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Applications that employ machine learning over a stream of data provide the knowledge

necessary for its users to make informed decisions at the right time. With the advantages of

cloud computing infrastructure, these applications can potentially reach a myriad of users.

However, challenges arising from evolving statistical properties of data occurring continu-

ously over time, and concerns about data security has severely limited its adoption in the

real world. This dissertation contributes new results to address critical challenges in both

these complementary research areas, particularly when deployed over a third-party resource.

The first part of this dissertation introduces a novel framework for data classification over a

non-stationary data stream where the goal is to learn from limited labeled data over time.

Here, a scenario in which multiple data generating processes, that continuously generate

data, is considered, with a constraint of labeled data being generated only by a small set

of processes whose data distribution is biased compared to the population. The effect of

learning with such sampling bias in a concept-drifting data stream is explored. Changes

in data distribution over time with biased labeled data degrades classifier performance. By

representing instances along the stream as two independent streams, one containing labeled

instances (called the source stream) and the other containing unlabeled instances (called the

vi



target stream), methodologies which uniquely combine transfer learning mechanisms with

drift detection are presented.

While the above framework may adapt existing batch-wise bias correction techniques, these

are computationally expensive and are not scalable over a data stream. The next part

of this dissertation explores sampling and ensemble techniques to address this challenge.

The theoretical and empirical results show large improvements in computational time while

maintaining similar performance compared to the baseline methods.

The final part of this dissertation considers security concerns when deploying applications

that use machine learning systems on an untrusted third-party resource. Here, the focus

is on protecting the learning system against insider threats. A strong adversary can evade

security and privacy of an application aiming to protect its code and data. Using the

recent commercially available off-the-shelf (COTS) hardware-based cryptographic platform,

called Intel SGX, a black-box system can be achieved to protect against such direct attacks.

Unfortunately, side-channels from the platform that leak information during computation

exists. A novel defense strategy that leverages the trade-off between computational efficiency

and privacy to address this challenge is presented, with results demonstrating a large gain

in computational time compared to other competing strategies.
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CHAPTER 1

INTRODUCTION

The recent proliferation of Internet technology in everyday lifestyle has created streaming

sources that generate data continuously. These include social media applications such as

Twitter, wearable devices, Internet of Things (IoT), and healthcare systems. Data generated

from these sources can be successively used in applications, such as automatic categorization,

personalized services, human activity recognition, and recommendation systems, which are

beneficial to its users. Such applications typically employ data analytics to provide services

for its users to make informed decisions. For example, a marketing team of a company

can use tweet sentiment classifiers to analyze the market response of its products, or an

image classifier can be used to improve recommendation or search results in an image search

engine. In both these examples, the data occurs as a stream, i.e., tweets and images are

continuously produced by a large number of users over time. This need for large-scale data

management and analytics has resulted in numerous tool available for performing analytics.

Companies such as Amazon and Google offer computing environment for its users to deploy

their applications or utilize available machine learning tools.

Unfortunately, there exist fundamental challenges in adoption of machine learning models

used to perform analytics over a stream of data. First, for supervised learning models —

a focus in this dissertation — sufficient labeled data is typically necessary for learning and

adaptation along the stream so that it can generalize well over future unobserved data

instances. However, labeled data instances are scarce or partially available. This indicates

that the prediction model should maximize performance by leveraging available labeled data

during learning. Second, an intrinsic property of a data stream is the data arrival rate.

When performing prediction on data instances produced at high frequency, the model is

expected to consume those instances at the same rate, i.e., avoid prediction delays, while

maintaining high performance. Moreover, changes in data distribution of incoming instances
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over time entail an adaptive model. The primary challenge in this scenario is to employ a

model that consumes data without delay, quickly adapts to changes, and maintains good

prediction performance in time. Third, data and code security are of major concern when

using data containing sensitive or secret information. Analytics over an untrusted third-

party resource can be vulnerable to adversarial attacks, particularly when the adversary

controls code execution. Therefore, mechanisms to protect code and data are needed in such

an environment.

In this dissertation, we address the above challenges while performing class label pre-

diction on data instances occurring continuously from a set of independent non-stationary

concept-drifting processes. The first part of the dissertation focuses on addressing the chal-

lenge of learning from limited labeled data along the stream. Here, a scenario is considered

in which labeled data occurs only from a small set of processes whose data distribution

is biased compared to the population. We discuss methodologies to address data stream

classification challenges within this setting. The second part of the dissertation emphasizes

designing scalable solutions to address the challenge of prediction delays due to computa-

tional bottlenecks in the above setting. Finally, the third part of the dissertation discusses

novel strategies to address security concerns when performing analytics over an untrusted

third-party resource.

1.1 Data Stream Classification

In general, the problem of classifying instances (i.e., predicting its class label) in a data

stream is challenging due to unknown (and potentially infinite) data size, and changes in

data distribution that occur with time. Specifically, a non-stationary data generation pro-

cess may induce arbitrary changes in data distribution over time. This is known as data

drift (Ditzler et al., 2015). When a classifier is trained in a supervised manner for predicting

class labels of instances in a data stream, its performance typically degrades when a change
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in data distribution occurs. A plethora of studies (Bifet and Gavalda, 2007; Gama et al.,

2004; Haque et al., 2016) in the past decade have proposed techniques to address these chal-

lenges. Essentially, data instances occurring within a small time period is assumed to have

a stationary distribution. A finite set of sequential data instances occurring within this time

period, called a minibatch, is used to train a traditional supervised classifier which is used

to predict labels of future instances in the stream. To overcome concept drift, a reactive

mechanism is employed where the classifier is re-trained or updated when a change in data

distribution within a finite-size first-in-first-out sliding window is detected. The change de-

tection mechanism uses a feedback measure from the classifier on sequential label prediction

such as classification error (Chandra et al., 2014) or confidence (Haque et al., 2016). In either

case, when a change is detected, a new training data is generated by obtaining the true labels

of instances from an oracle. The major challenge is the existence of such an oracle or the

difficulty of manually labeling data instances on the stream. Recent studies have mitigated

this challenge by requiring fewer instances to be labeled along the stream. However, this

requires careful selection of data instances to be labeled. In cases where the selection process

is biased towards certain types of data instances or labels of certain instances are not easily

available, the resulting labeled dataset may have a biased data distribution compared to

the current population. In such cases, the traditional supervised classifier may not perform

efficiently in predicting the labels of future instances along the stream, particularly when the

model is simple or under-specified.

For example, consider an image classifier used to label a stream of photos. Such a stream

can be created by users uploading images to a photo sharing service such as Instagram, or

from satellites which continuously takes images of outer space. In these cases, obtaining the

true label of each image is challenging due to the sheer amount of images that are produced

over time. The performance of the classifier may degrade when the data distribution changes,

i.e., characteristics of images such as lighting effects, quality, depth of objects, and the shape
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of objects from users and satellites alike may change over time. In such cases, a new training

dataset is needed to update or re-train the classifier. Manually labeling sufficient amount of

images along the stream frequently is expensive and tedious. Instead, it is easier to request

the label of these images from a small set of users who upload them or estimate image labels

from a small set of satellites whose direction and parameters are well-known. However,

this labeling scheme may not be a good representation of the population. The chosen set

of users may only upload images of a certain characteristic, or camera directions of inter-

galaxy satellites may not be fully known. In such cases, the classifier updated from newly

created training sets along the stream may have large prediction errors since its assumption

of equivalence in training and test data distribution is violated (Bishop, 2006).

Furthermore, it is desirable for data stream analytics to be computationally efficient to

consume incoming data instances at the rate of arrival. In the above example, if images

arrive at a faster rate than the average classifier computational time (including training and

inference time) per image, the analytical solution would not be practical for such applications.

1.2 Secure Machine Learning

Apart from the machine learning challenges described above, the question of computational

integrity and data privacy is most relevant in security-sensitive applications where data

stream analytics are employed. Particularly, when computation involving data with sensitive

information is outsourced to an untrusted third-party resource, data privacy and security is

a matter of grave concern to the data-owner. For example, medical practitioners may use

a third-party image classification service to detect malicious cancer in MRI scans of their

patients. Clearly, this data contains sensitive information that needs to be protected from

external adversaries. At present, such services are implemented by building trust with the

providers through various compliance measures. However, adversaries may still do harm by

violating such regulatory compliance.
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An adversary in this environment may be a curious man-in-the-middle or the third-party

resource owner who controls the operating system. Typically, data is protected from such

external adversaries using cryptographically secure encryption schemes. However, computa-

tion performed over unencrypted data have minimal execution overhead, which is ideal for

applications over data streams. Techniques that directly perform computation on encrypted

data, such as fully-homomorphic encryption schemes (Gentry et al., 2009), are shown to be

inefficient for many practical purposes (Liu et al., 2015), and therefore is not suitable for

analytics over data streams.

1.3 Contributions

In this dissertation, we introduce a new problem setting to perform data stream classification

under the constraint of biased labels. Here, we represent the data stream containing two

types of instances over the same domain to address the above learning challenges. A stream

of labeled data instances is generated by a small set of non-stationary processes from a

particular domain. This is referred to as the Source Stream. Meanwhile, another stream of

data instances is assumed to be generated by an independent set of non-stationary processes,

referred to as the target stream, from the same domain. However, class labels of these data

instances are unknown. The classification problem is to predict class labels of data instances

in the concept drifting target stream while leveraging labeling information available in the

concept drifting source stream. Since this classification problem involves two types of data

streams, i.e., a labeled source stream and an unlabeled target stream, we call it as Multistream

Classification. Here, the source stream can be viewed as the stream of data with biased data

distribution compared to the unlabeled instances in the target stream, at a given time.

In the above examples, labeled images generated from a small set of under-represented

users from the source stream, while images from the rest (of the population) form the target

stream. Naively, one can combine the two data streams to form a single stream over which
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existing data stream classification methods can be utilized. However, unavailability of target

data instance labels and occurrence of asynchronous concept drifts (i.e., drifts may occur at

different times in the independent source and target stream) may attenuate the distinguishing

statistical characteristics of data from different classes and the classifier may not be able to

maximize the use of labeled data.

The classification problem in the multistream setting partly resonates with that of do-

main adaptation (Ben-David et al., 2010) and transfer learning (Pan and Yang, 2010) when

considering a set of observations in each stream within a particular time window. Numerous

applications involving such problems include text classification (Dai et al., 2007), sensor-

based location estimation (Pan et al., 2008) and collaborative filtering (Li et al., 2009). Un-

der different types of assumptions on the training and test data, these solutions transform an

existing classifier to leverage the available biased label data for predicting labels of unlabeled

data instances. Clearly, such applications can be easily augmented to data streams, i.e., in

the multistream setting, with concept drift detection. However, these techniques assume a

stationary environment with known dataset size, disregarding the computational time in-

volved. Ideally, data stream analytics require fast computation time due to the high velocity

and volume of data generated over time. Typically, the computational time limits the speed

at which data can be processed. Therefore, there is a need to develop scalable and efficient

techniques for multistream analytics.

The main contributions of this dissertation are to first introduce the multistream set-

ting (Chandra et al., 2016a) and address its challenges by appealing to an instance weight-

ing scheme useful for classification over a stream of data having a limited amount of labeled

instances. In the process, we develop two scalable bias correction mechanisms for training a

supervised classifier using labeled data from the source stream to predict labels of instances

over the target stream (Chandra et al., 2016b, 2018), whilst addressing concept drift over

time. We evaluate the proposed approaches to study its theoretical properties and empirical
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performance on real-world and synthetic datasets. Next, we also address the data security

and privacy concerns when employing classification in security-sensitive applications over a

third-party untrusted resource (Chandra et al., 2017). Here, we appeal to a hardware-based

cryptographically secure mechanism and develop data privacy techniques to resist attacks

from a strong adversary. We evaluate the execution time performance that is affected due

to the security measure employed. Overall, the results in this dissertation indicate that our

proposed approach provides a scalable and secure data stream analytics system that can

operate under constrained environment. This provides a black-box view of the learning sys-

tem to an adversary. Yet, recent studies have show that an adversary can attack a machine

learning system even when under this black-box setting. In the future, we want to evaluate

the multistream setting for its vulnerability to a black-box adversarial attack.

These contributions are summarized as follows.

1. We introduce a new data stream classification setting, called Multistream classifica-

tion, where data instances are represented by two independent non-stationary streams.

Class labels are predicted over one stream (target) whose data instances are unlabeled,

using the biased labeled data instances from another stream (source), in an adap-

tive framework with ensemble classifiers. We empirically evaluate this framework over

numerous datasets and compare the results with competing methods.

2. We present a scalable bias correction approach that uses a technique called Kernel

Mean Matching, which minimizes the Euclidean distance between the source and target

data distribution to compute source instance weights. Particularly, we demonstrate a

sampling-based technique over source stream minibatch to form multiple models that

can be computed in parallel. We evaluate the scalability of this approach theoretically

and empirically to showcase its properties and show its parallel execution on Apache

Spark.
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3. Similarly, we present another scalable bias correction approach using a technique called

Kullback-Liebler Importance Estimation Procedure, which minimizes KL distance in-

stead of Euclidean distance between the two distributions. Here, we utilize an ensemble

approach over the target stream to construct smaller models, thereby providing scala-

bility and parallelism. We evaluate the approach to showcase its theoretical properties

and empirical performance.

4. Finally, we present a defense strategy for data security and privacy when performing

data analytics on an untrusted third-party host. Particularly, we demonstrate a data

poisoning strategy to defend against side-channel adversarial attacks on trusted execu-

tion environments within Intel SGX. We perform an empirical evaluation to measure

execution overhead and security guarantees provided by the solution.

This dissertation is organized as follows. Chapter 2 discusses the relevant background and

related works on data stream mining, domain adaptation, and security concerns in machine

learning applications. Here, notations that will be followed throughout the dissertation are

formally introduced as well. Next, a framework to address challenges of multistream classi-

fication is introduced in Chapter 3, including fundamentals of the problem and an empirical

evaluation. Chapter 4 extends the multistream classification framework by discussing two

important techniques that make the framework scalable on fast data streams. In Chapter 5,

the strategy to build a secure black-box application employing machine learning algorithm

is presented, with the empirical evaluation that compares with current state-of-the-art de-

fense techniques against strong adversarial attacks. Finally, the dissertation concludes with

remarks on future work in Chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, we will discuss relevant background and related works on data stream clas-

sification, as well as associated security concerns when used by an application deployed on

an untrusted third-party resource.

2.1 Stream Classification

Class label prediction in machine learning has been well studied in the past few decades (Wid-

mer and Kubat, 1996; Domingos and Hulten, 2000; Datar et al., 2002; Bifet and Gavalda,

2007; Gama et al., 2014) under various constraints on the learning process. These include

batch and online learning, availability of labels (supervised, semi-supervised or unsuper-

vised), a difference between training and test domains (transfer learning or domain adapta-

tion), etc. The primary question that these studies address is on how to predict labels of

unknown instances. Particularly in supervised learning, the question of how to learn dis-

criminatory patterns from the training set that can be generalized towards the test set is

important. Unlike these approaches, studies on data stream classification aim to address an

additional question, i.e., when to learn newer discriminatory pattern from data.

A stream of data can be viewed as a sequence of data instances that continuously occur

from a set of data generating processes in an independent and identically distributed (i.i.d)

fashion. Unlike time-series data, instances in a data stream are typically assumed to be

exchangeable within a short period of time. The task of classification is to predict labels of

instances along the stream. More importantly, the data generating processes are assumed to

be non-stationary and may cause changes in data distribution over time. These changes may

directly affect the labeling or discriminatory function of a classifier learned previous to the

change, and consequently affect their classification performance in the future. Furthermore,
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the classifier training is also affected by the limitation of the observed data. Since a data

stream is assumed to be theoretically infinite, it is impractical to save every data instance

in memory for training. In applications where data instances occur rapidly, the classifier

operation should not ideally cause computational bottlenecks that affect data consumption.

Therefore, scalability challenges in learning and inference need to be addressed.

The infinite length problem of a data stream is typically addressed by dividing the whole

stream into fixed-size minibatches, e.g., (Masud et al., 2008) or using a gradual forgetting

mechanism, e.g., (Klinkenberg, 2004). Recent approaches (Bifet and Gavalda, 2007; Gama

et al., 2004; Haque et al., 2016) address this problem by remembering only the instances

within two consecutive concept drifts using a dynamic size minibatch. The minibatch size is

increased until a change in class boundaries, is detected. Then, the classifier is updated while

minibatch instances representing the old concept are removed. This aids in using an updated

classifier that generalizes well on a data distribution currently represented by instances along

the stream.

In the literature, concept drift is detected by tracking any change in P (x) or in P (y|x).

Since real-world data streams are mostly multivariate, detecting change in P (x) is a hard

problem (Harel et al., 2014). Concept drift detection in multivariate data streams, therefore,

concentrate on tracking any changes in the posterior class distribution, i.e., P (y|x). Instead

of tracking changes in P (y|x) directly over time, approaches proposed in (Bifet and Gavalda,

2007; Gama et al., 2004) adopt the principle by Vapnik et al. (Vapnik, 1998) to detect this

change indirectly by tracking drift in the error rate of the underlying classifier. However,

tracking drift in the error rate requires true labels of test data instances, which are scarce

in practice. Recent studies, e.g., (Masud et al., 2008) have focused on partly addressing this

issue by assuming delayed labeling or active learning settings, yet requiring some test data

label. Approach proposed in (Haque et al., 2016) addresses this issue by estimating classifier

confidence in classification, and tracking any significant change in confidence scores.
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2.2 Datashift Adaptation

A fundamental assumption in machine learning is that both the training and test data repre-

sent the same data distribution (Bishop, 2006). This is known as the stationary distribution

assumption. However, it may be violated in real-world applications due to limited super-

vision, or lack of control over the data gathering process. Traditional techniques based on

this assumption greatly suffer in such a scenario. In the literature, this problem is studies

under the name of domain adaptation or transfer learning (Zhang et al., 2013). Here, the

goal is to learn a transfer function between the training and test datasets such that it aids in

learning an improved predictive function over the test dataset. In general, the training and

test data may not occur from the same domain. However, recent studies show that a relation

between the two domains is necessary to achieve a substantial improvement in learning a

discriminatory function for the test dataset (Ben-David et al., 2010). In this dissertation, we

will focus on data streams formed by a set of data generating processes that belong to the

same domain. We leave the exploration of problems related to different domains as future

work.

In the Bayesian perspective, a change in data distribution between training and test

datasets is viewed as a difference in their joint probability distribution. In other words, if

(x, y) denote a data instance with covariates x and corresponding label y, and the joint prob-

ability distribution of the training and test is denoted by Ptr(x, y) and Pte(x, y) respectively,

then Ptr(x, y) 6= Pte(x, y). There exist various settings depending on the availability of labels

in the training and test domains. Here, we focus on one such setting where labels of training

data instances are fully available while no labels are available on the test dataset.

In this setting of domain adaptation, a type of difference in distribution can be viewed as

Ptr(x) 6= Pte(x) with Ptr(y|x) = Pte(y|x). This is popularly known as covariate shift (Huang

et al., 2006), which typically occur due to the use of under-specified model that underfit

the data. Nevertheless, such simple models (e.g. SVM) are typically considered ideal for
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performing analytics over a data stream due to its low training and inference complexity

compared to a more complex model such as neural networks. Recent studies have focused on

developing correction mechanisms for covariate shift by estimating probability density ratio

given by β(x) = Pte(x)
Ptr(x)

. Here, the aim is to directly complete β(x) rather than estimating

the density ratio by computing Pte(x) and Ptr(x) separately. These batch-algorithms in-

clude Kernel Mean Matching (Huang et al., 2006) (KMM) and Kullback Leibler Importance

Estimation Procedure (Sugiyama et al., 2008) (KLIEP), and unconstrained Least Square

Importance Fitting (Kanamori et al., 2009) (uLSIF).

Concretely, Kernel Mean Matching (or KMM) aims to reduce mean discrepancy between

the weighted training data distribution β(x)Ptr(x) and the observed test data distribution

Pte(x) in a Reproducing Kernel Hilbert Space (RKHS) φ(x) : x→ F . The mean distance is

measured using the Maximum Mean Discrepancy (MMD), given by

∥∥Ex∼Ptr(x)[β(x)φ(x)]− Ex∼Pte(x)[φ(x)]
∥∥ (2.1)

where ‖·‖ is the l2 norm. The main assumptions here are-

Assumption 1. Pte is absolutely continuous with respect to Ptr, i.e., Pte(x) = 0 whenever

Ptr(x) = 0. Additionally, the RKHS kernel φ is universal.

It has been shown that under these conditions, minimizing MMD in Equation 2.1 con-

verges to Pte(x) = β(x)Ptr(x) (Yu and Szepesvári, 2012).

Instead of minimizing the Euclidean distance using MMD, Sugiyama et al. (Sugiyama

et al., 2008) minimize the Kullback-Leibler distance between the training and test data

distribution in KLIEP. Particularly, they argue that KMM suffers from a model selection

problem where the chosen model parameters can be biased under ordinary cross-validation.

Therefore, they model the density ratio using a linear kernel. This is given as follows.

β̂(x) =
N∑
j=1

αjKσ(x, x
(j)
te ) (2.2)
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where ααα = {αj}Nj=1 are the set of N parameters needed to be learned, Kσ(·, ·) is the Gaussian

kernel, i.e., Kσ(x(i), x(j)) = exp

{
−‖x

(i)−x(j)‖2
2σ2

}
, and σ is the kernel width. Using this model,

the empirical minimization of KL distance provides the following optimization function.

maximize
{αj}Nj=1

[
N∑
i=1

log

(
N∑
j=1

αjKσ(x
(i)
te , x

(j)
te )

)]

subject to
1

N

N∑
i=1

N∑
j=1

αjKσ(x
(i)
tr , x

(j)
te ) = 1,

and α1, α2, ..., αN ≥ 0.

(2.3)

where N is the size of training and test datasets. We adopt this batch-wise density ratio

estimation methods over a data stream to address the challenges of multistream classification,

i.e., label prediction of streaming data instances under the constraint of limited and biased

availability of labeled data.

2.3 Security for Machine Learning

The security concerns when deploying a machine learning model burgeons from the perils of

a strong adversary. In the perspective of an attack, the adversary may be interested in the

following.

• Extracting sensitive information from a model trained on a secret dataset.

• Obtain classified information about the data used for prediction.

• Disrupt model performance by contaminating data during training or evaluation.

• Generate adversarial examples to fool the model (black-box attack).

To aid in protecting an application using security-sensitive or secret data from strong adver-

saries who may control computation, hardware-assisted cryptographic platforms have been
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recently developed. One such platform that is available on commercial devices is Intel’s

SGX.

Intel Software Guard Extensions (SGX) (Anati et al., 2013) is a set of additional processor

instructions to the x86 family, with hardware support to create secure memory regions within

existing address space. Such an isolated container is called a Enclave, while the rest of the

address space is untrusted. Data within these memory regions can only be accessed by

code running within the enclave. This access control is enforced by the hardware, using

attestation and cryptographically secure keys (Costan and Devadas, 2016) with a trusted

processor. The new SGX instructions are used to load and initialize an enclave, as well as

enter and exit the protected region. From a developer’s perspective, an enclave is entered

by calling trusted ecalls (enclave calls) from the untrusted application space. The enclave

can invoke untrusted code in its host application by calling ocalls (outside calls) to exit

the enclave. Data from the enclave is always encrypted when it is in memory, but there

are cases in which the content should be securely saved outside the enclave. The process of

exporting the secrets from an enclave is known as Sealing. The encrypted sealed data can

only be decrypted by the enclave. Every SGX-enabled processor contains a secret hardware

key from which other platform keys are derived. A remote party can verify that a specific

enclave is running on SGX hardware by having the enclave perform remote attestation.

Therefore, execution within the enclave can protect against most of the attacks. However,

their naive execution fails to create a secure black-box.

Attacks

While performing computations within the enclave, an adversary controlling the host OS

may infer sensitive and confidential information from side-channels (Rane et al., 2015). As-

suming the application executed within an enclave is benign, i.e., it does not actively leak

information, the attacker may observe input-dependent patterns in data access and execution
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timing for inferring sensitive information. This is called as cache-timing attack (Götzfried

et al., 2017). Since OS is allowed to have full control over the page table of an SGX enclave

execution, the attacker controlling the OS may know page access patterns. This eliminates

noise in side-channels and is called as Controlled-channel attack (Xu et al., 2015).

Defenses

The burden of ensuring efficiency, data privacy and confidentiality lies with the application

developer who verifies platform authenticity and performs guarded memory and I/O access.

Therefore, studies have proposed various mechanisms including balanced execution (Shinde

et al., 2016) and data-oblivious computations (Ohrimenko et al., 2016). In balanced exe-

cution, each branch of a conditional statement is forcefully executed by creating dummy

operations of data and resource access (Rane et al., 2015). Whereas a data-oblivious solu-

tion has the control-flow independent of its input data. In particular to deploying machine

learning models in such an adversarial environment, recent studies (Ohrimenko et al., 2016)

have shown that efficient ORAM techniques (Stefanov et al., 2013) cannot be employed for

data analytics since it does not hide input-dependent access paths, and is not ideal for ap-

plications making a large number of memory accesses. However, data-independent access

techniques can be used to defend against page-level and cache-level attacks.
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CHAPTER 3

MULTISTREAM CLASSIFICATION1

In this chapter, we present the problem of multistream classification, discuss its unique chal-

lenges, and detail a framework to address them. We also analyze the theoretical properties of

the mechanisms used specific to the framework and evaluate it with real-world and synthetic

datasets.

3.1 Preliminaries

We now formalize the multistream classification problem and present challenges of performing

label prediction over drifting data streams in this context.

3.1.1 Notations

Table 3.1 lists frequently used symbols. A bold symbol or letter is used to denote a set of

elements, and a superscript to indicate the index of an element in the set. A subscript is

used to indicate the association of an element or a set to a type such as a source or a target

stream. For example, x
(i)
S ∈ XS denotes the ith data instance belonging to a set X of data

instances from the source stream S.

3.1.2 Problem Statement

Consider a set of independent non-stationary processes (denoted as P), each generating

a continuous stream of data instances from a domain D. A data instance is denoted by

(x, y), where x ∈ Dv, is a vector of v independent covariates, and y ∈ Y = {1 . . . K}, is its

corresponding class label. Here, K is the number of classes known apriori. In this setting,

1Chandra, Swarup, et al. ”An adaptive framework for multistream classification.” Proceedings of the
25th ACM International on Conference on Information and Knowledge Management. c©2016 ACM, Inc.
http://doi.acm.org/10.1145/2983323.2983842
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Table 3.1: List of symbols for Multistream Classification

Symbols Description
D Domain
P Set of non-stationary processes

S ∈ P A labeled source stream
T ∈ P An unlabeled target stream

x v-dimensional features (or covariates)
y ∈ Y Class label of a data instance

K Number of class labels
M Classifier
Ptr Probability distribution of training minibatch
Pte Probability distribution of test minibatch
β Probability Density Ratio Pte

Ptr

n Size of minibatch
E Ensemble of classifiers

Emax Maximum allowable ensemble size
Smax Maximum allowable minibatch size

assume without loss of generality that P consists of two processes, one called a source

(denoted as S) and the other called a target (denoted by T ). Throughout the dissertation,

we use the symbol denoting a process interchangeably with its corresponding data stream.

In process (or stream) S, both x and y of each data instance are observed. On the contrary,

only x of each data instance in stream T is observed. This indicates that S is completely

labeled while T is unlabeled. We define the MultiStream Classification problem as follows.

Definition 1. Let XS ∈ D be a set of v-dimensional vectors of covariates and YS be the

corresponding class labels observed on a non-stationary stream S. Similarly, let XT ∈ D be a

set of v-dimensional vectors of covariates observed on an independent non-stationary stream

T . Construct a classifier M that predicts class label of x ∈ XT using XS, YS and XT .

Since (x, y) ∈ S are used to predict labels of x ∈ T , we call S as the source stream and

T as the target stream.
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Figure 3.1: An example illustrating asynchronous data drifts on the source and target
streams.

3.1.3 Challenges

As mentioned in Chapter 1, we consider a case where data instances from S have a biased

data distribution compared to those from T . This leads to a biased training distribution

among observed instances within any given time period. This biased distribution can be

related to a test distribution by the covariate shift assumption. In the case of multistream

setting, an equivalent condition is given by considering sample distributions of S and T

within a specific time period. Concretely, P
(t)
S (y|x) = P

(t)
T (y|x) and P

(t)
S (x) 6= P

(t)
T (x) at

time t.

However, this assumption may not be true at time r > t due to the non-stationary nature

of data streams. Within a data stream, conditional probability distribution may change

over time, i.e., P (t)(y|x) 6= P (r)(y|x). This is typically called a concept drift. Similarly, a

change in covariate distribution with time is called a covariate drift. With two independent

non-stationary processes generating data continuously from D, the effect of a drift may be

observed at different times on these streams. This asynchronous data drift between the

source and target streams is illustrated in Figure 3.1 as an example. Here, four independent

data drifts occurring at different times on S and T are indicated. Moreover, the drifting
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concepts may not be similar between the source and target stream. For example in Figure 3.1,

data distribution after Drift 21 may not be similar to that after Drift 11.

Asynchronous drifts also affect covariate shift correction. In particular, the density ratio

estimated, using methods such as KMM, between the target and source distribution may

change over time. Consequently, the performance of a classifier trained on bias-corrected data

is affected. Intuitively, this can be overcome by re-estimating density ratios and training a

new bias-corrected classifier.

We address these challenges posed by drifting streams in a multistream setting by design-

ing a fixed size ensemble of weighted classifiers consisting of models trained on data instances

in minibatches from S and T for predicting class label for data on T . Concept drifts on each

stream are detected independently, which triggers a mechanism to update the ensemble with

a retrained classifier model, including re-estimation of density ratios whenever necessary.

3.2 Multistream Classification

In this section, we describe our proposed framework for multistream classification, referred

to as MSC (MultiStream Classifier). In our multistream setting, covariate shift assumption

holds with respect to the target stream until there is a concept drift in any of the streams.

The goal of MSC is to use the labeled data from the source stream and predict labels for the

target instances efficiently. To do that, we use an ensemble with two types of classifiers, i.e.,

source-classifiers and target-classifiers. Source-classifiers are trained only on labeled source

stream data. On the contrary, target-classifiers are trained using bias-corrected source data

whose distribution resembles the target distribution. If there is a concept drift in any of the

streams, covariate shift assumption becomes invalid. Therefore, we use a change detection

technique (CDT) to detect concept drifts in source and target stream. If a concept drift is

detected in either of the streams, we re-weight training instances and update the ensemble

to restore the covariate shift assumption.
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Figure 3.2: Multistream Classification Overview

Figure 3.2 illustrates various components that form the overall classification process

shown in Algorithm 1. Data instances from the source and target streams are obtained

continuously. The ensemble of classifiers is initialized with a source-classifier and a target-

classifier, each trained on an initial minibatch of data instances from appropriate streams,

i.e., source and target stream respectively. Using this initialized ensemble, the multistream

classification is performed as follows. At a given time period, data instances occur on both S

and T . A data instance from T is first classified using the classifier-ensemble, illustrated by

Class Prediction in Figure 3.2 (Step 2). Apart from an estimated class label, the ensem-

ble also provides a value representing its confidence in classifying the data instance. These

results are recorded in a buffer. Similarly, any data instance of S is also classified using the

ensemble. In this case, the classification accuracy is recorded since the corresponding class

label is observed on S. This recorded classifier feedback is used to detect concept drift in the

Drift Detection phase, as illustrated in the figure (Step 3). Depending on the type of drift

detected, a new classifier is trained using the latest minibatch data available. Particularly, a

model is trained in a supervised manner using the latest minibatch from S if a change in the

distribution of recorded classifier error is detected on S. We call the resulting classifier as
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Algorithm 1: MSC : Multistream Classification

Data: Data Streams S and T
Input: Initial Size : I
Result: Labels on T
begin

BS, BT ← readData(S, T , I) /*Data Buffer*/
MS ← buildSourceModel(BS)
MT ← buildTargetModel(BS, BT )
E ← initializeEnsemble(MS,MT )
Initialize WS and WT /*Feedback Buffers*/
while S or T exists do

BS, BT ← readData(S, T , 1)
/*For Source Stream*/
WS ← getError(E,BS)
if z ← checkDrift(WS) then

BS,WS ← updateMinibatch(z,BS,WS)
MS ← buildSourceModel(BS)
updateEnsemble(E,MS, BS, BT )

/*For Target Stream*/

WT , ŶT ← predict(E,BT )
if z ← checkDrift(WT ) then

BT ,WT ← updateMinibatch(z, BT ,WT )
MT ← buildTargetModel(BS, BT )
updateEnsemble(E,MT , BS, BT )

print getAccuracy(ŶT , BT )

a source-classifier. This training process is illustrated as Source Classifier in the figure

(Step 4a). However, if a drift in recorded classifier confidence on T is detected, then a bias-

corrected model is trained using the latest minibatches from S and T . We call the resulting

classifier as a target-classifier. This training process is illustrated as Target Classifier in

the figure (Step 4b). Next, the newly created classifier is added to the ensemble using an

update process, illustrated as Ensemble Update in the figure (Step 5a and 5b). The updated

ensemble is further used for classification along the stream (Step 6). We now present the

details of each component in Algorithm 1.
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3.2.1 Initialization and Classifier Training

Data occurring on S and T are stored in a data buffer denoted by BS and BT respectively,

using readData in Algorithm 1. Initially, we consider a warm-up period consisting of I

labeled instances from S, and I unlabeled instances from T , which are stored in BS and BT

respectively. These instances are used to initialize the ensemble of classifiers, denoted as E,

using initializeEnsemble in the algorithm. Since data instances occur from two different

distributions (i.e., S and T ) simultaneously, the ensemble should have the ability to provide

good feedback on each data type for future drift detection. Therefore, a source-classifier and

a target-classifier are initially added to the ensemble.

Concretely, we train a base model in a supervised manner using BS, which results in a

classifier denoted by MS from buildSourceModel in the algorithm. This forms a source-

classifier. On the contrary for T , source bias correction is performed by estimating the density

ratios (instance weights) between BT and BS using KMM. We then train a base model using

BS along with its instance weights in a supervised manner to form a bias-corrected classifier

denoted by MT , from buildTargetModel in the algorithm. This forms a target-classifier.

Particularly, the density ratio β(BS) = PT (BT )
PS(BS)

is computed by minimizing the Maximum

Mean Discrepancy (MMD) in Equation 2.1. An optimal β is obtained by minimizing the

corresponding empirically equivalent quadratic optimization problem (Huang et al., 2006),

given by

β(t)∗ ≈ minimize
β(t)

1

2
βTKβ − κTβ

subject to βi ∈ [0, Bkmm] &

∣∣∣∣∣ 1

ntr

ntr∑
i=1

βi − 1

∣∣∣∣∣ ≤ εkmm

(3.1)

where K and κ are matrices of a RKHS kernel k(·) with Kij = k(x
(i)
tr , x

(j)
tr ), and κi =

ntr

nte

∑nte

j=1 k(x
(i)
tr , x

(j)
te ), and Bkmm is a parameter greater than 0. We use this training procedure

throughout the classification process, while using the latest available data in BS and BT .
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Once a classifier is trained, it is associated with two types of weights, i.e., source-weight

wS and target-weight wT , based on its performance on BS and BT respectively. Since BS

instances are labeled, we use the classification error (denoted by η) to calculate wS, which

is given by 1
2

ln 1−η
η

. However, BT instances are unlabeled. Therefore, we use the classifier’s

confidence on BT (denoted by ζ) to calculate wT in a similar manner. We further analyze

the use of such heuristic as a surrogate to error rate in §3.3. The weighted classifier is then

added to E.

3.2.2 Class Prediction

Every classifier in the ensemble predicts a class label for a given data instance. The classifier-

ensemble’s output is a class label associated with the highest aggregated classifier weight.

For example, consider a data instance xS ∈ S. Let the ensemble contain 3 classifiers

[M(1),M(2),M(3)] with corresponding source weights WS = [0.2, 0.9, 0.6]. If the predic-

tion of these 3 classifiers for BS are Ŷ = [y(1), y(2), y(1)] respectively, the ensemble score for

class y(k) is
∑|M|

i=1 w
(i)
S /|M| where i is the index for which the predicted label is y(k). In this

case, the score for y(1) is 0.26 and y(2) is 0.30. Since 0.26 < 0.30, the ensemble prediction is

y(2). This method is used by getError and predict in Algorithm 1. Moreover, getError

checks the error on BS and returns a 1 if the predicted label is equal to the true label of a

data instance, and 0 otherwise. Whereas, predict returns the ensemble score along with

the predicted class label.

3.2.3 Drift Detection

A drift along S may affect a source-classifier’s performance. We denote this as within-stream

drift. Meanwhile, a drift in S or T may affect a target-classifier’s performance. We denote

this as across-stream drift. In both cases, a drift causes change in the data distribution.

This is handled by training a new classifier and updating the ensemble.
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Window Management

We maintain two sliding windows (feedback buffers) WS and WT that monitor ensemble

feedback on recent data instances from S and T respectively. It is well known that classifier

accuracy decreases due to concept drift (Gama et al., 2004). Moreover, we show in §3.3.2

that classifier confidence also decreases due to drifting concepts. Therefore, checkDrift in

Algorithm 1 is used to detect significant change in WS or WT , indicating a concept drift in

the corresponding stream.

Supervised Window Management Class label of a data instance in S is predicted using

the ensemble, whose resulting error e ∈ {0, 1} is inserted into WS, as mentioned in §3.2.2.

Since each entry in WS is either success or failure, it follows a Bernoulli distribution, while

n such values in WS follow a binomial distribution.

Unsupervised Window Management Unlike WS, WT contains ensemble confidence

scores resulting from classification of sequential data instances from T , as indicated in §3.2.2.

Confidence values are generated within the range of [0, 1]. Since classifier confidence scores

are typically high until there is a concept drift, and decreases thereafter, these can be modeled

by a beta distribution. Beta distribution has two parameters, i.e., α and β. The distribution

is symmetric if α = β, or skewed otherwise.

Change Detection

We invoke a change point detection method to check for significant changes in WS and WT

over time. Particularly, we propose a CUSUM-type change detection technique (Bifet and

Gavaldà, 2009) (CDT) based on binomial and beta distribution.

Wh (where h ∈ {S, T }) is divided into every possible pair of sub-windows W b
h and W a

h

having at least γ number of values, where h ∈ {S, T}. Next, distribution of values stored in
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Algorithm 2: checkDrift : Concept Drift Detection

Input: αd: Drift Sensitivity, γ: Cushion period size, Wh: The dynamic sliding
window.

Result: The change point if exists; −1 otherwise.
begin

Threshold← − log(αd), n←size of Wh, and ωn ← 0
if n ≤ Smax & mean(Wh[1 : n]) > 0.5 then

for q ← γ : n− γ do
Estimate pre and post-change distribution parameters, θa and θb from
Wx[1 : q] and Wh[q + 1 : n] respectively.

Calculate s(q, n) using (Equation 3.2).

ωn = maxγ≤q≤n−γ s(q, n)
if ωn ≥ Threshold then

Return qm, where s(q, n) = ωn.

else
Return −1.

else
Return 0.

each split is estimated. At least γ values are needed for a good estimation of the distribution

of values stored in each sub-window. We use γ = 100, which is also widely used in the

literature due to consistency and asymptotic normality properties. Finally, a change point

is detected based on the sum of log-likelihood ratios.

Algorithm 2 sketches the proposed CDT. At any point in time, if the average feedback is

below 0.5, or size of the window exceeds Smax, the ensemble classifier is updated immediately

regardless of any change in the distribution. Otherwise, CDT divides the window Wh for each

q between γ and n−γ, where n is the total number of observations in Wh and γ is the cushion

size. The cushion ensures that each sub-window contains at least γ number of instances.

W b
h = W [1 : q] contains relatively older observations and W a

h = W [q + 1 : n] contains recent

ones. CDT then estimates corresponding distributions represented by W b
h and W a

h . Since

values in WS follow a binomial distribution, two parameters n and p are estimated for values

stored in corresponding sub-windows. The number of trials n is the sub-window size, and

25



Drift 11

Source
Stream

Target
Stream

PS
11

PT
11

PS
12

Source
Stream

Target
Stream

PT
21

PS
21

PT
32

Source
Stream

Target
Stream

PS
31 PT

31

Drift 21

PS
32

PT
22

Drift 31

PS
11 ☰ PT

11 PS
21 ☰ PT

21 PS
31 ☰ PT

31

PS
32 ☰ PT

32

Time
Drift 32

Case 1
Source-Only Drift

Case 2
Target-Only Drift

Case 3
Source & Target Drift

Figure 3.3: Illustration of Drift Adaptation cases.

the probability of success p is the mean value in that sub-window. Values stored in WT

follow a beta distribution, hence corresponding parameters are estimated using the method

of moments.

Let θb and θa be the estimated distribution parameters from W b
h and W a

h respectively.

The sum of log likelihood ratios is calculated using:

s(q, n) =
n∑

i=q+1

log

(
P (Wh[i] | θa)
P (Wh[i] | θb)

)
(3.2)

where P (Wh[i] | θ) is the probability density function, given a set of parameters θ, applied

on the ith instance stored in Wh. Finally, using all values in Wh, the CUSUM process score

is calculated by ωn = maxγ≤q≤n−γ s(q, n). Let qm be the value of q corresponding to the

largest s(q, n) value, where γ ≤ q ≤ N − γ. If wn is greater than a user-defined threshold

(denoted by Threshold), then a change point is detected at qm. We fix the threshold based

on drift sensitivity αd. In our experiments, we use −log(αd) as the threshold value.
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3.2.4 Drift Adaptation

Once a drift is detected on a stream, new classifiers are trained appropriately using a mini-

batch of recent data instances that represent a new data distribution. However, training

both types of classifiers (i.e., source-classifier and target-classifier) at every drift may not be

necessary. With the goal of classifying target data instances, we observe three distinct types

of changes in data distribution that occurs between training and test data when a drift is

detected at time t. Figure 3.3 illustrates the intuition of deciding the type of classifier needed

to be trained at t. We initially assume that the covariate shift assumptions hold between

the source and target streams. Any other combinations of data drift detected along S and

T can be viewed as an application of these three cases in series with the appropriate order.

The first case illustrated shows a drift detected only on S, denoted as Drift 11. Data

distribution on S before the drift is denoted as P 11
S , and after the drift is denoted as P 12

S .

Meanwhile, P 11
T is the data distribution of T throughout, indicating no drift. Since future

target data instances can be classified using an existing target-classifier in the ensemble,

a new target-classifier trained on P 12
S and P 11

T may not be necessary. The satisfiability of

covariate shift assumption is denoted by P 11
S ≡ P 11

T . However, a source-classifier trained on

P 12
S is required for concept drift adaptation within S, aiding future drift detection. We call

this source-only drift.

Equivalently, the second case illustrated shows a drift detected only on T , denoted by

Drift 21. We call this as a target-only drift. Here, only a new target-classifier is needed

for predicting class labels of newer data instances resulting from distribution P 22
T . The

target-classifier therefore corrects the bias of P 21
S towards P 22

T .

Finally, drifts may occur simultaneously on S and T . This is illustrated as case 3 in

the figure. Here, both a source-classifier and target-classifier may be required to address

the issues discussed above in case 1 and 2. A source-classifier is trained using data from
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S having distribution P 32
S , whereas a target-classifier is trained using data from S and T

having distribution P 32
S and P 32

T respectively.

Furthermore, at each detected drift in a stream, the associated data buffer (BS or BT )

and feedback buffer (WS or WT ) of the stream are updated by removing data instances before

the change point, thereby simulating dynamically sized minibatches. This is performed using

updateMinibatch in Algorithm 1. Note that the data and feedback buffers of a stream are

of equal size at all times. Therefore, a change point associated with the feedback buffer has

an equivalent index on the corresponding data buffer.

3.2.5 Ensemble Update

We use a fixed-size ensemble consisting of weighted source and target classifiers. As noted

earlier, a new classifier is added to the ensemble once a drift is detected. When the number

of classifiers in the ensemble reach a user-defined maximum limit, denoted as Emax, the least

desirable classifier in the ensemble is replaced by a newly constructed classifier. Intuitively,

the least desirable classifier is the one having the least confidence on T since it may result

in higher classification error on T .

Accordingly, workflow of updateEnsemble in Algorithm 1 is as follows. Before adding a

new model to the ensemble, weights of existing classifiers are recomputed using the latest

BS and BT appropriately. These updated weights are then used in selecting the least desired

classifier to be replaced if the ensemble size is Emax. A priority queue containing WS with

corresponding indices is formed. An array of indices RS is obtained from this priority queue

which is sorted in a non-increasing order of source weights. Similarly, RT is obtained from

a priority queue containing WT and its index, sorted in an non-decreasing order of target

weights. A classifier with the least target weight, while not having the highest source weight,

is replaced.
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3.3 Analysis

In this section, we analyze time and space requirements of the proposed algorithm, and

provide theoretical properties.

3.3.1 Complexity Analysis

At every iteration of MSC, a new data instance is obtained from S and T whose class

labels are predicted. The time and space complexity of this operation depends on the base

classifier used. In general, training complexity of most well-known parametric models such

as SVM surpass label prediction complexity. Therefore, we focus on classifier training and

drift detection mechanism for complexity analysis.

Source-classifier is essentially a base classifier (e.g. SVM) trained on BS. Whereas, a

target-classifier consists of two parts, i.e., instance weights from KMM and base classifier

training. The time complexity of KMM is given by O(n3
tr + n2

trv + ntrntev), and its corre-

sponding space complexity is O(n2
tr + ntrnte) (Miao et al., 2015). In the worst case, ntr and

nte are at most Smax, resulting in O(n3) time complexity on n = |BS|. Here, we assume that

O(n3) dominates time complexity of base classifier training, and O(n2) dominates its space

complexity.

The drift detection mechanism also has O(n3) time complexity (Haque et al., 2016), and

O(n) space complexity. Therefore, overall time complexity of performing MSC is O(n3)

with n = Smax is the size of the largest minibatch along the stream, with space complexity

of O(n2).

3.3.2 Base Classifier Properties

The choice of a base classifier for MSC should meet the following two criteria.

• It should be able to perform kernel computations in RKHS since instance weights from

KMM in target-classifier can only be used in RKHS (Huang et al., 2006).
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• It should be able to provide a probability output that can be used as a confidence

measure while predicting class labels on T .

Considering these two criteria, we choose Support Vector Machine (SVM) as a base classi-

fier. Here, we show that the probability derived from the distance of test instances to the

discriminating SVM hyperplane follows the change in error rate due to concept drift, thereby

forming a good confidence estimate required by MSC.

Let us assume that the stream contains instances from two classes, i.e., a and b. Let f(x)

be the un-thresholded output of SVM on instance x. The hyperplane that separates class

boundaries is defined by f(x) = 0. After a concept drift has occurred, more data instances

may lie closer to the boundary in a max-margin SVM, thereby indicating a need for margin

update.

According to Platt et al. (Platt, 1999), class conditional densities, i.e., P (f(x) | y), are

exponentially distributed in real-world datasets when f(x) is in the wrong side of the margin.

Let us assume that the decision boundary of class a is on the positive side of the hyperplane,

and that of class b is on the negative side. Therefore, P (f(x) | y = a) = rae
−ra(1−f), f ≤ 1,

and P (f(x)|y = b) = rbe
−rb(f−1), f ≥ −1. Here, ra and rb are parameters of corresponding

exponential distribution. This has inspired the probability to be estimated using a parametric

form of a sigmoid as follows-

P (y = a | f(x)) =
1

1 + exp(Af(x) +B)
(3.3)

where A = −(ra + rb) and B = ra − rb + ln P (y=b)
P (y=a)

. Since ra, rb ≥ 0, A ¡ 0. Therefore,

monotonicity of (Equation 3.3) in f(x) can be assured.

Lemma 1. A significant change in the distribution of confidence scores indicate occurrence

of a concept drift.
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Let us assume without loss of generality that x
(t)
a is an instance generated from class

boundary of a at time t. Let us also assume that there is a δ
(t+1)
a > 0 displacement of the

class boundary towards the hyperplane at time t+ 1. Let x
(t+1)
a be the point corresponding

to x
(t)
a after the change of concept. There are two possible cases.

1. Both x
(t)
a and x

(t+1)
a are from the same side of the hyperplane. Here,

f(x(t)
a ) = f(x(t+1)

a ) + δ(t+1)
a ⇒ f(x(t)

a ) > f(x(t+1)
a )

⇒1 + exp
(
Af(x(t)

a ) +B
)
< 1 + exp

(
Af(x(t+1)

a ) +B
)

⇒P (y = a|f(x(t)
a )) > P (y = a|f(x(t+1)

a )) [using (Equation 3.3)] (3.4)

Therefore, the classifier will have lower confidence in classifying instance x
(t+1)
a than

that of x
(t)
a .

2. If x
(t)
a and x

(t+1)
a are from different sides of the hyperplane, then,

f(x(t)
a ) > 0 & f(x(t+1)

a ) < 0⇒ f(x(t)
a ) > f(x(t+1)

a )

⇒P (y = a|f(x(t)
a )) > P (y = a|f(x(t+1)

a )) [Similar to (Equation 3.4)]

In both cases, classifier confidence on an instance decreases due to a concept drift. Therefore,

a significant change in the distribution of confidence scores indicates occurrence of a concept

drift. While this is true for a binary class problem, it can be applied to multiclass SVM

which uses binary classification to perform pairwise computations (Wu et al., 2004)

3.4 Empirical Evaluation

We now describe the experimental setup and present empirical results on various datasets

using MSC, while comparing its performance to other competing baseline methods.
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Table 3.2: Datasets for Multistream Classification

Dataset # features # classes # instances
ForestCover 53 7 146,438
Sensor 5 58 150,000
SEA 3 3 58,000
SynEDC 40 20 98,816
SynRBF@002 70 7 98,000
SynRBF@003 70 7 98,686

3.4.1 Datasets

We use 3 real-world and 3 synthetic datasets for evaluation of the proposed approach. Ta-

ble 3.2 lists these datasets with corresponding properties. The publicly available real-world

datasets are ForestCover 2, Sensor 3 and SEA 4. Particularly, the ForestCover dataset con-

sists of geospatial records describing forest-cover types (class label). The Sensor dataset

contains information regarding temperature, humidity, light, and sensor voltage. Based on

the reading, the classification task is to identify the sensorID. Finally, SEA dataset consists

of concept-drifting data instances generated from 3 independent attributes, typically used

as a benchmark for evaluating data stream algorithms. The other three synthetic data with

concept drift were created using the well-known MOA framework (Bifet et al., 2010).

We generate a biased source stream in each dataset, using a method similar to previous

studies (Huang et al., 2006), as follows. First, we detect concept drifts by employing a Näıve

Bayes classifier to predict class labels and monitor its performance using ADWIN, similar

to (Bifet and Gavalda, 2007). A minibatch is constructed from data instances between

the points at which ADWIN detects a significant change in performance. Following (Huang

et al., 2006), we first compute the sample mean x̄ of a minibatch, and divide it into two equal

2https://archive.ics.uci.edu/ml/datasets/Covertype

3http://www.cse.fau.edu/~xqzhu/stream.html

4http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
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halves such that one half of data instances are selected according to the probability e−|x−x̄|
2

to form the biased source minibatch, while the rest forms the target minibatch. Each of

these source minibatches is concatenated to form the source stream, and target minibatches

are concatenated to form the target stream.

3.4.2 Experiments

Baseline

Since there exist no previous studies in the multistream setting, we devise two baseline

methods by applying a naive single classifier which only performs covariate shift correction

between the source and target streams.

In the first baseline method, we train a single target-classifier on an initial set of source

and target data instances used during the initialization phase of Algorithm 1. This trained

model is then merely used to classify all the available instances in T . We denote this as

single-KMM or sKMM.

For the next baseline method, we follow the initial training setup of sKMM to form

a single target-classifier. However, a new target-classifier is trained periodically using the

latest Smax data instances occurring in S and T . Every new classifier replaces the existing

one and is used for classification of the next Smax target instances. Since multiple classifiers

are trained along the stream, we denote this method as multiple-KMM or mKMM.

Variants

We now describe 3 variants of the proposed MSC method to evaluate our design decisions.

1. Recall that MSC originally uses two types of classifiers in a single ensemble, i.e., source-

classifier and target-classifier. Since each classifier has a source and target weight, they

can be used to evaluate a data instance occurring on any data stream, irrespective
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Table 3.3: Baseline methods and variants for Multistream Classification

Symbol Description
sKMM A single target classifier trained during initialization.

mKMM-5k
A single target classifier trained periodically
after every 5,000 instances along the stream.

MSC Proposed ensemble framework.

MSC2 MSC using separate source and target ensembles.

srcMSC MSC using only source-classifiers.

trgMSC MSC using only target-classifiers.

of their type. We design a multistream classifier that uses only source-classifiers in

its ensemble, and refer to it as source-MSC and denote it by srcMSC. Here, a source-

classifier is built at every detected drift, even when a drift is detected on T . Concretely,

each buildTargetModel in Algorithm 1 is replaced with a buildSourceModel to form

srcMSC. Note that this is equivalent to performing classification over a single stream

with data instances in S and T combined. Therefore, this also forms a baseline method.

2. Similarly, we construct target-MSC or trgMSC by replacing each buildSourceModel

in Algorithm 1 with buildTargetModel. In this case, the ensemble contains only

target-classifiers.

3. Finally, we use two finite-size ensembles instead of a single ensemble E. Here, we

construct an ensemble ES which contains only source-classifiers. This is used to classify

data instances in S. Similarly, we construct another ensemble ET which contains only

target-classifiers and is used to classify data instances in T . Since we separate the

two types of classifiers using two independent ensembles and update each of them

accordingly, we call this method as MSC2.

Setup

Table 3.3 summarizes each competing methods. We use the weighted LibSVM library (Chang

and Lin, 2011) with Csvm = 1.3× 105, γsvm = 1× 10−4 and an RBF Kernel as the base
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classifier. We use KMM for covariate shift correction. The quadratic program of Equation 3.1

is evaluated using the CVXOPT python library (Dahl and Vandenberghe, 2006). Since it

has a time complexity of O(n3
tr), we limit the size of BS to 1000 by sampling uniformly at

random whenever a target-classifier is to be trained. Moreover, parameter values of KMM

is chosen according to (Huang et al., 2006). We use Bkmm = 1000 and εkmm =
√
ntr−1√
ntr

, and

γkmm as the median of pairwise distances in the training set.

The MSC approach (and its variants) involves multiple parameters including ensemble

size (denoted by Emax) and drift sensitivity (denoted by αd). We empirically study parameter

sensitivity of the framework over all datasets. Particularly, we vary Emax by setting it to

{3, 5, 7}, and αd to {0.05, 0.1, 0.15}. For comparison with baseline methods, we consider

Smax = 5000, Emax = 10, and αd = 0.001 appropriately.

3.4.3 Results

Figure 3.4 shows the progress of average accuracy along the target stream T for all competing

methods. Clearly, MSC and its variants outperform both baseline methods on all datasets

by a significant margin, recovering from performance degradation, when necessary, using the

drift detection mechanism. For example, average accuracy of both sKMM and mKMM-5k

method on the Sensor dataset drastically reduces to about 10%. Whereas, MSC and MSC2

methods result in an accuracy of around 55%. Note that the baseline methods does not use

any drift detection mechanism. Moreover, srcMSC and trgMSC also result in higher accuracy

than baseline methods while using a single type of classifiers, supporting the hypothesis

that ensemble methods yield better results than single classifier method in the multistream

setting, similar to a single stream setting (Wang et al., 2003) due to reduced variance.

Among variants of the proposed framework, MSC and MSC2 performs better than sr-

cMSC and trgMSC on most datasets. Particularly, MSC performs best in the ForestCover
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Figure 3.4: Average accuracy for Multistream Classification : sKMM ; mKMM-5k ;
MSC ; MSC2 ; srcMSC ; trgMSC.

and SynEDC datasets, while MSC2 performs best in Sensor, SEA, SynRBF@002 and Syn-

RBF@003 datasets. For instance, average accuracy along the stream by MSC2 in Syn-

RBF@002 dataset is about 70%, compared to 50% resulting from other variants and 30%

from the baseline methods. However, simultaneous use of two different types of classifiers in

MSC and MSC2 consistently perform better than srcMSC and trgMSC, which use only a

single type of classifier. Asynchronous drifts due to a bias selection method in creating the

source and target stream may not always satisfy covariate shift assumptions. Classification

using both source and target classifiers are helpful in addressing this uncertainty in data

behavior since changes due to drifts are only measured based on classifier feedback such as

error and confidence value.

In the next set of experiments, we measure parameter sensitivity of the proposed ap-

proach. Particularly, the value of ensemble size Emax and drift detection sensitivity αd is
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Table 3.4: Parameter sensitivity of MSC by measuring average accuracy.

Dataset Method
Drift Sensitivity Max Ensemble Size
0.05 0.10 0.15 3 5 7

ForestCover
MSC 0.728 0.772 0.724 0.775 0.728 0.718
MSC2 0.299 0.340 0.614 0.257 0.586 0.511

Sensor
MSC 0.467 0.278 0.272 0.510 0.501 0.491
MSC2 0.535 0.539 0.539 0.538 0.557 0.540

SEA
MSC 0.842 0.840 0.841 0.844 0.842 0.840
MSC2 0.840 0.841 0.839 0.837 0.835 0.840

SynEDC
MSC 0.720 0.712 0.727 0.889 0.766 0.726
MSC2 0.698 0.720 0.719 0.768 0.741 0.718

SynRBF@002
MSC 0.522 0.463 0.466 0.581 0.552 0.564
MSC2 0.616 0.621 0.636 0.645 0.713 0.682

SynRBF@003
MSC 0.459 0.481 0.476 0.591 0.551 0.516
MSC2 0.786 0.777 0.773 0.875 0.932 0.876

varied. For each value of Emax and αd, the average accuracy obtained on each dataset when

using MSC and MSC2 is reported in Table 3.4. From the table, it can be observed that MSC

and MSC2 are marginally sensitive to different values of αd (within a given range) on most

datasets. A similar pattern can be observed while varying Emax as well. This shows that

optimal value of parameters to obtain desired accuracy depends on the dataset properties,

and can be chosen by cross-validation. Moreover, greedy replacement of non-performing clas-

sifiers in the fixed-size ensemble may also affect overall accuracy, especially in MSC where

a single type of classifier may become dominant in the ensemble over time. Especially when

drifts occur more frequently on one stream (S or T ) more than the other. This behavior is

reflected in Figure 3.4 where MSC2 results in higher accuracy than MSC on most datasets.

Nevertheless, optimal parameter values can be tuned using cross-validation. We leave this

for future work. On an average over all datasets, the time taken to classify a target instance

by MSC was 0.45s, and by MSC2 was 0.34s. The cubic time complexity of KMM and CDT

can be improved by using distributed systems and dynamic programming (Haque et al.,

2016). We leave this for future work as well.
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CHAPTER 4

SCALABLE BIAS CORRECTION OVER DATA STREAMS12

The previous chapter introduced a framework to perform classification with limited labeled

data over a data stream where the labeled data distribution is biased compared to the

unlabeled data distribution. While the empirical results in §3.4 show that MSC performs best

among competing methods, it still suffers from large computational overhead. Particularly,

the time complexity of MSC for bias correction and drift detection is O(n3), as shown in

§3.3. When instances in the data stream occur at a rate greater than it being evaluated by

MSC, prediction delays accumulate.

In this chapter, we explore various techniques to address this challenge. Specifically,

the first part describes a sampling-based method to address the computational bottleneck

in MSC when using the Kernel Mean Matching method. Here, we focus on the batch

process of KMM since that can be directly applicable over the multistream setting. We

call this VFKMM or Very Fast KMM. The next part introduces a modified framework

where the density ratio computation can be adapted for online learning over the multistream

setting. We call this FUSION as it leverages KLIEP to perform both bias correction and

drift detection. Here, we explore ensemble methods to address FUSION’s scalability problem

when used over large datasets. For both these parts, we thoroughly analyze the theoretical

properties and evaluate it empirically on real-world and synthetic datasets.

1 c©2016 IEEE. Reprinted, with permission, from S. Chandra, A. Haque, L. Khan and C. Aggarwal, ”Ef-
ficient Sampling-Based Kernel Mean Matching,” 2016 IEEE 16th International Conference on Data Mining
(ICDM), December 2016

2 c©2018 IEEE. Reprinted, with permission, from S. Chandra, A. Haque, H. Tao, J. Liu, L. Khan and
C. Aggarwal, ”Ensemble Direct Density Ratio Estimation for Multistream Classification,” 2018 IEEE 34th
International Conference on Data Engineering (ICDE)
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Table 4.1: List of additional symbols for VFKMM.

Symbols Description
ntr, nte Total number of train/test instances
φ RKHS Map
h RKHS Kernel

ε, B, σ KMM parameters
K, κ KMM kernel functions
R Bound of feature space
δ Confidence interval
η Sampling error tolerance
m Sample size
s Number of samples
k Number of data components

4.1 Kernel Mean Matching

4.1.1 Notations

We use a similar notation as mentioned in §3.1. In addition, Table 4.1 lists symbols specifi-

cally used in this chapter.

4.1.2 Covariate Shift

According to Ben-David et al. (Ben-David et al., 2010), if the two distributions are arbitrarily

different, then learning from the datasets representing two dissimilar distributions is not

possible with bounded error. However, under a few assumptions, the difference in distribution

can be addressed by techniques that transfer knowledge (patterns) from training data to

test data using instances or feature representation (Pan and Yang, 2010). In §2.2, we have

described the motivation for covariate shift. In general, the relation between Ptr(x) and

Pte(x) is accounted by computing an importance weight β(x) = Pte(x)
Ptr(x)

for each training

instance x. Recent studies have focused on computing β(x) without explicitly estimating

Pte(x) and Ptr(x). Though they provide elegant solutions to estimate importance weights,

these methods do not scale well on large datasets.
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Specifically, the idea in Kernel Mean Matching is to minimize the mean Euclidean dis-

tance between weighted training data distribution β(x)Ptr(x) and corresponding test data

distribution Pte(x) in a Reproducing Kernel Hilbert Space (RKHS) F with feature map

φ : D → F . Mean distance is measured by computing the Maximum Mean Discrepancy

(MMD), given in Equation 2.1. Here, it is assumed that Pte is absolutely continuous with

respect to Ptr, i.e., Pte(x) = 0 whenever Ptr(x) = 0. Additionally, the RKHS kernel h is

assumed to be universal in D. It has been shown that under these conditions, minimizing

MMD converges to Pte(x) = β(x)Ptr(x) (Yu and Szepesvári, 2012).

Centralized KMM (cenKMM)

In particular, minimizing MMD to obtain optimal importance weights is equivalent to mini-

mizing the corresponding quadratic program that approximates the population expectation

with an empirical expectation. The empirical approximation of MMD to obtain the desired

β̂(x) is given by

β̂ ≈ arg min
β

∥∥∥∥∥ 1

ntr

ntr∑
i=1

β(x
(i)
tr )φ(x

(i)
tr )− 1

nte

nte∑
j=1

φ(x
(j)
te )

∥∥∥∥∥
2

(4.1)

where ntr and nte are sizes of the training and test datasets respectively, and β̂(x) ∈ β̂. The

equivalent quadratic program is as follows.

β̂ ≈ minimize
β

1

2
βTKβ − κTβ (4.2)

subject to β(x(i)) ∈ [0, B] ,∀i ∈ {1 . . . ntr}

&

∣∣∣∣∣
ntr∑
i=1

β(x(i))− ntr

∣∣∣∣∣ ≤ ntrε

where K and κ are matrices of a RKHS kernel h(·) with K(ij) = h(x
(i)
tr , x

(j)
tr ) ∈ K, and

κ(i) = ntr

nte

∑nte

j=1 h(x
(i)
tr , x

(j)
te ) ∈ κ. B > 0 is an upper bound on the solution search space, and

ε is the normalization error. Note that we have used this method in the MSC framework (in

Chapter 3).
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Ensemble KMM (ensKMM)

The cenKMM approach requires the complete set of training and test data to be in mem-

ory while solving the quadratic program. When considering a large test dataset, which is a

typical sampling bias scenario, this constraint cannot be satisfied if all test data instances

do not fit into the memory. Recently, (Miao et al., 2015) proposed a technique called en-

semble KMM (denoted by ensKMM) to address this challenge. Since β(x) ∝ Pte(x), an

ensemble of estimators is obtained by dividing only the test data instances into k compo-

nents. They assume that the training dataset is small, and can completely fit in memory.

For each test component C, the weight estimates β̂c is computed by solving Equation 4.2

using the complete set of ntr training instances. These component-wise instance weights are

combined to form β̂ = 1
k

∑k
c=1 β̂c. While the study demonstrates improvement in accuracy

and execution time, computational efficiently is still largely limited by the size of training

dataset used. As mentioned in §3.3, the time complexity of KMM is O(n3
tr +n2

trv+ntrntev).

Clearly, this method becomes computationally expensive with an increase in ntr, even when

it is reasonably smaller than nte.

4.1.3 VFKMM: Sampling-based KMM

The challenge of scalability while estimating density ratio can be addressed naively by split-

ting the training data into smaller subsets and follow an ensemble approach (Chawla et al.,

2004) by applying KMM over each subset independently. We refer to this naive method

by Ensemble of TRaining data KMM or ensTrKMM. Here, sampling over training data

is performed without replacement, where each sample represents an independent subset (or

partition). KMM can be applied over each sample independently of the other, using the

complete test dataset. The union of density ratio estimates from all the samples provides

instance weight for each training data instance. However, such a method may not perform

well since a small subset of training data instances (chosen uniformly at random) may exhibit
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Figure 4.1: Illustrating the VFKMM process. The figure shows s samples generated from
the training data. KMM is applied over each training sample with the complete test dataset.

glaringly different distribution compared to the original training data distribution. This can

adversely affect KMM output (Yu and Szepesvári, 2012).

In this paper, we propose an approach to address the above challenge employing boot-

strap training samples whose data instances are chosen with replacement. Using the well-

established theoretical support on m/n bootstrap methods (Bickel and Sakov, 2008), we show

its applicability to KMM. In the following sections, we present and analyze our proposed

approach.

Very Fast KMM

Given an i.i.d. set of training covariates Xtr and an i.i.d. set of test covariates Xte, such

that Xtr is sufficiently large, the problem is to efficiently estimate instance weight β̂(x) for

each x ∈ Xtr using the Kernel Mean Matching method. Estimation of β(x) ∈ β is sensitive

to the training data distribution, i.e., the estimates may vary depending on the size and

choice of instances used as training data. Bootstrap methods (Efron, 1992) have been shown

to be extremely useful when estimators are unstable. In this scenario, one can employ a

bootstrap sampling process by generating samples with replacement from the given training
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Algorithm 3: VFKMM : KMM by Bootstrap Aggregation

Data: Covariates Xtr and Xte

Input: Sample Size: m, Tolerance: η, Parameters: θ
Result: β̂
begin

s← ln η

m ln
(

1− 1
ntr

) /* Compute # samples */

β̂ ← zeros
for i ∈ {1, s} do

X
∗(i)
tr ← generateSample(Xtr,m)

β̂
∗(i)
← KMM(X

∗(i)
tr ,Xte, θ) /*Equation 4.2*/

β̂ ← aggregate(β̂
∗(i)

)

return normalize(β̂)

data. However, a naive bootstrap sample consists of ntr instances. This does not aid in

improving the computational time efficiency of KMM as desired. Therefore, the m-out-of-n

bootstrap sampling (or m/n bootstrap) method is more appropriate since m < ntr can be

fixed, thereby reducing KMM time complexity to be linear in the size of test dataset. Here, m

is the sample size and n = ntr. We utilize this notion to achieve scalability during covariate

shift correction, which is similar to the generic bag-of-little-bootstrap method (Kleiner et al.,

2014).

An overview of our proposed approach to achieve scalability in Kernel Mean Matching

is illustrated in Figure 4.1. We refer to it by Very Fast KMM or VFKMM. A number of

fixed-size bootstrap samples are generated from the training dataset Xtr. Data instances in

each sample are chosen with replacement from Xtr, where each sample is denoted by X∗tr.

By considering the complete set of test data instances, β̂∗(x) for each instance x ∈ X∗tr is

computed using Equation 4.2. Since each instance can be associated with multiple samples,

it would have an equivalent number of estimated instance weights. Final weight for each

instance is calculated by taking the average of all weights calculated for this instance.
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Algorithm 3 details the process of using m/n bootstrap method over training data to

compute instance weights using KMM. First, we compute the minimum number of samples

(denoted as s) to be generated. Ideally, one would desire each training data instance to be

selected at least once overall, i.e., each data instance is associated with at least one sample.

Due to randomness in the selection process, this desired property cannot be guaranteed.

With a large number of samples, however, one can be highly confident that each data instance

belongs to at least one sample. Therefore, we define η as the sampling error tolerance level

such that each instance in the training dataset is associated with at least one of the s samples

with probability 1− η. Since m data instances are to be selected per sample, the minimum

number of samples needed, given η, is

ln η

m ln
(

1− 1
ntr

) (4.3)

where 1
ntr

is the probability of selecting a training instance from Xtr uniformly at random

with replacement. We present more details of this in §4.1.5.

Next, generateSample creates a sample X
∗(i)
tr , where i ∈ {1 . . . s}, by uniformly selecting

data instances with replacement from Xtr. We use this along with the complete test dataset

Xte to solve Equation 4.2 in KMM . We repeat this process s times, thereby generating s

independent samples. At each iteration, we aggregate β̂∗(i)(x) into β̂(x) for each x ∈ X
∗(i)
tr .

For x ∈ Xtr, the final β̂(x) ∈ β̂ contains the sum of all estimated value in each iteration.

For example, let ntr = 10, and m = 5, and let the ith sample X
∗(i)
tr = (x(1), x(3), x(4), x(5), x(9))

be selected at random by generateSample. Here, x(j) is the jth instance of Xtr. If β̂
∗(i)

=

(β̂∗(i)(x(1)), β̂∗(i)(x(3)), β̂∗(i)(x(4)), β̂∗(i)(x(5)), β̂∗(i)(x(9))) are the resulting estimated instance

weights for x ∈ X
∗(i)
tr , then aggregate performs summation of new estimates for each instance

in X
∗(i)
tr , i.e., β̂(x(1)) = β̂(x(1))+β̂∗(i)(x(1)), β̂(x(3)) = β̂(x(3))+β̂∗(i)(x(3)), and so on. Moreover,

we initialize β̂(x) to 0 for each x ∈ Xtr. We finally output β̂(x) ∈ β̂, ∀x ∈ Xtr, by dividing

it with the number of times x is selected in the sampling process, using normalize.
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Figure 4.2: Illustrating the EVFKMM process. The figure shows s samples generated from
the training data, and k partitions of the test data. KMM is applied over each training
sample with each test data partition.

Algorithm 4: EVFKMM : Ensemble-based VFKMM

Data: Covariates Xtr and Xte

Input: # of components: k, Tolerance: η, Parameters: θ
Result: β̂
begin

/* Sample without replacement */

X̃te ← splitData(Xte, k)
m← ntr

k

for C ∈ X̃te do

β̂c ← V FKMM(Xtr,C,m, η, θ)

β̂ ← aggregate(β̂c)

return normalize(β̂)

4.1.4 Extension of VFKMM

We now propose a variant of VFKMM to address the challenge of scalability when both

training and test datasets are large. In particular, we divide the test dataset into multiple

non-overlapping partitions, and utilize VFKMM method over each partition. We refer to

this as Ensemble-based Very Fast KMM (or EVFKMM).
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ensKMM requires the complete training data to be in memory. Likewise, VFKMM

requires the complete test data to be in memory, as described in §4.1.3. When both training

and test datasets are large, in-memory sequential computation of KMM becomes a bottleneck

in the application employing it. One can address this challenge by applying the sampling

process of VFKMM over the test dataset, along with the training dataset. However, sam-

pling over the test dataset only approximates its data distribution. Moreover, a method

that partitions the test data and applies KMM on each partition independently, has been

demonstrated to achieve better performance (Miao et al., 2015).

Instead of sampling from test dataset, we propose a method that augments VFKMM

with ensKMM. Here, we first split the test data into multiple components, where each

component is a subset with a fixed number of data instances, called test-component. Next, for

each of these, we employ VFKMM where fixed-size samples are obtained from the training

data. Finally, we aggregate the density ratio resulting from KMM, similar to VFKMM.

Figure 4.2 illustrates this many-to-many computation scheme between the training sam-

ples and test-components, as compared to the many to one computation scheme between

training samples and the complete test dataset of VFKMM in Figure 4.1. Algorithm 4

details this method. We split the given test data Xte into k components, to form a set X̃te.

Since VFKMM requires sample size m, we compute it as ntr

k
. We then run VFKMM using

each test-component (denoted as C) and the training data, to obtain aggregated density

ratio β̂c for each C. We further aggregate all β̂c(x) ∈ β̂c for every x ∈ Xtr, and normalize

all density ratio estimates, similar to Algorithm 3. Since each combination of training and

test components can be computed independently, it can be computed in a distributed envi-

ronment. We implemented this approach over Apache Spark (Haque et al., 2016). However,

in this dissertation, we will examine the primary scalability of the approach rather than

discussing the distributed implementation.
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4.1.5 Analysis of VFKMM

As mentioned earlier in §4.1, importance weights of training data are bounded within [0, B],

where 0 < B <∞. Furthermore, kernel h is continuous in domain D. According to Gretton

et al. (Gretton et al., 2009), the convergence error of β(x) ∈ β computed from cenKMM is

given by the following lemma.

Lemma 2. Let Xtr be a set of training data covariates and Xte be a set of test data covariates,

with size ntr and nte respectively. Let β(x) < B be a fixed function of x where x ∈ Xtr.

Assume that instances in Xtr and Xte are drawn i.i.d. from D using Pte(x) = β(x)Ptr(x),

and ‖φ‖ ≤ R <∞. Then with probability at least 1− δ,∥∥∥∥∥ 1

ntr

ntr∑
i=1

β(x
(i)
tr )φ(x

(i)
tr )− 1

nte

nte∑
j=1

φ(x
(j)
te )

∥∥∥∥∥ ≤(
1 +

√
2 ln

2

δ

)
R

√
B2

ntr
+

1

nte

Algorithm 3 indicates that m < ntr training data instances are used to form a sample

X∗tr. Here, we ignore the sample index i for brevity. The KMM output β̂
∗

is obtained from

X∗tr and Xte. Following Lemma 2, the bound of change in density ratio for each sample

is 4R2
(
B2

m
+ 1

nte

)
. The overall density ratio is considered by aggregating β̂

∗
resulting from

KMM applied over each sample. Note that not all data instances from Xtr are always selected

due to randomness. Therefore, each data instance has a certain probability of being selected

at least once depending on the sample size m and number of samples s, which affects the

overall bound of change calculation in this situation.

Intuitively, the probability of a training data instance being associated with at least one

sample in the overall process increases with increase in number of samples. We denote this

probability measure as (1 − η), where η is the sampling error tolerance level (probability)

that a data instance is not selected in any sample of Algorithm 3. Minimum number of

samples s to be generated under this condition is given by the following Lemma.
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Lemma 3. Let s be the number of training samples generated from Xtr in VFKMM, where

each sample X
∗(i)
tr , i ∈ {1 . . . s} is of size m < ntr. Union of all samples is given by X̂tr =⋃s

i=1 X
∗(i)
tr . The minimum number of samples required to be generated such that an instance

x ∈ Xtr belongs to the set X̂tr with probability at least (1− η) is given by

⌈
ln η

m ln
(

1− 1
ntr

)
⌉

Proof. Probability that a data instance x ∈ Xtr is not selected in any of s independent

samples, each having m independent trials, is
(

1− 1
ntr

)ms
. Using the definition, η ≤(

1− 1
ntr

)ms
. Therefore, s ≥ ln η

m ln
(

1− 1
ntr

) .

Theorem 1. Following the assumptions of Lemma 2 and Lemma 3, and considering only the

instances that have been associated with at least one of the samples, the error of VFKMM,

where s independent training samples (each of size m) are generated, is given by∥∥∥∥∥ 1

ntr

ntr∑
i=1

β̂(x
(i)
tr )φ(x

(i)
tr )− 1

nte

nte∑
j=1

φ(x
(j)
te )

∥∥∥∥∥ ≤
R

(√
2 ln

(
2

δ

)(
(1− η)2B2

ntr
+

1

nte

)
+

√
B2

ntr
+

1

nte

)
Proof. Let Γ(X̂tr,Xte) be defined by

Γ(X̂tr,Xte) =

∥∥∥∥∥ 1

ntr

ntr∑
i=1

β̂(x
(i)
tr )φ(x

(i)
tr )− 1

nte

nte∑
j=1

φ(x
(j)
te )

∥∥∥∥∥ (4.4)

Lemma 3 states that each instance in the training dataset is associated with at least one of

the samples, with probability (1− η). Let x
(i)
tr ∈ Xtr be an instance selected in the sampling

process. If it is replaced by an arbitrary x ∈ D, then bound on the change in Γ(X̂tr,Xte) is

1

ntr

∣∣∣(1− η)
(
β̂(x

(i)
tr )φ(x

(i)
tr )− β̂(x)φ(x)

)∣∣∣ ≤ 2(1− η)BR

ntr

since β̂(·) ≤ B. Similarly, 1
nte
|φ(x

(j)
te ) − φ(x)| ≤ 2R

nte
. Using McDiarmid’s tail bound (McDi-

armid, 1989) on Γ(X̂tr,Xte), for an arbitrary small ε, we get

p(|Γ(X̂tr,Xte)−EX̂tr,Xte
[Γ(X̂tr,Xte)]| > ε) ≤

2 exp

 −ε2

2R2
(

(1−η)2B2

ntr
+ 1

nte

)


48



Therefore, the two-tail bound with probability 1− δ is

|Γ(X̂tr,Xte)−EX̂tr,Xte
[Γ(X̂tr,Xte)]| ≤

R

√
2 ln

(
2

δ

)(
(1− η)2B2

ntr
+

1

nte

)
(4.5)

Finally, the bound on expected value of Γ(X̂tr,Xte) is derived using Jensen’s inequality as

EX̂tr,Xte
[Γ(X̂tr,Xte)] ≤

√
EX̂tr,Xte

[Γ(X̂tr,Xte)2]. Similar to (Gretton et al., 2009),

EX̂tr,Xte
[Γ(X̂tr,Xte)

2] ≤ R2

[
B2

ntr
+

1

nte

]
(4.6)

Combining tail bound (Equation 4.5) and expectation bound (Equation 4.6) completes the

proof.

Due to randomness during sampling, a few data instances may not be selected in any of

the samples, even when considering a sufficiently large number of samples. Therefore, we

add a penalty for each data instance x ∈ Xtr not present in the union of samples X̂tr, for

comparison with cenKMM. This penalty term is defined as follows.

Definition 2. Let X0 be the set of instances from training dataset Xtr that are not associated

with any of the bootstrap samples, i.e., X0 = Xtr \ X̂tr. Then, replacing each data instance

x ∈ X0 by an arbitrary instance x ∈ D changes Γ(X̂tr,Xte) by at most τ .

Corollary 1. Following similar assumptions as Theorem 1, error of utilizing the estimated

β̂ from VFKMM over the entire training dataset Xtr is given by∥∥∥∥∥ 1

ntr

ntr∑
i=1

β̂(x
(i)
tr )φ(x

(i)
tr )− 1

nte

nte∑
j=1

φ(x
(j)
te )

∥∥∥∥∥ ≤
R

(√
1

2
ln

(
2

δ

)(
(2B(1− η) + ητ)2

ntr
+

4

nte

)
+

√
B2

ntr
+

1

nte

)
Proof. Following Lemma 3 and Definition 2, an instance belongs to X0 with probability η.

Therefore, if any instance x
(i)
tr in the training dataset is replaced by an arbitrary x ∈ D, the
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expected bound on change in Γ(X̂tr,Xte) is (1−η)2BR+ητ
ntr

. Likewise, replacing x
(i)
te by an arbi-

trary x ∈ D changes Γ(X̂tr,Xte) by at most 2R
nte

. Using McDiarmid’s tail bound (McDiarmid,

1989), we get the following.

p(|Γ(X̂tr,Xte)−EX̂tr,Xte
[Γ(X̂tr,Xte)]| > ε) ≤

2 exp

 −2ε2

R2
(

(2B(1−η)+ητ)2

ntr
+ 4

nte

)


Therefore, the two-tail bound with probability 1− δ is

|Γ(X̂tr,Xte)− EX̂tr,Xte
[Γ(X̂tr,Xte)]| ≤

R

√√√√1

2
ln

(
2

δ

)(
(2B(1− η) + ητ)2

ntr
+

4

nte

)
(4.7)

Finally, the bound on expected value of Γ(X̂tr,Xte) follows Equation 4.6 due to similar

conditions. Combining tail bound (Equation 4.7) and expectation bound (Equation 4.6)

completes the proof.

Corollary 2. If sufficiently large number of samples are taken from the training dataset,

error bound of VFKMM converges to that of cenKMM.

Proof. From Lemma 3, it follows that η decreases with increasing s, i.e., number of sam-

ples. With sufficiently large number of samples, lims→∞ η = 0. Therefore, the error bound

of VFKMM (from Corollary 1) converges to the error bound of cenKMM (shown in

Lemma 2).

Complexity Analysis

We now compute the time and space complexity of VFKMM. As mentioned in (Miao et al.,

2015), the original KMM approach (cenKMM) has a time complexity of O(n3
tr + n2

trd +

ntrnted). However, in the sampling process of VFKMM, each sample contains m training
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Table 4.2: List of datasets for VFKMM.

Dataset # Features Total Size
ForestCover 54 50,000
KDD 34 50,000
PAMAP 53 50,000
PowerSupply 2 29,928
SEA 3 50,000
Syn002 70 50,000
Syn003 70 50,000
MNIST 780 50,000

data instances instead of ntr. Hence, the time complexity of estimating β̂
∗

in each sample

is O(m3 + m2d + mnted). The aggregation requires O(m). Together, the time complexity

per sample is O(m3 + m2d + mnted + m). Since computation on samples can be done in

parallel, the overall time complexity remains the same. Clearly, scale-up in execution time

is achieved when m� ntr. Similarly, the space complexity of cenKMM is O(n2
tr + ntrnte),

whereas that of VFKMM is O(m2 +mnte + ntr).

4.1.6 Empirical Evaluation of VFKMM

Dataset

Table 4.2 lists the datasets used in our empirical evaluation. All datasets are publicly

available (Repository, 1998; Fan et al., 2008). We use a similar set of datasets as used in

the previous chapter. The additional set of datasets are as follows. KDD is an intrusion

detection dataset with network features collected from various attacks. The classification

task is to identify the type of attack. PAMAP is a human activity monitoring dataset where

data from different sensors are collected. The classification task is to identify the activity

associated with a set of sensor readings. The PowerSupply is a dataset consisting of power

supply records of an electric company where the classification task is to predict whether the

future demand for power increases or decreases based on current usage. Finally, the MNIST
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Table 4.3: List of methods used for evaluation. SR denotes sampling with replacement, and
SWR denotes sampling without replacement. The proposed approaches are indicated by ∗,
while others are baseline methods.

Training Data Test Data
SR SWR SR SWR

M
e
th

o
d

cenKMM 7 7 7 7

ensKMM 7 7 7 4

ensTrKMM 7 4 7 7

VFKMM∗ 4 7 7 7

EVFKMM∗ 4 7 7 4

dataset is a set of images with handwritten digits. The task is to identify the digit using pixel

features. Similar to the previous chapter, Syn002 and Syn003 are synthetically generated

using MOA (Bifet et al., 2010).

In order to simulate sampling bias between the training and test data, we follow the

procedure similar to a previous study (Huang et al., 2006). For each dataset, we first compute

the covariate mean x̄ of all data instances, and select ntr data instances with probability

of p(ξ = 1|x(i)) = exp
−‖x(i)−x̄‖

σ
, where ξ is a binary indicator variable with 1 indicating

training data, and σ is the standard deviation of
∥∥x(i) − x̄

∥∥, ∀x(i). Remaining part of the

dataset is considered for testing. The above method may be biased with the Gaussian form of

the importance weighting function. Therefore, we also use another method for creating bias

in the training data w.r.t the population, following (Sugiyama et al., 2008). We randomly

choose one sample from the data pool between two consecutive change points and accept

this as source sample with probability min(1, 4 ∗ (xv)), where xv is the vth feature of and

instance x. Then we remove x from the pool regardless of its rejection or acceptance. Once

10% of data instances are selected as the source, we choose the rest as target. Finally, we

concatenate the source and target data to simulate the respective streams.

Methods

Table 4.3 lists the competing methods considered for evaluation. It also shows the type

of sampling methods used in each approach, where SR indicates sampling with replacement
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and SWR indicates sampling without replacement. As mentioned in §4.1, we use the original

KMM (cenKMM) and the ensemble KMM (ensKMM) approaches as baseline methods for

comparison. Here, ensKMM divides the test data into multiple components via sampling

without replacement. We also consider the naive ensTrKMM method, mentioned in §4.1.3,

as a baseline approach. It partitions the training data by sampling without replacement.

Note that in Table 4.3, there are no methods that perform sampling with replacement (SR)

on the test data, due to reasons given in §4.1.4.

Experiments

We first evaluate sensitivity of each competing method to input parameters, i.e., m and η

(or s). Density ratio estimates depend on the training data sample size m for VFKMM and

EVFKMM, and the number of test data partitions k for ensKMM and EVFKMM. Note

that k is inversely proportional to the test data partition size. For the sake of comparison,

we unify the notations m and k with the relation m = ntr

k
(as given in Algorithm 4) for each

training dataset, and vary the number of partitions with k = {5, 10, 15, 20}. In the case of

VFKMM and EVFKMM, the effect of larger m on training data samples can be observed

with smaller k value. In this set of experiments, we choose η = 0.001.

In the next set of experiments, we vary η to empirically demonstrate Corollary 2, with

k = 10. Particularly, we vary η such that the resulting number of samples belong to s =

{50, 100, 150, 200}. Here, instead of referring the results of these experiments with respect

to η, we refer it with respect to s for clarity of understanding.

Importantly, the primary purpose of the method discussed in this section is to demon-

strate the scalability of proposed approaches. Therefore, we vary the size of training dataset,

i.e., we set ntr = {100, 500, 1000, 1500, 2000}, and estimate density ratio using each compet-

ing method. Here, we use k = 10, η = 0.001.
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Note that each of these sets of experiments were performed over all datasets listed in

Table 4.2. Here, we only consider the first 50, 000 instances in each dataset for simplicity.

Moreover, a large amount of data merely increases the test dataset size.

We measure the goodness of estimated importance weights (denoted as β̂(x) ∈ β̂) by

computing the Normalized Mean Square Error (NMSE). This is given by

1

n

n∑
i=1

(
β̂(x(i))∑n
j=1 β̂(x(j))

− β(x(i))∑n
j=1 β(x(j))

)
(4.8)

where β(x(i)) = 1
p(ξ=1|x(i))

, following (Miao et al., 2015). n indicates dataset size, which

depends on the method used. For example, in cenKMM, n = ntr since it estimates density

ratio for all training data, whereas in VFKMM and EVFKMM, n ≤ ntr since density ratio

is estimated for only those data instances which are selected during random sampling. We

use the well-known QP solver in CVXOPT python library (Dahl and Vandenberghe, 2006)

to execute the KMM quadratic program, with B = 1000 and ε =
√
ntr−1√
ntr

. Following (Huang

et al., 2006), we use a Gaussian kernel with width γ equal to the median of pairwise distances.

Results

We performed each experiment over 5 different sets of training and test data, generated via a

random training data selection process, with 5 iterations in each to account for randomness

in the sampling process. Moreover, we present our results on the natural logarithmic scale

for clarity in comparison with competing methods.

We first present results illustrating the behavior of VFKMM and EVFKMM when

k (i.e., m = ntr

k
) is varied, and compare it with that of cenKMM, ensKMM and en-

sTrKMM. In all these experiments, we choose ntr = 500. Figure 4.3 shows the ln NMSE

obtained on various datasets. Here, lower value of k indicates larger m, resulting in lower

value of s in VFKMM and EVFKMM. Also, a lower value of ln NMSE is desired. As seen
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Figure 4.3: Logarithm of NMSE with different k (∝ 1
m

) on VFKMM and
EVFKMM, compared to cenKMM, ensKMM and ensTrKMM.

in these plots, VFKMM and EVFKMM resulted in better (smaller) ln NMSE than base-

line methods, on most datasets. However, ln NMSE of baseline methods in a few datasets,

including PowerSupply, SEA, and MNIST, is marginally better than the proposed methods.

This mixed result is expected since the sampling-based methods on the training data ap-

proximates cenKMM, according to Corollary 1. Additionally, VFKMM and EVFKMM

performs equivalently, with EVFKMM resulting in a better NMSE than VFKMM on multi-
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Figure 4.4: Logarithm of NMSE with different s on VFKMM and EVFKMM,
compared to cenKMM.

ple datasets including KDD, PAMAP, PowerSupply and MNIST. Importantly, ensTrKMM

performs worst on all datasets. This supports our hypothesis that splitting (sampling with-

out replacement) training data produces largely different data distributions compared to the

original training data distribution.

Figure 4.4 shows the effect of varying η (equivalently varying s) over all datasets using

VFKMM and EVFKMM. Clearly, a larger number of samples results in a lower error for
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Figure 4.5: Average execution time (in logarithm scale) with different k on VFKMM
and EVFKMM, compared to cenKMM, ensKMM and ensTrKMM.

the two methods. Particularly, the proposed approach resulted in larger error than baseline

on datasets such as Powersupply, SEA, and MNIST in Figure 4.3. With more number of

samples, the decrease in error can be observed more distinctly in these datasets than others

in Figure 4.4, following Corollary 2. Note that performance of VFKMM and EVFKMM

are very similar in Figure 4.4f and Figure 4.4g.
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Figure 4.6: Logarithm of NMSE with different ntr on VFKMM and EVFKMM,
compared to cenKMM, ensKMM and ensTrKMM.

Nevertheless, the major advantage of performing sampling with replacement over training

data can be observed in the lower execution time obtained on all datasets compared to

baseline methods. Figure 4.5 illustrates this with the average run-time (in the natural

logarithm of seconds) on each sample (or component) while computing density ratio. For

example, the execution time with k = 20 on the ForestCover dataset for cenKMM and

ensKMM was 2.43s and 2.65s respectively, while that of VFKMM and EVFKMM was
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Figure 4.7: Average execution time (in logarithm scale) with different ntr on VFKMM
and EVFKMM, compared to cenKMM, ensKMM and ensTrKMM.

only 0.0037s and 0.0036s respectively. On the logarithmic scale, this translates to 0.88

and 0.97 for cenKMM and ensKMM respectively, and −5.59 and −5.62 for VFKMM

and EVFKMM respectively. The figure shows that with smaller m (equivalently larger k),

execution time per sample drastically decreases. Here, time used is the average execution

for QP, where it represents the time per component in ensKMM and the time per sample
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in VFKMM and EVFKMM. We assume that each component or sample can be executed

in parallel.

The next set of experiments showcases the effect of NMSE and execution time on different

training dataset size ntr. Here, we set k = 10 (fixing m). Figure 4.6 shows the ln NMSE for

all datasets considered on each competing method. From the plots, it can be observed that

marginally equivalent results were obtained for each value of ntr on all methods, following

Figure 4.3. Moreover, increase in ntr reduces error due to larger training sample size. As

before, the benefit of VFKMM and EVFKMM is better observed in the execution time

as illustrated in Figure 4.7. With increasing training set size, the execution time of all

methods increases as expected due to the O(n3
tr) time complexity of KMM. However, the

execution time of VFKMM is very minimal as compared to other methods due to the

smaller size of training data in each sample. For example, the execution time of cenKMM,

ensKMM, VFKMM and EVFKMM on the MNIST dataset with ntr = 500 was 2.13s,

2.1s, 0.008s and 0.0068s respectively. On the other hand, with ntr = 2000, the execution

time was 173.7s, 174.4s, 0.17s and 0.17s respectively. This example result can be observed

on the corresponding logarithmic scale in Figure 4.7h. The dramatic gain in performance

of VFKMM and EVFKMM is traded with more number of samples. Nevertheless, each

of these samples can be utilized independently to compute density estimates in a parallel

and distributed manner, thereby taking advantage of a distributed system. We leave this for

future work. Clearly, VFKMM can be used in MSC (introduced in Chapter 3) instead of

KMM to train a target classifier for scaling up to fast data streams. Yet, a major concern

about KMM is its model selection process. In the next section, we will address this challenge

over the multistream setting.
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4.2 Kullback-Leibler Importance Estimation Procedure

In the MultiStream classification (or MSC) framework, the challenges of drift detection with

bias correction is handled with the use of ensemble classifiers and two types of classifier

training methods. This combination suffers from two main drawbacks.

• Management of two different classifier types within the ensemble is complex and may

lead to degenerate cases, as illustrated by the difference between MSC and MSC2 in

§3.4.

• The bias correction method (KMM) suffers from model selection problem. KMM pa-

rameters in Chapter 3 were chosen based on a heuristic. A systematic cross-validation

approach may result in the parameters being biased towards the training distribution,

as shown in (Sugiyama et al., 2008). Therefore, if the model parameters are not chosen

well, it may negatively affect the overall classification accuracy.

In this section, we will first describe an alternative bias correction approach where the

above two drawbacks are addressed. Unfortunately, this also suffers from scalability issues

with regards to fast data streams. We will then address this challenge by appealing to

ensemble methods.

4.2.1 FUSION

Similar to MSC, we utilized an alternative method for estimating importance weight in the

multistream setting in a recent study (Haque et al., 2017). We call this technique as FUSION.

The main idea in FUSION is to model the density ratio function as a linear combination

of Gaussian kernels and adopt the batch-processing scheme of estimating the ratio called

Kullback-Liebler Importance Estimation Procedure (KLIEP). Apart from its inherent model

selection property, the density ratio model can be updated online. This update can be used
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as a measure of change in data distribution over time, and therefore can be used to detect

concept drifts that directly affect the density ratio estimates.

To achieve this, FUSION maintains two fixed-size sliding windows, denoted by WS and

WT , for storing recent data instances in the source and the target streams respectively. It has

four main modules, i.e., Density Ratio Estimation Module (DRM), Drift Detection Module

(DDM), Classification, and the Update module. DRM is used to mitigate the covariate

shift between the source and the target distributions by estimating the density ratio, i.e.,

importance weight (similar to MSC), directly for each data instance in the source sliding

window. The objective of associating the importance weight with each source instance is

to estimate the target distribution by the weighted source distribution. FUSION builds

a classifier model based on the weighted source data instances. The classification module

predicts a class label for any incoming test data instances in the target stream using the

trained model. The DDM detects a concept drift if there is a significant change between the

weighted source and the unweighted target distributions. Once a concept drift is detected,

the Update module uses the recent instances from source sliding windows, along with the

weights estimated by the DRM for training a new classification model.

FUSION uses a Gaussian kernel model for direct density ratio estimation (Sugiyama

et al., 2007), as follows:

β̂(x) =
N∑
j=1

αjKσ(x, x
(j)
te ) (4.9)

where ααα = {αj}Nj=1 are the set of N parameters needed to be learned, Kσ(·, ·) is the Gaussian

kernel, i.e., Kσ(x(i), x(j)) = exp

{
−‖x

(i)−x(j)‖2
2σ2

}
, and σ is the kernel width. Recent data

instances in the target stream stored in WT are used as the Gaussian kernel centers. The
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following objective function is solved to estimate the parameters of the model:

maximize
{αj}Nj=1

[
N∑
i=1

log

(
N∑
j=1

αjKσ(x
(i)
T , x

(j)
T )

)]

subject to
1

N

N∑
i=1

N∑
j=1

αjKσ(x
(i)
S , x

(j)
T ) = 1,

and α1, α2, ..., αN ≥ 0.

(4.10)

where N is the size of WS and WT . Gradient ascent is used to learn the parameters.

Following a batch learning scheme, FUSION also provides an online updating method for

the parameters with each new source or target instance in the stream as follows.
α̂tj ← (1− ηλ)α̂t−1

j+1, j = 1, ..., N − 1

α̂tj ←
η

β(x̂
(N+1)
T )

, j = N

(4.11)

Here, the jth parameter is updated using the previous value that is held at the j + 1th index

after adding a new data instance into the window.

The DDM module detects a change between the weighted source and the target distri-

bution as follows:

S =
N∑
j=1

ln
pT (x

(j)
T )

β̂0pS(x
(j)
T )

=
N∑
j=1

ln
β̂t(x

(j)
T )

β̂0(x
(j)
T )

> µ (4.12)

where β̂0 and β̂t are density ratios defined by ααα0 and αααt respectively, and µ is a user-defined

threshold. Here, the subscripts 0 refers to an initial value, and t refers to the updated value

at time t > 0. A change is detected if the likelihood ratio is greater than µ. Following

detection of a concept drift, the parameters of the Gaussian kernel model are learned again

using instances stored in WS and WT . Subsequently, a new classifier model is trained on

the weighted source instances as mentioned before. Apart from the task of classification,

we recently extended this framework to regression (prediction over a continuous domain) as

well (Haque et al., 2018).
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Table 4.4: List of symbols for EnsFusion

Symbol Description
α Scalar parameters of Gaussian kernel model
W Stream window of size N
V Ensemble of density ratio estimation models
V A density ratio estimation model in V
M Ensemble of classifiers
k Size of V
m Size of each t-minibatch
D Output of local drift detection
µ Local drift detection threshold

4.2.2 Challenges

The bottleneck of FUSION is the batch learning algorithm used to estimate the Gaussian

kernel parameters. It has a time complexity of O(N2). Although these parameters are

updated online following the batch learning scheme, for each data instance encountered in

S and T , until the next concept drift is detected, it puts an overhead on overall framework

execution time, especially in case of frequent concept drifts. In this paper, we aim to address

this computational bottleneck for multistream classification.

4.2.3 EnsFusion: Ensemble Multistream Classification

In FUSION, the computational overhead in solving the convex optimization problem (Equa-

tion 4.10) is quadratic in the number of data instances in the target window. Therefore, a

significantly small target window size may have a major influence on the overall execution

time but may affect prediction accuracy. Using this intuition, we now present the main idea

of this section. For clarity, Table 4.4 lists frequently used symbols in this section of the

dissertation, in addition to the symbols listed earlier (Table 3.1 and Table 4.1).

We divide data instances in the target window WT , at time t, into k non-overlapping sets

containing sequential data instances. We call each set as a t-minibatch. We then perform

parameter learning, online update, and change detection independently on each t-minibatch
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Figure 4.8: Overview of EnsFusion

of size m < N . These form the ensemble of k density estimator models, and is denoted by V .

We estimate importance weight for all source data instances from each of these models, i.e.,

we use all instances in WS with each t-minibatch instances, and later combine the results

by normalizing the weights on each source instance in WS. Similar to (Haque et al., 2017),

we use an ensemble of classifier models, which is denoted byM, to perform label prediction.

Figure 4.8 illustrates this process, which we call EnsFusion.

Initialization

Initially, we generate a predictor using an ensemble V of Gaussian kernel models as follow. We

split target window WT into k non-overlapping and sequential t-minibatches, each denoted

by Wi
T ,∀i ∈ [1, k], and k < N . For data instances in each Wi

T , we create a Gaussian kernel

model, denoted by Vi ∈ V , using the formulation similar to Equation 4.10. Particularly, the
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convex optimization problem we solve in each Vi is as follows.

maximize
{αj}mj=1

[
m∑
g=1

log

(
m∑
j=1

αjiKσi(x
(g)
Ti
, x

(j)
Ti

)

)]

subject to
1

N

N∑
g=1

m∑
j=1

αjiKσi(x
(g)
S , x

(j)
Ti

) = 1,

and α1
i , α

2
i , ..., α

m
i ≥ 0.

(4.13)

where αji ∈ αααi is the parameter associated with the jth Gaussian kernel, m is the size of Wi
T ,

N is the size of WS, and x
(j)
Ti

is the jth instance in Wi
T . Here, we estimate the kernel width

σi through likelihood cross validation. Note that we use all data instances in WS for each

Wi
T to solve the optimization problem. This estimates the density ratio β̂i(x) from Vi ∈ V

for each source data instance x. We combine the density ratio estimates from each Gaussian

kernel model in V through weighted average to form source instance weights. Concretely,

the estimated density ratio is as follows.

β̂(x) =
k∑
i=1

wi(x)β̂i(x) (4.14)

where wi = p(x|x ∈ Wi
T ), and β̂i(x) =

pT (x∈Wi
T )

pS(x∈WS)
. If mi is the size of the ith t-minibatch

Wi
T , then wi = mi

N
. We then train a classifier using weighted training data from WS and

initialize the prediction ensemble M with this classifier.

Streaming Update

Once all detection of local drifts is complete, we then employ a strategy to combine the binary

output of each local drift detection to address overall or global concept drift. Specifically, we

follow the change approach of FUSION. If a change is detected globally, we first re-initialize

each Gaussian kernel model using current data instances in WT and WS by updating its

parameters and then use its output estimates to train a new classifier that updates the

prediction ensemble M. Finally, we use this updated ensemble of classifiers to predict the
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Figure 4.9: Updating of ensemble (E), with local and global drift detection, upon arrival of
a new target instance at time t+ 1.

class label of future instances in T . We now detail the update procedure of density ratio

estimation ensemble and various strategies for global change detection.

Ensemble Update A new data instance can occur in either S or T . If the data instance

belong to S, we update αααi for satisfying constraint in Equation 4.13 for each model in the

ensemble of density ratio estimators V . Whereas, if the new data instance is associated with

T , we first update each t-minibatch Wi
T and then update the corresponding parameter set

αααi for each i ∈ [1, k]. Concretely, we update each t-minibatch Wi
T for a new target instance

as follows. Each Wi
T is formed by dividing the sequential data in WT into k non-overlapping

set. Here, we preserve the order of their appearances in WT within each Wi
T . Therefore,

WT and Wi
T can be viewed as a queue. Since the size of WT is fixed, any new data instance

arriving in T is appended to it at the end. This will remove the oldest data instance at
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Algorithm 5: Multistream Prediction using Ensemble of Density Ratio Estimators.

Data: S: Source stream, T : Target stream
Input: N : Window size
Result: {y}∀x ∈ T
begin

Create WS and WT

Split WT into Wi
T∀i ∈ [1, k]

Initialize density ratio ensemble V
while i = k do

Generate Vi ∈ V using Eq. 4.10 from the combination of WS and Wi
T

i = i+ 1

Estimate β̂̂β̂β(WS) using Eq. 4.14
Initialize predictor ensemble M(βββ,WS,WT )
while T exists do

Get new data instance x
if x ∈ S then

Update parameters αααi for each Vi ∈ V
if x ∈ T then

Predict label of x using M
Update each Vi ∈ V by sliding window
Update parameters αααi ∈ Vi

Check local drift Di using βββi from Vi ∈ V
change: Check D using Eq. 4.15 or Eq. 4.16
if change then

Reinitialize each Vi ∈ V by recomputing αααi

Compute β̂ββ using Eq. 4.14
Update predictor ensemble M

the start of the queue if the size of WT is N . Indices of remaining instances in the queue

are adjusted to accommodate the new data instance. We follow this queue-based update

operation within and across each t-minibatch Wi
T . Figure 4.9 illustrates the update process

for each Wi
T , where i ∈ [1, k − 1]. Each Wi

T receives a new instance from the i + 1th t-

minibatch. The new instance is added to the kth t-minibatch, and the oldest instance in

the 1st t-minibatch is discarded. Since the associated Gaussian kernel model for Wi
T uses

each instance in the ith t-minibatch as Gaussian centers, every new instance in T affects the
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parameter set αααi in each model Vi ∈ V . We update these models using Equation 4.11. The

resulting density estimates are used for local drift detection using Equation 4.12.

Global Change Detection The result of the drift detection module is binary, where 1

indicates that a concept drift is detected, and 0 indicates otherwise. Since we have k such

decisions from the ensemble V , we can employ various strategies to combine the results. Here,

we show 2 different strategies. First, we say that a concept drift is detected if the output

of any Vi ∈ V is 1. We call this a one-vote strategy. Formally, if D is the k dimensional

decision vector where each element corresponds to a drift detection output for each Vi ∈ V ,

then a change is detected if,
k∑
i=1

Di > 0 (4.15)

Alternatively, the second strategy is majority-vote, where a change is detected if the following

is true.
k∑
i=1

Di >
k

2
(4.16)

Clearly, we can expect the majority-vote strategy to detect less number of drifts than the

one-vote strategy for k > 2. Moreover, the single-vote strategy for such values of k can over-

estimate the number of concept drifts, and trigger model re-training. This is disadvantageous

if the classifier re-training is computationally expensive.

Algorithm 5 lists the steps involved in our proposed method for efficiently predicting

over a multistream setting. The ensemble containing density ratio estimators (denoted V)

is of size k, where Vi ∈ V is the ith density estimator trained using WS and Wi
T as before.

Whereas, the ensemble of classifiers (denoted M) contain a maximum of L base predictors

trained on weighted source data instances at different times along the stream. We maintain

the top L best performing classifier based on classifier confidence (Chandra et al., 2016a).

Once k density ratio estimators are initialized, new incoming data instances update or re-

initialize the parameters of Vi ∈ V∀i ∈ [1, k]. Particularly, Wi
T is updated with a new
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Gaussian center if the data instance is from T . Whereas, only existing parameters αααi are

updated if the instance is from S. Once the output of all k local drift detection mechanism

is obtained, the decision to update models in V and M is considered.

4.2.4 Analysis of EnsFusion

We now study some theoretical properties of the approach, along with its computational

complexity.

Convergence Rate

In EnsFusion, we assume that data instances in T are generated in an i.i.d fashion from a

non-stationary process. Therefore, each of the k t-minibatches Wi
T created by dividing these

instances in a window WT can also be assumed i.i.d. This indicates that each β̂ββi from Vi ∈ V

at time t are independent estimates. We now show that the weighted average combination

of β̂ββi∀i ∈ [1, k] according to Equation 4.14 has a similar rate of convergence as the original

algorithm in FUSION.

We assume a Reproducing Kernel Hilbert Space (RKHS) for estimating βββi in each Vi ∈ V .

We denote this RKHS by H. Let Ej
i (β) be the empirical error from Wi

T in Vi. From

Equation 4.13, we estimate β̂i by minimizing
∑m

j=1E
j
i (β). According to (Kivinen et al.,

2010), this may lead to overfitting. Therefore, we estimate β̂ by minimizing the regularized

empirical error given by,

Ẽj
i (β) = − log βi(x

j
Ti

) +
λ

2
‖βi‖2

H (4.17)

where λ > 0 is a regularization parameter, and the norm in H is denoted by ‖ · ‖2
H. This

empirical estimate is used to update Vi using Equation 4.11. Since we average over k inde-

pendent models, the overall empirical error is given by,

Ẽj(β̂) =
1

k

k∑
i=1

Ẽj
i (β̂i) (4.18)

70



Here, we show that the overall empirical error Ẽj(β̂) is strongly convex, and derive a bound,

similar to (Haque et al., 2017). We follow the justification that strong convexity enables

improvement in regret bound (Shalev-Shwartz et al., 2009).

For simplicity, we assume that the size of each t-minibatch is m, i.e., mi = m∀i ∈ [1, k]

or m = N
k

.

Lemma 4. Ẽj(β̂) is strictly convex, i.e., if β̂′ 6= β̂, then,

Ẽj(tβ̂′ + (1− t)β̂) < tẼj(β̂′) + (1− t)Ẽj(β̂)

Proof. In Equation 4.17, both negative logarithm and regularization terms are strictly convex

functions. Therefore, the local regularization error functions Ẽj
i (β) for i ∈ [1, k] are strictly

convex. Following the property of convex functions (Boyd and Vandenberghe, 2004), sum of

convex functions are convex. Since each Ẽj
i (β) in Equation 4.18 is strictly convex, Ẽi(β) is

strictly convex.

For strong convexity of Ẽj(β̂), we show that ∃θ > 0 such that, Ẽj(β̂) − θ‖Ẽj(β̂)‖2 is

convex. Following the proof of Lemma 4, it can be seen that both the logarithmic term

and the quadratic term of Equation 4.17 is strongly convex. Using the additive property of

strong convexity and triangular inequality, Ẽj(β̂) is strongly convex.

Let β∗ be the optimum value. We assume that Ẽj
i (β) is µ-smooth in the neighborhood

of β∗. We desire to find an upper bound for ‖Ẽj(β̂) − Ẽj(β∗)‖. Within each Vi, ∀i ∈ [1, k],

the regularized empirical error Ẽj
i (β̂i) is Q−Lipschitz continuous. Following (Shalev-Shwartz

et al., 2009),

E[‖β̂i − β∗‖2] ≤ 4Q2

mλ
(4.19)

where L is the Lipschitz constant.
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Lemma 5. Let Ẽj
i be a strongly convex function and Q-Lipschitz continuous for i ∈ [1, k]

where m = N
k

, and E[‖β̄−β∗‖2] ≤ 4Q2

mλ
. Then, with learning rate η = 1

mλ
in each Vi ∈ V, the

following inequality holds,

E[‖β̂ − β∗‖2] ≤ 8Q2

Nλ
(4.20)

Proof. From Equation 4.14,

E[‖β̂ − β∗‖2] = E[‖1

k

k∑
i=1

β̂i − β∗‖2]

=
1

k2
E[

k∑
i=1

‖β̂i − β∗‖2]

(4.21)

Since we assume that Ẽj
i is independent ∀i ∈ [1, k],

E[
k∑
i=1

‖β̂i − β∗‖2] =
k∑
i=1

E[‖β̂i − β∗‖2]

+
∑
i 6=j

E[‖(β̂i − β∗)(β̂j − β∗)‖]
(4.22)

Therefore,

E[‖β̂ − β∗‖2] ≤ 2

k2

k∑
i=1

E[‖β̂i − β∗‖2]

≤ 2

k
E[‖β̄ − β∗‖2]

(4.23)

This is combined with inequality 4.19, and m = N
k

.

Finally, using Lemma 4 and 5 with (Shalev-Shwartz et al., 2009), we can see that the

convergence rate is similar to FUSION, i.e.,

E[Ẽj(β̂)− Ẽj(β∗)] ≤ O(
1

N
). (4.24)
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Complexity

We assume that the size of the source window WS at time t isN . The density ratio estimation

ensemble V contains k models. We estimate density ratio for each source instance in WS at

time t from each of these models using the smaller target window Wi
T , where i ∈ [1, k]. For

simplicity of analysis, we assume that each Wi
T consists of equal number of data instances.

Therefore, wi = 1
k

in Equation 4.14. The size of each t-minibatch is m = N
k

.

Within each density estimation module, the four main operations are learning model

parameters ααα, updating them, computing βββ, and detecting drift. Learning ααα involves solving

Equation 4.13. With source window of size N and target window of size m, its time com-

plexity is O(Nm + m2). The update operation has a time complexity of O(N), while that

of βββ computation and drift detection is each O(Nm). Overall, the time complexity of each

density estimation model is O(Nm + m2). We assume that the classifier time complexity

is O(N + m). In terms of N and k, the overall time complexity is O((k+1
k2

)N2) since each

density ratio estimation module can potentially run in parallel.

In the case of space complexity, we use memoization techniques that save previously

computed terms since the streaming updates only involve a single new data instance within

each density ratio model (the queuing update illustrated in Figure 4.9). Therefore, this

consumes O(N2 + m2) space. We assume that the classifier consumes linear space with

respect to the data instances in the source. Therefore, to save k density ratio estimation

models, the overall space complexity is O((k
2+1
k

)N2).

With the value of k as constant, both space and time complexity is O(N2). But, in

this paper, we achieve scalability of performing classification on the multistream setting by

choosing an appropriate value for N and k.
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Table 4.5: Dataset description for EnsFusion.

Identifier # features # classes
# source
instances

# target
instances

ForestCover 54 7 14,774 133,537
PAMAP 53 6 14,856 134,368
KDD 34 23 19,866 179,445
Electricity 6 2 4,296 38,916
Syn002 70 7 9,890 89,579
Syn003 70 7 9,835 89,249
SynEd 40 12 9,724 87,828

0.75 0.8 0.85 0.9 0.95 1

ForestCover

PAMAP

KDD

Electricity

Syn002

Syn003

SynEd

Accuracy

Figure 4.10: Accuracy of Multistream Classification, comparing EnsFusion-One ( ),
EnsFusion-Max ( ), and Fusion ( ).

4.2.5 Empirical Evaluation of EnsFusion

In this section, we discuss the dataset used to evaluate multistream classification, present

experimental settings and corresponding results.
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Execution Time Overhead

Figure 4.11: Execution time overhead of Multistream Classification, comparing EnsFusion-
One ( ) and EnsFusion-Max ( ).

Dataset

Table 4.5 lists the publicly available (Lichman, 2013) real-world and synthetic datasets used

to evaluate the proposed approach, similar to the dataset using previously for ease of com-

parison. Here, we normalize all datasets and re-shuffle them randomly, independent of its

class label. Importantly, we split each data set into a biased-source stream and a target

stream following recommendations from previous studies in covariate shift adaptation (Huang

et al., 2006). Concretely, we train a Naive Bayes classifier to predict class labels in online

minibatches, while monitor its performance using ADWIN (Bifet and Gavalda, 2007). If a

change is detected by ADWIN within a minibatch, we probabilistically associate each in-

stance x in the minibatch to either WS or WT according to a variable denoted by ζ, i.e.,

p(ζ = 1|x) = exp ||x−x̄||
2

2σ2 indicates association to S. Here, x̄ is the mean value of instances in

the minibatch, and σ is its standard deviation. We select a small portion (denoted by %n)

of WS to be concatenated to S that forms the source stream. Whereas, we concatenate all

75



0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

0

2,000

4,000

6,000

Target Data Sequence

C
u

m
u

la
ti

ve
D

ri
ft

s

(a) ForestCover
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(b) PAMAP
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(d) Electricity

Figure 4.12: Cumulative number of drifts detected along T for real-world data sets by
competing methods on multistream classification: Fusion; EnsFusion-One;
EnsFusion-Max.

instances in WT to form the target stream. Table 4.5 mentions the size of the source and

target data stream we consider during evaluation.

Experiments

We measure the performance of multistream classification using prediction accuracy and

execution time. We compare the results of our approach with a baseline approach that does

not employ an ensemble of Gaussian kernel models (Haque et al., 2017). This is denoted
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(a) Syn002

2 4 6 8

·104

0

0.2

0.4

0.6

0.8

1

·104

Target Data Sequence

C
u
m

u
la

ti
ve

D
ri

ft
s

(b) Syn003

2 4 6 8

·104

10

20

30

Target Data Sequence

C
u
m

u
la

ti
ve

D
ri

ft
s

(c) SynEd

Figure 4.13: Cumulative number of drifts detected along T for synthetic data sets by compet-
ing methods on multistream classification: Fusion; EnsFusion-One; EnsFusion-
Max.

by Fusion, while our proposed approach is denoted by EnsFusion. As mentioned in §4.2.3,

we study the performance of our ensemble method on two different global change detection

strategy. We denote the method where we follow the strategy according to Equation 4.15

by EnsFusion-One. Whereas, we denote the method that follow the majority-vote strategy

according to Equation 4.16 by EnsFusion-Max.

Since our approach requires the user to specify a number of parameters, we study the

sensitivity of EnsFusion to different parameter values. These parameters include density

ratio ensemble size (k), size of the source and target window (N), drift detection threshold

(τ), and classifier ensemble size (L). Particularly, we assume the size of each t-minibatch

m = N
k

. Therefore, lower value of k implies a larger value of m and visa versa.

Setup

We have implemented our approach using Python v2.7. Our experiments were performed

on a system running Ubuntu 16.04 and having 8 cores with 2.4Ghz and 64GB of RAM.

We use the weighted SVM with RBF kernel as our base classifier, similar to (Haque et al.,

2017). We select the best Gaussian kernel width in each model of density ratio ensemble V

through likelihood cross-validation. By default, we use N = 800, L = 1, τ = 0.0001, and
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Figure 4.14: Parameter sensitivity of EnsFusion-Max on ForestCover data set as an example.
( Accuracy; Time Overhead).

k = 10. Furthermore, we use the regularization parameter λ = 0.01 and learning rate of

η = 1, following (Kawahara and Sugiyama, 2012) and (Haque et al., 2017).

Results

We now present the results of our experiments. Instead of reporting exact execution time, we

report the time overhead, which is the ratio of execution time by EnsFusion (EnsFusion-One

or EnsFusion-Max) to that of Fusion, i.e., o = time(EnsFusion)
time(Fusion)

. This provides better insights

on the computational time improvements of our approach compared to Fusion.
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Overall Figure 4.10 shows the overall accuracy obtained on each competing method for

different datasets. Clearly, each method has equivalent performance in terms of classification

accuracy, with EnsFusion-Max performing marginally better than Fusion on all datasets.

However, the major benefit of our approach is in its execution time. Figure 4.11 shows the

execution time overhead of EnsFusion-One and EnsFusion-Max with respect to Fusion of

different datasets. A time overhead value closer to 1 indicates equivalent execution time

with the Fusion method, and any value less than 1 indicates performance gain. Clearly,

both strategies of our method have a significant gain in execution time performance, with a

maximum overhead of 67% by EnsFusion-One on the KDD data set. Particularly, EnsFusion-

Max exceedingly performs better than EnsFusion-One on all data sets, with a maximum

overhead of 16.7% on the ForestCover data set. This implies that EnsFusion-Max is at least

83% faster than Fusion to classify all target data instances in each data set while achieving

equivalent accuracy. Note that the actual execution time (averaged over all data sets) to

classify a single target data instance for Fusion was 1.37s. While average execution time per

instance for EnsFusion-One and EnsFusion-Max was 0.45s and 0.20s respectively.

Figure 4.12 shows the cumulative number of concept drifts detected on the target stream

over time for each real-world data set, while Figure 4.13 shows those for synthetic data sets.

In both these figures, the cumulative number of drifts is denoted by Cumulative Drifts. Since

our approach locally detects concept drifts on each density ratio model in V , the density ratio

in Equation 4.12 is affected by the size of Wi
T for each i ∈ [1, k]. As mentioned in §4.2.3,

EnsFusion-One performs global changes even when one of the density ratio models detects

a change locally. This can be observed in the figure where EnsFusion-One detects more

number of concept drifts than Fusion over time. Particularly in PAMAP and KDD data

sets, the number of drifts detected by EnsFusion-One is extremely high. However, a number

of drifts detected by EnsFusion-Max are less than EnsFusion-One, and also less than Fusion

in the PAMAP and KDD datasets. Note that for SynEd data set in Figure 4.13, the number
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of concept drifts detected in each method is equal. Similarly for the Electricity dataset

in Figure 4.12, the cumulative drift count for Fusion and EnsFusion-Max are nearly equal.

Therefore, these figures show overlapping plots of cumulative drifts.

Parameter Sensitivity The EnsFusion approach has multiple parameters as user input.

We now study its sensitivity to classification accuracy and execution time. Here, we report

results obtained on the ForestCover dataset as an example. We observe similar behavior on

all other data sets. Note that we keep the default settings for all experiments except when

specified. Also, we measure time overhead with the Fusion approach executed on default

settings.

Size of E Size of the ensemble containing density ratio estimation models (denoted

by k) is set by the user. Clearly, a larger value of k provides smaller minibatch size but

creates more number of density ratio models in the ensemble V . Figure 4.14a shows that

the accuracy of the model on different values of k are marginally equivalent. Though the

accuracy is not largely affected by the choice of k, the execution time differs significantly

when the size of the data set is large. The figure shows that most gain in execution time is

at k = 8. However, the gain reduces with increase in k due to the overhead of computations

performed in the increased number of density ratio estimation models. This can be overcome

by performing model computations through parallel execution at time t. We leave this for

future work.

Window size In our experiments, we assume that the source and target windows (WS

and WT ) are of size N . This size is the length of the time period containing the latest data

instances in respective streams. When a new data instance arrives, the oldest instance is

removed and the new instance is added to the queue. Figure 4.14b shows that our approach

is not sensitive to N and the user can choose an appropriate value depending on the available

memory.
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Drift Detection Threshold Similar to (Haque et al., 2017), we select µ = − log τ

for drift detection threshold in Equation 4.12. Figure 4.14c shows the performance of our

approach on different values of τ . It indicates that the proposed method is not significantly

sensitive to this parameter since the accuracy and execution time overhead is similar to that

shown in Figure 4.10 and Figure 4.11.

Size of M By default, we only use a single classifier for predicting label of target data

instances. Here, we measure the performance of EnsFusion-Max when using different sizes of

classifier ensemble. Both accuracy and time measurements shown in Figure 4.14d indicates

that our approach is marginally sensitive to this parameter. However, we observe that the

classification accuracy decreases with a larger value of L across all data sets. This may be

due to a correlation between the classifier model errors which uses similar data instances due

to the streaming update. Importantly, the execution time is similar across different values of

L since the ensemble update time is overshadowed by density ratio estimator updates, and

is practically insignificant.
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CHAPTER 5

DEFENDING AGAINST ADVERSARIAL THREATS ON LEARNING1

In this chapter, we will discuss a strategy to defend against adversarial threats when deploy-

ing machine learning algorithms, such as MSC (see Chapter 3) and FUSION (see Chapter 4),

on an untrusted third-party resource.

5.1 Securing Data Analytics

In a data stream classification problem, predicted labels of each data instance are expected to

be available soon after the data is observed on the stream. Techniques discussed in Chapter 4

is key to achieving a scalable solution, in the multistream setting, with a goal of handling

fast data streams. When data that occur in a stream contains security-sensitive or secret

information, concerns over deployment (or where is the computation performed?) becomes an

additional factor in adopting these algorithms in a real-world application. While one may not

have sufficient resources to handle computations locally, various cloud services are available

in which data evaluation (analytics) can be performed. Yet, security against various attacks,

including insider threat, may be inadequate or unsatisfactory. In this part of the dissertation,

we will focus on simultaneously addressing the two key concerns of using machine learning

solutions over a security-sensitive data, i.e., providing a secure mechanism against strong

adversarial threats without significantly affecting execution overhead (scalability).

As mentioned in §2.3, a commercially available hardware solution, called Intel SGX,

can be used to secure computation against a strong adversary who may control the system

used for execution. Concretely, a cryptographically secure computational region called an

1Reprint by permission from Springer Nature: Chandra S., Karande V., Lin Z., Khan L., Kantarcioglu
M., Thuraisingham B. (2017) Securing Data Analytics on SGX with Randomization. In: Foley S., Gollmann
D., Snekkenes E. (eds) Computer Security ESORICS 2017. ESORICS 2017. Lecture Notes in Computer
Science, vol 10492. Springer, Cham c©2017
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enclave, is created. Any computation or data accessed within an enclave is encrypted to an

external adversary who may control the OS. However, there exists side-channel information

leak when used in a naive manner. The occurrence of a side-channel during computation

within an enclave is due to the shared resources between the trusted and untrusted regions.

In general, studies in the past has utilized information from side-channels to infer execution

flow of an application or to perform an attack (Chandra et al., 2014).

In the scenario considered in this chapter, the external adversary may use the side-channel

information to observe the behavior of computational units such as page faults, CPU usage,

memory usage, etc. during computation to infer sensitive information being protected by

the enclave. Studies in the recent past have described various strategies (Ohrimenko et al.,

2016; Schuster et al., 2015; Shinde et al., 2016) to defend against such adversarial inference.

Typically, it is the algorithmic designer’s burden to incorporate such execution strategies

when using SGX. Unfortunately, these incur large computational overhead in certain types

of data analytics. Particularly when the machine learning algorithm uses a tree-like data

structure (e.g., Decision tree, Naive Bayes, Graphical Models (Haque et al., 2014)). When

using such strategies in data classification algorithms using, such as a multistream setting, the

computational speed-up gained by scalable solutions is offset by the computations involved

in such strategies. In this chapter, we develop an alternative defense strategy that has a

significantly lower computational overhead.

5.1.1 Threat Model

Analytics on data containing sensitive information is performed on a third-party untrusted

server with Intel SGX support. While data-owners have no control over this server, they

may establish a cryptographically secure connection to an enclave in the server. Similar to

(Lee et al., 2016), we assume that an attacker controls the untrusted server, and has the

ability to interrupt the enclave as desired, by modifying the OS and SGX SDK, to obtain
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Table 5.1: List of symbols for studying RAND defense.

Symbols Description
k Number of Clusters
T Set of Clusters
L Number of Dummy Data

Table 5.2: List of public and confidential parameters. Here, Tree indicates model structure,
and P indicates probability function.

Model
Parameters

Public Confidential
Decision Tree n, v,K x, y, Tree
Naive Bayes n, v,K x, y, P (y|x), P (y)
K-Means n, v,K, k, I x, y, T

side-channel information from page or cache accesses, page faults, and log files. Nonetheless,

code and data within the enclave cannot be modified, except by the data-owner.

The primary goal of an attack is to obtain sensitive information leaked through side-

channels from a benign machine learning application running within the SGX enclave. Sen-

sitive information may include model parameters, feature values of input data, and data

distribution statistics. For example, the structure of a decision tree (denoted by Tree) may

be revealed if nodes in the tree are present on different pages, while the attacker tracks the

order of execution during evaluation. Similarly, the proportion of each cluster (denoted by

T ) in the k-means clustering algorithm may reveal sensitive data patterns. We term this

set of sensitive attributes as confidential. A defense mechanism aims to prevent the attacker

from inferring confidential attributes through side-channel information. Nevertheless, each

learning algorithm has parameters which are data invariant. For example, height of a de-

cision tree (H), number of features in each data instance (v), domain and range of feature

values (f), number of class labels (K), number of clusters in k-means clustering (k), and

number of iterations for learning (I), remains constant for a given dataset. These parameters

can be easily inferred from analyzing algorithmic execution. We assume that the code for

each algorithm is publicly available, along with its data invariant parameters. Table 5.2 lists
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Figure 5.1: Overview of Data Analytics on SGX using randomization.

the associated confidential and public parameters for each algorithm considered. We use the

same symbols as Table 3.1. Since we use specific algorithms to study the defense strategy

proposed in this chapter, Table 5.1 lists associated additional symbols.

5.1.2 Overview

Figure 5.1 illustrates the overall defense methodology we present in this chapter. A user

provides cryptographically secure encrypted data (containing sensitive information) to a

third-party untrusted server, along with a pre-trained model. An enclave is established, and

the pre-trained model initialized. By requesting a set of data instances into the enclave

from application memory through an ocall, we decrypt these instances and empirically

evaluate the domain and range statistics of each feature. Since we desire that computation

involving dummy data instances produce access patterns similar to that of user-given data

instances, we generate v feature values uniformly at random within its empirical range to

create a dummy instance. After generating L such instances, we shuffle them with user-given

data instances in a data-oblivious manner and evaluate each instance in the shuffled dataset

sequentially using the pre-trained model that is fully encapsulated within the enclave. By

obliviously ignoring results associated with dummy data instances, we obtain the results

for user-given data instances. We then encrypt these results in a cryptographically secure
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manner and save it in the untrusted application memory via an ocall. Here, data-oblivious

shuffling of dummy and user-given instances is crucial since it introduces uncertainty in

access patterns observed from side-channels by the attacker.

The crux of the above solution is in the way we generate dummy data instances and

use data-oblivious mechanisms for shuffling and ignoring results of computation associated

with dummy data instances. If we only employ the shuffled (contaminated) dataset for

evaluation in a naive implementation of a data analytics algorithm, i.e., by ignoring results

from dummy instances, it may not be possible to conceal all sensitive model parameters and

data patterns. Each learning algorithm has an inductive bias, different from one another,

which prevents the universal application of a naive strategy by itself. For example, the

inductive bias of a decision tree is that data can be divided in the form of a tree structure.

Whereas, the bias in k-means clustering assumes that instances having similar properties are

closer to each other than those with dissimilar properties. In both these cases, the structural

representation of data is different and is input-dependent. We address this challenge by

utilizing dummy data instances to conceal model structure and parameters as well. This

indicates that computation involving dummy data instances need to be tracked, but in a

data-oblivious manner so that uncertainty in resource access trace observed by the attacker

is preserved. We first introduce the primitives of our defense strategy, i.e., dummy data

generation and data-oblivious comparison, in §5.1.3, and describe data analytics algorithms

that utilize them for defense, in §5.1.4.

5.1.3 Primitives

Dummy Data Generation.

Algorithm 6 illustrates our dummy data generation process. Using public parameters of user-

given dataset D, we choose a random number uniformly within the range of each feature

(i.e., values between MIN and MAX) in D. This choice limits the bias of dummy data instances
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Algorithm 6: A primitive for generating dummy data instances.

Input: D: Dataset, n: Dataset Size, d: No. Features
Result: D̂: Shuffled Data Instances
begin

MAX,MIN = get range(D,n, d)

D̂ = D

while |D̂| < (n+ L) do
v = array(d) // Initialization
for i ∈ {0, d} do

v[i] = random(MAXi,MINi)

D̂ ← v

return oblivious shuffle(D̂)

and prevents them from having distinguishing characteristics compared to user-given data

instances. If not, an attacker may be able to identify such characteristics and discard access

traces associated with dummy data instances, thereby defeating our defense mechanism. We

generate L dummy data instances and initially append them to the set of user-given data

instances, forming D̂. We then shuffle D̂ in an oblivious manner and sequentially process

each data instance from the shuffled dataset during evaluation. One corner case is when

MIN = MAX. With the goal of increasing variance of each feature in D̂, we add an appropriate

margin to MAX such that MIN < MAX is always true. In §5.2, we present the implementation

details of oblivious data shuffling.

Data-Oblivious Comparison.

We use a data-oblivious comparison primitive for checking whether a data instance is a

dummy or not. Typically, we first compute using a data instance and then decide whether

to ignore or retain the result of such computation depending on the type of data instance

involved. We only desire to ignore results involving dummy data instances in a data-oblivious

fashion. This ensures that the attacker observes resource access traces from both user-given

and dummy data instances, which are indistinguishable.
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a) Non-oblivious max b) Oblivious max

Figure 5.2: Illustration of data-oblivious comparison.

Figure 5.2 illustrates the difference between non-oblivious and oblivious max function

as an example of comparison primitive. Figure 5.2b is oblivious at the element-level since

both conditional branch statements access the same set of variables. Whereas, Figure 5.2a

is non-oblivious since either x or y is accessed when the max function returns depending

on the conditional statement executed. In the case of an array, we access all elements in

the array sequentially to remain data-oblivious. The mechanism proposed in (Ohrimenko

et al., 2016) uses a more efficient compiler-based approach to perform oblivious comparison

and array access at cache-level granularity instead of element-level granularity. We leave its

adaptation to our proposed approach for future work.

5.1.4 Learning Algorithms

Decision Tree Classifier.

It is a tree-based model that uses an information-theoretic measure for data classification. In

training a popular variant called ID3 (Bishop, 2006), a feature with the largest information

gain, with respect to the class label, is selected for partitioning the dataset into disjoint

subsets. By iteratively performing this data partitioning on each residual data subset, a

tree structure is created. Each feature value used for partitioning (or rule) then becomes

either the root or an internal node of this tree. A leaf is formed when further partitioning
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Figure 5.3: Creating an obfuscated decision tree. Shaded nodes are formed using dummy
data while others are formed using user-given data. Labels (denoted by {1, 2, 3}) of the
original tree’s leaf node is replicated in its descendant leaf nodes of the obfuscated tree.

is discontinued or unnecessary, i.e., when either all features are used in a path from the

root, all data instances within the residual data subset has the same class label, or a user-

defined maximum tree height is achieved. The last stopping condition is typically used to

reduce overfitting (Bishop, 2006). During the evaluation, class label of a test data instance

is predicted as the majority label at a leaf that is encountered by following tree branches,

starting from the root, according to its feature value consistent with the associated rule of

intermediate tree nodes.

When a naive implementation of the above algorithm is employed within an SGX enclave,

the attacker may track data-dependent tree node accesses during evaluation. This reveals

the tree structure as well as the path of each test data instance. A typical strategy to defend

against this side-channel inference-based attack is to balance the tree by adding dummy nodes

and access all nodes during evaluation of each test instance. As mentioned in (Ohrimenko

et al., 2016), such a strategy has a runtime complexity of O(nα) during evaluation, where α is

the number of tree nodes. However, the complexity in a naive implementation is O(n logα).

Clearly, data-obliviousness is achieved at the cost of computational efficiency, especially when

α is large.

Instead, we utilize the dummy data generation primitive to obtain a contaminated dataset

and use the naive evaluation algorithm for class label prediction. During training, we learn
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a decision tree using user-given training data instances (with known class labels) and create

a balanced tree using dummy data instances, offline. Figure 5.3 illustrates an example

of a balanced decision tree. Here, a tree (we term as original) resulting from user-given

training data instances is obfuscated with nodes created from dummy data instances to

obtain a balanced tree. Leaf nodes in the obfuscated tree reflect the class label of its ancestor

node that forms a leaf in the original tree. Clearly, the predicted class label of a test data

instance on the obfuscated tree is the same as the original decision tree. Since dummy data

instances are obliviously shuffled with user-given test data instances, access traces obtained

by the attacker for dummy data instances are indistinguishable from that of user-given test

instances. Therefore, the true data access path is hidden in the overall noisy access path

obtained by the attacker. With L dummy data instances in the contaminated dataset, the

time complexity of evaluating n user-given test data instances is O((n+ L) logα).

Naive Bayes Classifier.

It is a Bayesian model trained with an assumption of feature independence, given class

labels (Bishop, 2006). Similar to the decision tree model, we train a Naive Bayes classifier

offline with a user-given training dataset and evaluate test data instances online, i.e., within

an SGX enclave. During the evaluation, the predicted label of a test data instance is a class

with the largest conditional probability, given its feature values. Such a classifier is typically

used in the field of text classification that has a large number of discrete-valued features. The

product of class conditional probability is computed for each feature value of user-given test

data instance. Naively, one can pre-compute conditional probability for each feature value

during training and access appropriate values during evaluation. In this case, an attacker

may infer class and feature proportions of a given test dataset by tracking access sequence of

pre-computed values. In a purely data-oblivious defense strategy, every element in the pre-

computed array is accessed for evaluating each test data instance. If each of the d features
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have a discrete range of size f , computational time overhead for evaluation is n × d × f ,

whereas that of the original naive evaluation is n×d. Clearly, this is a bottleneck in execution

time when the range f is large. Instead, we utilize our dummy data generation primitive

during evaluation by employing the naive method for accessing pre-computed array elements,

inducing access patterns that are alike for both user-given and dummy data instances. The

overhead in computational time for our modified version of Naive Bayes is (n + L) × d. If

L� f , our proposed defense is more efficient than the pure data-oblivious solution.

K-Means Clustering.

The goal of k-means clustering is to group data instances into k disjoint clusters, where

each cluster has a d-dimensional centroid whose value is the mean of all data instances

associated with that cluster. Clusters are built in an iterative fashion. We follow a streaming

version of Lloyd’s method (Bishop, 2006) for constructing clusters and evaluating user-given

test data instances since they are suitable for handling large datasets. During training,

k cluster centroids are created by iteratively evaluating its value with least mean squared

Euclidean distance, and re-evaluating cluster association of user-given data instances using

the computed centroid. Evaluation is performed online, i.e., within an SGX enclave. The

user provides learned centroid and a set of test data instances. While cluster association of

each data instance is evaluated by computing the minimum Euclidean distance to centroids,

we re-compute the centroid of its associated cluster using the test data instances.

In a naive implementation of k-means clustering, the attacker can infer sensitive infor-

mation, such as cluster associated with each data instance by tracking the centroid being

accessed during assignment, and cluster proportions during centroid re-computation. The

pure data-oblivious solution addresses this problem by performing dummy access to each

centroid. On the contrary, we utilize the dummy data generation primitive to perform clus-

ter assignment of both dummy and user-given data instances in an oblivious manner and use
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the unmodified naive cluster re-computation method. This adds noise to cluster proportions

inferred by the attacker. Since the number of clusters is fixed and is typically small, the time

complexity remains the same as the original algorithm (Ohrimenko et al., 2016).

5.2 Implementation

One possible attack on the proposed defense strategy is to collect access traces of identical test

data instances during evaluation, and use a statistical method to identify execution pattern

of user-given test data instances in them. The main idea is that though these traces will

be poisoned with execution involving random dummy data instances, execution of identical

test data instances remain same. An attacker may produce such identical test instances by

capturing an encrypted user-given instance at the application side, and providing identical

copies of this data as input to the enclave application. We use a simple technique for

discouraging this replay-based statistical attack by associating each data instance with a

unique ID (called nonce), whose value is generated from a sequential counter. When data

instances are passed to the enclave in response to an ocall, we check for data freshness

within the enclave by comparing the internal nonce state to the nonce of each input. We

proceed with evaluation if each new nonce value is greater than the previous one, else we halt

execution. Since an attacker cannot change the nonce value of an encrypted data instance,

this can detect stale instances used for a replay attack. We are aware that there exists

superior methods for generating dummy data instances to thwart replay-based attacks in

related domains (Li et al., 2007), and leave its exploration for future work.

An important technique for reducing the effectiveness of inferring sensitive information

from side-channels is the random shuffling of dummy data with user-given data instances

in a data-oblivious manner. For simplicity, we assume that domain of each feature in the

dataset is either discrete or continuous real-valued numbers. Nominal features are converted

into binary vector using one-hot encoding (Murphy, 2012). Data shuffling is performed
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as follows. For brevity, we call the array containing data instances within the enclave as

data-array. We associate a random number to each element of the data-array. Initially,

dummy data instances are appended to the data-array as soon as they are created. We

utilize sgx_read_rand for random number generation. We then shuffle this array using an

oblivious sorting mechanism over these random numbers. Similar to (Ohrimenko et al., 2016),

we implement the Batcher’s odd-even sorting network (Batcher, 1968) for data-oblivious

sorting, utilizing data-oblivious comparison during data swap when necessary. The runtime

of this sorting method is O((n+L)(log(n+L))2). There are other shuffling algorithms with

more efficient runtime complexity. We leave its applicability for future work. Meanwhile, we

use a Boolean array, of size equal to the data-array, where value of each element indicates

whether the corresponding instance in data-array is dummy or otherwise. Using oblivious

comparison primitive, we identify and ignore computational results involving dummy data

instances while sequentially evaluating the shuffled dataset.

5.3 Evaluation

Next, we analyze privacy guarantee of our proposed method and empirically evaluate com-

putational overhead on various datasets.

5.3.1 Quantification of Privacy Guarantee

In our attack model, the attacker obtains execution traces in terms of sequential resource

access while performing data analytics with user-given data instances. An attack on data

privacy is successful when the attacker infers sensitive information from these traces by identi-

fying distinguishing characteristics. However, the attack is unsuccessful if such distinguishing

characteristics are either eliminated or significantly reduced via a defense mechanism. Such

defenses are effective when they can provide quantifiable guarantees on data privacy. The

primary question is how to measure privacy? Authors in (Ohrimenko et al., 2016) measure
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Figure 5.4: Measuring privacy guarantee of SGX defense mechanisms.

data privacy in terms of indistinguishability of a trace against a randomly simulated one.

Since our defense mechanism primarily consists of performing non-essential or fake resource

accesses, we define this indistinguishability in terms of trace-variants that is possible in a

data analytics model. A trace-variant can be viewed as a sequence of page (or cache line) ac-

cess when evaluating a test data instance. If N is the total number of trace-variants observed

by an attacker from the model, we compute Privacy-Guarantee (denoted by γ) as the ratio

of fake trace-variants to the total number of observed trace-variants. The value of N may

depend on the variance in data and model. From a defense strategy perspective, every new

data instance can provide a different access sequence at best. In this case, N = n where n is

the user-given dataset size. The following analysis assumes this case for simplicity, including

the defense against replay attack mentioned in §5.2.

In a purely data-oblivious solution (Ohrimenko et al., 2016), there are N − 1 fake trace-

variants during evaluation since all possible cache-lines are accessed so that access pattern

is the same for all data instances. For example, all nodes in a decision tree are accessed for

evaluating the class label of each data instance. Here, each node may reside on a different

cache-line or page. Therefore, γ = N−1
N

. Note that γ ' 1 with large N ; privacy is guaranteed

on large N when this defense mechanism is applied. On the other end of the privacy-

guarantee spectrum, γ = 0 when no defense is applied, i.e., no fake trace-variants are possible.
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At this extreme, no privacy is guaranteed to the user’s data. Figure 5.4 illustrates this

privacy-guarantee spectrum.

Our proposed solution provides asymptotic privacy guarantee in terms of the number of

dummy data instances used. Since L dummy data instances are generated, there are at most

L fake trace-variants with N +L observed trace-variants. Therefore, the associated privacy-

guarantee is γ = L
N+L

. Clearly, a larger value of L provides greater privacy guarantee; it

tends towards the γ value of purely data-oblivious solution (i.e., γ ' 1) for large L. If L < N ,

then an attacker can simply guess each trace to be true and infer sensitive information with

a higher probability than random. Therefore, we choose L ≥ N to limit probability of a

correct guess by the adversary to 1
2

at best (as shown in Figure 5.4), similar to (Ohrimenko

et al., 2016). We now empirically demonstrate our proposed technique and showcase the

trade-off between privacy guarantee and computational efficiency with different choices of L.

5.3.2 Datasets

We measure execution time overhead of the proposed defense strategy using 3 publicly avail-

able real-world datasets (Repository, 1998) and a synthetic dataset. Table 5.3 lists these

popular datasets with corresponding data statistics. The Arrhythmia dataset consists of

medical patient records with confidential attributes and ECG measures. The problem is to

predict the ECG class of a given patient record. The Defaulter dataset consists of financial

records containing sensitive information regarding clients of a risk management company.

The problem is to predict whether a client (i.e., a data instance) will default or not. While

the above datasets contain security-sensitive information that need protection, we also use

ForestCover and Synthetic as benchmark datasets, similar to dataset mentioned in Chap-

ters 3 and 4.

These datasets may contain continuous and discrete-valued features. For simplicity of

implementation, we evaluate the decision tree and Naive Bayes classifiers using a quantized
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Table 5.3: Dataset statistics and empirical time overhead with L = n.

Dataset
Statistics Time Overhead

Size
(n)

Features
(d)

Classes
(C)

Decision Tree Naive Bayes K-Means
SGX

+Obliv
SGX

+Rand
SGX

+Obliv
SGX

+Rand
SGX

+Obliv
SGX

+Rand
Arrhythmia (A) 452 280 13 52.49 9.37 319.15 6.11 4.16 6.36
Defaulter (D) 30,000 24 2 4.13 1.11 1.56 1.10 1.07 1.17
ForestCover (F) 50,000 55 7 2.72 1.09 3.13 1.08 1.05 1.07
Synthetic (S) 50,000 71 7 2.53 1.09 3.47 1.07 1.22 1.09

version of each dataset. We divide each feature range into discrete bins of equal width. For

decision tree, we use f = 10 bins. However, for Naive Bayes, we use f = 1000 bins to

reflect the dimensionality mentioned in §5.1.4. Nevertheless, we use the original form of each

dataset to evaluate the k-means clustering algorithm.

5.3.3 Results and Discussion

The goal of empirical evaluation is to study and demonstrate the applicability of our de-

fense strategy in various settings. We implement a pure data-oblivious strategy, similar to

(Ohrimenko et al., 2016), using data-oblivious comparison and array access over the naive

implementation of each data analytics algorithm. This baseline defense strategy is denoted

by Obliv, whereas our proposed implementation is denoted by Rand. For each modified data

analytics algorithm (i.e., Obliv and Rand), the computational time overhead is measured as

the ratio of time taken by the modified algorithm executed within an SGX enclave to that

of a naive implementation executed without SGX support. We perform all experiments on

an SGX-enabled 8-core i7-6700 (Skylake) processor operating at 3.4GHz, running Ubuntu

14.04 system with a 64GB RAM.

Table 5.3 lists the time overhead measured on each dataset for decision tree and Naive

Bayes classifiers, as well as k-means clustering, averaged over 5 independent runs. Note that

we denote the defense strategies with SGX+x, where x = {Obliv,Rand}, to emphasize that

they are executed within an SGX enclave. Since SGX currently supports limited enclave
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memory, we evaluate in a streaming fashion by dividing the dataset into small disjoint sets

or chunks. Evaluation is performed over each chunk of size 64, over the given pre-trained

model.

From the table, Rand clearly performs significantly better than Obliv in the case of the

decision tree and Naive Bayes classifiers. For example, Rand has only 11% overhead when

class labels are evaluated using a decision tree in 16.76s, compared to Obliv that takes

62.02s, on the Defaulter dataset. When executing without any defense within the SGX

enclave, it took 16.13s. This shows that overhead due to enclave operations is small, as

expected (Karande et al., 2017). A higher overhead is observed in the Arrhythmia dataset

due to smaller dataset size. For example, the naive implementation of decision tree on this

dataset takes 0.01s, compared to 0.79s in Obliv, and 0.14s in Rand. Also, it took 0.08s on

the implementation within SGX enclave, but without employing any defense strategy. As

another example, the execution time of Naive Bayes classifier on ForestCover dataset with

Rand took 51.63s, compared to 149.48s with Obliv, and 50.16s without any defense within

the SGX enclave. Clearly, the cost of dummy data operations in Rand can be observed in

the larger execution time compared to the naive implementation, yet it is much lower than

Obliv.

Limitations.

For both decision tree and Naive Bayes classifiers, the number of fake resource access in Obliv

is greater than that of Rand. Evaluating every test data instances in Obliv accesses each

branch in a decision tree, and each of the d× 1000 elements in the pre-computed probability

array of Naive Bayes. Meanwhile, corresponding resource access in Rand is significantly

small. However, when resource access patterns in both Obliv and Rand is similar during

evaluation, the compromise on privacy with little or no trade-off in computational time of

Rand is not very enticing. Time overhead is shown in Table 5.3 for k-means clustering
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algorithm indicates one such example. Here, every cluster has to be accessed when searching

for the nearest centroid to a given test data instance. While in Obliv, centroid re-computation

of cluster assignment may be performed for each cluster, the time taken for the oblivious

shuffling of n + L elements in Rand seems to surpass this re-computation time overhead.

Except for the Synthetic dataset, Obliv outperforms Rand in all other datasets. In this

situation, it is better to use Obliv defense strategy that guarantees better data privacy than

the Rand strategy which provides a sub-optimal privacy guarantee.

Cost of More Privacy.

The above results for Rand use an equal number of dummy and user-given data instances,

i.e., L = n. If L is increased to provide better privacy according to §5.3.1, the cost of

oblivious data shuffling, in terms of execution time, increases since n+L data instances are

to be shuffled. Figure 5.5 illustrates this increase in time overhead when using a decision

tree classifier with Rand defense on various datasets as an example. This indicates that the

value of L can be chosen appropriately by a programmer with a desirable trade-off between

computational overhead and data privacy. For example, a larger value of L for higher γ may

be appropriate when the model has larger search space, similar to the Naive Bayes classifier

discussed in this paper. In such cases, a higher value of γ reduces the likelihood of dummy

data instances producing unique patterns, with respect to user-given data instances.

5.3.4 Security Evaluation

The goal of our security evaluation is to empirically address the two main questions regarding

Rand’s data privacy guarantee; 1) Are access traces observed by the attacker randomized?,

and 2) Are traces obtained from evaluating user-given and dummy data instances indistin-

guishable? Using Pin Tool (Luk et al., 2005), we generate memory access traces (sequence
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Figure 5.6: (a) Shows similarity scores between access traces across different sets of instances
when evaluated on the same classifier. Here, comparison between different defenses are
shown, i.e., Rand, Obliv, and no defense ( ). (b) Shows similarity between traces of
user-given and dummy data instances within a set of instances evaluated on Rand.

of read and write) of each classifier implementation when executing it in the SGX simulation

mode. Here, we create 5 disjoint sets of 16 randomly chosen data instances for each dataset.

To answer the first question, we obtain traces by independently evaluating the 5 sets of

data instance on a classifier, for each dataset. We perform different experiments on classifier
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implemented with no defenses (naive), Obliv, and Rand, for comparison. We then compute

Levenshtein similarity (Navarro, 2001), as a surrogate to measure noise addition, between

traces from the 5 sets on each dataset. Here, more similarity implies less randomization

(i.e., added noise). Figure 5.6a shows an example result on trace comparisons obtained

by evaluating a decision tree with corresponding defenses. In the figure, we can observe

that traces from Obliv are more similar to each other (across the 5 sets) than those from

the naive implementation, as mentioned in (Ohrimenko et al., 2016). For example, in the

Arrhythmia dataset, we obtain a similarity measure of 0.89 for Obliv, compared to 0.81 for

naive. However, traces from Rand are more dissimilar to each other compared to Obliv and

naive approaches, indicating more data variance and randomization. On the contrary, we

address the second question by comparing traces within a single set of 16 data instances.

Concretely, we compute Levenshtein similarity between traces obtained by evaluating user-

given data instances only, and those of dummy data instances only, in each set. Figure 5.6b

illustrates an example on decision tree classifier with Rand. The high similarity scores

between traces corresponding to the two types of data instances indicate indistinguishability.

5.4 Related Works

Studies on applications using Intel SGX have focused on an untrusted cloud computing

environment. The first study in this direction (Baumann et al., 2015) executed a complete

application binary within an enclave. However, using this method on applications requiring

large memory caused excessive page-faults that revealed critical information (Sinha et al.,

2015), thereby violating data privacy. To address this challenge, a recent study (Schuster

et al., 2015) used Hadoop as an application to split its interacting components between SGX

trusted and untrusted regions. The main idea was to reduce TCB memory usage within the

enclave for decreasing page faults. Challenges in executing data analytics within an SGX

enclave was first recently described by Ohrimenko et al. (Ohrimenko et al., 2016). They
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propose a pure data-oblivious solution to guarantee privacy at cache-line granularity. We

have compared our approach with a similar defense strategy. Alternative to algorithmic

solutions, studies have proposed mechanisms to detect and prevent page faults attacks via

malicious OS verification (Fu et al., 2017) and transactional synchronization (Shih et al.,

2017).

A large group of studies in privacy-preserving mechanisms deals with designing algorithms

to preserve data privacy before data is shared with an untrusted environment (Aggarwal and

Philip, 2008). Particularly, these studies focus on problems where identification of individual

records is undesirable. Typically, the data is modified by the addition of noise to features,

regularization conditions, use of anonymization (Brickell and Shmatikov, 2008), and random-

ization (Kargupta et al., 2003) techniques. Instead, we focus on using a trusted hardware

environment to protect privacy by using cryptographic methods to maintain confidentiality

and trustworthiness (Bauman and Lin, 2016). We randomize side-channel information rather

than user data for preserving privacy.

Use of dataset contamination to defend against adversaries is not new in machine learning

settings. Studies on anomaly detection and intrusion detection (Huang et al., 2011) have

discussed various types of attacks and defenses with regard to poisoning a user-given dataset

with random data (Barreno et al., 2006). Particularly, a process called Disinformation is

used to alter data seen by an adversary as a form of defense. This corrupts the parameters of

a learner by altering decision boundaries in data classification. The process of randomization

is used to change model parameters to prevent an adversary from inferring the real parameter

values. These methodologies, however, limit the influence of user-given data in the learning

process and may affect model performance on prediction with future unseen data instances.

In all these cases, the adversary does not have control over the execution environment and

is weak. We instead leverage the effect of randomization to defend against side-channel

attacks from a powerful adversary while performing data analytics on an Intel SGX enabled

processor.
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CHAPTER 6

CONCLUSION

In this final chapter of the dissertation, we briefly outline our key contributions and provide

future research directions to investigate.

6.1 Summary

This dissertation concerns with providing scalable solutions to learning tasks under the

complementary lens of machine learning and security. Specifically focusing on the task of

label prediction, we first explore a novel composition of problems in a data stream setting that

frequently occur in the wild. We then explore security problems in deploying solutions to the

data stream classification problems in an untrusted environment. The main contributions

resulting from this investigation is as follows.

• In exploring the problem of label prediction over a concept-drifting data stream in

which availability of labeled data is limited, we presented a framework (called Multi-

Stream Classification or MSC ) to address the challenges of bias correction and drift

detection over time, in Chapter 3. This provided a platform to leverage available la-

bels having a biased distribution compared to the population for predicting class labels

of unlabeled instances occurring along the stream, and maintaining predictive perfor-

mance over long periods of time. We studied its theoretical properties and empirically

demonstrated its ability to classify over benchmark datasets.

• We then investigated the use of various bias correction mechanisms within the MSC

framework. Particularly, we focused on two popular mechanisms, i.e., Kernel Mean

Matching (KMM) and Kullback-Liebler Importance Estimation Procedure (KLIEP).

Our investigation showed that both these methods are not scalable for naive use over

a fast data stream. In Chapter 4, we propose solutions to address this issue.
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– We proposed a sampling-based bootstrap mechanism over KMM, called VFKMM,

and analyzed its theoretical properties. Our results demonstrate a clear advantage

over competing methods.

– Unlike KMM, we proposed an ensemble-based online approach over KLIEP to

perform label prediction in the multistream setting, called EnsFusion. Our theo-

retical and empirical results demonstrated its scalable property.

• We then focused on addressing the concerns of adversarial threats when deploying a

machine learning system in an untrusted third-party resource, in Chapter 5. Here, we

explored a strategy to overcome adversarial threats through side-channels leaks when

utilizing a cryptographically secure commodity-hardware solution called Intel SGX.

Our thorough evaluation demonstrated that by using noise cleverly during computa-

tion, a significant reduction in computational overhead can be achieved with a small

discount on privacy.

6.2 Future Research Direction

While the above contributions provide new insights into the multistream setting and associ-

ated security concerns, there exists a large scope for future research.

6.2.1 Classification with Limited Supervision

Over the past decade, studies on active learning (Fan et al., 2004; Žliobaitė et al., 2014) and

other semi-supervised learning (Dyer et al., 2014; Haque et al., 2015) have been addressing the

classification problem under limited supervision in various settings. Unlike these approaches,

the multistream setting aims to address the drift detection, correction, and label prediction

problems simultaneously. In this dissertation, we primarily focus on bias correction methods

where the source and target instances occur from the same domain. However, other domain
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adaptation setting can be possible in the multistream setting, i.e., source and target instances

occur from different but related domains. Though existing techniques may complement our

framework, a naive application of such techniques in the multistream setting may not be

possible due to the concept-drifting nature of data streams. We leave its exploration for

future work.

Interestingly, a parallel approach to lack of labels is to synthetically generate labels from

various labeling function and amortize the noise among them (Ratner et al., 2017). This

approach can be used in the multistream setting as well where the labeling function can be

seen as a biased source. Though we only explore a single source and target stream, multiple

labeling functions may create independent sources of data. We leave this exploration for

future as well.

6.2.2 Adversarial attacks on data classification

In Chapter 5, we focused on adversarial threats to a black-box model where the adversary

is external to the application. However, the adversary may also be a user of the application.

In such cases, recent studies (Huang et al., 2011; Hitaj et al., 2017; Grosse et al., 2017) have

shown effective techniques to perform an adversarial attack on machine learning models.

Essentially, these techniques generate adversarial examples with minimal data perturbation

with a goal of forcing the trained classifier to misclassify. The motivation of an adversary, in

this case, is to evade the classifier without being detected by a defense mechanism (Xu et al.,

2016). Examples of such adversarial attacks include evasion of intrusion detection, evade

malware detectors, or trick image classifiers used in applications such as self-driving cars to

classify road signs incorrectly. The consequences of such attacks are devastating to the naive

users of applications employing these fragile classifiers. Studies have also developed specific

defense techniques such as robust training (Carlini and Wagner, 2017), ensemble models (Liu

et al., 2016), and model smoothening (Papernot et al., 2016). Yet, such defenses are not ef-

fective since the attacker can always create adversarial examples that break specific defense
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strategies. Moreover, it has been shown that adversarial examples have a transferability

property (Papernot et al., 2016), i.e., the generated adversarial examples can utilize any

classifier to successfully attack a different classifier. This creates a black-box attacks sce-

nario (Papernot et al., 2016) where hiding the model and computation from the adversary is

insufficient as a defense mechanism. Moreover, it has been shown that the black-box attack

scenario can reveal training data in a machine-learning-as-a-service model (Shokri et al.,

2017).

The success of such attacks demonstrates the fragility of classification output from clas-

sifiers, particularly when directly employed in mission-critical applications. Therefore, it is

important to understand the effect of such attacks on the multistream setting, which is cur-

rently unknown. Particularly, the attacker may inject samples into the target stream for the

purpose of inducing a distribution change. This may dramatically affect the classifier out-

put for all target instances, i.e., including non-adversarial instances as a reaction to change

affects the classifier ensemble. We leave the investigation of defenses against such attacks

for the future.

6.2.3 Applications

In the dissertation, we have claimed that the multistream setting can be observed easily in the

real world. One such example is of location estimation in a political news article. Particularly,

a news article detailing an atrocity committed at a physical location may contain references

to multiple locations. When analyzing these articles, one key element is to identify the

location at which the atrocity was committed. This is called focus location. In this scenario,

a stream of online news articles may be considered. Here, there is a need for labeled data to

train a supervised classifier. Unfortunately, such labels are sparsely available or require large

manual efforts. Recently, we considered one such scenario where labeled data may occur only

from a single news agency, and the unlabeled data occurs from other agencies (Imani et al.,
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2017). It may be a case that the writing style of labeled articles is different than other articles.

We applied a bias correction mechanism in a batch-wise fashion to observe superior results

on various datasets. We leave its applicability to the multistream setting for the future. A

similar application can be applied for location estimation of Twitter users (Chandra et al.,

2011), where true user locations are given only by a small number of users. This can form a

source stream while the rest can form the target stream.

Apart from location estimation, the lack of labeled data over data stream can be seen

in security applications such as website fingerprinting (Al-Naami et al., 2016) and malware

detection. In website fingerprinting, the task is to determine the websites accessed by a user

using only encrypted network traffic from an anonymized network. Here, traffic patterns of

a few websites may be known, but others unknown. Whereas in malware detection (Masud

et al., 2008), sufficient DLL’s may not be available for feature extraction during the training

phase. We leave this exploration for future work.
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