classified into systematic

inter-die variations (e.g., lithography-related gate-length variation) and random within-die

variations (e.g., random dopant fluctuation) [46]. Evidently, random defects affecting a

device do not necessarily affect simultaneously the PCMs. To detect such defects, one could

rely, for example, on Iddq measurements or on dedicated on-chip, compact, non-intrusive

temperature sensors [47, 48]; yet it is unlikely that such defect-oriented tests can cover the

entire design. Thus, similarly to the simulation-based methods, the proposed methods do not

concern yield loss due to random defects. On the other hand, there exist numerous PCMs

that provide e-tests which can capture effectively both inter-die and within-die variations

[49, 50, 51]. Multiple copies of such PCMs are typically dispersed across a wafer, in order to

reflect the spatial aspects of process variation, and, collectively, offer valuable information so

that process engineers may monitor and adjust the fabrication process. E-test data contain

various types of measurements reflecting physical, electrical, and mismatch characteristics

of simple layout components (i.e., transistors, resistors, capacitors, etc.) and basic circuits

(i.e., ring oscillators, current mirrors, etc.). Thus, as is the case with the simulation-based

methods, the focus of the proposed methods is to expose the yield loss component that is due

to process variations. Finally, existence of correlation between e-tests and yield should be
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verified on a case-by-case basis before the methods can be applied. This can be done based

on high-volume silicon data from the source fab or based on a previous-generation device.

3.3.1 Yield/E-test correlation

Before attempting to use e-tests as a yield predictor when migrating production across fabs

and when transitioning to new design generations, first the use of e-tests as a yield predictor

for a specific device fabricated in a specific fab is discussed. Given the nature of e-tests,

whose role is to reflect process variations that lead to yield loss and to drive yield learning,

the conjecture is that they are correlated with and can serve as an accurate predictor of

parametric yield and wafer yield. Such correlations are intricate, and do not have known

closed-form mathematical expressions. Therefore, by regression functions one can learn how

to approximate them.

Consider a device that is currently in production. Assume that the e-test measurements

from w wafers that contain this device and the probe-test measurements from all n devices

contained in each of these wafers are available. Let ET i = [ET i
1, · · · , ET i

l ] denote the

l-dimensional e-test measurement pattern of the i-th wafer, where ET i
k denotes the k-th e-test

measurement in the i-th wafer. Let PT ij = [PT ij
1 , · · · , PT

ij
d ]T denote the d-dimensional

probe-test measurement pattern obtained on the j-th device contained in the i-th wafer,

where PT ij
k denotes the k-th probe-test measurement on the j-th device in the i-th wafer.

Let also PT i = [PT i1 · · ·PT in] denote the d× n matrix of probe-test measurements on the

i-th wafer.

By knowing the specification limits for the k-th probe-test measurement, parametric yield

of the k-th probe-test measurement for the i-th wafer is computed and is denoted by yik, as

the percentage of devices in the i-th wafer that comply with these limits. Let yi = [yi1, · · · , yid]

denote the d-dimensional parametric yield vector of the probe-test measurements for the

i-th wafer. yi is directly computed from PT i in conjunction with the specifications of the
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probe-test measurements. Let us also consider the wafer yield for the i-th wafer, denoted by

Y i, which is defined as the percentage of die on a wafer that comply with the specification

limits for all probe-tests. In summary, the information available on this device includes

waferi = [ET i,yi, Y i], i = 1, · · · , w (3.1)

The training data in (3.1) is used to learn the regression functions which predict the parametric

yield of the k-th probe-test measurement or the wafer yield for the i-th wafer from its e-test

measurement pattern.

yik ≈ fk
(
ET i

)
(3.2)

Y i ≈ f
(
ET i

)
. (3.3)

Once the regression functions are learned and their generalization accuracy is validated,

they are ready to be used to estimate the parametric yield ŷi and the wafer yield Ŷ i

for future wafers, i.e., i > w, based solely on their e-test profile. I will show that these

estimates approximate accurately the ground truth values yi and Y i, respectively. Accordingly,

significant cost savings can be obtained when computing parametric or wafer yield, since only

the e-test measurements need to be obtained rather than all probe-test measurements for all

devices on a wafer.

3.3.2 Regression models

Several methods exist in the literature for multivariate regression, including Multivariate

Adaptive Regression Splines (MARS), Least-Angle Regression Splines (LARS), Projection

Pursuit Regression, Feed-Forward Neural Networks (FFNN), and Support Vector Machines

[52, 53]. In this work, MARS[53] is used, which has also been successfully used in several

other test cost reduction methods in the past [54, 55].
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MARS is a non-parametric regression method which is capable of modeling complex non-

linear relationships and considers interactions between variables during model construction.

MARS builds the regression using basis functions as predictors in place of the original input

variables. Generally, it fits the data to the following model.

f̂(X) = a0 +
M∑

m=1

am ·Bm(X), (3.4)

where a0 is the intercept, am denotes the slope parameter, and Bm(X) represents the m-th

basis function which may include the interaction effect between the original input variables

X. The basis function transformation enables MARS to blank out certain regions of data and

focus on specific sub-regions. When the number of predictors is very high and disproportional

to the size of the training set, this capability is used to select a subset of predictors to improve

the quality of the regression model. MARS constructs the regression in two phases. In the

forward phase, MARS starts with an empty model and enhances it by adding basis functions

to overfit the data. Then, in the backward phase, MARS removes basis functions associated

with the smallest increase in generalized cross-validation error. MARS models are built

using e-tests as input variables and yield vectors as the dependent output variables. The

piecewise-cubic basis functions is utilized, and the maximum number of which is set to half

of the number of input variables.

3.3.3 Model improvement through feature selection

While typically many e-tests are performed, not all of them may be necessary for learning

the regression models that estimate yield. In fact, for many of e-tests, there may exist no

physical underlying reason why they should be correlated with some probe-test outcomes.

Therefore, including them in the model will not only offer no additional value but may even

deteriorate its quality due to the curse of dimensionality. Indeed, learning a model in a low

dimensional space improves its robustness.
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Selecting a subset of e-tests that best correlates to probe-tests and, thereby, to parametric

and wafer yield values, is essentially a feature selection problem. Since the number of possible

subsets of a set of n features (i.e., e-tests) is 2n − 1, exhaustive search is not feasible even for

a moderate number of features. In general, as explained in a review presented in [56], feature

selection methods are categorized into greedy and heuristic. In the context of semiconductor

testing, solutions from both categories have been employed for test compaction [18, 16] and

machine learning-based test[17].

In this work, a heuristic-based technique is employed to select a subset of e-test parameters.

More specifically, a multi-objective GA, called NSGA-II [57] is used. GAs are evolutionary

algorithms attempting to emulate the biological natural selection. The GA starts with an

initial random population of solutions (i.e., feature subsets). Mating and mutation operations

are repeatedly applied to the current population in order to generate a new population which,

hopefully, contains better solutions. In each iteration, the fitness of every instance of the

population is evaluated using two objective functions and the best solutions are retained.

These two objective functions reflect the goals of employing the smallest possible number

of features while achieving the highest possible prediction quality. Evidently, these can be

competing objectives, hence the NSGA-II algorithm explores the trade-off space.

Figure 3.2 depicts an overview of the GA-based feature selection method. A bit-string

specifies the corresponding e-test subset that will be included in the correlation model (i.e.,

”1” indicates inclusion, whereas ”0” indicates exclusion). The fitness of an e-test subset is

assessed by constructing the MARS model using a training dataset and, then, evaluating

its prediction accuracy on an independent validation dataset. Fitness, in this case, is the

prediction error on the validation dataset, computed as the average difference between true

yield values and predicted values by the correlation model. Yield, in this context, could be

either the parametric yield for a specific probe-test or the overall wafer yield. It should be

noted that different optimal e-test subsets may be selected for each probe-test. The algorithm

36



E-test inclusion bit-string

[1, 0, 0, 1, …, 0]
Training e-tests

- Prediction error       

- # of retained e-tests

Retained e-tests

(training)

Validation e-tests

Retained e-tests

(validation)

MARS correlation

𝑦 = 𝑓 𝑥 + 𝜀

Model evaluation

NSGA-II

Genetic algorithm

Figure 3.2. GA-based feature selection method (NSGA-II).

stops when there is no significant improvement in the fitness values of a population over a

window of the last five generations. Also in each iteration of the GA, the same settings are

used in the MARS models.

3.3.4 Yield prediction during production migration

Let now consider a device which is currently being fabricated in HVM in fab A and whose

production is planned to be migrated to fab B. The goal is to build a model that predicts the

HVM parametric yield of each probe-test and of the overall wafer yield in fab B. To this end,

different methods will be discussed, exploring a trade-off between simplicity, required input

data, and accuracy. Without loss of generality, the formulation considers only parametric

yield; overall wafer yield is dealt with in a similar fashion. Each method may make use of

one or more input data sources among the ones listed below [58].
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� E-test and probe-test measurements from wA wafers fabricated in fab A, containing the

device whose production is being migrated. Following similar notation as in Section

3.3.1, the available information from fab A includes:

waferiA = [ET i
A,y

i
A, Y

i
A], i = 1, · · · , wA. (3.5)

� E-test and probe-test measurements from the first wB wafers (wB � wA) fabricated in

fab B, containing the device whose production is being migrated. In short, information

from fab B includes:

waferiB = [ET i
B,y

i
B, Y

i
B], i = 1, · · · , wB. (3.6)

� E-test from a large number, w0, of wafers fabricated in the same technology node in

fab B, containing a prior device, different than the one whose production is being

migrated from fab A to fab B. The only assumption for this prior device is that, since it

is fabricated in the same technology, its wafers contain the same e-test PCM structures

as the wafers of the device being migrated. The e-test profile of the i-th fabricated

wafer of this prior device is denoted as ET ′i
B, i = 1, · · · , w0.

Model migration

A straightforward approach for predicting yield in fab B is model migration. In this method,

a model is first trained in fab A to express parametric yield of a wafer as a function of its

e-test profile, yiA,k ≈ fA,k

(
ET i

A

)
. Then, the trained regression function is applied directly to

the e-test profile of wafers produced in fab B containing the prior device, in order to predict

HVM parametric yield as

ˆ̄yB,k =
1

w0

w0∑
i=1

fA,k

(
ET ′i

B

)
. (3.7)

Model migration success relies on two assumptions:

38



1. E-tests in the source fab A and target fab B must come from the same distribution.

2. If a wafer from fab A and a wafer from fab B have the same parametric yield, then they

must also have similar e-test profiles, i.e., pA(yi
A | ET i

A) = pB(yj
B | ET j

B)⇒ ET i
A ≈

ET j
B.

As these assumptions may not necessarily hold true in a semiconductor manufacturing context,

the accuracy of model migration is expected to be limited.

Predictor calibration

Another approach, which does not rely on any of the two aforementioned assumptions, is

predictor calibration. The distribution of each e-test (i.e., predictor) in fab B is calibrated

based on the distribution of the same e-test in fab A, ˆET ′
B,j = hj(ET ′

B,j,ET A,j), where

ET A,j = [ET 1
A,j, · · · , ET

wA
A,j ] and ET ′

B,j = [ET 1
B,j, · · · , ET

w0
B,j] represent the profile of the

j-th e-test in fab A and fab B, respectively. A simple way of achieving this would be mean

calibration, which subtracts the mean shift ∆(µj)

ˆET ′
B,j = ET ′

B,j −∆(µj), (3.8)

∆(µj) = µ(ET ′
B,j)− µ(ET A,j). (3.9)

However, in order to achieve better precision, other parameters of the distribution, such

as variance, skewness and kurtosis, also need to be calibrated. To accomplish this, a two-step

procedure is employed. First, using the cumulative distribution function (CDF) of the j-th

e-test in fab B, FB,j, the cumulative probability associated with each sample is identified,

xij = FB,j(ET
′i
B,j). Then, using the inverse CDF of fab A, the e-test value associated with
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cumulative probability xij is determined, ˆET ′
i

B,j = F−1A,j(x
i
j), where F−1A,j is the inverse CDF of

the j-th e-test for fab A. The kernel density estimation (KDE) [59] is employed to estimate

the CDF of each e-test.

This procedure is applied to all instances of the e-test profile of fab B (i.e., for i =

1, · · · , w0), and to all e-tests for each instance (i.e., for j = 1, · · · , l).

In order to utilize predictor calibration in yield prediction during production migration,

a regression function is trained to express parametric yield in fab A as a function of the

e-test profile, i.e., yiA,k ≈ fA,k

(
ET i

A

)
. Then, the trained regression model is applied to the

calibrated e-test profile of wafers produced in fab B containing the prior device, in order to

predict HVM parametric yield as

ˆ̄yB,k =
1

w0

w0∑
i=1

fA,k

(
ˆET ′i

B

)
. (3.10)

Since predictor calibration does not make any of the two assumptions stated earlier, it is

expected to outperform model migration. This method is very successful in mapping the

distribution of fab B into that of fab A and is capable of predicting yield without requiring

probe-test measurements from fab B.

Early learning

Model migration and predictor calibration were developed in the context of yield prognosis

when migrating a device from fab A to fab B, while assuming that no probe-tests are available

for this device from fab B. Now consider the scenario where probe-tests are available from a

small number wB of early silicon wafers from fab B, containing this device. This data can

be used to train a regression model to express parametric yield as a function of the e-test

profile, relying only on the information from fab B, i.e. yiB,k ≈ fB,k

(
ET i

B

)
. Subsequently,

this model can be applied to the available e-test profile from the prior device produced in fab

B, in order to predict HVM parametric yield as
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ˆ̄yB,k =
1

w0

w0∑
i=1

fB,k

(
ET ′i

B

)
. (3.11)

Bayesian Model Fusion (BMF)

The accuracy of the early learning method may be limited because the regression model is

trained using limited, possibly not representative, data from a few initial wafers in fab B.

Another more elaborate technique is BMF, which intelligently fuses the limited data from

fab B with the rich readily available data from fab A, in order to enhance the prediction

accuracy of the early learning method. BMF is a very powerful technique which has been

used successfully for model improvement in various contexts [60, 61, 62, 63, 64, 65].

The training data in (3.5) allows to learn an accurate regression function for predicting

parametric yield of the k-th probe-test in fab A

yiA,k ≈ fA,k

(
ET i

A

)
=

M∑
m=1

aA,k,m · bk,m
(
ET i

A

)
. (3.12)

This is relied on a general expression of a regression function based on M basis functions,

where bk,m is the m-th basis function for the k-th probe-test and aA,k,m corresponds to the

coefficient of the m-th basis function for the k-th probe-test, m = 1, · · · ,M . This general

expression can accommodate any regression approach mentioned in Section 3.3.2.

For small wB, given the limited training data in (3.6), the objective is to learn an accurate

regression function for fab B

yiB,k ≈ f
′

B,k

(
ET i

B

)
=

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)
, (3.13)

where aB,k,m is the coefficient of the m-th basis function for the k-th probe-test corresponding

to fab B.

The conventional learning procedure is to use a fraction of the data in (3.6) for training

and the rest for assessing the generalization ability of the regression function on previously
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unseen wafers. However, since the ultimate goal is to learn the regression function based on

the very first few wafers, the data in (3.6) is not representative enough to learn a regression

function that accurately predicts the parametric yield of future wafers. The aim of the BMF

technique is to learn the regression function in (3.13) by leveraging information from the

data in (3.5), which was produced in fab A.

The BMF learning procedure consists of solving for the coefficients aB,k = [aB,k,1, · · · , aB,k,M ]

that maximize the posterior distribution pdf(aB,k|waferB), that is,

max
aB,k

pdf(aB,k|waferB), (3.14)

where waferB = [wafer1B, · · · ,waferwB
B ]. In this way, the ”agreement” of the selected coeffi-

cients is maximized with the limited observed data from fab B.

By applying Bayes’ theorem, it becomes

pdf(aB,k|waferB) ∝ pdf(aB,k) · pdf(waferB|aB,k). (3.15)

Thus, the problem boils down to

max
aB,k

pdf(aB,k) · pdf(waferB|aB,k). (3.16)

Next, expressions for the prior distribution pdf(aB,k) and the likelihood function

pdf(waferB|aB,k) are developed.

Assuming that the coefficients aB,k,m are independent, one can write

pdf(aB,k) =
M∏

m=1

pdf(aB,k,m). (3.17)

I define the prior distribution pdf(aB,k,m) by involving the prior knowledge from fab A.

Specifically, pdf(aB,k,m) is assumed to follow a Gaussian distribution with mean aA,k,m and

standard deviation λ|aA,k,m|

pdf(aB,k,m) =
1√

2πλ|aA,k,m|
· exp

[
−(aB,k,m − aA,k,m)2

2λ2a2A,k,m

]
. (3.18)

42



This approach accounts for the fact that aB,k,m is expected to be similar to aA,k,m and deviate

from it according to the absolute magnitude of aA,k,m.

The likelihood function pdf(waferB|aB,k) is expressed in terms of the data in (3.6).

Specifically, since the data from each wafer is independent, it can written

pdf(waferB|aB,k) =

wB∏
i=1

pdf
(
waferiB|aB,k

)
. (3.19)

Furthermore,

pdf
(
waferiB|aB,k

)
= pdf(εi), (3.20)

where εi is the prediction error introduced by the regression for the i-th wafer in fab B

εi = yiB,k − fB,k

(
ET i

B

)
. (3.21)

This error is a random variable that is assumed to follow a zero-mean Gaussian distribution

with some standard deviation σ0

pdf(εi) =
1√

2πσ0
· exp

(
−(εi)

2

2σ2
0

)
. (3.22)

Therefore, combining (3.20), (3.21), (3.22), and (3.13), one can write

pdf
(
waferiB|aB,k

)
=

1√
2πσ0

·

· exp

− 1

2σ2
0

·

[
yiB,k −

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)]2 . (3.23)

By combining (3.17), (3.18), (3.19), and (3.23), the expression of pdf(aB,k) ·pdf(waferB|aB,k)

is obtained. By taking the natural logarithm of this expression, the maximization problem in

(3.16), after eliminating constant terms, becomes

max
aB,k

−
(σ0
λ

)2 M∑
m=1

(aB,k,m − aA,k,m)2

a2A,k,m

−

wB∑
i=1

[
yiB,k −

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)]2
. (3.24)
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The optimal values of σ0 and λ are determined by k-fold cross-validation [52, 53].

Finally, the HVM parametric yield of each k probe-test is computed as

ˆ̄yB,k =
1

w0

w0∑
i=1

f
′

B,k

(
ET ′i

B

)
. (3.25)

3.3.5 Yield prediction across design generations

Consider a device N, which is the new generation of a previously designed device P, introducing

slight modifications and improvements, and let assume that device N is planned to be produced

in HVM in the same technology node and fabrication facility where device P was produced.

Finally, suppose that for device P the e-test and probe-test data from wP wafers are in hand.

Using similar notation as in Section 3.3.1, information from device P includes

waferiP = [ET i
P ,y

i
P , Y

i
P ], i = 1, · · · , wP . (3.26)

Let also assume the availability of the e-test measurements from the first wn wafers which

contain device N as well as the probe-tests from all devices contained in each of these wafers.

This information includes

waferiN = [ET i
N ,y

i
N , Y

i
N ], i = 1, · · · , wn. (3.27)

Given the above information, below four solutions to the problem of yield prediction across

design generations are discussed. Without loss of generality, the focus is on estimating wafer

yield, accounting for the fact that devices N and P may not necessarily have the exact same

probe-tests.

3.3.6 Averaging

A simple and straightforward approach is to compute the average yield of the wn early wafers

and use it as an estimation of HVM wafer yield of device N

ˆ̄YN =
1

wn

wn∑
i=1

Y i
N . (3.28)

44



Early learning

Another approach is to use the data in (3.27) as a training set and learn a regression model

to express wafer yield as a function of the e-tests for device N

Y i ≈ fN
(
ET i

N

)
. (3.29)

The HVM wafer yield of device N can, then, be predicted by employing the e-test profile of

device P

ˆ̄YN =
1

wP

wP∑
i=1

fN
(
ET i

P

)
. (3.30)

Naive mixing of data

A third approach is to naively mix data in (3.26) and (3.27), use the combined data as a

training set, and learn a regression model to express wafer yield as a function of the e-tests

Y i ≈ fPN

(
ET i

)
. (3.31)

The HVM wafer yield of device N can, then, be predicted as

ˆ̄YN =
1

wP

wP∑
i=1

fPN

(
ET i

P

)
. (3.32)

Bayesian Model Fusion

Finally, similar to Section 3.3.4, one can intelligently combine the information from the prior

generation device P with the new generation device N using BMF. In particular, for devices

P and N regression models can be learned

Y i
P ≈ fP

(
ET i

P

)
=

M∑
m=1

aP,m · bm
(
ET i

P

)
(3.33)
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and

Y i
N ≈ f

′
N

(
ET i

N

)
=

M∑
m=1

aN,m · bm
(
ET i

N

)
, (3.34)

respectively. These regression models are based on M basis functions, where bm is the

m-th basis function, and aP,m and aN,m correspond to the coefficient of the m-th basis

function for devices P and N, respectively. The coefficients aP = [aP,1, · · · , aP,M ] of regression

model fP can be learned accurately based on the rich dataset in (3.26). The coefficients

aN = [aN,1, · · · , aN,M ] of regression model f
′
N are learned by maximizing the posterior

distribution

max
aN

pdf(aN |waferN), (3.35)

where pdf(aN |waferN) ∝ pdf(aN)pdf(waferN |aN), pdf(aN) is the prior distribution,

pdf(waferN |aN) is the likelihood function, and waferN = [wafer1N , · · · ,waferwn
N ]. Similar

steps as in Section 3.3.4 can be applied to refine the regression functions for the new-generation

device N.

The HVM wafer yield of device N can now be predicted as

ˆ̄YN ≈=
1

wP

wP∑
i=1

f
′

N

(
ET i

P

)
. (3.36)

3.4 Experimental Results

3.4.1 Case study and datasets

In order to experimentally evaluate the various yield prediction methods during fab-to-

fab production migration and during transition to a new design generation, actual HVM

production datasets from two consecutive design generations of a Texas Instruments 65nm

RF transceiver are used. These two design generations are referred as device P and device
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N, respectively, emphasizing that device N is the new-generation of device P with slight

enhancements. These datasets originate from two geographically dispersed fabs, which will

be referred to as fab A and fab B. Device P is produced only in fab B, while device N is

produced in both fabs. The dataset for device N from both fabs and the dataset for device

P from fab B will be used for yield prediction during fab-to-fab production migration. The

dataset of device N from fab B and the dataset from device P from fab B will be used for

yield prediction across design generations.

As illustrated in Figure 3.3, the dataset for device N from fab A includes l=54 e-tests and

d=200 probe-tests from a total of wA=500 wafers. Each wafer has 5 e-test measurement sites

and approximately 1500 dies per wafer. The dataset for device N from fab B includes the

same e-tests and probe-tests from a total of WB=1600 wafers, with the only difference being

that e-tests are obtained on 9 instead of 5 e-test measurement sites. These two datasets were

obtained from the two fabs at approximately the same time period. The dataset for device P

from fab B includes l =54 e-tests (i.e., the same as for device N) and dP=160 probe-tests

(i.e., fewer and different than those for device N) from a total of wP=700 wafers. Each wafer

has 9 e-test sites and approximately 1500 dies per wafer.

Since several e-test measurement sites are available across each wafer (i.e., 5 e-test

measurement sites across wafers produced in fab A and 9 e-test measurement sites across

wafers produced in fab B), its e-test signature is generated as the means and standard

deviations of the 54 e-tests, as computed across all the available e-test measurements sites.

Thus, in all cases, the e-test signature of a wafer has a total of 108 features.

Probe-tests include both structural tests (i.e., open/short circuit, IDDQ, input voltage

threshold, etc.) and functional tests (i.e., BER, EVM, CMMR, etc.). E-test measurements

include gate-oxide quality, leakage current, threshold voltage, effective channel length, etc.

The specification limits for the probe-tests are also available, hence for each of the two fabs

the parametric yield of each probe-test on every wafer, as well as the overall yield of each

wafer are computed.
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Figure 3.3. Datasets from fab A and fab B.

These datasets are used to:

� Quantify the accuracy of predicting parametric yield of probe-tests and overall wafer

yield from the e-test signature of the wafer.

� Demonstrate that this prediction accuracy is improved when employing dimensionality

reduction through a GA-based feature selection algorithm.

� Quantify the accuracy of the discussed methods for predicting yield during fab-to-fab

production migration.
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� Quantify the accuracy of the discussed methods for predicting yield across design

generations.

3.4.2 Predicting yield from the e-test signature of the wafer

In order to quantify the accuracy of predicting parametric yield of probe-tests based solely

on e-tests collected on the wafer, the entire datasets of device N from both fab A and fab B

are used to perform two independent experiments, one for each fab. The regression models

are trained using MARS and 5-fold cross validation is used to report robust prediction error

values. Specifically, for a given fab, the dataset is divided into 5 folds, where 4 folds are used

for training and the remaining fold is used for validation. The procedure is repeated such

that all folds are left out once as a validation set and, in the end, the average prediction error

across the 5 iterations is reported.

The following expression is used for calculating the error in predicting the parametric

yield of the k-th probe test

δk = 100 · 1

w

w∑
i=1

|ŷik − yik|
yik

, (3.37)

where w is the number of wafers in the validation set, while ŷik and yik are the predicted and

the actual parametric yield values of the k-th probe-test on the i-th wafer, respectively.

Figures 3.4(a)-(b) present the parametric yield prediction results for the datasets of device

N from fab A and fab B, respectively. In this experiment, all 108 e-test features are considered.

In each histogram, the horizontal axis is the prediction error, while the vertical axis shows

the percentage of probe-tests that are predicted within a given error range. For example, the

first bar of Figure 3.4(a) shows the percentage of probe-tests for which the parametric yield

prediction error is below 2.75%, with the corresponding value being 5%. As may be observed

for both fabs, the parametric yield of the majority of probe-tests can be predicted using
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e-tests with an error of less than 3%, corroborating that parametric yield can be predicted

very accurately from the e-tests of a wafer.
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(c) Fab A (device N)
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Figure 3.4. Average parametric yield prediction error for fabs A and B. In (a) and (b) all
e-test features are used while in (c) and (d) a subset of e-tests are selected by GA prior to
building regression models.

Figures 3.4(c)-(d) present the same results as in Figures 3.4(a)-(b), but this time using

only the subset of e-test features that are selected by the GA-based feature selection method

of Section 3.3.3. Feature selection is performed individually for each probe-test, thus each

probe-test has its own subset of e-tests to build a regression model from. Figures 3.4(c)-(d)

show that, for both fabs, most of the weight of the histograms is further towards the left side,

i.e., towards smaller prediction errors, as compared to the histograms of Figures 3.4(a)-(b).

These results corroborate that, by reducing the dimensionality of the e-test signature, feature

selection improves significantly the quality of predictions. It should be noted that the MARS
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algorithm does have its own internal feature selection method, which picks a subset of the

most relevant e-tests; nevertheless, performing an a priori feature selection using a GA

appears to be improving further the quality of the prediction models.

Next, the use of e-tests for predicting wafer yield is examined. As before, the regression

models are trained using MARS, and 5-fold cross validation is used to report robust prediction

errors values, and a similar expression is employed for evaluating the prediction error of the

overall wafer yield

δ = 100 · 1

w

w∑
i=1

|Ŷ i − Y i|
Y i

(3.38)

where w is the number of wafers in the validation set, while Ŷ i and Y i are the predicted and

the actual wafer yield values of the i-th wafer, respectively. Table 3.1 presents the wafer yield

prediction error for both fabs, first when training regression models using all e-test features,

and then when training regression models using only the subset of e-tests chosen by the

GA-based feature selection method. As may be observed, the prediction error for both fabs is

very low and confirms that e-tests of a wafer carry sufficient information regarding quality of

the fabricated silicon, thus, they can be successfully used for wafer yield prediction. Similar

to parametric yield prediction, incorporating the feature selection method to reduce the

cardinality of the e-test signature results in lower prediction error. In order to quantitatively

demonstrate this improvement, the metric ∆ε is used, and defined as

∆ε = |All e-tests error - Subset of e-tests error

All e-tests error
× 100|. (3.39)

Using this metric, the GA-based feature selection method reduces the wafer yield prediction

error by 12% and 17% for fab A and fab B, respectively.

Since GA-based feature selection improves the quality of the regression models, as

demonstrated in Figure 3.4 and Table 3.1, for the rest of experiments all regression models

are trained with the subset of e-tests selected by this method.
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Table 3.1. Wafer yield prediction error

Parameter All e-tests Subset of e-tests improvement (∆ε)

Fab A (device N) 6.12% 5.41% 12%

Fab B (device N) 4.9% 4.05% 17%

3.4.3 Yield prediction during migration from fab A to fab B

In order to quantify yield prediction accuracy during fab-to-fab production migration using

the methods discussed in Section 3.3.4, the following experiment is performed using fab A as

the source fab and fab B as the target fab. The model migration and predictor calibration

methods assume access to both e-tests and probe-tests of device N in fab A, as well as to

the e-tests of device P in fab B. In other words, device P is used as the prior device in these

methods. The BMF and early learning methods assume, in addition, access to both e-tests

and probe-tests for device N in fab B from a small number of wB early engineering wafers,

where wB � WB. wB is varied in the range [10, 50], in order to study the influence of the

size of this training set on BMF and early learning.

Since wB is small, the results for the BMF and early learning methods may vary with

respect to the subset of wB out of WB wafers that is being used. For this reason, bootstrap-

ping is employed to report robust prediction errors, smoothen them, and assist with the

interpretation of the overall results. In total, 10 bootstrap iterations are performed and, in

each iteration, wB wafers are sampled uniformly at random from the WB wafers using 5-fold

cross validation. The reported prediction errors are averaged over these 50 iterations. In each

iteration, the following expressions are used for evaluating the prediction error of the HVM

parametric yield of the k-th probe-test and the HVM wafer yield

δk = 100 ·
|ˆ̄yB,k − ȳB,k|

ȳB,k

, (3.40)
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(a) A randomly-selected probe-test
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(b) Results for overall wafer yield

Figure 3.5. Yield prediction error during production migration.

δ = 100 · |
ˆ̄Y B − ȲB|
ȲB

, (3.41)

where ˆ̄yB,k and ȳB,k are the predicted and actual HVM parametric yield values of the k-th

probe-test, respectively, while ˆ̄YB and ȲB are the predicted and actual HVM wafer yield

values in fab B, respectively.

The accuracy of the yield prediction methods of Section 3.3.4 is demonstrated in Figures

3.5(a) and (b), for one randomly-chosen probe-test and for the overall wafer yield, respectively.

These plots show the prediction error as a function of the training set size wB. The model

migration and predictor calibration methods do not utilize any information from fab B for

training purposes. They only rely on the e-tests of the prior device P in fab B. Therefore,

the corresponding curves for these two methods are flat and independent of wB.

As may be seen in Figure 3.5, model migration shows the worst performance, which is

expected since it naively uses the model that is learned on data from fab A for predicting

yield in fab B. Early learning strongly depends on the size of the training set. The prediction

error is small for large wB and increases exponentially as the training size becomes smaller.

This is expected, since the information available for training is weakened and the ability to

extrapolate the regression towards the tails of the distribution deteriorates, resulting in large

prediction error on the validation set. Predictor calibration outperforms model migration

and, in the case of small wB, it also outperforms early learning, despite the fact that it does

not use any information from fab B.
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BMF outperforms all other methods regardless of the size of training set wB. It shows

a remarkably stable behavior, maintaining nearly constant prediction error even when the

training set size is very small. This implies that, by incorporating prior knowledge from

fab A, BMF is capable of generating accurate prediction models for fab B based only on a

few early wafers from fab B. Thus, BMF can be used to quickly estimate yield from a few

engineering wafers or from the first few wafers in HVM, without having to wait until a large

volume of data is collected. This result, showing that the BMF method reduces the burden of

collecting large datasets for yield estimation, is consistent with the outcome of other studies

that employ the BMF method in different contexts [60, 61, 62, 63, 64, 65].

Finally, Figure 3.6 compares the cumulative results for all 200 probe-tests, in the scenario

where production is migrated from fab A to fab B and wB = 30. Individual histograms are

provided for each method. For comparison purposes, a ”lower bound” result is also included

where the early learning method is applied by employing all available WB wafers. This

corresponds to having sufficient statistics for the distribution of e-tests and probe-tests in the

target fab, hence the quality of prediction depends only on the correlation between e-tests and

probe-tests and the ability of the regression functions to capture it. In these histograms, each

bar shows the percentage of probe-tests that have a yield prediction error within a specific

range. As may be seen, the histogram of the BMF method has most of its weight on the left

side, i.e. towards smaller prediction errors, as compared to the histograms of the other three

methods. The yield prediction results for the BMF method are also closer to the lower bound

results. Therefore, the BMF method provides the best option for predicting parametric yield,

provided that a few early characterization wafers are available. If such wafers are not readily

available, then between the two applicable methods, i.e., model migration and predictor

calibration, the latter provides the best parametric yield prediction results.
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(a) Model migration
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(b) Predictor calibration
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(d) BMF
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(e) Lower bound (wB=WB)

Figure 3.6. Yield prediction error across all 200 probe measurements during fab A to fab B
production migration with wB = 30.

3.4.4 Yield prediction across design generations

In order to quantify yield prediction accuracy across design generations using the methods

discussed in Section 3.3.5, the following experiment is performed using the datasets of

devices N and P from fab B. The averaging method assumes access only to wn � WB early

characterization wafers of the next-generation device N; in this experiment, wafers from the

first two lots in the dataset are used. In addition, the rest of the methods assume access

to the entire dataset of the previous-generation device P. Also 10 bootstrap iterations are

performed and, in each iteration, wB wafers are sampled uniformly at random from the

available wn wafers and 5-fold cross validation is performed. The reported prediction errors

are averaged over these 50 iterations. The experiment is repeated by varying wB in the range

[10, 50]. The following expression is used for evaluating prediction error of the HVM overall

wafer yield of device N

δ = 100 · |
ˆ̄YN − ȲN |
ȲN

, (3.42)
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where ˆ̄YN and ȲN are the predicted and actual HVM wafer yield values for device N,

respectively.

Figure 3.7 shows the yield prediction error as a function of the number of available wafers

wB in the training set. As may be seen, BMF again outperforms the other methods, regardless

of the training set size. It shows a remarkably stable behavior, maintaining steady HVM

yield prediction error even when the training set size is as small as 10 wafers. This shows

that, by statistically fusing prior knowledge from the previous-generation device P, BMF is

capable of providing a very accurate HVM yield prediction model for the new-generation

device N, based on only a few early characterization wafers. Therefore, BMF can be used

for fast and precise forecasting of HVM wafer yield, without having to wait until a large

volume of data is collected. The second best method is the averaging method. Its stable

behavior implies that the wafer yield in the first two lots that are included each time in

the training set is very similar. Averaging is outperformed by BMF, since the wafers in the

first two lots are not necessarily representative of HVM statistics. Success of early learning

depends strongly on the size of the training set. The prediction error is low for large wB and

exponentially increases as wB becomes smaller. This is anticipated, since the information

content of the training set is weakened, becoming biased and non-representative of HVM, and

the regression model is unable to extrapolate towards the tails of the distribution, resulting

in large prediction error. The accuracy of naive mixing improves slightly as the number of

training samples from device N increases. The fact that the accuracy of this method is inferior

implies that the datasets from devices P and N do not exhibit strong similarity and/or that

the rich dataset from device P overshadows the limited dataset from device N.

To gain better insight, consider wB = 20 and Figure 3.8 illustrates the distribution of

wafer level prediction error for all wafers in the validation set for the BMF and early learning

methods. The prediction error is expressed as
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Figure 3.7. Error in predicting device N yield from early wafers.

δi = 100 · |Ŷ
i
N − Y i

N |
Y i
N

, (3.43)

where Ŷ i
N and Y i

N are the predicted and actual wafer yield values for the i-th wafer, respectively.

In each histogram, the horizontal axis represents the prediction error range and the vertical

axis represents the percentage of the wafers in the validation set whose wafer yield is predicted

within a given error range. As may be seen, for the BMF method the histogram is skewed to

the left, showing that the wafer yield of the majority of the wafers is predicted accurately,

whereas for the early learning method the histogram is skewed to the right, showing that the

wafer yield of about half of the wafers is predicted with error greater than 12%.
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Figure 3.8. Wafer yield prediction error of device N with wB = 20.

57



3.5 Conclusion

This chapter introduced and compared several methods for yield prediction during fab-to-fab

production migration and during transition to a new design generation. In these two yield

prediction scenarios, plenty of silicon data is already available, therefore making the use of

simulation-based methods, which may be time-consuming and of limited accuracy, unnecessary.

The proposed methods span a range of sophistication levels and make use of increasingly rich

datasets, including HVM silicon data from the source fab or the previous-generation device,

as well as silicon data from a few early characterization wafers from the target fab or the

new-generation device, respectively. All methods, except for the simplest ones, capitalize on

the existence of correlation between the e-test profile of a wafer and its yield. Effectiveness

of the proposed methods was evaluated using large datasets obtained from two different

fabs which produced two generations of a Texas Instruments 65nm RF transceiver device.

Among the options discussed, the most advanced BMF method which intelligently combines

data from the source and target fab or from the previous-generation and next-generation

devices, outperforms all other more straightforward methods and offers a highly accurate yield

prediction solution during production migration and design generation transition, respectively.
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CHAPTER 4

FAB-OF-ORIGIN ATTESTATION1

4.1 Overview

As the semiconductor industry has largely adopted the fab-less paradigm and as globalization

has amplified concerns regarding integrity of the electronics supply chain, the ability to

definitively identify the fabrication facility wherein an IC was manufactured has become

imperative. Such a fab-of-origin attestation ability could constitute the cornerstone for

numerous applications in the electronics industry, including intellectual property (IP) pro-

tection, licensing enforcement, quality and hardware integrity assurance, supply chain risk

management, counterfeit IC detection and failure analysis, among others.

The importance of fab-of-origin attestation is highlighted by a recent US government

research initiative whose objective is to devise methodologies which use measurable electronic

or physical characteristics for determining the specific fabrication facility of origin of a given

electronic component [66]. The various methods developed under this initiative seek to leverage

the specifics of a manufacturing process, such as the use of particular materials or geometric

rules during fabrication, in order to identify the fab-of-origin. Utilizing on-die laser markings

during fabrication, atomic force microscopy (AFT), nanoscale structural, mechanical and

electrical characterization based on transmission electron microscopy, device characterization,

and using features of spectroscopic chemical signals from electronic components for identifying

the source fab are among the explored directions [66]. All of these approaches, however,

require additional complicated steps during manufacturing or specialized and expensive

equipment during characterization in order to perform fab-of-origin attestation.

12016 IEEE Adapted/Reprinted, with permission, from Ali Ahmadi, Mohamad-Mahdi Bidmeshki, Amit
Nahar, Bob Orr, Michael Pas and Yiorgos Makris, “A machine learning approach to fab-of-origin attestation”,
in Proceedings of IEEE International Conference on Computer-Aided Design ©2016 IEEE
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In contrast to the aforementioned design-independent approaches to fab-of-origin attesta-

tion, this Chapter introduces a learning-based methodology which leverages the interaction

between the idiosyncrasies of a fabrication facility and a particular design [67]. Specifically,

solutions for four variants of the fab-of-origin attestation problem are developed. The first two

variants assume availability of the test data profile from the ratified fabrication facility only,

and seek to attest whether a single chip or a batch of chips, respectively, has been fabricated

therein or not. The other two variants assume availability of the test data profile from all

facilities which fabricate this chip and seek to identify whether a single chip or a batch of chips,

respectively, were fabricated in the ratified fab or not. The proposed solutions rely only on the

typical parametric test measurements of a fabricated IC and require neither knowledge of the

design, nor any additional provisions during manufacturing or any specialized measurement

equipment.2

Effectiveness of the proposed solutions is demonstrated using two large industrial datasets

from a 65nm Texas Instruments RF transceiver produced in two geographically dispersed

fabrication facilities. Considering that alternate fabrication facilities within the same company

are highly tuned to resemble each other as much as possible, I point out that the evaluation

is performed not only using realistic datasets but also ones that are very hard to tell apart.

4.2 Applications of Fab-of-Origin Attestation

In semiconductor manufacturing, performance parameters of a device varies during high-

volume production due to process variations. These variations appear at different scales in

time and space: intra-die, die-to-die, wafer-to-wafer, and lot-to-lot. Layout and topography

interaction of design with process results in intra-die variation. The wafer-level variation is

caused by equipment non-uniformity and other physical effects such as wafer spinning and

2While in this work only probe-test data is considered, should on-die process control measurement (PCM)
data be available, they can be seamlessly integrated into these solutions.
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thermal gradient. Wafer-to-wafer variation is typically caused by drift in process equipment

operations from one wafer to the next. The lot-to-lot variation which is significantly larger than

previously-mentioned variations occurs due to process control and maintenance operations

between lots.

The impact of the process variations during high-volume production is significant such that

fabricated devices express dissimilar performance/power profile. The dissimilarity is even more

evident when the comparison is between profile of ICs for the same design and process which

are manufactured in two geographically dispersed fabrication facilities. This is anticipated,

as equipment age, manufacturing tool installations, chemical sources, as well as altitude

and geomagnetic location of the fabrication facility lead to systematic disparities in the

resulting products of different fabs. Moreover, fabrication companies typically manufacture

several products in the same production line. Thus, it might be the case that the current

hardware/software setup as well as process table in one facility result in superior performances,

while in another cause performance degradation. In summary, when a design fabricated in

two different fabrication facilities, manufactured ICs have dissimilarities in the following

aspects:

� Performance parameters: profile of parameters such as delay, power, etc. are

dissimilar due to difference in equipment, tools and process material of production line.

� Certificates and standards: devices produced in a fabrication facility fail to meet

certain certifications and standards due to equipment age, tools or process materials,

and the training of personnel.

� Security concerns: the geographical location of a fabrication facility may introduce

security concerns, such as intellectual property theft or the insertion of hardware

Trojans, for a specific customer.
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Considering the above-mentioned dissimilarities, the next part discusses a set of applica-

tions in which identifying the fabrication facility where a component was manufactured is

crucial. These applications are divided in two broad categories as the following:

4.2.1 Risk management

As the semiconductor industry has largely adopted the fab-less paradigm, design, fabrication

and distribution of today’s electronic components has amplified concerns regarding perfor-

mance, reliability, integrity and security of ICs. Consider a customer that needs a specific IC

product which is produced in several fabrication facilities, and this product will be integrated

with other modules in a system. During the integration process, customer has experienced

that ICs of a specific facility will result in better performance/yield and reliability of end

application. Therefore, the preference is ICs which were fabricated in that fab. Another

example could be a customer who wants devices which are manufactured in facilities that

comply with medical/automotive/military standards and certificates. Similar concerns need

to be considered when fab-less customers want to fabricate their own design, and ask a

foundry to produce it in a specific fabrication facility. In this case, geographical location of a

fab might be important due to trust concerns.

In all these situations, customers are highly interested to attest the fab-of-origin of ICs,

in order to meet the end application requirements.

4.2.2 Litigation

Another application of fab-of-Origin is to handle litigation challenges for both the IC manu-

facturer and the IC customers. A manufacturer might be challenged with remarked or cloned

devices that are claimed were fabricated by this company, and is interested in a methodology

to prove these devices were not fabricated in its facilities. Foundries also might be asked by

customers to verify the facility that a device was produced. Such requests can be initiated
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from a customer of a specific product from this manufacturer, or a design owner whose design

is fabricated therein.

It is evident that a reliable methodology for attesting the fab-of-origin of a device without

relying on the markings on it (as such markings can be easily forged) is greatly helpful

in solving new challenges facing the IC industry such as the ones mentioned above, and

can increase the security of the IC supply chain. As the proposed methodology uses the

interaction between the idiosyncrasies of a fabrication facility and a design, as captured by the

process variation, next section reviews some of the existing applications of process variation

modeling in the literature, and related methodologies introduced for foundry identification.

4.3 Related Work

Post-silicon process variation modeling has been employed in various contexts, including: (i)

decomposition for identifying prominent sources of variance [68], (ii) spatial or spatio-temporal

correlation modeling for test cost reduction [9, 69], (iii) post-silicon diagnosis for identifying

design sensitivity to process parameters, (iv) yield learning and forecasting [43], and (v)

outlier detection [70]. The corresponding statistical methods leverage correlations to broadly

separate chips to a few classes (good/bad, sensitive/robust, typical/outlier, etc.). Recently

researchers have started to leverage process variations modeling for counterfeit IC detection

and foundry identification. This section briefly review the state-of-the-art methods which

leverage the process variations for foundry identification and similar problems along with

their advantages and limitations.

4.3.1 Counterfeit detection using process variation modeling

Counterfeit ICs have become an issue for semiconductor manufacturing. One source of

counterfeit devices is legitimate products that are extracted from electronic waste, i.e.,

reselling aged devices as brand new. Measuring performance parameters of a device and
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approximating its age can be used to detect this class of counterfeit ICs. In [71], authors

introduced a method to identify aged devices from brand new devices solely based on

parametric measurements. To do so, they trained a one-class SVM classifier using distribution

of brand new devices (affected by process variations), to build a boundary which encloses

the population of fresh devices. The conjecture was that the aged devices exhibit different

distribution in the space of parametric measurements. In [72] a similar methodology was

proposed for counterfeit IC detection in which they used information of both fresh and aged

devices to train a two-class classifier. They used simulation models to approximate the aging

process and extract information of aged devices.

4.3.2 Foundry identification by reverse engineering

In [73], a methodology introduced which leverages intrinsic variation of the semiconductor

manufacturing process for foundry identification purposes. They were the first to demonstrate

the utility of process variations in this context. The base of their methodology was reverse

engineering of process parameters such as threshold voltages and effective channel length of

CMOS devices. To accomplish this, they used gate delay measurements which are obtained

through an elegant path decomposition formulation to extract process parameters. Statistical

tests such as Kolmogorov-Smirnov test is used to compare the distribution of these parameters

to the profiles of known foundries in order to identify which foundry fabricated the IC in

question. While this method is design-independent, it requires access to the gate level

implementation of the fabricated IC in order to reverse engineer these process parameters,

which may pose an obstacle due to IP protection issues. Moreover, as they explained in the

paper, reverse engineering of these parameters can become quite complicated in practice.

4.3.3 Manufacturer attribution through electronic forensic

A methodology which uses embedded circuits to measure manufacturing characteristics of a

device was introduced in [74]. They proposed to fabricate PCM-like structures (i.e., resistors,
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capacitors, ring oscillators) along with the design to capture the manufacturing characteristics

of an IC in a given fab. They fabricated 159 silicon ICs in two fabs and demonstrated separable

distributions for two fabs for some measurements. By employing a threshold-based classifier,

they were able to identify the manufacturer of ICs with 98% accuracy. Although, they showed

the effectiveness of methodology using silicon measurements, their methodology has several

limitations. First, using measurements of 80 chips from 2 wafers is not a representative sample

for a foundry, and is statistically insufficient to draw a conclusion. As the number of wafers

increase, wafer-to-wafer as well as lot-to-lot variations result in overlapped distributions

which is difficult to distinguish where the device was fabricated. Second, this method requires

additional structures to be embedded into the design which adds extra cost and effort and

challenge the time to market of a product.

In contrast to the aforementioned design-independent approaches to fab-of-origin attes-

tation, this work introduces a learning-based methodology which leverages the interaction

between the idiosyncrasies of a fabrication facility and a particular design [67].

4.4 Machine-Learning Based Method for Fab-of-Origin Attestation

The methods proposed in this work seek to identify whether an IC was manufactured in a

ratified fabrication facility based solely on the parametric measurements obtained during

post-manufacturing testing. Note that these measurements have predefined acceptable ranges;

any IC whose values fall outside these ranges is considered faulty and is discarded. Hence,

the objective is to distinguish between the footprints of healthy chips from the ratified fab

and the footprints of healthy chips from other fabs within the hyper-dimensional parametric

space of acceptable performances. The conjecture here is that, for the same design and

process, certain idiosyncrasies stemming from manufacturing tool installations, chemical

sources, as well as altitude and geomagnetic location of the fabrication facility, lead to minor,

yet systematic disparities in the resulting products of different fabs. These disparities may,
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therefore, be leveraged through machine learning methods in order to attest the source of

origin of a given IC [66].

Four variants of the fab-of-origin attestation problem are considered herein:

� AttestMe-I: In this variant of the fab-of-origin attestation problem the only available

data is the parametric test data profile from a statistically significant number of chips

manufactured in the ratified fab. Given this profile and the parametric tests of a single

IC, the goal is to decide whether it was manufactured in the ratified fab or not.

� AttestUs-I: This variant assumes availability of the same information as above; instead

of making a decision for a single IC, however, it considers the parametric tests of an

entire batch of ICs and seeks to make a collective decision for the batch, assuming that

they were all manufactured in the same fabrication facility.

� AttestMe-II: The assumption in this variant, is the availability of the parametric test

data profile from a statistically significant number of chips manufactured in each of the

fabs wherein a given design could have been produced. Given these profiles and the

parametric tests of a single IC, the objective is to decide whether it was produced by

the ratified fab or any other fab.

� AttestUs-II: Using the same information as above, this variant seeks to decide whether

an entire batch of ICs, originating from the same facility, was manufactured in the

ratified fab or any other fab.

Note that the Attest(Me/Us)-I variants require less training data, since they only rely

on the profile of the ratified fab, as opposed to all fabs, yet are more difficult than their

Attest(Me/Us)-II counterparts. Similarly, the AttestMe-(I/II) variants require less test data,

since they make decisions for individual ICs, as opposed to batches of ICs, yet are more

difficult than their AttestUs-(I/II) counterparts. Figure 4.1 summarizes these four attestation

scenarios.
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Figure 4.1. Fab-of-Origin attestation scenarios.

4.4.1 Proposed Solutions

This Section presents the proposed solutions for the four variants of the fab-of-origin attestation

problem, which were introduced in previous Section.

AttestMe-I

The AttestMe-I variant is, essentially, a one-class classification problem, for which numerous

solutions exist in the literature [75]. Specifically, given a statistically significant set of

parametric test data from the ratified fab, the objective is to learn a boundary that encloses

this population in the multidimensional space of these measurements. The trained one-class

classifier then compares the footprint of a new IC to this boundary, in order to decide whether

it came from the ratified fabrication facility or not.

The key challenge in the context of AttestMe-I, however, is the high dimensionality of

the data, which is typically in the few hundreds (i.e., number of probe-tests). Indeed, due to

the curse of dimensionality, it is practically impossible to capture the underlying interaction

between the design and the idiosyncrasies of a specific fab and to establish any meaningful

boundary in the raw data space. Instead, the proposed method employs the following steps:
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Dimensionality Reduction: In order to reduce the dimensionality of the test data, the

t-Distributed Stochastic Neighbor Embedding (t-SNE) [22] technique is employed. t-SNE

is a non-linear transformation of the parametric test data into a lower-dimensional feature

space, wherein enough discriminative power exists for learning the boundary that encloses

the population.

Clustering: Once the data is projected in the transformed space, the GAP statistic

method [76] is used to estimate the number of clusters that the data consists of, followed by

k-means clustering to separate the data into the corresponding number of clusters.

Boundary Identification: A simple one-class classifier (i.e., a convex hull) is then

trained to enclose the data of each cluster. Collectively, the acceptance region of the trained

one-class classifiers for all the clusters, define the space where ICs from the ratified fab are

expected to reside.

Decision Making: Given the test data of a new IC, its footprint in the transformed

space is computed and compared to the acceptance region. The IC is considered as originating

from the ratified fab if and only if this footprint falls within any of the learned clusters.

For sake of comparison, the simpler and very popular Principal Component Analysis

(PCA) [77] method for dimensionality reduction is also considered. However, as will be

demonstrated later, the variance of the data appears to be highly non-linear; therefore, PCA,

which linearly transforms the original data to a lower dimensional subspace, while retaining

most of its variance, performs poorly. An advanced one-class classifier (i.e., SVM) is also

trained to directly learn a single boundary in the reduced feature space. However, the data

in this space is highly discontinuous, with the vast majority of the points congregating in

small clusters. Therefore, as will be shown in Section 4.5.1, learning a single boundary to

successfully include all these discontinuous regions while excluding the rest of the space is of

limited effectiveness.
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AttestUs-I

The solution to the AttestUs-I variant seeks to take advantage of the fact that process

variations are expected to affect ICs produced within the same fab in a correlated way.

Accordingly, this correlation can be leveraged to improve fab-of-origin attestation effectiveness

for a batch of ICs, all of which originate from the same fab. To achieve this, the underlying

distribution of performance parameters for this batch is assessed against the profile of the

ratified fab using non-parametric statistical tests. In particular, this solution employs the

Anderson-Darling (AD) test [78], and Kolmogorov-Smirnov test [79] which are the well-known

procedures for determining whether a sample of k observations comes from a given distribution

or not. In order to utilize these two tests in the fab-of-origin attestation context, the following

procedure is applied:

Density Estimation: For every performance parameter t of the device under attestation,

the parametric measurements in the statistically significant training set from the ratified

fab are used, to estimate the underlying distribution of that parameter. To do so, Kernel

Density Estimation (KDE) [59] is employed which has been successfully used in the past

for density estimation and synthetic population generation [80]. This method relies on the

estimation of the densities f(~t), using the available observations ~ti, i = 1, · · · ,M , where M is

the number of available samples used to build the density. There is no assumption regarding

its parametric form (e.g., normal). Instead, the non-parametric KDE is used, which allows

the observations to speak for themselves. The kernel density estimate is defined as [59]

f̂(~t) =
1

M × hd
M∑
i=1

Ke(
1

h
(~t− ~ti)) (4.1)

where h is a parameter called bandwidth, d = 1 is the dimension of ~t, and Ke(m) is the

Epanechnikov kernel.

Membership Test: Consider mt as the measurement vector of performance parameter

t from all ICs in the batch under attestation. The objective of this test is to compare the
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parameter distributions of this unknown batch of chips with the parameters of ratified fab.

Kolmogorov-Smirnov (KS) test was first introduced in [81, 82] as a non-parametric test which

can be used to decide if a sample comes from a population with a specific distribution. The

KS statistic is based on the largest distance between empirical cumulative distribution value

of the sample (i.e., mt) and cumulative distribution of the hypothesized distribution. The

null hypothesis is that the sample follow the specified distribution, and data do not follow

the specified distribution is alternate hypothesis. Output of the KS test is an asymptotic

p-value in the range 0 to 1. For a p-value less than a chosen threshold (usually 0.05), the

null hypothesis is rejected and I deduce that the distribution of the measured data, mt,

is dissimilar to the estimated density (i.e., this batch of chips does not originate from the

ratified fab). Anderson-Darling (AD) test is another statistical test that is employed in this

work in order to accomplish the membership test. AD test is very well-known procedure

for determining whether a sample of k observations come from a given distribution or not.

It was developed in 1952 by Anderson and Darling [78] and has several advantages such as

its sensitivity to the shape of a distribution and applicability for small sample sizes. The

p-value output of AD test is evaluated similar to that of KS test to reject or accept the null

hypothesis. Various statistical packages in R and MATLAB support the AD and KS tests.

Decision Making: This procedure is repeated individually for each performance param-

eter. A majority vote is, then, employed to provide the final decision for the batch.

AttestMe-II

The AttestMe-II variant of attesting an individual chip, when parametric measurements from

a statistically significant number of chips from both the ratified and all other (i.e., undesired)

fabs are available, boils down to a two-class classification problem. Availability of populations

from both classes simplifies the problem drastically and eliminates the need for clustering.

Instead, the solution to this variant involves the following steps:
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Classifier Training: The available training data is used to train a classifier which

will be used to determine whether an unknown device originating from the ratified fab or

an untrusted fab. This work explores a set of well-known classifiers and compare their

classification performances.

� Naive Bayes: Naive Bayes is a simple probabilistic classifier based on applying Bayes’

theorem with independence assumptions [83]. These independence assumptions of fea-

tures make the dimensionality of features irrelevant, thereby the presence of one feature

does not affect other features. Thus, it is particularly suited when the dimensionality

of the input is high. Despite its simplicity, Naive Bayes can often outperform more

sophisticated classification methods [84]. An advantage of the Naive Bayes classifier is

that it requires a small amount of training data to estimate the parameters necessary

for classification. Bayesian classification approach arrives at the correct classification as

long as the correct category is more probable than the others.

� K-Nearest Neighbors (KNN): KNN is an instance-based learning algorithm, and is used

to test the degree of similarity between an unseen instance and K instances of training

data, in order to determine the label of the unseen instance [85]. It is based on the

principal that instances within a dataset will generally reside in close proximity to other

instances that have similar properties/label. The key element of this method is the

availability of a similarity measure for identifying neighbors of a particular instance.

Euclidean Distance is a widely used metric to measure the distance between the vectors.

In the training phase of KNN, training vectors along with their class labels are stored.

Then, in the classification phase, distances from a new vector, representing an unseen

instance, to all training vectors are computed, and K closest samples are selected.

Finally, the class label of the new instance will be the most frequent class label of these

K instances. In this work, a hold-out set of data is used to assign K = 9 and Euclidean

distance is used as a distance metric to find nearest instances.
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� Support Vector Machine (SVM): SVMs are one of the discriminative classification

methods that are well-recognized for their accurate performances in real-world appli-

cations [86]. The principal idea is the separation of two classes through a hyperplane

that is specified by a vector and a bias term. The optimal separating hyperplane is

the one that maximizes the distance between the hyperplane and the nearest points

of both classes (known as the margin). SVM tries to find out the linear separating

hyperplane which maximize the margin, i.e., the optimal separating hyperplane and

maximizes the margin between the two data sets. Kernel functions can be used in

conjunction with the SVM formulation to allow non-linear decision boundaries. In this

sense, the nonlinearity of the classification solution is included via a kernel function.

SVM has several advantages such as good generalization properties, and insensitivity

to overtraining and the curse-of-dimensionality [87, 88].

� Linear Discriminant Analysis (LDA): LDA is a statistical, multivariate method used in

statistics and machine learning to find a linear combination of features that separates

two or more classes of objects [89]. This method maximizes the ratio of between-class

variance to the within-class variance in any particular data set, thereby, guaranteeing

maximal separability. This technique has a very low computational requirement which

makes it suitable for real-time systems. Moreover, this classifier is simple to use and

generally provides good results.

� Deep Neural Networks (DNNs): DNNs have recently achieved state-of-the-art perfor-

mance in a wide range of classification tasks of high dimensionality in speech recognition,

computer vision and text processing [90]. A DNN is a feed-forward, artificial neural

network that has more than one layer of hidden units between its inputs and its outputs.

They became more successful in recent years due to the availability of inexpensive,

parallel hardware (GPUs, computer clusters) and massive amounts of data. Deep
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learning discovers intricate structures in large data sets by using the back-propagation

algorithm to indicate how a machine should change its internal parameters that are used

to compute the representation in each layer, from the representation in the previous

layer. For this two-class classification problem, a five-layer DNN with two output

neurons is trained using measurement data from both the ratified and the undesired

fabs. To train the entire network, a generative pre-training step is applied to train one

layer at a time. Then, the whole network is fine-tunned using the back-propagation

learning algorithm.

Decision Making: Given a new IC whose source of origin needs to be attested, its

performance parameters are measured and provided to the trained classifier, that determines

which of the two classes the IC belongs to, i.e., whether it was produced in the ratified fab or

in an undesired fab.

AttestUs-II

The solution to the AttestUs-II variant follows the general principles of what was described

in Section 4.4.1 and consists of the following steps:

Density Estimation: For every performance parameter of the IC batch under attestation,

e its probability density function (PDF) in both the ratified fab and the undesired fab(s) is

computed by applying KDE on the corresponding training sets.

Membership Test: For every performance parameter, the AD and KS tests are applied

using the measurement vector from all ICs in the batch under attestation and the estimated

densities of the ratified fab and the undesired fab(s). For each test, the combination of the

two p-values determines whether, with respect to this performance parameter, the ICs in the

batch were manufactured in the ratified fab or in an undesired fab.

Decision Making: This procedure is repeated individually for each performance param-

eter. A majority vote is, then, employed to provide the final decision for the batch.
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Table 4.1. Attestation scenarios.

New results future production ratified

Attestation 
scenario

Attestation approach Training set Validation set
Attestation 
granularity

AttestMe-I
Dimensionality reduction + 

clustering + 
boundary identification

Data from 
RATIFIED fab

Devices
manufactured in 

ratified and 
undesired fabs

Single IC

AttestUs-I
Distribution test

(AD/KS test)
Data from 

RATIFIED fab
Batch of ICs

AttestMe-II
Two-class classifier

(LDA, KNN, SVM, DNN, NB)

Data from 
RATIFIED and 

undesired fabs
Single IC

AttestUs-II
Distribution test

(AD/KS test)

Data from 
RATIFIED and 

undesired fabs
Batch of ICs

Table 4.1 summarizes the learning approach, training data, validation data and the

granularity of attestation for all the above-mentioned attestation scenarios.

4.5 Experimental Results

This section presents the evaluation of the effectiveness of the proposed solutions using actual

production test data from a 65nm RF transceiver currently in high volume manufacturing

(HVM) by Texas Instruments.

This dataset comprises devices from two geographically dispersed fabs wherein this RF

transceiver is fabricated. For the purpose of this study, one of these facilities is considered

as the ratified fab and the other one as the unknown or undesired fab. The dataset for the

ratified fab includes 600 wafers from 20 lots, with approximately 1500 die per wafer. For each

die, 276 probe-test measurements are provided.

These tests are the typical measurements performed at wafer probe to ensure compliance

of the performances of an RF transceiver design to its specifications (i.e., production tests).

They include both structural tests (open/short circuit, power consumption, IDDQ, input

voltage threshold, output voltage level, etc.) and functional tests (BER, EVM, CMMR,
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receiver sensitivity, output power, phase noise, etc.) and indirectly cover a broad range of

process parameters.

The dataset of the undesired fab includes the same 276 probe-test measurements from

500 wafers in 20 lots. These two datasets were obtained from the two fabs at approximately

the same period. Using this dataset, this work seeks to:

� Visualize the overlap of the two populations in the raw data space and in the linearly

transformed PCA space, as well as the effectiveness of the non-linear t-SNE transforma-

tion in increasing discrimination, and demonstrate the limited effectiveness of training

a one-class classifier (i.e., SVM) to separate the populations through a single boundary,

due to data discontinuity.

� Quantify the effectiveness of AttestMe-I and AttestUs-I, which use data solely from the

ratified fab for learning the underlying model, in distinguishing between ICs produced

in the ratified and in an unknown fab.

� Assess the attestation accuracy improvement achieved by AttestMe-II and AttestUs-II,

which are trained with datasets from both the ratified and the undesired fabs.

� Demonstrate the effectiveness of the proposed solutions in handling process variations

by assessing attestation accuracy on ICs from future production.

4.5.1 Population overlap

To demonstrate population overlap, 5 wafers are randomly selected from each of the 20 lots

in the ratified fab and all probe-test data of all die on these 100 wafers is used as the training

set. Then, a one-class SVM is trained to learn the boundary that encloses the population

originating from the ratified fab in three different spaces: (i) in the raw data space which

includes all 276 dimensions, (ii) in a PCA transformed space where the data is linearly
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projected on the first 30 principal components, and (iii) in the t-SNE transformed space

where the retained data is non-linearly projected on 3 dimensions. The validation set includes

all die from a randomly selected wafer from each of the 20 lots of the ratified fab (excluding

the wafers used for training) and from each of the 20 lots of the undesired fab. The trained

SVMs are, then, used to individually decide whether each die in the validation set originated

from the ratified fab or not.

Figures 4.2 (a)-(c) visualize the training and validation data on the space of the two most

discriminative raw measurements, on the two main components of the linearly transformed

PCA space, and on the two components of the non-linearly transformed t-SNE space,

respectively. As may be observed, there is an almost complete population overlap in the first

case, which is only slightly reduced after linear transformation in the second case, because the

variability of the data is non-linear. The non-linear transformation of the third case, however,

performs significantly better in separating the two populations. While this is visualized

only in a two-dimensional space, an extensive experimentation with multiple dimensions has

confirmed this observation, justifying the use of t-SNE as the method of choice for enhancing

discrimination via dimensionality reduction in this context.

The results reported in the table of Figure 4.2 (d), which quantify the effectiveness of a

single boundary established by training a one-class SVM in each of the three spaces mentioned

earlier, are also consistent with this observation. Indeed, attestation accuracy of a single IC

in the raw data space is only 57.3%, barely higher than a coin-toss. Learning the boundary

in the 30-dimensional PCA space only slightly improves accuracy to 61%, while doing so

in the 3-dimensional t-SNE space boosts accuracy to 71.4%. This rather low accuracy is

attributed to the highly discontinuous nature of the data in the projected space, which calls

for a clustering-based classification approach, as shows next.
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(a) Raw data (b) PCA

(c) t-SNE Raw data + OCC PCA + OCC t-SNE + OCC

Attestation Accuracy 57.3% 61.0% 71.4%

Method
Attestation

Accuracy

Raw data + OCC 57.3%

PCA + OCC 61.0%

t-SNE + OCC 71.4%

Method
Attestation

Accuracy

Raw data + OCC 57.3%

PCA + OCC 61.0%

t-SNE + OCC 71.4%

Method
Attestation

Accuracy

Raw data + One-class SVM 57.3%

PCA + One-class SVM 61.0%

t-SNE + One-class SVM 71.4%

(d) One-class SVM results

Figure 4.2. Population overlap and single boundary classification accuracy in raw and
transformed measurement spaces.

4.5.2 Learning only from ratified fab

In order to assess the effectiveness of AttestMe-I, clustering and boundary identification is

applied on the t-SNE transformed space of the training data, as detailed in Section 4.4.1.

Then, for each IC in the validation set, the decision making step is performed, which examines

whether its footprint in this space lies within the boundary of any of the clusters assigned to

the ratified fab. Table 4.2 reports the attestation accuracy for AttestMe-I, noting that positive,

(P ), is considered as a chip originating from the ratified fab and as negative, (N), a chip

originating from an undesired source. In this confusion matrix, True Positive Rate (TPR)

denotes the percentage of ICs that are correctly identified as originating from the ratified fab,

while True Negative Rate (TNR) refers to the percentage of ICs that are correctly labeled

as originating from an undesired fab. False Positive Rate (FPR) and False Negative Rate

(FNR) are defined similarly. As may be observed, the overall attestation accuracy is 85%,
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Table 4.2. AttestMe-I results.

Confusion
matrix

Actual

P N

A
tt

es
te

d P TPR = 85.5% FPR = 14.5%

N FNR = 15.5% TNR = 84.5%

Clustering with boundary

clearly outperforming the one-class SVM reported in Figure 4.2 (d) . This is expected due to

the manifold nature of the t-SNE transformed data, which makes it difficult to separate via a

single boundary, as the SVM tries to do.

Effectiveness of AttestUs-I is assessed by first estimating the performance parameter

densities of the ratified fab through the training set. Then, for a batch of ICs originating

from the same fab, the performance parameters from all ICs in the batch are measured and

the AD and KS membership tests are performed for each of the parameters, as detailed in

Section 4.4.1. This experiment, randomly draws batches of sizes in the range [15, 50] from

the validation sets of the ratified and the undesired fab; this procedure is repeated 4000 times

for each batch size (2000 batches from ratified fab and 2000 batches from undesired fab).

Figure 4.3 (a) shows the AttestUs-I results when the Anderson-Darling test is used for

distribution test. The horizontal axis denotes the batch size, while the vertical axis is the

attestation error rate. As may be observed, this method is very successful in attesting the

fab-of-origin of a batch, with accuracy exceeding 96% for batch sizes of as small as 15 ICs.

The confusion matrix for this batch size is also provided in the figure. For batches greater

than 30 ICs attestation error is quite stable and below 2.5%. Figure 4.3 (b) demonstrates

same results for Kolmogorov-Smirnov statistical test. Attestation accuracy for a batch of 15

chips is 93.3% which is lower than that of AD test. This is anticipated, as one of the major
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Figure 4.3. Attestation results for various batch sizes.

advantageous of AD test is dealing with small sample sizes. As can be seen, for a batch size

larger than 30 ICs, performance of both tests are very similar and consistent.

To gain further insight, Figure 4.4 shows the distribution of p-values for a batch size of

15 ICs for the AD test, where the horizontal axis represents the range of p-value and the

vertical axis shows the percentage of 2000 randomly selected batches which have a p-value

within a given range. In the Anderson-Darling distribution test, the null hypothesis is that

the 15-dimensional measurement vector of the 15 ICs in the batch comes from a specific

population, which is the distribution of the ratified fab. As shown in the top histogram, for

the vast majority of the 2000 samples from the ratified fab, the p-value is larger than 0.05,

hence the null hypothesis is not rejected, i.e., these batches are correctly assumed to have

originated from the ratified fab. Conversely, as shown in the bottom histogram, for the vast

majority of the 2000 samples from the undesired fab, the p-value is smaller than 0.05 and the

null hypothesis is rejected, i.e., these batches are correctly assumed to have originated from

the undesired fab.

4.5.3 Learning from all fabs

In order to quantify the accuracy of the proposed fab-of-origin attestation solutions when test

data from both the ratified and the undesired fab is available, the training set is enhanced
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Figure 4.4. Histogram of p-values for AD test against the ratified fab distribution for batches
of 15 chips (AttestUs-I ).

so that it contains data from both fabs. Specifically, in addition to all die from 5 randomly

selected wafers in each of the 20 lots from the ratified fab, the new training set also includes

all die from 5 randomly selected wafers in each of the 20 lots from the undesired fab. The

validation set remains unchanged, i.e., it contains all die from a randomly selected wafer

from each of the 20 lots of the ratified fab and from each of the 20 lots of the undesired fab

(excluding the wafers used for training).

Evaluation of the AttestMe-II solution starts with training two-class classifiers which

are described earlier in Section 4.4.1, using the training set. The trained classifier is then

applied to individually classify each IC in the validation set as originating from the ratified

or the undesired fab. AttestMe-II results for all five classifiers are summarized in Table
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4.3. As may be observed, the Naive Bayes method with 85% attestation accuracy has the

lowest performance. The attestation accuracy of other four classifiers is significantly high

and superior to the AttestMe-I approach. This is expected, because of access to data from

both fabs, which simplifies the process of learning the boundary that separates them, as

compared to the case where training data is available only from the ratified fab. KNN with

0.9% attestation error outperforms other classification techniques. The conjecture for such

low error for KNN classifier is the consistency between training data and validation sets, i.e.,

having insignificant amount of noise in the validation data. It should be noted that, training

and validation wafers are originated from same lots. Therefore, attestation accuracy of KNN

for ICs from future lots which will experience performance shift due to process variations,

may drop.

Table 4.3. AttestMe-II results.

New results current production

Classifier Accuracy TPR FPR TNR FNR

Naive Bayes 85.0% 88.0% 12.0% 82.0% 18.0%

DNN 96.5% 97.0% 3.0% 96.0% 4.0%

SVM 97.8% 97.6% 2.4% 98.1% 1.9%

LDA 98.5% 98.5% 1.5% 98.4% 1.6%

KNN 99.1% 98.8% 1.2% 99.3% 0.7%

Effectiveness of AttestUs-II requires estimation of the performance parameter densities for

both the ratified and the undesired fab using the enhanced training set. Then, for a batch

of devices from the same fab, the performance parameters are measured from all ICs in the

batch. For each performance parameter, it performs AD and KS membership tests against

the densities of both fabs to compute the corresponding p-values, and finally decides which
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fab the batch originated from, as explained in Section 4.4.1. Once again, this experiment

randomly draws batches of sizes in the range [15, 50] from the validation sets of the ratified

and the undesired fab, and repeat this procedure 4000 times for every batch size. Figure 4.5

(a) reports the AttestUs-II results for AD test, with the horizontal axis denoting the batch

size and the vertical axis showing the attestation error. As may be observed, for a batch

size of as few as 25 ICs, the accuracy of this solution exceeds 99%, while for a batch size of

40 ICs, it achieves error-free attestation. A comparison to the curves in Figure 4.3 reveals

that availability of the additional training information from the undesired fab enhances the

accuracy of the membership test and reduces the error. As a point of reference, the confusion

matrix for the batch of size 15 is also provided. Figure 4.5 (b) demonstrates the attestation

error vs. batch size when KS test is employed for distribution test. As can be observed, the

attestation accuracy significantly improved by accessing to the data of undesired fab. As was

expected, for small sample sizes (batch size less than 30) its performance is worse than that

of AD test.
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0

2

4

6

15 20 25 30 35 40 45 50

Er
ro

r 
(%

)

Batch size

FPR FNR Incorrect attestation rate

KS test

Confusion
matrix

Actual

P N

A
tt

es
te

d P TPR = 97.1% FPR =  2.9%

N FNR = 5.2% TNR = 94.8%

(b) AttestUs-II: KS statistical test

Figure 4.5. Attestation results for various batch sizes.

Lastly, Figure 4.6 presents the histogram of p-values when the AD test is used for batches

of 15 ICs. Figure 4.6 (a) shows the p-values for 2000 batches originating from the ratified

fab, wherein the top and bottom graphs compare these samples against the ratified and the
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Figure 4.6. Histogram of p-values for AD test against the ratified and the undesired fab
distributions for batches of 15 chips (AttestUs-II).

undesired fab distributions, respectively. Evidently, for the vast majority of samples the null

hypothesis is not rejected for the ratified fab but is rejected for the undesired fab, hence these

batches are correctly attested as originating from the ratified fab. Conversely, Figure 4.6 (b)

demonstrates the same results for 2000 batches originating from the undesired fab, in which

case the results are reversed.

4.5.4 Future production attestation accuracy

As a final experiment, the goal is to evaluate the robustness of the proposed solutions against

fabrication process shifts. To do so, probe-test data from a new set of wafers from 10 lots

is used, which were fabricated in each of the two fabs a few months after the wafers of the

original dataset. ”Future wafers” refers to these new wafers. The training set remains the

same, but the new validation set now comprises all die from 20 randomly selected future

wafers, equally distributed across the 10 new lots from each of the two fabs. Table 4.4 includes

the effectiveness of the five classifiers as explained in Section 4.4.1 for AttestMe-II solution

on the new validation set, which comprises future wafers. As may be observed, SVM, DNN
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and LDA offer robust and accurate attestation in comparison with Table 4.3. Among them,

LDA has a slightly better attestation accuracy, and outperforms other classification methods.

KNN with 81.3% attestation accuracy shows a significant performance reduction, compared

to 99.1% accuracy when the validation set was from training lots. As mentioned earlier, due

to process variations, the performance parameters of devices from new lots shifts slightly

which translates to noise in the KNN method.

Table 4.4. AttestMe-II results for chips from future production.

New results future production

Classifier Accuracy TPR FPR TNR FNR

Naive Bayes 80.8% 87.7% 12.3% 73.9% 26.1%

KNN 81.3% 77.9% 22.1% 84.7% 15.3%

SVM 93.6% 90.3% 9.7% 96.9% 3.1%

DNN 94.0% 96.0% 4.0% 92.0% 8.0%

LDA 94.6% 91.9% 8.1% 97.2% 2.8%

Similarly, Figure 4.7 (a) demonstrates the effectiveness of the AttestUs-II solution (AD

test) for batch of ICs from future wafers, where the horizontal axis is the batch size and the

vertical axis denotes the attestation error. As it can be seen, AD distribution test successfully

attests batch of chips from future production even for small sample size. Figure 4.7 (b) shows

the attestation error of AD test method for chips from current and future production. For

small sample sizes the attestation accuracy drops slightly, however for batch sizes larger

than 35 ICs, the difference in the two scenarios is negligible, confirming the fact that the

AttestUs-II solution is robust to process variations. Figure 4.8 presents similar results for KS

test method. As may be observed, the sensitivity of this test to the process variations is higher
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Figure 4.7. AttestUs-II : AD test, (a) results for chips from future production, (b) comparison
of results for chips from current and future production.

than AD test, specifically for small batch sizes. As an ancillary measure for maintaining

robustness, the underlying trained models can be periodically updated.
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4.6 Conclusion

Parametric measurements, such as the ones taken during manufacturing testing, comprise

valuable information which reflects the interaction between the design of an IC and the

fabrication process through which it was produced. In conjunction with machine learning

methods, this information may be harnessed to provide effective solutions to numerous

variants of the fab-of-origin attestation problem, without requiring design modifications,

custom processing steps, or specialized characterization equipment. Four such solutions were

developed and evaluated using actual test data from a large number of ICs implementing

an RF transceiver design, which were fabricated in two geographically dispersed foundries.

Results indicate that the accuracy of these fab-of-origin attestation solutions reaches 99.1%

when deciding whether a single IC originated from a ratified fab or an unknown/undesired

facility and 100% when collectively making the same decision for a batch of as few as 40 ICs.

It is worth noting that while precise cloning of an IC could evade the proposed methods,

this study was performed on two fabs of the same manufacturer so it resembles the best

cloned devices one can build. Thus, it is expected even higher attestation accuracy when the

fabrication facilities are independent. Also, it is possible that changes in fabrication process,

such as machine part replacements, software updates or new material suppliers, may shift

the process parameters and affect the accuracy of proposed models over time. Nevertheless,

these methods were able to attest future productions with only minor accuracy reduction,

demonstrating robustness of the models to such changes.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTION

The semiconductor industry is rapidly growing and dynamically changing in order to meet the

consumer market requirements. This has brought complex challenges into the manufacturing

process of integrated circuits. Test cost need to be reduced without jeopardizing product

quality. Fast and accurate prediction of high volume manufacturing yield is required to

identify process problems and ramp-up production in a short time. Security-related challenges

need to be properly addressed in order to guarantee the required performance and reliability

for fab-less customers and end-user applications. This dissertation presented three machine

learning based methodologies to address these challenges. To reduce the probe-test time, an

adaptive method was proposed to optimize probe-test flow using process variations captured

by e-test measurements. To accomplish this, process signature of each wafer was extracted at

an early stage before the wafer reaches the probe station and this drives a selection engine to

select the optimized test flow. The third Chapter of this work introduced a fast and accurate

yield estimation methodology for fab-to-fab production migration and during transition to a

new design generation. The proposed methodology is based on the correlation between e-test

measurements and yield, and utilized silicon data from early engineering wafers. Finally, a

machine learning approach was presented in Chapter four as an attestation tool to verify

the fabrication facility that manufactured an integrated circuit. Experimental results using

multiple large datasets of actual test measurements confirmed the aptitude of the proposed

methods in effectively reducing test cost, efficiently estimate high volume manufacturing

yield and precise attestation of fab-of-origin of integrated circuits.

This work introduces three machine learning based solutions to address challenges in the

semiconductor manufacturing. It provides a platform, that can be further used to enhance

the manufacturing process of ICs. The future directions for this work are as follows:
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1. The core of test cost reduction method was to extract the process variation signature of

a wafer from e-test measurements. By identifying the process signatures in which some

test groups can be eliminated from the original test flow, one can determine the sweet

spot in the process space. In other words, the desired process point for the operation

can be identified in order to reduce the test cost significantly while having lower failure

rate. Therefore, process engineer can tune the process table accordingly such that

manufactured wafers stay in the process region of interest.

2. The proposed yield estimation methodology models the yield as a function of e-test

measurements. The regression models can be used to determine the corresponding

values for e-test parameters in order to meet a target yield. Similarly, process engineer

tunes the process table such that those process parameters stay in the target range.
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