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Nowadays, high amounts of data are continuously generated at unprecedented rate from

various domains such as e-commerce, education, health, security, and social networks. This is

due to many technological advancements, including Internet of Things (IoT), autonomous

driving, the proliferation of Cloud Computing, data center consolidation as well as the growth

of smart devices. The term big data was created to demonstrate the meaning of this emerging

trend. The high volumes, velocities, and varieties of data pose a great challenge for the

data mining community to extract useful knowledge. In response to this, we need scalable

analytics frameworks for data acquisition, filtering, and analyzing in a quick time.

Current state-of-the-arts like advanced analytics, Machine Learning (ML), Natural Language

Processing (NLP) can be utilized to handle heterogeneous Big Data. Yet, most of these

systems suffer scalability issues. In this dissertation, we focus on social science and blockchain

areas. More specifically, we focus on location extraction from unstructured political text

data, vulnerability detection in Blockchain’s smart contracts and fault diagnosis in wind

turbine vibration data. With regard to focus location extraction, although various tools exist

to identify geolocation, they fail to identify at a granular level; they mostly rely on external

vii



knowledge, and they do not support most languages. We propose a novel scalable framework

PROFILE to extract the primary focus location from political news articles in different

languages. With regard to blockchain, existing solutions to this problem particularly rely on

human experts to define features or different rules to detect vulnerabilities, which often lead

to missing many vulnerabilities and they are inefficient in detecting new vulnerabilities. We

develop a novel scalable framework to detect vulnerabilities in smart contracts. With regard

to fault diagnosis in wind turbines, real-time fault diagnosis for streaming vibration data

from turbine gearboxes is still an outstanding challenge. Moreover, monitoring gearboxes

in a wind farm with thousands of wind turbines requires massive computational power. We

address these challenges by developing SAIL, a scalable real-time framework, to capture wind

turbine vibration data using a novel feature extraction and predict faults in gearbox. We

show empirically that the proposed techniques outperform state-of-the-art techniques in all

three areas.
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CHAPTER 1

INTRODUCTION

The world today is generating an inconceivable amount of data every minute in different

contexts such as online social media, smartphones, sensors, cameras, and news. Traditional

technologies have limited storage capacity to store all data for long periods and manage huge

datasets efficiently because it is costly. Due to these reasons, some of these data may lose

value or be lost forever. Therefore, it is essential to develop scalable systems that can ingest

and analyze unstructured data on a continuous basis.

In the recent era, businesses are more aware that data analysis is increasingly becoming

a vital factor to be competitive, to discover new insight, and to personalize services. In

order to cope with these massive, exponentially increasing amounts of heterogeneous data

that are generated faster and faster, an organization should act swiftly to process data and

take necessary actions. In response to these requirements on massive data, agile, analytic,

adaptive, and scalable frameworks are required which combine business rules and predictive

analytics to make business decisions. Therefore, it is a challenging task given the volume,

velocity, and possibly complex nature of the input data. The lack of scalability, flexibility

and performance in big data frameworks may lead to catastrophic consequences with a severe

impact on business continuity.

1.1 Big Data Frameworks

Because of the large data, new systems and technologies, instead of the single machines, have

emerged to scale out computations to multiple nodes. Big Data has three main characteristics,

which are also some the challenges of the data in industry: volume, velocity and variety

(Zikopoulos et al., 2011).
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Volume: Every second, a huge amount of data is generating in different places or by various

devices. In 2015, Yin reported that annually data generated by modern industry has reached

a total amount of more than 1000 Exabytes (1036 byte) and is predicted to grow 20-fold in

the next decade (Yin and Kaynak, 2015). As a result, the exponentially increasing volume of

data is a serious challenge ahead of today's industrial world.

Velocity: Different devices such as sensors have led to an unprecedented pace of data

generation and are driving a growing need for processing this big volume of data in real-time.

So, growth in data velocity is another big data challenge which stands in front of industries,

since it affects time and efficiency.

Variety: Data is generating in different formats and structures, such as digital and analogous

signals. So, the other challenge is finding the correlation among various types of data in

real-time and analyzing them.

Many different Big Data analysis tools with different features have been developed so far,

such as Hadoop (Shvachko et al., 2010), Apache Storm (Storm, Storm), and Apache Spark

(Spark, Spark). In this project, Spark is selected over a traditional distributed framework

(e.g., Hadoop and MapReduce, etc.) that is not ideal for stream data processing as described

in the next subsection.

The Apache Spark is a fast and general purpose cluster computing engine for large-

scale data analytics. Apache Spark was developed at the University of California, Berkeley

AMP Lab (Spark, Spark). Many different applications have been developed based on Spark

clustering so far, such as anomaly detection (Solaimani et al., 2014), political event coding

(Solaimani et al., 2016), processing the traffic data (Sinnott et al., 2015), etc.

Another feature that Spark offers is supporting scalable, high-throughput, fault-tolerant

real-time data stream processing (Zaharia et al., 2012). Spark streaming uses a “discretized
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streams” which is an incremental stream processing model. Data can be fed by many sources

like Kafka (Kafka, 2014).

Machine Learning library (MLLIB) is Spark's distributed and scalable machine learning

library (Meng et al., 2016). It improves the computational efficiency by using data-parallelism

or model-parallelism techniques to store and process data or models. MLLIB includes more

than 50 common algorithms for classification, clustering, regression, collaborative filtering

and dimensionality reduction.

1.2 Contributions

We have highlighted our contributions in this section.

1.2.1 Designing a scalable framework for primary focus location in political

news articles

Political news reports are populated all over the world in various languages. It has a great

value to automatically detect the geolocation from these reports for better understanding of

the associated events. Although various open-source and commercial tools exist to identify

geolocation, they fail to identify at a granular level such as locality or city and they do not

support most languages. Most of the techniques view the problem in terms of Named Entity

Recognition (NER) and identify geolocation information at the country level for a given

text. In this study, we consider English, Spanish and Arabic news articles from different

publishers. We define primary focus location as the actual location where the event occurred

amongst other focus locations mentioned in the report. Our aim is to extract the primary

focus location regardless of the language from articles belonging to different news agencies.

We propose a mechanism to identify potential sentences containing focus locations using

NER. After that, we perform sentence embedding over words from different languages, and

then employ a supervised classification mechanism to predict the primary focus location. We

3



also perform bias correction over the training data using a suitable adaptation mechanism to

reduce the sampling bias in training data. Our method trains a classifier using bias-corrected

training data from news articles published by an agency in one language, while testing the

model on news articles published by another agency in a different language.

The key contributions of this study are as follows:

• We address the problem of automatically predicting a primary focus location for event-

based news reports in different languages by extracting semantic features that aid in

capturing patterns of focus location occurrences in various languages, rather than using

an external database such as gazetteer1.

• We propose Profile which identifies the primary focus location of political news article

in different languages. In particular, we apply supervised learning on a smaller set of

biased training data and leverage a well-known bias-correction mechanism to evaluate

test data from the same domain to address the label scarcity problem. This approach

is language agnostic.

• We empirically evaluate Profile over real-world English, Spanish and Arabic news

articles and compare its performance against other available tools.

1.2.2 Designing a scalable framework for vulnerability detection in smart con-

tracts

With the increase in adoption of blockchain technology in providing decentralized solutions to

various problems, smart contracts have been becoming more popular to the point that billions

of US Dollars are currently exchanged everyday through such technology. Meanwhile, various

vulnerabilities in smart contracts have been exploited by attackers to steal cryptocurrencies

worth millions of dollars. The automatic detection of smart contract vulnerabilities is an

essential research problem. Yet, existing solutions to this problem particularly rely on human

1http://www.geonames.org/
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experts to define features or different rules to detect vulnerabilities; which often lead to

missing many vulnerabilities and they are inefficient in detecting new vulnerabilities. In

this study, we address these challenges and propose a framework to analyze the data and

detect some vulnerabilities in Ethereum smart contracts on the blockchain platform. We

apply machine learning-based (i.e. deep learning-based) vulnerability detection to relieve

human experts from the tedious and subjective task of manually defining features and rules.

In particular, we need to find representations of Ethereum smart contracts that are suitable

for deep learning. One of the main challenges in this step is that the smart contracts are

translated to low-level bytecode for deployment on the blockchain. It means the high-level

source codes of smart contracts are rarely available. To address this challenge, we convert

those bytecode to sequence of more readable low-level mnemonics. To represent the smart

contracts, we construct the control flow graphs to show the semantic relations between lines of

codes which are not necessarily consecutive. Then, we traverse these graphs to transform them

into vectors. This leads to extract features to feed into our developed deep learning-based

vulnerability detection system for smart contracts.

The key contributions of this study are as follows:

• Since the high-level source code of smart contracts is hardly available, we directly use

bytecode as an input in our system. In our feature engineering pipeline, we convert the

bytecode to a sequence of more readable low-level opcodes and construct its control

flow graph. Then, we traverse these graphs to transform them into vectors. These

vectors can keep the semantic relations between lines of codes (operations) which are

not necessarily consecutive.

• We use deep learning for vulnerability detection in Ethereum smart contracts. This

approach has a great potential because deep learning does not need human experts

to manually define features and rules, meaning that vulnerability detection can be

automated. Our model utilizes Bidirectional Long Short-Term Memory Networks, which
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can automatically capture the most important semantic information in a sequence of

program control flow, without using external knowledge.

• We empirically evaluate the proposed framework over real-world large-scaled Ethereum

smart contract benchmark and compare its performance against other available machine

learning-based approaches.

1.2.3 Designing a scalable framework for wind turbine fault diagnosis

Failure of a wind turbine is largely attributed to faults that occur in its gearbox. Maintenance

of this machinery is very expensive, mainly due to large downtime and repair cost. While

much attention has been given to detect faults in these mechanical devices, real-time fault

diagnosis for streaming vibration data from turbine gearboxes is still an outstanding challenge.

Moreover, monitoring gearboxes in a wind farm with thousands of wind turbines require

massive computational power. In this study, we propose a three-layer monitoring system:

Sensor, Fog, and Cloud layers. Each layer provides a special functionality and runs part of

the proposed data processing pipeline.

In the Sensor layer, vibration data is collected using accelerometers. Industrial single chip

computers are the best candidates for node computation. Since the majority of wind turbines

are installed in harsh environments, sensor node computers should be embedded within wind

turbines. Therefore, a robust computation platform is necessary for sensor nodes. In this

layer, we propose a novel feature extraction method which is applied over a short window of

vibration data. Using a time-series model assumption, our method estimates vibration power

at high resolution and low cost. Fog layer provides Internet connectivity. Fog-server collects

data from sensor nodes and sends them to the cloud. Since many wind farms are located in

remote locations, providing network connectivity is challenging and expensive. Sometimes a

wind farm is offshore and a satellite connection is the only solution. In this regard, we use a

compressive sensing algorithm by deploying them on fog-servers to conserve communication
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bandwidth. Cloud layer performs most of the computations. In the online mode, after

decompression, fault diagnosis is performed using a trained classifier, while generating reports

and logs. Whereas, in the offline mode, model training for classifier, parameters learning for

feature extraction in sensor layer and dictionary learning for compression on fog servers and

decompression are performed. The proposed architecture monitors the health of turbines in

a scalable framework by leveraging the distributed computation techniques.

Our contribution is twofold. First, we propose a scalable cloud-based computation platform

denoted by SAIL (Scalable wind turbine fAult dIagnosis pLatform). Second, we propose a

novel signal processing pipeline to diagnose the health state of a wind turbine. This algorithm

runs on different computational elements in SAIL and is scalable.

The key contributions of this study are as follows:

• First, we propose a novel data-driven fault diagnosis algorithm. The proposed algorithm

uses super-resolution spectral analysis for feature extraction from the vibration signal.

We employ a time series model for vibration signal and use the model parameters for fea-

ture extraction. These parameters represent the spectrum of vibration signals in a very

compact way and require a reasonable computational cost. For classification, we apply

the Random Forest algorithm which is in general suitable for parallel implementation.

• Second, we have developed a novel real-time framework for multi-source stream data to

detect the turbine's faults using Apache Spark, with Kafka as a message broker (Spark,

Spark). In this framework, different sources can send their data stream through Kafka

to a Spark cluster. Then, we apply the trained Random Forest model to analyze the

data.

• Third, we address the class imbalance problem prevalent in applications such as fault

diagnosis, unlike previous studies. Fault data is typically rare while fault-free data is

available in abundance. Applying a traditional machine learning classifier over such

biased data yields a largely inaccurate model. We address this challenge by leveraging

sampling techniques during data preprocessing.
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• Fourth, we compare our fault detection technique by implementing it on traditional

and Spark-based platforms. Our empirical results on real-world datasets show high

detection accuracy with low latency. In addition, our proposed platform performance

analysis indicates a significant reduction in computational time.

1.3 Organization of Dissertation

The rest of my dissertation is organized as follows: Chapter 2 sums up all related works,

Chapter 3 describes the primary focus location extraction framework. Chapter 4 presents the

smart contract vulnerability detection framework. Chapter 5 discusses a scalable framework

for wind turbine fault diagnosis. Finally, Chapter 6 presents the conclusion and future works.
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CHAPTER 2

RELATED WORKS

2.1 Geolocation Extraction From Unstructured Text

Geolocation information plays an important role in different applications, such as considering

the daily news; methods for searching and organizing news stories can highly take advantage

of place information, as it is one of the basic important parts of the Five Ws, i.e. Who,

What, When, Where, Why, applied in journalism to characterize events. As another example,

consider advertising: by extracting geolocation information from available data, different local

service or product providers can offer more personalized and local relevant advertisement

content to the user.

We present here a survey of several years of research in the geolocation extraction field,

from 2000 to 2018. This research includes different tasks and analysis that have been done

in the field of geolocation extraction from the text. The main three tasks in this field are:

1- Location named entity extraction, 2- Location named entity resolution, 3- the event’s

location extraction.

Nowadays, the term Named Entity is increasingly used in Natural Language Processing.

Different tools have been developed to extract place named entity from text. According to

their requirements, they utilized various learning techniques, ranging from supervised learning

to unsupervised learning. In this survey, we will review and explain the different techniques

to extract named entities, particularly place names.

The other task after geolocation names extraction is disambiguating the geolocation

names. Geoparsers are Natural Language Processing (NLP) systems designed to analyze

unstructured text in order to extract occurrences of location entities and place names and

to resolve their ambiguities. Homographs and toponyms pose well-known problems in the

process of geo-tagging news articles. In this article, we will present different approaches to

address these issues.
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In every moment, several events are happening all over the world, and they are being

reported by local or international news agencies. Automatic geolocation information extraction

is vital to detect and analyze the impact of these events. We study extracting focus

geolocations automatically from unstructured text-based news reports. The focus geolocation

for a given news report is a location where an event mentioned in the report has happened. In

the next sections, we will study several tools that have been developed to extract geolocation

information from text.

Different applications can utilize rich, timely geolocation information to provide better

support for decision making. A few examples are determining crime pattern locations,

predicting the place of protests and political unrest, or identifying the geolocation of natural

disasters from tracking news events.

2.1.1 Geolocation as Named Entity Recognition

The most studied types are three specializations of “proper names”: names of “persons”,

“locations” and “organizations”. These types are collectively known as “enamex” since the

MUC-6 competition. The type “location” can thusly be partitioned into numerous subtypes

of “fine grained locations”: Locality, city, state, country, etc. ((Fleischman, 2001), (Lee and

Lee, 2005)).

Presently, there are various open source tools available for named entity recognition

(NER). Popular software programs for the NER task include the Stanford Named Entity

Recognizer (part of Stanford CoreNLP), Apache Open NLP algorithm, and MIT Information

Extraction (MITIE), developed by MIT’s Lincoln Laboratory. Besides these approaches,

there are some other methods to solve this problem. In the next subsection, we will discuss

them.

Generally, the problems of machine learning are typically classified into three different

categories, depending on the nature of the learning and data available to a learning system.

These are supervised learning, unsupervised learning, and semi-supervised learning.
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The idea of supervised learning (classification) is to study the features of positive and

negative instances of named entities over a large collection of annotated documents and

design a model to classify and predict the label of unseen named entity instances.

The most popular technique for addressing the named entity recognition problem is

supervised learning. Supervised learning techniques include Hidden Markov Models (HMM),

Maximum Entropy Models, Support Vector Machines (SVM), and Conditional Random

Fields (CRF).

Stanford Named Entity Recognition Stanford NER 1 is a Java implementation of

a Named Entity Recognizer to find several different classes of named entities: Person,

Organization, Location, Date, Time, Percent, Money. It uses a linear chain Conditional

Random Field (CRF) model to label sequences of words in a document into the mentioned

entity types.

MITIE The MIT Information Extraction Toolkit 2 (King, King) is a free, open-source

software library of state-of-the-art NLP tool developed at MIT Lincoln Laboratory. MITIE

can automatically extract the named entities and different binary relations from unstructured

text in English and Spanish. MITIE uses distributional word embeddings for dimensionality

reduction, structured support vector machines for learning syntactic relationships, and

automated hyperparameter optimization to enable user customization. MITIE is built on

the Dlib machine learning library (King, 2009), contains interfaces to C, C++, Java, R, and

Python, and is easy for a user to integrate it into his/her own applications.

1http://nlp.stanford.edu/software/CRF-NER.shtml

2https://github.com/mit-nlp/MITIE
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OpenNLP OpenNLP 3 is a Java-based library for different natural language processing

problems, such as tokenization, part-of-speech tagging, and named entity recognition. For

named entity recognition, it trains a Maximum Entropy model using the information from

the whole text to identify entities in the text.

Yahoo! PlaceMaker Yahoo! PlaceMaker 4 is a geoparsing service that recognizes place

names in a given unstructured document.

TwitterNLP TwitterNLP is a specific toolkit developed for processing the natural language

on Twitter textual data. It utilizes a supervised topic model, called LabeledLDA, and also

Freebase as a source of distant supervision, to classify entity mentions in tweets. TwitterNLP

performs three tasks of classification, part-of-speech tagging, and chunking.

The principal characteristics of these systems are outlined in Table 2.1. Stanford NER,

MITIE and OpenNLP, three state-of-the-art NER tools, are originally trained on news data

which include formal text. They provide retraining and customizing options for other types

of text. TwitterNLP, based on topic modeling, can only be customized by changing the

dictionary in Freebase.

As we are interested on the location and the geo-location extraction task, LOCATION and

ORGANIZATION, tagged by Stanford NER, MITIE and OpenNLP, and GEOLOCATION,

COMPANY and FACILITY, by TwitterNLP, are considered as locations. For Yahoo!

PlaceMaker we only use the locations found in the text submitted to this service.

3http://opennlp.apache.org

4http://developer.yahoo.com/geo/placemaker/ visited in January 2013. Now it is migrated to Yahoo!
Boss at http://developer.yahoo.com/boss/geo/.

12



Ta
bl
e
2.
1:

M
ai
n
ch
ar
ac
te
ri
st
ic
s
of

th
e
N
am

ed
E
nt
ity

R
ec
og

ni
ti
on

to
ol
s

T
oo

l
E
nt
it
y
T
yp

e
M
od

el
T
ra
in
in
g
D
at
a

R
et
ra
in
ab

le
St
an

fo
rd

N
E
R

P
E
R
SO

N
,O

R
G
A
N
IZ
A
T
IO

N
,L

O
C
A
T
IO

N
,

C
R
F

N
ew

s
D
at
a

3

T
IM

E
,D

A
T
E
,M

O
N
E
Y
,P

E
R
C
E
N
T

M
IT

IE
P
E
R
SO

N
,O

R
G
A
N
IZ
A
T
IO

N
,L

O
C
A
T
IO

N
St
ru
ct
ur
al

SV
M

N
ew

s
D
at
a
an

d
W

ik
ip
ed
ia

3

O
pe

nN
LP

P
E
R
SO

N
,O

R
G
A
N
IZ
A
T
IO

N
,L

O
C
A
T
IO

N
M
ax

im
um

E
nt
ro
py

N
ew

s
D
at
a

3

Tw
it
te
rN

LP
P
E
R
SO

N
,G

E
O
-L
O
C
A
T
IO

N
,C

O
M
PA

N
Y
,

La
be

le
dL

D
A

N
ew

s
D
at
a

7

P
R
O
D
U
C
T
,F

A
C
IL
IT

Y
,T

V
-S
H
O
W

,
SP

O
R
T
ST

E
A
M
,B

A
N
D

M
O
V
IE

,a
nd

O
T
H
E
R
.

Y
ah

oo
!
P
la
ce
M
ak
er

N
/A

N
/A

N
/A

N
/A

13



2.1.2 Location Named Entity Resolution

Geolocation extraction tools use Natural Language Processing techniques to analyze unstruc-

tured text in order to extract occurrences of location entities and place names and to resolve

their ambiguities. In this section, we are going to present different strategies to handle the

location named entity resolution.

Place Name Disambiguation

Homographs are a common problem in the process of geolocation extraction from news

reports (Pouliquen et al., 2006). Especially, words referring to place names probably: (a)

occur as person names (e.g., Conrad Hilton are the name of towns in the New Zealand, USA

and Canada); (b) occur as common words (e.g., And is a village in Iran); or (c) have variants,

i.e., well known cities have language variants (e.g., Seul meaning alone/only in French is also

the Capital of South Korea in Portuguese and Italian); (d) refer to different locations (e.g.,

there are 33 places named Clinton). Further complexities are produced by language inflection

and capital cities referring to the reporting location.

To resolve such problems, various heuristics including human linguistic knowledge and

external resources like WordNet, encyclopedia and Web documents have been applied. One

of the common disambiguation approaches is using a gazetteer which is a collection of

geographic locations that provides for each location a latitude and longitude, the location’s

various classifications (country, state, city, park, building, etc.), its population (if applicable),

and information on the location’s inclusion hierarchy (city, state, country and continent).

For a given location entity extracted from text, a gazetteer can be applied to find a list

of toponyms that match the entity’s name and present candidate locations for that entity.

Different strategies have been developed that use such candidate locations to disambiguate

an extracted location entity on the map by assigning a specific toponym to it (Abrol and

Khan, 2010).
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(Erik, 2008) proposed homograph disambiguation at two particular levels, firstly at the

level of separate document and secondly at the level of clustered documents. The geo-tagging

algorithm works as follows: First, the problem is solved via removing from the text names of

known people and organizations. Next, the gazetteer of place, province, region and country

names is used to find the matches of candidate locations in the news reports. In order

to disambiguate homographs that are common words and location names, the traditional

strategy is to use language dependent stop word lists. They have applied a different method

based on two characteristics in the gazetteer. The first characteristic classifies places based on

their size, in a way that capital cities and major cities have a higher class than small villages.

The second characteristic maintains the hierarchical relation of location in its administrative

located hierarchy (i.e., town, in province, in region, in country). The disambiguation algorithm

lets high class locations pass through as well as locations that have a containment relation

with other candidate locations (e.g., Paris, Texas, USA). To resolve different variants, they

discard any geo-tags that are incompatible with the language of the article (Wang et al.,

2004).

In order to handle name inflection, names are maintained with their variants encoded as

a regular expression. Only matches, for which the language of the name and the article are

compatible, are maintained in the candidate location list. Next, a Newswire location filtering

is applied, where the word position of the candidate location is used to promote locations

occurring after an initial location since the Newswire location generally appears earlier in the

article (Erik, 2008).

Metacarta 5 is a commercial company that offers geographic information retrieval technol-

ogy. The company also provides a freely-available Web service that can be used to identify

and disambiguate place references over text (Rauch et al., 2003).

5http://metacarta.com/
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Yahoo! Placemaker 6 is a geotagging web service that provides third-party developers the

means to enrich their applications or Web sites with geographic information. The service can

recognize, extract, and disambiguate location names from unstructured and semi-structured

documents. It is also able to use the location references in a document, together with a

pre-determined set of rules, to discover the geographic scope that best encompasses its

contents. Thus, given a textual document, Yahoo! Placemaker returns unique Where-

on-Earth identifiers (WOEIDs) for each of the named places and scopes. Through these

identifiers, one can use the Yahoo! GeoPlanet 7 Web service to access hierarchical information

(i.e., containing regions) or spatial information (i.e. centroids and bounding boxes). There

are two flavors of document scopes in Placemaker, namely the geographic scope and the

administrative scope. The geographic scope is the place that best describes the document.

The administrative scope is also the place that best describes the document, but is of an

administrative type (i.e., Continent, Country, State, County, Local Administrative Area,

Town, or Suburb). Placemaker is a commercial product and not many details are available

regarding its functioning. However, some information about the service is available in the

Web site, together with its documentation. For example, the Website claims that "when the

service encounters a structured address, it will not perform street level geocoding but will

instead disambiguate the reference to the smallest bounding named place known, frequently a

postal code or neighborhood". The Website also claims that besides place names, the service

also understands geography-rich tags, such as the W3C Basic Geo Vocabulary and HTML

microformats 8. However, no details about the rules that are used in the scope assignment

process are given in the documentation for the service. The Placemaker Web service accepts

plain text as input, returning an XML document with the results. The service has an input

6http://developer.yahoo.com/geo/placemaker/

7https://developer.yahoo.com/geo/geoplanet/

8http://microformats.org/wiki/geo or http://microformats.org/wiki/adr
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parameter that allows users to provide the title of the document separately from the rest of

the textual contents, weighting the title text as more representative. In their experiments,

they used the Web service as a black-box to assign scopes to the Web documents, using the

option that weights the title text as more important than the rest.

In the context of the Web-a-Where project, (Amitay et al., 2004) proposed a method for

assigning Web documents to the corresponding geographic scopes. The system gave confidence

scores to every location using some predefined rules and propagating scores between locations

that are in a containment relationship. It produces a candidate list of geographic names

mixing locations regardless of their administrative levels, i.e., there are locations at different

levels in the rank-list of geographic names for the web page. Their technique leverages on

part-of relations among the recognized place references, provided by a hierarchical gazetteer.

The basic idea is that, for example, if several cities from the same country are mentioned,

this probably means that this country is the scope, i.e. the algorithm tries to generalize from

the disambiguated place references. More specific places are scored higher if they are the

only places mentioned.

In another study (Yu, 2014), they also use Web-a-where technique. However, they consider

each administrative level (country, state and city level) separately at first and then determine

the correct one. This method is based on a probabilistic model capturing the relation between

the mentions of named entities and locations, rather than some hand-picked confidence scores

that are used by the web-a-where approach.

In the context of the GREASE project, Martins and Silva proposed a scope assignment

method based on a graph-ranking approach (Martins and Silva, 2005). The idea was to

represent the gazetteer used for place reference disambiguation as a graph, where the nodes

correspond to different places and the edges correspond to semantic relationships (part-of,

containment or adjacency) between places. Nodes on this graph can be weighted according

to the occurrence frequency of place references in a document, and edges can be weighted
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according to the relative importance of the different types of relationships. A graph-ranking

algorithm, PageRank, is then applied to this graph, and finally the highest ranked node is

selected as the scope. In case of ties, the node connected to the highest number of edges is

selected. By propagating scores across the graph, this algorithm tries, at the same time, to

generalize and to specify from the available information, in order to find the region that best

reflects the scope of the document.

In another study, they have applied a combination of techniques (i.e. (Amitay et al.,

2004) and (Martins and Silva, 2005)) to solve the ambiguity problems. Their approach

permits a general region to be chosen if several different places in it are mentioned, with no

specific emphasis on any. The algorithm starts by placing the recognized place references in a

locational hierarchy. By looping over the disambiguated references, the algorithm aggregates

the importance of the various levels in the hierarchy. The levels are then sorted by importance

and the highest ranked level is returned as the scope. The multiplying discount parameters

correspond to those originally reported in the Web-a-Where paper. Finally, the highest

scoring taxonomy node would be selected as the scope to assign. On the other hand, they

apply graph-ranking approach (Martins and Silva, 2005). But for computing the PageRank

score, they use the open-source weighted PageRank implementation made available by the

Laboratory for Web Algorithmics of the University of Milan. Since this implementation

does not allow for weighted nodes, they instead use self-edges, one for each occurrence of

a given place in the document. Consider the following example. In order to generate the

graph, they first find the hierarchical parents of the references that are made in the document,

the neighboring places to the document references, and the hierarchical parents for these

neighboring places. The places discovered through the above procedure would be the nodes

of the graph and the relationships between them would be used to produce directed edges

between the nodes. For all the nodes with no outlinks (i.e., the roots and the leaf nodes) they

add artificial edges to all other nodes in the graph. The part-of, containment, and adjacency
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edges would all get a value of 0.4, and artificial edges of 0.01. These weights were tuned

empirically. The PageRank algorithm would then be applied and, in the end, the highest

scoring node would be selected as the scope (Anastácio et al., 2009).

Geocoding

With the term geocoding, we refer to associating geographical coordinates (latitude and

longitude) to data, objects or entities which can be geographically annotated or described.

In this section, we will review studies that have developed geocoding systems.

One of the first works on document geolocation is (Ding et al., 1999), who attempt to

automatically determine the geographic scope of web pages. They focus on named locations,

e.g. cities and states, found in gazetteers. Locations are predicted based on toponym detection

and heuristic resolution algorithms. A related, recent effort is (Leidner et al., 2003), who

geolocate Twitter users by resolving their profile locations against a gazetteer of U.S. cities

and training a classifier to identify geographically local words.

An alternative to using a discrete set of locations from a gazetteer is to use information

retrieval (IR) techniques on a set of geolocated training documents. A new test document

is compared with each training document and a location chosen based on the location(s)

of the most similar training document(s). For text, both (Leidner et al., 2003) and (Wing

and Baldridge, 2011) use a similar approach, but compute document similarity based on

language models rather than image features. Additionally, they group documents via a

uniform geodesic grid rather than a clustered set of locations. This reduces the number

of similarity computations and removes the need to perform location clustering altogether,

but introduces a new parameter controlling the granularity of the grid. (Kinsella et al.,

2011) predict the locations of tweets and users by comparing text in tweets to language

models associated with zip codes and broader geopolitical enclosures. (Sadilek et al., 2012)

discretize by simply clustering data points within a small distance threshold, but only perform

geolocation within fixed city limits (Awad et al., 2008).
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While the above approaches discretize the continuous surface of the earth, (Eisenstein

et al., 2010) predict locations based on Gaussian distributions over the earth’s surface as

part of a hierarchical Bayesian model. This model has many advantages (e.g. the ability to

compute a complete probability distribution over locations), but it will be difficult to scale

up to the large document collections needed for high accuracy.

2.1.3 Geolocation Extraction from Event Data

With numerous news reports generated every day, many applications search and organize

these daily generated news stories for analysis. These applications include determining

crime pattern locations, predicting the place of protests and political unrest, and identifying

the geolocation of natural disasters. Such applications can largely benefit from identifying

precise geolocation information in a timely manner to provide better support for decision

making (Lavee et al., 2007; Masud et al., 2010).

In this study, we focus on identifying the associated locality information of a news article.

Typically, the term Location is used in a variety of contexts, but the term Locality is used to

describe a more precise area (D'Ignazio et al., 2014). A news article may contain multiple

related localities mentioned in them. These are called Focus Locations. However, we aim to

identify the place of occurrence of an event. We call this locality Primary Focus Location.

For instance, consider the news reports given in Figures 2.1, 2.29 and 2.310 in English,

Spanish and Arabic languages respectively. Figure 2.1 is a report which describes an English

atrocity event that occurred in the village of Dalwa-Masuba, Nigeria. Moreover, the report

also mentions other locations such as Damboa, Maiduguri, Borno, Yobe, Adamawa, Chibok,

and Paris. Figure 2.2 is a Spanish atrocity event about killing a villager in El Caracol,

Colombia. This report also mentions other locations such as Arauca and Venezuela.

9http://www.nocheyniebla.org

10https://alghad.com
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Figure 2.1: A sample English news report with different place names from Atrocity dataset
(Schrodt and Ulfelder, 2009)
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Dos hombres armados asesinaron en el corregimiento El Caracol, al comerciante y
ganadero de 66 años de edad. Según la denuncia la víctima: Era reconocido por la
comunidad araucana por sus servicios y apoyo a los habitantes del corregimiento
El Caracol, que se encuentra ubicado a 60 kilómetros al oriente de la capital de
departamento de Arauca, en la frontera con la república bolivariana de Venezuela.
Gómez Daza, había sufrido dos atentados y recientemente había denunciado ante
las autoridades competentes, amenaza a su vida por parte de miembros de la
guerrilla del Ejército de Liberación Nacional y paramilitares, en contra de quienes
declaró recientemente en audiencia púb lica.

Figure 2.2: A sample Spanish news report with different place names from Revista Noche y
Niebla

Figure 2.3: A sample Arabic news report with different place names from Alghad news agency

Figure 2.3 is about killing several Palestinian protesters during the opening ceremony of

the US embassy at Jerusalem in Arabic. This news report mentions various locations such as

the Gaza strip, Israel, United States, and Tel Aviv. For Figures 2.1, 2.2 and 2.3, we say that

“Dalwa-Masuba”, “El Caracol” and “Jerusalem” are respectively the primary focus locations
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Table 2.2: Output of focus location extraction from existing tools including Cliff-Clavin,
Geoparser, Mordecai, Stanford and MITIE for the given example in Figure 2.1

Tool Extracted Country Extracted Locations Focus Country Focus Location

Cliff-Clavin NG, FR, TD, NE, Adamaoua, Benin, Borno, Cameroun, Chad, Chibok, Damboa, France, Niger, NG Borno, Damboa

BJ,CM,US,IT Maiduguri, Paris, United Kingdom, United States, Yobe Maiduguri

Geoparser NG, NE, FR, USA Adamawa,Benin,Borno,Cameroon,Chad,Chibok,European Union,Faransā, - -

AE,CM,TD,BJ Maiduguri, Niger, Nigeria, Paris, United States, Yobe

Mordecai NG Borno, Cameroun-Gbene, Chibok, Dalwa, Damboa, Komadugu, Yobe, Maiduguri NG -

Edinburgh - Adamawa, Benin, Borno, Cameroun, Chad, Chibok, Damboa, France, Maiduguri, - -

Niger, Nigeria, Paris, United Kingdom, United States, Yobe

Stanford - Adamawa, Benin, Boko Haram, Borno, Chad, Chibok, Cameroun, Dalwa-Masuba - -

CoreNLP Damboa, France, Maiduguri, Niger, United Kingdom, United States, Yobe

MITIE - Paris, Borno state, Damboa, Maiduguri, Niger, Benin - -

Profile NG, FR, TD, NE, Adamawa, Benin, Boko Haram, Borno, Chad, Chibok, Cameroun, Dalwa-Masuba NG Dalwa-Masuba

BJ,CM,US,IT Damboa, France, Maiduguri, Niger, United Kingdom, United States, Yobe

since the events occurred in these locations. However, other localities associated with the

event which are course-grained form the elements of the focus location set.

Even though several geoparsers such as Cliff-Clavin (D'Ignazio et al., 2014), Mordecai

(mordecai, mordecai), and Stanford-CoreNLP (Manning et al., 2014) have been developed to

automatically extract named locations from unstructured English text, location extraction

from a text is still a challenging task due to the complexity, diversity, and ambiguity of

location information in different languages. However, these tools cannot extract the focus

location with good accuracy, and most of them cannot differentiate between different locations

in the text—i.e. focus locality versus non-focus locality—and are not language agnostic.

Following the example in Figures 2.1, 2.2 and 2.3, Tables 2.2, 2.3 and 2.4 show the output

of these different tools for extracting focus location respectively. Clearly, these tools can

identify multiple locations mentioned in the news article. Among them, only Cliff-Calvin is

able to identify a few focus locations over the English dataset. But it still cannot identify

the desired primary focus location. For Spanish and Arabic languages, to the best of our

knowledge there is no tool to extract focus location. Furthermore, Stanford NER and MITIE

do not support Arabic. Therefore, we utilize Polyglot as a NER tool for Arabic news.
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Table 2.3: Output of location extraction from Stanford and MITIE for the given example in
Figure 2.2

Tool Extracted Locations
Stanford Venezuela
MITIE El Caracol, venezuela, greenarauca

Table 2.4: Translated outputs of location extraction from Polyglot for the given example in
Figure 2.3

Tool Extracted Locations
Polyglot Jerusalem, Gaza strip, Israel, United States, Tel Aviv

2.2 Smart Contract Vulnerability Detection

2.2.1 Static Analysis Tools

Static analysis tools rely on the analysis of the contract without executing it. These tools

mainly focus on Intermediate Representation, abstract syntax tree (AST), Control Flow

Graph (CFG) to extract properties of a code or program. The characteristic of the static tool

is it usually performs a high coverage rate. Static methods can cover as many as possible

execution paths. Most static analysis tools are rule-based. One of the advantages of these

methods is rapid detection speed, which guarantees scalability. However, in the rule-based

approaches, if the designed rules do not cover some of the vulnerabilities, it may lead to the

high False Positive rate and poor accuracy.

Vandal (Kalra et al., 2018a) is a Static framework that uses low level bytecode to make

smart contracts secure. In this framework, the bytecode from Ethereum smart contracts is

converted to higher level logic relations. Vandal enables users to identify security problems

in the contracts by using declarative logic rules to enumerate the problems, resulting in

improved security analysis. Vandal also flags potential security vulnerabilities in the smart

contract.
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2.2.2 Dynamic Analysis Tools

There are a couple of dynamic analysis tools. One is based on the symbolic execution

by constraint solvers, while the other one uses some test cases as inputs of the program

and analyzes the results. Some tools may have both characteristics. Regardless of which

method they use, these tools have scalability problems due to the long time cost in execution

procedure.

OYENTE (Luu et al., 2016) creates a Control Flow Graph (CFG) of the smart contract

using the bytecode of the contract as well. However, OYENTE detects security vulnerabilities

in a different way. OYENTE detects three security vulnerabilities: transaction ordering

dependence, time stamp dependence, and the reentrancy vulnerability by executing the

contract and tracing the flow of the smart contract. OYENTE flags contracts that could

potentially be insecure.

2.3 Wind Turbine Fault Diagnosis

The wind energy industry has experienced major growth over the last decade. Based on

Global Wind Energy Council statistics, the total number of wind turbines across the world

has increased from 6,100 wind turbines in 1996 to 3,695,789 wind turbines in 2014 (Pullen

and Sawyer, 2014), showing an exponential growth in global demands for wind energy. Wind

energy is freely available, does not pollute the environment and needs less space for energy

production.

Wind turbines are big, complex and expensive machines which are installed in harsh envi-

ronments. They are vulnerable to different defects and faults. Manual condition monitoring

is cumbersome and costly. A failure in these machines can disable them for several weeks and

cost hundred of thousands dollars. Costs due to maintaining failed components affect the price

of produced energy as a result. Developing automatic condition monitoring systems for these
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machines is vital for wind industry. Based on a report by the National Renewable Energy Lab

(NREL), gearbox failure causes the longest downtime and is the most costly fault in these

machines (Sheng and Veers, 2011). Different factors like poor lubrication, bending fatigue,

fretting corrosion and mechanical stresses can cause a defect in a wind turbine gearbox. An

early fault detection can prevent catastrophic failures. Monitoring vibration signals picked

up from gearboxes is an effective way of condition monitoring. However, by increasing the

number of turbines, the number of sensors to monitor turbines will dramatically increase.

This will lead to a large volume of data that needs to be processed.

Automated fault detection is difficult and heavy in terms of computational cost. Various

studies have been done to solve this problem by using traditional approaches (Kusiak and Li,

2011). Unfortunately, their performance is insufficient since they still require several hours of

training in order to learn an appropriate model. Furthermore, they cannot take advantage

of live stream data to detect faults in real-time. This prevents technicians from promptly

repairing or replacing these devices before they are totally broken.

2.3.1 Model-based and model-free fault diagnosis methods

The two categories of fault diagnosis methods are: model-based and model-free (Imani et al.,

2017). Model-based approaches use a mathematical model of the system (Chen and Patton,

2012). Such a model is usually obtained by physical modeling. Having a model reduces the

uncertainty regarding measurements, however, physical modeling is challenging. On the other

hand, the only assumption that model-free methods make is availability of some training

data from the system. Then, signal processing and machine learning is applied to classify the

health state of the system (Watson et al., 2010; Imani et al., 2017). Such approaches are

easier to generalize compared to other approaches since they do not make any assumptions

about the system (Masud et al., 2011).

The majority of prior gearbox fault diagnosis works are model-free methods. However,

since vibration signal is a non-stationary random signal, extracting a compact informative
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feature vector is a challenging signal processing task. The key difference from prior works is in

the feature extraction step. Authors in (Zhang et al., 2012; Imani et al., 2019) proposed time

domain statistical features. Specifically, they showed that high order statistics like kurtosis

and skewness can be employed for fault diagnosis of gearbox. However, these features are

very sensitive noise and outliers which limit their applications in real industrial systems. The

frequency domain features are proposed in (Watson et al., 2010; Imani et al., 2017). Frequency

domain methods are robust and can distinguish between different classes of faults. However,

for developing an automatic fault diagnosis system, it is needed to reduce the dimensionality

of signal representation. Fourier transform and wavelet transform do not necessarily reduce

the dimension of spectrum of signal. Authors of (Harmouche et al., 2015) post-processed the

spectrum of signal by PCA for dimension reduction. However, PCA requires more calculations

at run-time and can corrupt the spectrum of the signal. So, presenting the spectrum of

vibration signal in a compact way is required for developing a robust fault diagnosis system.

On the other hand, the majority of research in this field is devoted to developing signal

processing algorithms for fault diagnosis. However, this problem has another challenge for

data analytics. Scaling a real-time fault diagnosis algorithm for a wind farm with thousands

of turbines requires a massive computational power which is currently available on cloud

servers. This dimension of research is related to the emerging field of Industrial Internet of

Things (IIoT). From this perspective, authors in (Chen et al., 2007; Tamura et al., 2015; Qi

et al., 2016; Shao et al., 2016) applied the state-of-the-art Big Data analytics methods to the

fault diagnosis problem in industrial systems (Awad and Khan, 2007).
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CHAPTER 3

A SCALABLE FRAMEWORK FOR PRIMARY FOCUS

LOCATION EXTRACTION1

3.1 Introduction

One of the main challenges is to identify the primary focus location among the different

candidate locations and from news articles in different languages. We address this challenge by

using a supervised classification model that leverages contextual patterns in the occurrences

of focus locations regardless of the language. Concretely, we first extract candidate locations

using a named entity recognition tool and identify the sentences in which they occur. We

then extract semantic features from these sentences by using fastText_multilingual model

(Samuel L. Smith and Hammerla, 2017) and sentence embedding approaches (Arora et al.,

2017; Mikolov et al., 2013). Finally, we train a classifier on labeled training instances of

different languages and then predict the primary focus location on unlabeled test sentences

of different languages. We denote this approach as Primary Focus Location Extraction or

Profile (Imani et al., 2017).

One of the major challenges with the discussed approach is the lack of suitable labeled

data instances for training. In the real world, these labeled instances are not readily available,

or may be available scarcely. Traditionally, it is assumed that the training and test data

sets used for supervised learning methods are generated from the same data distribution

and are monolingual. In practice, this assumption may not be true. In our scenario, true

1This chapter contains material previously published as:
©2017 IEEE. Reprinted, with permission, from Imani, M. B., Chandra, S., Ma, Khan, L., and Thuraising-

ham, B. “Focus location extraction from political news reports with bias correction.” in IEEE International
conference on big data, pp. 1956-196, December 2017.

©2019 IEEE. Reprinted, with permission, from Imani, M. B., Khan, L., and Thuraisingham, B., "Where did
the political news event happen?" in IEEE International conference on collaboration and internet computing,
December 2019.

Lead author, Imani, conducted the majority of the research, including most of the writing, the full design,
the full implementation, and the full evaluation in the both papers.
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labels of sentences (focus or non-focus) may be only available from monolingual news articles

associated with a single news agency or for a small number of news articles. In such cases,

these labeled articles may not be a good representative of the population. For example,

news articles from different agencies typically have dissimilar linguistic content, vocabularies,

writing styles, or type of emotions (e.g., acted, elicited, or naturalistic). Such differences

affect classifier performance when employed to predict focus locations in news articles in the

wild, and limits the scalability of our approach (Imani et al., 2019).

We address this challenge by manually labeling a small number of sentences which creates

a sampling bias between the training and test data sets. We then leverage the approach of

sampling bias correction by using Kernel Mean Matching (KMM) (Huang et al., 2006) to

estimate the density ratio between the test and training data distributions to appropriately

weight each training data instance and then use these instances to train a classifier for

prediction of focus location (Awad and Khan, 2007).

3.2 Background

3.2.1 Geolocation Extraction

The field of geolocation extraction collectively involves many different tasks and analyses to

be performed over text. The three main tasks among these are: (i) Location named entity

extraction (Finkel et al., 2005; Ritter et al., 2011); (ii) Location named entity resolution

(Gritta et al., 2017); (iii) Event’s location extraction (D'Ignazio et al., 2014; mordecai,

mordecai).

This study revolves around the last task, i.e. using geoparsers to extract event location.

Web page geotagging models such as Web-a-where (Amitay et al., 2004) identify all

location names using gazetteer, assign a geographic location and a confidence level to each

page, and derive the focus location associated with a web page. Another such framework
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presented by Silva et al. (Silva et al., 2006) is used to automatically identify geographic scopes

from Portuguese web pages. To locate the geographical entities in web pages, this framework

utilizes different external sources such as WHOIS and DNS registrars, and the Portuguese

postal codes database. Geoparsers such as Geoparser.io (geoparser, geoparser) are hosted as

web services that identify place names and handle contextual ambiguity among those places.

Cliff-Clavin (D'Ignazio et al., 2014) is an open source geoparser which is also hosted as a web

service that parses news articles or other documents. It employs context-based geographic

disambiguation over organizations and locations extracted using Stanford CoreNLP from

the text. It employs a simple frequency-based method to identify the focus places from

places mentioned at city, state, and country levels. Mordecai (mordecai, mordecai) is also

an open source geoparser which uses MITIE’s NER tool to extract place names from text

and then uses gazetteer to identify focus country and all other place names from the text.

The Edinburgh Geoparser (Alex et al., 2015) is yet another geoparser designed to identify

occurrences of locations from unstructured text and map them to exact latitude and longitude.

NewsStand (Teitler et al., 2008) is another geoparser and geotagger tool. NewsStand extracts

the "interesting” phrases that are most likely to be references to geographic locations and

other entities by using NER methods. LOCATION phrases are stored as geographic features

of the entity feature vector. Then, it uses a Gazetteer to find those geographic features

in the entity feature vector that are names of actual locations. It also employs Gazetteer

to identify the hierarchical information for each location (i.e. country and administrative

subdivisions). After that, it extracts geographic focus (or focus location) based on the

frequency of the locations in the news. The empirical results of our approach are compared

with these competing methods.

Each of the discussed geoparsers capabilities in extracting focus location and focus country

are presented in Table 3.1. It is observed that Mordecai, Cliff-Clavin and NewsStand are the

only geoparsers capable in extracting the focus country. Moreover, Cliff-Clavin also extracts
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Table 3.1: Capabilities of different tools in focus country and focus location extraction. Here,
3 indicates presence and 7 indicates absence of corresponding capability.

Tools NER Location Focus Focus
Extraction Extraction Country Location

Cliff- Stanford 3 3 3

Clavin CoreNLP (City, State)
Mordecai MITIE 3 3 7

Geoparser NA 3 7 7

Edinburgh rule- 3 7 7

based
NewsStand LingPipe2 3 3 3

(Region)

focus location on two different levels, i.e. city and state. Almost all of the above mentioned

geoparsers are only able to work on English text.

In this study, we are going to extend our previous research (Imani et al., 2017; Gunasekaran

et al., 2018) to other languages, such as Arabic and Spanish. Apart from that, due to the

lack of label data in languages other than English, we propose an approach to address this

challenge in this study.

3.2.2 Multilingual Word Vectorization

Monolingual word vectors are represented in a high-dimensional vector space, such that two

contextually similar words are closer in this space (Mikolov et al., 2013). Since these vectors

are monolingual, similar words within a language share similar vectors while translated words

from different languages do not have similar vectors. To solve this particular problem, Smith

et al. (Samuel L. Smith and Hammerla, 2017) presented a framework using Singular Value

Decomposition (SVD) to learn a linear transformation (a matrix), which aligns monolingual

vectors from two languages in a single vector space without changing any of the monolingual

similarity relationships. This model uses Facebook’s fasttext word vectors and then uses the

Google translate API to translate these words into the 78 languages available. To place all
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78 languages in single space, this model aligned every language to the English vectors (the

English matrix is the identity).

An element belonging to a training set is indicated by a subscript tr, while that of a test

set is indicated by a subscript te. Each element is indexed by a superscript integer, since a set

may contain multiple elements. For instance, x(i) ∈ Xtr indicates the ith data instance (array

of d covariates) of a training dataset Xtr (a set containing arrays). Also, a hat indicates an

estimated value. In general, we use a capital-bold letter to indicate a set of arrays, and a

bold letter to indicate an array.

In the case of data classification — a binary focus or non-focus classification in this

study — inequality between the probability distributions of the training and test data sets

can be represented in the form of the joint probability distributions ptr(x, y) 6= pte(x, y),

where x ∈ Rd is the d-dimensional covariate of a data instance with class label y. ptr and pte

are the training and test probability distribution respectively. According to Ben-David et

al. (Ben-David et al., 2010), learning is not possible with bounded error if the two distributions

are arbitrarily different. However, this challenge can be addressed by a method that transfers

knowledge (model) from training data to test data using instances or feature representation

under several assumptions (Pan and Yang, 2010).

One such assumption is the equality in class conditional distribution. Concretely,

ptr(y|x) = pte(y|x). Therefore, the inequality in joint probability distribution is attributed to

the covariate distribution, i.e., ptr(x) 6= pte(x). This is known as covariate shift. Overall, a

correction to the inequality between ptr(x) and pte(x) is provided by computing an importance

weight β(x) = pte(x)
ptr(x)

for each instance x. This weighted training data set whose data distribu-

tion is equivalent to the test data distribution can be used to train a supervised classifier.

Various studies have focused on directly estimating the importance weighting function (or

density ratio) rather than computing pte(x) and ptr(x) separately. These include Kernel

Mean Matching (KMM) (Huang et al., 2006), unconstrained Least Square Importance Fitting
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(uLSIF) (Kanamori et al., 2009), and Kullback-Leibler Importance Estimation Procedure

(KLIEP) (Sugiyama et al., 2008).

Kernel Mean Matching

The main idea in KMM is to decrease the mean distance between weighted training data

distribution β(x)ptr(x) and the observed test data distribution pte(x) in a Reproducing Kernel

Hilbert Space (RKHS) F with feature map φ : D → F . The mean distance is determined by

computing the Maximum Mean Discrepancy (MMD), given by∥∥Ex∼ptr(x)[β(x)φ(x)]− Ex∼pte(x)[φ(x)]
∥∥ (3.1)

where ‖·‖ is the l2 norm, and x ∈ X ⊆ D is a data instance in a dataset X. Here, it is assumed

that pte is absolutely continuous with respect to ptr, i.e. pte(x) = 0 whenever ptr(x) = 0.

Furthermore, the RKHS kernel h is universal in the domain. It has been proven that under

these conditions, minimizing MMD in Equation 3.1 converges to pte(x) = β(x)ptr(x) (Yu and

Szepesvári, 2012).

In general, finding desired importance weights by minimizing MMD is equivalent to

minimizing the corresponding quadratic program that estimates the population expectation

with an empirical expectation. The empirical approximation of MMD (Equation 3.1) to get

the optimal solution for β̂(x) is given by

β̂ ≈ arg min
β

∥∥∥∥∥ 1

ntr

ntr∑
i=1

β(x
(i)
tr )φ(x

(i)
tr )− 1

nte

nte∑
j=1

φ(x
(j)
te )

∥∥∥∥∥
2

(3.2)

where β̂(x) ∈ β̂. The equivalent quadratic program is as follows.

β̂ ≈ minimize
β

1

2
βTKβ − κTβ (3.3)

subject to β(x(i)) ∈ [0, B] ,∀i ∈ {1 . . . ntr}

&

∣∣∣∣∣
ntr∑
i=1

β(x(i))− ntr

∣∣∣∣∣ ≤ ntrε
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Table 3.2: List of Symbols

Symbols Description
cs Discourse vector
α Sentence embedding parameter
γ Number of the sentences
loc Location
w Word
s Sentence

vw Word embedding
vs Sentence ebedding
u First principal component of vs

D Domain
d Number of dimensions
x Array of covariates (data instance)
y Class label

ptr, pte Probability distribution of train/test
β(x) Instance weight of x
ntr, nte Total number of train/test instances
φ RKHS Map
h RKHS Kernel

ε, B, σ KMM parameters
K, κ KMM kernel functions

where K and κ are matrices of a RKHS kernel h(·) with K(ij) = h(x
(i)
tr ,x

(j)
tr ) ∈ K, and

κ(i) = ntr

nte

∑nte

j=1 h(x
(i)
tr ,x

(j)
te ) ∈ κ. B > 0 is an upper bound on the solution search space, and

ε is the normalization error. In this study, we utilize the KMM algorithm for bias correction

on training data.

3.3 Approach

Table 3.2 lists frequently used symbols in this study. In general, we use a capital letter to

denote a set of elements, and a small letter to denote an element of a set. A bold letter

indicates an array.
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3.3.1 Focus Location Extraction

Figure 3.1 shows an overview of Profile for primary focus location extraction. We first

extract candidate focus location by pre-processing the given news reports, and then utilize a

supervised classifier to identify a primary focus location among them. In the pre-processing

step, since focus locations are mostly mentioned in the first few sentences, we choose a user

defined number (denoted by γ) of sentences in each news report. Then, we identify the

location named entities in the training news report among these first few sentences using

Stanford CoreNLP. Next, we extract the sentence features from select sentences that contain

locations. If the sentence includes a focus location, we assign a Focus label to it; otherwise,

we assign a Non-Focus label to it. Finally, we train a binary classifier in a supervised manner

using this labeled training data (Imani et al., 2019; Al-Khateeb et al., 2012).

On the other hand, after the pre-processing step, in the test phase, we assign a label

to each sentence in each report using this model. The labels consists of either “Focus"

or “Non-Focus". Labeled sentences are called focus sentences. Note that more than one

focus sentence is included with each news report. Among candidate location names in the

collection of focus sentences for each report, we identify the primary focus location using a

frequency-based approach to select the focus location. In particular, the frequency-based

approach is as follows. We form a histogram of each location detected by NER tools. The

location having the highest count is selected as the focus location.

In the next two subsections, we present the features extracted from a text-based dataset.

Then we use our learning method to identify the focus locations from an unstructured text.

Word Embedding

Our feature extraction algorithm is based on using pre-trained word embedding model from

raw text. We utilized the publicly available fastText_multilingual (Samuel L. Smith and

Hammerla, 2017) which was built with fastText from Facebook and Google Translate API to
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align monolingual vectors from two languages in a single vector space. The length of these

vectors is 300. We initialize the words that are not present in the set of pre-trained words as

zeros. An interesting property of the word embedding is that these vectors effectively encode

the semantic meanings of the words in the context. In other words, they are able to represent

meaningful syntactic and semantic regularities in a very simple way (Mikolov et al., 2013).

Sentence Embedding

Our basic sentence feature extraction method follows the Sentence Embedding (Arora et al.,

2017). We employed this approach because uncommon words are given more weight in the

corpus. In other words, common words become less important in the dataset. An alternative

approach to find the sentence vector is by computing the mean of the words’ vectors in

the sentence. We will compare the effectiveness of the Sentence Embedding approach with

assigning different weight to each word and the alternative approach empirically in Section

3.4.

Let cs be a discourse vector, s be a given sentence, S be a set of sentences and α is a

scalar. The discourse vector represents “what is being talked about”. Assume that p(w) is

the unigram probability of a word in a corpus. Given the discourse vector cs, the probability

of a word w in the sentence s is p(w|cs).

p(w|cs) = αp(w) + (1− α)
exp(< vw, c̃s >)

Zc̃s
(3.4)

where

c̃s = βc0 + (1− β)cs, c0 ⊥ cs

c0 ∈ Rd is a common discourse vector which serves as a correction term for the most frequent

discourse that is often related to syntax, and Zc̃s is a normalizing constant given as follows.

Z =
∑
w∈V

exp(< vw, c̃s >)
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So, the likelihood for the sentence s is:

p(s|cs) =
∏
w∈s

p(w|cs)

=
∏
w∈s

(
αp(w) + (1− α)

exp(< vw, c̃s >)

Z

)
(3.5)

where Z is roughly the same as Zc̃s .

The maximum likelihood estimator (MLE) for fw(cs) = log(p[s|cs]) is approximately,

arg max fw(c̃s) ∝
∑
w∈s

a

p(w) + a
vw (3.6)

where

a =
1− α
αZ

The MLE is approximately a weighted average of the vectors of the words in the sentence.

To estimate cs, we estimate the direction c0 by computing the first principal component of

c̃s for a set of sentences. The final sentence embedding is computed by subtracting the first

principal component from c̃s, since we have to omit the effect of a common discourse vector

which is often related to the syntax. More details of this method are described in (Arora

et al., 2017).

The process of feature extraction by using sentence embedding is summarized in Algorithm

1. The inputs of the algorithm are News_Reports, focus_locations, Word_Embedding, and

Parameters a and γ. In the first For-loop of the Algorithm (line 1 to 11), we extract set of

the locations (loc) by using Stanford CoreNLP as a named entity recognizer (NER) for each

news report (line 3), and exclude countries' name from them in line 4. Then, we select the

first γ sentences for each news report which contain at least one location name (line 6 to 10).

In the next for-loop, we compute the sentence embedding vector (vs) for each sentence, based

on equation 3.6 (line 12 to 14). For more frequent words w, the weight a
a+p(w)

is smaller,
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so this leads to smaller weights for frequent words. Finally, we compute the first principal

component u and decrease it from sentence vector vs (line 16 to 18). We trained the SVM

classification model using the extracted feature vectors.

We apply the same algorithm during the test process,. However, in the first for-loop, we

just use the locations extracted by using Stanford CoreNLP (loc ← NER(Newsi)). Then,

we classify the feature vectors by using the model. Since there may be more than one

Focus sentence per report (i.e., sentence containing potential focus location), we extract the

locations from Focus sentences. Next, we use the frequent-based approach to extract the

Focus locality. In frequency-based approach, we select the most frequent item in the list. In

other words, if we find several sentences from one article with a focus label, the most frequent

location name will be a candidate for focus location.

As mentioned earlier, in Section 3.1, we may not have sufficient labeled data to train an

unbiased classifier. In such a case, we employ the following approach for bias correction over

training data. From the given biased training data, we first perform pre-processing steps

by extracting feature vectors. Then over these feature vectors, we apply the bias correction

method. Particularly, using KMM we compute instance weight for each training data. This

estimates density ratios with the given test data instances. We then train a suitable classifier

using the weighted training data in RKHS. This classifier is used to predict focus location

over test focus sentences.

3.4 Experiments

In this section, we first explain the dataset used to evaluate the proposed method to extract

focus locations, and then present the evaluation results while comparing it with the other

competing methods.
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Data:
News_Reports News1, ...,NewsN , focus_locations
Floc1, ...,FlocN , Word_Embedding {vw : w ∈ V}, Param-
eter a and γ
Result: Sentence_Embedding vs

1 for each News_Report (Newsi) do
2 /* Extract the Location Named Entities for Newsi by using a

NER tool */
loc← NER(Newsi) ∪ Floci
loc← loc \ Country_Names
/* Select the first γ sentences which contain a location in loc.
S is a list of these sentences (s). */

3 for each sentence (s) do
4 if (#s <= γ and ∃i : loci ∈ s) then
5 S ← S ∪ s
6 end
7 end
8 end
9 for each sentence si in S do

10 vsi ← 1
|si|
∑

w∈S
a

a+p(w)
vw

11 end
12 /* Compute the first principal component u of vsi */
13 for each Sentences si in S do
14 vsi ← vsi − uuTvsi

15 end

Algorithm 1: Feature Extraction in Profile using Sentence Embedding

Table 3.3: Dataset Statistics

Lang Dataset # News Reports # Sentences

English Atrocity Event Data 3.6K 40K
New York Times 1K 103K

Spanish nocheyniebla 1.5K 8K
Protest 200 1.5K

Arabic Alghad News 8.2K 75K

3.4.1 Dataset

The Atrocities Event Data (Schrodt and Ulfelder, 2009) is a collection of recent English news

reports on atrocities and mass killings in several locations. Human coders have read the

40



reports and extracted metadata about the events reported. The annotated reports include

victims, focus location, and the reports that reported the event. For the training and testing

dataset, we excluded the reports that contain multiple events. Moreover, we only select the

reports whose locations were correctly extracted by different NER’s such as Stanford and

MITIE since the performance of NER is beyond the scope of this study. The original size of

Atrocity dataset is about 15K reports, and almost 5K of them are annotated.

Another English dataset that we used is the New York Times (NYT)3 news reports

dataset. The New York Times Annotated Corpus includes more than 1.8 million articles

composed and published by the New York Times between January 1, 1987 and June 19, 2007

with article metadata. Similar to the Atrocity Event dataset, we only select political news

articles that contain special keywords such as kill, die, injure, dead, death, wounded and

massacre in their title. Although the NYT corpus includes location annotations, all of them

are not focus locations. Accordingly, we randomly selected 1000 news reports and manually

tagged them.

Noche y Niebla4 is a Spanish dataset with location label (Municipio) for each news report

in a PDF format. We developed a PDF extractor to extract news from year 2000 to 2017 in a

more structured format5. After this process, we removed news reports whose focus locations

are not explicitly mentioned in the text. To evaluate the bias correction method, we also

asked Spanish-speaking coders to annotate around 200 Spanish protest news articles.

To create an Arabic dataset, we used Alghad6 which is an Arabic news agency. Each

news report was initialized with a focus location. We crawled this website to extract news

and their focus locations. We used two different categories of news reports, i.e. news of

3https://catalog.ldc.upenn.edu/ldc2008t19

4http://www.nocheyniebla.org/?page_id=399

5https://launchpad.net/pdf2xml/+download

6https://alghad.com/
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Figure 3.2: Percentage of documents containing focus location in the initial set of sentences.

Arabian countries (3K) and World news (5.2K), to test the bias correction method. The

overall number of news reports and sentences for English, Spanish and Arabic corpus are

given in Table 3.3.

The experiments were conducted on an Intel machine having Core-i7 3.40GHz CPU with

64 GB of RAM, running a standard Ubuntu Linux version 16.04 LTS. We also set a = 0.1

and γ = 7 as inputs for Algorithm 1 as default. We choose γ = 7 (first seven sentences of any

news reports are selected as in input to the algorithm) since we observed that primary focus

locations were present in the first 7 sentences of the training set in more that 99% of news

reports (Imani et al., 2017; Gunasekaran et al., 2018). This is illustrated in Figure 3.2. The

chart demonstrates that focus location in 73% of articles can be found in the first sentence,

and less than 1% of articles contain location information in sentences that occur after the 8th

sentence. We denote this sentence filtering by Profiles.

Profile uses a support vector machine (SVM) with a Radial Basis Function (RBF) kernel

as a base classifier since it supports weighted training data in RKHS. Here, SVM parameter

values are csvm = 1000 and γsvm = 0.1.
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We compare the performance of Profile with other tools for each of the languages. For

English, we used Cliff-Clavin and the frequency-based approach to extract focus locations

from Stanford-CoreNLP. Since Stanford-CoreNLP was only developed to identify named

entities such as person and location names, it does not distinguish between different levels of

location, such as locality and country. Therefore, we modified the Stanford-CoreNLP output

and excluded country names from the resulting location names, and then used a frequency-

based approach to obtain the most frequent location name as a surrogate for primary focus

location. For Spanish, we employed a similar modified Stanford-CoreNLP and MITIE with

the frequency-based approach. We utilized Polyglat with the same frequency-based approach

for the Arabic dataset. To train the model for each dataset, we randomly picked 60% of

articles as training data, and used the remaining 40% of news reports as the test dataset. As

shown in Figure 3.1, Profile first performs the pre-processing steps on both training and test

datasets to extract sentences containing potential primary focus location. Then, it extracts

related features from the text.

The above experiments assume that the training and test data occur from the same agency

or topic. However, a more practical scenario for focus location identification is to study a

setting where biased training data is available. We generate a training bias by selecting

training data which contains articles from one agency/topic, while the test data contains

data from another agency/topic. We utilize the KMM method to obtain an instance weight

for each of the training data and build an SVM classifier using the weighted training data.

We denote this by ProfileKMM
s . For comparison, we also train another SVM classifier without

any weight correction. We denote this by ProfileSVM
s . We then evaluate these classifiers on

the same test dataset (Awad et al., 2004).
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Table 3.4: Primary focus location accuracy comparison between different methods

Dataset Method Accuracy (%)

English (Atrocity)

Profiles 71.27
Cliff-Clavin 63.75
Modified Stanford-CoreNLP 60.83

English (NYT)

Profiles 64.21
Cliff-Clavin 53.65
Modified Stanford-CoreNLP 36.25

Spanish (Nocheyniebla)
Profiles 66.63
Modified MITIE 38.44
Modified Stanford-CoreNLP 29.75

Arabic (Alghad) Profiles 62.41
Modified Polyglot 34.43

3.4.2 Focus Location Extraction Results

We now present the results of Profile where the training and test data occur from the same

agency. On average, there are more than five different location names per news report. Note

that our goal is to determine the primary focus location while the rest are non-focus locations.

Next, we compare the classification performance of Profiles with other existing location

estimation approaches. The results are presented in Table 3.4 for English (Atrocity and NYT),

Spanish and Arabic datasets. In this table, Cliff-Clavin has better accuracy than modified

Stanford CoreNLP for English since it is able to extract the focus country and exclude place

names which are not in the focus country. The Profiles significantly outperforms modified

Stanford CoreNLP and MITIE in Spanish dataset. The proposed approach also surpasses

the modified Polyglot approach for an Arabic dataset.

The proposed approach worked better than the existing methods, since we utilize FastText

and the sentence embedding model which encoded word semantics and relationships between

words in a sentence. Cliff-Clavin can extract locations at a more coarse-grained level based on

the dictionary, and it uses the frequency-based approach to identify the focus locations. As a

result, Profiles outperforms the other methods with 71.27% for Atrocity and 64.21% for NYT.

In addition, NER tools are not able to extract focus location at the locality level. To the
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best of our knowledge, there is not any geoparser that is able to extract focus location from

Spanish and Arabic text. Furthermore, most of the popular NER tools are not applicable for

Arabic language.

3.4.3 Intra-Language Bias Correction Results

Here, we assume the training and test data are from two different publishers/sections in the

same language and are related to atrocity news. Figure 3.3 presents the performance of the

ProfileKMM
s model for focus location extraction in English with Atrocity Event data as the

training set and NYT as the test set. Similarly, we also considered Spanish Protest as the

training set and Noche y Niebla Event Data as the test set. The result is shown in Figure 3.4

with different sets of randomly selected training data size, following (Huang et al., 2006). For

Arabic language, we use World news as the training and Arabian news reports as the test

dataset. The Arabic result is illustrated in Figure 3.5.

The main conclusions from these three figures are as follows.

• We consistently achieved the best adaptation performance for different training sizes

from all experiments on ProfileKMM
s .

• Based on accuracy and precision, we see that ProfileKMM
s performs similar to the baseline

systems. However, ProfileKMM
s achieves considerably better recall and F1-measure.

• Overall, the ProfileKMM
s method achieved higher performance than ProfileSVM

s in all of

the experiments.

• Selecting fewer training instances introduced more bias for these domains. As a result,

ProfileKMM
s significantly outperformed the baseline method when the bias is more.

• Finally, the proposed approach works better for English datasets. One of the main

reasons is that those datasets are manually selected and labeled. However, this assump-

tion is not true for the Arabic dataset. Since we automatically extracted the news, the

data can be noisy or the labels may not have been verified. In addition to this, since
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we utilized an NER tool at the first step, the performance of the NER tool can affect

the performance of Profile.

3.4.4 Inter-Language Bias Correction Results

In this section, we train our model with English Atrocity data and then use this model to

test on Spanish and Arabic datasets.

Figure 3.6 presents the performance of the ProfileKMM
s model which was trained with

English Atrocity Event data and tested on Nocheyniebla Spanish Event Data to predict the

primary focus location. Similarly, we tested the model considering Arabic dataset as the test

set. The results are shown in Figure 3.7 with different sets of randomly selected training data

sizes.

The main conclusions from these figures are as follows.

• For accuracy, precision, recall and F1-measure, we consistently achieved the best

adaptation performance for different training sizes from all experiments on ProfileKMM
s

when compared to baseline systems.

• Based on these results, we can leverage the availability of labeled data in one language

(such as English) to train the model and apply it on other languages to find the focus

location, since labeled instances are not always readily available, or may be available

scarcely in different languages.
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CHAPTER 4

A SCALABLE FRAMEWORK FOR VULNERABILITY DETECTION IN

SMART CONTRACTS1

4.1 Introduction

The increase in the adoption of decentralized cryptocurrency systems has resulted in de-

ployment of smart contracts to solve various problems such as decentralized electronic fund

management systems. Smart contracts are autonomous applications that execute on the

blockchain in a decentralized way. With smart contracts, arbitrary computations can be

performed in addition to transaction-based systems. Using blockchain, different entities can

interact without a need for a centralized authority. Smart contracts can be used all across the

chain from financial services to healthcare to insurance (Griggs et al., 2018; Cohn et al., 2017;

Buterin et al., 2014). Due to the rapid growth in their deployments, various vulnerabilities

have been exploited by attackers to steal cryptocurrencies worth millions of dollars.

Smart contracts are commonly written in a high-level language such as Ethereum’s Solidity,

and translated to low-level bytecode for deployment on the blockchain. Smart contracts can

be executed usually by a virtual machine. In order to run smart contracts, fees are paid

to miners to execute the smart contracts. Using ABI (Application Binary Interface), users

can interact with a deployed smart contract to complete tasks. Since smart contracts are

computer programs, various vulnerabilities have been discovered and exploited by attackers

for financial gain.

These security vulnerabilities in smart contracts originate from a wide range of issues

including deficient programming methodologies, languages design issues, and toolchains,

1The work presented in this chapter was performed in collaboration with L. Khan, and B. Thuraisingham
at the University of Texas at Dallas. This work is currently submitted for publication. Lead author, Imani,
conducted the majority of the research, including the full writing and design, the most of the implementation,
and the evaluation.
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buggy compilers such as those in the Solidity compiler2. Some of these vulnerabilities include

transaction-ordering dependence, timestamp dependence, mishandled exceptions, reentrancy

vulnerability, unsecured balance, destroyable contract, and stack-overflow (Luu et al., 2016;

Brent et al., 2018).

Ethereum (Buterin et al., 2014) and Cardano3 are two types of blockchains with smart

contract capabilities. Ethereum has become the de facto standard platform for smart contract

development, with a market capitalization of $19,854M (USD)4 by the beginning of 2020.

Due to this reason, we focus particularly on Ethereum smart contracts in this study.

Previous works in smart contract defense focused on discovering vulnerabilities in smart

contracts. Oyente(Luu et al., 2016), Osiris (Torres et al., 2018), TeEther(Krupp and Rossow,

2018) and Zeus(Kalra et al., 2018b) performed vulnerability discoveries by leveraging symbolic

execution, Z3 solvers (De Moura and Bjørner, 2008) and source code analysis by pre-defined

rules. Symbolic execution has a scalability problem because of the long time cost in execution

procedure. On the other hand, rule-based systems rely on human experts to define features

or different rules to detect bugs in the programs. In this study, we propose a static analysis

framework based on a machine learning model to address the aforementioned issues.

4.2 Background

In this section, we provide background information on the Ethereum virtual machine. After

that, we discuss the various vulnerabilities present in Ethereum smart contract applications.

2https://solidity.readthedocs.io/en/latest/bugs.html

3https://www.cardano.org/en/home/

4https://coinmarketcap.com/currencies/ethereum/
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4.2.1 Ethereum Virtual Machine

The Ethereum virtual machine (EVM) is one of the popular implementations of a smart

contract framework. The EVM is a stack-based computer that takes as input a sequence

of bytecode instructions which is executed to complete a task. The EVM has a key-value

persistent store, a memory and a stack of 32-byte values. The EVM bytecode consists of more

than 100 opcodes, such as SUB, PUSH, and ADD. Each opcode requires a particular set of fees

in order to execute the instruction. The fee varies based on the function of the instruction.

Listing 4.1 shows a sample EVM bytecode to perform addition and subtraction. In addition,

fees are paid to persist data in the smart contract persistent store. To prevent denial of

service attacks, a fee is paid before an instruction is executed. This ensures that attackers

cannot execute their malicious code as this results in wastage of attackers resources (Nessa

et al., 2008; Masud et al., 2016; Thuraisingham et al., 2008).

Furthermore, Ethereum has two types of token standards which includes ERC20 and

ERC721. The ERC20 is a token standard that defines an interface to create custom cryp-

tocurrencies while ERC721 is a standard that defines interface for creating non-fungible

assets used in representing unique objects on the Ethereum blockchain, such as was used for

CryptoKitties.

00000 PUSH1 0x01

00002 PUSH1 0x05

00004 SUB

00005 PUSH1 0x01

00007 PUSH1 0x05

00009 ADD

Listing 4.1: Addition and subtraction program in EVM bytecode
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4.2.2 Common Ethereum Smart Contract Vulnerabilities

Reentrancy Reentrancy is a well-known vulnerability with a recent TheDAO5 hack. In

Sept of 2016, hackers stole over 3,600,000 Ether, or 60 million US Dollars at the time by

exploiting a Reentrancy vulnerability in the contract code from the company TheDAO. Since

then, developers have changed codes to limit the function being accessed from malicious code.

However, still a huge number of old contracts are vulnerable to the Reentrancy approach.

The Reentrancy vulnerability starts from a function named fall-back function. Every

contract can only have one fall-back function. The fall-back function has no arguments and

no return values. This function will be called in two ways: First, when a contract receives a

function call but no functions match; Second, when a contract receives Ethers. In Ethereum,

when a contract calls another, the current execution waits for the call to finish. This can

lead to an issue when the callee makes use of the intermediate state the caller is in. In other

word, a malicious contract will write an external function call in its fall-back function (Yen

et al., 2002).

Time Dependency Many applications in Ethereum require obtaining the timestamp to

decide what operations to do. Block timestamp is typically used in two situations: as

a deterministic random seed and as a global timestamp in a distributed network, such as

Castle6 and GovernMental7. TheRun contract8 is an example of the former situation. TheRun

contract uses the current timestamp in order to generate random numbers and award a

jackpot based on the result. The timestamp of the contract is dependent on block timestamp,

and the block timestamp must be agreed by block miners. Due to the synchronization, all

5https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code

6http://protect-the-castle.ether-contract.org/

7http://governmental.github.io/GovernMental/

8https://etherscan.io/address/0xcac337492149bdb66b088bf5914bedfbf78ccc18#code
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contracts in a same block share the same timestamp. When a miner gets a new block, it

has an ability to adjust the born time of the new block. This could be 900 seconds in early

Solidity versions. Although it is changed to several seconds now, it still has a timestamp

vulnerability.

Mishandled Exceptions There are some ways for a contract to call another, including

sending an instruction or calling a contract’s function directly (e.g. ContractA.FunctionB()).

Meanwhile, exceptions can be raised in callee contracts because of not enough gas, exceeding

call stack limit, division by zero, array index out of bound and so on. If the exception happens,

the callee contract terminates, reverts its state and returns false. 27.9% of the contracts

do not check the return values after calling other contracts via send (Luu et al., 2016). A

malicious caller contract can cause the send to fail deliberately, regardless of what the callee

does. Sometimes the attacker does not receive any direct benefit other than causing other

users to lose their entitlement. But, in some other examples, the attacker can get the direct

benefit (e.g. GovernMental9). These contracts pay investors interest for their investments

from the subsequent investments by others. An attacker can first invest his money. Then, he

can cause the failure in the previous investors, so he can receive his interest earlier!

Transaction-Ordering Dependence Since a transaction is in the mempool for a short

while, one can know what actions will occur before it is included in a block. In the Ethereum

Blockchain network, only miners can decide the order of transactions in a block. Therefore,

the final state of a contract depends on the miner’s decision about ordering the transactions.

In this situation, the miners can cause malicious behavior, for example, a smart contract

offering a prize for providing the right solution to some problem. The contract owner can

modify the prize as long as it has not been awarded, and users can submit their solutions to

9http://governmental.github.io/GovernMental/
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the problem to win the prize. On the other hand, the owner can track all submissions and

manage the ordering of transactions. Let’s consider the scenario when there is an unprocessed

user transaction with a valid submission; the miner has the ability to check it out and then

submit his own transaction thus reducing the value of the prize to zero. In such a case, the

owner submission will be invoked first. And, the other user not only will not win the prize,

but he has also submitted the solution for free!

Critical Instruction Vulnerabilities EVM bytecode consists of instructions that allow

external smart contracts to call other smart contract code. These instructions include the

CALL, CALLCODE and DELEGATECALL instruction as shown in Figure 4.1. The CALL

instruction allows a caller smart contract to call a target smart contract which can modify

the storage or variables in the target contract. CALLCODE and DELEGATECALL allow

a caller smart contract to call a target smart contract and modify the variable and storage

in the caller’s context. With these capabilities, attackers can inject code that can modify

a smart contract’s balance, change ownership or even self destruct a smart contract and

withdraw all the tokens in the contract.

Smart Contract Owner Hijack Each smart contract has an owner when deployed. For

example, (Breidenbach, Daian, Juels, and Sirer, Breidenbach et al.) show a code snippet for

setting up a smart contract wallet for the Parity Ethereum Wallet from its github repository.

The initWallet method is used to set the owner of the wallet. The initWallet method should

only be executed once in the lifetime of the smart contract. After initiating a smart contract,

allowing changes to the ownership of a contract through a call to initWallet can allow an

arbitrary user to use methods such as delegate call to change the ownership of the contract.

With the DELEGATECALL instruction, an attacker can pass a malicious payload to execute

in the attacker’s context. In this case, the attacker modified the owners of the smart contract

by executing the initWallet method. After changing the owner of the wallet contract, the
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attacker is able to kill the contract which results in all the funds in the wallet being withdrawn

to the attacker. High-value attacks on the Parity Multisig smart contract (Breidenbach,

Daian, Juels, and Sirer, Breidenbach et al.; Krupp and Rossow, 2018) were completed using

this vulnerability to hijack the ownership of the smart contract.

Arithmetic Vulnerabilities Arithmetic vulnerabilities such as integer overflow and un-

derflow can occur during EVM code execution leading to loss of tokens or money. The stack

consists of up to 1024 32-byte words which can hold a maximum value of 2256. By adding a

number to the max value, the new value rolls over to zero. Likewise for integer underflow,

by subtracting from a zero value, the value rolls over to the maximum value (Consensys,

Consensys)10 because EVM uses unsigned int256 types (Konstantopoulos, Konstantopoulos).

Integer underflow vulnerabilities can allow an attacker to roll over his initial balance to the

maximum value, thereby gaining access to a large token balance which he does not own.

4.3 Proposed Framework

Figure 4.2 shows an overview of the proposed framework for vulnerability detection in smart

contracts. In the following subsections, we will discuss this framework in more detail.

4.3.1 Smart Contract Collection

In the first step of our proposed framework, we query the Ethereum blockchain repository

to extract the bytecode representation of smart contracts. In this step, we also discard

duplicated smart contracts.

Let’s assume that Fibonacci and Factorial programs are developed in Solidity smart

contract codes as presented in Algorithm 2 and Algorithm 3, respectively. We will use these

smart contracts as examples in the next steps. In the first step, we capture the machine code

10https://github.com/CoinCulture/evm-tools/blob/master/analysis/guide.md

58



CALLERCONTRACT
Owner

TARGET_CONTRACT
Owner
//CALLER owner is 
modified

TARGET_CONTRACT
Owner//
Target owner is 
modified in this context

TARGET_CONTRACT
Owner
//CALLER owner is 
modified

CALL()

CALLCODE()

DELEGATECALL()

Figure 4.1: Smart contract CALL flow

representation of the mentioned smart contract in the form of bytecode, producing a file such

as the ones shown in Figure 4.3 and Figure 4.4.

1: contract Fibonacci {
2: function fib(uint n) returns(uint y) {
3: if (n <= 1) {
4: return n;
5: } else {
6: return this.fib(n - 1) + this.fib(n - 2);
7: }
8: }
9: }

Algorithm 2: High-level Solidity Fibonacci code example
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1: contract Factorial {
2: function fact(uint n) returns(uint y) {
3: if (n == 0) {
4: return 1;
5: } else {
6: return this.fact(n - 1) * n;
7: }
8: }
9: }

Algorithm 3: High-level Solidity Factorial code example

0x606060405260e060020a6000350463c6c2ea178114601c575b
6002565b3460025760296004356042565b604080519182525190
81900360200190f35b605a600283035b600060018211603b5750
806055565b0190505b919050565b605160018403604256

Figure 4.3: Compiling code in Algorithm 2 to EVM bytecode by using Solidity 0.4.1 compiler

0x60606040526000357c0100000000000000000000000000000
00000000000000000000000000090048063193ddd2c14603757
6035565b005b60426004805050605a565b60405180821515815
260200191505060405180910390f35b60006005600060005054
149050606b565b9056

Figure 4.4: Compiling code in Algorithm 3 to EVM bytecode by using Solidity 0.4.1 compiler

4.3.2 Disassembling

The second step of the proposed framework is the disassembler, which converts Ethereum

bytecode to a sequence of readable low-level mnemonics 11. To do this conversion, the

bytecode is scanned, then each instruction converts to its corresponding mnemonic and

incrementing a program counter for each instruction and each inline operand. The output of

this step is a series of low-level operations and their input arguments.

11In programming, a mnemonic is a name assigned to a machine function or an abbreviation for an operation.
Each mnemonic represents a low level machine instruction or opcode in assembly. add, mul, lea, cmp, and je
are examples of mnemonics.
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Table 4.1: Disassembling Figure 4.4 bytecode to opcode

1: 0x0 PUSH1 0x60 12: 0x14 EQ

2: 0x2 PUSH1 0x40 13: 0x15 PUSH1 0x1c

3: 0x4 MSTORE 14: 0x17 *JUMPI

4: 0x5 PUSH1 0xe0 15: 0x18 JUMPDEST

5: 0x7 PUSH1 0x02 16: 0x19 PUSH1 0x02

6: 0x9 EXP 17: 0x1B *JUMP

7: 0xA PUSH1 0x00 18: 0x1C JUMPDEST

8: 0xC CALLDATALOAD 19: 0x1D CALLVALUE

9: 0xD DIV 20: 0x1E PUSH1 0x02

10: 0xe PUSH4 0xc6c2ea17 21: 0x20 *JUMPI

11: 0x13 DUP2 22: 0x21 PUSH1 0x29

... ...

In our examples (Algorithm 2 and Algorithm 3), after the second step, the machine code

will be converted to the readable EVM opcodes by the disassembler as shown in Table 4.1

and Table 4.2.

4.3.3 Feature Engineering

Control Flow Graph Extraction

A Control Flow Graph (CFG) is a representation, using graph notation, of control flow or all

paths that might be traversed through the execution of programs. Control flow graphs are

mostly used in static analysis as well as compiler applications, as they can precisely represent

the flow inside of a program unit.

The CFG of an EVM opcode program is initially unknown due to the stack locations,

and it needs to be built incrementally and iteratively. To address this problem, we construct

a CFG incrementally and we propagate the potential jump addresses’ values. In opcode, all
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Table 4.2: Disassembling Figure 4.3 bytecode to opcode

1: 0x0 PUSH1 0x60 12: 0x14 EQ

2: 0x2 PUSH1 0x40 13: 0x15 PUSH1 0x1a

3: 0x4 MSTORE 14: 0x17 JUMPI

4: 0x5 PUSH1 0xe0 15: 0x18 JUMPDEST

5: 0x7 PUSH1 0x02 16: 0x19 STOP

6: 0x9 EXP 17: 0x1A JUMPDEST

7: 0xA PUSH1 0x00 18: 0x1B PUSH1 0x00

8: 0xC CALLDATALOAD 19: 0x1D SLOAD

9: 0xD DIV 20: 0x1E PUSH1 0x05

10: 0xe PUSH4 0x193ddd2c 21: 0x20 EQ

11: 0x13 DUP2 22: 0x21 PUSH1 0x60

... ...

JUMP instructions must jump to a JUMPDEST instruction. Due to this fact, we can split

the disassembled EVM bytecode into basic blocks. In this scenario, the main problem is

identifying the JUMPDEST in the JUMP operation since it is not an explicit argument and

it requires some efforts at runtime to pop it from stack. To overcome this issue, we need to

resolve it in two phases (Brent et al., 2018).

In the first phase, we construct the basic blocks of smart contracts. Then, we build

a symbolic stack with symbolic values to execute each block and pop its operations from

the stack. The registers may point either to stack locations whose values were produced

by the prior basic blocks or stack locations that were produced by the current basic block.

(Brent et al., 2018) introduce symbolic labels for stack locations that are used to indicate

data-dependencies among basic blocks, and try to resolve them via registers in the next

phase.
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In the second phase, the symbolic stack locations will be resolved incrementally and

new JUMPDEST will also appear. As a result, the control flow graph will be completed

incrementally.

After this step, the majority of JUMPDESTs or sets of potential JUMPDESTs for

basic blocks have been resolved. For example, the corresponding CFG of Algorithm 2 is

demonstrated in Figure 4.5. The CFG of Algorithm 3 is also presented in Figure 4.6.

Feature Extraction

We employ EVM bytechode control-flow graph to extract features. In this step, we use the

depth-first search (DFS) algorithm to traverse the CFG nodes and extract the operation

names in DFS paths as shown in Algorithm 4. This algorithm runs on all CFGs and its

output is a vector of operation names. We will add zeros (padding) to the end of some vectors

to get vectors with the same length (Parveen et al., 2011).

1: Depth First Search(control_flow_graph): {
2: visited, stack, opname_fea = set(), [root], [root.opname]
3: while stack: {
4: vertex = stack.pop()
5: if vertex not in visited: {
6: visited.add(vertex)
7: opname_fea.append(vertex.opname)
8: stack.extend(graph[vertex] - visited)
9: }
10: }
11: return opname_fea
12: }

Algorithm 4: Depth First Search on CFG

4.3.4 Bidirectional Long Short-Term Memory

Neural networks have been successfully applied in many areas such as image processing (Breen

et al., 2002), speech recognition, biomedical (Manoochehri et al., 2019), and natural language
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Figure 4.5: Control flow graph for the Fibonacci contract (Algorithm 2) by using (Brent
et al., 2018)
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Figure 4.6: Control flow graph for the Factorial contract (Algorithm 3) by using (Brent et al.,
2018)

66



processing. A recurrent neural network (RNN) is a type of neural network where connections

between nodes form a directed graph along a temporal sequence (Mikolov et al., 2010).

This type of neural network is appropriate for sequential data. However, they mainly suffer

from the Vanishing Gradient (VG) problem, which makes them inappropriate for model

training (Criminisi et al., 2012). Long short-term memory (LSTM) is another recurrent neural

network (RNN) architecture which was proposed to overcome VG problem (Schmidhuber

and Hochreiter, 1997). LSTM has feedback connections, unlike traditional feedforward neural

networks. The fundamental idea of LSTM is to introduce an adaptive gating mechanism,

which decides the degree to which LSTM units keep the previous state and memorize the

extracted features of the current data input. LSTM cannot only process single data, but it

can also process entire sequences of data. A lot of LSTM variants have been developed for

various applications so far. Although LSTM processes sequences in temporal order, it ignores

future context.

On the other hand, neural networks that can deal with contexts and sequences may be

suitable for vulnerability detection in codes. In other word, neural networks for natural

language processing may be also suitable for vulnerability detection because both of them

deal with context as their important features (Montemagni and Pirrelli, 1998). We can notice

that the argument(s) of a program is often affected by earlier operations in the program

and may also be affected by later operations in the program. This means that the standard

LSTM may be insufficient because it is unidirectional and we need to use Bidirectional LSTM

(BiLSTM) for vulnerability detection.

One of the contributions of this study is using BiLSTM, which can automatically focus

on the program operations that have decisive effect on classification, to capture the most

important semantic information in a program context, without using extra knowledge.

We discuss these neural networks configurations in section 4.4.

67



4.4 Evaluation

In this section, we are going to describe our benchmarks and present the experimental results.

4.4.1 Benchmarks

We collected our corpus by retrieving bytecode for every contract deployed as of May 2019.

Then, we removed the duplicated contracts. In total there are only 205,848 unique smart

contract bytecodes. Ethereum contracts vary from simple to more complex. The number of

the instructions in Ethereum contracts varies from 8 to 13,050 with average 1,545.27 and

median 1,213. The number of distinct instructions in the contracts varies from 7 to 57. In

this project, we use EVM bytecode instead of smart contract source codes since most of the

smart contracts’ source code is not publicly available on public repositories.

Due to the lack of labeled data, we run Oyente on all contracts to label them by different

vulnerabilities including ordering, timestamp, mishandle exception, and reentrancy or benign.

Then, we discard the contracts that Oyente could not complete the process in 60 seconds. At

the end of this process, there are 176,968 unique bytecodes. This data is our gold standard for

our further process. Figure 4.7 shows the percentage of benign and vulnerabilities in smart

contracts detected by Oyente. 88% of smart contracts are benign. 6% of smart contracts

suffer from Ordering attacks. Besides, some of the smart contracts suffer from more than one

vulnerability. It is shown in Figure 4.8.

In this project, we consider all types of vulnerabilities as a non-benign class. So, we

convert the problem to the binary classification problem.

4.4.2 Neural network configuration

We compared our model with the LSTM neural network. Its model and implementation

parameters are depicted in Figure 4.9 and 4.10, respectively.
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Figure 4.7: Percentage of benign and vulnerabilities in the benchmark

Figure 4.9 also highlights the structure of BiLSTM. The input to the learning process is

in a vector representation which we extract from CFG of programs.

BiLSTM model has an input layer, a BiLSTM layer, a couple of flatten layers, a dense

layer, and lastly an activation layer. The BiLSTM layer has both forward and backward

directions. The BiLSTM layer contains some complex LSTM cells, which are treated as

black-boxes in the present study. The dense layer reduces the number of dimensions of the

vectors received from the BiLSTM layers. The activation layer takes the low-dimension

vectors received from the dense layer which are flattened in the flatten layer as input, and is

responsible for representing and formatting the classification result, which provides feedback

for updating the neural network parameters in the learning phase. The output of the learning

phase is a BiLSTM neural network with fine tuned model parameters, and the output is the

classification results.
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Figure 4.8: Number of smart contracts in Benchmark with one or more vulnerability

4.4.3 Experimental Results

The initial benchmark construction and feature extraction process were conducted on an

Intel machine having Core-i7 3.40GHz CPU with 64 GB of RAM, running a standard Ubuntu

Linux version 16.04 LTS.

We compare the performance of the proposed method with different learning models in

Table 4.3. We use KNN (K=3), Random Forest (RF), SVM, LSTM, and BiLSTM in this

regards. RF works better among the traditional learning models. We show SVM result with

Linear kernel. However, the results of Linear and Radial Basis Function (RBF) kernels were

very similar.

Our proposed method with using BiLST outperforms the other methods with 87% accuracy,

80% precision and 87% recall.
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Figure 4.9: LSTM and BiLSTM models

Table 4.3: Comparison of the proposed method with KNN, Random Forest, and SVM

Model Accuracy Precision Recall F1 score

KNN (k=3) 0.59 0.65 0.60 0.62

Random Forest 0.76 0.76 0.77 0.77

SVM 0.72 0.73 0.73 0.73

LSTM 0.85 0.78 0.85 0.81

BiLSTM 0.87 0.80 0.87 0.83
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Figure 4.10: Implementation of LSTM model for smart contract vulnerability detection in
Keras
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CHAPTER 5

A SCALABLE FRAMEWORK FOR WIND TURBINE FAULT DIAGNOSIS1

5.1 Introduction

The wind energy industry has experienced major growth over the last decade. Based on

Global Wind Energy Council statistics, the total number of wind turbines across the world

has increased from 6,100 in 1996 to 3,695,789 in 2014 (Pullen and Sawyer, 2014), showing an

exponential growth in global demands for wind energy to produce electricity.

Wind energy is freely available, does not pollute the environment, and needs less space

for energy production.

Wind turbines are big, complex and expensive machines which are installed in harsh envi-

ronments. They are vulnerable to different defects and faults. Manual condition monitoring

is cumbersome and costly. A failure in these machines can disable them for several weeks and

cost hundreds of thousands of dollars. These costs, typically due to maintenance and repair

of failed components, adversely affect the price of produced energy. Developing automatic

condition monitoring systems for these machines is vital for the wind industry. Based on a

report by the National Renewable Energy Lab (NREL), gearbox failure causes the longest

downtime, about half a month on average, and is the most costly fault in these machines

(Sheng and Veers, 2011). Different factors like poor lubrication, bending fatigue, fretting

corrosion, and mechanical stress can cause a defect in a wind turbine gearbox. An early

fault detection can prevent catastrophic failures. Monitoring vibration signals picked up from

gearboxes is an effective way of condition monitoring. However, by increasing the number of

1This chapter contains material previously published as:
©2017 Springer. Reprinted, with permission, from Imani M. B., Heydarzadeh M., Chandra S., Khan

L., Nourani M. (2019) SAIL: A scalable wind turbine fault diagnosis platform. in: Bouabana-Tebibel T.,
Bouzar-Benlabiod L., Rubin S. (eds) Theory and application of reuse, integration, and data science. IEEE
IRI 2017. Advances in intelligent systems and computing, vol 838. Springer, Cham.
Lead author, Imani, conducted the majority of the research, including most of the writing, design,

implementation, and evaluation.
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turbines, the number of sensors to monitor will dramatically increase. This typically leads to

a large volume of data that needs to be processed (Masud et al., 2008). In fact, computation

of these data cannot be achieved on site or locally. To address this challenge, we propose a

cloud-based solution for the following reasons. First, wind turbines are mostly installed in

harsh environments including off shores and deserts. Providing a local computation platform

for running a fault diagnosis algorithm requires a high level industrial specifications. Such a

solution is expensive, specifically in typical cases where the fault diagnosis algorithm needs a

powerful computation platform. Second, satellite links can provide network coverage in such

remote areas; however, their services are still expensive, even with low bandwidth. Besides,

wind turbines do not need continuous monitoring; regular maintenance with periods of a

day or more is a generally an accepted practice. Finally, a local processing solution at every

turbine is not appropriate to scale when monitoring wind farms with thousands of turbines.

Therefore, monitoring each wind turbine with a standalone computer is not cost-effective.

Even though increasing the volume of data provides more opportunities for accurate

data analysis , it produces considerable computational challenges. Recently, the volume of

data has been growing so fast in different areas that it can no longer fit into memory for

efficient processing. To handle a huge amount of data, engineers have developed different

scalable tools. New processing technologies such as Google's MapReduce and Apache Hadoop

have emerged as a result of such efforts. With the exponential increase and availability of

tremendous amounts of data, Big Data is becoming one of the most popular terms in today's

automated world. From an industry point of view, Big Data is going to play an important

role in achieving fault-free and cost-efficient data collection and analysis in real-time systems.

Automated fault detection of wind turbines can be viewed as a Big Data problem. Sensor

data from wind turbines can result in a continuous stream of data, useful for diagnosis.

Unfortunately, traditional approaches (Kusiak and Li, 2011) to address challenges of fault

detection are inefficient in this setting. They typically require a high amount of memory and
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several hours to train an appropriate model and they cannot take advantage of a live stream

of data. Using such traditional techniques may result in maintenance delays with increased

costs.

From a signal processing perspective, there are still open research problems. Most of

prior data-driven fault diagnosis algorithms are based on frequency domain analysis (Haddad

et al., 2015; Immovilli et al., 2009; Riera-Guasp et al., 2012). This is due to semi-periodic

nature of vibration signal. The majority of prior works use the Fast Fourier Transform (FFT)

to estimate the spectrum of signals which lead to a fast and an unbiased estimation of the

spectrum. However, using FFT in feature extraction for an automatic fault diagnosis system

raises a few challenges. First, FFT is computationally expensive and does not reduce the

dimensionality of data. Moreover, the frequency resolution of FFT is limited to the number

of the point used in its calculations. As a result, if the frequency signature of vibration for

different classes is similar, FFT cannot capture them.

5.2 Background

5.2.1 Industrial Applications

The two categories of fault diagnosis methods are model-based and data-driven. Model-based

approaches use a mathematical model of the system (Chen and Patton, 2012). Such a model

is usually obtained by physical modeling. Having a model reduces the uncertainty regarding

measurements, however, physical modeling is challenging. On the other hand, the only

assumption that data-driven methods make is the availability of some training data from the

system. Then, signal processing and machine learning are applied to predict the system’s

state of health (Watson et al., 2010). Such approaches are easier to generalize compared to

other approaches since they do not make any assumptions about the system.

The majority of prior gearbox fault diagnosis works are data-driven methods. However,

since vibration signal is a non-stationary random signal, extracting a compact informative
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feature vector is a challenging signal processing task. The key difference among prior works

is in the feature extraction step. Authors in (Zhang et al., 2012; Li et al., 2016; Raj and

Murali, 2013) proposed time-domain statistical features. Specifically, they showed that higher

order statistics like kurtosis and skewness can be employed for fault diagnosis of the gearbox

(Lei et al., 2007). However, these features are very sensitive to noise and outliers. This

limits their application to real-world industrial systems. The frequency domain features are

proposed in (Watson et al., 2010; Hu et al., 2007; Nelwamondo et al., 2006; Mahamad and

Hiyama, 2011). Frequency domain methods are robust and can distinguish different classes

of faults. However, for developing an automatic fault diagnosis system, it is necessary to

reduce the dimensionality of signal representation. Fourier transform and wavelet transform

do not necessarily reduce the dimension of a signal’s spectrum. Authors in (Sun et al.,

2013; Amar et al., 2015) post-processed the spectrum of the signal by Principal Component

Analysis (PCA) for dimensionality reduction. However, PCA requires large computations

at run-time and can corrupt the spectrum of the signal. So, presenting the spectrum of

vibration signal in a compact way is required for developing robust fault diagnosis system. In

a preliminary study, we developed a parametric spectral analysis for feature extraction using

an auto-regressive (AR) model (Imani et al., 2017). Although, using an AR model provides a

method for compact representation, it requires a high model order for capturing complex

signals. This issue can be addressed using a parametric model which has zeros. In this work,

we used an auto-regressive moving average (ARMA) model which has zeros and poles and

can model vibration signal with smaller orders. Moreover, using an ARMA model provides a

high resolution in estimating spectrum of signal. This will be discussed in more details later

(Abrol and Khan, 2010).

The majority of research in this field is devoted to developing signal processing algorithms

for fault diagnosis. However, this problem has another challenge for data analytics. Scaling

a real-time fault diagnosis algorithm for a wind farm with thousands of turbines requires a
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massive computational power which is currently available on cloud servers. This dimension

of research is related to the emerging field of Industrial Internet of Things (IIoT). From

this perspective, authors in (Chen et al., 2007; Qi et al., 2016; Shao et al., 2016) applied

the state-of-the-art Big Data analytics methods to the fault diagnosis problem in industrial

systems in different areas.

5.2.2 Big Data Analytics

Many different Big Data analysis tools with different features have been developed so far, such

as Hadoop (Shvachko et al., 2010) and Apache Spark (Spark, Spark). In our work, we have

selected Spark over other traditional distributed frameworks (e.g., Hadoop and MapReduce,

etc.) since it is more efficient for stream data processing. Apache Spark is a fast and general

purpose cluster computing engine for large-scale data analytics that was developed at the

University of California, Berkeley AMP Lab (Spark, Spark). Many different applications have

been developed based on Spark clustering so far, including political event coding (Solaimani

et al., 2016), and geolocation extraction (Imani et al., 2017).

Another feature that Spark offers is supporting scalable, high-throughput, fault-tolerant,

and real-time data stream processing. Spark streaming uses a “discretized stream" which

is an incremental stream processing model. Data can be fed by many sources like Apache

Kafka (Kafka, 2014).

Machine Learning library (MLlib) is Spark's distributed and scalable machine learning

library (Meng et al., 2016). It improves the computational efficiency by using data-parallelism

or model-parallelism techniques to store and process data or models. MLlib includes more

than 50 common algorithms for classification, clustering, regression, collaborative filtering,

and dimensionality reduction.
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5.3 SAIL Architecture

5.3.1 Scalable Monitoring System

In the wind turbine industry, different sensors are being used to detect and predict various

faults and malfunctions. As the number of turbine increases, the number of sensors, and

consequently the amount of gathered data, grow as well. The traditional methods for data

processing are time-consuming and inefficient for a huge amount of stream data. Therefore,

Big Data analytics can play an important role in processing and mining these rapidly

producing data in real-time.

5.3.2 Bottom-Up Architecture

We propose a bottom-up three-layer platform depicted in Figure 5.1. At the bottom, the

sensor-layer contains data collection nodes which are used to collect data from wind turbines.

A node is attached to each turbine and provides sensory circuits and network connectivity.

The next layer is the fog-layer which contains fog-servers. These servers collect data from

all nodes in a wind farm. Fog-servers compress data to save the communication bandwidth.

Then, they send the collected data to a cloud server via the Internet. In the cloud-layer,

the analytic server runs the proposed fault diagnosis algorithm. After that, the results are

logged and reported to different users. This architecture complies with the paradigm in the

emerging field of Industrial Internet of Things (IIoT).

5.4 Fault Diagnosis Framework

In this section, the proposed scalable architecture is discussed. Figure 5.2 shows the multi-

layer structure of SAIL. This figure shows where each piece of algorithm runs. Algorithm

training runs offline. These are depicted as gray boxes. Other modules work and process

data online. Development of a mechanic fault can take minutes or even hours so the whole
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system can generate early alerts in an online manner. There are three layers in the proposed

system: sensor-layer, fog-layer, and cloud-layer. Furthermore, each layer contains several

components which are discussed in this section.

5.4.1 Sensor Layer

In this layer, each turbine in a farm has a node which provides sensory circuits and local

network connectivity. In each node, vibration data is collected using accelerometers. After

extracting the features, it broadcasts the data stream to the fog layer.

Feature Extraction

We applied the model-based spectral analysis method explained in detail in Appendix A

for feature extraction. We considered an ARMA model for the vibration signal and use the

parameters of the model as features for diagnosing the health state of the system. These

features capture the spectrum of the signal and simultaneously reduce its dimensionality.

The proposed system uses a p order on-line ARMA estimator to a sliding window of vibration

signal from the device to extract coefficients. Then, our features are the vector of all model

coefficients θ = [a1, a2, · · · , ap]t. Vector θ is fed to a trained random forest classifier to

diagnose the status of the device.

Here, the order of online estimators is unknown and needs to be estimated. As discussed

in Subsection A.3, AIC criteria can be used for order selection. However, we do not deal

with just one random process because each class of fault produces a different random process

as vibration signal. Consequently, each class has its own order. The order of the online

estimator should be chosen such that the fitted model captures the spectral properties of

the vibration signal for each fault. So, we set this parameter as the largest estimated p in

training data for all classes of vibration data. The pseudo code illustrated in Algorithm 5

shows the algorithm used for order selection which finds the maximum order for each window

of vibration in training data for all classes of faults.
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Input: Training data D, window length L
Output: Order of on-line estimator p

16 Initialize: remove noise by low-pass filtering of D
foreach class, select the data in that class (Di) do

17 for kth window of Di do
18 for j ← 1 to pmax do
19 Fit a jth order ARMA model

Fk(j)← AIC of the fitted model (Eq. A.6 )

20 end
21 pi(k)← argmin

j
{Fk(j)}

22 end
23 p(i)← max

k
{pi(k)}

24 end
25 p← max

i
{p(i)}

26 Return p as the order of on-line estimator

Algorithm 5: On-line PSD Estimator Order Selection

5.4.2 Fog Layer

This layer compresses the collected data from the wind turbine farm to save communication

bandwidth. As we discussed dictionary learning and compression in subsection A.4, the

dictionary learning is offline since it uses the training data. However, the data compression is

online for signals coming from wind turbines. Then, this layer sends the collected compressed-

data to the next layer, i.e. cloud layer, using Kafka as a message broker.

Message Broker Module

Various message brokers are available to integrate with Spark. We have applied Kafka 3.3.4

because of its stability and compatibility with Apache Spark. Kafka is a real-time publish-

subscribe messaging system developed by LinkedIn (Kafka, 2014). Kafka publisher-clients

write messages in topic categories, and each topic category is divided into several partitions,

and messages within a partition are totally ordered. Kafka subscriber clients read messages
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on a topic. It provides reliable message delivery with the correct order. Our framework

continuously monitors each incoming datum from different sources. We read these streaming

data and transport it through a message broker. It enables us to feed these large volumes of

raw data to the Spark streaming module (Figure 5.2).

5.4.3 Cloud Layer

Initially, we perform model and parameter selection for feature extraction (subsection 5.4.1)

and train a diagnosis model offline by using raw training data. Moreover, dictionary learning

for compressing and decompressing is done in offline mode. Then, the prepared model will

be used in the online fault diagnosing framework, which is presented in Figure 5.2.

In this layer, the Spark Streaming module receives a stream of data and converts them

to batches of data. After decompressing the data, we use the classifier to diagnose whether

there is faulty data or not (subsection: 5.4.3).

To evaluate the model’s performance, we show the experimental results with offline data

in Section 5.5. In this section, we will introduce our feature extraction method and machine

learning algorithm which are used in this study.

Random Forest Classifier

Decision trees are simple classifiers which make an output label by comparing different features

with threshold values in a tree structure. Although trees are unbiased classifiers, their variance

is high. One way of decreasing their variance and thus increasing the classification accuracy

is by bagging, which combines the output of several trees (Hastie, 2009). An ensemble of

several trees is usually referred to as a forest. In a forest, each tree votes for the label of an

input and the final decision is made using the majority voting technique. Although each

tree is a simple classifier, the forest can learn difficult classification tasks by bagging trees

together. One advantage of a forest is its suitable structure for real-time implementation

83



since each can be evaluated in parallel and the final decision can be made by combining all

results together. Random Forest (RF) is an effective way of training bagged trees where

tree parameters are chosen randomly (Hastie, 2009). In a random forest, each tree is trained

using a random subsample of training data. Algorithm 6 shows the random forest algorithm.

In this study, we used RF in MLlib which supports the Random Forest’s parallelization.

Input: Training data (D), number of trees (B), Minimum node
size (Nm)

Output: A random forest classifier
1 for i← 1 to B do
2 Z← a random subset of D

Grow a random tree (Tb) using Z as:
for j ← 1 to Nm do

3 Select m variable at random from p variable
Pick the best variable/ split-point among the m
Split the node into two daughter

4 end
5 end
6 Return The ensemble of trees {Tb}B1

Algorithm 6: Random Forest Classifier.

5.5 Experimental Results

We present two categories of experiments to evaluate SAIL platform and the proposed fault

diagnosing algorithm in this section. First, we measure the accuracy of the proposed fault

diagnosing method by applying it to two well-known vibration benchmark datasets, i.e. NREL

and CWRU datasets. Using benchmark datasets provides an opportunity to compare our

algorithm with prior works regardless of our scalable implementation. Next, we evaluate the

scalability and run-time of the proposed platform. In this experiment, we created multiple

sensor node instances which feed duplicates of these datasets to the SAIL.
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Figure 5.3: The test turbine (image from ((NREL), 2017))

LSST HSST

ISST

To Generator

To Rotor

Figure 5.4: The gearbox block diagram

5.5.1 Algorithm Accuracy Test

NREL Dataset

The vibration data used in this research is provided by the National Renewable Energy Lab

(NREL) ((NREL), 2017). The test turbine is a 750 kW three-bladed upwind turbine with

stall control. Figure 5.3 shows the turbine.
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For testing the proposed algorithm and platform, we used the wind turbine gearbox data

provided by NREL. This dataset is collected from a damaged gearbox. The complete bed

plate and drive-train of a turbine were installed at dynamo-meter test facility (DTF) of

NREL ((NREL), 2017). The bed plate is fixed to the floor without the rotor, yaw bearing,

or hub. The gearbox is shown in Figure 5.3 and has three-stages: low-speed stage (LSST),

intermediate-speed stage (ISST) and high-speed stage (HSST), as shown in Figure 5.4. LSST

is connected to the rotor and HSST is connected to the generator. In a wind turbine, the

LSST shaft is connected to the rotor and the HSST shaft is connected to the generator.

For measuring the vibration data, a set of accelerometer sensors is mounted to sides of

the gearbox housing. On the side, the speed of HSST shaft is recorded. In this study, we only

use the vibration data. The vibration data of each sensor is sampled with a PXI - 4472B

data acquisition board from National Instruments at the rate of 40 KHz per channel. In this

study, Vi[n] for i = 1, · · · , 8 denotes the samples of the ith accelerometer for eight available

sensors. The dataset is publicly accessible on request through ((NREL), 2017).

CWRU Dataset

We apply SAIL to the vibration data provided by the Case Western Reserve University

(CWRU) bearing data center (Loparo, Loparo) as a benchmark. CWRU dataset provides a

number of faults in bearing of gearboxes. Using these benchmarks provides a fair and standard

framework for comparison of our algorithm with different algorithms. The experimental

setup, depicted in Figure 5.5a, consists of a 2 HP motor, a torque transducer in the center,

and a dynamometer as a load. Bearings of motor shaft are studied in this benchmark. Figure

5.5b shows the setup’s block diagram.
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(a) Setup (image from (Loparo, Loparo))

(b) Block diagram

Figure 5.5: Experimental setup of CWRU bearing data (Loparo, Loparo).

Single point faults were introduced to test bearings using an electro-discharge machine

with diameters of 7, 14 and 21 mils on different parts of bearing including the inner race, the

outer race, and the ball. Vibration data was collected using two single axial accelerometers

with magnetic bases. One accelerometer was mounted on the drive-end and the other on the

fan-end of the motor’s housing. Both were sampled at the rate of 12,000 samples per second

in the constant shaft speed.

The experiment was repeated for different fault intensities (7, 14 and 21 mils) and

locations (ball, races and drive/fan ends). Moreover, data were collected for four constant

load conditions (0, 1, 2 and 3 HP) for each class of faults. This dataset has four classes of

vibration data: fault-free, inner-race (IR) fault, outer-race (OR) fault and ball fault.

The overall statistics of these datasets, i.e. NREL and CWRU are presented in Table 5.1.
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Table 5.1: Datasets Statistics

Data Status # Instances

Normal 93501

Fault 103890
(a) NREL

Data Status # Instances

Normal 8844

Ball Fault 15177

Inner Race Fault 15179

Outer Race Fault 31019
(b) CWRU

Accuracy and Comparison

We apply a 10-fold cross validation to report experimental results. The accuracy of SAIL

is compared with prior work on NREL and CWRU dataset as reported in the literature in

Table 5.2 and 5.3, respectively. These tables clearly demonstrate that SAIL outperforms

the existing methods in performance. The proposed method can capture a small difference

of vibration spectrum with high accuracy. Moreover, SAIL processes the vibration data in

shorter windows. We propose a shorter window length and a compact feature vector which

results in a simpler classifier structure and increasing confidence in its performance. In fact,

a shorter window length means a lower required memory and computation power. These

factors form a bottleneck on industrial-class embedded computers, which will be used for the

computation platform at the node level.
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Data Imbalance Problem

These datasets contain almost the same number of fault instances as normal instances.

However, in the real world, the turbine's fault and normal data are not balanced due to the

presence of few fault cases compared to a large number of normal instances. In other words,

in wind turbines, the fault instances are always rare compared with occurrences of normal

instances when the turbine is fully operational. As a result, the dataset becomes highly

imbalanced for directly applying classification techniques. In such cases, standard classifiers

tend to be overwhelmed by the large classes and ignore the small ones. For a typical fault

(e.g., gearbox faults, rotor imbalance, blade angle asymmetry) the ratio of normal to fault

instances can be as high as 1000:1 (Verma and Kusiak, 2011). Different solutions such as

oversampling (O) and undersampling (U) approaches have been applied to the class-imbalance

(Imb) problem. In oversampling, the instances of the minority class are randomly duplicated

until a fully-balanced dataset is realized. In undersampling, instances of the majority class

are randomly discarded from the dataset until a full balance is reached (Estabrooks et al.,

2004; Wang et al., 2004).

Figures 5.6 and 5.7 show the experimental results of SAIL for different imbalance ratios

on NREL and CWRU dataset, respectively. In SAILImb+RF , without using the imbalance

solution technique, the RF classifier overfits with the normal class and ignores the fault

class(es). As a result, SAILImb+RF does not perform well. Therefore, we address this problem

using SAILO+RF . This works better than SAILU+RF since, in the latter technique, the RF

classifier could not learn a good discriminative model with fewer instances of the normal

class.
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5.5.2 Platform Scalability Test

Cluster Setup

Our VMware cluster consists of 5 VMware ESXi [Palo Alto, CA] (VMware hypervisor server)

5.5 systems. Each of the systems has Intel(R) Xeon(R) CPU E5-2695 v2 2.40GHz processor,

64 GB DDR3 RAM, 4 TB hard disk, and dual NIC card. Each processor has 2 sockets and

every socket has 12 cores. So there are 24 logical processors in total. All of the ESXi systems

contain 3 virtual machines. Each of the virtual machines is configured with 8 vCPU, 16 GB

DDR3 RAM and 1 TB Hard disk. As all the VM’s are sharing the resources, performance

may vary in runtime. We have installed Linux Centos v6.5 64 bit OS in each of the VM

along with the JDK/JRE v1.8. We have installed Apache Spark version 2.1.0. We have also

installed Apache Hadoop NextGen MapReduce (YARN) with version Hadoop v2.6.0 and

formed a cluster.

Runtime Performance

We have presented the computational time efficiency of our offline and real-time framework

(Figure 5.2) by using Apache Spark in this section. In the proposed framework, the model is

learned using offline data. Figure 5.8 shows the process latency of model training by using

the Spark-based Random Forest method in MLlib (Meng et al., 2016) (SAILSparkRF ) and the

Random Forest implementation using Sklearn library (Pedregosa et al., 2011) in Python

(SAILRF ). To run these experiments, we created the new datasets by duplicating the original

datasets for α times, where α ∈ {5, 10 . . . 30}, to show training latency by increasing the

volume of the data. We have measured the process latency of the model after a certain

number of training instances have been processed and plotted them. Figure 5.8 shows that

the Spark-based approach performs significantly better than traditional methods when the

number of training instances is increased.
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Figure 5.8: Comparing processing latency during training Random Forest model with Mllib in
Spark (SAILSparkRF ) and Sklearn library (SAILRF ) using NREL and CWRU dataset.
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Parallelism Test

We have utilized a message broker using Kafka, which is highly available and scalable. It

helps us to add more sources to behave as turbine sensors to collect more test data. We vary

the number of source instances while we collect data. In fact, these source instances simulate

wind turbines to generate data. All of these sources work in parallel and independent of each

other. So when the number of sources increases, more data will be produced. Figure 5.9

shows the average process latency of fault diagnosis of online data. In this figure, we see that

the average process latency of fault diagnosis does not increase when the number of sources

increases. For a single source, the diagnosis latency for each signal is almost 0.24 ms, but

it remains constant for α input sources, where α ∈ {5, 10, 15}. Thus, the diagnosis latency

for each data does not grow while we increase the number of input sources. As a result, the

proposed system is scalable.
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Figure 5.9: Average diagnosis latency for real-time data from different number of input
sources
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, we will draw a conclusion and discuss the future scope of our works. We will

start with our big data primary focus location extraction frameworks and later we will focus

on our smart contract vulnerability detection and wind turbine fault diagnosis frameworks.

6.1 Primary Focus Location Extraction

We showcased and developed a focus location extraction method executable on unstructured

text-based news reports from different languages. In this method, we proposed a semantic

approach to find the focus location among all the possible locations extracted using the named

entity recognition tool. Firstly, we extracted the features using the sentence embedding

algorithm. In this algorithm, we encoded the meaning of words and their relationship

semantically into a vector regardless of language using the fastText_multilingual model. We

then trained an SVM classifier to predict sentences which contain focus or non-focus locations.

Finally, we used the proposed method on an Atrocity news event dataset, a subset of New

York Times corpus, a Spanish news event dataset from Revista Noche y and an Arabic news

event dataset from Alghad.

We applied the domain adaptation technique and conducted experiments over two different

domains, since the training and test domain are not always the same. The experiment

demonstrated the effectiveness of KMM in extracting focus location when there is bias

between different domains.

Our key contribution in this work is extracting the exact focus location at the locality level

where an event occurred. The proposed approach works based on the semantic relationship

among the words in the sentences and is independent of a geographical dictionary. The

performance of our approach exceeds other methods considerably. Furthermore, we proposed
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the use of a bias correction method to prevent performance loss when the training and test

domains are dissimilar.

One of the directions for our future research is extracting primary focus location based on

the event. In the current approach, we assume that exactly one event is reported in each news

article. Consequently, we extract only one primary focus location from the article. However,

this assumption may not be true for all news articles. Therefore, we are going to extract

one or multiple event(s) from news articles. The events include different action(s) and some

actors. Then, we are going to extract multiple primary focus location(s) related to these

events.

Another direction of our future work is developing some other bias correction method to

improve the results over various domains in news reports. In that case, we can expand our

dataset to different domains such as Sport news.

6.2 Vulnerability Detection in Smart Contracts

In this study, we proposed a new static analysis framework to detect vulnerabilities in

Ethereum smart contracts. In this framework, we collected 176K unique smart contracts

from the Ethereum blockchain. Then, we disassembled the low-level bytecode to higher level

intermediate representation in the form of opcodes. In feature engineering stage, we extracted

control flow graphs from opcodes and then converted the graphs to vectors by traversing

through it. In the last stage, we used those vectors as inputs in BiLSTM model. Finally, we

performed a large-scale empirical experiment by running the proposed method on all unique

smart contracts which we collected in the initial step. We demonstrated that our scalable

framework outperformed the other machine learning-based models.

Due to the lack of labeled data, we limited our benchmark on a few vulnerabilities including

ordering, timestamp, mishandle exception, and reentrancy which can be detected by the

Oyente tool. In future work, we are going to employ our approach on more vulnerabilities.
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Besides, we are going to apply probabilistic graphical models (Smith et al., 2017; Rouhani

et al., 2018) in our prediction algorthms.

Another future direction is developing guard code to avoid the vulnerabilities threat. We

are going to develop a system to mitigate against attacks by inserting protection code in the

raw bytecode. In other words, this system does not require access to the source code. The

system is also unique since the Ethereum Virtual machine is different from existing computer

architectures like x86 CPUs. To complete the bytecode rewriting, we are going to develop a

tool to overcome the following challenges. First, we will develop an algorithm to identify all

JUMP locations and rewrite JUMPDEST due to inserted protection code. Then, we will

verify the modified code and the original code results in similar outcomes. Other challenges

include identifying integer overflow and underflow vulnerabilities. To identify these arithmetic

vulnerabilities, we need to determine the bit width size of the resulting variable from the

arithmetic operations. In addition, we need to identify all possible JUMP target locations

which includes function calls and direct jump calls.

6.3 SAIL: A Scalable Wind Turbine Fault Diagnosis Framework

In this study, we proposed a new data-driven fault diagnosis. In particular, we proposed the

model-based spectral analysis as a feature extraction method for the vibration signal. We

also presented a real-time wind turbine fault diagnosis framework based on Apache Spark.

The experimental results show that the extracted features help to outperform the traditional

models' accuracy. The Spark-based framework can reduce the offline training time and

improve the performance of the fault prediction in a real-time system. Therefore, we conclude

that SAIL is scalable for real-world wind farms.

For future work, we will focus on our fault diagnosis algorithm to make it automatic and

plug-&-play. Besides computational requirements in dealing with big data, another challenge

emerges from a machine learning perspective. As the size of data increases, its associated
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variability increases. In traditional machine learning, the variability is reduced by proper

feature extraction. Our intuition about the problem inspires our current feature extraction.

However, big data is less intuitive. In such a scenario, applying a feature learning algorithm

is a possible solution. In the future, we intend to apply a deep neural network for feature

learning in fault diagnosis of wind turbines.
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APPENDIX

MATHEMATICAL FRAMEWORK FOR FEATURE EXTRACTION FROM

WIND TURBINE VIBRATION

In this appendix, we introduce the mathematical framework underlying our proposed feature

extraction method in wind turbine fault diagnosis.

A.1 ARMA Representation of Vibration Data

We assume that vibration data is an ARMA time series. Then, we use parameters of this

model for feature extraction.

Let x[n] be a stationary time series. A time series model is a mathematical equation for

predicting samples of time series. Assuming that each sample of x[n] is a linear combination

of past samples leads to the well-known autoregressive (AR) model. Mathematically, the AR

model is defined by x[n] =
∑p

k=1 akx[n− k] + ε[n] where ak’s are parameters of the model, p

is model order and ε[n] is a zero mean white noise with variance of σ2
ε . A discrete sinusoid

function with frequency f0, x[n] = sin(2πf0n), can be written as a second order AR model

without noise as x[n] = a1x(n− 1) + a2x(n− 2) where a1 = 2cos(2πfk) and a2 = 1 with the

initial condition of x(−1) = −1 and x(−2) = 0. By taking the Z transform, one can show

that this model has a pair of poles at f = ±f0. Generally, a sum of p noise-free sinusoids,

x[n] =
∑p

i=1 sin(2πfk), can be written as an AR model with order of 2p:

x[n] =

2p∑
k=1

akx[n− k] (A.1)

This model has a transform function in the form of

H(z) =
1

1 +
∑2p

k=1 akz
−k

(A.2)

which has 2p poles corresponding to frequency of sines at f = ±fk. This transfer function in

frequency domain models the spectrum of the time series. If the sum of sines is corrupted by
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additive noise, like y[n] = x[n] + ε[n], the AR model assumption is not valid. However, one

can write an AR model for x[n] = y[n]− ε[n] =
∑2p

k=1 ak(y[n− k]− ε[n− k])) which leads to

the following model

y[n] =

2p∑
k=1

aky[n− k] +

2p∑
k=0

akε[n− k] (A.3)

Compared to Eqn. A.1, this has a moving average term which filters the noise. This model

is a special case of ARMA model. A general ARMA is defined by y[n] =
∑p

k=1 aky[n −

k] +
∑q

k=1 bkε[n − k] and denoted as ARMA(p, q). However, in Eqn. A.3 the moving

average and the autoregressive parts are the same. By defining a = [1, a1, a2, · · · a2p]t,

y = [y[n], y[n− 1]y[n− 2] · · · y[n− 2p]]t and w = [ε[n], ε[n− 1], ε[n− 2], c . . . , ε[n− 2p]]t Eqn.

A.3 can be written in matrix form as yta = wta. By pre-multiplying this equation by y

and taking the expectation, one can get E[yyt]a = E[ywt]a = E[(x+ w)wta] = E[wwt]a.

Intuitively, this is true since a and x are deterministic and w is zero mean and white. If

Γyy = E[yyt] denotes the auto-correlation matrix of y[n], then, Γyya = σ2
εa. Furthermore, it

can be written as an eigenvalue problem as:

(Γyy − σ2
εI)a = 0 (A.4)

where σ2
ε is eigenvalue and a is eigenvector. By solving Eqn. A.4, ARMA parameters and

noise variance can be found. In practice, Γyy is not available and needs to be estimated which

is discussed in the next sub-section.

A.2 Harmonic Decomposition

Consider a summation of p randomly phased sinusoid with white noise. Let Ai and Pi = A2
i /2

denote the amplitude and power of the ith sinusoid in summation. Considering the white noise

assumption, the auto-correlation function has a form of γ(k) = σ2
ε δ(k) +

∑p
i=1 Pi cos(2πfik).
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This auto-correlation can be written in a matrix form as:

cos(2πf1) cos(2πf2) · · · cos(2πfp)

cos(4πf1) cos(4πf2) · · · cos(4πfp)

...
... . . . ...

cos(2pπf1) cos(2pπf2) · · · cos(2pπfp)





P1

P2

...

Pp


=



γyy(1)

γyy(2)

...

γyy(p)


(A.5)

Having a set of samples of y[n], there is maximum likelihood estimator for the auto-correlation

function as γ̂yy[k] =
∑

n y[n]y[n+ k]. If frequencies are known by calculating Eqn. A.5 and

estimating γ̂yy, one can estimate sine powers using Eqn. A.5. The remaining problem is to

determine the p frequencies which can be estimated by finding poles of Eqn. A.2 which in

turn requires the knowledge of the eigenvector a in Eqn. A.4. For solving the eigenvalue

problem in Eqn. A.4, the matrix Γyy can be formed using γ̂yy. For any arbitrary dimension

of Γyy like d× d, this matrix has d eigenvectors. However, the eigenvector equivalent to noise

variance is needed which requires the knowledge of noise variance. One can show that the

noise variance, σ2
ε , is equivalent to the minimum eigenvalue of Γyy when d ≥ (2p+ 1) (Stoica,

2005; Breen et al., 2002).

Finally, the power spectrum of the measured vibration signal (y[n]) can be estimated

as the following: First, estimate γ̂yy[k] for d = (2p + 1) and form the matrix Γyy. Then,

eigenvalues of Γyy need to be found and the minimum eigenvalue is equivalent to σ2
ε . The

corresponding eigenvector holds the parameters of the model ARMA(2p, 2p). Using these

parameters, one can find poles of the transfer function in Eqn. A.2 which gives the frequencies.

Having these frequencies and using Eqn. A.5, one can find amplitude of each frequency and

thus the spectrum of the signal. This method is usually referred to as the Pisarenko power

spectrum estimation (Stoica, 2005) which resolves frequencies with arbitrary accuracy not
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limited to Fs

2N
. Due to this fact, model-based spectral analysis is sometimes referred to as

super resolution method (Stoica, 2005).

Generally speaking, the vibration data collected from a mechanical machine is not a

stationary random process. However, the assumption of stationarity is valid over short

windows of times. We verified this assumption in our work using a hypothesis test suggested

by Kwiatkowski et al (Kwiatkowski et al., 1992). The details of this test are beyond the scope

of this study. Briefly, we propose a grid search mechanism over different values of window

length; we choose the smallest length for which the hypothesis test does not fail.

A.3 Model Order Selection

The above-mentioned method estimates the spectrum lines using an ARMA model for

vibration data. However, in developing this model it is assumed that the model order or

number of sinusoids is known. In practice, the exact number of sinusoids (p) is not known.

However, from the physical modeling perspective, one can estimate p by statistical methods.

For a fitted model, one can calculate ŷ[n] =
∑p

k=1Aksin(2πfkn) and form the residual

signal as e[n] = y[n] − ŷ[n], which is equivalent to our estimation for noise ε[n]. However,

since ε[n] is assumed white zero mean Gaussian, one can calculate the likelihood of the

model as L =
∏

i[(2πσ
2
ε )
−1/2exp(e[n]/σε)

2] with the assumption of independent and identical

distribution. In a good estimation, each sample of residual, e[n] is close to zero and its

probability becomes bigger and as a result, the probability of all samples becomes large.

A higher p leads to a higher likelihood and lower error. However, a too high p is too

sensitive to noise. For balancing this trade-off, the Akike information criteria (AIC) (Stoica,

2005) is used. AIC puts a penalty term on the likelihood (L):

AIC = 2p− 2ln(L) (A.6)

which penalizes a 2p term for number of parameters in model. Given a set of candidate

model from data, the model with minimum AIC is preferred. Here, we sweep an interval for
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p around our initial guess-based physical modeling and a model order with minimum AIC

will be chosen.

A.4 Dictionary Learning and Compression

A bottleneck in proposing a cloud based solution for monitoring wind-farms is the connectivity

bandwidth. The majority of wind-turbines are installed offshore where providing the network

connectivity is challenging and expensive. The sensor node extracts ARMA coefficients over

rolling window of vibration data. The stream of ARMA coefficients is fed to fog server. Here,

the fog server compresses this stream and sends them to the cloud. In this section, the

proposed compression algorithm is reviewed.

The basic concept in compression is assigning shorter codes to symbols with higher

frequencies such as the well-known Huffman coding algorithm. It is very useful to transform a

signal to another domain which leads to a more sparse representation. It has been proven that

some transforms like Fourier or Wavelet provide a sparse representation of broad group a time

series (Mallat, 1999). Such transforms are exactly or approximately invertible, which provides

a mechanism for reconstructing the original time series after decompression. Applying a

variable length coding algorithm to a more sparse representation provides a higher compression

gain which is desirable. This gain is usually traded off by computation cost of transformation.

Generally, the transformation is done by decomposing the signal as a linear combination

of basis functions (atoms). In the Fourier transform, these basis functions are complex

exponential. In wavelet transform, different wavelet basis functions are proposed. Usually,

the set of basis functions, so called dictionary, is an orthogonal set which preserves some sort

of completeness. Orthogonal basis functions are useful since the inner product operation can

be used for finding the decomposition coefficients. A set of n real orthogonal basis functions

form a complete basis in Rn, if any arbitrary signal with length n like x ∈ Rn can be uniquely

represented using the elements of the set. In many traditional compression applications,
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these basis functions are chosen from existing dictionaries like Fourier or wavelet dictionaries.

However, it is possible to design a dictionary for a class of signal to get a better compression

rate. In this sub-section, we briefly review the concept of sparse decomposition and the

proposed compression algorithm foundation. Here, the term signal refers to the stream of

ARMA coefficients extracted in sensor node.

A.5 Sparse Decomposition

Let y ∈ Rn denotes a signal with length of n. For a given dictionary of signal atoms like

D, this signal can be represented as y = Dx, where x ∈ RK holds the signal representation

coefficients in a new domain where K is the number of atoms. If y = Dx is satisfied the

representation is called exact and the compression is loss-less. In a lossy compression scheme,

the representation can be an approximate y ≈Dx, and the error is bounded by satisfying a

condition like ‖y −Dx‖p ≤ ε ‖x‖p, where ‖x‖p = (|x1|p + · · · |xn|p)1/p is the the lp norm. In

approximation applications, the l2 norm or Euclidean norm is usually used. Each column of

the dictionary matrix D ∈ Rn×K is a basis function (atom) where dj ∈ Rn and ‖dj‖2 = 1 for

j = 1, · · · , K. If n < K and D is a full rank matrix, the dictionary is called over-complete

and there is an infinite number of solutions for x. One may choose x such that it results in

a sparse solution, leading to a simpler representation. The sparsity can be quantized using

l0 norm which is equivalent to the number of nonzero elements of a vector. So, the sparse

decomposition can be found by solving the following optimization:

x∗ = arg minx‖x‖0 subject to y = Dx (A.7)

where ‖x‖0 is the number of nonzero elements in x. In approximate representation, the

constraint in Eqn. A.7 will be replaced by ‖y −Dx‖2 ≤ ε.

If the dictionary is orthogonal, the decomposition coefficients can easily be obtained by

inner product operator. However, for sparse decomposition of a signal on an over-complete
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dictionary requires solving Eqn. A.7. An optimal algorithm for solving the problem in such a

scenario is Orthogonal matching pursuit (OMP) (Davis et al., 1997). OMP has two steps in

each iteration: (i) sweep (ii) update. These two steps are applied in a loop to minimize the

residual of signal which is the difference of the signal and its sparse approximation. In the

first iteration, in the sweep step, the inner product of the signal and all dictionary atoms

are calculated and the atom with largest absolute value of inner product is selected. In the

update step the residual of signal as the difference between argument y and Dx will be

calculated and is projected to the space orthogonal to the span of all selected atoms.

A.6 Dictionary Learning Using K-SVD

In this sub-section the problem of dictionary learning is discussed which is an unsupervised

problem. The proposed monitoring system uses the K-SVD algorithm (Aharon et al., 2006).

This algorithm is run on the cloud to extract the compression dictionary, D. Then, the

learned dictionary is sent to fogs for running the compression task.

Basically, K-SVD is a generalization of the well-known k-means clustering algorithm.

It uses singular value decomposition (SVD) method in linear algebra to reduce the error

of learning atoms of a dictionary. Suppose a set of N training signals like {y1, · · · ,yN}

is given. This set can be represented as a matrix form of Y = [y1, · · · ,yN ] which is an

n×N matrix. Each yi in this set has a sparse representation like xi. Let X = [x1, · · · ,xN ]

denote the corresponding sparse representation of given training set. In Eqn. A.7 the sparse

representation of a single vector is obtained by an optimization. Here, the dictionary needs

to be chosen such that this representation is as sparse as possible for all vectors. So, the

dictionary can be found by minimizing the sum of objective function in Eqn. A.7 for all

vectors as arg minD,X
∑

i‖xi‖0 subject to ‖yi −Dxi‖2 ≤ ε for i = 1, · · · , N . Using the

matrix form, this cost can be equivalently written as:

<D∗,X∗ >= arg minD,X‖Y −DX‖F subject to ∀ı̇, ‖x‖0 ≤ T0 (A.8)
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where ‖·‖F is the Frobenius norm which is simply the sum of square of all elements. Mini-

mizing the objective function in Eqn. A.8 minimizes both the error for choosing the sparse

representation of a vector and the choice of the dictionary atoms.

K-SVD is an iterative algorithm which has two steps in each iteration: (i) Sparse coding

step and (ii) codebook update step. In the sparse coding step, the approximate sparse

representation of all training vectors, Y , is obtained using a pursuit algorithm like OMP by

solving the optimization in Eqn. A.7 to obtain X. Next, in the codebook update stage, a

single atom in D, let’s say dk, will be updated. For this purpose, all vectors in X which

used dk are grouped together. Then, the error of choosing dk is minimized. For this purpose

the SVD is used to find a rank 1 estimation of this error. In the next iteration, another atom

in the dictionary will be updated. The details of K-SVD are beyond the scope of this study

and reader can refer to (Aharon et al., 2006) for more details.
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