
PREDICTABLE GPGPU COMPUTING IN DNN-DRIVEN AUTONOMOUS SYSTEMS

by

Husheng Zhou

APPROVED BY SUPERVISORY COMMITTEE:

Cong Liu, Chair

Farokh B. Bastani

András Faragó

Lingming Zhang

Copyright © 2018

Husheng Zhou

All rights reserved

To my family.

PREDICTABLE GPGPU COMPUTING IN DNN-DRIVEN AUTONOMOUS SYSTEMS

by

HUSHENG ZHOU, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2018

ACKNOWLEDGMENTS

First and foremost, I am deeply grateful to my advisor, Professor Cong Liu, for his incredible

guidance, endless support and encouragement throughout my entire PhD life. He introduced me

to the field of real-time systems. He taught me from scratch on how to do research from an idea to

problem solving and presenting a paper. His passion in research always inspires me to be a better

researcher.

I also would like to express my gratitude to all of my collaborators, Zheng Dong, Soroush Bateni,

Yuchuan Liu, Xia Zhang, Yue Ma, Yuankun Zhu, and Mozi Chen. I am deeply indebted for their

tremendous help, both in work and life. I cherish my time working with them. I am also grateful to

my mentors of internship, Dr. Liana Fong and Dr. Wei Tan, for giving invaluable guidance during

my summer intern at IBM T. J. Watson Research Center.

My life in Dallas would not be as easy and happy without my friends. I would like to particularly

thank a number of my friends: Yufei Gu, Yangchun Fu, Junyuan Zeng, and friends in Plano Chinese

Alliance Church. Friendships with them made all the difference in the past six years.

Finally, my family members have always been there for me with unconditional love and support.

This dissertation is dedicated to my parents, my awesome wife, Ruohan Zhang, and my cute baby

girl, Chloe Zhou.

October 2018

v

PREDICTABLE GPGPU COMPUTING IN DNN-DRIVEN AUTONOMOUS SYSTEMS

Husheng Zhou, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Cong Liu

Graphics processing units (GPUs) are being widely used as co-processors in many domains to

accelerate general-purpose workloads that are data-parallel and computationally intensive, i.e.,

GPGPU. An emerging usage domain is adopting GPGPU to accelerate inherently computation-

intensive Deep Neural Network (DNN) workloads in autonomous systems. Such autonomous sys-

tems are usually time-sensitive, especially for autonomous driving systems. When driving along-

side human drivers, loss of life or property may result if the computing systems of the autonomous

vehicles fail to respond to events before its deadline. Much research has been conducted to algo-

rithmically optimize the accuracy and performance of deep neural networks, but limited attention

has been given to optimizing the execution of GPU-accelerated DNN workloads from the schedul-

ing angle, especially in a time-constrained multi-tasking environment.

Adopting GPGPU to accelerate DNN workloads in time-sensitive autonomous systems that are

often resource-constrained presents a series of challenges: (1) GPUs are designed to execute non-

preemptively, which may cause priority inversion; (2) How to optimize the execution of GPU-

accelerated DNN workloads at the system level in a real-time multi-tasking environment; (3) How

to simultaneously achieve two (often) conflicting goals in a resource-constrained embedded CPU-

GPU heterogeneous platform: timing predictability and energy efficiency, that are essential for any

DNN-based autonomous driving system.

vi

The goal of the research presented in this dissertation is to solve or remedy the aforementioned

challenges. Specifically, we propose GPES, a runtime system that allows GPU executions to be

interruptible and preemptable in a multi-tasking environment. We proposed S3DNN , a systemic

solution that optimizes the execution of DNN workloads on GPU in a soft real-time multi-tasking

environment. We proposed PredJoule, a runtime system which presents a layer-based approach that

controls the timing and optimizes energy efficiency by exploiting each layer’s performance/energy

characteristics. In addition to the runtime systems we proposed, we investigate the problem of

mapping multiple applications implemented using kernel graphs in a heterogeneous system, and

present a theoretical framework that formulates this problem as an integer program and a set of

practically efficient mapping algorithms. Furthermore we present a reuse-based approach to further

improve the predictability of GPU computing.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xii

LIST OF TABLES . xv

CHAPTER 1 INTRODUCTION . 1

1.1 Graphics Processing Units . 3

1.2 GPGPU Programming Model . 6

1.3 Deep Neural Networks . 8

1.4 Contributions . 9

1.5 Organization . 12

CHAPTER 2 BACKGROUND AND RELATED WORK 13

2.1 Scheduling Algorithms for Heterogeneous Systems 13

2.2 Runtime Engines for Heterogeneous CPU/GPU Processors 13

2.3 GPU Resource Management . 15

2.4 Real-time DNN-Based Object Recognition . 16

2.5 Optimizing Energy While Meeting Timeliness . 16

2.6 Kernel Transformation . 18

2.7 Managing GPUs in The Cloud . 18

2.8 Computing Result Reuse . 18

CHAPTER 3 PREEMPTIVE EXECUTION FOR GPGPU 20

3.1 A Case Study . 20

3.2 System Design and Implementation . 21

3.2.1 Kernel Execution Slicing . 22

3.2.2 Data Transfer Slicing . 27

3.2.3 Context Switch Scheduling . 29

3.2.4 Challenges and Limitations . 30

3.3 Evaluation . 31

3.3.1 Experimental Setup . 31

viii

3.3.2 Overhead due to kernel slicing . 32

3.3.3 Overhead due to data slicing . 33

3.3.4 Overhead of context switching . 34

3.3.5 Multi-Tasking Performance . 35

3.3.6 Non-real-time setting . 39

3.3.7 Defending against DOS Attacks . 40

3.4 Summary . 41

CHAPTER 4 STREAM SCHEDULING FOR GPU-ACCELERATED
REAL-TIME DNN WORKLOADS . 43

4.1 Motivation . 43

4.1.1 GPU Usage Pattern For DNNs . 43

4.1.2 Data Fusion . 45

4.1.3 Kernel Scheduling and Concurrency . 47

4.2 Design and Implementation of S3DNN . 50

4.2.1 Design Overview . 50

4.2.2 System-level Data Fusion . 52

4.2.3 Supervised Streaming and Scheduling . 55

4.3 Evaluation . 62

4.3.1 Experiment Setup . 62

4.3.2 Real-time performance . 63

4.3.3 Overall Throughput . 64

4.3.4 Assessing the Supervised Streaming and Scheduling Module 65

4.3.5 Multi-GPU scenarios. 67

4.3.6 Online Webcam-based Object Recognition 69

4.4 Summary . 69

CHAPTER 5 TIMING-PREDICTABLE ENERGY OPTIMIZATION
FOR DEEP NEURAL NETWORKS . 71

5.1 Motivation . 71

5.1.1 DNN-specific Energy Usage Patterns . 71

5.1.2 Energy-Performance Relationship . 73

ix

5.2 Design . 74

5.2.1 Uncertainty . 75

5.2.2 Progress Tracker . 79

5.2.3 Integration . 80

5.3 Evaluation . 84

5.3.1 System Setup . 84

5.3.2 Generality . 86

5.3.3 Detailed Latency/Energy Performance . 89

5.3.4 Adaptability With Interference . 90

5.3.5 Overhead . 91

5.4 Summary . 92

CHAPTER 6 TASK MAPPING IN HETEROGENEOUS SYSTEMS FOR FAST COMPLE-
TION . 93

6.1 System Modeling and MIP Formulation . 93

6.1.1 System Model . 93

6.1.2 An MIP Formulation . 95

6.2 Case Studies: What to Consider for Making Mapping Decisions 97

6.3 Practical Mapping Algorithms . 100

6.3.1 Baseline Algorithm: Heterogeneity Ratio-based Mapping 101

6.3.2 Kernel Graph Structure Considerations 103

6.3.3 Data Partitioning . 104

6.4 Implementation and Evaluation . 105

6.4.1 Implementation . 106

6.4.2 Experimental Setup . 107

6.4.3 Results . 109

6.5 Summary . 111

CHAPTER 7 EXPLORING COMPUTATION AND DATA REDUNDANCY VIA PARTIAL
GPU COMPUTING RESULT REUSE . 113

7.1 Case Study . 113

7.2 GRU Design . 116

x

7.2.1 Overview . 116

7.2.2 Methodology . 117

7.2.3 GRU Front-End . 122

7.2.4 GRU Back-End . 123

7.3 Implementation Details . 124

7.3.1 Rewriting Algorithm . 124

7.3.2 Result Cache and Reuse . 126

7.3.3 Global object tracking . 128

7.3.4 Delay transfer . 129

7.4 Evaluation . 129

7.4.1 Experimental Setup . 129

7.4.2 Spark Use Cases . 130

7.4.3 Experiments with Micro-benchmarks . 133

7.5 Related Work . 136

7.6 Summary . 138

CHAPTER 8 CONCLUSION . 139

REFERENCES . 140

BIOGRAPHICAL SKETCH . 151

CURRICULUM VITAE

xi

LIST OF FIGURES

1.1 Historical trends of CPU and GPU performance in GFLOPS. 4

1.2 (a) DNN layers are essentially array-based computations operated on lists of arrays
often called feature maps. (b) A state-of-the-art DNN for object recognition, formed
by connected layers. 8

3.1 GPES framework . 22

3.2 A two dimensional grid is flattened to one dimension 24

3.3 Kernel code transformation . 25

3.4 Changes in GPU SASS due to kernel transformation. 28

3.5 Relationship between execution time and number of subkernels 32

3.6 Relationship between memory-copy time and number of chunks. (a) Host to device
(b) Device to host . 34

3.7 Additional context switch overhead via kernel execution slicing 35

3.8 Impact of kernel execution slicing. (a) Single kernel (b) Dependent kernels 37

3.9 Impact of data slicing (a) Computation-intensive (b) Data-intensive (c) Mixed 39

3.10 Jitter and tardiness of image processing case under Gdev and GPES. 40

3.11 Normalized pending time under Gdev and GPES. 41

3.12 Defending against malicious applications (a) LARGE (b) INFI. (An ‘X’ mark means
that the normal application does not terminate and the performance cannot be measured.) 42

4.1 Resource usage pattern of DNN workloads. 44

4.2 Execution time of two streamed concurrent Kernels with different numbers of thread
blocks: (a) small number (b) medium number (c) large number. 47

4.3 Concurrency under CUDA stream without supervised streaming (inset (a)) and with
supervised streaming (inset (b)). 49

4.4 Design overview of S3DNN . 51

4.5 Comparison of four scheduling policies. 56

4.6 Intuitive illustration of Algorithm 3 using the example given in Fig. 4.5 (d). 60

4.7 CDF of FPS under (a) light (b) medium (c) customized DNN configurations. “3-yolo”
(“3-S3DNN”) represents the FPS performance under YOLO (S3DNN) when there
are three input vidoes. 62

4.8 Normalized throughput under light, medium, and heavy workloads using a variant
number of videos. 66

xii

4.9 Efficacy with respect to FPS under S3 compared to isolated run and default CUDA
streaming . 66

4.10 Performance under multi-GPU scenarios. 68

4.11 Percentage of frames that meet their deadlines. 68

5.1 Energy usage of Relu3 and Relu6 under different DVFS configurations. 72

5.2 The trailing effect for two layers. Layer 4 has a pronounced trailing effect while layer
18 does not. 73

5.3 Design overview of PredJoule. 76

5.4 Example illustration of the progress tracker. 80

5.5 Uncertainty for various neural networks. 84

5.6 The average energy consumption of all five neural networks with tight / loose deadlines. 86

5.7 Energy and latency of PredJoule compared to others for ResNet-100 over 50 iterations. 88

5.8 Energy and latency of PredJoule when interference is present. 90

5.9 Overhead of PredJoule vs. Poet for ResNet. 91

6.1 Kernel dependency graph . 98

6.2 (a) Application level mapping and (b) Kernel level mapping (c) Different map order
(d) Data Partition (e) Bad data partition . 99

6.3 Our scheduler implementation . 106

6.4 Experimental Hardware Specification . 108

6.5 Experimental results on the competition time. In all six graphs, the x-axis denotes
the three tested scenarios where problem size scale is varied to be small, medium, and
large (according to Table 6.4). The y-axis denotes the speedup each algorithm achieved
upon the naive CPU-only mapping algorithm. Graphs in the first (second) row depict
the results under the system configuration with one CPU and two GPUs (one CPU
and one GPU). In the first (respectively, second and third) column of graphs, mixed
(respectively, computation-intensive and data-intensive) workloads are assumed. 109

7.1 GRU architecture consists of a rewriter and a library at the front-end, and a back-end
service that runs in the cluster. 115

7.2 Two similar images (a) (b) with same tile (c). 117

7.3 Three example data parallel patterns: (a) Map (b) Partition (c) Scatter/Gather. 118

7.4 Code segment of matrix multiplication program after transformation. 119

7.5 Different functionalities share common sub-computation K1 and K2 that can be reused
from previous cached results. 121

xiii

7.6 Workflow of reuse engine . 126

7.7 Turnaround time (TAT) and GPU occupancy time (GOT) of three programs on two
datasets with GRU off and on. 131

7.8 Cumulative turnaround time and GPU occupancy time savings for opencloud trace
dataset. 132

7.9 Performance with respect to normalized execution time. 137

7.10 The three histograms for each benchmark represent the breakdown under rCUDA,
GRU-miss and GRU-hit, respectively. 137

xiv

LIST OF TABLES

3.1 Jitter and tardiness of video processing application when competing with matrix mul-
tiplication under the NVIDIA proprietary driver (NV) and the Nouveau open source
driver plus the Gdev module (Gdev) . 21

3.2 Benchmarks used in evaluation . 31

4.1 APT and pMiss of data fusion and base line . 47

4.2 Configuration of video numbers and FPS . 61

5.1 Uncertainty for an example DNN configuration. 77

5.2 Approximate Uncertainty for different layer types at different depths. 78

5.3 Method deadline misses for various DNNs. 87

6.1 Notation Summary. 94

6.2 Execution time of kernels . 98

6.3 Comparison against IP. 111

6.4 Benchmarks used in experiments . 112

7.1 Movie recommendation using GPU-enabled Spark on two movieLens datasets with
different partitioning. 114

7.2 Reuse of non-identical data & computation. 133

7.3 Evaluated benchmarks . 134

xv

CHAPTER 1

INTRODUCTION

Graphics processing units (GPUs) are being widely used as co-processors in many domains to

achieve acceleration. They are particularly capable of executing data-parallel applications, due

to their highly multi-threaded architecture and high-bandwidth memory. Along with the support

of the CUDA (NVIDIA, 2011) programming model developed by NVIDIA, GPUs can be easily

used for general-purpose computing in addition to dedicated graphics applications, i.e., GPGPU.

Examples include adopting GPGPU to accelerate inherently computation-intensive Deep Neural

Network (DNN) workloads.

Deep Neural Network is another very popular technique being widely applied in many au-

tonomous systems for their state-of-the-art, even human-competitive accuracy in cognitive com-

puting. One such domain is autonomous driving, where DNNs are used to map the raw pixels

from on-vehicle cameras to the steering control decisions (Chen et al., 2015; NVIDIA, 2016). This

DNN-driven approach is powerful because with limited training data from humans, the driving

system can learn to drive by itself. Recent end-to-end learning frameworks make it even possible

for DNNs to learn to self-steer from limited human driving datasets (Bojarski et al., 2016).

Such autonomous systems are usually time-sensitive, sometimes even need to meet hard real-

time constraints (no task should violate its deadline, otherwise the entire system would fail). How-

ever, the GPGPU is mainly designed for accelerating particular high-performance applications,

which may not be efficiently applicable for GPGPU in real-time multi-tasking environments. Once

pieces of GPU-accelerated code, i.e., kernels, from different applications are loaded onto the GPU,

they are dispatched by hardware scheduler. Such hardware-based scheduling will harm the re-

sponse time of high-priority GPGPU tasks, since the hardware scheduler does not consider task

priorities. Consequently, due to the asynchronous and non-preemptive nature of GPU processing,

in multi-tasking environments, a task with higher priority or urgency (e.g., with a shorter deadline)

may be blocked by lower priority tasks that have already started running on GPUs. This severely

1

harms the system’s timing predictability and is a serious impediment limiting the applicability of

GPGPU in autonomous systems.

In addition to preemption, the steps that map computations to different processing elements in

a CPU-GPU heterogeneous platform is critical. This mapping problem is quite challenging due

to a large size of the policy space. First of all, applications may demonstrate (sometimes signif-

icantly) different performance characteristics when executed on GPUs than CPUs. The mapping

algorithm thus needs to consider such heterogeneity when making prioritization and mapping deci-

sions. Moreover, most real world workloads are implemented using rather complex kernel graphs,

where a kernel graph contains a number of data- or logical- dependent kernels. The precedence

constraints among kernels require the mapping algorithm to consider: (i) the kernel graph struc-

ture and (ii) different data transfer costs among kernels if executed on different processors. Fur-

thermore, for data-intensive kernels, data partitioning techniques need to be incorporated into the

mapping algorithm because partitioning a kernel into threads that can be run on multiple devices

in parallel improves the overall utilization.

Furthermore, for DNN specific workloads, existing research works focus on exploring the spe-

cific features of DNN to improve the single-tasking throughput at the algorithmic level (Redmon

et al., 2016; Girshick et al., 2014; Girshick, 2015; Ren et al., 2015). There is a lack of research

effort tackling these challenges from the critical system-level optimization perspective: how to op-

timize the execution of GPU-accelerated DNN workloads at the system level in a real-time multi-

tasking environment. A critical objective is to guarantee real-time performance while maximizing

system throughput and resource utilization to mitigate the inherent resource constraint imposed by

most embedded hardware.

Last but not least, adopting inherently compute-intensive DNNs in often resource- and energy-

constrained automobiles creates another challenge, due to the need of satisfying two (often) con-

flicting goals: timing predictability and energy efficiency. Timing predictability (i.e., meeting job

latency requirement) is one of the most important tenets in certification required for autonomous

2

driving systems. The functional correctness of an automobile hinges crucially upon temporal cor-

rectness (e.g., performing object detection within a strict latency boundary to signal automatic

brake requests). On the other hand, automobiles demand low energy consumption, due to their

strict size, weight, and power (SWaP) requirements. Regrettably, timing predictability and energy

efficiency are often in conflict. This is because the former requires reserving sufficient resources

for guaranteeing latency even in the worst case; while the latter often desires allocating just enough

resource that barely meets the needs of the current job.

This dissertation seeks to investigate aforementioned challenges of adopting GPU in DNN-

driven atonomous systems, aiming at making GPGPU computings timing- and energy- predictable.

1.1 Graphics Processing Units

GPUs were developed for dedicated 2D graphics rendering since 1970s. For two decades of years

GPUs were “fixed function” hardware. This changed when the “programmable pipeline” appeared

in 2001, which enabled programmers to customize their own rendering codes (namely ”shaders”)

that were executed on the GPU. These successful shader languages include NVIDIAs “C for

Graphics” (Cg) (NVIDIA, 2003), and the OpenGL Shading Language (GLSL) (Group, 2004).

Empowered by shader languages and programmable GPUs, researchers began to exploit the gener-

ality of the programmable pipeline to solve general purpose computations, namely GPGPU (Har-

ris, 2009). Recognizing the potential computational power of GPGPU, generalized languages and

easy-to-use runtime environments were developed by major GPU vendors and software produc-

ers to allow general purpose programs to be executed on graphics hardware. Notable toolkits

include the Compute Unified Device Architecture (NVIDIA, 2011), OpenCL (Group, 2008), and

OpenACC (OpenACC, 2013).

Figure 1.1 shows the historical trends of CPU and GPU performance, where the x-axis is the

time till August 2014 when this figure is used in the presentation of (Zhou et al., 2015), and the

y-axis is the single precision peak performance in terms of billions of floating point operations

3

Figure 1.1: Historical trends of CPU and GPU performance in GFLOPS.

per second (GFLOPS). We observe that GPUs significantly outperform CPUs since June 2003,

and this disparity becomes even larger. For example, NVIDIA’s GTX Titan can perform at 4,500

GFLOPS in comparison to 672 GFLOPS for the Intel Ivy Bridge, which is more than 6 times.

This performance trend shows the strong motivation of using GPUs to accelerate general purpose

computing.

We briefly explain some GPU hardware related terminologies that will be frequently used in

the rest of this dissertation.

MP/SM, SP: Streaming multiprocessor (MP or SM) is the internal unit of NVIDIA GPU hardware

that performs the actual computations. NVIDIA GPU consists of several SMs, each of which is

further divided into shader processors (SP). The number of SMs and SPs is product-specific. Low-

end GPUs typically have one SM, and high-end GPUs have 15 or 16 SMs. Take NVIDIA GTX

480 for example, which is based on GF110 architecture, it has 15 SMs.

Channel: Each GPU context is associated with a GPU hardware channel. Internally, a channel is

managed by channel engine which is a subarea of the MMIO (memory-mapped I/O) region. The

channel engine maintains the status of GPU contexts including FIFO queues of GPU commands.

4

Command: Typically the GPU is controlled by the CPU using commands. The operating system

and GPU driver maintain GPU command buffers which are accessible to both CPU and GPU.

The CPU writes commands to them, while the GPU reads the commands from them. There are

hundreds of commands defined by the architecture (e.g., Fermi or Kepler). For example, when

copy data from the host to the device memory, we send a set of commands to the GPU, specifying

the source and the destination virtual addresses together with the mode of direct memory access

(DMA). A single GPU command is composed of GPU instructions and the values passed to the

instructions. It represents atomicity operation. Commands are usually grouped as non-preemptive

regions called command group. A tuple of size and command group address forms the packet

written to command buffer.

GPU page table To enable multi-tasking on GPU, newer versions of GPUs since Fermi architec-

ture (NVIDIA, 2010) support virtual addressing by assigning an address space to each application.

An address space is defined by a GPU page table containing entries of mappings between virtual

addresses and physical addresses. GPU kernels operate on virtual addresses which are transpar-

ently translated to physical addresses by a dedicated memory management unit (MMU). GPU page

table is located in the PCI configurable space, which is accessible from both CPUs and GPUs.

GPU Memory Hierarchy To improve system throughput, NVIDIA GPUs typically feature several

memory spaces and memory types. According to CUDA specifications, there are eight logical

types of GPU memory and cache space.

Global memory GPU global memory is the largest area visible to all threads within the application

(including the host), which is used to store input and output bulky data for GPU computations.

The spatial isolation of global memory is managed by NVIDA proprietary driver which prevents a

global memory object that belongs to one context from being accessed by another context.

Shared memory (or SMEM) GPU shared memory is a small yet fast memory type that resides on

each SM. It can be directly operated by the GPU kernel code. It is visible to all threads within the

same thread block. Its life duration is the same as the currently executing thread block while it is

5

flushed by GPU hardware only when the current context is destructed. It does not have any spatial

isolation, which implies that data residuals on the SMEM can be accessed by other thread blocks

within the same kernel or from different kernels.

L1 cache For each SM, there is a high speed cache named L1 cache, which is used for global

memory load caching. It cannot be directly operated by GPU kernel code. However, in some

GPU architectures (e.g., Fermi, Kepler), L1 cache and shared memory physically share the same

hardware resources, making L1 cache readable by crafted GPU kernel code.

Local Memory GPU local memory is not a physical type of memory, but an abstraction of global

memory, which is only used to hold automatic variables. Its scope is local to the thread and it

resides off-chip.

Register GPU registers represent the fastest yet the smallest memory on GPU. As a rare resource,

register pressure may severely detract performance. Register pressure occurs when there are not

enough registers available for a given kernel. When this occurs, the data is “spilled over” using

local memory.

1.2 GPGPU Programming Model

GPGPU applications typically obey the following execution flow: (i) initializing the GPU device,

(ii) allocating GPU device memory, (iii) transferring data from host memory to device memory, (iv)

launching the computation work (kernel) on GPU, (v) copying results back to host memory, and

(vi) freeing device memory and closing the device. We highlight some CUDA specific conceptual

terminologies that will be frequently used in the rest of this dissertation.

Context: Context conceptually represents separate virtual address spaces on the GPU hardware. A

context is either transparently or explicitly created for a CUDA application at the GPU device ini-

tialization stage. NVIDIA has provided the MPS (Multi-Process Service) feature in newer versions

of CUDA to transparently merge multi-process CUDA applications into one context. However, the

usage of MPS is limited by operating system (only supports Linux-based system), applications

6

(only supports 64-bit applications), GPU hardware (compute capability 3.5 or higher), and special

configuration (set GPU to be exclusive to other processes). Moreover, MPS fails to consider DNN-

specific characteristics since it is an application-oblivious approach and will blindly combine all

of the processes assigned to it. In this dissertation, we assume a more common scenario, where

different CUDA applications run on different contexts.

Thread, Warp, Block, Grid: The NVIDIA CUDA (NVIDIA, 2011) programming model consists

of four levels of hierarchy. In Fermi or Kepler (NVIDIA, 2014) architecture, 32 threads make up

a warp. Warps are the basic units of execution on the GPU. Threads in each warp are executed

together. A group of warps stitch together to form a block. These blocks are combined to form

a grid. A grid is corresponding to an execution kernel, thus in the rest of this dissertation, kernel

launch and grid launch are interchangeable forms. When executing a kernel, the corresponding

entire grid is mapped to one GPU device, blocks are mapped to SMs (MPs), and internally, com-

putations are scheduled warp by warp. Notice that, in Fermi and Kepler architectures, grids from

different kernels can execute on the same GPU device simultaneously, which is so called concur-

rent kernels. But such grids (kernels) must come from the same context. In CUDA programming,

the programmer can control the number of threads within a block and the number of blocks within

a grid.

CUDA stream: CUDA stream is a technique introduced by a newer version of CUDA (NVIDIA,

2015), which aims to hide the latency of memory copy and kernel launch from different indepen-

dent operations. Its additional effect is the capability of enabling concurrent kernel execution which

allows multiple kernels to execute on the same GPU simultaneously when each kernel cannot fully

utilize the entire GPU device. A CUDA stream can be explicitly created by the programmer and

bound to a kernel launch or data copy operation. To avoid confusion with data stream/video stream,

when we talk about this technique, we use the term CUDA stream.

7

c

p

c

c

p

p

c

p

c

p

c

c

r

p

c

c

Img
R,G,B

labels
scores

op

Feature
maps

(c) convolution
(p) pooling
(f) full connecttion
(r) re-scaling
… …

M M’

layer

(a) (b)

Figure 1.2: (a) DNN layers are essentially array-based computations operated on lists of arrays
often called feature maps. (b) A state-of-the-art DNN for object recognition, formed by connected
layers.

1.3 Deep Neural Networks

A DNN can be viewed as a dataflow graph, in which its nodes, or layers, are essentially array-

based computations (as shown in Fig. 1.2(a)) (Redmon et al., 2016). Each layer takes a set of

arrays, called feature maps as input and outputs a set of feature maps that will in turn be processed

by subsequent layers belonging to the same DNN instance. Fig. 1.2(b) shows an illustration of a set

of DNN layers used in YOLO (Redmon et al., 2016), which is a popular DNN framework aimed

at real-time object detection. The letter within each cycle denotes the functionality performed

by the corresponding layer: ‘c’ for convolution layer which convolves inputs by a convolution

filter, ‘p’ for a max pooling layer which replaces each input array value by the maximum of its

neighbors, ‘f’ for a fully connected layer which multiplies the feature maps by a weight matrix,

and ‘r’ for a region layer, which is a layer specific to YOLO that is responsible for finding areas of

interest in an image. In order to use a DNN for object detection, a pre-trained weight file is needed

which is estimated from training data beforehand. Training an accurate weight file is an offline

procedure that usually takes several days or weeks, done by “learning” features from large-scale

8

image datasets. In this dissertation, we are not concerned with improving the training process,

rather, we focus on efficient execution of DNNs for real-time object detection.

DNN in Autonomous Driving. An autonomous driving system captures surrounding environ-

mental data via multiple sensors (e.g., camera, Radar, Lidar) as inputs, processes these data with

DNNs and outputs control decisions (e.g., steering). In this dissertation, we mainly focus on the

steering angle component with camera inputs and steering angle outputs, as adopted in NVIDIA

Dave (Bojarski et al., 2016). Convolutional Neural Network (CNN), which is efficient at analyz-

ing visual imagery, is the most widely used DNN for steering angle decisions. Similar to regular

neural networks, CNNs are composed of multiple layers and pass information through layers in a

feed-forward way. Among all layers, the convolutional layer is a key component in CNNs, which

performs convolution with kernels on the output of previous layers and sends the feature maps to

successor layers. Different from another widely used DNN architecture – Recurrent Neural Net-

works (RNNs) which is a kind of neural network with feedback connections, CNN-based steering

model makes steering decisions based only on the currently captured image. In the dissertation,

we use DNN to represent both CNN and RNN without explicitly differentiating them.

1.4 Contributions

We now present an overview of the contributions of this dissertation that support this thesis.

• Making GPU execution (partially) preemptive. We present an efficient GPGPU preemp-

tive execution system (GPES), which combines user-level and driver-level runtime engines to

reduce the pending time of high-priority GPGPU tasks that may be blocked by long-freezing

low-priority competing workloads. GPES automatically slices a long-running kernel exe-

cution into multiple subkernel launches and splits data transaction into multiple chunks at

user-level, then inserts preemption points between subkernel launches and memory-copy op-

erations at driver-level. We implement a prototype of GPES, and use real-world benchmarks

9

and case studies for evaluation. Experimental results demonstrate that GPES is able to re-

duce the pending time of high-priority tasks in a multi-tasking environment by up to 90%

over the existing GPU driver solutions, while introducing small overheads.

• Improving real-time performance of DNN workloads in real-time multi-tasking envi-

ronment. We propose S3DNN , a system solution that optimizes the execution of DNN

workloads on GPU in a real-time multi-tasking environment, which simultaneously opti-

mizes the two (sometimes) conflicting goals of real-time correctness and throughput. S3DNN

contains a governor that selectively gathers system-wide DNN requests to perform smart

data fusion, and a novel supervised streaming and scheduling framework that combines a

deadline-aware scheduler with the concurrency-enabled CUDA stream technique. To simul-

taneously maximize concurrency-induced benefits and real-time performance, S3DNN ex-

plores a rather interesting and unique characteristic of DNN workloads, where multiple lay-

ers of a DNN instance often exhibit a gradually decreased GPU resource utilization pattern.

We have fully implemented S3DNN in a GPU-accelerated system and have conducted ex-

tensive sets of experiments evaluating the efficacy of S3DNN under a wide range of system

and workload scenarios. The results show that S3DNN significantly improves upon state-

of-the-art GPU-accelerated DNN processing frameworks, e.g., up to 37% and over 40%

improvements in real-time performance and throughput, respectively.

• Optimizing energy efficiency of DNN workloads while meeting timeliness. We propose

PredJoule, a timing-predictable energy optimization framework for running DNN workloads

in a GPU-enabled automotive system. PredJoule achieves both latency guarantees and en-

ergy efficiency through a layer-aware design that explores specific performance and energy

characteristics of different layers within the same neural network. We implement and evalu-

ate PredJoule on the automotive-specific NVIDIA Jetson TX2 platform for five state-of-the-

art DNN models with both high and low variance latency requirements. Experiments show

10

that PredJoule rarely violates job deadlines, and can improve energy by 65% on average

compared to five existing approaches and 68% compared to an energy-oriented approach.

• Improving throughput of multiple graph-struct applications by novel heterogeneous

task mapping. We investigate the problem of computation and data mapping for multiple

applications while minimizing the completion time in GPU-CPU heterogeneous systems,

by presenting a theoretical framework that yields an optimal integer programming solution.

Moreover, based upon several interesting measurements-based case studies, we design three

practical mapping algorithms with low time complexity, each of which explores a specific

set of factors that may affect the completion time performance. We evaluated the proposed

algorithms by implementing them on a real heterogeneous system and using a large set of

popular benchmarks for evaluation. Experimental results demonstrate that our proposed

algorithms can achieve up to 30% faster completion time compared to the state-of-the-art

mapping techniques, and can perform consistently well across different workloads.

• Improving throughput of clusters by reusing GPU computation results. We present

GRU, an ecosystem that smartly manages and shares GPU resources through exploiting re-

dundancy. GRU transparently interprets GPU-accelerated computing requests and memoizes

results for potential future reuse. To enhance reusability, GRU implements a partial result

reuse idea, where GPU computation requests even with different input data and functionality

may become reusable with respect to each other. To guarantee correctness of partial reuse,

GRU employs a compiler-assisted approach that analyzes general data parallel patterns that

are reliable for the reuse purpose, and is capable of smartly recognizing such reusable data

parallel patterns of incoming requests. We have fully implemented GRU and conducted

extensive sets of experiments running micro-benchmarks on local machines and real-world

applications including Spark-based uses cases in an AWS cluster. Evaluation results show

that GRU is effective in identifying and eliminating redundant GPU computations, achiev-

ing up to 5x (2.5x) speedup for compute-intensive (data-intensive) benchmarks. In addition,

11

GPU-managed Spark observes a reduction of 25.3% (39.8%) on average with respect to

turnaround time (GPU occupation time) over state-of-the-art solutions.

1.5 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we discuss several background

topics, and prior work on predictable GPGPU scheduling in autonomous systems. In Chapter 3,

we describe the design, implementation, and evaluation of our preemptive GPU execution frame-

work, GPES. In Chapter 4, we present S3DNN– a systemic solution that optimizes the execution

of DNN workloads on GPU in a real-time multi-tasking environment. In Chapter 5, we presents

PredJoule, a timing-predictable energy optimization framework for running DNN workloads in a

GPU-enabled automotive system, which presents a layer-based approach that controls the timing

and optimizes energy efficiency through exploiting each layer’s performance/energy characteris-

tics. In Chapter 6, we investigate the problem of mapping multiple applications implemented using

kernel graphs in a heterogeneous system consisting of CPUs and GPUs, in order to achieve fast

competition time. In Chapter 7, we present GRU, a GPU sharing, result memoization and reuse

ecosystem for high performance and cloud computing, in order to further improve the predictabil-

ity of GPU computing. We end in Chapter 8 with concluding remarks and a discussion of future

work.

12

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Scheduling Algorithms for Heterogeneous Systems

The general problem of scheduling in heterogeneous systems has received much attention. A

number of scheduling heuristics have been proposed for scheduling directed acyclic graph-based

(DAG) applications in heterogeneous systems (Topcuouglu et al., 2002; Bittencourt et al., 2010;

Zhao and Sakellariou, 2003; Arabnejad and Barbosa, 2014; Sakellariou and Zhao, 2004; Canon

et al., 2008). These algorithms schedule a single DAG (Directed Acyclic Graph) of tasks onto

heterogeneous processing units with varying speed for minimizing the completion time. Zhao

et.(Zhao and Sakellariou, 2006) proposed multi-DAG scheduling by merging multiple DAGs into

one DAG. However, such algorithms do not specifically target the CPU/GPU platform, and thus

ignore several critical factors when making scheduling decisions, including non-preemptivity, data

transfer cost among CPUs and GPUs, data partitioning. Moreover, these existing algorithms are

mostly greedy in nature and do not provide a theoretical understanding of the mapping problem

considered herein. Furthermore, such algorithms use simulation-based evaluation approach and

have not been tested in real systems.

2.2 Runtime Engines for Heterogeneous CPU/GPU Processors

For heterogeneous CPU/GPU platforms, a number of runtime systems have been developed to

perform task scheduling. PTask (Rossbach et al., 2011) focuses on eliminating performance inter-

ference of GPU sharing. TimeGraph (Kato et al., 2011) and others (Verner et al., 2011) provides

prioritization and isolation capabilities in GPU resource management. Harmony (Diamos and

Yalamanchili, 2008) schedules translated CUDA code on various devices. Qilin (Luk et al., 2009)

provides an adaptive mapping to automatically partition tasks on a CPU and a GPU. SKMD (Lee

13

et al., 2013) transparently translates single OpenCL (Group, 2008) kernel into variations and exe-

cutes them on multiple GPUs simultaneously. The aforementionned runtime systems either focus

on single kernel or do not consider kernel affinities. Some other runtime systems focus on task

dataflow parallelism: OmpSs (Bueno et al., 2011), DirectShow (Linetsky, 2001), Hydra (Weins-

berg et al., 2008), StreamIt (Thies et al., 2002), IDEA (Currey et al., 2013), Liquid Metal (Huang

et al., 2008), Lime (Auerbach et al., 2010). However, these systems do not focus on scheduling

multiple graphs onto heterogeneous processors for minimizing the completion time.

The StarPU (Augonnet, Thibault, Namyst, and Wacrenier, Augonnet et al.) runtime system

provides programmers with a portable interface for dynamically mapping tasks onto heterogeneous

processors (CPUs and GPUs). It integrates development tuning and sampling with several pre-

defined task scheduling strategies (National institute for research in computer science and control,

2008) as plugins. These include the eager scheduler that uses the minimum-completion-time-

first policy (Topcuouglu et al., 2002), the dm scheduler that performs an HEFT-based scheduling

policy, and several variations of the dm scheduler. Among all pre-defined schedulers, the best one

is the dmdar (deque model data aware ready) scheduler. The dmdar scheduler is similar to the dm

scheduler, but takes data transfer time into account and sorts tasks on a per-worker queue basis.

Sc hypervisor (Hugo et al., 2013) is an extension based on StarPU, which supports co-execution of

multiple applications each using the StarPU runtime system. It focuses on partitioning approaches,

which split computing resources into isolated sets, and then apply existing StarPU schedulers on

each set. However, the StarPU runtime system does not focus on designing efficient mapping

algorithms to minimize the completion time, but rather contributes in providing a portable interface

for programmers to easily utilize GPUs. The StarPU pre-defined schedulers are mainly designed

to handle the single application scenario and use simplified criterion to make mapping decisions.

14

2.3 GPU Resource Management

A number of runtime systems have been developed to perform GPU task scheduling. Qilin (Luk

et al., 2009) provides an adaptive mapping to automatically partition tasks on a CPU and a GPU.

StarPU (Augonnet, Thibault, Namyst, and Wacrenier, Augonnet et al.) runtime system provides

programmers with a portable interface for dynamically mapping tasks onto heterogeneous proces-

sors (CPUs and GPUs). The aforementioned runtime systems are implemented at user-level and

focus on heterogeneous systems without considering interference among multiple applications on

the same GPU.

PTask (Rossbach et al., 2011) focuses on eliminating performance interference of GPU shar-

ing. TimeGraph Kato et al. (2011) and Gdev (Kato et al., 2012) provide prioritization and isolation

capabilities in GPU resource management. GDM (Wang et al., 2014) enhances GPU memory

management by introducing a staging area in host memory for each process. These works are

implemented at OS-level, and also propose scheduling algorithms for different applications shar-

ing GPU resources. Specifically, Gdev and Timegraph make enhancements on kernel scheduling

between contending applications. However, they can not handle the priority inversions caused by

long-running or non-terminating kernels. Furthermore, GPES utilizes different interrupt schema

compared to these work. More detailed differences between GPES and Gdev and TimeGraph are

described in Sec. 3.2.3.

RGEM Kato et al. (2011) and PKM (Basaran and Kang, 2012) are two GPGPU engines which

provide responsive and preemptive support for GPGPU tasks in a multi-tasking environment. How-

ever, they are implemented at user-level, thus lacking the view of the whole operating system.

Moreover, in order to utilize their engine, GPGPU applications are required to be rewritten with

the interfaces they provide. This may put much burden on end-programmers. Also, they have to

know all applications before hand and then compile them into one single process, which does not

reflect a real multi-tasking environment with dynamically coming applications. In contrast, GPES

15

does not need the source code of GPGPU applications. Also, it can transparently provide preemp-

tion and prioritization support for dynamically coming applications. To the best of our knowledge,

GPES is the first piece of work which supports preemptive computation and memory-copying in a

practical multi-tasking environment.

2.4 Real-time DNN-Based Object Recognition

DNNs have been extensively adopted in object detection for their impressive improvements in de-

tection accuracy (Krizhevsky et al., 2012; Jia et al., 2014), which is the core function of many

image/video processing applications. With GPU-accelerated platforms, DNN-based object recog-

nition is now capable of processing vision workloads in real-time, either through algorithmic opti-

mization (Redmon et al., 2016; Girshick et al., 2014; Girshick, 2015; Ren et al., 2015), or trading

throughput with accuracy (Chen et al., 2015a; Han et al., 2016).

2.5 Optimizing Energy While Meeting Timeliness

The problem of optimizing energy while meeting hard or soft real-time constraints has received

much attention in the literature (Farrell and Hoffmann, 2016; Hoffmann, 2015; Baek and Chilimbi,

2010; Sorber et al., 2007; Bini et al., 2009; Dudani et al., 2002; Heo et al., 2011; Huang et al., 2009;

Imes et al., 2015; Hoffmann, 2014; Mishra et al., 2015). Despite various manipulation mechanisms

in detail, these works mostly study simplified workload models (e.g., the well-studied sporadic

independent task model (Mok, 1983) or approximate applications where accuracy can be traded

for performance and/or energy).

A recent set of works (Farrell and Hoffmann, 2016; Hoffmann, 2015) have been proposed

to explore the specific domain of approximate applications, where accuracy can be exploited for

trading performance and energy. For instance, MEANTIME (Farrell and Hoffmann, 2016) seeks to

minimize energy consumption while achieving timing predictability, with the core idea of trading

16

off accuracy for meeting deadlines. Other works such as Green (Baek and Chilimbi, 2010) and

Eon (Sorber et al., 2007) seek to tailor behavior online to balance between accuracy and energy

goals. CoAdapt (Hoffmann, 2014) allows users to prioritize two out of three goals in terms of

performance, power, and accuracy, which then provides soft guarantees in those two prioritized

dimensions while optimizing the third.

State-of-the-art research on optimizing energy efficiency for DNNs can be categorized into

three categories: hardware approaches, DNN model optimization, and runtime approaches. Hard-

ware approaches aim to optimize basic computations used in DNNs (e.g., convolution, matrix

multiplication) (Chen et al., 2016; Han et al., 2016; Umuroglu et al., 2017; LiKamWa et al., 2016;

Reagen et al., 2016; Chi et al., 2016; Shafiee et al., 2016; Albericio et al., 2016) through develop-

ing efficient hardware acceleration solutions. Model optimization approaches seek to compress or

prune DNN models prior to execution (Han et al., 2015; Yang et al., 2017; Jaderberg et al., 2014;

Kim et al., 2015; Romero et al., 2014; Xue et al., 2014; Chen et al., 2015; Han et al., 2015). Run-

time approaches include offloading partial or entire DNN workloads to remote servers (Kang et al.,

2017; Huynh et al., 2017; Bhattacharya and Lane, 2016; Chen et al., 2015b; Xu et al., 2017), and

performing runtime approximation which trades performance with accuracy (Lane et al., 2016;

Han et al., 2016). To the best of our knowledge, none of these works simultaneously consider

timing correctness and energy efficiency by using native DVFS.

Different from all these works on optimizing latency and energy efficiency, PredJoule repre-

sents a system solution that can achieve timing predictability while minimizing energy for running

DNN workloads. A unique contribution of PredJoule is to explore dramatically different perfor-

mance/energy characteristics of DNNs through developing a layer-based approach. This allows

the system to smartly identify the best configuration for running each layer, such that timing can

be tightly controlled on a per-layer basis while achieving the most energy saving by considering

each layer’s performance/energy characteristics.

17

2.6 Kernel Transformation

Lee et al. propose SKMD (Lee et al., 2013) which transparently translates a single OpenCL (Group,

2008) kernel into variations and executes them on multiple GPUs simultaneously. Elastic Ker-

nel (Pai et al., 2013) rewrites the kernel source code and reshapes the Kernel Grid to use N : 1

logical-to-physical mapping scheme. We implement kernel source transformation to slice a kernel

into multiple subkernels and share the same idea of flattening workgroups as SKMD, but the goal

of our technique is fundamentally different from those techniques: SKMD transforms kernels to

distribute the workloads of a single kernel on multiple devices; Elastic Kernel uses kernel transfor-

mation to enable concurrent execution of different kernels; whereas we slice kernels to make the

long-running kernel interruptible for better preemption. Furthermore, the source-to-source trans-

formation technique is just a small (optional) part of our system, because we implement a novel

and better kernel code rewriting technique as an alternative.

2.7 Managing GPUs in The Cloud

Current approaches for GPU management in the cloud are classified into I/O pass-through (AMA-

ZON, 2006), API-remoting (Duato et al., 2010; Giunta et al., 2010; Lagar-Cavilla et al., 2007;

Shi et al., 2012), para-virtualization (Dowty and Sugerman, 2009; Gottschlag et al., 2013; Suzuki

et al., 2014) and full-virtualization (Suzuki et al., 2014; Tian et al., 2014; Malka et al., 2015; Zhou

et al., 2015), the latter two being two different implementations of the device emulation technique.

However, these works do not exploit the idea of GPU computing result reuse.

2.8 Computing Result Reuse

The concept of CPU-based computation reuse has been proposed in the programming language

and computer architecture communities. Compiler-assisted approaches (Sodani and Sohi, 1997;

18

Conners and Hwu, 1999; Connors et al., 2000; Ding and Li, 2004) seek to reuse intermediate re-

sults at CPU instruction level. Function-level memoization (Michie, 1968; Pugh and Teitelbaum,

1989) is used to avoid re-executing functions by caching the results of prior function calls. More-

over, frameworks are proposed to reuse redundant computations at a higher level for the emerging

incremental data processing field. For example, Spark (Zaharia et al., 2010), Percolator (Peng

and Dabek, 2010), and CBP (Logothetis et al., 2010) provide programmers with facilities to store

and reuse states across successive runs; while DryadInc (Popa et al., 2009), Nectar (Gunda et al.,

2010), Haloop (Bu et al., 2010), Incoop (Bhatotia et al., 2011), CIEL (Murray et al., 2011), and

Shredder (Bhatotia et al., 2012) are systems that reuse prior computing results. On GPU-incurred

reuse, Arnau et al. (Arnau et al., 2014) presented a hardware memoization approach to eliminate

redundant fragment shader executions on a mobile GPU. Different from these works, PredJoule

focuses on GPGPU and efficiently realizing the partial GPU computing result reuse idea at a GPU

kernel launch granularity.

19

CHAPTER 3

PREEMPTIVE EXECUTION FOR GPGPU1

3.1 A Case Study

Due to the asynchronous and non-preemptive nature of GPU processing, in multi-tasking environ-

ments, tasks with high priorities may be blocked by low-priority tasks. Such priority inversions

may occur due to either kernel execution blocking or data transfer blocking. In a real-time system,

this may cause deadline misses.

We conduct a measurements-based case study to show the impact of the non-preemptive ker-

nel execution and data transfer blocking on real applications in practice, using two best avail-

able GPGPU drivers in a multi-tasking environment: the NVIDIA proprietary driver (NVIDIA,

2011), and the Nouveau open source driver (FREEDESKTOP, 2012) plus Gdev (Kato et al., 2012)

which is a GPGPU run-time and resource management engine that manages GPUs as first-class

computing resources. We measure the performance of running a video processing application

heartwall (Che et al., 2009) competing with mmul (matrix multiplication). Heartwall processes a

medical video frame by frame. A single frame processing consists of a memory-copying operation

and a kernel launch. We assign the highest CPU priority to the heartwall application by viewing

it as a high priority task, and assign low CPU priority to the mmul application as low priority task.

The average processing time (memory-copy and kernel launch) of single iteration in heartwall is

380ms. It is set to execute periodically at an interval of 500ms. Mmul has variable processing time

depending on its data size. It is configured to execute repeatedly with three sizes: small (256KB),

medium (4MB) and large (16MB). Each combination executes for 500 seconds in total to impose

high workloads on the entire system. We report the relative jitter and tardiness in the same manner

1©2015 IEEE. Reprinted, with permission, from Husheng Zhou, Guangmo Tong, and Cong Liu. ”GPES: A Pre-
emptive Execution System for GPGPU Computing”, In Proceedings of the 21st IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS15). DOI:10.1109/RTAS.2015.7108420

20

Table 3.1: Jitter and tardiness of video processing application when competing with matrix multi-
plication under the NVIDIA proprietary driver (NV) and the Nouveau open source driver plus the
Gdev module (Gdev)

small medium large
NV tardiness 1169.64 ms 4387.7 ms 6130.77 ms

NV jitter 1188.13 ms 4523.22 ms 6483.90 ms
Gdev tardiness 426.24 ms 2678.97 ms 6726.78 ms

Gdev jitter 1197.11 ms 5095.33 ms 12705.99 ms

as (Kenna et al., 2011). Jitter is the deviation from the true periodicity of a periodic frame play-

back, which quantifies the smoothness of a video. If a frame i starts displaying at time ti and the

actual period between two frames is p, then its relative jitter is |ti−(ti−1+p)|. Tardiness represents

the delay of completion.

As listed in Table 3.1, the jitter and tardiness on both drivers are significant, particularly when

competing against mmul application with large data sizes. It is clear from this case study that

current existing GPGPU drivers lack mechanism to make high-priority tasks preemptive when

competing with long-freezing low-priority tasks. This lack of support motivates us to develop

GPES, as described next.

3.2 System Design and Implementation

In this section we present the design and implementation of GPES, which aims to make tasks

on GPU more preemptive and interruptible in multi-tasking environments. We implement GPES

based on Gdev (Kato et al., 2012) which is open-source and publicly available. The software stack

of GPES consists of a kernel transformer, a user-space library and an OS module. As depicted

in Fig. 3.1, the shadowed rectangles represent the components of GPES. The kernel transformer

performs automatic source-to-source transformation to kernel source code. The GPES library is

a wrapper of driver APIs and provides CUDA API interfaces, where kernel execution slicing and

data slicing are implemented. These two components are implemented at user space. The GPES

21

Application

GPES Library

Kernel
Transformer

cubin .cu* .cu

GPES Module

GPU

User
Space

OS

Device

NOUVEAU
Driver DM KM Sched

NVCC

loaded

API

API (ioctl)

input output

I/O I/O

Figure 3.1: GPES framework

module performs the actual functionality of memory-copy, kernel launch, scheduling, and interrupt

handling. GPES module is implemented at OS space.

GPES is implemented on top of the existing GPGPU programming framework of CUDA:

source code of application is categorized into CPU code and GPU code; CPU code is compiled into

executable file by gcc, whereas GPU code is compiled into object file (cubin) by nvcc (NVIDIA,

2011). The executable file executes on CPU and loads cubin file onto GPU. In the following

sections, we highlight some of the implementation details that deserve articulation.

3.2.1 Kernel Execution Slicing

A long-running kernel can prevent other kernels from accessing GPU computing resources. To

avoid this, one of our techniques is to slice the execution of a large kernel into smaller subkernels,

so that high priority kernels can preempt control of the GPU after the completion of a subkernel.

An ideal approach is to insert “preemption points” and control the mapping from blocks to SMs,

where we force the GPU to execute part of the blocks each time. But unfortunately, currently the

22

CUDA programming model does not provide this level of controllability on SMs. The scheduler

which dispatches logical blocks to hardware SMs is entirely implemented in the GPU hardware.

NVIDIA has not disclosed the details of implementation to the public. A kernel is submitted in the

form of a grid. Once a grid is offloaded to the GPU device, the execution is non-interruptible.

To achieve kernel execution slicing, we develop an alternative approach: workloads partition-

ing. In the following subsections, we introduce “source-to-source transformation” to better explain

our idea and further introduce a novel technique “just in time kernel code rewriting” to make the

kernel execution slicing totally transparent to applications.

Source-to-Source Transformation

To better support parallel computing, GPU hardware maintains continuous indexes for all blocks

in one grid, i.e., blockIdx. For example, if a grid consists of 256 blocks in one dimension, the

blockIdx ranges from 0 to 255. In order to make a long-running kernel interruptible, we convert a

large kernel into multiple subkernels, each of which is launched with a blockRange. BlockRange

is defined as the number of blocks to be executed in this subkernel, which is bounded by a start

blockIdx and an end blockIdx. Slicing blockRange forces each subkernel to complete part of the

computing workloads. Thus, the execution time of each subkernel is much shorter than the original

kernel. At the end of each subkernel launch, we setup an “interrupt point” to allow higher priority

kernels from other GPGPU applications to preempt the control of GPU.

Programmer can control the number and the shape of blocks in one grid. Such blocks are

grouped up to three dimensions. For readability, here we consider for example a two-dimensional

grid whose blocks are organized as a 16× 16 rectangle. The blockIdx can be represented as a pair

of (blockIdx.x, blockIdx.y), such as (0, 0), (1, 0), (2, 0). In order to assign a blockRange to each

subkernel, our kernel transformation technique flattens N-dimensional blocks to one dimensional

blocks, which makes the slicing easier. Fig. 3.2 shows that a two dimensional grid is flattened to

23

(1,1)

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block
(0, 2)

Block
(1, 2)

Block
(2, 2)

Block
(3, 0)
Block
(3, 1)
Block
(3, 2)

Grid
gridDim.x

gr
id

D
im

.y

gridDim.x

gridDim.y

(2,1) (3,1) (0,1) (1,2)

gridDim.x

(2,2) (3,2) (0,2) (1,0)

gridDim.x

(2,0) (3,0) (0,0)

9 10 11 8 5 6 7 4 1 2 3 0

Figure 3.2: A two dimensional grid is flattened to one dimension

one dimension, where each block is associated with a flattened index. GPES executes an equal

subset of blocks per subkernel launch, till all blocks are executed.

We implement kernel execution slicing technique through source-to-source transformation be-

fore the GPU code is compiled into cubin object file. This procedure is automatically performed

by the kernel transformer. As shown in Fig. 3.3, the shadowed parts represent patched lines of code

compared to the original kernel code in the madd (matrix addition) benchmark. Two parameters

block from and block to are added to represent the range of flattened blocks to be executed. If a

kernel launches more than one dimensional grid, lines of kernel-independent flattening code are

inserted as shown on lines 5–7. After flattening the block indexes, each thread identifies its block

index (flatId) and checks if it will continue to perform the computation. Thus, GPES actually per-

forms computation of (block to− block from+1) blocks for each subkernel launch and skips the

rest of the computation. The computation of one kernel can thus be divided into several subker-

nels. Note that these patched lines of code are universal to all kernels and thus can be automatically

applied by GPES.

24

__global__ void add(uint32_t *a, uint32_t *b,
 uint32_t *c, uint32_t n,
 int block_from, int block_to)
{
 int flatId = gridDim.y * blockIdx.x + blockIdx.y;
 if (flatId < block_from || flatId > block_to)
 return;
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if (i < n && j < n) {
 int idx = i * n + j;
 c[idx] = a[idx] + b[idx];
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 3.3: Kernel code transformation

To efficiently utilize the transformed subkernels, we re-implement several functions in the

openCUDA (Kato, 2013) library. For example, we re-implement function cuLaunchGrid which is

the CUDA API of launching a kernel, the pseudo-code is shown in Algorithm 1. The variable SP

represents the number of subkernels that the original kernel will be sliced into, range denotes the

number of blocks to be executed in each subkernel launch. Two additional arguments block from

and block to are added to the subkernel’s parameter buffer, which indicate the bounds of blocks.

Function cuLaunchGrid v0 implements the actual subkernel launch. Till now, without touching

the CPU source code, one kernel launch is converted to a number of subkernel launches specified

by SP. Notice that, SP is a predefined value. Intuitively, a large SP value implies a small execution

duration of each subkernel launch, which may also result in more overheads. The impact due to

different SP values will be studied in Sec. 3.3.2.

Just In Time Kernel Code Rewriting

Source-to-source transformation must be completed at compile time. It has to access the GPU

source file. Furthermore, once compilation is done, the granularity of partitioned block range

cannot be changed at run-time. To transparently complete the kernel transformation without ac-

cessing the application’s source code, we introduce a novel technique – “just in time kernel code

25

Algorithm 1 Customized cuLaunchGrid

cuLaunchGrid(f, grid_width, grid_height) {
 range = grid_width * grid_height / SP;
 rest = (grid_width * grid_height) % SP;
 while(i < SP) {
 block_from = i * range;
 block_to = (i + 1) * range;
 if (i == SP - 1)
 to += rest;
 update_param_buf(f, block_from, block_to);
 update_param_size(f);
 cuLaunchGrid_v0(f, grid_width, grid_height);
 i++;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

rewriting”. Through this approach, no source code of incoming applications is needed, as all trans-

formations are performed transparently at run-time. Thus, it serves as a better alternative to replace

the source-to-source transformation technique.

Through analyzing the changes between the generated GPU binary before and after the source-

to-source transformation, we figure out that the additional instructions introduced in mmul’s kernel

assembly code (i.e., SASS – shader assembly) are at the beginning, as shown in Fig. 3.4 lines 4–7.

In order to do kernel binary code rewriting, two questions need to be solved: (i) how to insert

the additional instructions into the original kernel code, and (ii) what impacts may such insertions

introduce? Answering these questions is not easy, because NVIDIA does not disclose much of the

details of its architectures and instructions. But fortunately, there are some third-party projects that

have revealed useful information (Hou et al., 2011; Koscielnicki, 2012; Kato et al., 2012), such

as the layout of GPU instructions, and the memory organization for a kernel launch. Currently

two types of instructions are used in NVIDIA architecture: 4-byte and 8-byte. In our experiment

environment, we always use 8-byte instructions. Each 8-byte GPU instruction is usually composed

of na (specify the instruction name), mod (operation mode), pr (predicate bits), re0 (destination

register), re1 (second register operand), imme (32-bit immediate value), and nb (specify instruction

26

name). To achieve the same goal of slicing kernel execution as source-to-source transformation,

we must carefully follow this instruction format and insert our range-selection instructions.

To transparently rewrite the kernel code and reform the kernel, we add two parameters to

the kernel (block from and block to) as discussed in the previous subsection. We re-implement

cuModuleLoad and cuModuleGetFunction which are CUDA APIs loading cubin object file to get

the kernel information (e.g., kernel code, kernel size, parameter size). After loading the GPU

binary into memory, GPES reallocates a memory space for binary codes with additional 32 bytes

for four range-selection instructions, and performs binary rewriting. When these four instructions

are inserted, other instructions will be shifted. If there are unconditional branches, an offset-fixing

action thus needs to be performed. For example at Fig. 3.4 line 16, the original branch destination

is 0x108. Four additional instructions with 8 bytes each instruction causes 32 bytes (0x20) shift.

For some complex kernels, we have to insert more than four range-selection instructions, since the

registers used in inserted instructions may be further used for computation. In such cases, we need

to introduce two more instructions to temporarily store and restore the register values. Additionally,

GPUs maintain special registers for block indexes and parameters which are not explicitly revealed

in SASS code. Thus, only modifying SASS code is not enough. As kernel’s parameters are stored

in constant memory, we have to modify the size of kernel’s constant memory. The size of constant

memory should be enlarged by 8 bytes since we add two additional int type parameters for block

range-selection.

3.2.2 Data Transfer Slicing

Though data transfer and computation use different engines, memory copying of one application

cannot perform simultaneously with kernel launching of another process, since they belong to dif-

ferent contexts and GPU can hold only one context at a time. Thus, in a multi-tasking environment,

a large memory copy operation of a low-priority task can also stall high-priority tasks. To prevent

27

MOV R1, c [0x1] [0x100];
S2R R0, SR_CTAid_X;
S2R R2, SR_CTAid_Y;
IMAD.U32.U32 R3, R0, c [0x0] [0x18], R2;
ISETP.GT.AND P0, pt, R3, c [0x0] [0x40], pt;
ISETP.LT.OR P0, pt, R3, c [0x0] [0x3c], P0;
@P0 EXIT;
S2R R4, SR_Tid_Y;
S2R R3, SR_Tid_X;
IMAD.U32.U32 R2, R2, c [0x0] [0xc], R4;
IMAD.U32.U32 R10, R0, c [0x0] [0x8], R3;
ISETP.LT.AND P0, pt, R2, c [0x0] [0x38], pt;
ISETP.LT.AND P0, pt, R10, c [0x0] [0x38], P0;
@!P0 EXIT;
ISETP.EQ.U32.AND P0, pt, RZ, c [0x0] [0x38], pt;
@P0 BRA 0x128;
... ...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Figure 3.4: Changes in GPU SASS due to kernel transformation.

this, GPES seeks to split a non-preemptive memory transfer into multiple smaller chunks to make

it preemptive. At the boundary of the each chunk, a preemptive point is inserted.

Two CUDA APIs cuMemcpyHtoD and cuMemcpyDtoH are used to perform memory-copying

between host memory and GPU device memory. To realize our idea, we re-implement these func-

tions. Every single memory-copy operation is divided into multiple ones. Then each time GPES

transfers only one chunk of data. At driver level, GPES is aware of all memory-copy requests from

all user space applications. GPES maintains a queue of such memory-copy requests. Request with

the highest priority will be put at the head of queue. Once the current memory-copy is done, the

memory-copy request at the head of queue will be performed. GPES sets up a fence at the end of

each transfer, the fence will raise an interrupt to notify the completion of the current transfer, and

wake up the scheduled thread.

Intuitively, the chunk size impacts the granularity of preemption. The overhead introduced

by fine-grained data transfer has been well studied by (Fujii et al., 2013; Kato et al., 2011). Our

preliminary experiments showed similar results. Thus, in our implementation, if data chunk size in

host-to-device memory-copying is no large than 4MB, we use direct I/O write; else we use DMA

28

engine to transfer data (according to (Fujii et al., 2013), (Kato et al., 2011), and our experiments).

The threshold of device-to-host memory-copying is set to 4KB. The impact due to sliced chunks

will be studied in Sec. 3.3.2.

3.2.3 Context Switch Scheduling

A GPU can hold only one context at any time. GPES uses interrupts to trigger context switches.

GPES’s context switch module is implemented at driver level, which uses two scheduler threads to

perform computation scheduling and memory-copy scheduling separately. The scheduler threads

are woken up by GPU interrupts generated upon the completion of any computation or memory-

copy operation.

Different from TimeGraph (Kato et al., 2011) which is a GPU command scheduler integrated

in GPU device driver to protect critical GPU applications from interference, GPES is API driven,

which means interrupts are setup only when the interrupt function is called, and the scheduler is

invoked only when computation or data transmission requests are submitted; while TimeGraph is

command driven, interrupts are inserted in between command groups, causing the scheduler to be

invoked whenever GPU commands are flushed. The scheduling overhead of GPES is thus much

less.

Gdev is also API driven, and uses interrupts to invoke scheduler. Although GPES is imple-

mented on top of Gdev, it uses very different interrupt schema to be more compatible with the

kernel execution slicing and data slicing techniques. GPES setups interrupts for both kernel execu-

tion and memory-copying, which can make low-priority memory-copy operations yield to requests

from other applications with higher priority; whereas Gdev does not use interrupts for memory-

copy operations since Gdev synchronizes memory-copy with computation, causing the memory-

copy operation to be non-preemptable. Furthermore, Gdev performs scheduling at the granularity

of context-level. It creates a scheduling entity for each context. If the arriving scheduling entity

29

has the same context as the current entity, Gdev will not stall it. Gdev allows multiple continu-

ous kernels that belong to the same context to be launched simultaneously in order to utilize the

feature of concurrent kernel execution. However, such schema prevents the newly arriving high-

priority tasks to preempt at the boundary between two such continuous kernels. Different from

Gdev, GPES creates scheduling entity for each kernel launch and memory-copy chunk. If there is

a scheduling entity occupying GPU, newly arriving schedule entities will be stalled regardless of

whether it has the same context. Another difference between Gdev and GPES is that the priori-

ties of GPU contexts are propagated from the OS to Gdev; whereas GPES not only supports such

mechanisms but can also adaptively assign priorities to specific scheduling entities.

When one kernel is sliced into multiple subkernels, “interrupt points” inserted between subker-

nels will raise multiple interrupts. All interrupts from the GPU that are caught in the IRQ handler

are relayed to GPES. When GPES receives an interrupt, it references the fence identity to verify

which kernel launch or memory-copy operation raised the interrupt. At each interrupt point, the

scheduling entity at the head of queue is popped out and set active, so that the application with the

highest priority may preempt. The goal of the GPES scheduler is to correctly schedule computation

and data transmissions for each GPU context based on priority.

3.2.4 Challenges and Limitations

Our GPES prototype implementation has several limitations. First, it does not yet support tex-

ture and 3-D processing. Thus when choosing benchmarks, we only choose CUDA-based image

processing samples instead of OpenGL graphics. Another limitation of slicing kernel into multiple

subkernels at block level is that we can not handle global synchronizations (if any) due to the global

barrier originally deployed in the kernel. Furthermore, the research area of binary rewriting itself is

still an open area. Our GPU binary rewriting technique can only handle simple kernels with simple

semantics and a few unconditional branches. More sophisticated binary analysis techniques such

as alias analysis, will be introduced to make the binary rewriting function more reliable. We leave

such further improvements as future work.

30

Table 3.2: Benchmarks used in evaluation

NAME Description Structure
mmul Matrix multiplication Single kernel
madd Matrix addition Single kernel

heartwall Medical imaging 1 kernel per loop
backprop Back propagation 2 dependent kernels

bfs Breadth-first search Single kernel
hotspot Physics simulation 1 kernel per loop

lud LU Decomposition 3 dependent kernels per loop
nn K-nearest neighbors Single kernel

srad2 Image processing 2 kernels per loop

3.3 Evaluation

In this section, we present the experimental results used to evaluate the effectiveness of GPES.

3.3.1 Experimental Setup

Our experiments are conducted with the Linux kernel 3.3.1 on NVIDIA GeForce GTX 480 graph-

ics card and Intel i7 4770K processor. Benchmarks are chosen from Gdev test samples and Rodinia

benchmark suits (Che et al., 2009). Table 3.2 lists benchmarks used in experiments. All bench-

marks are written in CUDA driver API and compiled by NVCC 4.0 (NVIDIA, 2011).

Because GPES focuses on the scheduling, it does not implement data swapping which is

adopted in Gdev (Kato et al., 2012) as a core component to support excessive memory resource

demands. We thus choose benchmark combinations that would not overload the GPU device mem-

ory. Furthermore, Gdev virtualizes a physical GPU into multiple logical GPUs, providing isolation

and fairness among virtualized GPU devices. With different goals, GPES seeks to improve prior-

itization and preemptivity, and does not implement such virtualization. For fairness, we set the

number of Gdev’s virtual device to one and execute all benchmarks on this virtual GPU.

31

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2
0

 4
0

 6
0

 8
0

 1
0
0

 1
2
0

 1
4
0

 1
6
0

 1
8
0

 2
0
0

R
e

la
ti
v
e

 r
a

ti
o

 o
f

to
ta

l
e

x
e

c
u

ti
o

n
 t

im
e

Number of subkernels

4096

3072

2048

1024

Figure 3.5: Relationship between execution time and number of subkernels

3.3.2 Overhead due to kernel slicing

As mentioned in Sec. 3.2.1, one kernel launch can be sliced into multiple launches. Each launch

offloads a subkernel with related parameters to GPU computing engine. Each launch of subkernel

will introduce overheads caused by initialization and hardware dispatching. Also, each thread will

execute at least four additional instructions to identify its blockIdx. All these extra works will

introduce overheads.

In order to evaluate the performance of our implementation of kernel slicing, we slice the

kernel of mmul benchmark into multiple subkernels, and record its execution time. As shown

in Fig. 3.5, the x-axis is the number of subkernels that we slice the original kernel into; the y-

axis is the relative ratio of the total execution time with slicing divided by the execution time

of the original kernel without slicing (abbreviated as relative ratio); four curves in this figure

represent mmul with 4 different input sizes (e.g., 1024×1024). We observe from Fig. 3.5 that kernel

slicing introduces reasonable amount of overheads. For example, when the number of subkernels

reaches 400, the relative ratio of mmul instance with 4096× 4096 input size is only 1.04. We also

observe that instances with larger inputs tolerate more fine-grained slicing. Essentially, there is a

tradeoff between the granularity of kernel slicing and overhead, which often depends on different

32

applications and devices. To accurately identify an appropriate value of subkernel granularity,

an offline profiling is needed. However, GPES makes kernel slicing decisions online to handle

dynamically coming applications. In our experiments, we pick the number of blocks executed in

each subkernel launch to be no less than 120, since with such subkernel granularity, the slowdown

of all benchmarks introduced by kernel slicing can be limited to less than 5%. This is reasonable

because our GTX 480 GPU can hold at most 120 blocks simultaneously. If the number of blocks

to be executed on GPU is less than 120, the computation resources may not be fully utilized. In

summary, the kernel slicing technique adopted by GPES is efficient and applicable, with acceptable

overhead.

3.3.3 Overhead due to data slicing

We also measured overheads caused by our implementation of data slicing using the memcpy

benchmark. The memcpy benchmark performs memory-copying from host to device and then

transfers the data back using DMA without doing any kernel computation. Fig. 3.6 (a) illustrates

the impact of data slicing on host-to-device (HtoD) memory-copying time. The x-axis is the num-

ber of chunks, y-axis is the total HtoD time from the first chunk to last chunk. The curves represent

memcpy instances with different input data. We observe that the total HtoD time increases with

the increased chunk number. However, such increases are reasonably small when the number of

chunks is no greater than 128. When the number of chunks is greater than 128, the HtoD time

substantially increases. This is because the overhead introduced by using the DMA engine is non-

trivial. Fig. 3.6 (b) reveals the same trend as in set (a) on the device to host memory-copying time.

We observe that the total DtoH time of instances with smaller inputs (1M, 8M, 64M) increases with

the increased number of chunks. But when the 1M instance is sliced into 256 chunks (4KB per

chunk), it stops increasing. This is because it hits the threshold of 4KB where direct I/O performs

better than DMA engine when transferring data with size less than 4KB from device to host. How-

ever, such fine-grained slicing is not encouraged since it introduces non-trivial overhead compared

33

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16 32 64 128
256

512
1024

T
o
ta

l
H

to
D

 T
im

e
 (

m
s
)

Number of data chunks

1M
8M

64M
512M

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16 32 64 128
256

512
1024

T
o
ta

l
D

to
H

 T
im

e
 (

m
s
)

Number of data chunks

1M
8M

64M
512M

(b)

Figure 3.6: Relationship between memory-copy time and number of chunks. (a) Host to device (b)
Device to host

to memory-copy without slicing. Meanwhile, the instances with 512MB input performs almost

consistently regardless of the growth of the number of chunks, since large chunks can benefit from

DMA transaction. With 1024 chunks and 512MB input data, the total DtoH time with slicing

(310ms) is only 6.8% more than the time without slicing (290ms). In the experiments, we pick the

HtoD chunk size to be no less than 4MB and the DtoH chunk size to be no less than 512KB, since

such granularity provides good tradeoff between fine grained preemption and overhead.

3.3.4 Overhead of context switching

There are two stages that would introduce context switching overheads in computation scheduling.

One happens at each new kernel launching time, when GPES locks the computation scheduling

thread, then performs context switch scheduling, and finally unlocks the computation thread. Dur-

ing this stage, GPES checks the current status of GPU. If the previously offloaded kernel is not

returned, GPES will stall the launch request; otherwise it sets the incoming context active. The

other stage happens when an interrupt indicating kernel completion is caught. Between the locking

and unlocking operations to the computation scheduling thread, GPES draws out the context with

the highest priority in the request queue and sets it to active. Similarly, there are also two stages

which introduce context switching overheads in scheduling memory-copying operations.

34

 0

 100

 200

 300

 400

 500

 600

 0 50
 100

 150
 200

 250
 300

In
tr

o
d
u
c
e
d
 O

v
e
rh

e
a
d
 i
n
 u

s

Number of subkernels

"ctx-switch-overhead.dat" using 1:2

Figure 3.7: Additional context switch overhead via kernel execution slicing

We evaluate the context switching overhead in GPES by recording the time slots when schedul-

ing threads are suspended. We use the mmul benchmark with 16MB input to evaluate the context

switching overhead caused by kernel slicing, as illustrated in Fig. 3.7. The x-axis is the number of

subkernels, the y-axis is the overhead introduced by context switch scheduling in µs. We observe

that the overhead increases with the increased number of subkernels till the number reaches 50

subkernels, after which the overhead stops increasing. The reason is that with a large number of

subkernels, each subkernel executes very fast such that no incoming requests will be stalled. Thus,

no additional overhead will be introduced. The result of context switching overhead caused by

data slicing is similar to Fig. 3.7. Thus, we conclude that our context switching overhead is trivial

(less than 600 µs) compared to the execution time of kernel launch and memory-copying.

3.3.5 Multi-Tasking Performance

In this subsection, we discuss the performance of high-priority applications when competing with

low-priority applications under GPES. Following are some terms that will be used in the descrip-

tion.

Response time: The time elapsed between the context creation and context destruction. We

recorded this time by measuring the time slots between cuCtxCreate and cuCtxDestroy that are

called by an application.

35

Compute-Occupying time: The compute-occupying time of a specific kernel is the number of time

slots when it is offloaded to GPU till its interrupt indicating completion is captured by GPES. The

compute-occupying time of a CUDA application is the sum of all its kernels.

Copy-Occupying time: The time period that an application occupies the GPU copy engine.

Occupying time: Sum of compute-occupying time and copy-occupying time.

Pending time: The difference between response time and occupying time.

Impact of kernel execution slicing. In the first set of two experiments shown in Fig. 3.8, we

evaluate the performance of high-priority applications with different kernel structures when com-

peting with low-priority computation-intensive applications under GPES and Gdev. Benchmark

mmul is chosen as the low-priority application (LP) in all these three experiments, which is con-

sidered as computation-intensive application. GPES only performs kernel execution slicing since

the memory-copying time is relatively small compared to kernel execution time. We execute two

instances of mmul with the same input size and priority repeatedly to interfere with high-priority

applications.

In the first experiment, we choose madd, bfs, nn with small input sizes as high-priority ap-

plications (HP). These benchmarks are all single-kernel applications. They execute periodically

with an interval of 5,000ms. This configuration can avoid the interference among high-priority

tasks whereas each high-priority task can compete with at least one low-priority task. We report

the average pending time of the three high-priority applications in Fig. 3.8 (a). The x-axis is the

input data size of LP; the y-axis is the relative ratio of HPs’ average pending time divided by the

standalone execution time of LP without kernel execution slicing, denoted as normalized average

pending time; the four curves represent Gdev, GPES with each kernel sliced into two subker-

nels (GPES+2SP, for short), GPES with eight subkernels (GPES+8SP), GPES with 32 subkernels

(GPES+32SP). We observe that with our kernel execution slicing technique, the average pending

time is reduced dramatically compared to Gdev under all scenarios. For example, when the input

data of LP reaches 100MB, the normalized average pending time of Gdev is 0.98, while the nor-

36

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

256K
1M 2.25M

4M 16M
36M

64M
100MN

o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
n
d
in

g
 t
im

e

Data size of competing low-priority application

Gdev
GPES+2SP

GPES+8SP
GPES+32SP

(a)

 0

 0.5

 1

 1.5

 2

 2.5

256K
1M 2.25M

4M 16M
36M

64M
100MN

o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
n
d
in

g
 t
im

e

Data size of competing low-priority application

Gdev
Gpes+2sp

Gpes+8sp
Gpes+32sp

(b)

Figure 3.8: Impact of kernel execution slicing. (a) Single kernel (b) Dependent kernels

malized average pending time of GPES with 32 subkernels is less than 0.05, which is more than

90% reduction.

In the second experiment, we choose backpro, heartwall, lud as HPs. All these benchmarks

have dependent kernels, which means that the second kernel launch must be performed after the

first launch. There is a memory-copying operation between two kernel launches. As seen in

Fig. 3.8 (b), we observe that the average pending time is almost doubled compared to the previous

case (Fig. 3.8 (a)). For example, when being interfered by LPs with 100MB input, the normalized

average pending time of Gdev and GPES with two subkernels are 2.0 and 1.2 respectively. The

reason is that the two dependent kernels of HP are interleaved by a subkernel of LP, causing extra

pending time. Nonetheless, GPES significantly outperforms Gdev in reducing the average pending

time of HPs.

Impact of data slicing. In the second set of three experiments, we evaluate the impact of data

slicing on applications when competing with low-priority data-intensive applications under GPES

and Gdev. Benchmark memcpy is used as the competing LP, which does not contain any kernel

launch. Three sets of benchmarks are chosen as HPs: computation-intensive set, data-intensive

set, and mixed set. LP is configured to execute repeatedly, while each instance of HP executes

for every 5,000ms to avoid the interference among high-priority tasks and make sure that each

37

high-priority task can compete with the low-priority task. The results of these three experiments

are depicted in Fig. 3.9, where x-axis is the input data size of LP; the y-axis is the relative ratio

of HPs’ average pending time divided by the standalone execution time of LP without data execu-

tion slicing, denoted as normalized average pending time; the four curves represent Gdev, GPES

with each memory-copying data sliced into four chunks (GPES+4CK), GPES with 32 chunks

(GPES+32CK), GPES with 256 chunks (GPES+256CK).

In the first experiment, we choose mmul, lud, heartwall as HPs. These benchmarks are all

computation-intensive applications. Heartwall is configured with only one iteration; mmul is con-

figured with 2048 × 2048 matrix; lud is configured with 1024 × 1024 matrix. We observe from

Fig. 3.9 (a) that the data slicing technique is efficient to reduce the average pending time in all

scenarios compared to Gdev. For example, when the data size of LP reaches 512MB, the average

pending time with Gdev is 0.63, whereas GPES with 256 chunks is 0.25.

In the second experiment, we use nn, backpro, bfs configured with large data size input as

HPs. These benchmarks are data-intensive applications. Specifically, we modify nn to read all

data from one data file instead of originally from thousands of data files, in order to reduce the file

I/O latency. We observe from Fig. 3.9 (b) that the average pending time is greater compared to (a),

which is caused by the fact that large data transfers often cause longer-time GPU initialization (e.g.,

memory allocating) which is non-preemptive. Nonetheless, the data slicing technique of GPES is

still very efficient in reducing the average pending time in all scenarios compared to Gdev.

In the third experiment, we mix all the six benchmarks used in the previous two experiments

together with the same execution configuration. We observe from Fig. 3.9 (c) that GPES is still

superior to Gdev.

Video case study. Recall the case study used in Sec. 3.1, the jitter and tardiness increase rapidly

under NVIDIA proprietary driver and Gdev. For the same video processing application, we con-

duct an evaluation using GPES to slice host-to-device memory-copying into 4MB chunks and

device-to-host memory-copying into 512KB chunks, and slice kernel into 120 blocks per sub-

kernel launch. The result is shown in Fig. 3.10. We observe that the jitter and tardiness can be

38

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

1M 2M 4M 8M 16M
32M

64M
128M

256M
512MN

o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
n
d
in

g
 t
im

e

Data size of competing low-priority application

Gdev
GPES+4CK

GPES+32CK
GPES+256CK

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
n
d
in

g
 t
im

e

Data size of competing low-priority application

Gdev
GPES+4CK

GPES+32CK
GPES+256CK

(b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1M 2M 4M 8M 16M
32M

64M
128M

256M
512MN

o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
n
d
in

g
 t
im

e

Data size of competing low-priority application

Gdev
GPES+4CK

GPES+32CK
GPES+256CK

(c)

Figure 3.9: Impact of data slicing (a) Computation-intensive (b) Data-intensive (c) Mixed

significantly reduced compared to Gdev. For example, when the data size of competing applica-

tion reaches 36MB, the tardiness and jitter under Gdev are 11,253ms and 21,398ms respectively;

whereas GPES is able to reduce these values to 1,388ms and 2,580ms. The jitter and tardiness

under GPES are much lower than Gdev in all cases, and the reduction can reach up to 80%. GPES

can thus prevent video applications from being interfered by low-priority competing applications

containing long-freezing memory-copying or kernel execution.

3.3.6 Non-real-time setting

For applications that do not have predefined priorities, GPES can still reduce the overall pending

time. We conduct an evaluation using three benchmarks: mmul (1024×1024), srad (35 iterations),

39

 0

 5000

 10000

 15000

 20000

 25000

256K
1M 2.25M

4M 16M
36M

A
v
e
ra

g
e
 t
a
rd

in
e
s
s
 a

n
d
 j
it
te

r
(m

s
)

Data size of competing low-priority application

Gdev-tardiness
GPES-tardiness

Gdev-jitter
GPES-jitter

Figure 3.10: Jitter and tardiness of image processing case under Gdev and GPES.

nn (file size 1024). These three benchmarks execute in different orders which reflects different

priorities under Gdev and GPES. The overall pending times are depicted in Fig. 3.11. The x-axis

indicates the combination of the three benchmarks. For example, mmul.srad.nn indicates mmul

is firstly loaded, srad is the second and so on. We observe that the overall pending time in most

scenarios under GPES is much less than Gdev. For example, in the combination of mmul.srad.nn,

the overall pending time under GPES is 53% less than Gdev. However, as shown in the last bar of

Fig. 3.11, the overall pending time under GPES is larger than Gdev. This is because it represents

the best ordering under both GPES and Gdev. But in this case, GPES introduces extra overhead

due to slicing.

3.3.7 Defending against DOS Attacks

In many systems, a malicious GPGPU application can attack the system by submitting large num-

bers of kernels or an extremely large kernel which consists of many threads, causing denial-of-

service (DOS) to normal GPGPU applications. GPES can mitigate such attack. By enforcing

slicing large kernel with a lot of threads into smaller ones and each time executing a range of

threads, GPU control can be regained by normal applications when an interrupt is issued.

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

mmul.srad.nn

mmul.nn.srad

srad.mmul.nn

srad.nn.mmul

nn.mmul.srad

nn.srad.mmul

N
o
rm

a
liz

e
d
 p

e
n
d
in

g
 t
im

e

Gdev
GPES

Figure 3.11: Normalized pending time under Gdev and GPES.

In order to demonstrate how GPES mitigates such DOS attack, we have hand-coded two ma-

licious GPGPU applications: LARGE and INFI. LARGE is a malicious application with a very

simple kernel but consisting of a large number of threads. INFI is a malicious application issuing

kernels repeatedly. We co-run each of our benchmarks (heartwall, madd, mmul, hotspot, nn) with

LARGE and INFI, and compare the makespan under GPES and Gdev. We execute the malicious

application first, and then start running our benchmarks. Makespan is the elaspe from the bench-

mark’s start to its completion. The results are shown in Fig. 3.12, where the y-axis denotes the ratio

of the makespan of running the benchmark alone without any malicious applications divided by

the makespan with malicious applications. With GPES, the LARGE is sliced into 1024 subkernels,

and all benchmarks successfully complete execution in acceptable time, averagely slowed down

by 49% compared to standalone executions. With Gdev, all benchmarks are slowed down by 90%

when co-running with LARGE or 100% (non-terminated) when co-running with INFI.

3.4 Summary

In this chapter, we present GPES, a GPGPU preemptive execution system to make long-running

low-priority GPGPU applications interruptible and preemptable in a multi-tasking environment.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

m
add+LARG

E

m
m

ul+LARG
E

heartwall+LARG
E

nn+LARG
E

P
e
rf

o
rm

a
n
c
e
 o

v
e
r

s
ta

n
d
a
lo

n
e Gdev

GPES

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

m
add+INFI

m
m

ul+INFI

heartwall+INFI

nn+INFI

P
e
rf

o
rm

a
n
c
e
 o

v
e
r

s
ta

n
d
a
lo

n
e Gdev

GPES

XX X X

(b)

Figure 3.12: Defending against malicious applications (a) LARGE (b) INFI. (An ‘X’ mark means
that the normal application does not terminate and the performance cannot be measured.)

We implement a prototype system based on open-source GPGPU drivers. Our system introduces

several techniques that slice a long-running kernel into several smaller subkernels and slice data

transmissions into chunks with acceptable overheads. In order to achieve better preemptivity,

GPES also implements new interrupt handling and context switching schemes. Experimental re-

sults demonstrate that GPES can achieve much better performance compared to the state-of-art

open-source driver, and performs consistently well across different applications. The incurred

overheads due to the proposed techniques are reasonably small, which makes GPES a practical

and efficient solution for real-time GPGPU computing.

42

CHAPTER 4

STREAM SCHEDULING FOR GPU-ACCELERATED

REAL-TIME DNN WORKLOADS1

4.1 Motivation

In this section, we illustrate a set of measurements-based case studies to motivate our design. We

use YOLO (Redmon et al., 2016) as the target program, representing the state-of-the-art, real-

time DNN-based object detection frameworks. YOLO is capable of taking continuous frames

from a video file or a camera as input, and is able to output frames with labeled objects. We run

multiple YOLO instances simultaneously on an NVIDIA Quadro 6000 GPU, each of which uses

a road drive video from the KITTI vision benchmark suite (Fritsch et al., 2013) as input. We use

average processing FPS (frames per second) of all processed frames to measure the throughput of

the system. If the object recognition programs can process every frame of the video at a higher

or equal FPS than the original processing time of the video (i.e., 40 ms per frame), we consider

that the video can be processed in real-time. Besides average FPS, we also use deadline miss

rate, denoted pMiss, to indicate the percentage of frames that miss the deadline. We note that,

different from online cameras, pre-recorded videos can be processed at a higher FPS than the

origin, since such videos are actually processed as a series of images – once the previous image

has finished being processed, the next image is processed immediately afterwards without waiting

for the release time. We also consider online cameras in the evaluation (Sec. 4.3).

4.1.1 GPU Usage Pattern For DNNs

In the first case study, we directly use YOLO to perform object detection on an input video. The

neural network is configured to use the default setup (yolo.cfg), which is composed of 16 layers

1©2018 IEEE. Reprinted, with permission, from Husheng Zhou, Soroush Bateni, and Cong Liu. ”S3DNN: Super-
vised Streaming and Scheduling for GPU-accelerated Real-Time DNN Workloads”, In Proceedings of the 24th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS18). DOI:10.1109/RTAS.2018.00028

43

0

10

20

40

80

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

co
nv

co
nv

re
gi
on

[1
]

[1]

T
im

e
 (

m
s
)

0

.5

1

2

4

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

co
nv

co
nv

re
gi
on

[1
]

[1][3
]

[3]

O
u

tp
u

t
S

iz
e

 (
M

B
)

0

1

2

4

8

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

po
ol

co
nv

co
nv

co
nv

re
gi
on

[1
]

[1][3
]

[3]

[2
]

[2]

T
h

re
a

d
 B

lo
c
k
s
 (

K
)

Figure 4.1: Resource usage pattern of DNN workloads.

of three types depicted on the x-axis of Fig. 4.1 (“conv” for the convolution layer, “pool” for

the max-pool layer, and “region” for the region layer). For each layer, the y-axis reports the

size of the output which is temporarily stored in GPU global memory (in MB), number of thread

blocks (in Kilo), and execution time (in ms) in processing each frame. Two key observations

can be obtained from this figure: (1) The GPU resource utilization, including both the global

memory usage and the thread block numbers, shows a “staged” pattern as the layers go deeper

(i.e., consistent gradual decrease on resource utilization along with the increased depth of layers).

(2) The final layers exhibit a small input data and light computation, thus may under-utilize the

GPU resources. The intuition behind these observations is that DNN generates more fine-grained

feature maps at earlier layers and prunes these details gradually along the depth increase to get a

higher level of abstraction. In classic DNN models (Krizhevsky et al., 2012; Szegedy et al., 2015;

Simonyan and Zisserman, 2014), they usually use fully connected layers at the last few layers to

match the pattern generated from input images with all the possible classes stored in the model

file. The input size of the fully connected layer is determined by the number of classes. In the

case of real-time object detection in autonomous driving which is the focus of this dissertation,

the class number is usually small since we are only interested in a small subset of objects (e.g.,

pedestrian, stop sign, vehicle, traffic signal). For example, the class number in our experiments

provided by vanilla YOLO is 20 and 80, trained from the coco dataset (Lin, Maire, Belongie,

44

Bourdev, Girshick, Hays, Perona, Ramanan, and Piotr Dollár and C. Lawrence Zitnick, Lin et al.)

and voc (Everingham et al., 2010) respectively. We note that we have observed similar trends on

other popular DNN-based object detection tools (Girshick et al., 2014; Girshick, 2015; Ren et al.,

2015) using their default configurations.

Insight 1: The GPU usage pattern in DNN shows a staged GPU resource utilization pattern,

where the earlier layers involve more intensive computations and larger input sizes, and the

later layers incur lighter computations and smaller input sizes, which may under-utilize GPU

hardware.

4.1.2 Data Fusion

Fetching multiple images in a “batch” to process them in one pass is a common optimization

method used in DNNs, which can significantly improve the throughput with a proper batch size (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015). The improvement is due to the

fact that using batch can reduce the time wasted in I/O operations and data communication round-

trips, and thus can improve performance compared to processing images sequentially. Moreover,

in some cases, it is able to improve GPU utilization.

Application Level Data Fusion

Many prominent DNN implementations such as Caffe (Jia et al., 2014) include a data fusion func-

tionality. For a multi-tasking environment where multiple DNN instances are running simultane-

ously, it is possible to batch multiple images into one instance instead in order to improve overall

throughput. This approach is particularly useful under the autonomous driving scenario, where a

vehicle is often equipped with multiple cameras and sensors to cover front, sides, and rear view. In

this case study, we illustrate the effect of data fusion on throughput and latency.

We modified YOLO to support batch-based processing of up to four videos in order to process

them all at once. The baseline uses up to four vanilla YOLO programs, each of which processes one

45

input video. These videos are of the same target FPS (25 FPS). We use average FPS to measure

the throughput in two different configurations, baseline without fusion and our implementation

with data fusion which fuses all input frames together. To measure the real-time performance, we

use pMiss to record the percentage of frames that miss their deadline. The results are shown in

Table 4.1, where the first row indicates the number of incoming video streams, the second and

third rows show the average FPS, and the fourth and fifth rows record the pMiss.

We observe that, with more incoming videos, data fusion becomes more efficient in improving

throughput, as indicated by the average FPS. Another observation is that data fusion causes a 100%

pMiss ratio when fusing four video streams together, yet achieving a high FPS (21.2 × 4). This

is because, with data fusion, all the fused images will start and complete at the same time with

a longer processing time compared to the individual execution scenario. In this case study, when

fusing four video streams together, the resulting processing time exceeds the deadline of each

frame, thus incurring a 100% pMiss ratio. In practice, multiple cameras on an autonomous driving

vehicle may be of different FPS. For example, cameras on the dashboard may have higher FPS

than cameras at the rear end. In such scenarios, fusing data from cameras with different frequency

may lead to more frequent deadline misses for cameras with higher FPS.

System Level Solution

While existing application level data fusion has proven effective in increasing throughput, it falls

short on multiple accounts. First and foremost, for a multitasking environment consisting of mul-

tiple DNNs (such as in autonomous driving), application level data fusion will not be effective

since it would not be aware of other DNN processes in the system. Moreover, in such systems

the number of executing DNN instances varies from time to time. Since application level batching

needs to be pre-configured, it would not be able to adjust. For example, in Table 4.1, the data fu-

sion FPS can vary significantly depending on the number of videos and can cause many variations

that a real-time system needs to deal with. Finally, an application level solution would not be able

46

Table 4.1: APT and pMiss of data fusion and base line

of videos 1 2 3 4
Baseline FPS per video 52.6 29.2 18.5 15.6
Data fusion FPS per video 52.6 33.3 26.7 21.2
Baseline pMiss 0% 5% 83% 92%
Data fusion pMiss 0% 0% 0% 100%

0 100%
(a)

S2

S1

200% 0 100%
(b)

S2

S1

200% 0 100%
(c)

S2

S1

200%

Figure 4.2: Execution time of two streamed concurrent Kernels with different numbers of thread
blocks: (a) small number (b) medium number (c) large number.

to recognize data priority and take scheduling decisions into consideration, which might result in

lower-priority tasks to be batched with higher-priority tasks, causing an unfair and potentially dan-

gerous situation. This is evident in the 100% miss rate visible in the 4 video data fusion as shown

in Table 4.1.

Insight 2: To overcome the under-utilization issue incurred by individual DNN workloads,

fusing data from multiple videos may achieve significant throughput gain yet may harm the

per-frame response time for each individual video.

4.1.3 Kernel Scheduling and Concurrency

Besides data fusion, scheduling tasks in an orderly fashion while utilizing the CUDA stream tech-

nique may also improve throughput by enabling concurrent execution of multiple kernels bound to

different streams while ensuring deadlines, as illustrated by the following case study.

47

Enabling Concurrency using CUDA Streams

To understand how GPU performs concurrency for kernels in different streams, we conduct three

case studies, each of which performs matrix multiplication-based computation that is frequently

used in DNN. In all the case studies, we concurrently launch two kernels placed in two different

CUDA streams. The only difference among three case studies is the total number of thread blocks

contained in each kernel. The execution traces are shown in Fig. 4.2, where case studies (a), (b),

and (c) have 7, 28, and 500 thread blocks in each kernel, respectively. The x-axis represents the

normalized execution time defined by the actual execution time divided by the execution time of

executing only one of the two kernels under each scenario.

We observe in Fig. 4.2(a) that the response time of completing two kernels is the same as

only one kernel being executed, thus enabling a perfect concurrency for this scenario. This is

because the total number of thread blocks contained in these two kernels equals the number of

SMs in GPU hardware (i.e., 14 thread blocks or SMs). Thus, each thread block is assigned to

a dedicated SM. In Fig. 4.2(b), the observation is that the response time becomes longer than

the standalone execution time of one kernel. In this case, although the total number of thread

blocks (56 in this case) is more than the number of SMs, concurrency can still be enabled because

NVIDIA compute capability 2.x devices can support up to 8 blocks per SM. However, due to

the large number of thread blocks, these thread blocks from two kernels will be executed in an

interleaving manner, causing a performance better than serialized execution but worse than the

perfect concurrent execution case (e.g., Fig. 4.2(a)). For the third case study where we aggressively

increase the total number of thread blocks to 1000, as seen in Fig. 4.2(c), we observe that these two

kernels can only partially overlap to a rather limited degree of concurrent execution. The reason

is because with a large number of thread blocks per kernel, the first kernel will fully occupy all

GPU resources when it starts execution. Near the end of the first kernel’s execution, there are a

remaining 52 thread blocks (i.e., 52 = 500 thread blocks mods 14x8 GPU capacity) to be executed

on GPU, the second kernel can start execution concurrently using the available SMs on GPU.

48

Supervised Delay Kernels of
stream 2

Kernels of
stream 1 CR: Converged

Response time

0 5 10 15

0
30%

70%
100%

0 5 10 15

0
30%

70%
100%

CR

CR

(a) Default Streaming

(b) Supervised Streaming

2
1,1K

1
1,1K

3
1,1K

2
1,2K

1
1,2K

3
1,2K

2
2,1K

1
2,1K

3
2,1K

2
2,2K

1
2,2K

3
2,2K

2
1,1K

1
1,1K

3
1,1K

2
1,2K

1
1,2K

3
1,2K

1
2,1K 1

2,2K

2
2,2K

3
2,2K

2
2,1K

3
2,1K

1
3,1K

2
3,1K

Figure 4.3: Concurrency under CUDA stream without supervised streaming (inset (a)) and with
supervised streaming (inset (b)).

Insight 3: Concurrent kernel execution through putting each kernel in a different CUDA

stream may improve overall system throughput performance, particularly when individual

kernels cannot fully utilize GPU resources. However, adopting CUDA stream to improve

concurrency may harm the timing predictability of individual kernels due to interference.

Supervised CUDA Streams with Scheduling

Based upon Insight 3, we perform another case study to understand how DNN workloads may

further benefit from stream-enabled concurrency. We run two identical periodic DNN tasks, each

consisting of three layers. To enable concurrency, we bind each task to a separate CUDA stream.

We configure the first, second and third layer of each DNN task to occupy 100%, 60% and 30%

of the GPU resource, i.e., 224, 67 and 34 respectively, thread blocks according to the used GPU

hardware. Fig. 4.3(a) shows the execution schedule constructed from the measurements data when

we run two streams concurrently. Let Kk
i,j denote the kth layer/kernel of the jth job (i.e., the

49

jth video frame) released by DNN task Ki. As seen in Fig. 4.3(a), streaming indeed improves

performance by enabling concurrent execution. For example, K2
2,1 is concurrently executed with

K3
1,1 since the total number of thread blocks of these two kernels is smaller than the available thread

blocks supported by the GPU hardware.

While we are seeking to further improve concurrency, a very interesting observation appears.

As seen in Fig. 4.3(a), K3
2,1 is executed alone without other concurrent kernels. However, per-

formance may be improved by concurrently executing K3
2,1 with a later released kernel K2

1,2. To

achieve this, we have to let K1
1,2 execute first and preempt K3

2,1, thus releasing K2
1,2 upon its com-

pletion. The resulting execution schedule is shown in Fig. 4.3(b), where clearly both response time

performance and concurrency are improved.

Insight 4: To optimize concurrency for DNN workloads exhibiting staged computation de-

mand, instead of performing default CUDA streaming, it may be much more beneficial to

perform “supervised streaming”, which judiciously schedules kernels for maximum concur-

rency benefits through considering varying resource requirements of different layers of DNN

tasks.

4.2 Design and Implementation of S3DNN

4.2.1 Design Overview

S3DNN is designed to serve as a middle-ware between input videos and GPU hardware to opti-

mize the execution of DNN-based object detection workloads on GPU. S3DNN is implemented

as a frontend-backend framework, where multiple S3DNN frontends take videos as input and

forward all data and DNN processing requests to the S3DNN backend for actual computation, as

shown in Fig. 4.4.

The S3DNN backend consists of two major components, a Governor (Sec. 4.2.2) and an S3

scheduler (Sec. 4.2.3), motivated by the four insights discussed in Sec. 4.1. Whenever multiple

50

1

Fuse
Manager

Ctx

Ctx

img
data

GPU
Scheduler

Scheduling
Queue

… … … …

Zoomed view inside each context

GPU

GPU

Stream1 DNN
 instance

img
data Stream2 DNN

 instance

Figure 4.4: Design overview of S3DNN .

video frame processing requests are forwarded to the backend, the governor will decide to selec-

tively fuse them together so that they can be processed in fewer DNN instances. The governor also

assigns the fused DNN instances to one or several virtual contexts, each of which is associated

with a GPU device according to the computing capability (i.e., GFlops) and memory capacity (i.e.,

GPU global memory size). Since GPU memory is a major constrained resource, S3DNN lever-

ages a classical bin-packing algorithm to dispatch videos by considering GPU memory capacity as

the bin size. The S3 scheduler is then in charge of scheduling the DNNs (virtual contexts) at the

granularity of GPU kernel. In order to meet real-time constraints, S3 scheduler uses a kernel-level

least-slack-first (LSF) scheduling policy, which prioritizes kernels considering both their deadlines

and subsequent kernels belonging to the same DNN instance. Note that in our current implemen-

tation, S3DNN uses YOLO (Redmon et al., 2016) as the DNN engine which represents the fun-

damental DNN processing framework. However, as a general middleware solution, S3DNN can

be easily plugged into other existing DNN frameworks, requiring minor rewriting work.

Before diving into the detailed design of each component, we present an abstract definition

for the system. Namely, our system is constructed from a set of frame processing requests, τ =

τ1, ..., τn, in which τi is eventually assigned to a DNN instance to be processed (this DNN instance

can be shared by multiple τi). For the sake of simplicity, we assume each layer contains only a

51

single GPU kernel. If multiple kernels are used in a layer, we can combine them into a single GPU

execution to achieve the same goal. We use this model throughout the chapter as a platform for

any real-time analysis. In the case of data fusion, the DNN structure and algorithms function the

same way, albeit with a larger data input.

4.2.2 System-level Data Fusion

As suggested by Insight 2, performing system-level data fusion upon DNN workloads may effec-

tively improve performance in terms of throughput. Thus, S3DNN implements a governor in the

frontend-backend framework to selectively fuse incoming video frames at a system-wide level,

by considering both throughput improvements and potential response time increases as executing

fused frames may lengthen the execution time of individual frames. The goal is to conduct data

fusion in a way such that real-time constraint is satisfied while throughput can be maximized.

Data fusion is possible due to an exploitation of matrix operations inside a DNN. For a normal

DNN, most operations are matrix-based, following a format similar to the following:

RM∗N ∗ FN∗K = MM∗K , (4.1)

in which F is called filter, while R is the input for that layer and M is the output. Fusing α matrices

together will turn Eq. 4.1 into:

R(α∗M)∗N ∗ FN∗K = M(α∗M)∗K . (4.2)

We consider the problem of efficiently fusing n videos with at most m different FPS targets

into q DNN instances, each of which corresponds to a CUDA stream, where m ≤ q ≤ n. Each

video is composed of a series of continuous frames that are processed sequentially. We define

(ek, dk) to characterize each job in a DNN instance Sk, where ek denotes the job’s execution time

on a GPU and di denotes the job’s deadline (i.e., 1/fi of the corresponding video where fi denotes

its target FPS). The design goal is to map τ to S. Before describing our developed data fusion

52

algorithm, there are several constraints we will apply. First of all, data fusion shall be performed

only when the system observes multiple videos simultaneously. In other words, we never wait for

more video streams to arrive in order to enable data fusion. Clearly, waiting for multiple frames to

arrive and then fusing them together will significantly cause real-time requirements of an already

arrived video to be violated. Moreover, in order to simplify the design complexity, only videos

with the same DNN configuration (i.e., layers, weights, thus with the same ei) will be fused into

one DNN instance since they exhibit the same intensity of computation.

In addition to performing data fusion, the governor also needs to ensure that the total utilization

of each DNN instance after fusion, denoted by Uk, is no greater than 1, where Uk =
∑nk

i=1(
ei(Sk)
di(Sk)

)

and ei(Sk) (di(Sk)) denotes the execution time and deadline, respectively, of the ith fused video

in the kth DNN instance; otherwise, frame deadlines may be frequently missed which negatively

impacts the real-time correctness. The pseudo-code of this algorithm is given in Algorithm 2.

A very interesting observation drawn while designing Algorithm 2 is that the total utilization

of the system will not necessarily be equal to the sum of the individual utilizations
∑τn

τ1
(Uk).

This phenomenon is due to the inherent massive parallelism in GPUs, which can lead to the total

execution time of two combined kernels to be less than the sum of the execution times of each

kernel due to better resource utilization. In order to mitigate this problem, Algorithm 2 uses a

history-based approach to figure out real-world combined execution times instead of relying solely

on individually measured execution times.

Algorithm description. As seen in Algorithm 2, our data fusion algorithm takes the task set τ as

input in the form of a list of m deadlines of n frames. It will then go through all combinations of

τ (input frames) and S (the current DNN instances) in lines 3 and 4. As was mentioned earlier,

two tests need to pass. First and foremost, the configuration should match. Thus, Algorithm 2 will

check if the deadline of the current task matches the deadline of the first task in a DNN instance

(line 5). After that, the algorithm checks to see if adding this new task will violate the utilization

test (line 6). This is done through the LookUpHistory() function. This function takes the existing

53

Algorithm 2 Data Fusion Algorithm
Require: τ [] of all n inputs
Require: Instances[] of all DNN instances

1: function FUSE(InputList,Instances)
2: S[]=∅
3: for i in τ do
4: for j in S do
5: if i.d == j[0].d then
6: if LookUpHistory(j,i) < 1 then
7: j.insert(i); EXIT()
8: Instances = CreateDNNInstance(S.length, FuseData(S))

tasks in a DNN instance along with a new task as input. It will then probe the history table to see

if any history regarding this combination of tasks exists. If not, it will simply add up the individual

utilizations to calculate the upper bound. If no such DNN instance is found, the algorithm will

create a new one (line 8).

Memory-constrained dispatching. After the governor is finished fusing incoming videos, it

will dispatch the fused video streams to different GPUs. Since GPU memory capacity is the major

resource bottleneck herein, we transform this problem into a classical bin-packing problem and

apply existing methods for dispatching. Specifically, the GPU memory size can be viewed as the

bin size, while the memory required by each fused video stream is viewed as the item size. The

problem is to pack all the fused video streams into GPUs such that the number of required GPUs

is minimized. We thus leverage the classical first-fit algorithm to resolve this problem, which

has been proven effective in many cases (Augonnet, Thibault, Namyst, and Wacrenier, Augonnet

et al.).

Optimizations in the governor. S3DNN uses history-based prediction for each kernel launch

by storing its execution time information together with system information (input size, other ker-

nels, etc.), as well as a hash value representing this kernel, in a lookup table. In addition to our

previously mentioned observation, this approach is also based on a realistic assumption that the

kernels used in a given DNN are fixed, and the critical variable that impacts execution time is the

54

input data size as well as other kernels. This lookup table is saved to a file and loaded into memory

when S3DNN boots up.

Our implementation of S3DNN optimizes memory usage. Specifically, instead of constructing

a copy of a separate DNN instance (which includes the model and input/output data) for each input

video, S3DNN optimizes memory usage by sharing model data among multiple DNN instances

in GPU global memory. In practice, since all input video streams may use the same DNN configu-

ration for specific purposes (e.g., object recognition with the same accuracy goal), S3DNN would

only need to store one copy of the model data in each GPU’s device memory, shared by multiple

DNN instances.

4.2.3 Supervised Streaming and Scheduling

As motivated by Insights 3 and 4 discussed in Sec. 4.1.3, S3DNN seeks to optimize the execu-

tion of fused video streams assigned to each GPU through supervised streaming and scheduling,

with the goal of maximizing concurrency (thus throughput and GPU utilization) and real-time

performance. With the help of the “per-thread” streaming option in CUDA 7 or newer versions,

streaming-enabled concurrency becomes even easier to achieve, because the hardware scheduler

inside the GPU computing engine takes care of the throughput optimization. Unfortunately, when

kernels are submitted to GPU hardware by the driver, they do not have any priorities, causing

the kernels to be executed in a FIFO order. This may jeopardize another important real-time

performance indicator for DNN-based real-time object recognition workloads: deadline meeting

ratio. Motivated by this, S3DNN develops a GPU scheduling algorithm incorporating several

novel ideas to simultaneously achieve these two (sometimes) conflicting goals. Specifically, this

scheduler extends a classical real-time scheduler least-slack-first (LSF) to improve real-time per-

formance, combined with supervised streaming via a lookahead approach for maximizing concur-

rency benefits. We choose to use kernel-level LSF because LSF, as a dynamic priority scheduler,

can make kernels from different DNN instances be assigned different priorities and execute in an

55

Kernel of
Task 2

Kernel of
Task 3

(a) YOLO

Kernel of
Task 1

Task
release

Job
completion

Job
deadline

0 5 10 15

0
30%

60%

100%

1
1,1K 1

1,2K
2
1,1K

1
1,3K

2
1,2K 2

1,3K

1,1c 1,2c 1,3c

1,1d 1,2d 1,3d

0 5 10 15

0
30%

60%

100%

1
1,3K 1

1,1K
2
1,1K

1
1,2K1,1c

2
1,2K

1,2c
2

1,3K

1,3c

1,1d 1,2d 1,3d

(b) LSF

0 5 10 15

0
30%

60%

100%
2

1,2K 1,2c

1,1d 1,2d 1,3d

(c) LSF with default CUDA streaming

(d) LSF with supervised streaming

0 5 10 15

0
30%

60%

100%

1
1,3K 1

1,1K 1
1,2K2

1,1K

1,1c

2
1,2K

1,2c
2

1,3K

1,3c

1,1d 1,2d 1,3d

1
1,3K 1

1,1K 1
1,2K 2

1,1K

1,1c

2
1,3K

1,3c

Figure 4.5: Comparison of four scheduling policies.
interleaving manner. The slack of a kernel at time t is defined to be the deadline of the correspond-

ing job of the DNN task minus t, and then minus the total remaining amount of execution of this

task’s kernels in the current job period. Static priority schedulers such as RM and other dynamic

priority schedulers such as EDF will always assign the same priority to kernels belonging to the

same DNN instance, preventing concurrency to be implemented efficiently. Regarding the concern

of runtime overhead, LSF is similar to EDF in this case. This is because each kernel execution on

GPU is non-preemptive, implying that the slack value of a DNN task (used to decide the priority

of a pending kernel) only needs to be updated when any of its kernels complete execution on GPU.

We first use the following example to illustrate the fundamental ideas behind S3DNN ’s scheduler.

56

Algorithm 3 Supervised streaming and scheduling algorithm
Require: Q . Queue of kernels to be scheduled
Require: G . Group of kernels that can execute concurrently
Require: C . Critical queue that will be submitted to GPU

1: function ENQUEUE(Q[],k)
2: for q in Q do
3: UpdateSlacks(Q)
4: if Slack(k) > Slack(q) then
5: Q.InsertBefore(k, q)
6: function DEQUEUE(Q[])
7: UpdateSlacks(Q)
8: if G 6= ∅ then
9: go to assign

10: h← HeadOf(Q)
11: G.insert(h)
12: if tbRatio(h) < 1 then
13: for t in Q-h do
14: if tbRatio(t) < 1 then G.insert(t)
15: if tbRatio(G) > 1 then break
16: else go to assign
17: if tbRatio(G) < 1 then
18: h′ ← HeadOf(Q)
19: p← LookAhead(h′)
20: if tbRatio(p) < 1 then
21: G.reserve(p); C.insert(h′)
22: go to submit
23: else go to assign
24: C ← G; G← ∅
25: Submit(C); Q.Remove(C)

Consider three DNN tasks K1, K2, K3, each of which contains two layers. The first layer

utilizes 100% of the thread block resource in a GPU, and the second layer utilizes 30% of the

thread block resource (following the same pattern observed in Sec. 4.1). K1, K2, and K3 have a

deadline of 12, 14, and 11 time units respectively. Fig. 4.5 illustrates four possible schedules under

four different scheduling and streaming methods, where the y-axis represents the percentage of the

thread block resource required by a kernel.

57

Fig. 4.5(a) shows the FIFO schedule for isolated processes which is the default behavior used

in the YOLO framework, which causes a deadline miss for K3 due to serialized execution and

deadline-oblivious prioritization under FIFO. Fig. 4.5(b) shows the schedule under a kernel-level

non-preemptive LSF scheduling algorithm, which prioritizes kernels according to least-slack-first.

A kernelKk
i,j’s slack is defined to be r1i,j+di,j−rki,j−F (rki,j), where rki,j denotes the release time of

the kth kernel of the jth job of the ith DNN instance, and F (rki,j) denotes the amount of computation

completed by kernelKk
i,j at time rki,j . Intuitively, the slack denotes the number of time units a DNN

task can use to complete the remaining computation of the corresponding released kernel. Note

that Kk
i,j is released at the time when Kk−1

i,j (if any) completes. Thus, under the kernel-level LSF,

a kernel’s priority is defined using LSF when it is released. As seen in Fig. 4.5(b), the kernel-level

LSF is able to meet all tasks’ deadlines, yielding an end-to-end response time of 12 time units.

Note that LSF will not incur much overhead at runtime since priority definition is determined only

at kernel boundaries, and the maximum number of kernels released in the scheduling queue equals

to the number of CUDA streams which is often small, for example, less than 6 in our evaluation.

Although applying kernel-level LSF improves real-time performance, it does not benefit from

concurrency. Thus, we illustrate in Fig. 4.5(c) a schedule under the kernel-level LSF scheduler

combined with default CUDA streaming (i.e., put each DNN task into a separate stream and run

the three streams concurrently). As seen in the figure, since K2
1 and K2

3 only use a total amount of

60% of the thread block resource, these two kernels can execute concurrently at time 4. Doing so

further improves the end-to-end response time to be 10 time units.

An interesting observation obtained from Fig. 4.5(c) is that if K2
1 and K2

3 can be supervised to

wait for the release of K2
2 , then these three kernels can actually be executed concurrently, which

results in a further response time performance improvement as well as a better overall GPU uti-

lization and throughput, as illustrated in Fig. 4.5(d). As seen in this figure, a supervised delay

happens at time 4, where the scheduler chooses to run a lower-priority task K1
2 first, thus allowing

those three kernels to run together. This key observation motivates our design of S3DNN ’s GPU

58

scheduler. Since DNN tasks fundamentally exhibit a staged computation pattern where later layers

often require fewer resources (i.e., Insight 1), it is more likely that later kernels belonging to differ-

ent DNN tasks can be executed concurrently. However, since a kernel is released and pushed into

the scheduling queue only if its predecessor kernel completes, at each scheduling instance (i.e.,

when a currently running kernel completes on GPU), our scheduler takes a “lookahead” approach

to find whether the highest-priority kernel in the scheduling queue can run concurrently with any

later released kernels, as well as any kernels already waiting in the scheduling queue. This idea

is illustrated by the example shown in Fig. 4.5(d), where at time 4, the scheduler lookaheads and

finds out that the highest-priority kernel in the queue at time 6, which is K2
3 , can concurrently run

with a later released kernel K2
2 and an already released kernel K2

1 .

Algorithm description. Motivated by the above-discussed ideas, we now present our developed

GPU scheduler for S3DNN . We use a metric, tbRatio, to measure the proportion of the demanded

thread blocks by a kernel to the total number of thread blocks provided by the GPU hardware (of-

ten constrained by either the hardware architecture or register/shared memory size). For example,

GPUs with compute capability 2.x can support up to eight blocks per SM, if register/shared mem-

ory size is not the bottleneck. The pseudo-code of the algorithm is given in Algorithm 3. There are

two major functions defined in Algorithm 3: Enqueue (Line 1) and Dequeue (Line 6). The algo-

rithm needs three input data structures, including a scheduling queue (denoted by Q), any subset

of kernels that can execute concurrently (denoted by G), and the subset of kernels with the highest

priority in the scheduling queue (denoted by C). Function Enqueue is invoked at kernel arrivals

and completions, which sorts the released kernels in Q using LSF (Lines 2-5). It first updates the

remaining slacks for each kernel (line 3), and then inserts each newly arrived kernel k into Q ac-

cording to LSF (Lines 4-5). Instead of invoking Dequeue immediately after a kernel’s (e.g., k0’s)

completion, S3DNN delays this invocation a little bit until k0’s successor kernel is pushed into

the queue. It first updates slacks for kernels in the scheduling queue (Line 7), and then checks

if G is empty (Line 8). If G is not empty, then the scheduler directly submits kernels within G

59

① ③ ②

1
2K

2
2K

2
1K

2
3K 1

2K

2
2K

2
1K

2
3K

1
2K

2
1K

2
3K

1
2K

2
1K

2
3Khead

tail

(a) (b) (c) (d)

Figure 4.6: Intuitive illustration of Algorithm 3 using the example given in Fig. 4.5 (d).

for execution (Line 9). Next, the kernel h at the head of the scheduling queue is pushed into G

(Lines 10-11). Then the scheduler checks whether h can fully occupy the GPU by calculating its

tbRatio. If tbRatio of h is smaller than 1 (Line 12), indicating it may be concurrently executed

with other kernels, then the scheduler will seek to put more kernels in Q whose tbRatio is also

less than 1 (Lines 13-15); else h is directly submitted to GPU device for execution (Line 16). After

all potential small kernels in Q are merged into G, the scheduler checks whether the tbRatio of

G is still less than 1 (Line 17). If so, the scheduler looks ahead the successor kernels of the ones

residing in Q in the order of priorities, in order to identify any such kernels that have not been re-

leased but with tbRatio < 1 (Lines 18-22). The looking ahead operation can be achieved because

S3DNN builds dependency graphs (linear in YOLO) for all kernels at DNN instance construction.

The purpose of doing this lookahead method is to check whether it is possible to have a maximum

set of kernels that can run concurrently. If such a successor kernel exists, then the scheduler will

supervise the set of kernels in G to wait for the release of this successor kernel. Considering the

potential overhead caused by this lookahead method in practice, we limit the lookahead degree to

one, which implies that the scheduler will only check the subsequent kernel released by the next

highest-priority kernel in the scheduling queue (not counting the kernels already placed in G since

they need to complete first in order to release subsequent kernels). Finally, kernels placed inG will

be sent to C, which will be further submitted to GPU for execution (Lines 24-25).

Algorithm illustration. We use an abstracted workflow diagram shown in Fig. 4.6 to illustrate

how our proposed scheduler schedules the example DNN task set given in Fig. 4.5(d). At time 0,

60

Table 4.2: Configuration of video numbers and FPS

Config light medium heavy
FPS 3 4 5 3 4 5 3 4
10 FPS n/a n/a n/a n/a n/a n/a 1 2
15 FPS n/a n/a n/a 1 2 2 2 2
20 FPS 1 2 2 2 2 3 n/a n/a
25 FPS 2 2 3 n/a n/a n/a n/a n/a

three DNN tasks are released simultaneously. According to their slack times, the priority queue is

sorted in the order of K1
3,1, K

1
1,1 and K1

2,1. The scheduler will thus dequeue and schedule K1
3,1 first,

and thenK1
1,1 since there is no chance to run either kernel concurrently with another kernel. At time

6, three kernels wait in the scheduling queue in the order of {K2
3,1, K1

2,1, and K2
1,1} (Fig. 4.6(a)).

Since the highest-priority kernel K2
3,1 has a thread block utilization of 30%, the scheduler will

scan the other kernels in the scheduling queue to increase concurrency. In this case, it finds that

K2
1,1 can be grouped with K2

3,1 to execute concurrently (Fig. 4.6(b)). Then, since the thread block

utilization of these two grouped kernels is 60%, still less than 1, the scheduler seeks to lookahead

to check whether there is any later-released kernel that can execute with this group together. With

a lookahead degree of 1, the scheduler will only check once whether the successor kernel of the the

second-highest-priority kernel in the queue, which is K1
2,1, can be grouped together. In this case,

the total thread block utilization of the three kernels K2
3,1, K

2
1,1, and K2

2,1 is 90%, thus eligible to

run concurrently. Thus, the scheduler will group these three kernels together and will reverse the

priority ordering of this group of kernels with K1
2,1 which is originally the second-highest-priority

kernel waiting in the queue, to maximize concurrency. The scheduler has to schedule K1
2,1 first

because K2
2,1 will not be released untile K1

2,1 completes.

In summary, S3DNN ’s scheduler is designed to improve real-time performance through adopt-

ing a deadline-aware LSF algorithm while simultaneously maximizing concurrency through super-

vised streaming.

61

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
3-YOLO
4-YOLO
5-YOLO
3-S3 DNN

4-S3 DNN

5-S3 DNN

(a)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
3-YOLO
4-YOLO
5-YOLO
3-S3 DNN

4-S3 DNN

5-S3 DNN

(b)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

3-YOLO
4-YOLO
3-S3 DNN

4-S3 DNN

(c)

Figure 4.7: CDF of FPS under (a) light (b) medium (c) customized DNN configurations. “3-yolo”
(“3-S3DNN”) represents the FPS performance under YOLO (S3DNN) when there are three
input vidoes.

4.3 Evaluation

4.3.1 Experiment Setup

We conduct our experiments in a system consisted of an NVIDIA Quadro 6000 GPU, which is

based on the Fermi micro-architecture and features 480 cores and 6 GB of GDDR5 memory, and

an Intel Core i7-4790k CPU and 16 GB of RAM. We use Ubuntu 14.04 based on Linux 3.5.7

as the underlying operating system. We compare S3DNN to the YOLO framework as the base-

line which is seeing widespread use in both academia and industrial systems for processing DNN

workloads (Redmon et al., 2016). In this section, we will evaluate both real-time and throughput

performance in terms of end-to-end response time and FPS under multi-tasking scenarios. We first

62

conduct extensive experiments using video streams stored on the disk drive, and then a case study

using live video streams captured in real-time by using on-dash mounted cameras. The frame

frequency of a video as well as the deadline of each frame is determined by the videos’ FPS.

We use videos with 4 different FPS: 10, 15, 20, and 25. We evaluate three DNN configurations:

one is configured with a shallow network, small weight file, and fast kernels, representing a light

configuration; the second one is configured with a deep network, large weight file, and fast ker-

nels, representing a medium configuration; the third one is configured with a deep network, large

weight file, and slow kernels, representing a heavy configuration. These three configurations cover

the two major aspects that affect the execution: execution time of each layer (fast or slow kernels)

and number of layers (shallow or deep DNN layout).

4.3.2 Real-time performance

We first evaluate the real-time performance of S3DNN by measuring the cumulative distribution

function (CDF) of FPS under nine scenarios combining three DNN configurations with three cases

of different input videos (3, 4, and 5 videos, respectively). For each experiment, we use a mixed

set of video streams with different FPS, as shown in Table 4.2. The second row indicates three

workloads configurations. The first column uses FPS to indicate the deadlines of videos. Columns

2 to 9 show the number of concurrent videos and their composition. For example, the second

column shows that there are three concurrent incoming videos in total, in which one is 20 FPS and

two are 25 FPS.

Fig. 4.7 shows the evaluation results, where the x-axis represents FPS and the y-axis repre-

sents CDF. We observe that when the number of videos is more than one, S3DNN outperforms

YOLO by a significant margin. For example, with three input videos and light DNN configuration,

S3DNN is able to achieve an FPS higher than 30 in almost all cases, while 80% of the frames

have an FPS lower than 30 under YOLO. Moreover, in many cases, S3DNN is able to provide a

higher FPS than the original FPS of the input videos. This implies that under S3DNN , most of

63

the video frames can be completed before their deadlines (note again that a frame’s deadline is de-

fined as its release time plus 1/FPS), thus meeting the real-time processing constraint. On the other

hand, YOLO yields rather low FPS performance in many cases, particularly when the workloads

are heavy and/or DNN configuration becomes heavy. Also note that as seen in Fig. 4.7(c), when

the DNN configuration is heavy, we cannot get results from either YOLO or S3DNN because the

workload significantly over-utilizes the available hardware resource. Generally speaking, as is seen

in the three insets of Fig. 4.7, with increased number of videos, and/or heavier DNN configura-

tions, the overall performance under both YOLO and S3DNN decreases. This is intuitive because

more workloads will cause heavier contention on GPU. However, even under the scenario with

the heaviest workload (i.e., heavy DNN configuration with 4 input videos as seen in Fig. 4.7(c)),

S3DNN is still able to provide reasonably good performance, where CDF of 15 FPS or above

is greater than 70%; while YOLO yields a performance below 10 FPS for almost every frame in

this case. Thus, our design of S3DNN proves to be much more effective in delivering real-time

performance through performing data fusion and supervised streaming and scheduling.

4.3.3 Overall Throughput

In this set of experiments, we mainly evaluate the throughput under S3DNN compared to YOLO.

For the three DNN configurations, we use multiple 25-FPS one-minute-long videos as input. Since

we use offline videos as inputs, once one frame is processed, the next frame can be immediately

processed afterwards. The throughput is shown in the left sub-figure of Fig. 4.8, where the x-axis

is the number of videos processed simultaneously, the y-axis is the normalized throughput (i.e.,

the ratio of the throughput under S3DNN divided by the throughput under YOLO). The four

histograms shown under each case represent YOLO and S3DNN under three different DNN con-

figurations. We observe that S3DNN outperforms YOLO when there are multiple input videos,

fundamentally due to the fact that S3DNN enables concurrency through supervised streaming.

When there is only one video in the system, YOLO actually yields a slightly better performance

64

than S3DNN . This is because of the runtime overhead introduced by S3DNN , which is rea-

sonably small (less than 4% for all three DNN configurations). Another interesting observation

is that S3DNN yields the biggest performance improvement when there are two or three videos

in the system with a heavy DNN configuration. This is because (i) the heavy DNN configuration

implies heavier workloads that may benefit more from concurrency due to supervised streaming

and scheduling (as discussed earlier), and (ii) data fusion becomes particularly effective in such

cases because it is possible to fuse two or three videos into a single DNN instance. Processing

a single large matrix-based computation can be more efficient than separately processing several

smaller matrix-based computations. For cases with four or five video streams, the throughput un-

der S3DNN decreases because four videos cannot be fused into a single DNN instance due to

the fact that such data fusion would cause the processing time of the resulting fused frame to be

definitely longer than the deadline of each individual frame.

The right sub-figure of Fig. 4.8 demonstrates the breakdown of the histogram representing

five heavy workloads scenario. The histogram labeled “Fuse” (“S3”) indicates the throughput

when S3DNN only enables the functionality of data fusion (S3 scheduler). We observe that

data fusion brings the majority of throughput improvement (10%). S3 scheduler still brings 6%

throughput improvement though it is designed for meeting real-time constraints. The combination

of both brings 12% improvement (as shown in the left sub-figure) which is not linearly added-

up of two components’ improvements. This is because when we use each standalone technique,

the optimizations realized in the frontend-backend framework (i.e., model sharing, GPU context

consolidation) benefit both scenarios.

4.3.4 Assessing the Supervised Streaming and Scheduling Module

As we believe the supervised streaming and scheduling module contributes to both real-time per-

formance and throughput, we conducted a set of experiments specifically evaluating the efficacy

65

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

1-video 2-video 3-video 4-video 5-video

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Throughput

yolo light medium heavy

FuseS
3

Breakdown

Figure 4.8: Normalized throughput under light, medium, and heavy workloads using a variant
number of videos.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
YOLO
Streaming
S3 DNN−20

S3 DNN−25

Figure 4.9: Efficacy with respect to FPS under S3 compared to isolated run and default CUDA
streaming

of this module. As discussed in Sec. 4.2.3, we compare this module against two other methods, in-

cluding YOLO and concurrency-enabled CUDA streaming (i.e., binding multiple DNN instances

to separate CUDA streams and running them concurrently by the GPU hardware scheduler). In

these experiments, we use the light DNN configuration and four input videos, two 25-FPS videos

and two 20-FPS videos. We use the CDF of FPS as the evaluation metric.

Fig. 4.9 shows the experimental results, where the performance under S3DNN is separated

into two curves, corresponding to the two 20-FPS videos and the two 25-FPS videos, respectively.

For the other two approaches, we do not separate the results according to FPS. This is because

both these approaches are application-oblivious. Thus, the resulting performance for each of the

four videos is almost identical, even though they have different FPS. For depiction clarity, we just

66

draw one curve that represents the overall performance for processing all four videos under both

approaches. Note that since S3DNN schedules tasks considering their deadlines (thus FPS), the

resulting performance under each FPS category becomes distinguishable.

We observe in Fig. 4.9 that both CUDA streaming and our supervised streaming methods im-

prove the performance compared to YOLO. Compared to CUDA streaming, the FPS performance

under our supervised approach is clearly more predictable and consistent. For example, under

CUDA streaming, over 30% frames of the two 25-FPS videos miss their deadlines (i.e., with a <

25 FPS); while under S3DNN , only 6% frames of the two 25-FPS videos miss their deadlines.

Note that S3DNN yields a slightly worse overall performance than CUDA streaming, because

prioritizing kernels in the scheduling queue and performing supervised synchronization introduces

runtime overheads, particularly when the queue has a large number of kernels.

4.3.5 Multi-GPU scenarios.

Since S3DNN can also be applied in a multi-GPU environment, we have conducted experiments

to evaluate its performance in such scenarios. The evaluation platform is a heterogeneous multi-

GPU system consisting of an NVIDIA GTX 480 device and an NVIDIA Quadro 6000 device,

and an Intel i7 multi-core CPU. The NVIDIA GTX480 device features higher GFLOPS but less

memory capacity compared to NVIDIA Quadro 6000. As briefly discussed in Sec. 4.2.2, for multi-

GPU systems, the Governor in S3DNN applies an efficient bin-packing heuristic to assign fused

video streams onto GPUs according to each GPU’s memory constraints.

The baseline compared in this experiment is the best performance among various possible

partitioning of YOLO instances onto two GPU devices. For example, when the number of videos

is five and light DNN configuration is used, the baseline approach will assign three videos to GTX

480 and another two to Quadro 6000, which yields the best throughput among all partitioning

possibilities.

67

 1

 1.1

 1.2

 1.3

 1.4

light medium heavy

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

4-video
5-video
6-video
7-video

Figure 4.10: Performance under multi-GPU scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

3-light

4-light

3-m
edium

4-m
edium

3-heavy

4-heavy

P
e
rc

e
n
ta

g
e
 o

f
re

a
l-
ti
m

e
 f
ra

m
e
s baseline s

3
dnn

Figure 4.11: Percentage of frames that meet their deadlines.

Fig. 4.10 shows the throughput performance of S3DNN compared to YOLO under different

DNN configurations when processing different number of input videos. As seen in the figure,

S3DNN significantly improves the throughput performance under all scenarios. The largest im-

provement (almost 40% improvement) occurs under the scenario with heavy DNN configuration

and seven input videos. This is because in this case, the baseline solution assigns two videos on

fast (high GFLOPS) but small (GPU memory size) GPU (i.e., GTX 480) due to memory con-

strains, leaving five video on slow but large GPU (i.e., Quadro 6000). This unbalanced assignment

causes throughput loss. On the other hand, due to data fusion, S3DNN can achieve a much more

balanced partitioning, thus yielding a better throughput performance.

68

4.3.6 Online Webcam-based Object Recognition

Besides evaluating S3DNN for offline video-based real-time object recognition, we conducted a

case study evaluating the efficacy of S3DNN under an online scenario, where online webcams

continuously capture real-time video frames that require real-time object recognition processing.

The major difference between using online webcams and offline videos is the following: for offline

videos, the release time of each frame is rather flexible, i.e., whenever a frame completes, the next

frame can be immediately released and fed to the system; while for online webcam-captured video

streams, the release time of the frame is fixed, as defined by the FPS of the webcam. Moreover,

webcams often use a buffer to cache captured frames, with the advantage of hiding I/O latency.

However, if the processing speed is slow, then the buffer will overflow and harm the real-time

performance.

In this set of experiments, we use up to 4 online webcams, each of which is configured to be

15 or 20 FPS. We compare against YOLO, where each webcam is bound to a YOLO instance.

Fig. 4.11 shows the results in terms of the percentage of the frames that meet their deadlines. The

x-axis shows the evaluated scenarios, e.g., “3-light” denotes the scenario with three webcams and

light DNN configuration. We observe that S3DNN clearly outperforms YOLO in all scenarios,

particularly when the system needs to process more workloads due to an increased number of

webcams and/or heavier DNN configurations. For example, in the “4-heavy” case, baseline can

merely process 30% of the frames in real-time while S3DNN can achieve a schedulability of

nearly 70%. Thus, S3DNN is also effective in processing online video streams with enhanced

real-time performance.

4.4 Summary

In this chapter, we present S3DNN–a systemic solution that optimizes the execution of DNN

workloads on GPU in a real-time multi-tasking environment. Experimental results show that

69

S3DNN significantly outperforms state-of-the-art GPU-accelerated DNN processing frameworks

in a real-time multi-tasking environment.

70

CHAPTER 5

TIMING-PREDICTABLE ENERGY OPTIMIZATION

FOR DEEP NEURAL NETWORKS 1

5.1 Motivation

In this section, we present two fundamental observations that have motivated our design and im-

plementation of an efficient system solution specifically tailored for DNNs.

5.1.1 DNN-specific Energy Usage Patterns

We have performed an extensive set of experiments seeking to investigate the energy usage patterns

in a neural network. We setup the default configuration of Alexnet on a Jetson TX2 as a constant

factor and measure the energy consumption and the compute latency under different configurations.

The effect of GPU and CPU frequency on energy consumption for general workloads have

been extensively explored before (Abe et al., 2014; Kim et al., 2015; Imes et al., 2015; Santriaji

and Hoffmann, 2016; Zhang and Hoffmann, 2016). However, on an NVIDIA Jetson TX2, we

found no clear linear pattern between lowering/boosting the frequency and decreasing/increasing

the energy usage when running a DNN instance as a single entity. Rather interestingly, memory

energy usage decreases exponentially with higher frequencies. This behavior is more related to the

inherent structure of memory. Thus, making memory operations shorter by increasing the memory

frequency would result in a better energy efficiency.

In the case of GPU, the inherent parallelism causes the execution time of Alexnet to exponen-

tially decrease when the frequency is increased, outpacing the increased power usage that results

from the higher frequency. However, there is also not a clear trend when GPU frequencies are set

1©2018 IEEE. Reprinted, with permission, from Husheng Zhou, Soroush Bateni, and Cong Liu. ”PredJoule: A
Timing-Predictable Energy Optimization Framework for Deep Neural Networks”, In Proceedings of the 39th IEEE
Real-Time Systems Symposium (RTSS18). This paper is not published by IEEE at the time when writing this disser-
tation.

71

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

E
n
e
rg

y
 (

m
J
)

Configuration

Relu3 Relu6

Figure 5.1: Energy usage of Relu3 and Relu6 under different DVFS configurations.

to be higher than 1000MHz. For example, it is possible for a configuration with GPU frequency of

1000MHz to be more energy efficient compared to one with a 1300MHz frequency.

We next investigate the per-layer energy usage patterns in neural networks. For demonstration

purposes, we only show 2 different layers among all 24 default layers in Alexnet in Fig. 5.1. For

this experiment, we combine all the frequency changes but only present a subset of 192 configu-

rations in Fig. 5.1 for clarity. We record the average energy usage on an NVIDIA Jetson TX2. As

is depicted in the figure, each layer demonstrates a different response to the configuration change.

Interestingly, the same type of layer, Relu, behaves vastly different (almost opposite) when posi-

tioned at different depths. This stark difference is due to the fact that by the time Alexnet reaches

Relu6, the data has been shrunken to a point that Relu6 is dominated by computation rather than

memory. The same behavior is observed among all layers, with almost no consensus throughout

the neural network on an optimal configuration for energy usage. This trend is observed even for

the entire 14111 configurations tested.

Observation 1: If we consider DNNs as a blackbox, choosing the best configuration would

not be as simple as solving a linear equation (as for other more straightforward workloads (Kim

et al., 2015)) since our measurements show that Alexnet behaves optimally only by changing the

72

 0

 0.2

 0.4

 0.6

 0.8

 1

Norm1

Normalized Energy Normalized Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Relu6

Configuration

Figure 5.2: The trailing effect for two layers. Layer 4 has a pronounced trailing effect while layer
18 does not.

DVFS configuration for each layer. In fact, a layer’s optimum configuration can be the absolute

worst for other layers, making the process of finding an optimal configuration rather challenging

and interesting for neural networks. Moreover, we find that layer type alone cannot be a deciding

factor in finding the optimal configuration.

5.1.2 Energy-Performance Relationship

While choosing an optimum energy configuration for neural networks is an interesting challenge

on its own, addressing this problem without considering latency can cause safety-critical timing

issues. An optimal energy configuration for a layer can result in unreasonably long processing

times.

Thus, we have also considered layer-based performance in terms of latency. We would like to

investigate how a potential solution might be able to balance between energy usage and perfor-

mance such that stringent latency requirements are met while energy gets minimized. Specifically,

we are interested in understanding how each layer might respond to system configuration change

73

in terms of latency and energy efficiency. Fig. 5.2 shows the same setup used for Fig. 5.1. In this

case, we include the latency metric for the first normalization layer Norm1 and the Relu6 layer in

Fig. 5.2. Values of energy and latency are normalized by dividing each value by the maximum of

their respective measurement.

Naturally, when the system jumps from one configuration to another, there will be changes to

both latency and power. The critical point is to understand how would the energy consumption

respond to a decrease or increase in latency. As seen in Fig. 5.2, for Norm1, a decrease in latency

due to configuration changes will almost always result in a decrease in energy consumption and

vice versa. On the other hand, for a layer like Relu6, this trend is not clear. In other words,

we could be certain to a point that increasing the speed for Norm1 will result in better energy

efficiency. However, we cannot be certain that such a benefit exists for Relu6. For Relu6, it is

possible that a slight increase in speed can cause significant energy loss.

We call the trend present in Fig. 5.2 the trailing effect because energy consumption trails the

latency. In Sec. 5.2, we present an idea that can separate the layers based on this trailing effect.

Moreover, we will show the degree of which the trailing effect exists for various neural networks

and layers in Sec. 5.3.

Observation 2: We have investigated the impact of DVFS configurations on latency perfor-

mance with relation to energy, observing that a trailing pattern often exists between energy and

performance. This trailing relationship motivates us to explore potential solutions that may exploit

per-layer characteristics for more efficiently saving energy while maintaining timing requirements.

For instance, compared to Relu6, layer Norm1 could be a much better candidate if we need a

certain speedup while executing the network in order to meet the corresponding deadline.

5.2 Design

In this section, we outline the overall design of PredJoule, as illustrated in Fig. 5.3. To exploit

per-layer characteristics in terms of latency and energy usage patterns, we introduce a concept

74

of Uncertainty for each layer. Uncertainty indicates how uncertain the system should be about

a layer’s energy to performance relationship (as discussed in Sec. 5.1). Intuitively, the lower the

value of Uncertainty, the better the chance of achieving the optimal power/performance ratio for

that layer.

Consequently, the system should aggressively change the DVFS configuration to a faster one

for layers that have low Uncertainty. Moreover, the controller should explore more configurations

for layers with a high Uncertainty because the behavior of these layers is inherently unpredictable.

To maintain timing correctness, PredJoule introduces a progress tracker that provides an ef-

fective system status and interference control in the form of an execution deficit ε. The progress

tracker then conveys ε to a controller that is responsible for making configuration changes at run-

time. The controller is able to react to ε via configuration adjustments. However, PredJoule im-

poses a strict power-consumption tariff on the decision-making process of the controller. This is

achieved by inputting the next layer’s Uncertainty value into the controller. By smartly integrating

the consideration of both execution deficit ε and the next layer’s Uncertainty, PredJoule is able to

find the optimal configuration for each layer that yields controlled timing correctness with min-

imized energy consumption. Finally, we address issues of error-prone partial sorting and timing

guarantee with a history module. If the history is reliable enough, our method will use history in-

stead to adjust the total execution time accurately. Note that the configuration adjustment decision

is made only at each layer’s boundary (i.e., at the completion time of each layer’s execution).

5.2.1 Uncertainty

To capture the layer-based uniqueness in power and performance usage, we introduce a new con-

cept: Uncertainty. As discussed in Sec. 5.1, a unique characteristic of some DNN layers was the

trailing effect. Layers that exhibit this effect can be good candidates for more aggressive configu-

ration adjustments since the performance and energy behaviors can be easily predicted. Intuitively,

Uncertainty reflects the degree of certainty the system has on predicting how a layer’s energy usage

75

Controller

OS

GPU

CUDA

ɛ

DVFS

PredJoule

CPU

Memory

Progress
Tracker

History

DNN

.

.

.

Layer 1

Layer 2

Layer n

Uncertainty

Figure 5.3: Design overview of PredJoule.

would respond to the performance change due to configuration a djustments. A lower Uncertainty

value implies a higher certainty.

Before formally defining U ncertainty, we first define normalized ene rgy and lat ency perfor-

mance. We normalize the latency and energy usage values by dividing each value by the maxi-

mum:

Definition 1: Normalized energy and latency

Norm(Pc∈C) =
Pc

maxc∈C Pc
, (5.1)

Norm(Lc∈C) =
Lc

maxc∈C Lc
, (5.2)

in whichNorm(Pc∈C) andNorm(Lc∈C) are the normalized energy and performance values under

a configuration c, and C represents the entire configuration space.

Definition 2: Configuration Uncertainty (CU). For running a layer under a configuration c ∈ C,

we define CU of the layer as:

CUc∈C =
Norm(Pc)

Norm(Lc)
. (5.3)

Since CU is on a per-layer and per-configuration basis, storing and processing it for hundreds

of layers under thousands of configurations is expensive (if not impossible). Thus, we collect and

76

Table 5.1: Uncertainty for an example DNN configuration.

Conv1 Relu1 Norm1 Pool1 Conv2 FC Softmax

0.8 10.4 854.0 5.4 1.7 56.7 125493.0

summarize CU for each layer, and reduce the problem complexity by |C| (size of configuration

space). We utilize the max function to define the Uncertainty:

Definition 3: Uncertainty. Given the set of configurations C for each layer, we define the Uncer-

tainty as:

U = maxc∈CCUc. (5.4)

According to the above definition, the Uncertainty of a layer indicates the maximum gap be-

tween the normalized energy consumption and the normalized latency. If the energy consumption

is high (close to 1) and latency is low (close to 0), Uncertainty would become extremely large.

This large value can indicate to the system that a low latency (implying a fast configuration) can

yield a high energy consumption. Thus, the system needs to be cautious since it is uncertain about

whether or not a boost in performance could cause a dramatic sacrifice in energy for that layer.

On the other hand, for the case where Uncertainty is low, the system knows that an increase in

latency performance would lead to a smaller energy consumption for the corresponding layer and

configuration. Thus, the system can be more certain on optimizing the latency and energy using

this layer.

As an example, imagine a system with 7 computing layers. The Uncertainty of each layer along

with their type is depicted in Table 5.1. We note that real-world neural networks are usually much

deeper, yet Table 5.1 contains almost all the crucial layers in a compact configuration. As is seen

in the table, the first Convolutional layer abbreviated as Conv1 has an Uncertainty that is low. This

is due to the type of the layer. Moreover, this layer is at a shallow level of the DNN, which makes

the trailing effect for this type of layer even more pronounced.

77

Table 5.2: Approximate Uncertainty for different layer types at different depths.

Layer Shallow Medium Deep

Convolutional 1-2 2-3 2-3
Relu 10 20 20
Normalization 800-1000 5-10 4-5
Pooling 4-5 5-6 8-9
Fully Connected ∞ 2-3 3-4
Softmax ∞ ∞ ∞

The second convolutional layer has an Uncertainty that is larger because it is deeper.2 The

Uncertainty indicates that in this case, the power would trail the performance closely by up to 1.7

times. Other layers, particularly the Softmax layer, have high Uncertainty values, indicating that

the relationship between power and performance is rather erratic for these layers.

Finally, to ease the burden of future development based on Uncertainty, we offer Table 5.2.

Table 5.2 contains an approximate value of Uncertainty for the most common DNN layers. The

Uncertainty is based on the two most important factors: the type of the layer and the position of the

layer. As discussed earlier, the type of the layer is not the sole contributor to a layer’s power/per-

formance behavior. The position of that layer in the neural network is equally important. As the

DNN progresses, the amount of information processed by each layer is reduced substantially. On

the other hand, the computation required to produce the output for the next layer becomes much

more significant. We note that these values of Uncertainty only apply to GPU-based DNNs. Since

these types of DNNs are the most widespread version, Table 5.2 should cover most use cases in

the real world.

2The depth is important because it would reflect on the computational characteristic of the layer. This reflection is
mainly due to the input size for that layer. The deeper a layer is, the smaller the input size for that layer is, in most
cases.

78

5.2.2 Progress Tracker

We have explained our intuition behind using Uncertainty to capture the power/performance char-

acteristics of each layer. We now introduce the other component, a progress tracker, that will be

integrated into PredJoule to tightly control timing through tracking the execution deficit at each

layer boundary.

We define a straightforward progress tracking strategy based on a schedule that is constructed

from a randomly selected DVFS configuration. Consider the example shown in Fig. 5.4. Assume

there is a DNN instance T consisting of n layers {T1, ..., Tn}. Let c′i denote the execution time

of each layer li in this schedule. Let ε denote the end-to-end execution deficit in this schedule,

i.e., ε = F − D, where F and D are the completion time and deadline of T , respectively. A

positive (negative) value of ε implies that T completes after (before) the deadline; the case where

ε = 0 implies that T completes exactly at its deadline under this random configuration. At each

layer boundary, the system updates the execution deficit and will have to catch up in the case of

a positive value. On the other hand, the system might exploit a negative execution deficit for an

energy efficiency gain.

Our design tracks the progress of each layer’s execution under its runtime configuration C

using this random schedule as a reference, which considers the above-defined ε. Our design then

compares each layer li’s execution time under C, denoted as ci, with the execution time c′i under

the random configuration. That is, from a per-layer perspective, after executing each layer li under

a certain configuration C, T would have an updated deficit of ε = ci− c′i + ε. A positive (negative)

per-layer deficit at each layer boundary implies that after executing layer li, the entire schedule is

running behind (ahead) compared to the “ideal schedule”. From a latency perspective, a perfect

scenario is to complete each layer such that the deficit at the corresponding layer boundary is equal

to 0, which implies that the entire DNN instance would complete exactly at its deadline.

79

ci
’

ci

Ɛ

ti : Ɛ = ci - ci
’ + Ɛ

Random Sched.

Runtime Sched.

Figure 5.4: Example illustration of the progress tracker.

5.2.3 Integration

In this section, we describe how we integrate our idea of Uncertainty with the progress tracker

to achieve timing predictability and energy minimization. Specifically, we consider the execution

deficit at each layer boundary and use Uncertainty of the next layer to decide its configuration.

There are two cases to consider after executing each layer li.

Case 1: ε > 0. If the deficit after executing li is positive, the system will need to jump into

a higher-speed configuration to catch up with the deadline, say from Ci to Cj . This configuration

adjustment depends crucially on Uncertainty of the next layer li+1 for energy saving reasons.

As discussed in Sec. 5.2.1, a lower Uncertainty indicates that the layer exhibits a more pro-

nounced trailing effect in which a higher performance results in lower power usage, while a high

Uncertainty indicates irregularities that could potentially be inefficient.

Since the configuration space is partially sorted, the jump from Ci to Cj can be achieved by

adding a value to i. This would imply that the higher the index value of a configuration is, the

faster it will be (we first assume this and correct for any errors once the history becomes reliable).

Moreover, a jump to a higher value for configuration index would be directly related to the inverse

value of Uncertainty since a small Uncertainty should result in a big jump:

j = i+ α
1

Ul∈L
i, (5.5)

80

Algorithm 4 Controller component of PredJoule.
Require: configs[] . list of possible DVFS configurations
Require: history[] . speed and power of all conf. compared to cr

1: function CONTROLLER(curr c, expected deadline)
2: Update

(
ε
)

3: req. speedup← expected deadline / (expected deadline+ε)
4: c← minpowerup (LookUP

(
history, req. speedup

)
)

5: if ε < 0 then
6: if c and M> thresholdM then . M: Maturity
7: return c
8: else
9: c← configurations[α. 1

Ul
.indexOf

(
curr c

)
]

10: else if ε ≥ 0 then
11: if c.powerup < curr c.powerup and M> thresholdM then
12: return c
13: else
14: c← configurations[β.Ul.indexOf

(
curr c

)
]

15: return c

in which both ci and cj are part of the configuration space C. The variable α acts as a user-

defined gauge that can control the aggressiveness of Eq. 5.5.

Case 2: ε ≤ 0. In the case that the deficit is less than or equal to zero, PredJoule will try to

exploit the resulting negative ε for gaining a more optimal energy configuration. In other words,

if the Uncertainty of li+1 is high, it is possible to gain energy optimization by running slower.

For example, an infinite Uncertainty implies that the slowest configuration should be used to be

conservative. We reuse Eq. 5.5 with a reversed coefficient:

j = i− βUl∈Li. (5.6)

β is the corresponding coefficient for a negative execution deficit.

A Learning-based Approach. An assumption made in Eqs. 5.5 and 5.6 is that the configuration

space C is perfectly sorted according to the speedup gained. However, in real-world, there could

be oddities present in a partially sorted set. Moreover, Uncertainty tries to encapsulate how each

layer would react to a configuration change into just one number, which will obviously result in

81

a loss of detail that can potentially hamper the process of improving the energy usage. Finally, it

is impossible to guarantee any latency requirement because the controller cannot predict the exact

degree of speedup a new configuration would bring. If there were an exact speedup associated with

the new configuration, the controller would have been able to intricately choose a configuration that

would exactly match the current system need.

Contemporary literature concerning this matter always resorts to some sort of offline bench-

marking in order to mitigate this problem (Imes et al., 2015; Zhang and Hoffmann, 2016; Mishra

et al., 2015). While offline benchmarking can be effective in isolation, it cannot work for a run-

time environment. The biggest reason is that an offline solution will not be able to adapt to any

interference due to either workload or system environment changes. This is a major drawback

even without considering the overhead of offline benchmarking for hundreds of layers run under

thousands of configurations.

Rather, we would like to exploit a special characteristic of neural networks: All neural networks

are constructed from a limited set of layers and keep a consistent configuration throughout multiple

executions. Since the parameters, operations and data width and types are consistent between each

run, variations in input cannot affect the execution behavior of a DNN in a measurable way. This

motivates us to design a learning-based approach that can learn and adapt more granularity over

time. Such an approach is especially desirable in applications such as autonomous driving in which

a learning procedure is always part of the development. For example, Tesla uses a “fleet learning”

procedure (Tesla, 2017) to make vehicles learn driving from shared driving data.

For the learning phase, we introduce a history recorder to PredJoule. Each time the controller

selects a new configuration according to Eq. 5.5 and Eq. 5.6, it will record the resultant speed and

energy change for that specific layer. To make the history data structure and the lookup procedure

simple, all the changes are recorded by dividing the newly measured power and speed of the

system by a single base configuration: the random configuration first defined in Sec. 5.2.2. Note

that history is layer-based.

82

However, the accuracy of the history entirely depends on the number of new configurations that

have been explored by using Eq. 5.6 and 5.5. If the system has not been running for long or has

settled on an optimal configuration after visiting only a few configurations, the history can be quite

unreliable. The only solution in this scenario would be to continue to explore new configurations.

We represent this quality by a variable called system maturity denoted by M . For a DVFS

configuration space C and a history lookup table H , the maturity of the system is defined as:

M =
|H|
|C|

, (5.7)

in which M is always between 0 and 1. The |H| and |C| depict the number of entries in H and

C, respectively. The problem now becomes that of setting a threshold. The closer the M is to

1, the more likely it is for PredJoule to choose a configuration already in the history. We set an

extremely high value of the threshold (0.9999) because in our experiments, the system does not

miss the deadline after a few iterations. We note that M is layer based because history is layer

based.

The overall steps for PredJoule controller are depicted in Algorithm 4. The LookUP procedure

is for searching history. Imagine a neural network extracted from the example of Table 5.1. For the

sake of simplicity, we only assume three layers exist: Conv1, Relu1, and Softmax. First, PredJoule

will choose a random DVFS configuration (e.g., c400). It will then run a warmup run using that

configuration and record the execution time of each layer. After the warmup run is finished, the

controller will calculate ε by deducting the deadline from the total execution time. For example,

with a deadline of 30ms and total execution time of 35ms, ε will initially be 5. The controller will

also set the deadlines of each layer to the recorded execution times. This deadline will be used to

update the ε and calculate the speedup for subsequent runs of the neural network.

With a positive deficit, the system will need to catch up. At the beginning of next execution,

the controller (at line 5) will recognize the positive ε. Moreover, the maturity is just 1(the random

configuration) divided by the configuration space size (1411 in our case). The check thus will fail

83

 0

 20

 40

 60

 0 5 10 15 20 25

 0

 40

 80

 120

 0 5 10 15 20 25

 0

 20

 40

 60

 0 20 40 60

 0

 20

 40

 0 10 20 30 40

 0

 40

 80

 120

 160

 0 100 200

CaffeNet AlexNet GoogleNet VGGNet ResNet

Figure 5.5: Uncertainty for various neural networks.

at line 6. For this layer’s boundary, the system will use Eq. 5.5 in line 9 instead, with an α of 1.

The system will jump to c400+1.1/Ul.400, which is c900. At the boundary of layer 1, the controller will

record the speedup of c900 (based on c400). If ε is still positive, the same procedure is applied. But

let us assume that the system has caught up with the execution deficit. Then, at the boundary of

layer 2, with a maturity of 1/1411 (for layer 2), the system will use Eq. 5.6 (at line 14) instead. This

equation backtracks any jump in order to examine previous configurations that have been missed.

For layer 2 and a β of 0.001, the new configuration will be c400−0.001.10.400 = c360 (β is always much

smaller than α because catching deadline is much more urgent than exploration). This procedure

continues until the system reaches enough maturity so that it can solely rely on history. While the

deadline can be caught before then (as it almost always does in our experiments), PredJoule can

always meet the required predictability once the system is mature.

5.3 Evaluation

5.3.1 System Setup

We fully implement PredJoule and perform an extensive set of experiments on a cutting-edge

autonomous driving embedded platform, which is an NVIDIA Jetson TX2. This platform has a

6-core big.LITTLE CPU with 2 large Denver cores and 4 ARM A57 cores. The GPU is a Pascal-

based 256 core processor that shares 8GB of RAM with the main CPU. The GPU and the CPU are

embedded in an NVIDIA Parker system-on-a-chip

We intend to evaluate PredJoule’s ability to provide timing predictability and energy savings.

We compare PredJoule to the following approaches:

84

• Poet (Imes et al., 2015): Poet is an open-source library that uses a control theory approach

to calculate deadline errors and decides on a speed-up based on that error. For energy efficiency,

the authors of Poet have added an optimizer that loops with an order of O(N2) on all configura-

tions to find two configurations: one configuration that runs slower but is energy efficient and one

configuration that is fast and inefficient. This optimizing algorithm is done in order to find the

best balance between energy and latency. Another approach, MEANTIME (Farrell and Hoffmann,

2016) is also concerned with energy efficiency. However, it is based on Poet with the addition of

approximation. With no approximation, MEANTIME may not be effective.

• Poet-GPU: Poet does not consider platforms containing GPUs. We thus have implemented

a version of poet that can control GPU’s DVFS configuration in addition to CPU.

• Race2Idle: Race2Idle (Kim et al., 2015) is the infamous simplistic approach to meet hard

deadlines. The premise is simple: run everything at max frequency with all cores activated. While

this method is easy to dismiss because it might be assumed to have bad energy efficiency, it beats

Poet in some scenarios according to our observations.

• Max-N: NVIDIA has implemented several hardware DVFS modes that are preloaded on

Jetson TX2 and are accessible using the nvpmodel command. Max-N is the high performance

mode that allows for the maximum frequency of CPU and GPU. However, the frequencies are

adjusted dynamically at runtime.

•Max-Q: Max-Q is the most energy efficient mode that disables big cores entirely. Moreover,

it caps the maximum frequency on both CPU and GPU for energy saving purposes.

We test each of the six approaches using five different DNN models: GoogleNet, CaffeNet,

AlexNet, VGGNet, and ResNet. We first show the general usability of PredJoule by comparing

it against other methods on all five DNN models, under two deadline configurations of tight and

relatively loose deadlines. Next, we use the largest and the most advanced among these neural

networks, which is ResNet, to demonstrate detailed latency and energy results under two scenar-

ios: running DNN workloads with and without interference. We end by measuring PredJoule’s

overhead.

85

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

CaffeNet

AlexNet
GoogleNet

VGGNet
ResNet

A
v
g
.
E

n
e
rg

y
 (

m
J
)

Max-N
Max-Q

Race2Idle
Poet

Poet-GPU
PredJoule

(a) Tight deadline

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

CaffeNet

AlexNet
GoogleNet

VGGNet
ResNet

A
v
g
.
E

n
e
rg

y
 (

m
J
)

Max-N
Max-Q

Race2Idle
Poet

Poet-GPU
PredJoule

(b) Loose deadline

Figure 5.6: The average energy consumption of all five neural networks with tight / loose deadlines.

5.3.2 Generality

First and foremost, we test the deadline miss ratio and energy usage of all six methods for running

the five DNN models with two deadline settings: tight and loose deadlines. According to the

specific computational demand, we set a tight (loose) deadline of 20ms / 20ms / 50ms / 50ms /

100ms (25ms / 25ms / 100ms / 100ms / 150ms) for CaffeNet, AlexNet, GoogleNet, VGGNet, and

ResNet, respectively.

We test five different neural networks because each has a unique combination of layers with

different sizes and depths. Fig. 5.5 shows the differences of the five neural networks in terms of

the value of Uncertainty for different layers. As is evident in the figure, CaffeNet and AlexNet are

86

Table 5.3: Method deadline misses for various DNNs.

CaffeNet

Alex
Net

GoogleNet

VGGNet

ResNet

Max-N 0% 0% 100% 100% 100%
Max-Q 100% 100% 100% 100% 100%
Race2Idle 0% 0% 0% 100% 0%
Poet 1% 0% 4% 99% 16%
Poet-GPU 51% 9% 6% 99% 51%

PredJoule 0% 0% 10% 3% 0%
After 50 iter. 0% 0% 0% 0% 0%

relatively small networks. The most fluctuation for these neural networks is happening towards

the end since that is where fully connected and softmax layers are located with small input sizes

and large computations. While the same is true for VGGNet and ResNet, they are much more

complicated, especially ResNet with over 200 layers. However, these extra layers are added in the

name of improved accuracy. Finally, GoogleNet has a concentration of Relu layers in the middle

that show up as high points of Uncertainty.

As is depicted in Fig. 5.6(a), PredJoule outperforms all other methods by a significant margin

in most cases. It is observed that Race2Idle can perform as good as Max-Q or better. This is

due to the fact that if a DNN is considered as a layer-oblivious blackbox, then it will have a low

Uncertainty overall and will thus benefit from running faster. However, running faster will have

a potentially adverse effect on layers with a high Uncertainty. Thus, our method can get much

more efficient than Race2Idle by scaling back the DVFS for layers with high Uncertainty values.

Finally, Poet does not perform well because it neither controls GPU nor being layer-aware. Our

own port of Poet to GPU performs better than Poet because it controls GPU frequency for energy

optimization. However, the effect of a layer-based design exploring layer characteristics is clearly

depicted when comparing Poet-GPU to PredJoule.

The second scenario depicted in Fig. 5.6(b) shows the same experiment but under a loose

deadline setting. Having a loose deadline can show the efficacy of exploiting the system idleness

87

 0

 50

 100

 150

 200

 250

 300

 350

L
a
te

n
c
y
 (

m
s
)

PredJoule
poet

Poet-gpu
Race2Idle

Max-Q
Max-N

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

E
n
e
rg

y
 (

m
J
)

Figure 5.7: Energy and latency of PredJoule compared to others for ResNet-100 over 50 iterations.

under each method. For example, Race2Idle will suffer more when the system is idle for longer

since its configuration does not change between scenarios. Other methods may suffer less because

they switch to different settings accordingly. For two DNNs (VGGNet and ResNet), Max-N will

be better than Max-Q in terms of energy efficiency. This scenario happens because the speed

gain from running VGGNet and ResNet under Max-N will outweigh the added energy usage of it.

Moreover, reactive methods such as Poet/Poet-GPU should be able to utilize looser deadlines to

minimize energy since they make tasks run longer and may achieve better energy efficiency. While

PredJoule benefits from a looser deadline compared to the tight case, Poet clearly cannot. This is

due to the fact that Poet does not consider idleness as an adverse effect on energy and will not try to

remedy it. Our method, on the other hand, will backtrack on high Uncertainty layers to find more

efficient configurations. This effect is the most pronounced in VGGNet, which has a complicated

structure.

Finally, we compare the deadline miss ratios of PredJoule against the other five methods in

Table 5.3. We run each task for 1000 iterations with the tight deadline and record a missed deadline.

88

PredJoule can outperform others in almost all cases. For CaffeNet, AlexNet, and ResNet our

method never misses a deadline. This is because PredJoule is able to recover the execution deficit

inside the first iteration, rather than waiting until after the first iteration. However, our method

misses 10% of deadlines for GoogleNet and performs worse than Race2Idle, Poet, and Poet-GPU

in this specific scenario. This adverse effect is because GoogleNet contains many Relu layers that

have a high Uncertainty. Thus, our method will take longer to adapt and meet the deadline, missing

deadlines only at the beginning. We showcase the execution of our method compared to the others

in a subsequent section. Finally, for the complicated VGGNet, our method only misses 3% of

deadlines, which is much better than others. In fact, for VGGNet and our tightly set deadline, other

methods will almost entirely miss their deadlines. This is a special case in which our layer-based

design would shine the most, because VGGNet has many layers with low Uncertainty, even more

so than CaffeNet and AlexNet. Nonetheless, our method still misses deadlines at the beginning

and is not able to recover inside the first iteration. We believe our method can improve on timing

predictability compared to competing approaches, as is evident by no deadline misses after 50

iterations.

5.3.3 Detailed Latency/Energy Performance

We now showcase a detailed set of latency and energy results for all the six methods over time

for running ResNet with a deadline of 100ms for 50 iterations. ResNet is the largest and the most

advanced among our tested neural networks. As seen in Fig. 5.7, other than Race2Idle, our method

is the only one that can meet the latency requirements of ResNet. Regarding energy efficiency,

our method also outperforms the other methods by a considerable margin. This set of results

demonstrate that our design and implementation of PredJoule can achieve two (often) conflicting

goals of timing predictability and energy efficiency. The consistency for Max-Q and Max-N are

also apparent in this figure. However, they cannot match the latency of our method. Moreover,

PredJoule can be as much as 66% and 70% more efficient compared to Max-N and Max-Q.

89

 0

 50

 100

 150

Target

L
a

te
n

c
y
 (

m
s
)

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

E
n

e
rg

y
 (

m
J
)

Figure 5.8: Energy and latency of PredJoule when interference is present.

5.3.4 Adaptability With Interference

While the energy and latency can be optimized under PredJoule when the neural network is run

as a standalone application, this scenario may not always happen in practice. In many cases, the

neural network is accompanied by other tasks that run concurrently. For example, in autonomous

driving, it is possible that an object tracking task is running in parallel to a route planning task. In

this experiment set, we test our method’s adaptivity with the presence of interference.

Fig. 5.8 shows the detailed energy and latency results for running ResNet with a deadline of

100ms under our method over 30 iterations. At iteration 10, we manually add interfering work-

loads. The interference will finish execution at iteration 20, as depicted by the cross lines. As seen

in the figure, when the interference is introduced, the added energy and latency will initially hurt

the execution of ResNet. Nonetheless, PredJoule is able to recover rather quickly and meet the

deadline within a few iterations. Similarly, the energy usage will only increase slightly when the

adaptation happens. PredJoule is able to respond to interference because it actively updates the

execution deficit ε at each layer boundary. ε shall include any interference because it is always

calculated in a real-time fashion in our implementation. Also, PredJoule is able to recover inside

10 iterations, making the execution more responsive.

90

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

O
v
e
rh

e
a
d
 (

m
s
)

Iteration

PredJoule Poet

Figure 5.9: Overhead of PredJoule vs. Poet for ResNet.

5.3.5 Overhead

While it might be tempting to ignore the overhead for energy saving solutions, we believe it is

crucial for two reasons. First, our method aims at meeting latency requirements. Thus, a solution

with a high overhead may defeat this purpose. Second, most energy-related literature might assume

that frequency change and DVFS, in general, are free. Our findings show that DVFS may not have

a negligible overhead, especially for Linux since it requires multiple file accesses. In this set of

experiments, we evaluate the runtime overhead incurred under PredJoule to assess whether our

design and implementation is efficient in practice.

We compare our method against Poet for running ResNet with a deadline of 100ms, in terms

of runtime overhead due to DVFS configuration adjustment (note that Poet is shown to be a rather

efficient runtime DVFS solution (Imes et al., 2015)). As is depicted in Fig. 5.9, PredJoule is

highly efficient even compared to Poet. This efficiency comes from two factors: First, PredJoule

implements an efficient implementation of DVFS for Linux that relies solely on file handles and

does not need to perform costly file accesses. Second, Poet iterates through all configurations

before finding an optimal configuration. As is evident in Fig. 5.9, at around iteration 60, Poet has

found an optimal configuration. However, the fluctuation in overhead still remains as Poet does

a preliminary calculation before moving on to the next iteration. On the other hand, PredJoule

91

mostly uses Eq. 5.5 and 5.6 which are done in constant time. For occasions that the history might

be needed, we implement an efficient reverse history that gives the desired speed up in O(1) time.

Once our method has found an efficient configuration, the overhead becomes minimal since there

is no need for DVFS operations any longer.

5.4 Summary

This chapter presents PredJoule, a timing-predictable energy optimization framework for run-

ning DNN workloads in a GPU-enabled automotive system. PredJoule presents a layer-based

approach that controls the timing and optimizes energy efficiency through exploiting each layer’s

performance/energy characteristics. Our experimental results demonstrate that PredJoule is able

to achieve timing predictability with no deadline misses and much higher energy efficiency than

prominent methods.

92

CHAPTER 6

TASK MAPPING IN HETEROGENEOUS SYSTEMS FOR FAST COMPLETION1

6.1 System Modeling and MIP Formulation

In this section we give out a list of notations and definitions to help us better formalize the proposed

problem, and then we propose a MIP (Mixed Integer Programming) Formulation to get optimal

mapping in theory.

6.1.1 System Model

Let us consider the problem of mapping n independent applications Γ = {τ1, τ2, τ3, ..., τn} onto m

processors M = {M1,M2, ...,Mm}. Each processor is either a CPU or a GPU.

Each application τi is composed by serial instructions and kernels, where kernels represent

computation operations. Kernels of each application are chained together according to the com-

putation logic. They may have dependencies since data flows from one kernel to another. That is,

τi is modeled as a kernel graph that contains zi connected kernels {τ 1i , τ 2i , ..., τ
zi
i }. Let N denote

the total number of kernels of applications in Γ. Each kernel τ ji has an execution time of Cj
i,k if

executed on processor pk. The execution time ranges from milliseconds to hours, depending on

the specific application. Similar to prior work (Luk et al., 2009), we use the sampling functionality

of StarPU (Augonnet, Thibault, Namyst, and Wacrenier, Augonnet et al.) to obtain the estimated

execution time of a kernel.

Between any two connected kernels is an edge, which implies that precedence constraints exist

between these two kernels. If kernel τ ji has an outgoing edge ejki to kernel τ ki , then τ ki cannot

start execution until it receives the data produced by τ ji . Let P(τ ji) denote the set of predecessor

kernels of τ ji , i.e., kernels that have outgoing edges from τ ji . Similarly, let S(τ ji) denote the set

1©2014 ACM. Reprinted, with permission, from Husheng Zhou and Cong Liu. ”Task Mapping in Heterogeneous
Embedded Systems for Fast Completion Time”, In Proceedings of the 14th ACM International Conference on Embed-
ded Software (EMSOFT14). DOI:10.1145/2656045.2656074

93

Table 6.1: Notation Summary.

N number of total tasks
n number of applications
m number of processors
τi ith application
τ zi zth kernel/task of application τi
Mi ith processor (either a CPU or a GPU)
Cj
i,k execution time of τ ji on processor Mk

S(τ ji) set of successor kernels/tasks of τ ji
P(τ ji) set of predecessor kernels/tasks of τ ji
ejki edge from τ ji to τ ki

Tq→w(ejki) time taken to send data from τ ji to τ ki

of successor kernels of τ ji , i.e., kernels that have incoming edges to τ ji . Let Tq→w(ejki) denote the

time for τ ji executed on processor pq to send its produced data to its successor τ ki (connected by

edge ejki) executed on processor pw. A summary of important notations is given in Table 6.1. We

use the term task to represent a kernel combining with its needed data. For readability, in the rest

of this chapter, we will use task and kernel interchangeably.

Definition 1. We define the depth of a kernel to be the number of kernels on the longest path

between this kernel and a kernel of the corresponding kernel graph that has no predecessors.

Kernels with no predecessors have a depth of 1. Let D(τ zi) denote depth of kernel τ zi in the kernel

graph of τi.

Preemptive vs. non-preemptive execution On GPUs, executions are often non-preemptive (El-

liott and Anderson, 2011). That is, once a kernel starts execution on a GPU, it cannot be preempted

by other kernels until its completion. On CPUs, executions can be preemptive. However, preemp-

tions may incur significant amount of overheads at runtime such as context switch overhead and

migration overhead (Basaran and Kang, 2012). To ensure the efficiency, as well as to simplify the

formalism and algorithms, we thus assume in this chapter non-preemptive executions on CPU as

well.

94

6.1.2 An MIP Formulation

We formalize the problem of minimizing the makespan of a given set of applications executed on

m CPU and GPU devices by specifying an integer program with a polynomial number of variables

as follows. We first define a new set of variables that are used in the integer program.

Definition 2. Define

pxw(τ
j
i) =

 1 if τ ji is the x-th kernel executed by Mw

0 otherwise,

for all 1 ≤ w ≤ m, 1 ≤ x ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ zi. For every kernel τ ji , let sji ≥ 0 denote the

starting time of its execution.

The makespan can be denoted by Cmax. Then, this problem may be formulated as:

minimize Cmax

subject to:

m∑
q=1

N∑
g=1

pgq(τ
j
i) = 1, ∀τ ji ∈ Γ (6.1)

n∑
i=1

zi∑
j=1

p1q(τ
j
i) ≤ 1,∀q = 1, ...,m (6.2)

n∑
i=1

zi∑
j=1

pgq(τ
j
i) ≤

n∑
i=1

zi∑
j=1

pg−1q (τ ji),∀q = 1, ...,m, ∀g = 2, ..., n (6.3)

sji ≥ ski +
m∑
q=1

N∑
g=1

Ck
i,q · pgq(τ ki) (6.4)

+
m∑
q=1

N∑
g=1

m∑
v=1

N∑
h=1

pgi,q(τ
j
i) · phi,v(τ ki) · Tq→v(ejki),

∀τ ji ∈ Γ,∀τ ki ∈ P(τ ji)

95

sji ≥ skl + Ck
l,q − α ·

(
2−

(
pgq(τ

k
l) +

N∑
r=g+1

prq(τ
j
i)

))
(6.5)

∀τ ji ∈ Γ,∀τ kl ∈ Γ,

∀q = 1, 2, ...,m, ∀g = 1, 2, ..., N − 1

Cmax ≥ sji +
m∑
q=1

N∑
g=1

Cj
i,q · pgq(τ

j
i), ∀τ ji ∈ Γ (6.6)

sji ≥ 0,∀τ ji ∈ Γ (6.7)

pgq(τ
j
i) ∈ 0, 1,∀q = 1, ...,m, ∀g = 1, ..., N, ∀τ ji ∈ Γ (6.8)

where α >> 0 is a sufficiently large penalty coefficient.

Integer program description. Eq. (6.1) ensures that each task is assigned to exactly one processor.

Eq. (6.2) ensures that at most one task will be the first one to be executed by any given processor.

If a task is the gth (where g ≥ 2) assigned to processor Mq, then there must be another assigned

as the (g − 1)th task of this same processor, as ensured by Eq. (6.3). Moreover, Eq. (6.4) ensures

that precedence constraints are respected. That is, no task τ ji may start execution unless all its

predecessors have already completed their execution and τ ji has already received the data produced

by its predecessors.

Eq. (6.5) defines the sequence of starting times of the set of tasks assigned to the same proces-

sor. It expresses the fact that task τ ji must start at least Ck
l,q time units after the beginning of task τ kl ,

whenever it is executed after task τ kl on the same processor Mq, i.e., pgq(τ
k
l) =

∑N
r=g+1 p

r
q(τ

j
i) = 1

for some g = 1, 2, ..., N − 1. Eq. (6.6) defines the constraint on the makespan (i.e., the maximum

completion time among all kernels).

96

By solving the above formulation, we obtain an optimal solution that minimizes the makespan.

Unfortunately, solving this integer program (although it has a polynomial number of 0-1 variables)

is quite expensive in practice. In the next sections, we report several key observations motivated by

measurements-based case studies (Sec. 6.2), which further motivate our design on several efficient

online mapping algorithms that can be applied in practice (Sec. 6.3).

6.2 Case Studies: What to Consider for Making Mapping Decisions

In this section, we present several measurements-based case studies that motivate the design of

our mapping algorithms. We measured the completion time of executing a vector add application

τ1 and a matrix multiplication application τ2 on a heterogeneous system configured with one Intel

Core i7 CPU and NVIDIA GeForce GTX660 GPU. τ1 can be expressed as (v1 + v2) ∗ π, where

v1 and v2 are vectors and π is a constant. τ2 can be expressed as (a ∗ b) + (c ∗ d), where a, b,

c, d are four input matrices. These applications are commonly seen in scientific computing. The

corresponding kernel graphs are illustrated in Fig. 6.1. Specifically, τ1 contains two kernels τ 11 τ
2
1 ,

where τ 11 is a vector add kernel and τ 21 is a vector scale kernel. τ2 contains three kernels, where

τ 12 and τ 22 are two matrix multiplication kernels, and τ 32 is a matrix add kernel. For the generated

input data, v1 and v2 have a size of 50000 elements each. a, b, c, and d are four matrices with

a size of 1024 ∗ 1, 1 ∗ 1024, 1024 ∗ 1024, and 1024 ∗ 1024, respectively. Through profiling, the

execution time of each kernel is listed in Table 6.2. We have conducted various experiments based

upon this system setup and recorded the corresponding mapping sequences and completion times

under different strategies. Among the obtained results, we have identified several factors that may

significantly affect the mapping performance.

Observation #1: kernel-level mapping or application-level mapping? In this case study, our

observation is that for applications that contain multiple dependent kernels, treating kernels as the

mapping entity yields better performance than mapping each entire application to a processing

unit. Fig. 6.2(a) shows the schedule of performing application-level mapping. The dash lines in

97

Ƭ1
1

Ƭ1
2

Ƭ2
1 Ƭ2

2

Ƭ2
3

(a) (b)

Figure 6.1: Kernel dependency graph

Table 6.2: Execution time of kernels

CPU GPU
τ 11 5.68× 102µs 4.22× 102µs
τ 21 1.52× 103µs 2.42× 102µs
τ 12 4.41× 104µs 5.6× 103µs
τ 22 8.74× 102µs 8.44× 102µs
τ 32 4.40× 102µs 4.20× 102µs

this figure represent the final completion time. The (tiny) space among kernel execution blocks

represents the delay due to necessary data transfer. Fig. 6.2(b) shows the schedule of performing

kernel-level mapping, in which we can see that the completion time is shortened. The main per-

formance acceleration comes from the parallel executions of multiple kernels on two processing

units. Intuitively, for systems that support multiple applications, kernel-level mapping is a better

choice because it can better utilize the hardware resources.

Observation #2: heterogeneity matters. Fig. 6.2(c) shows the schedule of a kernel mapping

policy with a different kernel ordering scheme than the mapping policy shown in Fig. 6.2(b). The

applied mapping policy considered in this case prioritizes kernels by considering the heterogeneity.

Intuitively, a kernel that has a faster execution time on a specific type of processor (either CPU or

GPU) should preferably be assigned to that type of processor. As shown in Table 6.2, kernels

τ 21 , and τ 12 have much shorter execution times on GPU compared to CPU. Thus, by prioritizing

such kernels over other kernels (such as τ 11 and τ 22), they have higher possibilities to be assigned

to their favorite processors, as observed in Fig. 6.2(c). This case study highlights the fact that for

98

CPU

GPU Ƭ2

Ƭ1

(a)

CPU

GPU

Ƭ1,C
1

Ƭ1,G
1

Ƭ2,G
1

Ƭ1,G
2

Ƭ1,C
2

Ƭ2,C
2

Ƭ2,G
2

Ƭ2,G
3

Ƭ2,C
3

Ƭ2
1 Ƭ2

3Ƭ1
1

Ƭ2
2 Ƭ1

2

Data penalty

(b)

CPU

GPU

Ƭ1,C
1

Ƭ1,G
1

Ƭ2,G
1

Ƭ1,G
2

Ƭ1,C
2

Ƭ2,C
2

Ƭ2,G
2

Ƭ2,G
3

Ƭ2,C
3

Ƭ2
1 Ƭ2

3

Ƭ2
2Ƭ1

2Ƭ1
1

(c)

CPU

GPU

Ƭ1,C
1

Ƭ1,G
1

Ƭ2,G
1

Ƭ1,G
2

Ƭ1,C
2

Ƭ2,C
2

Ƭ2,G
2

Ƭ2,G
3

Ƭ2,C
3

(Ƭ2
1)1

Ƭ2
2 (Ƭ2

1)2Ƭ1
1

Ƭ1
2

Ƭ2
3

(d)

CPU

GPU

Ƭ1,C
1

Ƭ1,G
1

Ƭ2,G
1

Ƭ1,G
2

Ƭ1,C
2

Ƭ2,C
2

Ƭ2,G
2

Ƭ2,G
3

Ƭ2,C
3

Ƭ2
1 Ƭ2

3Ƭ1
1

Ƭ2
2 Ƭ1

2 Heavy Data
penalty

Ƭ2
1

(e)

Figure 6.2: (a) Application level mapping and (b) Kernel level mapping (c) Different map order
(d) Data Partition (e) Bad data partition

CPU/GPU systems, the heterogeneity reflected by hardware and application characteristics must

be considered in the mapping algorithm.

Observation #3: data partitioning—is it always beneficial? As seen in Table 6.2, τ 12 is the most

computation-intensive kernel. Fig. 6.2(c) shows that τ 32 cannot start execution because τ 12 com-

pletes late, which causes resource under-utilization and longer completion times. By partitioning

99

the input matrix of τ 12 into two slices, we are able to reduce its execution time by running the ker-

nel with partial data on both CPU and GPU in parallel. Let (τ 12)1 and (τ 12)2 denote the resulting

two kernels each with half data. The resulting schedule with reduced completion time is shown in

Fig. 6.2(d). However, data partitioning is not free. It incurs additional data transfer overhead be-

cause data need to be sent to both (τ 12)1 and (τ 12)2, and the corresponding results need to be merged

and then sent to τ 32 . Since the data size is not very large in this case, the performance gain due to

data partitioning overwhelmed the penalty due to additional data transfer. Nevertheless, when we

increase the input matrix size for τ 12 to 16384 * 16384, the negative impact due to additional data

transfer under partitioning becomes obvious, as illustrated in Fig. 6.2(e). Our observation herein is

that data partitioning may be beneficial only when the input data size is reasonably small.

It is clear from these case studies that the completion time performance heavily depends on the

mapping algorithm, which needs to consider a number of influential factors including the kernel

structure, heterogeneity, kernel prioritization, and data partitioning.

6.3 Practical Mapping Algorithms

In this section, we present three practical online algorithms for mapping tasks in a heterogeneous

platform consisting of multiple CPUs and GPUs. Our algorithmic design is motivated by the

observations as discussed in Sec. 6.2. Specifically, the proposed mapping algorithms consider het-

erogeneity, kernel graph structure, and data partitioning. The first algorithm (we call it the baseline

algorithm) mainly factors heterogeneity into making mapping decisions (besides considering tradi-

tional factors such as data locality and earliest completion time). The second algorithm considers

kernel structure when prioritizing tasks. The third algorithm extends the baseline algorithm by

taking advantages of data partitioning. As seen in Sec. 6.4, these three algorithms yield different

performance under different experimental scenarios, depending on specific application character-

istics.

100

6.3.1 Baseline Algorithm: Heterogeneity Ratio-based Mapping

As discussed in Sec. 6.2, without considering heterogeneous workload characteristics on CPUs

and GPUs, the mapping algorithm is unlikely to efficiently utilize the heterogeneous resources.

Our proposed baseline algorithm takes heterogeneity into consideration when making mapping

decisions. Before describing the algorithm, we first give several definitions.

Definition 3. The favorite ratio F j
i,k of a task τ ji executed on processor Mk is defined to be

F j
i,k =

maxmh=1(C
j
i,h)

Cj
i,k

(6.9)

For any task τ ji , a larger F j
i,k value implies τ ji is more suitable to be executed on Mk. That is, τ ji

may have a shorter execution time if executed on Mk compared to other processors.

Definition 4. The heterogeneity ratio of a task τ ji is defined to be

Hj
i = maxmk=1(F

j
i,k) (6.10)

For any task τ ji , a large heterogeneity ratio implies that it may be more beneficial to execute τ ji on

one of its favorite processors Mk where F j
i,k is large.

Example: Considering the example system described in Sec. 6.2, the favorite ratio of τ 11 if

executed on processor 1 (CPU) is F 1
1,1 = max(C1

1,1, C
1
1,2)/C

1
1,1 = 5.68/5.68 = 1, and the favorite

ratio of τ 11 if executed on processor 2 (GPU) is F 1
1,2 = max(C1

1,1, C
1
1,2)/C

1
1,2 = 5.68/4.22 = 1.35.

The heterogeneity ratio of τ 11 can be calculated by H1
1 = max(F 1

1,1, F
1
1,2) = F 1

1,2 = 1.35.

Definition 5. Let MDAC(τ ji ,Mq) denote the Max Data Transfer Time of τ ji if τ ji is assigned on

Mq, which is defined as the maximum time for transferring data from any of τ ji ’s predecessor tasks

to τ ji . Specifically, MDTT (τ ji ,Mq) is given by

MDAC(τ ji ,Mq) = max
τki ∈P(τ

j
i)
Tg→q(e

kj
i) (6.11)

where τ ki is executed on Mg.

101

Definition 6. Let EFT (τ ji ,Mq) denote the Earliest Finish Time of τ ji if τ ji is assigned on Mq. It

is defined as:

EFT (τ ji ,Mq) = TAvail(Mq) +MDAC(τ ji ,Mq) + Cj
i,q (6.12)

where TAvail(Mq) is the earliest time at which processor Mq is available,

Our proposed baseline algorithm prioritizes tasks based on their heterogeneity ratio. The in-

tuition is to give tasks with larger heterogeneous ratios higher possibilities to be assigned on their

favorite processing units. Computing each task’s heterogeneity ratio at runtime may incur a con-

siderable amount of overheads. To avoid such overheads, in our implementation, we maintain a

lookup table for each task, which records its historical sampling information. Consider the matrix

multiplication kernel as an example. Each entry in the lookup table contains data size, average ex-

ecution time, processing unit to which it is assigned, heterogeneity ratio, hash value, etc. Thus, at

runtime, we only need to check the lookup table to figure out the needed information (e.g., hetero-

geneity ratio). After prioritizing tasks, the algorithm selects the best processing unit for executing

each task in turn based on the earliest finish time. The psuedo-code of the algorithm is given in

Algorithm 5.

Pseudo-code description. The PushTask() function on Line 1 is in charge of pushing incom-

ing tasks into the ready queue of the scheduler. It first obtains the heterogeneity ratios from the

lookup table for each incoming task (Line 2), then inserts the tasks into the ready queue by largest-

heterogeneity-ratio-first (Lines 3-8). On Line 9, function GetAllDeviceLen() gets the total number

of assigned tasks in all device queues. If the number is less than a predefined threshold thr (Line

10), then the scheduler executes the PushTaskOnDeviceQueue() function. In other words, if the to-

tal number of tasks that have been assigned to devices is large enough, then the scheduler will stop

dispatching tasks in the ready queue to devices. The intuition is to let the ready queue hold most of

the unassigned tasks and sort them in order while guaranteeing that processing units have enough

tasks residing in their device queues to be executed. Unlike the greedy dispatching approach that

102

Algorithm 5 Heterogeneity ratio-based mapping
1: function PUSHTASK(Γ)
2: Sort tasks in the ready queue by largest-heterogeneity-ratio-first
3: for ti in ReadyQueue decreased by Hi do
4: if H(task) < H(ti) then
5: continue
6: InsertBefore(task, ti, ReadyQueue)

7: num← GetAllDeviceLen()
8: if num < thr then
9: PUSHTASKONDEVICEQUEUE

10:
11: function PUSHTASKONDEVICEQUEUE

12: τ ji ← PopFront(ReadyQueue)
13: for Mq in processor set M do
14: EFT (τ ji ,Mq) = TAvail(Mq) +MDAC(τ ji ,Mq) + Cτ ji ,Mq

15: Assign τ ji to Mq that minimize EFT (τ ji ,Mq)

assigns ready tasks immediately to devices, our non-greedy approach ensures that tasks entering

the ready queue late still have a fairly good chance to be assigned to their favorite processing units.

The function PushTaskOnDeviceQueue (Lines 15-21) seeks to assign tasks to devices. It first grabs

the task with highest heterogeneous ratio (Line 16), then estimates the finish time of this task if

assigned to each processor (Lines 17-19), and finally assigns the task to the processor that yields

the earliest finish time (Line 20).

Time complexity. This algorithm needs to compute the heterogeneity ratio and do sort insertion

that is O(l2), the assignment phase needs O(l2 ·m) time complexity. The total time complexity is

O(l2 ·m) where l is the number of tasks and m is the number of processors.

6.3.2 Kernel Graph Structure Considerations

Our second algorithm improves upon the baseline algorithm by considering the kernel graph struc-

ture of each application. As discussed in Sec. 6.2, our observation is that for many applications, the

time taken to transfer data among kernels executed on different devices (which heavily depends on

103

the kernel graph structure) is far from negligible when compared to task execution times. For cer-

tain data-intensive applications, the data transfer time is actually the dominant factor in response

time performance. Let T (ejki) represent the general data transfer cost between two dependent tasks

tji and tki . Since T (ejki) can be decided only after knowing the specific devices to which these two

tasks are assigned, we compute the average cost as the estimated data transfer time between tji and

tki , which is given by

T (ejki) =

∑
q,w∈M

(
Tq→w(ejki)

)
m2

. (6.13)

Note that if τ ji and τ ki are assigned to the same device, then T (ejki) = 0.

The algorithm seeks to assign higher priorities to tasks with larger rank(τ ji) values. rank(τ ji)

is defined as:

rank(τ ji) =
∑
Mq∈M

Cj
i,q/m+ max

τki ∈S(τ
j
i)

(
T (ejki)

+
∑
Mq∈M

Ck
i,q/m

)
, (6.14)

where
∑

Mq∈M
Cj
i,q/m denotes the average execution time of task τ ji , and the max() term represents

the longest time taken to send τ ji ’s data to any of its successor tasks plus this successor’s execution

time. The intuition behind using rank(τ ji) values is to give pairs of connected kernels that are

computation-intensive and/or data-intensive higher possibilities to be assigned to their favorite

devices. The pseudo-code of this algorithm is given in Algorithm 6. As seen, the algorithm is

identical to our baseline algorithm except that the scheduling priorities tasks using the rank(τ ji)

values instead of heterogeneity ratios.

6.3.3 Data Partitioning

According to the observation given in Sec. 6.2, the intuition behind data partitioning is that if a task

is data-intensive, then dividing its data into multiple slices would give it a higher chance to utilize

more processors. This idea has been proposed and applied in (Lee et al., 2013), but only under

104

Algorithm 6 Structure rank based heuristics
1: function PUSHTASK(task)
2: rank(task)← Compute rank of task
3: for ti in ReadyQueue decreased by rank(ti) do
4: if rank(task) < rank(ti) then
5: continue
6: InsertBefore(task, ti, ReadyQueue)

7: num← GetAllDeviceLen()
8: if num < thr then
9: PUSHTASKONDEVICEQUEUE

a single kernel scenario. For example, an automated partitioning technique has been proposed in

(Luk et al., 2009) to partition the data of a single kernel such that this kernel can be executed on a

CPU and a GPU in parallel. Unlike prior work, our third algorithm considers data partitioning as a

sub-component and integrates it into our considered multi-kernel scenario.

Despite its advantages, data partitioning may also introduce additional data transfer costs, as

discussed in Sec. 6.2. Thus, a mapping algorithm needs to decide whether to apply data partitioning

to applications. Our third algorithm extends the baseline heterogeneity ratio-based algorithm by

taking data partitioning into account. We apply a historical data profiling technique to decide

whether a task needs to be partitioned. In the implementation, we record the historical sampling

data and use a non-linear regression-based cost model (a ∗Db + c) (National institute for research

in computer science and control, 2008) (where a, b, and c are constant coefficients, and D is the

data size) to find out the relationship between data size and execution time. Given the data size

of a kernel, if the estimated execution time (without applying data partitioning) is larger than a

pre-defined threshold, then we partition it into multiple blocks.

6.4 Implementation and Evaluation

In this section, we present the implementation methodology and experimental results used to eval-

uate the effectiveness of our proposed algorithms.

105

ApplicationApplication Application

(a) eager scheduler (b) dm scheduler (c) our scheduler

Figure 6.3: Our scheduler implementation

6.4.1 Implementation

We implemented our scheduler algorithms on top of the StarPU runtime platform (Augonnet,

Thibault, Namyst, and Wacrenier, Augonnet et al.) as customized schedulers. To better support

our algorithms, we modified part of StarPU’s core code. The role of the StarPU scheduler is to

dispatch tasks onto different processing units (named “workers” internally). All StarPU scheduling

strategies implement task dispatching using queue-based method. Tasks that have received needed

data from their predecessors are pushed into a ReadyQueue. This ReadyQueue is updated at

runtime while tasks arrive dynamically. Based upon this dispatching model, our schedulers make

mapping decision at runtime for tasks in ReadyQueue.

StarPU has several pre-defined schedulers, including the eager scheduler, the dm scheduler,

and the dmda scheduler. The eager scheduler uses a single FIFO task queue, as illustrated in

Fig. 6.3 (a), from which workers draw tasks to execute. The mapping decision is made only when

a worker becomes idle. More complex schedulers such as the dm scheduler maintain one queue

for each processing unit, as shown in Fig. 6.3 (b). A task is immediately dispatched to a specific

worker once it is pushed into the ReadyQueue. Different from these implementation strategies,

106

our scheduler uses a central priority queue to hold and sort tasks, and dispatch tasks to worker’s

private queues, as illustrated in Fig. 6.3 (c). Under our implementation, the proposed schedulers

do not immediately dispatch an incoming task to one of the workers’ queues. Instead, we set a

threshold value (as discussed in Sec. 6.3.2) to trigger the dispatching action. The central priority

queue would dispatch tasks to workers only when the total number of tasks residing in workers’

queues is less than the pre-defined threshold value. A large threshold value may allow the scheduler

to have a better ordering of the ReadyQueue. However, when considering multiple application

scenarios, the total number of tasks could be large. Since pushing tasks into the ReadyQueue

may incur overheads, a large threshold value may also reduce the efficiency as such overheads

negatively impact the timing performance. Although depending on the specific hardware, the idea

behind setting a threshold value is to perform task pushing and task execution in parallel at runtime.

6.4.2 Experimental Setup

We implemented the proposed algorithms in a real heterogeneous desktop computer consisting of

a CPU and two discrete GPUs. The hardware specification is given in Fig. 6.4. The benchmarks

used in the experiments are listed in Table 6.4. All benchmarks are rewritten in order to be used on

the StarPU runtime platform. Among the benchmarks, MonteCarlo and Cholesky factorization are

considered to be computation -intensive because they have relatively heavier computing workload

for processor units and have a relatively high computation-to-communication ratio (i.e., the kernel

execution time is far greater than the time to transfer its needed data from another device). On

the other hand, VectorAdd and VectorIncrement are considered to be date-intensive because their

computing workload is low, but may generate heavy data traffic. To reflect different workload

scenarios, we vary the problem scale of each benchmark to three problem sizes.

The specific values of the problem sizes generated in the experiments are shown in Ta-

ble 6.4. Moreover, we test three workload composition scenarios commonly seen in practice, i.e.,

107

CPU GPU1 GPU2

Architecture
Intel Core

i7-4770

NVIDIA GeForce

GTX 660

NVIDIA GeForce

GT 620

Frequency 3.9 GHz 1033 MHz 700 MHz

Memory 16GB DDR3 2048MB GDDR5 2048MB DDR3

OS 64-bit Linux Ubuntu lucid

Figure 6.4: Experimental Hardware Specification

computation-intensive, data-intensive, and randomly mixed workloads. To generate these compo-

sition scenarios, we first generate one instance of each of the seven benchmarks shown in Table 6.4

as the base case. We then generate the computation-intensive workload composition using the base

case combined with three instances of each of the two computation-intensive benchmarks (men-

tioned above). Similarly, the data-intensive workload composition is generated using the base case

combined with three instances of each of the two data-intensive benchmarks. The mixed workload

composition is generated by creating two instances of each of the seven considered benchmarks.

Note that the current StarPU runtime system implementation mainly considers the single applica-

tion scenario. To support simultaneous execution of multiple applications, in our experiments, we

compose all the benchmarks into one single executable file by rewriting and compiling the source

codes of the benchmarks using StarPU’s SDK.

We compare our proposed mapping algorithms against the best available scheduler of StarPU—

the dmdar (deque model data aware) scheduler, which considers the task execution time and the

data transfer time when making mapping decisions. It is similar to the classical heterogeneous-

earliest-finish-time-first scheduling (HEFT): dmdar schedules each task to a processing unit that

provides the minimum finish time, and sorts tasks residing in each worker queue by the largest

number of available data buffers first. Moreover, we compared our algorithms to the integer pro-

gramming formulation, which yields an optimal (theoretically) solution. For each experimental

setup, we tested two system configurations: one with one CPU and two GPUs, and the other one

108

 0

 1

 2

 3

 4

 5

 6

 7

small medium large

S
p
e
e
d
u
p
 o

v
e
r

C
P

U
-o

n
ly

Problem Scale

Mixed Test Set with 1 CPU + 2 GPUs

dmdar
h-ratio
d-rank
ad-part

(a)

 0

 1

 2

 3

 4

 5

 6

 7

small medium large

S
p
e
e
d
u
p
 o

v
e
r

C
P

U
-o

n
ly

Problem Scale

Compute Intensive Set with 1 CPU + 2 GPUs

dmdar
h-ratio
d-rank
ad-part

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

small medium large

S
p
e
e
d
u
p
 o

v
e
r

C
P

U
-o

n
ly

Problem Scale

Data Intensive Set with 1 CPU + 2 GPUs

dmdar
h-ratio
d-rank
ad-part

(c)

 0

 1

 2

 3

 4

 5

 6

 7

small mediu large

S
p
e
e
d
u
p
 o

v
e
r

C
P

U
-o

n
ly

Problem Scale

Mixed Test Set with 1 CPU + 1 GPU

dmdar
h-ratio
d-rank
ad-part

(d)

 0

 1

 2

 3

 4

 5

 6

 7

small medium large

S
p
e
e
d
u
p
 o

v
e
r

C
P

U
-o

n
ly

Problem Scale

Compute Intensive Set with 1 CPU + 1 GPU

dmdar
h-ratio
d-rank
ad-part

(e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

small medium large

S
p
e
e
d
u
p
 o

v
e
r

C
P

U
-o

n
ly

Problem Scale

Data Intensive Set with 1 CPU + 1 GPU

dmdar
h-ratio
d-rank
ad-part

(f)

Figure 6.5: Experimental results on the competition time. In all six graphs, the x-axis denotes the
three tested scenarios where problem size scale is varied to be small, medium, and large (according
to Table 6.4). The y-axis denotes the speedup each algorithm achieved upon the naive CPU-only
mapping algorithm. Graphs in the first (second) row depict the results under the system configura-
tion with one CPU and two GPUs (one CPU and one GPU). In the first (respectively, second and
third) column of graphs, mixed (respectively, computation-intensive and data-intensive) workloads
are assumed.

with one CPU and one GPU (GTX 660). Regarding the evaluation metric, we measured the final

completion time for running each entire experiment set. In the following, we denote our baseline

mapping algorithm (Sec. 6.3.1), structure-based mapping algorithm (Sec. 6.3.2), data partitioning-

based mapping algorithm (Sec. 6.3.3), the dmdar scheduler, and the integer programming solution,

as “h-ratio”, “d-rank”, “ad-part”, “dmdar”, and “IP”, respectively.

6.4.3 Results

The obtained experimental results comparing our mapping algorithms against dmdar are shown in

Fig. 6.5 (the organization of which is explain in the figure’s caption). Each bar plots the speedup

109

achieved by the corresponding algorithm upon a naive CPU-only mapping algorithm which prior-

itizes workloads by shortest-execution-time-first and maps all workloads only to CPU.

As seen, in most tested scenarios, our proposed mapping algorithms improve upon dmdar. The

performance gain varies depending on the workload composition and problem scale. As shown in

all six graphs of Fig. 6.5, when the problem size is small or medium, one or more of our proposed

algorithms yield slightly better performance than dmdar. The improvement is not significant in

these cases because the variances in heterogeneity ratio and structure spawn are small. Thus, the

benefit of specifically considering these factors becomes less significant. When the problem size

becomes large, the performance improvement achieve under our proposed algorithms becomes

more substantial. For example, as seen in Fig. 6.5(b), for computation-intensive workloads with

large problem size, h-ratio, d-rank, and ad-part improve upon dmdar by more than 15%, 10%, and

110%, respectively. In particular, ad-part achieves the best performance in these cases because

computation-intensive kernels are divided into parallel threads with partial data. This effectively

reduces the time to complete such kernels when multiple processing units become available. More-

over, for computation-intensive kernels, applying data partitioning does not incur much data trans-

fer penalty. Another interesting observation is that when workloads become data-intensive, ad-part

yields the worst performance, as shown in Fig. 6.5(c) and (f). By analyzing the mapping traces of

these experiments, we observe that partitioning data-intensive applications may incur significant

data transfer time, which negatively impacts the completion time performance. Unlike prior work

considering single application scenario where data partitioning should be applied in most cases,

our results suggest that data partitioning should only be selectively applied, in particular when

workloads become more data-intensive. Fig. 6.5(d)-(f) show the results under the system configu-

ration with the CPU and only one GPU (removing the less powerful GT 620 GPU). Compared to

the case where all three processing units are used (shown in Fig. 6.5(a)-(c)), the observation is that

the speedup decreases. This is intuitive because less resources are available in this case.

110

Table 6.3: Comparison against IP.

Exp. set 1 Exp. set 2 Exp. set 3
case study va+xgemm+inc xgemm+fblock+pi
× 5 × 5 × 2

IL 318.52 ms 758.19 7176.68
Ours 330.28 ms 868.61 9975.14

Comparison against IP. We have also conducted experiments to compare our proposed algo-

rithms against IP. Since solving the IP given in Sec. 6.1.2 is quite expensive as we experience in

these experiments, we choose to only conduct experiments using a relatively small set of applica-

tions. Table 6.3 shows the application set used in the experiments and the results under IP and our

algorithm (we select the best result produced under the three algorithms). As seen, our algorithm

achieves comparable performance to IP while yielding a much lower runtime complexity.

6.5 Summary

In this chapter, we investigate the problem of mapping multiple applications implemented using

kernel graphs in a heterogeneous system consisting of CPUs and GPUs. To achieve fast comple-

tion time, we present a fine-grain mapping framework that explores a set of critical factors that are

suggested by several measurements-based case studies. We present a theoretical framework that

formulates this problem as an integer program and a set of practically efficient mapping algorithms.

We implement the proposed algorithms in a real heterogeneous system and conduct extensive ex-

periments using a set of popular benchmarks. Experimental results demonstrate that our proposed

algorithms can achieve up to 30% faster completion time compared to the state-of-the-art mapping

techniques, and can perform consistently well across different workloads. An interesting future

work is to extend the problem space to allow applications to have pre-defined completion time

requirements, which is often seen in embedded systems in practice. This would make the prob-

lem even more challenging because greedy mapping choices may easily cause applications to miss

their timing requirements.

111

Ta
bl

e
6.

4:
B

en
ch

m
ar

ks
us

ed
in

ex
pe

ri
m

en
ts

B
en

ch
m

a
rk

D
es

cr
ip

ti
o

n
S

m
a

ll
 P

ro
b

le
m

 S
iz

e
M

id
iu

m
 P

ro
b

le
m

 S
iz

e
L

a
rg

e
P

r
o

b
le

m
 S

iz
e

x
g
em

m
C

o
m

b
in

ed
 m

at
ri

x
 m

u
lt

ip
li

ca
ti

o
n

 a
n

d
 a

d
d

it
io

n
1

k
*

1
k
 m

at
ri

x
 x

 3
4

k
*

4
k
 m

at
ri

x
8

k
*

8
k
 m

at
ri

x

cg
C

o
n

ju
g
at

e
G

ra
d

ie
n

t
1

k
*

1
k
 m

at
ri

x
 a

n
d

 1
k
 v

ec
to

r
4

k
*

4
k
 m

at
ri

x
 a

n
d

 4
k
 v

ec
to

r
8

k
*

8
k
 m

at
ri

x
 a

n
d

 8
k
 v

ec
to

r

ch
o
le

sk
y

C
h

o
le

sk
y
 m

at
ri

x
 f

ac
to

ri
za

ti
o
n

1
k
*

1
k
 m

at
ri

x
1

k
*

1
k
 m

at
ri

x
4

k
*

4
k
 m

at
ri

x

in
cr

em
en

t
V

ec
to

r
in

cr
em

en
ta

ti
o
n

1
0

k
 v

ec
to

r
1

0
0

k
 v

ec
to

r
1

M
 v

ec
to

r

v
a

V
ec

to
r

A
d

d
1

0
k
 v

ec
to

r
1

0
0

k
 v

ec
to

r
1

M
k
 v

ec
to

r

p
i

M
o
n

te
 C

ar
lo

 m
et

h
o
d

 t
o
 c

o
m

p
u

te
 p

i
1

k
 h

it
s

p
er

 t
as

k
,
1

k
 t

as
k
s

4
k
 h

it
s

p
er

 t
as

k
,
1

k
 t

as
k
s

8
k
 h

it
s

p
er

 t
as

k
,
1

k
 t

as
k
s

fb
lo

ck
3

-D
 a

ss
ig

n
m

en
t

1
2

8
*

1
2

8
*

1
2

8
 c

u
b
e

2
5

6
*

2
5

6
*

2
5

6
 c

u
b
e

5
1

2
*

5
1

2
*

5
1

2
 c

u
b
e

112

CHAPTER 7

EXPLORING COMPUTATION AND DATA REDUNDANCY VIA PARTIAL GPU

COMPUTING RESULT REUSE 1

7.1 Case Study

We conduct a measurement-based case study to motivate the potential benefit of result reuse in

GPGPU computing. An error-free reuse would leave no room for approximate memoization tech-

niques. This requirement combined with the blackbox nature of GPGPU implies that the en-

tire input data and the entire kernel code should be an exact match for any possibility of reuse.

Throughout this chapter, we use a measurement called redundancy to deduce the final possibility

of reuse for GPU computations. Redundancy is defined as two equivalent GPU kernel launches

with the exact same input data and kernel code.

We use a publicly available dataset movieLens (Harper and Konstan, 2015), which is a collec-

tion of rating data from the MovieLens web site. We used two versions of movieLens: one denoted

“movieLens-20M” released in 2015 which contains 20 million ratings applied to 27,000 movies

by 138,000 users; the other one denoted “movieLens-26M” released in 2017 which contains 26

million ratings applied to 45,000 movies by 270,000 users (Harper and Konstan, 2015). We run a

commonly performed matrix factorization function (Koren et al., 2009) on both versions of movie-

Lens. For these datasets, the corresponding matrix is a 27,000 × 138,000 and a 45,000 × 270,000

sparse matrix, respectively. The first two rows of Table 7.1 show the results for an unabridged

redundancy among these two datasets. Since these two databases are different, the redundancy is

0, implying that there does not exist any pair of GPU computing requests exhibiting exactly the

same input data.

1©2018 ACM. Reprinted, with permission, from Husheng Zhou, Soroush Bateni, and Cong Liu. ”GRU: Exploring
Computation and Data Redundancy via Partial GPU Computing Result Reuse”, In Proceedings of the 32nd ACM
International Conference on Supercomputing (ICS18). DOI:10.1145/3205289.3205318

113

Table 7.1: Movie recommendation using GPU-enabled Spark on two movieLens datasets with
different partitioning.

Datasets Block Dim (K) Launch Redundancy
movieLens-20M 1 1650x288 1

0
0%

movieLens-26M 1 5290x920 1 0%
movieLens-20M 144 11.5x2 156

88
56.41%

movieLens-26M 460 11.5x2 483 18.22%
movieLens-20M 2304 2.8x0.5 2352

2112
89.80%

movieLens-26M 7520 2.8x0.5 7614 27.74%

Next, we set out to test the effectiveness of a straightforward implementation of partial re-

sult reuse that divides the input data into smaller chunks. We use a popular big data processing

infrastructure–Spark (IBM, 2016) to process movie recommendations. The Spark framework is in

charge of running a map-reduce algorithm, in turn partitioning the matrix into smaller blocks to

improve parallelism on different workers.

For each dataset, we performed two runs with different partitioning parameters, depicted in the

rest of Table 7.1. The first column of Table 7.1 distinguishes the datasets. The second column

indicates the number of blocks the original dataset is partitioned into, and the dimension of each

block (in Kilo rows/columns per block) is shown in the third column. The fourth column is the

number of invoked GPU kernel launches. The last column indicates the redundant GPU compu-

tation between the two runs with the same dimension. For example, when we partition datasets

into 11.5K × 2K blocks, the movieLens-20M dataset is partitioned into 144 blocks and invokes

156 GPU kernel launches, while the movieLens-26M dataset is partitioned into 460 blocks invok-

ing 483 kernel launches. Among these two runs, 88 kernel launches are redundant, meaning that

the input data and computation are equivalent, accounting for 56.41% and 18.22% of total kernel

launches within each run respectively.

Through data partitioning, we observe a good degree of redundancy between the two runs. This

is intuitive as movieLens-26M is similar in nature to movieLens-20M, implying that they contain

a large fraction of equivalent data blocks. Furthermore, when we further partition these datasets

114

.CU

Program

GRU
Rewriter

GRU
Library

Reuse Engine

GPU

Result Cache

CUDA Runtime

Lookup/
Add Entry

GPU …

Hit/
Miss

Figure 7.1: GRU architecture consists of a rewriter and a library at the front-end, and a back-end
service that runs in the cluster.

into finer-grained 2.8K×0.5K blocks, the redundant computations account for 89.8% and 27.74%

among the two runs. This is because with a finer-grained block size, more fractions of the datasets

can potentially become equivalent.

This case study reveals a considerable redundancy in production runs on similar or incremental

datasets. Such redundancy is expected to be even more significant in large-scale functionality-

dedicated clusters/datacenters where thousands of users/applications perform computation requests

of common interests (Gunda et al., 2010). This case study also highlights the following critical

observation: rather than relying on exact result reuse which may suffer from low redundancy due to

coarse-grained consideration of input data, exploring partial result reuse on GPU could potentially

elevate the reuse idea to become effective in practical settings due to increased redundancy and

reusability.

115

7.2 GRU Design

7.2.1 Overview

Our core idea behind GRU is to avoid redundant computations on GPU. This is achieved by reusing

the results of previous computations that exhibit the same computing code and input data. The ar-

chitecture of GRU is illustrated in Fig. 7.1. GRU consists of a front-end that runs on the user’s

desktop or an instance in the cloud, and a back-end service running on a cluster or another in-

stance(s) in the cloud. The front-end is composed of a rewriter and a library which are shown as

shadowed rectangles. The back-end consists of a reuse engine and a result cache.

GRU is designed to be transparent to end-users. End-users shall transparently use the GRU

rewriter to compile a CUDA source code and run the generated binary executable as a normal

CUDA program. At runtime, the GRU library forwards the GPU computing requests including

GPU memory allocations and kernel launches to the reuse engine located in the back-end. The

results are then retrieved by GRU and returned to the program. The CUDA program can be run on

a physical desktop or a virtual instance without a native GPU hardware since all the actual GPU

computations are launched on the back-end.

The reuse engine that resides in the GRU back-end is a key component that is in charge of

processing incoming GPU computation requests and relaying the output data back to the front-

end. The reuse engine uses the hash value of the GPU binary (i.e., .cubin) as the fingerprint of

a GPU kernel (i.e., a piece of GPGPU computing code). In addition, the reuse engine uses the

hash value of the data chunk as the input’s fingerprint. Upon receiving a kernel launch, the reuse

engine calculates hash values (of kernel’s fingerprint, input’s fingerprint, and other primitive type

parameters) and consults the result cache. The result cache implemented using an LUT stores

previous kernel launch results in the form of metadata. Once the fingerprint is found in the LUT,

the actual GPU computations are skipped and the cached result is directly reused. Otherwise, the

reuse engine issues the kernel launch request to GPU and relays the output to the front-end. In the

meantime, this output is inserted into the result cache as a new entry.

116

(a) (b) (c)

Figure 7.2: Two similar images (a) (b) with same tile (c).

In our current implementation and evaluation, the reuse engine and the result cache components

are located on the same physical machine which is equipped with physical GPUs. However, the

result cache can be easily decoupled from the reuse engine and put onto a dedicated cache server,

providing cloud/cluster-wide result caching over the network.

7.2.2 Methodology

Reuse Basics

Many GPGPU programs contain a single kernel that is transferred to GPU from main memory.

The kernel is then launched on the GPU accompanied by its parameters. GRU treats the result of a

single kernel launch as the basic reusable unit. To realize result reuse, GRU needs to first interpret

and identify each incoming kernel’s code and parameters. If a parameter is of GPU memory pointer

type, GRU would need to dereference the pointer in order to obtain the content. The kernel code

and the input data can be identified by GRU through intercepting CUDA runtime APIs.

After obtaining the kernel code and input data, GRU dereferences the pointer parameters and

obtains the hash value (fingerprint) as the key to probe result cache. If there is a corresponding

cached result (cache-hit), it is used as the output of the kernel launch. In the case of a cache-miss,

the kernel launch request is forwarded to the CUDA driver for the actual computation on GPU.

The computed result along with the fingerprint are then stored in the result cache as a new entry.

117

k k k k

(a)

k k

(b)

k k k k

(c)

Figure 7.3: Three example data parallel patterns: (a) Map (b) Partition (c) Scatter/Gather.

Partial Result Reuse via Smart Data Partitioning

Under the above-mentioned basic reuse principles, the result of a kernel launch can be reused only

if an entry can be found in the result cache that contains the exact same kernel code and parameters.

However, for many scenarios in practice, multiple users may execute the same GPGPU kernel

program using similar but not exactly the same input data. Fig. 7.2 shows an example scenario,

where two similar images (shown in Fig. 7.2(a) and (b)) are being analyzed using the same image

convolution kernel. By applying the exact reuse principle, these two launches are not reusable

with respect to each other. However, an interesting observation is that there exists a common tile

between these two images, as is shown in Fig. 7.2(c). Thus, the result of the same kernel launch

using this tile as the input data becomes reusable.

Similar to content-based data partitioning applied in deduplication systems in the context of

storage and incremental computation frameworks (Bhatotia et al., 2012, 2011), our intuitive idea is

to allow GRU to selectively pre-partition a request’s input data into smaller chunks, thus increasing

the redundancy and reusability through partial result reuse. GRU is designed to realize the idea

of partial reuse by analyzing the kernel code provided by the user and transparently performing a

compiler-assisted transformation. The transformation is responsible for converting a normal GPU

program into one that can communicate with GRU by injecting GRU API calls wherever deemed

necessary. A challenge herein is to determine whether an input data can be correctly partitioned

and how to efficiently perform the partition. To resolve this challenge, GRU analyzes general data

118

TYPE* a = (TYPE*)malloc(sizeof(TYPE));
TYPE* b = (TYPE*)malloc(sizeof(TYPE));
TYPE* c = (TYPE*)malloc(sizeof(TYPE));
init_data(); // init value of a, b, c
struct matrix_handle_t A_handle, B_handle, C_handle;
matrix_partition (&A_handle, a, sizeof (TYPE),

slice_a, // num of slices
xdim_a, ydim_a, // dimension
vertical_filter); // filter function

matrix_partition (&B_handle, b, sizeof (TYPE), slice_b,
xdim_b, ydim_b, horizontal _filter);

matrix_map_filter (&C_handle, c, sizeof (TYPE),
vertical_filter, slice_a,
horizontal_filter, slice_b);

gru_launch (&kernel, A_handle, B_handle, C_handle, …)
… …

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 7.4: Code segment of matrix multiplication program after transformation.

parallel patterns that are reliable for the reuse purpose, and is capable of recognizing such reusable

data parallel patterns of incoming requests at runtime.

According to McCool and Samadi (McCool et al., 2012; Samadi et al., 2014), data parallel

patterns can be generally categorized into six types: map, partition, scatter/gather, reduction, scan,

and stencil (see (McCool et al., 2012; Samadi et al., 2014) for detailed definitions of these patterns).

A key observation is that applications containing the map and partition patterns (as illustrated in

Fig. 7.3(a) and (b)) are well suited for input data partitioning and consequently, for partial result

reuse purposes. Intuitively, this is because under these two patterns, the elements of the output

can be separated into groups that are independent of each other. As for application exhibiting

other data parallel patterns, it is not suitable to perform data partitioning due to rather complicated

dependencies. For example, for the scatter/gather pattern as illustrated in Fig. 7.2(c), every element

in the input array is randomly accessed by the kernel to produce an output element, making data

partitioning unsuitable.

This limitation does not impair GRU’s ability to be effective in most real scenarios since a large

portion of parallel tasks, applications that use map/reduce processing, exhibit the patterns of map

119

and partition (Ghazal et al., 2013; Wang et al., 2014; Huang et al., 2010). However, the remaining

four patterns are not entirely dismissed by GRU. Even if an application contains scather/gather,

reduction, scan, and stencil, there is still a chance for the output to be reused if the output is

transcribed using a map or partition pattern. For example, the kernel of a matrix multiplication

combines a row and a column of elements of the input matrices into a single element for the output

matrix. This operation exhibits the reduction pattern that has inherent dependencies. However, the

output is written as independent non-overlapping sections spanning one node which is the parti-

tion pattern (McCool et al., 2012). Thus, the input data of a matrix multiplication kernel can be

safely partitioned using a row or a column as the smallest partition unit since this scheme of data

partitioning will not interfere with the reduction. In other words, it is safe to break up the com-

putations (through data partitioning) that exhibit the partition pattern because these computations

are independent. However, breaking up the computations of a reduction pattern will result in an

invalid state.

GRU introduces a compiler-assisted approach to identify kernels that allow for data partitioning

and performs the proper partitioning at compile time. We setup an LLVM (Lattner and Adve, 2004;

Wu et al., 2016) pass to analyze the IR (intermediate representation) of both CUDA kernel code and

CPU code. This will determine the access patterns of the input and output data in the kernel. GRU

associates the memory access of each memory object with the thread’s built-in parameters, such

as blockIdx and threadIdx whose value ranges can be inferred according to the dimensions of each

kernel. Then, these parameters and their ranges are converted into STP-recognizable constraints

and sent to the STP solver (STP, 2014). The STP solver decides whether or not one individual

element (map pattern) or a fixed set of elements (partition pattern) are accessed by every thread

exclusively. More precisely, GRU can find out if the fixed set of elements are in vertical, hori-

zontal, or block manner. Thus, we can get the partition plan accordingly. Specifically, a kernel

is determined to be feasible for partitioning if it contains the aforementioned data access patterns.

The compiler pass will then insert a set of GRU APIs that perform the data partitioning using a

120

K4

G1

K1

I1

G2

K2

I2

G3

K3

I3

G4

Out

K7

G5

K5

I5

G7

Out

Cached Results

R1 R2

GPU GPU

(a) (b)

G6

K6

I6

Figure 7.5: Different functionalities share common sub-computation K1 and K2 that can be reused
from previous cached results.

set of predefined partition filters: vertical filter, horizontal filter, and block filter for up to three

dimensional data arrays. Fig. 7.4 illustrates an example, showing the code segment of the matrix

multiplication kernel after transformation (before the transformation, the code only consists of a

kernel launch). We note that this code segment is only used for demonstration purposes. In reality,

the GRU rewriter performs the code transformation using the LLVM IR and sends the IR to the

LLVM backend to generate the machine code directly. As is evident in the figure, lines 5 - line 11

convert the original input data chunks into partitionable data structures. Lines 12 - 14 partition the

output data chunks according to the filters applied to the input matrices. Actual data movement and

kernel launch happens when gru launch is called at line 15. The detailed analysis and rewriting

algorithm will be discussed in Sec. 7.3.1.

Partial Result Reuse via Sub-Functionality

While we have covered partial reuse given the same computation code so far, it is actually possible

to partially reuse results from different input data and different computation codes. The constraint

is the fact that some sub-component of the computational flow is shared across two executions,

along with a partially reusable input data.

121

GRU is designed to consider GPU kernel dependency graphs and reuse parts of the execution

flow accordingly. Fig. 7.5 illustrates such a scenario where the entire computation serves a single

purpose and is depicted in the black square. However, on the inside, the computation consists of

multiple sub-kernels. For Fig. 7.5(a), the kernels are K1, K2, K3, and K4. For Fig. 7.5(b), the

kernels are K1, K2, K5, K6, and K7. Fig. 7.5(b) depicts the scenario in which the computing

results of K1 and K2 are previously cached by GRU. Thus, their computations can be skipped by

directly using the cached results and copying them to the GPU device memory to be used as K7’s

inputs.

7.2.3 GRU Front-End

Rewriter

As was mentioned above, one major role of the rewriter is to transform the original program into

a partition-enabled one. Beyond this capability, the rewriter is also in charge of: 1) Identifying the

inputs and outputs of each GPU kernel; and 2) Deciding whether to rewrite the vanilla GPU kernel

launch as a reuse-enabled kernel launch. We design the Rewriter to be transparent to the user. We

employ an intermediate compile-time technique detailed in Sec. 7.3.1. The major role of Rewriter

is to intervene at compile time and redirect API calls to the back end through the front-end library.

We describe this library and the back-end next.

Front-end Library

GRU front-end library resides in the user-side which is a substitute for the CUDA runtime and

computation libraries (e.g., libcublas.so). Front-end library intercepts all CUDA calls made by

applications, and forwards each request to the BE. It is also in charge of managing the connection

between the user’s desktop/instance and BE. After being loaded by CUDA applications, the front-

end library automatically establishes a connection with BE that is specified through an environment

122

variable. For each CUDA call, FE sends the request together with the related parameters to BE,

and awaits the response.

Moreover, high performance computing applications often require massive data transfers be-

tween the CPU main memory and GPU device memory. In GRU, since all interactions between

CPU main memory and GPU device memory occur in backend, such massive data does not need

to be transferred between FE and BE. The GPU device memory pointers are never de-referenced

on the user-side. Rather, the actual GPU device memory pointer is transferred between the guest

and the host in the form of a hex value. Only if a guest memory pointer takes part in a computation

on the host the memory chunk will be transferred over.

7.2.4 GRU Back-End

The GRU Back-end is located in the cluster/cloud, and is responsible for executing CUDA calls

received from the FE and returning the computed results. For each application in FE, a new process

is created on the host to run all the CUDA requests related to that application using an independent

GPU context. BE then forwards the requests received from the FE to the CUDA device driver

running on the host physical machine. Finally, BE transfers the computed outputs back to FE at

user-side.

The Reuse Engine is implemented in the BE as a core component to realize our idea of result

reuse, and acts as a bridge between BE and the CUDA runtime libraries. The reuse engine selec-

tively caches GPU computation results and maintains them in a result cache. We use the Sqlite3

in-memory database to store the cache results. Sqlite3 is open-source and widely used in practice.

Moreover, Sqlite3’s reliability and performance can be guaranteed (Hipp, 2018). We choose an

in-memory database mainly due to performance concerns, since the LUT would be retrieved and

updated frequently, at least once for every kernel launch request.

The latency of hashing operations is rather small, even with increased data sizes. We use an

extremely fast non-cryptographic hash algorithm to perform the hashing (Y.C., 2012), the speed of

123

which can reach 13.8 GB/s on a 64 bits OS. The possibility of collision is also guaranteed by the

hash algorithm (1 in∼ 1.8×1019). The latency of the search and update operations is less than 0.05

ms which is trivial compared to a typical kernel execution time (typically > 100 ms). The dump

operation is occurred only when a cache-hit occurs. Thus, compared to the actual kernel execution

time, time-saving is still achieved. On the other hand, the result insertion operation is rather time-

consuming, which also in turn increases with the result size. However, such operation does not

affect the user application’s response time since it runs asynchronously with the computing results

transfer from reuse engine to FE.

By intercepting the incoming requests from FE, the reuse engine decides whether to issue

requests to the CUDA runtime or directly reuse cached results. In our current implementation and

evaluation environment, the reuse engine is located in the host machine which is equipped with

physical GPUs. However, the fact is that the reuse engine can be easily deployed on a dedicated

physical server in the cloud. The only requirement is that this machine should contain a sufficiently

large RAM for the in-memory database. This machine would serve as a mem-cache server and

would provide a cloud-wide result caching and reusing over the network. The detailed workflow

of reuse engine is described next in Sec. 7.3.2.

7.3 Implementation Details

7.3.1 Rewriting Algorithm

Our implementation of the Rewriter is deeply embedded in the llvm compiler. The main task for

Rewriter is to intercept IRs generated for both CPU and GPU codes. It will then run a separate

pass to do a few analysis all at once. First, the Rewriter identifies any variable initialized in the

CPU code. It will discard the ones that are not in any shape or form used in the GPU computation.

For example, if a variable is allocated by cudaMalloc, then it is considered to be connected to GPU

code. The Rewriter will also analyze the GPU code in order to determine the data pattern that

exists in the GPU kernels and it can build the dependency graph of data objects.

124

Algorithm 7 Rewriting Algorithm
Require: gridDim . Dimension of grid
Require: blockDim . Dimension of thread block
Require: kernel . GPU kernel to be analyzed

1: function PARTITIONPLAN(kernel, gridDim, blockDim)
2: para[]=list of pointer parameters of kernel
3: plan[]=return value
4: for p in para[] do
5: idx[]← ∅ indexes of element access
6: for ins in use chain(p) do
7: i← associateBuildin

(
operand

(
ins
)
, gridDim, blockDim

)
8: idx.push(i)
9: g.push(pathConstrant

(
ins
)
)

10: if stpCheck
(
g, idx

)
is OVERLAP then

11: plan[p]←NONE
12: else
13: if typeOf(idx) is VERTICAL then
14: plan[p]←VERTICAL
15: else if typeOf(idx) is HORIZONTAL then
16: plan[p]←HORIZONTAL
17: else if typeOf(idx) is BLOCK then
18: plan[p]←BLOCK
19: else
20: plan[p]←NONE
21: return plan[]

The pseudo-code of this analysis is depicted in Alg. 7. The function PartitionPlan will iterate

through the parameter list in lines 4-21. Lines 6-8 will get all the element access indexes for each

parameter p. Line 9 will get the path condition required to reach the current instruction. Finally,

lines 10-21 will decide the final pattern and directly choose a partition plan. For instance, the

condition at line 10 will check for any possible overlap of parallel access pattern. If an overlap

exists, Rewriter would conservatively discard the kernel as non-partitionable. The remainder of

conditions in lines 14, 16 and 18 will check for our three data filters: vertical, horizontal and block

filters. PartitionPlan will return a plan that will be used to take an informed action in later stages.

125

Miss! Issue requests
to CUDA Runtime

Hit! Return results
& skip computation

Yes! Reuse
Probe LUT

Update LUT

Tag LRU Kernel Inputs Results

Gather inputs
&Filter

No! Don’t reuse

Input requests Output response

CUDA
Runtime

Result
Management

Figure 7.6: Workflow of reuse engine

7.3.2 Result Cache and Reuse

The reuse engine is a key component in GRU BE, which receives kernel launch requests, checks

reuse possibility, and returns the cached results or forwards requests to CUDA runtime for actual

execution on GPUs. Fig. 7.6 depicts a detailed block diagram of the various components imple-

mented in the reuse engine and shows the general operational flow. Specifically, a kernel launch

request is first identified by the reuse engine through its input arguments and data chunk hash val-

ues. Then, the launch request is filtered by the reuse engine according to its input size which is

directly related to its computation time. We note that a GPU kernel may contain complex data

structures as its parameters, which is hard to generate the fingerprint for. These parameters will

not be considered for reusing purposes because such complex cases are rare (NVIDIA, 2011).

The filtering process is important because reusing results for small kernels or kernels with a

small input data size incurs a considerable overhead, which may be more time consuming than

actually executing such kernels on GPU. For functions in libraries provided by the CUDA devel-

opment kit, such as cublas and cufft libraries, we pre-define the reuse threshold through profiling.

The guideline behind finding such threshold values is that reusing results shall yield less execution

time than actually launching a kernel on GPUs. For example, we define the reuse threshold for

126

cublasSgemm2 to be 4MB, which implies that if the size summation of cublasSgemm’s first two

matrices is less than 4MB, we will not reuse the result.

If the launch request together with its inputs are worth reusing, then the reuse engine probes

LUT to check if there are cached results; otherwise the launch request is directly sent to the CUDA

runtime for actual computation. Each entry of the LUT contains the cached results and hash values

of kernel code and input arguments. For any pointer argument, the hash value is the hash of its

dereference. The hash value for a primitive type argument is itself. There is no semantic loss

for arguments between guest and host, since the guest and host communicate through FE and BE

which preserve the type information.

A hit occurs in the LUT when there is a cached result, in which case the reuse engine skips

the actual computation on GPUs and directly dumps out the cached results to the result manager.

When the result manager receives the GPU request for transferring back the result, it performs

the actual result transfer. After an actual CUDA kernel launch, the results are supposed to be

stored in the GPU device memory. There are three possibilities for such results depending on

application scenarios: (i) results are transferred to host memory, (ii) results stay in the device

memory for further computations, and (iii) results are copied to another location on the same

GPU device memory. The result manager operates differently according to these three scenarios.

Scenario (i) is the most common and straightforward. The result manager simply copies the cached

results directly to the target host address. For scenarios (ii) and (iii), the cached results need to be

transferred to the GPU device memory through additional CUDA calls for further computations,

since the data on GPU is out-of-date (in (ii)) or invalid (in (iii)).

On the contrary, a miss in LUT indicates that result of the current computation request is

not available for reuse. The computation request is then issued to the physical GPUs. A new

entry is reserved for this computation in LUT. After the actual GPU computation completes, the

corresponding entry will be updated accordingly.

2cublasSgemm is a CUDA linear algebra function in the CUBLAS library that perform matrix operations. It
performs A×B + C where A, B and C are its three matrix inputs

127

If the reuse engine is deployed in a dedicated cache server, then cloud-wide GPU computing

results can be pooled in such a server over the network, which increases the number of cached

results and thus the reusability.

7.3.3 Global object tracking

We introduce the global object tracking optimization to track the content of GPU memory objects,

in order to eliminate redundant data hashing of the same GPU memory object. For a majority of

GPGPU computation requests, their parameters are in the form of GPU device memory pointers.

In order to get the hash value of the kernel arguments, we need to first obtain the contents of the

corresponding GPU memory objects. A clumsy method is to dump out the content of GPU objects,

then perform the hash. However, under this method, for large objects, the GPU-to-CPU memory

transfer may be quite time-consuming.

To eliminate such redundant hashing, GRU maintains a GOM (Gloabl Object Map) to track the

content of GPU objects, which is inspired by Moxie–a distributed dataflow engine for GPU object

passing (Rossbach et al., 2013). Each entry in GOM records a GPU object’s handler, its corre-

sponding CPU object, size, an up-to-date flag, shape, and hash value. An entry of a GPU object is

registered to GOM when calling cudaMalloc(), and removed when calling cudaFree(). GRU uses

GOM to keep the internal consistency of memory objects. If any CUDA request parameters are

passed by the reference (typically a pointer), GRU can easily track the content of the GPU objects.

Thus, when a GPU memory pointer is used for multiple kernel launches as the input parameter,

it needs only to be hashed once. Besides, through GOM, we can easily identify a pointer which

points to an arbitrary address within the memory space allocated to this object, according to the

base address and size of a GPU memory object recorded in GOM. Redundant hashing can thus be

further eliminated.

128

7.3.4 Delay transfer

The input data transferred through the network from the front-end to the back-end is unnecessary

if a kernel launch can reuse the cached results. In a case like that, the input data is only used

for hashing but is not needed to perform the actual computations. Consequently, for a large data

requested by a cudaMemcpyHostToDevice call, we delay the actual transmission until the corre-

sponding computation is launched, similar to the optimization in PTask (Rossbach et al., 2011).

If a computation request together with the hash value of the kernel code pass the reuse filter,

the FE would first hash the input data chunk and transfers the hash value to BE instead of the entire

data. If there is a cached result, then the actual input data does not need to be transferred. This

delay operation is advantageous particularly for data-intensive applications.

7.4 Evaluation

In this section, we first evaluate the performance gain when deploying GRU on Apache Spark and

then evaluate GRU’s performance breakdown and incurred runtime overhead using a set of popular

micro-benchmarks.

7.4.1 Experimental Setup

In our evaluations, we use two different setups for Spark use cases and micro-benchmarks. For

Spark experiment, we adopt GRU to SparkGPU (IBM, 2016) in a five-node cluster that consists of

five AWS instances (AMAZON, 2006). The cluster includes four CPU-only t2.xlarge instances

and one GPU-powered g3.8xlarge instance that equip with two NVIDIA Tesla K80 GPUs. The

GRU frontend resides on four CPU-only nodes and backend resides on the GPU node. When user

launches a Spark program, four CPU nodes are used as workers, while the GPU computations

are forwarded to the GPU node. For micro benchmarks, we adopt GRU on a desktop that are

equipped with an i7-4790K 4.0 GHz processor, 128 GB memory and an NVIDIA Quadro 6000

129

GPU. To simulate the multi-tenants scenario, we use Xen hypervisor (Barham et al., 2003) to

virtualize two instances (DomainU) as tenants. The GRU frontend residents in the instances, and

the GRU backend is installed in Domain0. Benchmarks execute inside the instances, and the GPU

computations are forwarded to and processed at the host machine (Domain0).

7.4.2 Spark Use Cases

We adopt GRU to SparkGPU (IBM, 2016) in a five-node cluster which includes four t2.xlarge

instances and one g3.8xlarge instance. We conducted two sets of experiments. The first one in-

vestigates the benefit of applying GRU when different functionalities related to text mining are

incurred upon the same dataset, while the second experiment studies the scenario where a com-

monly performed log analysis functionality is performed on different log traces.

Reuse with Different Functionalities

In this experiment we run four programs – WordStatistics, FreqWord, MostProduct, TopRatio on

the public amazon review dataset (McAuley et al., 2015). WordStatistics records the number of

each word’s occurrences and the number of products that it appears in. FreqWord finds out the

top K most frequently used words in the entire dataset. MostProduct looks for the top K words

that appears in each category of products. TopRatio gets the ratio of the top K mostly used words

among all words. We use two versions of the dataset: a compact version with a size of nearly

8GB and a full version with a size of nearly 20GB. For each dataset, we enable GRU and run the

WordStatistics program to cache the results. And the subsequent three programs can benefit from

reusing cached results due to the WordStatistics program.

We measure the turnaround time (TAT) which indicates the time elapse from program launch

till its completion, and GPU occupancy time (GOT) that is the accumulated GPU computation

time on every GPU device. Reducing GOT is crucial when GPUs are rare computing resources in

a cluster, since GPUs can be yielded for other computing requests. As shown in Fig. 7.7, the x-axis

130

 5

 10

 15

 20

 25

 30

 35

 40

FreqWord-8G

FreqWord-20G

MostProduct-8G

MostProduct-20G

TopRatio-8G

TopRatio-20G

E
x
e

c
.

T
im

e

TAT
TAT-GRU

GOT
GOT-GRU

2
1

.8
%

3
4

.2
%

1
9

.6
%

3
1

.3
%

1
7

.5
%

2
7

.6
%

4
0

.4
%

4
9

%

3
8

.6
%

4
2

.9
%

3
2

.4
%

3
5

.8
%

Figure 7.7: Turnaround time (TAT) and GPU occupancy time (GOT) of three programs on two
datasets with GRU off and on.

represents three programs on two datasets. The y-axis is the execution time in minutes. The four

histograms represent TAT without and with GRU on, and GOT without and with GRU on. The

labels on top of the histograms indicate the percentage of the saved TAT and GOT. We observe

that all three programs benefit from GRU even if they incur different functionalities, reaching

an average of 25% TOT reduction and 39% GOT reduction. Furthermore, with a larger dataset

(20GB version vs. 8GB version), the percentage of saved TOT and GOT becomes larger. For

example, FreqWord-8G has 21% TAT reduction and 40% GOT reduction, while FreqWord-8G

reaches 34% and 49%, respectively. This is intuitive as heavier workloads may exhibit higher

degrees of redundancy, and thus, reusability.

Reuse with Different Datasets

In this experiment, we evaluate the case where the same functionalities are performed using differ-

ent datasets. We considers herein a log tracing system on an extremely popular big-data process-

ing framework, Apache Hadoop (Lab, 2015). We use publicly available data traces of the CMU

OpenCloud Hadoop cluster from January of 2011 until June 2011 (Lab, 2015). We dedicate this

experiment to an accumulative data trace analysis that is assumed to be executed monthly. This

analysis is run to generate statistical data of each job’s execution time, summed for the year 2011.

131

 0

 10

 20

 30

 40

 50

Apr May Jun
 0

 3

 6

 9

 12

 15

E
x
e

c
.

T
im

e
 (

m
in

u
te

s
)

A
c
c
u

m
u

la
te

d
 d

a
ta

 s
iz

e
 (

G
B

)

TAT
TAT-GRU

GOT
GOT-GRU

2
4

.0
5

%

3
2

.8
9

%

3
9

.4
8

%

4
9

.3
7

%

7
7

.3
5

%

8
3

.1
3

%

Size

Figure 7.8: Cumulative turnaround time and GPU occupancy time savings for opencloud trace
dataset.

While jobs rarely span between months, it is nonetheless necessary to include the accumulative

results for administrative purposes.

Fig. 7.8 shows the results of running this scenario for the months of January until June, while

we limit the exhibition to three months for clarity purposes. As is evident from the figure, while

the database continues to grow (as is shown using connected dots) from 9.8 GB to 13.3 GB, TAT

under GRU continues to be consistent, not exhibiting much increase due to the benefit of result

reuse.

Another counter-intuitive observation is that GOT dramatically drops after each month. This

is because GRU eliminates the need of recomputing the log data from previous months, but rather

directly reusing results from previous computations. This trend of reduction in GOT is consistently

observed from January until June. Fig. 7.8 shows the total accumulative GOT savings until the

month of June, which yields an 83% reduction.

Reuse with Different Functionalities and Datasets

In this section, we measure the efficacy of GRU under a mixed reuse scenario. A mixed scenario is

when both the input data and the computation kernels are different between two runs, as discussed

in Sec. 7.2.2. Table 7.2 shows an example execution under a potential mixed scenario. The first

132

Table 7.2: Reuse of non-identical data & computation.

Warmup Main Run TAT (% saved) GOT (% saved) Reuse
WS-8G FW-20G 19.9m (11.56%) 25.2m (17.38%) 4.99%
FW-20G WS-8G 10.1m (21.09%) 6.4m (45.3%) 12.50%

row of Table 7.2 depicts an example run of FreqWord on Amazon Reviews 20GB (Full). However,

prior to its execution, a warmup run of WordStatistics is executed using the Amazon Review 8GB

(Compact). As is evident in the table, the reuse possibility under this scenario is noticeable but not

significant.

On the other hand, the second row of Table 7.2 shows a reversed scenario, in which FreqWord

on Amazon Reviews 20GB is used as the warmup execution. For the main execution of Word-

Statistics on Amazon Review 8GB, the savings are quite significant. In the second scenario, the

fact that Amazon Review 20GB is an incremental version of Amazon Review 8GB has contributed

a significant boost to the execution time of WordStatistics, saving 45% GPU occupancy time in

total.

7.4.3 Experiments with Micro-benchmarks

Setup

The evaluated benchmarks are selected from various application domains and are run in the desktop

environment mentioned in Sec. 7.4.1. These benchmarks include a range applications from the

Rodinia test suits (Che et al., 2009), CUDA SDK examples (NVIDIA, 2015), a synthesized CUDA

game, an object recognition application as listed in Table 7.3. By increasing the application variety,

our goal is to perform a reasonably comprehensive evaluation study and identify GRU’s strengths

and limitations when being applied to applications with different characteristics.

The baseline used in our experiments is rCUDA (Duato et al., 2010), which is a popular API-

remoting-based GPU virtualization framework. rCUDA uses the TCP/IP network stack to commu-

nicate between its FE and BE. The overhead introduced by the architecture of API-remoting has

133

Table 7.3: Evaluated benchmarks

chess (Chess game AI) bfs (breadth first search)
lud (LU decomposition) mmult (matrix multiplication)
nn (nearest neighbor) bs (BlackScholes modeling)
hs (hotspot simulation) decode (Image decoding)
hw (medical imaging) bp (back propagation)
srad (image processing) hog (Object recognition)

been extensively discussed in rCUDA (Duato et al., 2010). Thus, in our experiments, we mainly

compare GRU with rCUDA to evaluate the efficacy of GPU result reuse, since GRU is almost

identical to rCUDA if its result reuse component is disabled.

To evaluate the overhead incurred under GRU, we evaluate two settings: (i) we run each ex-

periment under GRU with an empty result cache. Thus, in this setting, the measured performance

penalty can be viewed as purely the overhead incurred by GRU. We denote this setting by “GRU-

miss.” (ii) we run each experiment under GRU assuming that the same experiment has been per-

formed by another VM under GRU (i.e., cached entries have already been established in the result

cache). Thus, the measured performance in this setting can reflect the effectiveness of GRU. (Note

that GRU can only be effective if some reusable results have been cached.) We denote this setting

by “GRU-hit”. The main performance metric we adopt in our evaluation is the execution time

under rCUDA versus GRU (i.e., from the time when the CUDA context is created to the time when

the context is destroyed), as this metric directly reflects the effectiveness of the core GPU result

reuse idea implemented.

Results

We have also assessed GRU’s performance and overheads using a set of popular micro-

benchmarks, which are shown in Fig. 7.9. We observe from Fig. 7.9 that most benchmarks (9

out of 11) reach more than 1.25x speedup compared to rCUDA. Benchmark mmult yields the

highest speedup (5x) because of its compute-intensive nature (which can be seen in 7.10). An im-

portant message received from this set of experiments is that GRU is most effective when applied

134

to compute-intensive applications. This is because the computation time, which is the most time-

consuming component of such applications, can be saved by directly reusing the cached results.

On the other hand, GRU is also quite effective in handling data-intensive applications. For exam-

ple, the bfs benchmark, which is data-intensive as seen in Fig. 7.10, gets a nearly 2.5x speedup.

This is mainly because GRU can only optimize the execution of data-intensive applications by

merely transferring the hashed value of input data instead of the entire data chunks. Thus, once

the cached results associated with the same hashed value are retrieved in LUT, the time-consuming

transfer time of input data can be skipped. Moreover, by jointly considering the overhead that

GRU introduces when handling these two types of applications, the observation is that GRU per-

forms extremely well for compute-intensive applications due to (i) very small overhead incurred

when under GRU-miss, and (ii) large saving of execution time under GRU-hit; while for data-

intensive applications, GRU can still achieve a considerable amount of saving of execution time

under GRU-hit but at the cost of more overhead under GRU-miss due to large input data hashing.

On the other hand, we observe that one specific kind of application may not benefit a lot from

GPU result reuse, i.e., applications that are not compute-intensive, but have rather small input data

and large output. This is because in the case of cache-missing, they introduce non-negligible over-

head due to inserting the large output in LUT, while in the case of cache-hitting, they cannot gain

much performance speedup due to the non-compute-intensive nature. For example, the decode

application yields the lowest performance speedup, because the introduced overhead of result in-

sertion and dumping neutralizes the time saving due to the skipped input data transfer and kernel

launch time.

We evaluate GRU’s runtime overhead compared to rCUDA (which is mainly due to LUT-

related operations) by demonstrating the detailed breakdown of applications’ execution times on

GPU. Fig. 7.9 depicts the normalized execution time when executing each application under three

settings: rCUDA, GRU-miss and GRU-hit. The x-axis of Fig. 7.9 represents each evaluated ap-

plication, and the y-axis represents the execution time normalized with respect to the execution

135

time yielded under rCUDA. We observe that the overheads incurred by reuse-miss are less than

5% for four applications, less than 7% for another three applications. Overall, for a majority of

the considered benchmarks (7 out of 11), the overhead causes a less than 7% increase in execution

times. Among all applications, lud, bfs, and chess yield the greatest overhead (14%-18%). This is

because they are either data-intensive or process a large input data, causing more overhead in data

hashing, insertion, and movement.

To clearly understand the overhead sources, we have also recorded the detailed breakdown of

each benchmark’s execution time on GPUs under three scenarios, as shown in Fig. 7.10. There

are in total seven components that contribute to an application’s execution time: (i) Init indicates

the initialization time of CUDA context, (ii) H2D and D2H indicate data movement between host

memory and GPU device memory, (iii) Launch indicates the kernel launch time on GPU, (iv) H+R

indicates the time spent on data hashing and probing in LUT, (v) Insert indicates the time spent

on inserting results in LUT when caching a result, (vi) Reuse means a kernel launch is skipped

by reusing cached results. Through examining the breakdown, we can clearly figure out different

characteristics of benchmarks and the overhead differences between GRU-miss and GRU-hit. For

the bfs benchmark that incurs the most observable overhead, we can see in Fig. 7.10 that compared

to other benchmarks, the H2D, D2H, and H+R components under bfs contribute a larger portion

of the total execution time. The data transfer time in bfs accounts for 81% (67% for H2D and

14% for D2H) of the total execution time under rCUDA, 65% under GRU-miss, and only 20%

under GRU-hit. With the delay transfer optimization implemented in GRU, the H2D time of bfs

can almost be eliminated under GRU-hit.

7.5 Related Work

Managing GPUs in the cloud. Current approaches for GPU management in the cloud are clas-

sified into I/O pass-through (AMAZON, 2006), API-remoting (Duato et al., 2010; Giunta et al.,

2010; Lagar-Cavilla et al., 2007; Shi et al., 2012), para-virtualization (Dowty and Sugerman, 2009;

136

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

bp lud
nn hs hw srad

m
m

ult

bfs
bs decode

chess

N
o

rm
a

liz
e

d
 E

x
e

c
.

T
im

e rCUDA GRU-miss GRU-hit

Figure 7.9: Performance with respect to normalized execution time.

Launch D2H

Insert ReuseH+R

Init H2D

Breakdown on execution time of GPU benchmarks

 0

 20

 40

 60

 80

P
e
rc

e
n
ta

g
e
 o

f
E

x
e
c
.
T

im
e

bp lud
nn hs hw srad

m
m

ult

bfs
bs decode

chess

Figure 7.10: The three histograms for each benchmark represent the breakdown under rCUDA,
GRU-miss and GRU-hit, respectively.

Gottschlag et al., 2013; Suzuki et al., 2014) and full-virtualization (Suzuki et al., 2014; Tian et al.,

2014; Malka et al., 2015; Zhou et al., 2015), the latter two being two different implementations of

the device emulation technique. However, these works do not exploit the idea of GPU computing

result reuse.

Computing result reuse. The concept of CPU-based computation reuse has been proposed

in the programming language and computer architecture communities. Compiler-assisted ap-

proaches (Sodani and Sohi, 1997; Conners and Hwu, 1999; Connors et al., 2000; Ding and

Li, 2004) seek to reuse intermediate results at CPU instruction level. Function-level memo-

137

ization (Michie, 1968; Pugh and Teitelbaum, 1989) is used to avoid re-executing functions by

caching the results of prior function calls. Moreover, frameworks are proposed to reuse redundant

computations at a higher level for the emerging incremental data processing field. For example,

Spark (Zaharia et al., 2010), Percolator (Peng and Dabek, 2010), and CBP (Logothetis et al., 2010)

provide programmers with facilities to store and reuse states across successive runs; while Dryad-

Inc (Popa et al., 2009), Nectar (Gunda et al., 2010), Haloop (Bu et al., 2010), Incoop (Bhatotia

et al., 2011), CIEL (Murray et al., 2011), and Shredder (Bhatotia et al., 2012) are systems that

reuse prior computing results. On GPU-incurred reuse, Arnau et al. (Arnau et al., 2014) presented

a hardware memoization approach to eliminate redundant fragment shader executions on a mobile

GPU. Different from these works, GRU focuses on GPGPU and efficiently realizing the partial

GPU computing result reuse idea at a GPU kernel launch granularity.

7.6 Summary

In this chapter, we present GRU, a GPU sharing, result memoization and reuse ecosystem for

high performance and cloud computing. GRU exploits computation and data redundancy seen in

several important categories of GPU-accelerated workloads. We have fully implemented GRU and

evaluation results show that GRU is effective in improving the turnaround time and reducing the

GPU occupation time, while incurring a rather small runtime overhead.

138

CHAPTER 8

CONCLUSION

In this dissertation, we have presented five different works to improve the predictability of GPGPU

computing in DNN-driven autonomous systems. Specifically, we propose GPES, a runtime system

that allows GPU executions interruptible and preemptable in a multi-tasking environment. We

proposed S3DNN , a systemic solution that optimizes the execution of DNN workloads on GPU

in a soft real-time multi-tasking environment. We proposed PredJoule, a runtime system which

presents a layer-based approach that controls the timing and optimizes energy efficiency through

exploiting each layer’s performance/energy characteristics. In addition to the runtime systems

we proposed, we investigate the problem of mapping multiple applications implemented using

kernel graphs in a heterogeneous system, and present a theoretical framework that formulates this

problem as an integer program and a set of practically efficient mapping algorithms. Furthermore

we proposed a reuse-based approach to further improve the predictability of GPU computing.

139

REFERENCES

Abe, Y., H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres (2014, May). Power and perfor-
mance characterization and modeling of gpu-accelerated systems. In 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, pp. 113–122.

Albericio, J., P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos (2016). Cn-
vlutin: Ineffectual-neuron-free deep neural network computing. In ACM SIGARCH Computer
Architecture News, Volume 44, pp. 1–13. IEEE Press.

AMAZON (2006). Amazon elastic compute cloud (amazon ec2). http://aws.amazon.com/ec2.

Arabnejad, H. and J. G. Barbosa (2014, March). List scheduling algorithm for heterogeneous
systems by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694.

Arnau, J.-M., J.-M. Parcerisa, and P. Xekalakis (2014). Eliminating redundant fragment shader
executions on a mobile gpu via hardware memoization. In ISCA’14.

Auerbach, J., D. F. Bacon, P. Cheng, and R. Rabbah (2010). Lime: A java-compatible and syn-
thesizable language for heterogeneous architectures. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA
’10, New York, NY, USA, pp. 89–108. ACM.

Augonnet, C., S. Thibault, R. Namyst, and t. . S. b. . P. y. . . p. . . Wacrenier, Pierre-André.

Baek, W. and T. M. Chilimbi (2010). Green: a framework for supporting energy-conscious pro-
gramming using controlled approximation. In ACM Sigplan Notices, Volume 45, pp. 198–209.
ACM.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield (2003). Xen and the art of virtualization. In SOSP’03.

Basaran, C. and K.-D. Kang (2012). Supporting preemptive task executions and memory copies in
gpgpus. In Proc. of IEEE ECRTS, pp. 287–296.

Bhatotia, P., R. Rodrigues, and A. Verma (2012). Shredder: Gpu-accelerated incremental storage
and computation. In FAST’12.

Bhatotia, P., A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin (2011). Incoop: Mapreduce for
incremental computations. In SOCC’11.

Bhattacharya, S. and N. D. Lane (2016). Sparsification and separation of deep learning layers for
constrained resource inference on wearables. In Proceedings of the 14th ACM Conference on
Embedded Network Sensor Systems CD-ROM, pp. 176–189. ACM.

140

Bini, E., G. Buttazzo, and G. Lipari (2009). Minimizing cpu energy in real-time systems with
discrete speed management. ACM Transactions on Embedded Computing Systems (TECS) 8(4),
31.

Bittencourt, L. F., R. Sakellariou, and E. R. Madeira (2010). Dag scheduling using a lookahead
variant of the heterogeneous earliest finish time algorithm. In Parallel, Distributed and Network-
Based Processing (PDP), 2010 18th Euromicro International Conference on, pp. 27–34. IEEE.

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Mon-
fort, U. Muller, J. Zhang, et al. (2016). End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316.

Bu, Y., B. Howe, M. Balazinska, and M. D. Ernst (2010). Haloop: efficient iterative data processing
on large clusters. Proc. VLDB Endow.

Bueno, J., L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia, E. Ayguade, and
J. Labarta (2011). Productive cluster programming with ompss. In Proceedings of the 17th
International Conference on Parallel Processing - Volume Part I, Euro-Par’11, Berlin, Heidel-
berg, pp. 555–566. Springer-Verlag.

Canon, L.-C., E. Jeannot, R. Sakellariou, and W. Zheng (2008). Comparative evaluation of the
robustness of dag scheduling heuristics. In Grid Computing, pp. 73–84. Springer.

Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron (2009). Rodinia:
A benchmark suite for heterogeneous computing. In IISWC’09.

Chen, C., A. Seff, A. Kornhauser, and J. Xiao (2015). Deepdriving: Learning affordance for direct
perception in autonomous driving. In ICCV.

Chen, T. Y.-H., L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan (2015a). Glimpse: Con-
tinuous, real-time object recognition on mobile devices. In SenSys.

Chen, T. Y.-H., L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan (2015b). Glimpse: Con-
tinuous, real-time object recognition on mobile devices. In Proceedings of the 13th ACM Con-
ference on Embedded Networked Sensor Systems, pp. 155–168. ACM.

Chen, W., J. Wilson, S. Tyree, K. Weinberger, and Y. Chen (2015). Compressing neural networks
with the hashing trick. In International Conference on Machine Learning, pp. 2285–2294.

Chen, Y.-H., J. Emer, and V. Sze (2016). Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. In ACM SIGARCH Computer Architecture News,
Volume 44, pp. 367–379.

Chi, P., S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie (2016). Prime: a novel
processing-in-memory architecture for neural network computation in reram-based main mem-
ory. In ACM SIGARCH Computer Architecture News, Volume 44, pp. 27–39. IEEE Press.

141

Conners, D. and W.-M. Hwu (1999). Compiler-directed dynamic computation reuse: rationale and
initial results. In MICRO’99.

Connors, D. A., H. C. Hunter, B.-C. Cheng, and W.-m. W. Hwu (2000). Hardware support for
dynamic activation of compiler-directed computation reuse. In ASPLOS’00.

Currey, J., S. Baker, and C. Rossbach (2013). Supporting iteration in a heterogeneous dataflow
engine.

Diamos, G. F. and S. Yalamanchili (2008). Harmony: An execution model and runtime for het-
erogeneous many core systems. In Proceedings of the 17th International Symposium on High
Performance Distributed Computing, HPDC ’08, New York, NY, USA, pp. 197–200. ACM.

Ding, Y. and Z. Li (2004). A compiler scheme for reusing intermediate computation results. In
CGO’04.

Dowty, M. and J. Sugerman (2009). Gpu virtualization on vmware’s hosted i/o architecture.
SIGOPS Oper. Syst. Rev..

Duato, J., A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ortı́ (2010). rcuda: Reducing the
number of gpu-based accelerators in high performance clusters. In HPCS’10.

Dudani, A., F. Mueller, and Y. Zhu (2002). Energy-conserving feedback edf scheduling for em-
bedded systems with real-time constraints. In ACM SIGPLAN Notices, Volume 37, pp. 213–222.
ACM.

Elliott, G. and J. H. Anderson (pp. 48-54, 2011). Real-world constraints of gpus in real-time sys-
tems. In Proceedings of the First International Workshop on Cyber-Physical Systems, Networks,
and Applications.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman (2010, June). The
pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2),
303–338.

Farrell, A. and H. Hoffmann (2016). Meantime: Achieving both minimal energy and timeliness
with approximate computing. In USENIX Annual Technical Conference, pp. 421–435.

FREEDESKTOP (2012). Nouveau open-source driver. http://nouveau.freedesktop.org.

Fritsch, J., T. Kuehnl, and A. Geiger (2013). A new performance measure and evaluation bench-
mark for road detection algorithms. In International Conference on Intelligent Transportation
Systems (ITSC).

Fujii, Y., T. Azumi, N. Nishio, S. Kato, and M. Edahiro (2013). Data transfer matters for gpu
computing. In Proc. of IEEE International Conference on Parallel and Distributed Systems, pp.
275–282.

142

Ghazal, A., T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen (2013). Bigbench:
Towards an industry standard benchmark for big data analytics. In SIGMOD’13.

Girshick, R. (2015). Fast r-cnn. In ICCV.

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR.

Giunta, G., R. Montella, G. Agrillo, and G. Coviello (2010). A gpgpu transparent virtualization
component for high performance computing clouds. In Euro-Par’10.

Gottschlag, M., M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa (2013). Logv: Low-overhead
gpgpu virtualization. In FHC’13.

Group, K. (2004). Opengl shading language.
https://en.wikipedia.org/wiki/OpenGL Shading Language.

Group, K. O. W. (2008). Opencl-the open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl.

Gunda, P. K., L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang (2010). Nectar: Automatic
management of data and computation in datacenters. In OSDI’10.

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally (2016). Eie: efficient
inference engine on compressed deep neural network. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on, pp. 243–254. IEEE.

Han, S., H. Mao, and W. J. Dally (2015). Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

Han, S., J. Pool, J. Tran, and W. Dally (2015). Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pp. 1135–1143.

Han, S., H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy (2016). Mcdnn:
An approximation-based execution framework for deep stream processing under resource con-
straints. In MobiSys.

Harper, F. M. and J. A. Konstan (2015). The movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst..

Harris, M. (2009). Gpgpu.org. http://gpgpu.org/aboute.

Heo, J., P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher, and X. Liu (2011). Optituner: On
performance composition and server farm energy minimization application. IEEE Transactions
on Parallel and Distributed Systems 22(11), 1871–1878.

143

Hipp, D. R. (2018). Sqlite3 in-memory databases. https://www.sqlite.org/inmemorydb.html.

Hoffmann, H. (2014). Coadapt: Predictable behavior for accuracy-aware applications running on
power-aware systems. In Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on, pp.
223–232.

Hoffmann, H. (2015). Jouleguard: energy guarantees for approximate applications. In Proceedings
of the 25th Symposium on Operating Systems Principles, pp. 198–214. ACM.

Hou, Y., J. Lai, and D. Mikushin (2011). Asfermi: An assembler for the nvidia fermi instruction
set. http://code.google.com/p/asfermi.

Huang, K., L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo (2009). Adaptive dynamic
power management for hard real-time systems. In Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE, pp. 23–32. IEEE.

Huang, S., J. Huang, J. Dai, T. Xie, and B. Huang (2010). The hibench benchmark suite: Charac-
terization of the mapreduce-based data analysis. In ICDEW’10.

Huang, S. S., A. Hormati, D. F. Bacon, and R. Rabbah (2008). Liquid metal: Object-oriented
programming across the hardware/software boundary. In Proceedings of the 22Nd European
Conference on Object-Oriented Programming, ECOOP ’08, Berlin, Heidelberg, pp. 76–103.
Springer-Verlag.

Hugo, A.-E., A. Guermouche, P.-A. Wacrenier, and R. Namyst (2013). Composing multiple starpu
applications over heterogeneous machines: A supervised approach. In Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and
PhD Forum, IPDPSW ’13, Washington, DC, USA, pp. 1050–1059. IEEE Computer Society.

Huynh, L. N., Y. Lee, and R. K. Balan (2017). Deepmon: Mobile gpu-based deep learning frame-
work for continuous vision applications. In Proceedings of the 15th Annual International Con-
ference on Mobile Systems, Applications, and Services, pp. 82–95. ACM.

IBM (2016). Ibmsparkgpu. https://github.com/IBMSparkGPU/SparkGPU.

Imes, C., D. H. K. Kim, M. Maggio, and H. Hoffmann (2015, April). Poet: a portable approach
to minimizing energy under soft real-time constraints. In 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 75–86.

Jaderberg, M., A. Vedaldi, and A. Zisserman (2014). Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866.

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell
(2014). Caffe: Convolutional architecture for fast feature embedding. In ACM MM.

144

Kang, Y., J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang (2017). Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 615–629. ACM.

Kato, S. (2013). Implementing open-source cuda runtime. Technical report.

Kato, S., K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar (2011). Rgem: A
responsive gpgpu execution model for runtime engines. In Proc. of IEEE RTSS, pp. 57–66.

Kato, S., K. Lakshmanan, R. Rajkumar, and Y. Ishikawa (2011). Timegraph: Gpu scheduling for
real-time multi-tasking environments. In USENIX ATC.

Kato, S., M. McThrow, C. Maltzahn, and S. A. Brandt (2012). Gdev: First-class gpu resource
management in the operating system. In Proc. of USENIX Annual Technical Conference, pp.
401–412.

Kenna, C. J., J. L. Herman, B. B. Brandenburg, A. F. Mills, and J. H. Anderson (2011). Soft real-
time on multiprocessors: Are analysis-based schedulers really worth it? In Proc. of IEEE RTSS,
pp. 93–103.

Kim, D. H. K., C. Imes, and H. Hoffmann (2015, Aug). Racing and pacing to idle: Theoretical and
empirical analysis of energy optimization heuristics. In 2015 IEEE 3rd International Conference
on Cyber-Physical Systems, Networks, and Applications, pp. 78–85.

Kim, Y.-D., E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin (2015). Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530.

Koren, Y., R. Bell, and C. Volinsky (2009). Matrix factorization techniques for recommender
systems. Computer.

Koscielnicki, M. (2012). Envytools. git://0x04.net/envytools.git.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep convolu-
tional neural networks. In NIPS.

Lab, P. D. (2015). Opencloud hadoop cluster trace.
http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html.

Lagar-Cavilla, H. A., N. Tolia, M. Satyanarayanan, and E. De Lara (2007). Vmm-independent
graphics acceleration. In VEE.

Lane, N. D., S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar (2016).
Deepx: A software accelerator for low-power deep learning inference on mobile devices. In
Information Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Con-
ference on, pp. 1–12. IEEE.

145

Lattner, C. and V. Adve (2004). Llvm: A compilation framework for lifelong program analysis &
transformation. In CGO’04.

Lee, J., M. Samadi, Y. Park, and S. Mahlke (2013). Transparent cpu-gpu collaboration for data-
parallel kernels on heterogeneous systems. In Proc. of IEEE PACT, pp. 245–256.

LiKamWa, R., Y. Hou, J. Gao, M. Polansky, and L. Zhong (2016). Redeye: analog convnet image
sensor architecture for continuous mobile vision. In ACM SIGARCH Computer Architecture
News, Volume 44, pp. 255–266. IEEE Press.

Lin, T., M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan,
and j. . C. y. . . v. . a. b. . d. b. . h. t. . W. u. . h. Piotr Dollár and C. Lawrence Zitnick, title
= Microsoft COCO: Common Objects in Context.

Linetsky, M. (2001). Programming Microsoft Directshow. Wordware Publishing Inc.

Logothetis, D., C. Olston, B. Reed, K. C. Webb, and K. Yocum (2010). Stateful bulk processing
for incremental analytics. In SOCC’10.

Luk, C., S. Hong, and H. Kim (2009). Qilin: Exploiting parallelism on heterogeneous multipro-
cessors with adaptive mapping. In Proc. of ACM MICRO, pp. 45–55.

Malka, M., N. Amit, M. Ben-Yehuda, and D. Tsafrir (2015). riommu: Efficient iommu for i/o
devices that employ ring buffers. In ASPLOS’15.

McAuley, J., C. Targett, Q. Shi, and A. van den Hengel (2015). Image-based recommendations on
styles and substitutes. In SIGIR’15.

McCool, M. D., A. D. Robison, and J. Reinders (2012). Structured parallel programming: patterns
for efficient computation. Elsevier.

Michie, D. (1968). Memo functions and machine learning. Nature.

Mishra, N., H. Zhang, J. D. Lafferty, and H. Hoffmann (2015). A probabilistic graphical model-
based approach for minimizing energy under performance constraints. In ACM SIGARCH Com-
puter Architecture News, Volume 43, pp. 267–281. ACM.

Mok, A. K.-L. (1983). Fundamental design problems of distributed systems for the hard-real-time
environment. Ph. D. thesis, Massachusetts Institute of Technology.

Murray, D. G., M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand (2011).
Ciel: A universal execution engine for distributed data-flow computing. In NSDI’11.

National institute for research in computer science and control (2008). How To Optimize Perfor-
mance With StarPU.

146

NVIDIA (2003). C for graphics. https://en.wikipedia.org/wiki/Cg.

NVIDIA (2010). Nvidia gf100 whitepaper. http://www.nvidia.com/object/IO 86775.html.

NVIDIA (2011). Cuda 4.0. http://developer.nvidia.com/cuda-toolkit-40.

NVIDIA (2014). Nvidia kepler architecture. http://www.nvidia.com/object/nvidia-kepler.html.

NVIDIA (2015). Cuda 7 streams simplify concurrency.
https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

NVIDIA (2016). Drive px 2. http://www.nvidia.com/object/drive-px.html.

OpenACC (2013). The openacc application programming interface. https://www.openacc.org/.

Pai, S., M. J. Thazhuthaveetil, and R. Govindarajan (2013). Improving gpgpu concurrency with
elastic kernels. In Proc. of ACM SIGPLAN, pp. 407–418. ACM.

Peng, D. and F. Dabek (2010). Large-scale incremental processing using distributed transactions
and notifications. In OSDI’10.

Popa, L., M. Budiu, Y. Yu, and M. Isard (2009). Dryadinc: Reusing work in large-scale computa-
tions. In HotCloud’09.

Pugh, W. and T. Teitelbaum (1989). Incremental computation via function caching. In POPL’89.

Reagen, B., P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato, G.-Y.
Wei, and D. Brooks (2016). Minerva: Enabling low-power, highly-accurate deep neural network
accelerators. In ACM SIGARCH Computer Architecture News, Volume 44, pp. 267–278. IEEE
Press.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). You only look once: Unified, real-time
object detection. In CVPR.

Ren, S., K. He, R. Girshick, and J. Sun (2015). Faster r-cnn: Towards real-time object detection
with region proposal networks. In NIPS.

Romero, A., N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio (2014). Fitnets: Hints
for thin deep nets. arXiv preprint arXiv:1412.6550.

Rossbach, C. J., J. Currey, M. Silberstein, B. Ray, and E. Witchel (2011). Ptask: Operating system
abstractions to manage gpus as compute devices. In Proc. of ACM SOSP, pp. 233–248.

Rossbach, C. J., Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly (2013). Dandelion: a compiler and
runtime for heterogeneous systems. In SOSP’13.

147

Sakellariou, R. and H. Zhao (2004). A hybrid heuristic for dag scheduling on heterogeneous sys-
tems. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International,
pp. 111. IEEE.

Samadi, M., D. A. Jamshidi, J. Lee, and S. Mahlke (2014). Paraprox: Pattern-based approximation
for data parallel applications. In ASPLOS’14.

Santriaji, M. H. and H. Hoffmann (2016). Grape: Minimizing energy for gpu applications with
performance requirements. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Inter-
national Symposium on, pp. 1–13. IEEE.

Shafiee, A., A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams,
and V. Srikumar (2016). Isaac: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Computer Architecture News 44(3), 14–26.

Shi, L., H. Chen, J. Sun, and K. Li (2012). vcuda: Gpu-accelerated high-performance computing
in virtual machines. IEEE Transactions on Computers.

Simonyan, K. and A. Zisserman (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Sodani, A. and G. S. Sohi (1997). Dynamic instruction reuse. In ISCA’97.

Sorber, J., A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and E. D. Berger (2007). Eon:
a language and runtime system for perpetual systems. In Proceedings of the 5th international
conference on Embedded networked sensor systems, pp. 161–174. ACM.

STP (2014). The simple theorem prover. http://stp.github.io/.

Suzuki, Y., S. Kato, H. Yamada, and K. Kono (2014). Gpuvm: Why not virtualizing gpus at the
hypervisor. In ATC’14.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich (2015). Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1–9.

Tesla (2017). Tesla: Challenges in fleet learning. https://seekingalpha.com/article/4045423-tesla-
challenges-fleet-learning.

Thies, W., M. Karczmarek, and S. P. Amarasinghe (2002). Streamit: A language for streaming
applications. In Proceedings of the 11th International Conference on Compiler Construction,
CC ’02, London, UK, UK, pp. 179–196. Springer-Verlag.

Tian, K., Y. Dong, and D. Cowperthwaite (2014). A full gpu virtualization solution with mediated
pass-through. In ATC’14.

148

Topcuouglu, H., S. Hariri, and M.-y. Wu (2002, March). Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib.
Syst. 13(3), 260–274.

Umuroglu, Y., N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers (2017).
Finn: A framework for fast, scalable binarized neural network inference. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65–74.
ACM.

Verner, U., A. Schuster, and M. Silberstein (2011). Processing data streams with hard real-time
constraints on heterogeneous systems. In Proceedings of the international conference on Super-
computing, pp. 120–129. ACM.

Wang, K., X. Ding, R. Lee, S. Kato, and X. Zhang (2014). Gdm: Device memory management for
gpgpu computing. In Proc. of ACM SIGMETRICS, pp. 533–545.

Wang, L., J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng,
G. Lu, K. Zhan, X. Li, and B. Qiu (2014). Bigdatabench: A big data benchmark suite from
internet services. In HPCA’14.

Weinsberg, Y., D. Dolev, T. Anker, M. Ben-Yehuda, and P. Wyckoff (2008). Tapping into the foun-
tain of cpus: on operating system support for programmable devices. ACM SIGOPS Operating
Systems Review 42(2), 179–188.

Wu, J., A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar, B. Roune, R. Springer,
X. Weng, and R. Hundt (2016). gpucc: an open-source gpgpu compiler. In CGO’16.

Xu, M., F. Qian, and S. Pushp (2017). Enabling cooperative inference of deep learning on wear-
ables and smartphones. arXiv preprint arXiv:1712.03073.

Xue, J., J. Li, D. Yu, M. Seltzer, and Y. Gong (2014). Singular value decomposition based
low-footprint speaker adaptation and personalization for deep neural network. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp. 6359–
6363. IEEE.

Yang, T.-J., Y.-H. Chen, and V. Sze (2017). Designing energy-efficient convolutional neural net-
works using energy-aware pruning. arXiv preprint.

Y.C. (2012). Extremely fast non-cryptographic hash algorithm.
https://code.google.com/archive/p/xxhash.

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica (2010). Spark: cluster
computing with working sets. In HotCloud’10.

149

Zhang, H. and H. Hoffmann (2016). Maximizing performance under a power cap: A comparison
of hardware, software, and hybrid techniques. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS ’16, New York, NY, USA, pp. 545–559. ACM.

Zhao, H. and R. Sakellariou (2003). An experimental investigation into the rank function of the
heterogeneous earliest finish time scheduling algorithm. In Euro-Par, pp. 189–194.

Zhao, H. and R. Sakellariou (2006). Scheduling multiple dags onto heterogeneous systems. In
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pp.
14–pp. IEEE.

Zhou, H., Y. Fu, and C. Liu (2015). Supporting dynamic gpu computing result reuse in the cloud.
In HotCloud.

Zhou, H., G. Tong, and C. Liu (2015). Gpes: a preemptive execution system for gpgpu computing.
In RTAS.

150

BIOGRAPHICAL SKETCH

Husheng Zhou received his BS degree in Software Engineering from China University of

Petroleum in 2007, his MS degree in Software Engineering from Peking University in 2011, and

his PhD degree in Computer Science from The University of Texas at Dallas in 2018. His re-

search interests include GPGPU, real-time and embedded systems, heterogeneous systems, and

high performance computing.

151

CURRICULUM VITAE

Husheng Zhou
October 2018

Educational History:
B.S., Computer Science, China University of Petroleum, 2007
M.S., Software Engineering, Peking University, 2011
Ph.D., Computer Science, University of Texas at Dallas, 2018

Predictable GPGPU Computing in DNN-driven Autonomous Systems
Ph.D. Dissertation
Computer Science Department, University of Texas at Dallas
Advisors: Dr.Cong Liu

Working Experience:
Summer Research Intern, IBM T. J. Watson Research Center, May 2016 – August 2016
Summer Intern, Huawei Technologies Co., Ltd, May 2014 – August 2014
Research Engineer, Singapore Management University, August 2011 – August 2012

Professional Activities:
SIGBED 2018 Best Paper Award, CPS Week 2018, 2018
SIGBED CPSWEEK 2015 Student Travel Grant, CPS Week 2015, 2015
Usenix 2015 Student Travel Grant, Usenix ATC 2015, 2015
ACM CCS 2017 Volunteer, ACM CCS 2017, 2017

Publications:

1. Husheng Zhou*, Soroush Bateni*, Cong Liu. PredJoule: A Timing-Predictable Energy Op-
timization Framework for Deep Neural Networks. IEEE Real-Time Systems Symposium
(RTSS), 2018.

2. Husheng Zhou, Soroush Bateni, Cong Liu. Exploring Computation and Data Redundancy
via Partial GPU Computing Result Reuse. ACM International Conference on Supercomput-
ing (ICS), 2018.

3. Husheng Zhou, Soroush Bateni, Cong Liu. S3DNN : Supervised Streaming and Scheduling
for GPU-accelerated Real-Time DNN Workloads. IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2018. [Best Paper Award]

4. Zheng Dong, Yuchuan Liu, Husheng Zhou, Xusheng Xiao, Yu Gu, Lingming Zhang, Cong
Liu. An Energy-efficient Offloading Framework with Predictable Temporal Correctness.
IEEE Symposium on Edge Computing (SEC), 2017.

5. Husheng Zhou, Yangchun Fu and Cong Liu. Supporting Dynamic GPU Computing Result
Reuse in the Cloud. USENIX Conference on Hot Topics in Cloud Computing (HotCloud),
2015.

6. Husheng Zhou, Guangmo Tong and Cong Liu. GPES: A Preemptive Execution System for
GPGPU Computing. IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015.

7. Wen-Hung Huang, Husheng Zhou, Jian-Jia Chen and Cong Liu. PASS: Priority Assignment
of Real-Time Tasks with Dynamic Suspending Behavior under Fixed-Priority Scheduling.
Design Automation Conference (DAC), 2015.

8. Husheng Zhou and Cong Liu. Task Mapping in Heterogeneous Embedded Systems for
Fast Completion Time. ACM International Conference on Embedded Software (EMSOFT),
2014.

Technique Skills:
Languages: C/C++, CUDA, Java, Linux Shell, C#, Ocaml, Scala, Python
Tools: Spark, Caffe, YOLO, Tensorflow, Xen, Qemu, GPGPU-sim, LLVM, IDA Pro, OllyDbg,
Valgrind, Nouveau, MySQL, Subversion, Git, Z3 SMT Solver
Hardware and Systems: Linux, ROS, Litmus RT , Windows, Mac, NVIDIA Jetson TX2, Rasp-
berry Pi

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Graphics Processing Units
	GPGPU Programming Model
	Deep Neural Networks
	Contributions
	Organization

	Background And Related Work
	Scheduling Algorithms for Heterogeneous Systems
	Runtime Engines for Heterogeneous CPU/GPU Processors
	GPU Resource Management
	Real-time DNN-Based Object Recognition
	Optimizing Energy While Meeting Timeliness
	Kernel Transformation
	Managing GPUs in The Cloud
	Computing Result Reuse

	Preemptive Execution for GPGPU
	A Case Study
	System Design and Implementation
	Kernel Execution Slicing
	Data Transfer Slicing
	Context Switch Scheduling
	Challenges and Limitations

	Evaluation
	Experimental Setup
	Overhead due to kernel slicing
	Overhead due to data slicing
	Overhead of context switching
	Multi-Tasking Performance
	Non-real-time setting
	Defending against DOS Attacks

	Summary

	Stream Scheduling for GPU-Accelerated Real-Time DNN Workloads
	Motivation
	GPU Usage Pattern For DNNs
	Data Fusion
	Kernel Scheduling and Concurrency

	Design and Implementation of S3DNN
	Design Overview
	System-level Data Fusion
	Supervised Streaming and Scheduling

	Evaluation
	Experiment Setup
	Real-time performance
	Overall Throughput
	Assessing the Supervised Streaming and Scheduling Module
	Multi-GPU scenarios.
	Online Webcam-based Object Recognition

	Summary

	Timing-Predictable Energy Optimization for Deep Neural Networks
	Motivation
	DNN-specific Energy Usage Patterns
	Energy-Performance Relationship

	Design
	Uncertainty
	Progress Tracker
	Integration

	Evaluation
	System Setup
	Generality
	Detailed Latency/Energy Performance
	Adaptability With Interference
	Overhead

	Summary

	Task Mapping in Heterogeneous Systems for Fast Completion
	System Modeling and MIP Formulation
	System Model
	An MIP Formulation

	Case Studies: What to Consider for Making Mapping Decisions
	Practical Mapping Algorithms
	Baseline Algorithm: Heterogeneity Ratio-based Mapping
	Kernel Graph Structure Considerations
	Data Partitioning

	Implementation and Evaluation
	Implementation
	Experimental Setup
	Results

	Summary

	Exploring Computation and Data Redundancy via Partial GPU Computing Result Reuse
	Case Study
	GRU Design
	Overview
	Methodology
	GRU Front-End
	GRU Back-End

	Implementation Details
	Rewriting Algorithm
	Result Cache and Reuse
	Global object tracking
	Delay transfer

	Evaluation
	Experimental Setup
	Spark Use Cases
	Experiments with Micro-benchmarks

	Related Work
	Summary

	Conclusion
	References
	Biographical Sketch
	Curriculum Vitae

