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ABSTRACT
We reexamine and refine analytical theories for permeability in colloidal networks, with particular focus on constants and iden-
tification of approximations. The new theories are compared against numerical simulations of Stokes flow through the networks
and reveal nearly quantitative power-law predictions for both pore size and permeability at low volume fractions, with system-
atic deviations observed only at high volume fractions. Comparison with two previously published experimental data sets yields
mixed results: in one case, very good agreement is found, while in the other, only the scaling is correctly predicted. In fractal
gel networks, the permeability is commonly modeled as a power-law function of volume fraction, with the fractal dimension
of the network determining the power-law exponent. To quantitatively probe the influence of gel structure on permeability,
we investigate this relation in structures generated by diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster
aggregation (RLCA) and, for contrast, non-overlapping uniform random dispersions of particles. Geometric analyses are used to
determine network pore size distributions, fractal dimensions, and percolation characteristics. High-fidelity simulations of the
slow viscous flow of Newtonian fluids are used to obtain first-principles-based velocity and fields and hence network permeabil-
ities. Interestingly, the effective pore size that determines permeability is found to be somewhat larger than that measured by
a method based on the insertion of spherical probes. Empirical inclusion of a fractal dimension dependence on volume fraction
is found to yield quantitative results for permeabilities over the entire volume fraction range studied, in both DLCA and RLCA
materials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5054596

I. INTRODUCTION

Colloidal gels are self-assembled particle networks that
form space-spanning structures.1 These systems have com-
mercial applications in tissue engineering, drug delivery, and a
remarkably broad range of consumer products.2–10 Colloidal
gels display a wide range of topology, ranging from frac-
tal agglomerates11 to structures composed of dense strands
of particles,12 depending on the volume fraction occupied
by the particles, φ, and the strength and character of the
interparticle interactions. Particles interacting through strong
and short-ranged interactions tend to form fractal structures,
while softer interactions that allow for a rapid reorganiza-
tion of local structure lead to structures of much higher local
coordination that coarsen with time (spinodal decomposition-
like behavior); these phenomena have been thoroughly
reviewed.13

The structure of colloidal gels can be probed by light scat-
tering,14 confocal microscopy,12,15 and other techniques. In
fractal networks, the fractal dimension df is the most critical
structural parameter and determines how network mechan-
ical and transport properties scale with volume fraction. As
the gel forms, interparticle bonding leads to small aggregates,
which further agglomerate to form a gel: a network that spans
the entire system.1,16–19 The fractal dimension is determined
by the physics of the aggregation process that produces the
network structure; if particles bond upon first contact, then
“diffusion-limited cluster aggregation” (DLCA) networks form,
while if a kinetic barrier prevents bonds from forming in most
collisions, then one obtains “reaction-limited cluster aggrega-
tion” (RLCA) structures, with different fractal dimensions. The
structure of fractal gels is homogeneous on large length scales
and controlled by packing considerations at very small length
scales; fractal behavior is observed over an intermediate
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range, up to a few times the mean pore size.20,21 Limited
coarsening and restructuring occurring during aggregation
may not have a substantial effect on the fractal dimension but
can significantly change gel mechanical properties.22

Suspensions and emulsions are a common motif in con-
sumer products, and they are used to deliver particles or
liquid droplets through dispersion in a carrier medium. Non-
neutrally buoyant particles have an equilibrium state as loose
sediment at the bottom (or top) of their container. However, if
attractive interparticle forces are present, particles can form
network structures which can resist collapse. If the network
modulus is large, then these networks can be stable for long
time scales. If the network is insufficiently strong, then a
period of slow initial compression or delayed sedimentation
is observed, followed by a rapid collapse and a final period of
slow further compression.23–26 The rate of initial compression
is determined by the permeability of the gel network, that is,
the rate at which the surrounding solvent can be transported
through the collapsing gel. This relationship has been used
to measure gel permeabilities.23,27,28 Gels with lower perme-
ability are stable over longer time scales than gels of higher
permeability, and controlling permeability is therefore critical
in gel-stabilized product and application designs where there
is little tolerance for settling.

Quantitative understanding of the permeability of high-
porosity materials is lacking. While there is a large literature
on the permeability of porous matrices,29,30 most work in this
area has concerned relatively low-porosity (high volume frac-
tion) materials, especially geological materials30–33 with appli-
cations in oil and gas extraction34 and aquifer management.35
High-porosity materials are widely used in chromatography
(e.g., gel electrophoretic separation of proteins36,37), but the
focus in the study of these systems is the transport coeffi-
cients of large molecules moving through the gel network.
Prior studies23,27 have proposed scaling relations which show
that the permeability varies with volume fraction according
to a function of the fractal dimension df , but these relations,
as shown below, are not suitable for quantitative prediction.
Scaling theories are also likely to be unreliable for high-volume
fraction networks with very small pores, since fractal behav-
ior does not extend down to the smallest length scales. Finally,
scaling theories have not been extended to the networks of
high aspect-ratio particles and particle mixtures that appear
in commercial applications. As a result, attempts to engineer
colloidal network systems are almost entirely empirical.

In this study we use large-scale simulations to investigate
the relationships between network structure and permeabil-
ity in different gel structures. Gel models are generated by
off-lattice DLCA and RLCA simulations, with “non-overlapping
uniform random” (NOUR) particle dispersions used as an addi-
tional reference. These microstructures serve as boundary
conditions for high precision Stokes flow simulations that
determine network permeabilities from first principles. These
permeabilities are then used to evaluate previously proposed
scaling relations and new quantitative predictions for fractal
gel permeability.

We first review the derivation of scaling theories that
relate the effective pore size in the networks to the size of the
fractal clusters of which they are composed. We identify the
various approximations involved and extend this approach to
generate quantitative predictions of pore size based on var-
ious assumptions. The pore size models are then combined
with flow models based on the assumption of locally cylindri-
cal pores to provide predictions of gel permeability. Predic-
tions of both pore size and permeability are critically evaluated
by comparison with pore size distributions and permeabili-
ties obtained from computer simulations. Empirical models for
permeability that involve φ-dependent fractal dimensions are
then considered. Finally, the derived permeability predictions
are applied to available experimental data.

II. THEORY
A. Cluster spacing and pore size

Carpineti and Giglio14 derived a scaling relation for
cluster spacing in DLCA networks based on a physical pic-
ture whereby fractal clusters grow until “all the available space
is filled with closely packed clusters,”14 at which point one
has formed a system-spanning network. This accounts for the
observed crossover from fractal structure at smaller length
scales to homogeneous behavior at large length scales; for
lengths much larger than the average cluster size, the struc-
ture should be uniform if it consists of such closely packed
clusters. We re-derive this scaling relation here, paying careful
attention to implicit assumptions and treatment of constant
factors. It is well established that in diffusion-limited aggre-
gation, the number of primary particles contained within a

large cluster varies with its radius Rc according to Nc ∝ R
d f
c ,

where df is the fractal dimension.18,19 Based on this, we take
the number of particles in a cluster as given by

Nc =

(
Rc

a

)d f

=

(
Dc

2a

)d f

, (1)

where the cluster diameter Dc = 2Rc and a is the con-
stituent particle radius, assumed monodisperse. This result
is an approximation, obtained by assuming both that fractal
behavior persists all the way down to the single-particle limit,
such that Nc = 1 when Dc = 2a, and that clusters of a given
radius all contain the same number of particles.

If n0 is the monomer (particle) number density, then the
cluster number density is nc = n0/Nc; the volume per clus-
ter is then V/Nc = 1/nc = Nc/n0, where V is the total volume
of the system. In order to relate the volume fraction to the
inter-cluster distance and thus the cluster diameter, one must
assume some packing model for the clusters. Previous analy-
ses14,17 have set the volume per cluster equal to the cluster
diameter cubed, that is, V/Nc = D3

c . This is equal to the vol-
ume fraction for simple-cubic packing, with a “cluster packing
fraction” φc = π/6 ' 0.524. This is not to say that previous
analyses claimed that the clusters were actually arranged in
a cubic lattice, but only that their actual arrangement had an
equivalent volume fraction. Alternative possibilities might be
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true close-packing, with φc ' 0.74, random close-packing, with
φc ' 0.64, or the packing of loosely settled spheres, φc ' 0.44.29
Whatever the packing model chosen, the volume per cluster is
then the actual volume occupied by the cluster divided by the
packing fraction,

V
Nc
=

4π
3

R3
c ·

1
φc

. (2)

Combining this with Eq. (1), etc., gives

R3
c =

(
Nc

n0

)
·
φc

4π/3
=

1
n0

(
Rc

a

)d f

·
φc

4π/3
(3)

and after collecting powers of Rc,

R
3−d f
c =

1
n0
·

1

ad f
·

(
φc

4π/3

)
. (4)

Likewise, the number density of particles is related to the
volume fraction of particles, φ, by

n0 =
3

4π
·
φ

a3
. (5)

Inserting this into Eq. (4), collecting powers of a, and rearrang-
ing gives (

Rc

a

)3−d f

=
1
φ
· φc, (6)

and, finally, the cluster diameter and radius in units of particle
radius are

Dc

a
=

2Rc

a
=


2φ

1
3−df
c


· φ

1
df−3 . (7)

The cluster diameter thus varies with particle volume fraction
according to a power law with exponent 1/(df − 3), indepen-
dent of the choice of the cluster packing model. The prefactor
(term in brackets) does depend on the choice of the pack-
ing model, but is always close to unity. For example, choosing
df = 1.83 (as used below) and φc = 0.44 yields a prefactor of
0.991, while df = 1.83 and φc = π/6 give 1.150. Increasing the
fractal dimension decreases the value of the prefactor; for
RLCA-like df = 2.1 and φc = 0.44 the prefactor is 0.803.

The cluster size is strongly dependent on the fractal
dimension; changing df even from 1.9 to 2.0 at φ = 0.01
increases the cluster size by a factor of 1.5, and changing from
1.9 to 2.1 increases it by a factor of 2.5.

To relate the pore size to the cluster size requires further
approximation. Manley et al.23 assumed that the diameters of
channels through the gel network are equal to the fractal clus-
ter diameter, Dpore = Dc, and dropped all prefactors, leading
to

Dpore

a
= φ

1
df−3 . (8)

Alternatively, we can keep the prefactors, which we refer
to as the “cluster model” prediction,

Dpore

a
=

Dc

a
. (9)

There are other options for relating the cluster size to the
channel size. The “hydraulic” approximation, used in studies
of flow in packed beds, is to choose an effective cylindrical
pore diameter that preserves the surface area per volume of
the actual material;29 for a bed of spheres of diameter Dc
at volume fraction φc, the result is that the pore diameter
Dpore = 2Dc/3 · ((1 − φc)/φc). Applying this to the fractal cluster
model yields the following “hydraulic model:”

Dpore

a
=

2
3

(
1 − φc
φc

)
·
Dc

a
. (10)

Here the pore size also varies with particle volume fraction
according to a power law with exponent 1/(df − 3), again
independent of the choice of the cluster packing model, but
with a different prefactor than before. For example, choosing
df = 1.83 (as used below) and φc = 0.44 now yields a prefactor of
0.841, while choosing df = 1.83 and φc = π/6 gives 0.697, both
of which are smaller than the corresponding prefactors in the
“cluster” model.

B. Permeability of a material consisting of parallel
cylindrical pores

Next we assume that flow through the gel can be modeled
as a bulk material penetrated by non-interacting cylindrical
pores aligned along the flow direction. The Hagen-Poiseulle
model for flow in a single cylinder of diameter D is

QHP =
dP
dz

πD4

128µ
. (11)

Darcy’s Law is

Q = k0
A
µ

dP
dz

. (12)

In these expressions, Q is the flow in the z direction, dP
dz is the

pressure gradient in the direction of flow, µ is the viscosity
of the fluid, and k0 is the permeability. Setting these equal,
canceling the derivatives, and choosing A = πD2/4 gives

k0 =
πD4

128µ
·

4µ
πD2

=
D2

32
. (13)

This result, which only accounts for the area of the pore itself,
was also obtained by Dullien.29 The permeability of the mate-
rial as a whole depends on the porosity (the volume fraction
occupied by the pores). For a material of (solid) volume frac-
tion φ penetrated by cylindrical pores, the porosity is 1 − φ.
Using Apore/Atotal = Vpore/Vtotal = 1 − φ, the total cross-
sectional area of material per pore of diameter D is then
A = πD2/4(1 − φ), which gives

k0 =
D2

32
(1 − φ). (14)

If the pore diameters are not monodisperse but instead dis-
tributed according to some f(D), this becomes

k0 = (1 − φ) ·
∫

f(D) ×
D2

32
dD =

1 − φ
32

D2, (15)
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where D2 is the expected value of D2. Since the variance of the

pore size distribution σ2
D = D2 −D

2
, this can also be written as

k0 =
1 − φ
32

(
D

2
+ σ2

D

)
. (16)

Note that this result is only applicable to the case where the
pores remain perfectly cylindrical but are not all the same
diameter; this analysis likewise ignores misalignment of the
pores to the flow direction and branching or other network
effects.

C. Models for gel permeability
Manley et al. assumed that the diameters of channels

through the gel network are equal to the fractal cluster diam-
eter [Eq. (8)], combined this with the D2 dependence of k0, and
grouped all constants into a single prefactor assumed to be of
order unity to obtain23

k0

a2
= φ

2
df−3 . (17)

For their chosen value of df = 1.9, this gives k0/a2 = φ−1.82. This
prediction omits the prefactor term in the expression for the
cluster diameter and the factor of 1/32 in the expression for
permeability, as well as the 1 − φ due to the volume occupied
by the material.

If we use the “cluster model” prediction for Dpore and keep
all the prefactors, then combining Eqs. (7), (9), and (14) yields

k0

a2
=



4
32
φ

2
3−df
c


· φ

2
df−3
· (1 − φ), (18)

where the prefactor (in brackets) depends on both df and φc.
With df = 1.9 and φc = π/6, the prefactor evaluates to 0.0386,
which is quite a bit smaller than 1.

If we instead choose the hydraulic model prediction for
pore size, combining Eqs. (7), (10), and (14) results in

k0

a2
=



4
9

(
1 − φc
φc

)2 4
32
φ

2
3−df
c


· φ

2
df−3
· (1 − φ). (19)

Again, the prefactor depends on both df and φc; in this case,
with df = 1.9 and φc = π/6, it evaluates to 0.0141. In Eqs. (18) and
(19), the final 1 − φ term will result in a small negative deviation
from power-law scaling at high φ which is not present in the
Manley model.

A reasonable question at this point is whether the final
factor of 1 − φ, which accounts for porosity, should instead
be 1 − φc. Using 1 − φc is consistent with a physical picture
where flow occurs only through the spaces between the frac-
tal clusters, while using 1 − φ corresponds to a picture where
flow occurs through the “bodies” of the clusters as well as
inter-cluster spaces. The practical effects of the 1 − φc choice
are to restore power-law behavior at even high φ and reduce
the predicted permeability by approximately a factor of two at
all volume fractions. Since the clusters themselves are highly
porous, the former choice seems more reasonable and is used
here; we return to this point in Sec. IV B.

Finally, note that the hydraulic approximation is one of
the assumptions behind the well-known Carman-Kozeny and
Blake-Kozeny models for the permeability of packed beds,29
which are of the form

k0

a2
= C ·

(1 − φ)3

φ2
. (20)

This is clearly visible in Eq. (19) if the 1 − φc choice is made in
accounting for porosity; again, this corresponds to only con-
sidering the flow between clusters. The resulting expression
is essentially the Carman-Kozeny result but multiplied by a
φ-dependent term which determines the cluster size,

k0

a2
=



4
9

(1 − φc)3

φ2
c

·
4

32
· φ

2
3−df
c


· φ

2
df−3 . (21)

III. COMPUTATIONAL DETAILS
In order to critically evaluate the relationships between

gel volume fraction, pore size, and permeability, we pre-
pare model structures by simulation and then determine their
various properties; the methods used are discussed in this
section.

A. Model preparation
Three different types of material structures are consid-

ered in this work: gel structures resulting from a diffusion-
limited cluster aggregation (DLCA) process, gel structures
resulting from a reaction-limited cluster aggregation (RLCA)
process, and, for contrast, structures consisting of a non-
overlapping uniform random (NOUR) distribution of particles.
In NOUR structures, spatial correlations are completely
absent except at very small length scales, where the
non-overlapping condition generates hard-sphere fluid-like
behavior. All calculations are performed in cubic simulation
cells with periodic boundaries in all three directions. To gen-
erate a NOUR structure, we randomly place particles in the
simulation cell; if each new particle does not overlap any of the
previously placed particles, the new particle is accepted; oth-
erwise, a new position is considered. This is repeated until the
desired volume fraction is achieved. To generate DLCA struc-
tures, we use a slightly modified version of the DLCA algorithm
introduced by Jullien et al.21,38 One starts with a NOUR con-
figuration considered as a collection of N aggregates (clusters)
containing one particle each. The system evolves in the fol-
lowing way: an aggregate i containing ni particles is chosen at
random according to probability pni given by

pni =
nαi∑
i nαi

, (22)

with α being a parameter describing the effect of a cluster’s
size on its diffusion constant. A direction is chosen from a uni-
form distribution on a sphere and the cluster is moved a fixed
distance δl in that direction; in this work, δl = a (DLCA) or 1.5a
(RLCA). If the cluster does not collide with any other cluster,
the simulation continues by choosing another cluster at ran-
dom and moving it. If a collision occurs, the moving cluster is
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backed off until the point of contact and the two clusters are
joined at that point. The process is repeated until a single clus-
ter remains in the system. The cluster diffusion constants are
made to vary as the inverse of the cluster radius by choosing
α = −1/df (−0.55 in the case of DLCA simulations, for which
df ' 1.8), though previous studies have found that the prop-
erties of the simulated gels are insensitive to the exact value
used.38

In RLCA simulations, a similar procedure is followed
except that when two particles meet, the probability of a bond
being formed is only P = 0.001. If a bond is formed, then the
two clusters are joined as in DLCA; if a bond is not formed,
then the “moving” cluster is backed off to a point randomly
chosen between its initial position and the position it occu-
pied at contact. The simulation then continues by choosing
and moving another cluster. For RLCA simulations, the fractal
dimension is df ' 2.1, so α was chosen equal to −0.475.

Selected DLCA structures generated in this way are
shown in Fig. 1. In this investigation, DLCA and NOUR struc-
tures were generated down to φ = 0.001; RLCA structures were
only generated for φ values of 0.003 and above, due to the
much longer simulation times required; the highest volume
fraction considered in all cases was φ = 0.25. Calculations were
run on a single core of an Intel Xeon E3-1240 V2 processor. A
single DLCA simulation at φ = 0.01 in a simulation cell measur-
ing 300a on a side required approximately 0.48 h to complete,
while a RLCA simulation under the same conditions required
7.56 h; the longest simulations run for this study (RLCA,
φ = 0.003, 800a cells) each took around 650 h. Detailed infor-
mation on the system sizes used for each calculation is given
in the supplementary material.

B. Model characterization
In previous studies,40,41 we implemented a lattice-based

version of a pore-size distribution calculation based on the
insertion of spherical probe particles.42,43 Briefly, one deter-
mines the volume of the void space “coverable” by spheres of
radius r or smaller; a lattice site x contributes to this if and
only if one can construct a sphere of radius r that overlaps x
but does not overlap any gel-occupied lattice sites. This vol-
ume is a monotonically decreasing function of r. Its derivative
is the fraction of the void volume characterized by a certain
radius r (e.g., coverable by spheres of that radius but not larger
spheres) and is a robust definition of a pore size distribution.
For regular pore structures, such as a collection of spheri-
cal or cylindrical voids, this definition will simply regenerate
the distribution of sphere or cylinder radii. For the off-lattice
gel models studied here, the lattice representation is calcu-
lated by overlaying the gel model on a simple cubic lattice
and determining which sites are covered by the gel particles.
This calculation is done at different resolutions, depending on
the volume fraction (and thus pore size). In general, lattices of
approximately 3003 points were used. For high volume frac-
tions, this gave resolutions of up to 14 lattice points per par-
ticle diameter, while for very low volume fractions only 1 or 2
points per diameter were used; testing at selected φ with sev-
eral discretizations confirmed that the resulting pore size dis-
tributions were well-converged. We also calculate the largest
passable-probe diameter (LPD), also known as the “through-
pore” diameter,44 which is the size of the largest spherical
probe that can pass entirely through the material and there-
fore defines the tightest “constrictions” in the pore network.
Finally, radial distribution functions in the simulated materi-
als were calculated using standard off-lattice methods45 and

FIG. 1. DLCA aerogel structures at 0.2%,
0.5%, and 1.0% gel volume fraction. Par-
ticles are shaded by depth, with those at
the front of the simulation cell in white
and those at the back in dark gray.
The size of the simulation cell neces-
sary to contain a statistically significant
sample of the gel structure depends on
the volume fraction; these cells measure
5003, 2503, and 1503 particle diame-
ters, respectively. Figure adapted from
Ref. 39.
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used to determine fractal dimension in low-density models,
as described below. All structural data reported are aver-
ages over 15 separate simulations at the stated conditions;
uncertainties were calculated from the standard deviation as
±2σ/

√
15.

C. Permeability calculations
Here we focus on the slow flow of a Newtonian fluid

through the colloidal network. Under these conditions, the
pore Reynolds number is very small and the Stokes equa-
tions are very good approximations to the full Navier-Stokes
equations. Hence accurately solving the Stokes equations pro-
vides a numerically “exact” solution to flow of the fluid in the
colloidal network.46

These principles are well known but until recently both
analytical and numerical limitations have limited the availabil-
ity of exact solutions to relatively small systems. In this work,
we capitalize on recent numerical advances that have dra-
matically increased the speed and accuracy of Stokes flow
simulations, enabling the solution of flow problems in net-
works containing very large numbers of particles. Perme-
abilities were calculated in the commercial software package
GeoDict.44 GeoDict implements an extremely fast LIR-tree
based adaptive-grid solver on a simple cubic mesh;47 the
solver is also efficiently parallelized.

We have carefully benchmarked these calculations
against both analytical and numerical benchmarks. Pressure
drops were calculated with GeoDict for a number of test prob-
lems. These include Stokes flow past a single sphere,48 settling
of a sphere in a circular cylinder,46 and flow past periodic
arrays of spheres,49 all of which were matched to within 1% of
exact results. In flow through networks of up to 20 particles,
GeoDict results were in excellent agreement with COMSOL50
simulations. For production calculations in GeoDict, the pri-
mary particles were modeled as having a = 4.95 × 10−7 m, the
fluid was modeled as air (µ = 1.834 × 10−5 kg/m · s, ρ = 1.204
kg/m3), and a pressure drop of 0.02 Pa was imposed across
the simulation cell. Permeability results were found to be

independent of variation of these parameters to six significant
figures.

For each structure type and volume fraction, flow cal-
culations were performed on five independently generated
structures and the results were averaged. Uncertainties were
calculated from the standard deviation as ±2σ/

√
5 and were

below 1% for all φ > 0.005. Uncertainties as high as ±5% were
found at the lowest volume fractions 0.001 ≤ φ ≤ 0.005. This
may indicate that yet larger simulation cells could be bene-
ficial, but analyses below suggest that system size is not a
serious issue. Mesh resolutions of between 2 and 16 lattice
points per particle diameter were used in these calculations;
at each φ, multiple system sizes and lattice resolutions were
used to confirm that results were converged to within statis-
tical uncertainty. Selected data from convergence studies and
discretizations used in production calculations are given in the
supplementary material.

Calculations were performed on four cores of a computer
equipped with an Intel i7-7820X processor (3.60 GHz clock
speed). The time required to complete one of these calcula-
tions varies in a complex way with both the grid size and the
volume fraction; for lower volume fractions (and larger pores),
the adaptive-grid solver works more efficiently, but larger
simulation cells are required. For example, a single perme-
ability calculation at φ = 0.002 in a simulation cell measuring
1000a on each side with a discretization of a/2 (four points per
diameter) required approximately 6 GB memory and was com-
pleted in approximately 2000 s. By contrast, at φ = 0.10, boxes
of only 40a edge length were necessary and well-converged
calculations discretized at a/8 (sixteen points per diameter)
spacing were completed in approximately 40 s and required
around 0.25 GB memory.

IV. RESULTS
A. Pore size

We begin with the analysis of results for pore size and
largest passable probe diameter (LPD). Figure 2 shows these

FIG. 2. Left: comparison of mean pore size and largest-passable probe diameter in DLCA, RLCA, and NOUR structures. Diameters are given in units of particle radius, a.
Right: comparison of DLCA pore size distributions at varying φ, each scaled by the corresponding mean pore size.
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quantities for the three classes of the model presented.
The power-law dependence of DLCA and RLCA mean pore
sizes at low volume fraction is clearly evident in this plot and is
discussed below. RLCA structures have somewhat larger pores
than DLCA structures; at φ = 0.01, the mean RLCA pore size is
70.8, while the mean DLCA pore size is 42.2; the RLCA:DLCA
ratio is thus 1.67:1. This ratio is not constant and grows as the
volume fraction is reduced; at φ = 0.003, it is 2.09:1. DLCA and
RLCA structures have much larger pores than NOUR struc-
tures, which is due to their heterogeneous distribution of mass
in the fractal regime. In both DLCA and RLCA, the LPD is very
nearly the same as the mean pore size, which is somewhat
surprising, while in NOUR structures, the LPD is 6.4% smaller
than the mean pore size. Quantitatively, in DLCA, the LPD is
3.0% larger than the mean pore size, nearly independent of φ,
while in RLCA, the LPD is 3.7% larger than the mean pore size,
also almost independent of φ. In both cases, at the very lowest
φ considered, the LPD is slightly smaller than the mean pore
size. This is curious, but likely not very significant because
the LPD is a statistically “noisy” quantity; in the data here, the
uncertainty in LPD at low φ is around 4% relative.

A selection of DLCA pore size distributions (PSDs) are also
shown in Fig. 2, each scaled by its mean. It is clear that the
shape of the PSD is largely independent of φ, which is con-
sistent with fractal behavior, though it is somewhat surprising
that this behavior persists even to very high volume fractions.
The standard deviation of the pore size relative to the mean,
σD/D, is approximately 0.33 in all cases. Inserting this into
Eq. (16) suggests that polydispersity increases the permeability
of these materials by about 0.332 ' 0.11, or 11%; the assump-
tion of monodispersity in theoretical models for permeability
should therefore lead to systematic underprediction but only
by a small amount, O(10%).

Figure 3 again shows the DLCA and RLCA mean pore
size data, along with power-law fits to data at φ < 0.07. For
both DLCA and RLCA, the mean pore size obeys power-law

FIG. 3. Top: best power-law fits to DLCA and RLCA mean pore size data at low
volume fractions. Bottom: ratios of power-law predictions to measured pore sizes.

behavior from low volume fractions up to approximately this
point, after which negative deviations are seen. The excel-
lent fits to low-φ data suggest that, at least in regard to this
structural measure, the simulation cells used are sufficiently
large. Extrapolation of this power-law fit to high volume frac-
tion overpredicts the DLCA mean pore size by as much as 20%;
interestingly, the corresponding extrapolation for RLCA struc-
tures is nearly correct even to φ = 0.25, with only some very
small underpredictions made for φ around 0.1.

The power-law slope of the low-φ DLCA data is −0.854,
which translates to a fractal dimension of df = 1.830, and that
from the low-φ RLCA data is −1.038, which yields df = 2.037;
these values are in reasonable agreement with previous sim-
ulation studies of DLCA and RLCA structures.19,21,38,51 The
corresponding prefactors are 0.831 for DLCA and 0.588 for
RLCA.

These fractal dimensions are consistent with those
obtained from radial distribution functions shown in Fig. 4. In
aggregate materials, the radial distribution of particles around
each other displays a characteristic shape, with a strong peak
at the contact distance and short-ranged structure due to the
non-overlap condition, followed by a power-law decay and,
at sufficiently long distances, uniform behavior. In the frac-
tal range, it is well-established52 that g(r) ∝ rd f−3. Analysis of
the data in Fig. 4 yields fractal dimensions of 1.85 for the DLCA
structure and 2.06 for the RLCA structure, in good agreement
with (though very slightly higher than) those obtained from
fitting the mean pore size data in Fig. 3.

We now turn to the predictions of the different pore-
size predictors discussed in Sec. II A: the Manley, cluster, and
hydraulic models. In all three models, the fractal dimension
is a parameter, and in the latter two one must also make a
choice for φc, the cluster packing fraction. Figure 5 shows a
comparison of the three predictions for DLCA structures made
with φc = 0.40 and φc = 0.50 (note that for φc = 0.40, the

FIG. 4. Radial distributions from DLCA and RLCA models at volume fraction
φ = 0.003 and power-law fits to the fractal range of each.
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FIG. 5. Predictions of different models for DLCA (left) and RLCA (right) mean pore sizes. At φc = 0.40 the cluster and hydraulic models are identical.

cluster-model and hydraulic-model prefactors are equal). As
the only difference between the models is the prefactor, their
predictions are parallel lines on the log-log plot. We see that
in the DLCA case, the Manley model slightly overpredicts the
pore size, both cluster and hydraulic models overpredict at φc
= 0.40, while at φc = 0.50, the cluster model overpredicts but
the hydraulic model underpredicts. In the RLCA case, all the
models overestimate pore size at these values of φc. The max-
imum low-φ overestimations are around 35% in the DLCA case
and around 65% in the RLCA case.

None of the models capture the deviations from power-
law behavior at high φ because they are based on the assump-
tion of fractal cluster structure at all volume fractions. This
assumption must break down at high φ when the cluster size
becomes comparable with the particle size; if clusters contain
only a few particles, then their internal structure cannot be
truly self-similar at all length scales. This point is discussed
further in Sec. IV B.

The reasonable agreement obtained in Fig. 5 and the mod-
est dependence of the cluster and hydraulic model prefactors
on choice of φc suggest that one could choose “optimal” val-
ues to exactly fit the pore size data, at least at low φ. These
have been calculated and are shown in Table I. Unfortunately,
little insight into the underlying physics is gained by this anal-
ysis. Different behavior is observed for DLCA and RLCA models
and, while the φc values found are at least within a physically
reasonable range, there is no obvious trend. Examination of
the corresponding expressions [Eqs. (18) and (19)] shows that
for the cluster model, the prefactor is an increasing func-
tion of φc, while for the hydraulic model the prefactor is a

TABLE I. Optimal choices of φc for model predictions of the low-φ mean pore size in
DLCA and RLCA structures.

Model φPSD
c (DLCA) φPSD

c (RLCA)

Cluster 0.36 0.31
Hydraulic 0.44 0.55

decreasing function of φc. The different φc values required to
match DLCA and RLCA data arise from the fact that the best-fit
prefactor for RLCA is lower than that for DLCA; in the clus-
ter model, this results in a lower φc for RLCA than for DLCA,
while in the hydraulic model the converse is observed. In all
cases, the best-fit φc values are rather lower than the ran-
dom close-packing value of φc ' 0.64, suggesting that within
the framework of this model, one should think of the clusters
as only loosely packed and thus connected to relatively few
neighboring clusters.

B. Permeability
An example GeoDict flow velocity field in a φ = 0.005

DLCA structure is visualized in Fig. 6. Although the fluid
permeates the entire structure, there are clearly conduits
of high flow rate that emerge as the low velocity regions
near to the gel structure are masked. These are of irregular
shape and varying diameter and exhibit branching and merg-
ing in a complex topology. This behavior is not accounted
for in the expressions for permeability developed earlier,
which assumed flow through independent cylindrical pores of
unvarying diameter.

The permeabilities determined from flow simulations in
DLCA, RLCA, and NOUR structures are shown in Fig. 7, along
with predictions made using the measured pore size dis-
tributions and the PSD-averaged permeability expression of
Eq. (15). In the case of DLCA and RLCA structures, power-
law behavior is clearly observed at low volume fractions, with
some negative deviations at high volume fractions; these will
be discussed in greater detail below. Except in RLCA models
at the very highest φ, the PSD-based predictions underpre-
dict the permeability in all cases. In RLCA models, the PSD-
based predictions are equal to approximately 0.8 times the
true permeability for φ ≤ 0.03, independent of φ. At higher
φ, the agreement with Stokes calculations improves, though
at φ = 0.25, the PSD-based prediction is slightly too high. In
DLCA models, the PSD-based predictions are equal to approx-
imately 0.55 times the true permeability for φ ≤ 0.03, also
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FIG. 6. Stokes flow vertical velocity field in a φ = 0.005 DLCA structure (red), with three different cutoffs applied to remove the slowest-moving fractions. The flow direction is
from the top to the bottom; the color scale is the same for all three visualizations.

independent of φ. As in the RLCA case, performance improves
at higher φ, but does not ever reach quantitative agreement. In
NOUR models, the PSD-based prediction substantially under-
estimates the true permeability at all φ, quite dramatically so
at low φ.

The underprediction of permeability by the PSD-based
calculation in all cases suggests that the pore size as mea-
sured by the spherical-probe insertion technique is smaller
than the hydrodynamically relevant one. That is, the diameter
of the channels through the gel that controls fluid transport
is somewhat larger than the diameter of the largest spherical
probe that can be moved through the network (which, recall-
ing Fig. 2, is very nearly the same as the mean pore diameter
as measured by the sphere-insertion method). The measured
mean pore diameters were also generally smaller than the

FIG. 7. Top: Measured permeabilities and predictions based on the pore size dis-
tribution. Bottom: ratios of predicted to measured permeabilities for each type of
structure. The statistical uncertainties in the measured permeabilities are smaller
than the symbols used.

predictions of the cluster-size-based models, which suggests
that fluid transport through the fractal clusters themselves
contributes substantially to the overall permeability and also
that the choice of (1 − φ) instead of (1 − φc) in accounting
for porosity was the correct one. An alternative possibility for
the discrepancy between simulated and PSD-predicted per-
meabilities is that variations in the pore shape or diameter lead
to a higher net flow rate, which has been shown to occur in
pores of sinusoidally varying diameter.53

Predictions of the various theories for gel permeability
from Sec. II C are shown in Fig. 8. For the DLCA results,
the power-law fit to the measured data at volume fractions
φ < 0.05 is k0/a2 = 0.036 84φ−1.739, which corresponds to a
fractal dimension of 1.85. This is in excellent agreement with
the value obtained from the radial distribution function, but
slightly higher than the 1.83 obtained from analysis of the mean
pore size data.

As in the analysis of pore size, the cluster model and
hydraulic model predictions depend on the choice of the clus-
ter volume fraction φc. We first consider the DLCA results.
In applying the Manley, cluster, and hydraulic models a frac-
tal dimension of df = 1.85 was used. The Manley model
greatly overestimates the permeability at all φ, by a factor of
1/0.036 84 ' 27. Taking φc = 0.5, the cluster model is essen-
tially quantitative at low volume fractions but fails to capture
the substantial negative deviation from fractal behavior at high
φ; instead, it overpredicts high-φ permeabilities by as much as
300% at φ = 0.25. At φc = 0.5, the hydraulic model substantially
underpredicts gel permeability, but at φc = 0.305 (not shown),
it has the same prefactor as the cluster model and so performs
equally well.

In the RLCA case, generally similar results are obtained.
The best fit power-law at low volume fractions (φ ≤ 0.05) is
k0/a2 = 0.013 55φ−2.122, which corresponds to a fractal dimen-
sion of df = 2.057, again in excellent agreement with that found
from g(r) data but slightly higher than that found from analy-
sis of mean pore size data. In this case, at φc = 0.50, it is the
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FIG. 8. Measured DLCA and RLCA permeabilities and predictions made using different theories from Sec. II C; no correction for polydispersity is applied. In each case, the
ratio of the best theoretical prediction to the Stokes results is shown at bottom.

hydraulic model that is nearly quantitative at low φ and over-
predicts at high φ, by as much as 1.5-fold at φ = 0.25. With
φc = 0.50, the cluster model also overpredicts RLCA perme-
abilities, but by reducing φc to 0.35, the cluster model has
the same prefactor as the hydraulic model at φc = 0.5 and so
performs equally well.

The φc values required to quantitatively match perme-
ability data and pore size data do not agree for either DLCA
or RLCA. For DLCA, the optimal value for permeability pre-
diction with the cluster model is φc = 0.5, but is φc = 0.36
for pore-size prediction (Table I). The discrepancy is related
to the underprediction of permeabilities in Fig. 7; larger pore
sizes than were measured are necessary to match measured
permeabilities, which in the case of the cluster model trans-
lates to higher optimal φc values. In the RLCA case, a sim-
ilar trend is observed. In the case of the hydraulic models,
lower φc values are required to match measured permeabili-
ties than pore sizes in both the DLCA and RLCA cases, again
because the prefactor is a decreasing function of φc in that
model.

In both cluster-model and hydraulic-model predictions,
there is a small deviation from power-law scaling visible at
high φ, which is due to the 1 − φ term that results from
porosity considerations as discussed earlier. Although in the
right direction, this is clearly insufficient to account for the
observed behavior of the measured permeability. A possible
explanation for this is that the fractal dimension is itself a
function of φ, at least at high φ. Such a variation was proposed
by Lach-hab et al., who studied the variation of aggregate radii
of gyration with size during on-lattice DLCA and RLCA sim-
ulations, that is, before gelation.51 Considering only clusters
of size N > 50, they estimated the fractal dimensions in each
case using Eq. (1). They found that DLCA fractal dimensions
measured in this way were well fit by df = 1.80 + 0.91φ0.51,
and RLCA fractal dimension data were well fit by df = 2.10
+ 0.47φ0.66. Substitution of these results into any of our

preceding models for permeability does not yield satisfactory
results. However, taking df = df

0 + aφb, where df
0 is the low-φ

fractal dimensions obtained from g(r) analysis, and treating a
and b as adjustable parameters does lead to excellent fits of
the Stokes permeability data, as shown in Fig. 9.

Only the cluster model was used in this analysis. The best
fit in the DLCA case has df = 1.85 + 0.2φ0.25 and φc = 0.30.
The best fit in the RLCA case has df = 2.06 + 0.4φ0.5 and φc
= 0.30 again. In both cases, the maximum unsigned relative
deviation from the Stokes results is below 10% over the entire
range of φ studied. The dependences of df on φ obtained from
this analysis are similar but not identical to those of Lach-hab
et al.51 One possible source of this discrepancy is the dif-
ference between on-lattice and off-lattice models and small

FIG. 9. Measured permeabilities and predictions made using φ-dependent df
values in the cluster model. The lower graph shows the ratios of predicted to
measured permeabilities for each type of structure.
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differences in the simulation algorithms used. Another issue is
that these fits are made using permeability models based on a
number of approximations, which may lead to systematically
different effective df values at high volume fractions. Finally,
the relevant cluster size for the determination of pore size in
gels at higher volume fractions is likely smaller than the N > 50
criterion used by Lach-hab et al. Combining Eqs. (1) and (6)
yields Nc = (φc/φ)d f /(3−d f ). For φc = 0.5 and φ = 0.1, this predicts
that DLCA clusters contain only about Nc = 12.3 particles; at
φ = 0.05 where deviations from power-law behavior are only
just visible, one gets Nc = 36.3. It is possible, therefore, that
permeability measurements and the analysis of Lach-hab et al.
are probing two different length scales. Note that it is not pos-
sible to use the g(r) analysis (viz., Fig. 4) to resolve this question
because at high φ the range of fractal behavior is very short
and obscured by short-range packing effects.

C. Application to experimental data
There are relatively little data on gel permeability in the

literature; what are available were collected by Manley et al.23
and are reproduced here in Fig. 10, along with various anal-
yses. The two data sets with a = 10 nm and a = 50 nm were
measured by Manley et al. and were claimed to be DLCA-like,
with fractal dimension near 1.9. The a = 35 nm data set was
obtained by Allain et al.27 who extracted a fractal dimension
of 2.32 from their data, consistent with a subsequent deter-
mination of 2.2 ± 0.1 measured from the settling velocities of
individual aggregates with sizes determined by microscopy.54
The final data set (a = 168 nm) was obtained by Starrs et al.,
who did not measure a fractal dimension.28 No information
concerning statistical uncertainty is available for these data
sets. We found that the scatter around separate power-law
fits to the a = 10 nm data and a = 35 nm data is in each

FIG. 10. Theoretical predictions for experimental permeabilities. Symbols repre-
sent experimental data points; the a = 10 nm and a = 50 nm data were measured
by Manley et al.,23 a = 35 nm data were measured by Allain et al.,27 and
a = 186 nm data were measured by Starrs et al.28 For each model prediction,
the assumed fractal dimension is given in parentheses. φc = 0.50 was used in
both cluster model and hydraulic model predictions.

case contained within a range from 0.5× to 2.0× of the fit
prediction; that is, the individual permeability measurements
appear to be accurate only to within a factor of two. Manley et
al. plotted all these data together and claimed that their model
[Eq. (17)] with df = 1.9 (dashed black line in Fig. 10) adequately
described the permeability over this entire range of φ, with-
out mentioning the substantially different df of the data set of
Allain et al.

In fact, the Manley model with df = 2.32 (red dashed
line) greatly overpredicts all of the corresponding experimen-
tal data, though has the correct slope for the a = 35 nm
data set. The hydraulic model, with df = 2.32 and φc = 0.5,
is in excellent agreement with the a = 35 nm data and clearly
shows that the data of Allain et al. can be much better fit by
a model with df = 2.32 than the one with df = 1.9 (dashed
black line). The cluster model with the same parameters mod-
estly overpredicts the experimental data, but, as above, mod-
est adjustment of φc would achieve the same result as with the
hydraulic model. These results are consistent with the good
performance of the hydraulic model (with φc = 0.5) for sim-
ulated RLCA structures with df = 2.06. However, the cluster
and hydraulic models with df = 1.9 both underpredict the mea-
surements of Manley et al. by nearly two orders of magnitude.
Recall that the cluster model was nearly quantitative for the
simulated DLCA (df = 1.85) permeabilities in Fig. 8, while the
hydraulic model was off by a factor of only approximately 0.5.
There is no obvious explanation for the poor agreement of the
model predictions for absolute permeability with the data of
Manley et al. Finally, none of the predictions come within bet-
ter than a factor of 10 of the data of Starrs et al. Since df is
not available for this data set, it is not even clear which model
should be closer; both the hydraulic and cluster predictions
are too low, while the predictions of the Manley model are too
high. We also note that a best-fit line through the a = 10 nm
and a = 50 nm data with the slope corresponding to df = 1.9 will
overpredict the data of Starrs et al. by an even greater amount
(not shown.)

V. CONCLUSIONS
In this work, we used simulated gel-like structures and

first-principles fluid mechanical calculations to study the rela-
tionships between the gel structure and permeability. Both
DLCA and RLCA materials were studied in depth, with some
additional comparisons made to NOUR structures. Simula-
tions of very large systems and averaging over many inde-
pendent realizations were used to obtain data of high quality.
Scaling relations developed in previous studies14,23,27 were
reanalyzed and refined in order to obtain accurate models
for the variation of permeability with volume fraction. Geo-
metrical analyses were used to extract pore size distributions,
largest-passable probe diameters, and fractal dimensions for
use in property predictions and interpretations.

Theoretical predictions based on the fractal cluster model
were found to be in good agreement with simulated pore
size and permeability data for volume fractions up to approx-
imately φ = 0.07 (pore size) and φ = 0.05 (permeability),
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with negative deviations seen for both quantities at higher φ.
At φ = 0.25, the highest studied, the permeability of DLCA
structures was approximately 1/3 of the value predicted, while
the permeability of RLCA structures was approximately 70%
of the value predicted. That is, power-law behavior persists to
higher φ for RLCA than DLCA, which is likely due to the larger
pore and cluster sizes in RLCA.

Fractal dimensions extracted from mean pore size data
and radial distribution functions are in good, but not per-
fect, agreement, with pore-size df results slightly smaller than
those obtained from g(r). This is not unexpected; colloidal gels
are only fractal over a certain range of length scales, and dif-
ferent methods for estimating df probe these length scales
somewhat differently.

Three separate models for predicting pore size and per-
meability were considered; the “Manley” model,23 the “cluster”
model, and the “hydraulic” model. The cluster and hydraulic
model predictions differ only in prefactor, though the pref-
actor is itself dependent (weakly) on the fractal dimension.
All three pore-size models agree to within a factor of about
3 for reasonable choices of the cluster volume fraction φc,
which is an input parameter. The cluster and hydraulic mod-
els for permeability contain a porosity-related factor of 1 − φ
which provides for some negative deviation from power-law
scaling at high φ, but not enough to completely account for
the observed deviations. The Manley model omits a factor of
1/32 that arises from the Hagen-Poiseulle result for flow in a
cylinder and as a result substantially overestimates the per-
meability of both DLCA and RLCA simulated structures. The
cluster and hydraulic models retain this term and give per-
meabilities quite close to the simulated values. These mod-
els can be made to give quantitative agreement with both
DLCA and RLCA simulation results at low φ through choice
of the φc parameter. The necessary φc values are not trans-
ferable between DLCA and RLCA, and the optimal values
of φc for the cluster model and hydraulic model are them-
selves different in each case, but the generally low values
of φc required suggest that the packing of clusters is rela-
tively low-coordination. Nonetheless, even just taking φc = 0.5
in all cases, the model predictions for permeability are within
a factor of three of the simulated values over the entire φ

range studied. Predictions of permeability made using the
measured pore size distributions were systematically low,
indicating that the pore size as measured by spherical-
probe insertion is smaller than the hydrodynamically relevant
pore size in these materials; this was true even for NOUR
structures.

Analysis of pore size distributions suggests that polydis-
persity in pore size does not have a substantial effect on per-
meability in DLCA and RLCA structures, with the caveat that
this does not consider variation in diameter along the length
of a single pore. Nonetheless, the effects of such variations,
along with reductions in permeability due to “tortuosity” of
high-flow channels, cannot be very large, given the reasonable
agreement obtained when excluding them. A more promis-
ing way to account for deviations from power-law behavior

at high φ is to model the fractal dimension of the materials as
weakly dependent on φ. Excellent empirical fits of the perme-
ability over the entire φ range studied can thus be obtained.
However, the variation of df with φ thus obtained differs from
previous literature results,51 and it is not clear if it is possible
to determine the necessary parameters from analysis of the
model structures.

Finally, comparison of the proposed models with available
experimental data yielded mixed results. Both the hydraulic
and cluster models were found to agree well with the data of
Allain et al.,27 but were very far from the data of Manley et al.
Conversely, the Manley model prediction was quite close to
their own data, but failed badly for both the simulated results
and the data of Allain et al. when the correct fractal dimensions
were input. This discrepancy cannot be resolved without fur-
ther experimental work, though one can speculate as to pos-
sible causes. One possibility would be some pre-aggregation
of particles prior to the gelation experiments by Manley et al.
This would lead to an effective particle radius a which is
much larger than that of primary particle a and thus to an
overestimation of k0/a2.

From an empirical standpoint, it appears that fitting a
power-law dependence to low-φ data will give good results for
volume fractions up to around 0.05-0.10, with modest over-
predictions at higher φ; furthermore, deviations from power-
law behavior seem to be smaller for materials with higher
fractal dimension. The models discussed in this work involve
a considerable number of simplifying approximations and at
least one parameter (φc) difficult to assign a priori, yet give
generally good, though not exact results, especially at high φ.
It is plausible that φc could be determined by further geo-
metric analysis of the gel structure and/or gelation simu-
lation trajectories (or by experiment), but this has not been
attempted. The inclusion of φ-dependent fractal dimension
is sufficient to obtain quantitative results, but that depen-
dence itself is not widely studied and such data are rarely
available. Finally, the RLCA and DLCA structures studied here
are “limiting cases” in the sense that the underlying simu-
lations permit no relaxation or spinodal-type coarsening of
the gel structure as it forms; the performance of the various
models in these systems may therefore not be transferable
to (experimental or simulated) systems which do display such
behaviors. First-principles prediction of the absolute perme-
ability of fractal gel networks therefore remains a challenging
problem.

SUPPLEMENTARY MATERIAL
See supplementary material for the system sizes and dis-

cretization parameters used in production calculations, as well
as selected data from GeoDict convergence studies.
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