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When the response on a subject can be naturally viewed as a smooth curve or function, it

is said to be a functional response. The response may be observed at a set of discrete times,

possibly with noise. Functional data arise when observations of a functional response are

available from a sample of subjects. Thus, the functional data essentially consist of a sample

of curves. One example of such data is the usual longitudinal data where a variable of interest

is measured over time on a sample of subjects. Functional data arise in a variety of disciplines,

including economics, environmental science, public health, medicine, and genetics. Analysis

of such data is currently an active area of statistical research.

Functional data are often analyzed by modeling them as a functional mixed model. This

model commonly assumes that the within-subject errors are homoscedastic and uncorrelated.

But this assumption is often violated in practice, which may sometimes lead to potentially

misleading inferences.This is especially an issue if the object of inference is a function of

both random effect and error autocovariance functions. One such quantity is heritability

function, defined as the proportion of variance explained by the random effect. In genetics,

the random effect can be interpreted as the additive genetic component of a quantitative

trait. This way, heritability is the ratio of additive genetic variance to the total phenotypic

variance of the trait. It measures the extent to which individuals’ phenotypes are determined
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by the genes transmitted from the parents. This makes heritability a fundamental quantity

of interest in genetics.

This dissertation makes three contributions toward the issue of estimating both random effect

and error covariance structures in a functional mixed model. First, it develops a methodology

for modeling functional data from independent subjects that incorporates parametric models

for error covariance structure. The methodology is evaluated using a simulation study. Its

application is illustrated by analyzing a growth curve data. Next, this methodology is

extended for family data where the subjects may be grouped into families and subjects

from the same family are dependent. This methodology is also evaluated using simulation.

Finally, it introduces the novel notion of a singular mixed model, whose further development

in future may allow modeling the error covariance structure nonparametrically, enhancing

the flexibility of functional mixed models.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and problem formulation

Functional data analysis1,2 is currently an active area of statistical research. Functional data

arise when the response measured on a subject is a smooth curve, which may be observed

possibly with noise at a set of discrete time points, rather than a scalar or vector quantity.

Thus, a functional response consists of repeated measurements generally indexed by time

but the index may also be something else such as a spatial location. Examples of functional

response include longitudinal measurements on an individual taken over a period of time

such as the growth curve, electrical activity of a heart measured by a wearable device every

minute over the course of a day, and gene expression profile of an individual3. The functional

data consist of one observed curve per subject. The data may be considered dense or sparse

depending upon the regularity and closeness of the observation times.

A common approach to functional data analysis involves representing the response curve

as a functional mixed model2,4,5. To be specific, let y(t), t ∈ T be a random function

denoting the functional response of a randomly selected subject from the population. The

functional mixed model assumes that

y(t) = f(t) + g(t) + ε(t), t ∈ T , (1.1)

where f(t) is the (fixed) mean function in the population; g(t) is a random effect function

that captures the deviation from the population mean for the subject, with mean zero and

autocovariance function ψ(s, t); and ε(t) represents the random error, distributed indepen-

dently of g(t), with mean zero and autocovariance function σ(s, t) = σ2I(s = t), where I(·)

denotes an indicator function. This model postulates that the function f(t) + g(t) is the

true response of the subject which is observed with error as y(t). Both f and g functions are
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usually modeled through basis expansions4–8. Marginally, the response has mean f(t) and

autocovariance function v(s, t) = ψ(s, t) + σ2I(s = t).

The assumption in the above model that the errors are homoscedastic and uncorrelated is

rather strong and is often violated in practice. Indeed, examples of longitudinal data, which

are a special case of functional data9,10, abound where it is necessary to allow heteroscedas-

ticity and autocorrelation in errors to adequately capture the true covariance structure of the

response11. The issue of adequately capturing both the random effect and error covariance

structures is especially important if the object of inference is

h2(t) =
var(g(t))

var(y(t))
=

ψ(t, t)

ψ(t, t) + σ(t, t)
, (1.2)

a quantity called the heritability function, because it involves both the functions. Heritability

of a genetic trait is a fundamental quantity in statistical genetics12,13. Its concept goes back

to the seminal works of Fisher14 and Wright15. It is defined as the ratio of additive genetic

variance to the total phenotypic variance of the trait. It measures the extent to which an

individual’s phenotype is determined by the genes transmitted from parents12. Although, in

this dissertation, we will not have an opportunity to work with genetic data, we simply take

the heritability function to mean the proportion of total variation explained by the random

effect, but it does serve as the object of primary interest. Besides, some of the methodology

developed in this work can be readily adapted to analyze functional genetic trait data.

The task of modeling both random effect and error covariance functions is complicated by

the fact that there is an identifiability issue in the model (1.1). If parametric assumptions are

not made for at least one of the two, depending upon the type of data, it may not be possible

for us to separately estimate both the functions. Specifically, if the subjects are independent,

the random effect is confounded with the error. So the two cannot be separated. On the

other hand, if the subjects come from a type of family data, we may be able to separate

them in principle, but in practice, we may run into the problem of near-unidentifiability.

2



Therefore, in this dissertation, only the random effect is modeled nonparametrically and

parametric models are considered for the error covariance structure.

This dissertation makes the following three contributions to the literature. First, we

develop a methodology for modeling functional data from independent subjects that in-

corporates parametric models for error covariance structure and considers inference on the

heritability function. This is the topic of Chapter 2. Next, we extend this methodology

for family data where the subjects may be grouped in families and subjects from the same

family are dependent. This is the topic of Chapter 3. Some additional development of this

approach in future will allow us to estimate heritability from functional genetic trait data.

In Chapter 4, we introduce the novel notion of a singular mixed model and study it briefly.

Further development of this model in future may allow the error covariance structured to

be modeled nonparametrically, extending the flexibility of functional mixed models. The re-

mainder of this chapter is developed to reviewing mixed models for scalar data and a common

approach for construction of confidence intervals and bands, and introducing a motivating

dataset that will be analyzed later in the dissertation.

1.2 Classical mixed model

Let Yi be the response vector regarding subject i. A classical linear mixed model decompose

the outcome as a sum of overall (fixed) mean effects, subject-specific random effects, and

measurement error terms. Therefore, for the ith subject, classical formulation of linear mixed

model can be presented presented as11,16

Yi := Xiβ + Zibi + εi; i = 1, . . . , n, (1.3)

where

Yi ∈ RMi×1 is a vector of response.

Xi ∈ RMi×p is a design matrix for fixed effects.

3



β ∈ Rp×1 is a vector of fixed effects.

Zi ∈ RMi×q is a design matrix for random effects.

bi ∈ Rq×1 is a vector of random effects.

εi ∈ RMi×1 is a vector of random errors.

Assumptions regarding (1.3) are as follows:

bi ∼ Nq(0,G),

Zibi ∼ NMi
(0,ZiGZ′i),

εi
i.d∼ NMi

(0, σ2IMi
), and

bi and εi are independent, implying cov(bi, εi) = 0, i = 1, . . . , n.

Therefore, Yi ∼ NMi
(Xiβ,ZiGZ′i + σ2IMi

)

Thus, for all n subjects, the complete data model can be written in matrix form as11,16,17

Y := Xβ + Zb + ε, b ∼ Nnq(0, In ⊗G), ε ∼ NN(0, σ2I). (1.4)

where

Y =



Y1

Y2

...

Yn


∈ RN×1, N :=

∑n
i=1Mi , X =



X1

X2

...

Xn


∈ RN×p , β ∈ Rp×1,

Z =



Z1 0 . . . 0

0 Z2 . . . 0

...
...

. . . . . .

0 0 . . . Zn


= ⊕ni=1Zi = diag{Z1, . . . ,Zn} ∈ RN×nq,

b =



b1

b2

...

bn


∈ Rnq×1, ε =



ε1

ε2
...

εn


∈ RN×1,

X denotes the design matrix for mean function with associated parameter vector β, and
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Z is the design matrix for the random effects with associated parameter vector b.

However, in modeling data through the model (1.3), it assumes that within-subject errors

are homoscedastic and uncorrelated, that is εi ∼ NMi
(0, σ2I). However, it is often not

plausible to assume that within-subject errors are homoscedastic and uncorrelated. Thus,

with the assumption of heteroscedastic and correlated within-subject errors, we can re-write

the classical mixed model presented in (1.3) and (1.4) as follows11,16:

For the ith subject, :

Yi := Xiβ + Zibi + εi; i = 1, . . . , n, (1.5)

where, εi ∼ NMi
(0, σ2Ri), Ri ∈ RMi×Mi .

Therefore, Yi ∼ NMi
(Xiβ,ZiGZ′i + σ2Ri)

Thus, all n, subjects the model can be written as11,16,17:

Y := Xβ + Zb + ε, b ∼ Nnq(0, In ⊗G), ε ∼ NN(0, σ2R). (1.6)

where R = ⊕ni=1Ri = diag{R1, . . . ,Rn} ∈ RN×N Therefore, Y ∼ NN(Xβ,Z(In ⊗G)Z′ +

σ2R)

Note that, notations and all other assumptions for (1.5) and (1.6) remain same as we pre-

sented in the models (1.3) and (1.4), respectively.

In the following subsections of this section, we briefly present different structures and mod-

eling capacities related to the matrices G and R.

1.2.1 Covariance structures of random effects parameters

Based on practical situation, goal of research, and nature of data, one can specify the covari-

ance matrix G of random effects parameters from quite a few choices of structures such as,

block-diagonal matrix, compound symmetry structure matrix, diagonal matrix, multiple of

5



an identity matrix, and general positive-definite matrix in model fitting. A nice description

of such structures can be found in11. Among all these choices, general positive-definite ma-

trix is the most complex one. Therefore, both the model defined in (1.4) and (1.6), allows

considerable flexibility in specifying the random effects covariance structure.

1.2.2 Decomposition of within-subject error covariance structure

Mixed model (1.4) restricts within-subject errors to be identically and independently dis-

tributed random variables with mean vector 0 and covariance matrix σ2I . In contrast,

the model defined in (1.6) allows considerable flexibility in specifying within-subject errors

covariance structure parametrically by generalizing the identical and independent assump-

tion. Nevertheless, there are many applications involving grouped data which allows the

within-subject errors are homoscedastics and correlated (Ri = σ2ρ(s, t)), heteroscedastic

and uncorrelated (Ri = σ2(t)I), and heteroscedastic and correlated (Ri = σ2(t)ρ(s, t)).

ρ(s, t) represents within-subject errors correlation structure.

Moreover, the within-subject covariance matrix Ri can always be decomposed into a product

of two relatively simpler matrices18 as

Ri = DiCiDi

where Di is a within-subject dispersion matrix and Ci is a within-subject correlation matrix.

This decomposition of Ri into a variance structure component Di and a correlation struc-

ture Ci allows us flexibility and convenience in both theoretical development and to avail

computational facilities. We present comprehensive summary of variance function structures

for Di in Section 1.2.3 and correlation structures for Ci in Section 1.2.4.
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1.2.3 Modeling heteroscedastic variance of within-subject errors

If all the diagonal elements of Di is equal to 1 then V ar(εij) = σ2 which reduces the case

to a very simpler case of homoscedastic within-subject error variance as we presented in the

model (1.4). But, in reality, if all the diagonal elements of Di is not equal to 1 then the

situation of heteroscedastic error variance arises. To address this issue, variance functions

are used to model the heteroscedastic variance structure of within-subject errors εi using

covariates. For this kind of modeling, a more detailed outline can be found in the context of

extended linear models19 and in the context of mixed model given in (1.6)11,20. However, a

more comprehensive detail and implementation procedures are given in11. One may choose

one of the variance function model from the list of fixed variance, different variances per

stratum, power of covariate, exponential of covariate, constant plus power of covariate, and

combination of variance functions11,21 depending of modeling facility and point of research

interest.

1.2.4 Modeling dependence among within-subject errors

In this section we present a summary of different correlation structures to represent the

correlation matrix Ci. In the context of mixed model, correlation structures are used for

modeling dependence among within-subject errors. Moreover, in statistical and economic

literature, correlation structures are mainly developed and used for two broad classes of data,

such as, time series data and spatial data11. Historically, time series data are associated with

observations recorded or reported at an integer-valued time variable. In contrast, the spa-

tial data mainly refers to the observations recorded according to a two-dimensional spatial

coordinate vector on a plane.

Time series correlation structures are often known as serial correlation structures. A detail

study on time series correlation structures for linear models without random effects can be

found in22. However, in the context of linear mixed models, detail description of time series
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correlation structures can be found in23. Time series correlation structures typically assumes

that the data are observed at discrete and integer time points and it not easy to generalize

to continuous time points. This is the main limitation of these structures. A comprehensive

study of most commonly used time series correlation structures11 are outlined below :

Compound symmetry correlation structure:

This correlation structure is simplest among all correlation structures found in literature.

It assumes equal correlation among all within-subject errors in the same group and the

corresponding correlation model is give by

h(d, ρ) = ρ, d = 1, 2, . . . ,

where the correlation parameter ρ is commonly known as intraclass correlation coefficient.

However, for overlay simplistic nature of compound symmetry correlation model, it has very

limited practical use in the application of time series data.

General correlation structure:

In general correlation structure, each lag-1 correlation in within-subject error is represented

by a different parameter according to the following correlation function

h(d,ρ) = ρd, d = 1, 2, . . . .

Thus, the number of parameter increases quadratically with the number of observations

within each group.

Autoregressive moving average correlation structure:

This family of correlation structures is a mixture of two linear stationary models: autoregres-

sive (AR) models and moving average (MA) models, commonly known as ARMA models22.
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The distance (or lag) between two conservators at time t and s is given by |t − s|. Thus,

before summarizing ARMA models, we present summary of AR and MA models below:

AR correlation structure:

These models express the relationship between current observation and previous observa-

tion, such that the current observation in within-subject errors as a liner function of past

observations along with an independent white noise term, ut. The order of an AR model is

denoted by p is defined as the number of past observations included in the model. Therefore,

an AR(p) is given by the following form:

εt =

p∑
i=1

φiεt−i + ut (1.7)

When the order of the model is greater than 1 (p > 1), the form of the correlation function

is quite involved but can be obtained recursively through the following equation22

h(d,φ) =

p∑
i=1

φih(|d− i|,φ), d = 1, 2, . . . (1.8)

However, the simplest and most useful model in AR family is AR of order 1, called AR(1).

The variance of above AR(1) model is given by

γ(0) = var(εt) =
σ2

1− φ2

Correlation function of AR(1) model declines exponentially with the absolute value of lag d

and is given by

h(d, φ) = φd, d = 0, 1, 2, . . . , (1.9)

where the parameter φ represents lag-1 correlation and −1 ≤ φ ≤ 1.

Continuous time autoregressive correlation structure:

Due to the simplicity in its form, AR(1) model can be easily generalized to continuous time
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measurements. Thus, the correlation function of continuous time AR(1) or CAR(1) is given

as

h(s, φ) = φs, s ≥ 0, φ ≥ 0. (1.10)

Unlike the correlation function of AR(1), the correlation parameter in the correlation func-

tion of CAR(1) must be non-negative. In contrast to AR(1) model, CAR(1) model allows

unevenly spaced continuous time points. This is a remarkable flexibility of CAR(1).

MA correlation Structure:

MA correlation models represent the current observation of within-subject errors as a linear

function of independent and identically distributed white noise terms, ut. The order q of

MA is defined as the number of white noise terms added in the model. The form of MA

models of order q, referred as MA(q) is given by

εt = ut +

q∑
j=1

θjut−j (1.11)

Therefore, the correlation function of MA(q) given in 1.11 is

h(d,θ) =


θd + θ1θd−1 + . . .+ θd−qθq

1 + θ21 + . . .+ θ2q
, d = 1, . . . , q

0, d = q + 1, q + 2, . . .

(1.12)

It is clearly observed from 1.12 that the observations more than q time points apart are

indeed uncorrelated, because they do not share any common white noise terms ut.

The variance of MA(1) model is obtained as

γ(0) = var(εt) = σ2(1 + θ2)

Clearly, the correlation function of MA(1) model is given by

h(d, θ) =


θ

1 + θ2
, d = 1

0, d = 2, 3, . . .

(1.13)
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Surprisingly, MA(1) has only lag-1 correlation and correlations are zero for lag-2 and onward

resulting sudden decrease in correlation function.

Finally, by combining an AR(p) and MA(q) together we get autoregressive moving average

model of order (p, q), called an ARMA(p, q) model. The model contains p autoregressive

parameters φ = (φ1, . . . , φp) and q moving average parameters θ = (θ1, . . . , θq) corresponding

to MA(q). Therefore, the model contains total of p + q parameters. The functional form of

an ARMA(p, q) is given as

εt =

p∑
i=1

φiεt−i + ut +

q∑
j=1

θjut−j (1.14)

Conventionally, ARMA(p, 0) ≡ AR(p) and ARMA(0, q) ≡MA(q). Hence, both AR models

and MA models are special cases of ARMA models.

By using the recursive relations, we obtained the correlation function of ARMA(p, q) as

h(d,ρ) =


φ1h(|d− 1|,ρ) + . . .+ φph(|d− p|,ρ)+

θ1ψ(d− 1,ρ) + . . .+ θqψ(d− q,ρ), d = 1, . . . , q

φ1h(|d− 1|,ρ) + . . .+ φph(|d− p|,ρ), d = q + 1, q + 2, . . . ,

(1.15)

where ψ(k,φ,θ) = E[εt−kut]/V ar(εt).

For lags between 1 and q, the correlation function of ARMA(p, q) model seems like an AR(p)

correlation function plus a term related to the MA part of the model. For, lags greater than

q, the correlation function of ARMA(p, q) seems like the correlation function of an AR(p).

The variance of ARMA(1,1) is given by

γ(0) = var(εt) =
1 + 2φθ + θ2

1− φ2
σ2
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However, the correlation function for ARMA(1,1) model with p = 1 and q = 1 is obtained

as

h(d, φ, θ) =


(φ+ θ)(1 + φθ)

1 + 2φθ + θ2
, d = 1

φh(d− 1, φ, θ), d = 2, 3, . . .

(1.16)

To this end, we present a very concise summary of different spatial correlation structures to

model within-subject errors correlation matrix Ci. Spatial correlation structures were origi-

nally proposed to model dependence in data indexed by continuous two-dimensional position

vectors, such as geostatistical data, lattice data, and point patterns11. But, in practice, they

can be used with discrete time data, such as time series data11,18,21. Detail studies on spatial

correlation structures in the context of linear models without random effects24 and mixed

models11,25 can be found in statistical literatures.

Thus, to model within-subject errors correlation structure by using spatial correlation struc-

tures, some popular choices of variogram models are presented below11:

Exponential model:

γ(s, ρ) = 1− exp(−s/ρ)

Gaussian model:

γ(s, ρ) = 1− exp
[
−(s/ρ)2

]
Linear model:

γ(s, ρ) = 1− (1− s/ρ)I(s < ρ)

Rational quadratic model:

γ(s, ρ) = (s/ρ)2/
[
1 + (s/ρ)2

]
Spherical model:

γ(s, ρ) = 1−
[
1− 1.5(s/ρ) + 0.5(s/ρ)3

]
I(s < ρ)

We can deduce the correlation function h(s, ρ) by using a simple relation h(s, ρ) = 1−γ(s, ρ).
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1.3 Pointwise and simultaneous confidence intervals

Suppose we are interested in ψ ≡ ψ(θ), a function of model parameters θ. θ may be a scalar

quantity but in many applications it is a function of time. Example of scalar ψ includes

but not limited to σ2. The mean function, random effects variance function, and heritability

function are the examples of time dependent parametric functions, denoted by ψ(t). We

focus on constructing two-sided confidence bands for ψ and ψ(t).

An approximate 100(1−α)% two-sided pointwise confidence band for ψ(t) can be computed26

as

two-sided band: ψ̂(tl)− bl ± z1−α/2
√
sll, l = 1, . . . ,M, (1.17)

where ψ̂(tl) is the estimate of the parameter at the time point l, l = 1, . . . ,M , bl is the lth

element of bias vector b = (b1, . . . , bM)T , sll is the lth diagonal element of the covariance

matrix S of the estimators, and zα is the 100αth percentile of a N1(0, 1) distribution.

If we replace zα in (1.17) by an appropriate percentile detailed in Chapter 3 of27, we can get

a 100(1-α)% simultaneous confidence interval as given below:

two sided band: ψ̂(tl)− bl ± c1−α
√
sll, l = 1, . . . ,M, (1.18)

where, the notations ψ̂(tl), bl, and Sll retain same meaning from (1.17). Additionally, c1−α =

100(1 − α)th percentile of |Z|max, |Z|max = maxl=1,...,M |Zl|, Zl = (ψ̂l − ψl)/SE(ψ̂l)
approx∼

N1(0, 1) with P (|Z|max ≤ c1−α) ≈ 1− α.

This computation of 100(1-α)% simultaneous intervals can be adapted using multcomp pack-

age of28 in R or via Monte Carlo simulation26.

We implement Monte Carlo simulation method along with Bootstrap methodology to com-

pute coverage probabilities of 100(1-α)% confidence intervals and bounds for different pa-

rameters and parameter functions of interest. To compute the bias vector b and covariance
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matrix S of parameter estimates, we use the bootstrap methodology presented in26. A

concise summary of the methodology is presented below:

1. From n subjects with indices 1, . . . , n, we sample n indices of subjects with replace-

ment and take all the observations associated with the sampled subjects indices. The new

data would be a resample of original data.

2. We apply the computation methods to estimate θ from the bootstrap data to get θ̂
∗
.

3. By using θ̂
∗

from step 2, we estimate ψ(t) as ψ̂
∗
(t). Thus, we can consider ψ̂

∗
(t) as

a resample of ψ̂(t).

4. We then repeat the steps (1)–(3) Q times to get the bootstrap resamples ψ̂
∗

q (t), q =

1, . . . , Q of ψ̂(t).

5. Now, we compute the bias vector b using
∑Q

q=1 ψ̂
∗

q (t)/Q − ψ̂(t), and the covariance

matrix S of the resamples ψ̂
∗

q (t) of ψ̂(t) ,q = 1, . . . , Q .

In many cases, a parameter function ψ does not depend on time t, that is, ψ is a scalar

quantity like σ2. In that case, the whole procedure can easily be adapted for computing

confidence intervals for such types of parameters. Indeed, it is a very special case of the

bootstrap methodology outlined in this section with bias vector b of length 1 and covariance

matrix S of order 1× 1. However, the term bl in (1.17) and (1.18) can be omitted if there is

an evidence that the bias correction is not necessary.
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Figure 1.1. Individual trajectory plot and sample mean of growth data.

1.4 Dataset

For illustration of our methodologies devoted in subsequent chapters, we consider a dataset,

called Berkeley Growth Study29–31 data. This dataset consists of heights measured in cen-

timeter (cm) of 39 boys and 54 girls from California at 31 different ages starting from age 1

year up to age 18 years. The ages are not equally spaced; four measurements were take from

age 1 to 2 years; annual measurements from age 2 years onward until 8 years, biannual mea-

surements from age 8 years to 18 years. Since girls’ list of data has higher number subjects,

we choose to use only girls data throughout this dissertation. Figure 1.1 shows individual

trajectories of heights of 54 California girls measured at 31 different ages and additionally

a superimposed sample mean function. It is clear that, heights are increasing function of

ages up to a certain age. From exploratory analysis, we found that the data is balanced and

dense.
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CHAPTER 2

A FUNCTIONAL MIXED MODEL FOR DATA FROM

INDEPENDENT SUBJECTS

2.1 Introduction

In this chapter, we study a functional mixed model for data from independent subjects

that allows the within-subject errors to be heteroscedastic and correlated. The chapter is

organized as follows. Section 2.2 describes the model and discusses its fitting. Section 2.3

presents results of a simulation study to evaluate performance of the methodology. An

illustration of the methodology is presented in Section 2.4. Section 2.5 concludes with a

summary and mentions some ongoing and future work.

2.2 Modeling data

Suppose the observed data consist of functional responses of n subjects, indexed as i =

1, . . . , n, observed at discrete times tij ∈ T , j = 1, . . . ,Mi, i = 1, . . . , n. Here the domain

T = [a, b], a < b ∈ R is bounded. Specifically, let yi(tij) denote the response of subject i

at time tij. Thus, subject i contributes Mi observations. The actual observation times and

their numbers need not be the same for all subjects, but the set of all observation times in

the data is assumed to be dense in T . Let N =
∑n

i=1Mi be the total number of observations

in the data. We assume that the subjects involved in the study are independent in that their

responses are statistically independent.

2.2.1 Population model

To get a model for the data, let us first describe a model for the population from which the

observed response curves are drawn. Let y(t), t ∈ T be a random function denoting the
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functional response of a randomly selected subject from the population. The model for y(t)

is given by the functional mixed model (1.1), which is written as

y(t) = f(t) + g(t) + ε(t), t ∈ T , (2.1)

where f(t) is the (fixed) population mean function; g(t) is a random effect function that

captures the deviation from the population mean for the subject, with mean zero and co-

variance function ψ(s, t); and ε(t) represents the random error, distributed independently

of g(t), with mean zero and covariance function σ(s, t), and the errors are allowed to be

heteroscedastic and correlated. From (2.1), it follows that

cov(y(s), y(t)) = ψ(s, t) + σ(s, t), (2.2)

and the heritability function is

h2(t) =
var(g(t))

var(y(t))
=

ψ(t, t)

ψ(t, t) + σ(t, t)
. (2.3)

2.2.2 Data model

The population model (2.1) implies the following model for the observed data:

yi(tij) = f(tij) + gi(tij) + εi(tij), j = 1, . . . ,Mi, i = 1, . . . , n, (2.4)

where f(t) is the population mean function, gi(t) is the random effect function for subject

i, and εi(t) is the random error function, distributed independently of gi(t). Here the gi(t)

are independent realizations of the function g(t) defined in (2.1) which are observed at the

sites tij. Thus, gi(t) has mean zero and its covariance function is ψ(s, t). Further, the εi(t)

are independent realizations of the error function ε(t) from (2.1) which are observed at the

sites tij. Therefore, the errors have mean zero. Moreover, the errors associated with the

same subject have covariance function σ(s, t), known as within-subject covariance function,

whereas those associated with different subjects are independent.
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2.2.3 Basis expansions for fixed and random effect functions

The functions f and g in the population model (2.1) are represented as linear combinations

of specified basis functions. The basis systems for two functions need not be the same.

Let p and q respectively denote the number of basis functions used to represent f and g.

Specifically,

f(t) =

p∑
k=1

βkφfk(t) = ΦT
f (t)β, g(t) =

q∑
k=1

bkφk(t) = ΦT (t)b, (2.5)

where Φf (t) = (φf1(t), . . . , φfp(t))
T and Φ(t) = (φ1(t), . . . , φq(t))

T are p×1 and q×1 vectors

of basis functions with β = (β1, . . . , βp)
T and b = (b1, . . . , bq)

T as p × 1 and q × 1 vectors

of their respective coefficients. The coefficient vector β for f is a fixed, unknown quantity,

whereas the coefficient vector b for g is a random quantity. It assumed that b ∼ (0,G).

The matrix G is an arbitrary, unknown positive-definite matrix. The resulting random effect

covariance function is

ψ(s, t) = ΦT (s)GΦ(t). (2.6)

From the expansion (2.5), we have

gi(t) =

q∑
k=1

bkiφk(t) = ΦT (t)bi, (2.7)

where the q × 1 vector bi = (b1i, . . . , bqi)
T of coefficients for subject i is an independent

draw from the distribution of b. Upon replacing f and gi functions in (2.4) with their basis

expansions from (2.5) and (2.7), the model becomes

yi(tij) = ΦT
f (tij)β + ΦT (tij)bi + εi(tij), j = 1, . . . ,Mi, i = 1, . . . , n (2.8)
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2.2.4 Representation as a classical mixed model

Let ti = (ti1, . . . , tiMi
)T be the Mi × 1 vector of observation locations for the ith subject.

Define the following quantities:

Yi = Yi(ti) =


yi(ti1)

...

yi(tiMi
)

 , Xi = Xi(ti) =


ΦT
f (ti1)

...

ΦT
f (tiMi

)

 , εi = εi(ti) =


εi(ti1)

...

εi(tiMi
)

 . (2.9)

Here Yi is the vector of observations on subject i; Xi is the fixed effect design matrix; and

εi is the vector of random errors. Next, define

bi =


b1i
...

bqi

 , Zi = Zi(ti) =


ΦT (ti1)

...

ΦT (tiMi
)

 .

Here bi is the q × 1 vector of random coefficients and Zi(ti) is the associated Mi × q design

matrix. Further, define Ri = Ri(ti) = var(εi) = (σ(tij, tiq)) as the Mi×Mi covariance matrix

of the within-subject errors. Next, let the notation x ∼ (µ,Σ) mean that the random vector

x has mean µ and variance matrix Σ. We can now write the functional mixed model (2.8)

for data from subject i in the form of a classical mixed model from Section 1.5 as

Yi = Xiβ + Zibi + εi, bi ∼ (0,G), εi ∼ (0,Ri), i = 1, . . . , n, (2.10)

with cov(bi,bl) = 0 and cov(bi, εl) = 0 for all i and l, and cov(εi, εl) = 0 for i 6= l.

Next, we would like to write the functional mixed model for all the data together in the

classical mixed model form. For this, define N × 1 vectors Y and ε, N× p matrix X, and a

nq × 1 vector b as

Y =


Y1

...

Yn

 , X =


X1

...

Xn

 , ε =


ε1
...

εn

 , b =


b1

...

bn

 ,
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and a N × nq matrix Z and a N ×N matrix R as block diagonal matrices

Z = diag{Z1, . . . ,Zn}, R = diag{R1, . . . ,Rn}.

We can now write the model (2.8) for all the data together as

Y = Xβ + Zb + ε, b ∼ (0, I⊗G), ε ∼ (0,R), cov(b, ε) = 0, (2.11)

where the symbol ‘⊗’ denotes a Kronecker product. All the quantities in (2.11) except b

and its covariance matrix G depend on the observation times in the data as well. But this

dependence is suppressed for notational simplicity. The model (2.11) is in the form of a

classical mixed model. It implies

E(Y) = Xβ, var(Y) = Z(I⊗G)ZT + R. (2.12)

In practice, the number of basis functions q should be moderately large to adequately

capture the true underlying random effect covariance function ψ(s, t) via (2.6). However,

this may make the estimation of the covariance matrix G—an unstructured positive-definite

matrix—a computationally challenging task. As in Wang32, this issue can be addressed by

applying a transformation due to Chen and Dunson33 based on modified Cholesky decom-

position. The matrix G is decomposed as G = ΩΓΓTΩ, where Ω = diag{ω1, . . . , ωq} is a

diagonal matrix and Γ = (γkm) is a unit lower triangular matrix with ones on the diagonal.

Here, ωk > 0, and γkk = 1 for k = 1, . . . , q; γkm = 0 for m = k + 1, . . . , q; and the remaining

elements of Γ are unconstrained. Thus, the diagonal elements of Ω are proportional to the

standard deviations of the basis coefficients and the unconstrained elements of Γ are related

to the correlations among the coefficients. These correlations do not involve ω. With this

decomposition, we can write bi = ΩΓui, allowing us to reparameterize the model (2.10) as

Yi = Xiβ + ZiΩΓui + εi, ui ∼ (0, Iq), εi ∼ (0,Ri), i = 1, . . . , n, (2.13)
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with cov(ui,ul) = Iq. In this formulation, the elements of covariance matrix G are essentially

converted into “mean” related parameters, making the task of model fitting easier. We can

proceed as before to write this model also in the form of one joint classical mixed model for

all the data together as

Y = Xβ + Zu + ε, u ∼ (0, In ⊗ Iq), ε ∼ (0,R), cov(u, ε) = 0, (2.14)

where the notation is same as in (2.11) with the exception that Z = diag{Z1ΩΓ, . . . ,ZnΩΓ},

which now depends on unknown model parameters.

2.2.5 Models for error covariance function

The heritability function, given by (2.3), depends on the random effects covariance function

ψ(s, t) and the error covariance function σ(s, t). Given that estimation of heritability is

the primary objective of proposed modeling effort, it is imperative that both the covariance

structures are modeled adequately. For specifying a structure for the covariance matrix G of

the basis coefficients, one has quite a few choices, including a diagonal matrix, block-diagonal

matrix, compound symmetric matrix, multiple of an identity matrix, and an unstructured

general positive-definite matrix. Among all these choices, the last one provides maximum

flexibility in capturing the true structure of ψ(s, t). This is why we leave the matrix G

unstructured. By the same token, we also need flexibility in capturing the true structure of

σ(s, t). Although, once ψ(s, t) is adequately modeled, we may expect σ(s, t) to be sparse,

but imposing structure such as homoscedasticity and uncorrelated errors or even stationarity

of the covariance function may be restrictive. On the other hand, we can not leave σ(s, t)

completely unspecified, otherwise we may run into the issue of identifiability of two covariance

functions. Therefore, in practice, we propose exploring a variety of parametric models for

the error covariance function and let the data point to the appropriate models.

Here we specifically mention three models for σ(s, t) or equivalently for the Mi×Mi error

covariance matrix Ri = var(εi) = (σ(tij, tim)) in (2.10). The first is σ(s, t) = σ2I(s = t),
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implying homoscedastic and uncorrelated within-subject errors, which, as mentioned in Sec-

tion 1.2, is also a standard assumption in functional mixed models. The second is σ(s, t) =

σ2(t)I(s = t), heteroscedastic and uncorrelated within-subject errors. For the variance func-

tion σ2(t), both parametric models such as polynomial, exponential, and power functions of

t; and a nonparametric model specified using the basis expansion, log{σ2(t)} =
∑r

k=1 νkφk(t)

as in (2.5) can be incorporated. The third is σ(s, t) = σ2(t)ρ(s, t), where the variance func-

tion σ2(t) is modeled as above and the correlation function ρ(s, t) is modeled using either

stationary serial correlation models from the time series analysis such as autoregressive (AR),

moving average (MA), and autoregressive moving average (ARMA) models; or isotropic var-

iogram models for spatial correlation from spatial statistics such as exponential, Gaussian,

Linear, and spherical models11,23,34,35 (see Section 1.2.4). Some have also been considered

for functional mixed models32,36.

2.2.6 Model fitting and inference

For model fitting, we additionally make the normality assumption for basis coefficients and

errors in (2.8) or equivalently (2.10) so that bi ∼ Nq(0,G) and εi ∼ NMi
(0,Ri), and use

the likelihood-based methods. In the equivalent, alternate formulation (2.13), the former as-

sumption amounts to ui ∼ Nq(0, I). Due to equivalence between the functional mixed model

(2.8) and the classical mixed model (2.11), the former can be fit using any software package

for fitting the latter, such as nlme37 in R and proc mixed in SAS, which are widely popular.

These packages also implement the parametric models for error autovariance function σ(s, t)

that are specifically mentioned in Section 2.2.5 and some other models as well. Once the

model parameters are estimated, the other parametric function, including the heritability

function h2(t) given by (2.3), can be estimated by plug-in. Further, large-sample theory of

likelihood-based estimators and bootstrap can used to construct the confidence intervals and

bands (see Section 1.3). The number and placement of knots can be chosen according to

standard guidelines developed for semiparametric regression38.
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2.3 A simulation study

In this section, we perform Monte Carlo simulation studies to evaluate performance of in-

terval estimators of the following parameters and parametric functions: mean function f(t),

variance function ψ(t, t) of the random effect function, error variance σ2, and heritability

function h2(t). We take coverage probability of an interval estimator as the measure of its

accuracy. Two scenarios are considered for the error covariance structure in the model. In

the first, the errors are uncorrelated, whereas, in the second, they are correlated. In both

scenarios, however, they are assumed to be homoscedastic.

Let us consider the first scenario. The data are simulated from (2.11) on a grid of

M = 30 equally-spaced time points as t ∈ T = {1, 2, . . . , 30} under the following settings

and assumptions: f(t) = 74 + 6.5t− 0.1t2; g(t) is a linear combination of q = 4 cubic spline

basis functions with coefficient vectors distributed as N4(0, diag{1, 10, 15, 50}); σ(s, t) =

σ2I(s = t) with σ2 = 5; n ∈ {100, 200, 300}; and 1 − α = 0.95 for both pointwise and

simultaneous confidence intervals.

The model is fit by restricted maximum likelihood using a B-spline basis29,39 with p = 14

basis functions for the fixed effect function and q = 4 basis functions for the random effect

function. Further, bootstrap as described in Section 1.3 is used to construct confidence

intervals with Q = 50 replications, both with and without a bias correction. For higher

accuracy, the confidence intervals for σ2 and ψ(t, t) are first constructed on natural log

scale and then exponentiated. Likewise, the confidence interval for heritablity function is

first constructed on logit scale and then the inverse logit transformation is applied to get

the results on the original scale. The whole process of simulating data, model fitting, and

constructing confidence intervals is repeated 300 times to estimate the coverage probabilities.

The estimated coverage probabilities for σ2 are presented in Table 2.1. They are close

to the nominal level in all cases and it does not seem to matter whether the bias correction
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Table 2.1. Estimated coverage probabilities (in %) of 95% confidence intervals for error
variance σ2 assuming uncorrelated errors. Settings (a) and (b) respectively represent with
and without bias correction.

n (a) (b)
100 93.0 92.8
200 93.8 92.8
300 93.5 94.0

Table 2.2. Average estimated pointwise coverage probabilities (in %) of 95% confidence
intervals for mean function f(t), random effects variance function ψ(t, t), and heritability
function h2(t) assuming uncorrelated errors. Settings (a) and (b) respectively represent with
and without bias correction.

Parameter n (a) (b)
f(t) 100 94.6 94.9

200 93.6 94.1
300 95.6 96.1

ψ(t, t) 100 93.3 94.4
200 95.1 95.4
300 94.4 94.5

h2(t) 100 93.5 94.2
200 95.0 95.2
300 94.3 94.8

is made. The average estimated pointwise coverage probabilities for f(t), ψ(t, t), and h2(t)

presented in Table 2.2 are close to nominal level. Figure 2.1 displays the pointwise coverage

probabilities for h2(t) without the bias correction. The estimates for n ≥ 200 are close to

the nominal level for all t.

Table 2.3 presents estimated simultaneous coverage probabilities for the three parameter

functions. Here also we see little effect of bias correction. Some of the entries for f(t) are

close to the nominal level in all cases. However, the same cannot be said for ψ(t, t) and h2(t),

increase of n has minimal effect on performance of intervals.

On the whole, it is clear that the bias correction does not help in increasing accuracy of

the interval estimators. Also, n ≥ 100 seems to provide acceptable accuracy for pointwise

intervals in all cases and for simultaneous interval for f(t), ψ(t, t) and h2(t) functions.
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Figure 2.1. Estimated pointwise coverage probability of 95% confidence intervals for her-
itability function h2(t) assuming uncorrelated errors. The horizontal solid dark green line
represents the nominal 0.95 level.

Table 2.3. Estimated simultaneous coverage probabilities (in %) of 95% confidence intervals
for mean function f(t), random effects variance function ψ(t, t), and heritability function
h2(t) assuming uncorrelated errors. Settings (a) and (b) respectively represent with and
without bias correction.

Parameter n (a) (b)
f(t) 100 91.5 90.5

200 93.0 92.5
300 94.0 95.0

ψ(t, t) 100 91.8 92.5
200 92.0 92.5
300 92.1 92.3

h2(t) 100 89.8 92.5
200 91.5 92.5
300 92.5 92.2
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Table 2.4. Estimated coverage probabilities (in %) of 95% confidence intervals for error
variance σ2 under model with AR(1) error correlation structure with parameter φ. Settings
(a) and (b) respectively represent with and without bias correction.

φ = 0.10 φ = 0.70 φ = 0.90
n (a) (b) (a) (b) (a) (b)

100 95.3 94.3 91.8 85.8 80.3 80.5
200 94.5 94.5 88.8 89.8 81.8 81.0
300 93.8 94.0 92.5 92.8 84.3 85.0

Next, we consider the second scenario where the errors are assumed to be correlated.

Specifically, we consider three time series models for error correlation from Section 1.2.4:

AR(1) with parameter φ ∈ {0.1, 0.7, 0.9}; MA(1) with parameter θ ∈ {0.1, 0.3, 0.8}; and

ARMA(1,1) with (φ, θ) ∈ {(0.05, 0.05), (0.3, 0.3), (0.7, 0.8)}. The innovation variance in the

time series models is scaled in such a way so that the resulting error variance equals σ2. The

parameter settings are the same as in the previous scenario and we proceed in the same way

to simulate data, fit model, and compute interval estimates. The correct error covariance

structure is assumed when fitting the model.

The results for the AR(1) models are presented in Tables 2.4, 2.5, and 2.6 and Figure 2.2.

We may make the following general conclusions based on them: bias correction makes little

difference; the intervals appear liberal in that their coverage probabilities are less than the

nominal level; for φ = 0.7 and φ = 0.9, their accuracy tends to get worse as φ increases;

and the accuracy increases with n. On the whole, the intervals may be considered to have

acceptable accuracy only when φ = 0.1 and n ≥ 100; except for the simultaneous intervals.

The results for the MA(1) models are presented in Tables 2.7, 2.8, and 2.9 and Figure 2.3.

These results look much better than those for the AR(1) models and allow the following gen-

eral conclusions: bias correction makes little difference; the intervals appear liberal but the

simultaneous intervals appear more liberal than their pointwise counterparts; the accuracy

seem to be increased as θ increases; for f(t), ψ(t, t), and h2(t). Overall, the pointwise and

simultaneous intervals may be considered to have acceptable accuracy for n ≥ 100, for f(t),
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Table 2.5. Average estimated pointwise coverage probabilities (in %) of 95% confidence
intervals for mean function f(t), random effects variance function ψ(t, t), and heritability
function h2(t) under model with AR(1) error correlation structure with parameter φ. Settings
(a) and (b) respectively represent with and without bias correction.

φ = 0.10 φ = 0.70 φ = 0.90
Parameter n (a) (b) (a) (b) (a) (b)

f(t) 100 93.7 94.0 93.4 93.5 93.8 93.8
200 94.9 95.1 94.4 94.5 94.2 94.4
300 94.3 94.6 92.7 92.8 92.4 93.0

ψ(t, t) 100 92.5 93.1 90.1 91.2 81.5 83.6
200 92.9 93.3 93.0 93.4 81.6 83.6
300 93.7 93.9 91.4 92.7 82.7 86.8

h2(t) 100 92.6 93.4 89.2 90.0 74.4 78.8
200 93.3 93.7 90.9 91.8 78.5 79.6
300 94.3 94.4 90.9 92.2 78.4 82.0
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Figure 2.2. Estimated pointwise coverage probability of 95% confidence intervals for her-
itability function h2(t) under model with AR(1) error correlation structure with parameter
φ. The horizontal solid dark green line represents the nominal 0.95 confidence level.
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Table 2.6. Estimated simultaneous coverage probabilities (in %) of 95% confidence intervals
for mean function f(t), random effects variance function ψ(t, t), and heritability function
h2(t) under model with AR(1) error correlation structure with parameter φ. Settings (a)
and (b) respectively represent with and without bias correction.

φ = 0.10 φ = 0.70 φ = 0.90
Parameter n (a) (b) (a) (b) (a) (b)

f(t) 100 88.0 88.5 91.3 92.0 92.3 93.3
200 91.3 91.8 92.5 91.5 92.5 93.0
300 92.8 94.0 88.3 88.3 89.3 89.5

ψ(t, t) 100 87.3 88.3 80.5 82.0 64.0 70.8
200 89.3 90.3 85.0 86.8 66.8 69.9
300 90.5 92.0 87.0 90.0 70.0 74.3

h2(t) 100 86.3 88.8 79.0 79.5 64.5 69.3
200 90.3 90.3 84.8 85.0 68.0 70.0
300 89.0 91.5 86.8 88.8 69.8 75.3

Table 2.7. Estimated coverage probabilities (in %) of 95% confidence intervals for error
variance σ2 under model with MA(1) correlation structure with parameter θ. Settings (a)
and (b) respectively represent with and without bias correction.

θ = 0.10 θ = 0.30 θ = 0.80
n (a) (b) (a) (b) (a) (b)

100 93.3 93.8 93.8 94.1 94.5 95.1
200 93.1 93.8 94.2 94.2 94.3 95.3

ψ(t, t) and h2(t) with θ = 0.8. Nonetheless, higher sample size n with higher value of θ may

provide higher performance. But with higher value of θ, performance for all sample sizes

considered here may be competitive.

The results for the ARMA(1, 1) models are presented in Tables 2.10, 2.11, and 2.12

and Figure 2.4. These results appear intermediate between those for AR(1) and MA(1)

models. We may make the following general conclusions based on them: bias correction

is not improving the performance of the interval estimators; the pointwise intervals are

acceptably close to the nominal level but the simultaneous intervals appear more liberal

than their pointwise counterparts; the accuracy of both the intervals for σ2, ψ(t, t) and

h2(t) does seem to depend on the AR(1) and MA(1) parameter choices; and the accuracy

improves with n. Overall, the pointwise and simultaneous intervals may be considered to
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Table 2.8. Average estimated pointwise coverage probabilities (in %) of 95% confidence
intervals for mean function f(t), random effects variance function ψ(t, t), and heritability
function h2(t) under model with MA(1) correlation structure with parameter θ. Settings (a)
and (b) respectively represent with and without bias correction.

θ = 0.10 θ = 0.30 θ = 0.80
Parameter n (a) (b) (a) (b) (a) (b)

f(t) 100 91.6 92.0 93.1 92.8 94.6 95.2
200 92.5 92.1 92.3 93.3 95.1 95.6

ψ(t, t) 100 93.5 93.0 93.5 94.1 94.8 95.7
200 94.1 94.0 94.3 94.5 95.6 96.1

h2(t) 100 93.3 93.1 93.7 94.1 94.2 94.6
200 95.3 95.1 95.3 95.4 95.7 96.3
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Figure 2.3. Estimated pointwise coverage probability of 95% confidence intervals for heri-
tability function h2(t) under model with MA(1) error correlation structure with parameter
θ.
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Table 2.9. Estimated simultaneous coverage probabilities (in %) of 95% confidence intervals
for mean function f(t), random effects variance function ψ(t, t), and heritability function
h2(t) under model with MA(1) correlation structure with parameter θ. Settings (a) and (b)
respectively represent with and without bias correction. .

θ = 0.10 θ = 0.30 θ = 0.80
Parameter n (a) (b) (a) (b) (a) (b)

f(t) 100 90.1 91.1 92.3 92.5 93.6 93.5
200 91.2 91.3 93.2 93.1 93.3 94.1

ψ(t, t) 100 91.5 91.3 91.8 91.7 92.8 92.7
200 92.1 92.0 92.3 92.7 93.1 94.6

h2(t) 100 90.3 90.8 91.3 91.2 92.6 93.3
200 90.5 91.1 92.3 92.1 93.7 94.1

Table 2.10. Estimated coverage probabilities (in %) of 95% confidence intervals for error
variance σ2 under model with ARMA(1, 1) correlation structure with three combinations of
parameters (φ, θ): (1) (0.05, 0.05), (2) (0.30, 0.30), and (3) (0.70, 0.80). Settings (a) and (b)
respectively represent with and without bias correction.

(1) (2) (3)
n (a) (b) (a) (b) (a) (b)

100 93.5 94.3 93.3 90.5 90.3 89.8
200 97.3 96.3 94.8 92.0 92.0 90.2

Table 2.11. Average estimated pointwise coverage probability (in %) of 95% confidence
intervals for mean function f(t), random effects variance function ψ(t, t), and heritability
function h2(t) under model with ARMA(1, 1) correlation structure with three combinations
of parameters (φ, θ): (1) (0.05, 0.05), (2) (0.30, 0.30), and (3) (0.70, 0.80). Settings (a) and
(b) respectively represent with and without bias correction.

(1) (2) (3)
Parameter n (a) (b) (a) (b) (a) (b)

f(t) 100 95.1 95.3 94.9 95.0 94.3 94.6
200 95.9 95.6 93.6 93.9 94.2 94.5

ψ(t, t) 100 93.3 94.0 90.7 91.0 91.2 92.1
200 94.7 94.7 93.2 93.7 93.5 94.4

h2(t) 100 93.5 94.2 90.2 90.7 90.8 90.4
200 94.9 95.1 92.9 93.8 93.3 93.1

have acceptable accuracy for n ≥ 100 in case of all parameters and parameter functions for

lower values of AR(1) and MA(1) parameters.
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Figure 2.4. Estimated pointwise coverage probability of 95% confidence intervals for heri-
tability function h2(t) under model with ARMA(1, 1) correlation structure with parameters
(φ, θ). The horizontal solid dark green line represents the nominal 0.95 confidence level.

Table 2.12. Estimated simultaneous coverage probabilities (in %) of 95% confidence inter-
vals for mean function f(t), random effects variance function ψ(t, t), and heritability function
h2(t) under model with ARMA(1, 1) correlation structure with three combinations of pa-
rameters (φ, θ): (1) (0.05, 0.05), (2) (0.30, 0.30), and (3) (0.70, 0.80). Settings (a) and (b)
respectively represent with and without bias correction.

(1) (2) (3)
Parameter n (a) (b) (a) (b) (a) (b)

f(t) 100 94.0 94.5 93.5 93.3 91.8 91.5
200 93.5 94.5 91.3 91.8 93.5 93.8

ψ(t, t) 100 89.3 90.5 82.8 84.5 84.0 86.5
200 91.5 92.5 87.3 88.5 86.8 90.3

h2(t) 100 89.8 91.5 84.0 86.5 85.0 86.0
200 93.3 92.8 87.0 89.0 88.3 88.0
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Taken together, the simulation results indicate that the bias correction is not necessary;

the pointwise intervals often have acceptable accuracy for n ≥ 100; the simultaneous intervals

tend to be accurate only when the error correlations are small and they often need n ≥ 100

for acceptable accuracy.

2.4 Illustration

In this section, we illustrate the methodology developed in this chapter by analyzing the

Berkeley growth data introduced in Section 1.4. As mentioned therein, these data consist of

growth curves height (in cm) of n = 54 girls measured at the same M = 31 ages for each

girl. The ages, however, are not equally spaced as four measurements are available between

1 and 2 years; annual measurements between 2 and 8 years; and biannual measurements

between 8 and 18 years. Figure 1.1 displays the individual trajectories of the growth curves

superimposed with the sample mean function. It is clear that the heights increase up to

around age 14 and then stabilize. This is consistent with what we expect.

Next, we fit the standard functional mixed model (2.8) that assumes homoscedastic and

uncorrelated errors. The fixed and random effect functions are represent using the cubic

B-spline basis29,39 with p = 5 and q = 4 basis functions, respectively. The model is fit by

restricted maximum likelihood (REML) method using the nlme package in R. The resulting

estimated mean function is also displayed in Figure 2.5. We see that it close to the sample

mean function, which is expected due to the balanced nature of the data.

To check adequacy of the homoscedastic and uncorrelated assumption for the errors,

we compute the sample correlation matrix of the normalized residuals from the model and

display a heat map of it in Figure 2.6. If the assumption holds, the sample correlation matrix

should resemble an identity matrix, making its heat map look essentially whitish below the

diagonal. This is clearly not the case in the figure because there is a band structure with four

prominent bands. It seems that as lag increases, the autocorrelation initially decreases from
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Figure 2.5. Individual trajectories of height from the Berkeley growth curve data superim-
posed with the sample mean function, the estimated mean function assuming uncorrelated
errors, and the estimated mean function assuming spherical correlation structure in the
errors. All the estimated mean functions essentially close to each other.

large positive to large negative values, then it increases to moderately positive values, and

decreases again to negative or near-zero values. Thus, the assumption of uncorrelated and

homoscedastic errors is not tenable and there is a clear need to the model the autocorrelation

in the errors. However, it is difficult to capture the observed band structure through standard

parametric models for autocorrelation.

Among the available error autocorrelation models in the nlme package, the time series

models described in Section 1.2.4 are out of consideration because the observation times

(i.e., the ages) are not equally-spaced. However, we can employ spatial correlation struc-

tures described in Section 1.2.4 based on variogram models because they allow unevenly
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Figure 2.6. Heat map of sample correlation matrix of normalized residuals from the model
assuming uncorrelated errors.

spaced continuous observation times. We refit the proposed model using four different spa-

tial correlation structures to the errors, namely, exponential, rational quadratic, spherical,

and Gaussian models. AIC, BIC, and the maximum log-likelihood values for the resulting

models are presented in Table 2.13. The spherical correlation model is appears the best,

followed by the exponential correlation model (which is equivalent to the continuous AR(1)

model). The heat map of sample correlation matrix of normalized residuals from this model

is shown in Figure 2.7. Although the blocks below the diagonal are not perfectly whitish,

but they are comparatively whiter than those in Figure 2.6, showing a marked improvement

over the uncorrelated errors model.

The estimated mean function for the spherical correlation model is also displayed in

Figure 2.5. Due to the balanced nature of the data, this mean function also close to the other
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Table 2.13. Model selection criteria for different spatial correlation structures.
Model Structure AIC BIC log-likelihood

1 Exponential 5089.721 5181.860 -2527.860
2 Rational Quadratic 5500.498 5592.638 -2733.249
3 Spherical 4976.840 5068.979 -2471.420
4 Gaussian 6114.226 6206.366 -3040.113

estimated mean functions displayed in that figure. Next, Figures 2.8 and 2.9 respectively

present the estimated random effect variance function ψ̂(t, t) and heritability function ĥ2(t)

along with superimposed 95% simultaneous confidence bands under both uncorrelated and

correlated error models. We see that not taking into account of autocorrelation structure in

the errors leads to a slightly higher random effect variance throughout the age interval. This

in turn leads to a slightly higher estimate of heritability function over all the ages. However,

the difference is not substantial. Thus, in these data, the difference between the heritability

estimate with and without the correlation structure is not substantial. This may be partly

due to the fact that the error variance in these data is small relative to the between-subject

variation. We may expect a larger difference when the error variance is substantial relative

to the between-subject variation.

2.5 Summary and future work

In this chapter, we present a functional mixed model that allows the within-subject errors

to be heteroscedastic and correlated. Although the random effect covariance structure is

modeled nonparametrically via splines, parametric models are assumed for error covariance

structure to avoid identifiability issues. The following additional research is planned for the

near future:

• Develop a cross-validation type method for selecting the number of basis functions.

• Incorporate penalized estimation of mean function in the methodology.
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Figure 2.7. Heat map of sample correlation matrix of normalized residuals from the model
assuming a spherical autocorrelation structure for the errors.
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errors and a spherical correlation structure in the errors.
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Figure 2.9. Estimate of heritability function ĥ2(t) assuming uncorrelated errors and a
spherical correlation structure in the errors.

• Evaluate via simulation the impact of a model selection step to select the error corre-

lation structure.

• Develop an alternative for case when the errors are highly correlated as the simultane-

ous interval for h2(t) does not work well in that case.

• Evaluate spatial correlation structures via simulation.

• Develop an R package to implement the methodology and make it publicly available.
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CHAPTER 3

A FUNCTIONAL MIXED MODEL FOR FAMILY DATA

3.1 Introduction

The data considered in this chapter have the same structure as in Chapter 2 in that they

consist of functional responses of n subjects but with one distinction: the subjects are not

mutually independent anymore. Instead, they are grouped into families. This distinction is

important because members of the same family are genetically related, inducing dependence

in their responses, while members of different families can be assumed to provide independent

responses. To get correct inference, modeling and analysis of family data must take into to

account of the familial dependence among the subjects and hence the dependence in their

responses. Our goal in this chapter is to adapt the functional mixed model methodology of

the previous chapter for family data.

Family data are quite common in statistical genetics. As mentioned in Chapter 1, they

are used to estimate heritability of a quantitative trait. Developing methods for estimation

of heritability has been a mainstay of quantitative genetics. Over time, a number of methods

have become available for estimating heritability from a variety of data types, including uni-

variate traits40–43, multivariate traits44,45, and longitudinal traits32,36,46–50. These methods

generally assume a mixed model (or often a special case of it called a variance components

model) for the data, where the mean is a fixed effect and the genetic effect is an additive ran-

dom effect, and use likelihood-based methods for estimating the unknown parameters. In the

case of longitudinal data, the fixed mean effect and the random genetic effect are functions

of time. These effects can also be specified nonparametrically using splines32,36,49,50.

As the individuals in a family are correlated, their correlation is incorporated into the

analysis in the form of a correlation matrix46,48. Traditionally, the methods use pedigree

information to infer this relatedness42,46. However, if the pedigree information is partially or
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wholly unknown, genetic markers51–53 or the observed genotype data54–59 can be used to infer

relatedness between pairs of individuals. In the situation where neither familial relationships

nor genotypes are available, a recent work60 has explored the use of methylation data for

estimating the relatedness. For model estimation, although it is possible to use specialized

software, it is more common nowadays to adapt a mainstream statistical software for fitting

mixed models such as nlme37 and lme461 packages in the open-source system R62 as they

are powerful, flexible, and efficient. Adaptations such as lme4qtl63 are necessary because

the standard software assume independence across individuals, which is not true for family

data. This also the approach we adopt here. An alternative to this, applicable for certain

types of family data, is to first perform a reparameterization of the genetic random effect64

and then use a standard software.

The rest of this chapter is organized as follows. In Section 3.2, we adapt the functional

mixed model of Chapter 2 for family data by essentially following the same development.

The new functional mixed model generalizes many existing quantitative trait models from

statistical genetics. In Section 3.3, we report results of a simulation study to evaluate

properties of the proposed estimation procedures. Section 3.5 concludes with summary and

mentions some ongoing and future work.

3.2 Modeling family data

As mentioned in Section 3.1, the family data have the same structure as the data from Chap-

ter 2 with the exception that the subjects may have familial dependence. This dependence

is incorporated through a n× n known correlation matrix

A = (ril). (3.1)

Here ril can be computed from the pedigree data using the known relationship between the

individuals i and l as twice their kinship coefficient65. Alternatively, this matrix can be

computed using genetic markers51–53 or observed genotype information54–59.
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3.2.1 Population and data models

Borrowing notation from the previous chapter, our functional mixed model for the population

is identical to that of (2.1), i.e.,

y(t) = f(t) + g(t) + ε(t), t ∈ T , (3.2)

where y(t), t ∈ T denotes the functional response of a randomly selected subject from the

population; f(t) is the population mean function; g(t) is a random effect function that cap-

tures the deviation from the population mean for the subject, with mean zero and covariance

function ψ(s, t); ε(t) represents the random error, distributed independently of g(t), with

mean zero and covariance function σ(s, t); and the errors are allowed to be heteroscedastic

and correlated.

The observed data consist of yi(tij), j = 1, . . . ,Mi, i = 1, . . . , n, where yi(t) is the func-

tional response of subject i, discretely observed at the observation times tij. Following (2.4),

the model for these family data can also be written as

yi(tij) = f(tij) + gi(tij) + εi(tij), j = 1, . . . ,Mi, i = 1, . . . , n, (3.3)

where f(t) is the population mean function, gi(t) is the random effect function of individual

i, and εi(t) is the random error function, distributed independently of gi(t). Here it is

assumed that the εi(t) are independent realizations of the error function ε(t) from (3.2)

which are observed at the sites tij. Therefore, the errors have mean zero. Moreover, the

errors associated with the same individual have covariance function σ(s, t), whereas those

associated with different individuals are independent. Further, the gi(t) are realizations of

the function g(t) defined in (3.2) which are observed at the sites tij. Thus, gi(t) has mean zero

and its covariance function is ψ(s, t). However, unlike (2.4), the gi(t) now may be dependent

across subjects. Specifically, it is now assumed that the covariance between random effect

functions of subjects i and l is

cov(gi(s), gl(t)) = rilψ(s, t), s, t ∈ T , i, l = 1, . . . , n, (3.4)
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where ril is given by (3.1). It follows from (3.4) that corr(gi(t), gl(t)) = ril, t ∈ T . Thus, we

may interpret ril as the correlation between genetic effects of individuals i and l at the same

t. This correlation does not depend on t. As in (2.3), the heritability function is

h2(t) =
var(g(t))

var(y(t))
=

ψ(t, t)

ψ(t, t) + σ(t, t)
, t ∈ T . (3.5)

3.2.2 A natural generalization of quantitative trait models

If we think of the response y as a quantitative trait and assume only an additive geno-

typic effect and no additive major gene effects or shared environmental effects, then several

mixed models from quantitative genetics may be seen as special cases of the proposed model

(3.3). Examples include the classical model for one genotype12, polygenic model65, and the

multivariate trait model45,65. To see the last model, suppose there are M traits, indexed

as j = 1, . . . ,M . The traits may be polygenic but there is no need be specific about the

number of loci involved. The model considered in Sec. 8.4 of Lange65 can be written as

yij = fj + gij + εij, j = 1, . . . ,M , i = 1, . . . , n, where yij is the phenotypic value of jth trait

for individual i, gij is the genotypic effect acting on the jth trait of individual i, and εij is the

error term. The gij have mean zero and cov(gij, glq) = rilψjq, i, l = 1, . . . , n, j, q = 1, . . . ,M ;

and the εij have mean zero and cov(εij, εiq) = σjq. Here ψjj and ψjq are the additive variances

and covariances of the genetic effects and σjj and σjq are the variances and covariances of the

errors associated with the same individual. By a suitable choice of the quantities involved

in (3.3), we can see that this multivariate trait model is a special case of it.

Likewise, using appropriate notation, the longitudinal model46 for a single trait can

also be seen as a special case of (3.3). The variance function ψ(t, t) in the proposed model

generalizes the notion of additive variance in quantitative trait models by letting it depend on

t. Moreover, for covariance between genetic effects acting on individuals i and l, these models

assume the structure cov(gi, gl) = rilψ in case of a univariate trait12,65 and cov(gij, glq) =

41



rilψjq in case of a multivariate trait65. The covariance between the functional genetic effects

gi and gl given by (3.4) is a natural generalization of this structure. Thus, the proposed

functional mixed model (3.3) may be justifiably seen as a generalization of the commonly

used mixed models in quantitative genetics that only include additive genetic effects and

random errors.

3.2.3 Basis expansion and representation as a classical mixed model

Proceeding along the lines of Chapter 2, the data model (3.3) can be written using the basis

expansion (2.5) to get the analog of (2.8) as

yi(tij) = ΦT
f (tij)β + ΦT (tij)bi + εi(tij), j = 1, . . . ,Mi, i = 1, . . . , n. (3.6)

But here, unlike in (2.8), bi are not assumed to be mutually independent. Instead, it is

assumed that

cov(bi,bl) = rilG, (3.7)

so that we have cov(gi(s), gl(t)) = ΦT (s)cov(bi,bl)Φ(t) = rilΦ
T (s)GΦ(t) = rilψ(s, t), which

is the desired covariance structure from (3.4). This also shows that with family data, the

random effect covariance structure can be separated from the error covariance structure,

resolving the identifiability issue that afflicts the model from the previous chapter where the

subjects are independent.

Now the model (3.6) also be represented in form of a classical mixed model to get the

analog of (2.10) as

Yi = Xiβ + Zibi + εi, bi ∼ (0,G), εi ∼ (0,Ri), i = 1, . . . , n, (3.8)

with cov(bi,bl) = rilG and cov(bi, εl) = 0 for all i and l, and cov(εi, εl) = 0 for i 6= l; and

to get the analog of (2.13) as

Yi = Xiβ + ZiΩΓui + εi, ui ∼ (0, Iq), εi ∼ (0,Ri), i = 1, . . . , n, (3.9)
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where cov(ui,ul) = rilIq. Next, the model for all the data together than can also represented

in the form of a joint classical mixed model to get the analog of (2.11) as

Y = Xβ + Zb + ε, b ∼ (0,A⊗G), ε ∼ (0,R), cov(b, ε) = 0, (3.10)

where A is the family correlation matrix given by (3.1). We can also get the analog of (2.14)

as

Y = Xβ + Zu + ε, u ∼ (0,A⊗ Iq), ε ∼ (0,R), cov(u, ε) = 0, (3.11)

At this point, note that, in the models (3.3) and (3.6) we did not use specific index for

family information because family information is being taken into account in correlation

matrix given in (3.1). The model (2.11) or equivalently (2.14) for independent subjects is

obtained by setting A = In in (3.10) or (3.11), respectively.

The fact that the individual random effects vector bi in (3.8) or ui in (3.9) are correlated,

not independent which is a standard assumption in mixed models, precludes the use of

common software for fitting mixed models. To address this, we extend an idea used in

lme4qtl package63 and apply a transformation to convert the model in the standard form

where the random effects vector has a covariance matrix of the form In ⊗ Iq. To this end,

note that the vector u in (3.11) is written as n stacks of q × 1 vectors, where each stack

consists of q coefficients for a particular individual. Define a nq × 1 vector by rearranging

the elements of u so that it is written as q stacks of n× 1 vectors, where each stack consists

of values of a particular coefficient on n individuals. Specifically, let ũk = (uk1, . . . , ukn)T be

the n×1 vector of values of the kth coefficient and ũ = (ũT1 , . . . , ũ
T
q )T be the nq×1 vector of

all the coefficients. We have, ũk ∼ (0,A) and ũ ∼ (0, Iq ⊗A). Let Z̃ be the N × nq design

matrix associated with the random effects vector ũ. It is a rearrangement of columns of Z

and has the form Z̃ = [Z̃1, . . . , Z̃q], where each Z̃k is a N × n matrix.
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Let the n×n matrix U denote the upper triangular factor of the Cholesky decomposition

of the correlation matrix A so that UTU = A. By construction,

Zu = Z̃ũ =

q∑
k=1

Z̃kũk =

q∑
k=1

Z̃kU
T (UT )−1ũk =

q∑
k=1

Z̃∗kũ
∗
k = Z̃∗ũ∗ = Z∗u∗, (3.12)

where Z̃∗k = Z̃kU
T , ũ∗k = (UT )−1ũk, Z̃∗ = [Z̃∗1, . . . , Z̃

∗
q], ũ∗ = (ũ∗T1 , . . . , ũ∗Tq )T , and Z∗ is the

N×nq design matrix associated with u∗. Here (u∗,Z∗) is obtained from (ũ∗, Z̃∗) by applying

the reverse of the operations that led to (ũ, Z̃) from (u,Z). It follows that ũ∗k ∼ (0, In),

ũ∗ ∼ (0, Iq ⊗ In), u∗i ∼ (0, Iq), and u∗ ∼ (0, In ⊗ Iq). Thus, an equivalent representation of

model (3.11) is

Y = Xβ + Z∗u∗ + ε, u∗ ∼ (0, In ⊗ Iq), ε ∼ (0,R), cov(u∗, ε) = 0. (3.13)

In this formulation, the individual-specific components of the transformed vector u∗ are

independent draws from a q-variate distribution with mean zero and covariance matrix Iq.

Due to (3.12), var(Zu) = var(Z∗u∗), implying that Z(A⊗ Iq)Z
T = Z∗(In⊗ Iq)Z

∗T . Unlike Z

in (3.11), Z∗ in (3.13) is not a block diagonal matrix with individual-specific blocks on the

diagonal. The formulation (3.13) can be used for fitting the model. We can proceed along

similar lines to get an equivalent representation of (3.10) as

Y = Xβ + Z∗b∗ + ε, b∗ ∼ (0, In ⊗G), ε ∼ (0,R), cov(b∗, ε) = 0. (3.14)

3.2.4 Models for error covariance function

As in Section 2.2.5, we let the covariance matrix G be unstructured and consider only

parametric models for error covariance function σ(s, t).

3.2.5 Model fitting and inference

As in Section 2.2.6, for model fitting, we additionally make the normality assumption, and

in principle, the model can be fit using likelihood-based methods and large-sample theory
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together with bootstrap can be used for inference. It would appear that once the functional

mixed model (3.3) is represented as a classical mixed model (3.14), one should be able

to use a software package for fitting the latter model to fit the former model. However,

due to the quirks of the design of the mixed model fitting packages, challenges remain in

incorporating familial dependence among the subjects. Thus far, we have only been able

to implement model fitting under the assumption of uncorrelated and homoscedastic errors,

i.e., σ(s, t) = σ2I(s = t), using the R package lme461.

3.3 A simulation study

In this section, we use Monte Carlo simulation to evaluate performance of interval estima-

tors of the following quantities: mean function f(t), variance function ψ(t, t) of the random

effect function, error variance σ2, and heritability function h2(t). Coverage probability for

an interval estimator is taken as the measure of accuracy. Both pointwise and simultaneous

coverage probabilities are considered for parameter function that depend on t. This evalu-

ation only focuses on the model with uncorrelated and homoscedastic errors, i.e., R = σ2I,

for which we have been able to implement the fitting.

For computational convenience, we assume that the number of subjects n is a multiple

of 4 and the subjects are grouped into n/4 families, each consisting of 4 members: father,

mother, and two children. The correlation structure of the family members is as follows:

father and mother are uncorrelated, meaning r12 = 0; parents and children are correlated

with correlation r13 = r14 = r23 = r24 = 0.5; and the two siblings are also correlated with

correlation r34 = 0.5. Thus, the correlation matrix for a family is

A0 =



1 0 0.5 0.5

0 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


.
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Table 3.1. Estimated coverage probabilities (in %) of 95% confidence intervals for error
variance σ2. Settings (a) and (b) respectively represent with and without bias correction.

# Families n (a) (b)
25 100 94.5 96.0
50 200 93.3 92.3
75 300 97.8 99.0

Thus, the familial correlation matrix A for n subjects will have a diagonal structure with

A0 repeated on the diagonal n/4 times. In other words, it can be written as A = In/4⊗A0.

The data are simulated from (3.14) on a grid of M = 30 equally-spaced time points as t ∈

T = {1, 2, . . . , 30} under the following settings and assumptions: f(t) = 74.0 + 6.5t− 0.10t2;

g(t) is a linear combination of q = 4 cubic spline basis functions with coefficient vectors

distributed as N4(0,G = diag{1, 10, 15, 50}); R = σ2I with σ2 = 5; n ∈ {100, 200, 300}; and

1− α = 0.95 for both pointwise and simultaneous confidence intervals.

As in Section 2.3, the model is fit by restricted maximum likelihood using a B-spline

basis29,39 with p = 14 basis functions for the fixed effect function and q = 4 basis functions

for the random effect function. Further, bootstrap as described in Section 1.3 is used to

construct confidence intervals Q = 50 replications, both with and without a bias correction.

For higher accuracy, the confidence intervals for σ2 and ψ(t, t) are first constructed on natural

log scale and then exponentiated. Likewise, the confidence interval for heritablity function

is first constructed on logit scale and then the inverse logit transformation is applied to get

the results on the original scale. The whole process of simulating data, model fitting, and

constructing confidence intervals is repeated 300 times to estimate the coverage probabilities.

The estimated coverage probabilities for σ2 are presented in Table 3.1. We observe that

confidence intervals without bias correction have higher coverage than those with it except

when n = 200. There is indication that bias correction may be leading to a wider confidence

interval and hence higher coverage.

Table 3.2 presents average estimated pointwise coverage probability for three parameter

functions of time: mean function f(t), random effects variance function ψ(t, t), and heri-
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Table 3.2. Average estimated pointwise coverage probability (in %) of 95% confidence
intervals for mean function f(t), random effects variance function ψ(t, t), and heritability
function h2(t). Settings (a) and (b) respectively represent with and without bias correction.

Parameter # Families n (a) (b)
f(t) 25 100 92.5 92.9

50 200 94.1 94.2
75 300 92.8 92.7

ψ(t, t) 25 100 92.7 93.4
50 200 94.1 94.3
75 300 93.3 93.5

h2(t) 25 100 92.5 93.5
50 200 94.1 94.4
75 300 94.1 94.4

tability function h2(t). In either case, the bias correction does not seem to matter as the

probabilities are more or less similar with and without the correction. The probabilities tend

to increase with n and become closer to the nominal level. A graph of estimated pointwise

coverage probability for h2(t) against t is shown in Figure 3.1. On the whole, the pointwise

intervals may be considered to have acceptable accuracy with n ≥ 200.

Table 3.3 presents estimated simultaneous coverage probabilities for the three parameter

functions mentioned before. We see that intervals without the bias correction tend to have

slightly higher coverage probability which are closer to the nominal level than those with the

correction. There is indication that n ≥ 200 may be enough to provide acceptable accuracy.

3.4 Application to estimation of DNA methylation heritability

Although genetic changes take many generations of natural selection, according to Dar-

winism, epigenetic changes, on the other hand, can happen within a short period of time.

Powerful environmental conditions may leave an imprint on genetic material, which can lead

to passage of new traits in a single generation through the epigenetic process. Such a process

is known as DNA methylation, a biological process through which methyl groups are added

to the DNA molecules.
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Figure 3.1. Estimated pointwise coverage probability of 95% confidence intervals for her-
itability function h2(t). The horizontal solid dark green line represents the nominal 0.95
confidence level.

Table 3.3. Estimated simultaneous coverage probabilities (in %) of 95% confidence intervals
for mean function f(t), random effects variance function ψ(t, t), and heritability function
h2(t). Settings (a) and (b) respectively represent with and without bias correction.

Parameter # Families n (a) (b)
f(t) 25 100 88.8 89.0

50 200 93.0 93.8
75 300 90.5 90.5

ψ(t, t) 25 100 88.5 90.3
50 200 91.3 92.5
75 300 89.5 90.8

h2(t) 25 100 88.8 90.5
50 200 92.8 94.0
75 300 90.0 91.3
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In particular, DNA methylation, the cornerstone of epigenetic changes, has been widely

studied to understand its role in many biological traits and cell development, including em-

bryonic development, cell differentiation, genomic imprinting, X-chromosomal inactivation,

and autoimmunity66–72. In recent years, its role in marking the biological clock has also been

studied73,74, and it has been hypothesized that DNA methylation is heritable from genera-

tion to generation75–81. There are several types of DNA methylation, with the most common

(almost exclusively) one in humans being in the context of CG dinucleotides — also referred

to as CpG or 5-mC — where the cytosine (C) may be methylated. This is the context we

consider here. To study methylation heritability, most of the existing methods estimate it

separately at each CpG site77,82. However, it is known that methylation levels are correlated

between sites that are separated by less than 1000 base pairs (bp)83–85, and there is evidence

that methylation patterns in a genomic region have greater association with gene expression

than individual CpG sites86–90. As such, it would be more appropriate to understand the

entire landscape of DNA methylation heritability by studying CpG regions and by taking

correlation into consideration rather than studying individual sites. By doing so, one may

begin to characterize DNA methylation heritability patterns within and across genomes.

As elaborated above, statistical methods for estimating heritability of quantitative traits

based on mixed models are well developed. A number of approaches are available for mod-

eling methylation data as well but they are primarily directed at identifying differentially

methylated cytosines or differentially methylated regions89–96. For estimating methylation

heritability, the most common approach is to treat the methylation level at each single site

throughout the genome as a univariate trait and apply methods based on mixed models

separately for each site60,77,80,82,97,98. This site-wise approach is naive in that it completely

ignores the correlation in the methylation levels of nearby sites, which are known to be highly

correlated83–85,92,95,99,100. Further, by not borrowing information across the neighboring sites

within the region, it makes a suboptimal and potentially wasteful use of data. As a result, the
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site-wise heritability estimates are likely to be inefficient and have high variability. This is a

potentially serious problem as high variability may mask clear patterns that may be present

in the true heritability profiles. These shortcomings of a site-wise approach are statistical

in nature; however, its shortcoming of a biological nature poses a more serious concern. As

articulated in a number of works86–88, the working unit of DNA methylation is perhaps a

region rather than a site; therefore, it would be much more biologically meaningful to profile

the heritability of CpG regions rather than individual CpG sites.

The shortcomings of a site-wise approach can be corrected by taking a region-wise ap-

proach that jointly models the entire methylation profile of a given CpG region. We can

directly apply our model (3.14) to jointly model such data. This approach involves treating

the observed methylation profiles of individuals as draws from a smooth random curve (func-

tion) that are measured discretely at the sites in the region. Thus, the data on an individual

are treated as one observed curve rather than a sequence of observations. The curves for

different individuals are dependent due to the relatedness of the individuals in the observed

sample (which could be from known familial relationship or simply representing cryptic re-

latedness). Each individual methylation curve is decomposed into a fixed population mean

function, a random genetic effect function, and a random error function representing the en-

vironmental effect. The population mean and random effect functions are specified nonpara-

metrically through basis expansions. This way no a priori assumptions are made regarding

their shapes and they are estimated from the data. The within-individual errors are allowed

to be heteroscedastic and correlated by letting their autocovariance function depend on site.

One specific dataset we are trying to obtain is Framingham Heart Study (FHS) data for

application to our proposed methodology. In this family data set, along with age and gender

of participants, peripheral blood cell DNA methylation levels are also recorded on 48 sites

belonging to the chr6:29894140-29895117 CpG island. The data consists of 2541 individuals,

2369 of whom are known to be related. A small number of subjects have missing values on a
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number of methylation sites, but that posed no problem as our method can handle missing

data.

3.5 Summary and future work

In this chapter, we present a functional mixed model for modeling and analysis of family

data. The proposed model generalizes various quantitative trait models from statistical

genetics for scalar, vector, and longitudinal responses to the case of functional response. The

computations for fitting the model have only been implemented for the case when errors are

uncorrelated and homoscedastic. Once fully implemented, the model can be used to estimate

heritability of functional traits. Having family data allows separation of covariance structure

due to random effects and errors, resolving the non-identifiability issue. This would also

open door for incorporating nonparametric models for error covariance function, enhancing

the flexibility of the methodology. Additional simulation studies are underway to get a

more clear conclusion regarding performance of interval estimators of model parameter and

parameter functions. Further work is needed in future to make this methodology viable. We

specifically plan to explore the following in the near future:

• Implement computations for fitting the model (3.14) for assuming parametric models

for error covariance structure, as in Chapter 2.

• Perform a comprehensive simulation study to evaluate properties of the estimators.

• Develop a cross-validation type method for selecting the number of basis functions.

• Illustrate the methodology by estimating methylation heritability from FHS data in-

troduced in Section 3.4.

• Incorporate penalized estimation of mean function in the methodology.
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• Extend the methodology to allow nonparametric models for error covariance, test it

on real and simulated data, and compare it with alternative competing methods.

• Develop an R package to implement the methodology and make it publicly available.

52



CHAPTER 4

A SINGULAR MIXED MODEL

4.1 Introduction

As we have seen in previous chapters, classical mixed models provide a flexible framework

for modeling and analysis of functional data. These models, however, assume that the error

covariance matrix is nonsingular. Moreover, when the error covariance structure is modeled,

we primarily restrict attention to simple parametric structures, such as those considered in

Chapters 2 and 3. Even though this practice limits flexibility in modeling error covariance

structures, one reason why it is common is that nonparametric structures (e.g., one obtained

by a functional principal components analysis) generally make the error covariance matrix

singular. This would imply constraints on the model, which would raise challenges for fitting

and interpreting the model.

The issue of singular error covariance matrix has been studied in the context of linear

models. The book of101—called SJ here for brevity—provides a nice, systematic summary of

the literature on this topic. However, to our knowledge, this issue has not been taken up in the

literature on mixed models. This chapter represents the first step in the development of such

models, which we call singular mixed models. Note that singularity here refers to only the

error covariance matrix as we continue to assume that the random effect covariance matrix

is nonsingular. Upon reviewing some basic concepts and results from matrix algebra and

singular linear models in Section 4.2 that are relevant for our development, we define singular

mixed models in Section 4.3. A simple example is presented in Section 4.4 to illustrate the

constraints imposed by singularity. Some preliminary ideas on how such models may be fit

to data, assuming known error covariance matrix up to a scaling parameter, are presented

in Section 4.5. Section 4.6 lists the next steps in the development that are planned for the

near future.
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4.2 Preliminaries

In this section, we review some basic concepts and results from matrix algebra and singular

linear models that are relevant for our development. We use the following notation. For a

matrix A, let A′ be its transpose; C(A) be its column space; PA be the projection matrix

for C(A); and I − PA be the projection matrix for C(A)⊥. By projection matrix, we mean

the orthogonal projection matrix. Further, A− is a generalized inverse of A and A+ is

its Moore-Penrose inverse. If A is square, |A| is its determinant. An identity matrix of

order n × n is denoted as In. It will be written as I if its dimension is clear from the

context. Finally, Nm(µ,Σ) denotes a m-variate normal distribution with mean vector µ and

covariance matrix Σ.

4.2.1 Some matrix algebra concepts and results

Definition 1. (SJ, p. 40) Any non-null m × n matrix of A of rank r can be written as

A = BC, where B is a m× r matrix of full column rank and C is a r× n matrix of full row

rank. This is called rank factorization of A.

Proposition 4.1. 102 p. 72-73, 120-121 Consider a linear system Ax = b, where A is a

m× n coefficient matrix, x is a n× 1 vector of unknowns, and b is a m× 1 vector. Each of

the following conditions is necessary and sufficient for the system to be consistent.

(a) b ∈ C(A).

(b) C(A : b) = C(A).

(c) rank (A : b) = rank (A).

(d) AA−b = b, or equivalently, (I−AA−)b = 0.
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Proposition 4.2. (SJ, p. 38-43) Let V be a n× n symmetric, non-negative definite matrix

of rank r ≤ n. Suppose V = PΛP′ is a spectral decomposition of V, where Λ is a diagonal

matrix with the eigenvalues of V in nonincreasing order as the diagonal elements and P is a

n× n orthogonal matrix with columns as the corresponding orthonormal eigenvectors of V.

Let P1 and P2 be n× r and n× (n− r) matrices respectively containing the first r and the

last n− r columns of P. Also, let Λ1 be a diagonal matrix with the first r eigenvalues of V

(which are positive) as the diagonal elements.

(a) V = P1Λ1P
′
1.

(b) V+ = P1Λ
−1
1 P′1.

(c) V = CC′, where the n × r matrix C = P1Λ
1/2
1 has r orthogonal columns and full

column rank, provides a rank factorization of V. Moreover, |C′C| equals the product

of r positive eigenvalues of V.

(d) PV = P1P
′
1, providing a rank factorization of PV.

(e) I−PV = P2P
′
2, providing a rank factorization of I−PV.

4.2.2 Some distribution theory

Proposition 4.3. (SJ, ch. 3) Suppose Y is a n× 1 random vector with finite mean µ and

covariance matrix V, which may be singular or nonsingular.

(a) Y − µ ∈ C(V) with probability 1.

(b) (I−PV)(Y − µ) = 0 with probability 1.

(c) Suppose V is singular of rank r ≤ n. Let AA′ be a rank factorization of I − PV,

i.e., I − PV = AA′, where A is a n × (n − r) matrix with full column rank. Then,

A′(Y − µ) = 0 with probability 1.
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When V is singular of rank r, the columns of V satisfy n − r linearly independent

constraints. This in turn implies a deterministic relationship that n− r linear combinations

of the random vector Y − µ are zero with probability 1. Part (c) above identifies such

linear combinations and also gives the linear deterministic relationship as A′Y = A′µ with

probability 1. Further, from Proposition 4.2, we may take A = P2—a matrix whose columns

are eigenvectors of V associated with its zero eigenvalues—in the above result.

Proposition 4.4. (SJ, p. 56) If Y1 and Y2 are two random vectors with finite mean and

covariance matrices, C(cov(Y1,Y2)) ⊆ C(var(Y1)).

Next, we define a multivariate normal distribution that covers both singular and nonsin-

gular covariance cases and present some characterizations and properties.

Definition 2. 103 p. 436 A n× 1 random vector Y with mean µ and covariance matrix V

follows a Nn(µ,V) distribution if Y is equal in distribution to CZ+µ, where C is any n× r

matrix so that CC′ is a rank factorization of V, and Z ∼ Nr(0, I).

The normal distribution is invariant to the choice of C. An alternative equivalent defini-

tion is as follows:

Definition 3. 103 p. 436 The random vector Y is multivariate normal if and only if a′Y is

univariate normal for all a. If Y = µ with probability one, we define Y to be N1(µ, 0).

Proposition 4.5. (SJ, p. 58) Suppose Y ∼ Nn(µ,V), where V may be singular or non-

singular and has rank r ≤ n. Let V− be a generalized inverse of V and CC′ be a rank

factorization of V. The probability density function of Y is

f(y) =


(2π)−n/2|C′C|−1/2 exp

(
−1

2
(y − µ)′V−(y − µ)

)
, if (I−PV)(y − µ) = 0,

0, otherwise.

56



This density is invariant to the choice of V− and C. Moreover, when V is nonsingular,

r = n, |C′C| = |V|, V− = V−1, PV = I, and (I−PV)(y−µ) = 0 holds for all y ∈ Rn. When

V is singular with rank r, the probability density function exists only in a r-dimensional

subspace of Rn.

Proposition 4.6. 103 p. 436-437 Let Y ∼ Nn(µ,V), where the distribution may be singular

or nonsingular.

(a) The moment generating function of Y is

MY(t) = exp (t′µ+ t′Vt/2) , t ∈ Rn.

(b) If A is m × n, then AY ∼ Nm(Aµ,AVA′). The distribution is nonsingular if V is

nonsingular and A has rank m.

(c) Any subset of a multivariate normal distribution is multivariate normal.

(d) If the covariance of any two vectors that contain disjoint subsets of Y is zero, then the

two vectors are statistically independent.

(e) If cov(AY,BY) = 0, then AY and BY are statistically independent.

(f) Suppose V is nonsingular, and let

Y =

Y1

Y2

 , µ =

µ1

µ2

 , V =

V11 V12

V21 V22

 ,

where Yi and µi are ni × 1, Vii is ni × ni (i = 1, 2), and n1 + n2 = n. We then have

the following conditional distribution:

Y2|Y1 ∼ Nn2(µ2.1,V22.1),

where µ2.1 = µ2 + V21V
−1
11 (Y1 − µ1) and V22.1 = V22 −V21V

−1
11 V12.

(g) The result (f) still holds if V is singular upon replacing V−111 with V−11, any generalized

inverse of V11.

57



4.2.3 Singular linear model

Our development in this section is primarily based on101. Consider a linear model Y =

Xβ + ε, where Y is a n × 1 response vector; X is a n × p design matrix which may not

have full column rank; β is a p × 1 unknown coefficient vector; and ε is a n × 1 random

error vector with E(ε) = 0 and var(ε) = σ2R. Here R is assumed to be known. For Y, it

follows that E(Y) = Xβ and var(Y) = σ2R. In a standard linear model, R = I, whereas in

a general linear model, R is nonsingular (full rank). However, in a singular linear model, R

is singular (rank-deficient).

Singularity of R implies that certain linear combinations of the error vector are zero

with probability 1. This in turn implies that certain linear combinations of response Y are

constant with probability 1. Thus, singularity of R implies a partly deterministic structure

on Y, which has to be taken into account while performing statistical inference. To be

specific, the constraint on Y from Proposition 4.3 is: (I − PR)Y = (I − PR)Xβ with

probability 1. When there exists a β such that this condition holds, the data are said to

be consistent with the linear model. This consistency is related to consistency of a linear

system considered in Proposition 4.1. Other equivalent forms of this consistency condition

that do not explicitly require a β are given by the following result.

Proposition 4.7. (SJ, p. 246) For a singular linear model, the following conditions are

equivalent.

(a) Y ∈ C(X : R) with probability 1.

(b) (I−PR)Y ∈ C((I−PR)X) with probability 1.

(c) (I−PX)Y ∈ C((I−PX)R) with probability 1.

If R is nonsingular, these conditions are automatically satisfied. However, this may not

necessarily be the case if R is singular. If this happens, we say that the data are inconsistent
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with the linear model. In practice, it is recommended to verify that one of these conditions

is met before proceeding with inference.

Definition 4. (SJ, p. 250-251) A linear parametric function p′β is called estimable if there

is a linear estimator l′Y of p′β such that E(l′Y) = p′β for all β (not just those that are

possible under the model). A linear parametric function is identifiable if and only if it is

estimable.

Proposition 4.8. (SJ, p. 250) A necessary and sufficient condition for estimability of a

linear parametric function p′β is p ∈ C(X′).

Proposition 4.9. (SJ, p. 252) Consider the vector LXβ of linear parametric functions

which are estimable under the model. Its best linear unbiased estimator (BLUE) is given by

L̂Xβ = L
[
I−R(I−PX){(I−PX)R(I−PX)}−(I−PX)

]
Y.

This BLUE is unique.

The BLUE does not depend on the choice of the generalized inverse. Substituting L = I in

this result gives the vector of fitted values as (SJ, p. 253)

Ŷ =
[
I−R(I−PX){(I−PX)R(I−PX)}−(I−PX)

]
Y. (4.1)

Further, since any estimable linear parametric function Aβ can be written as AX−Xβ, it

follows from Proposition 4.9 that its BLUE is Âβ = AX−Ŷ. This motivates the following

as an estimator of β (SJ, p. 253):

β̂ = X−Ŷ. (4.2)

This estimator is not unique as it depends on the choice of X−. However, it is unique if X

has full column rank, in which case it is the BLUE of β. The vector e of residuals is Y− Ŷ,

which from (4.1) can be written as

e = R(I−PX){(I−PX)R(I−PX)}−(I−PX)Y. (4.3)
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Finally, an estimator of σ2 (SJ, p. 260) is

σ̂2 =
e′R−e

ρ(R : X)− ρ(X)
, (4.4)

where ρ(A) is rank of a matrix A. The estimator σ̂2 does not depend on the choice of R−.

4.3 Singular mixed model

Consider a linear mixed model Y = Xβ+Zb+ε, where Y is a m×1 response vector; X is a

m×p fixed effect design matrix; β is a p×1 vector of fixed coefficients; Z is a m× q random

effect design matrix; b is a q × 1 vector of random coefficients distributed as Nq(0,G); and

ε is a m× 1 random error vector with distributed as Nm(0, σ2R), independently of b. Here

we assume that G is nonsingular and R may be singular. We will refer to this model as the

singular mixed model. If R is nonsingular, the model reduces to the classical mixed model

which has been considered in the previous chapters.

Let V = var(Y) = ZGZ′ + σ2R denote the marginal covariance matrix of Y. In a

mixed model, Z generally does not have full row rank, making ZGZ′ rank-deficient. If, in

addition, R is singular, it may make V singular. The next result provides an analog of the

distributional results for the nonsingular case.

Proposition 4.10. For a singular mixed model, we have the following distributions:

(a) Y

b

 ∼ Nm+q


Xβ

0

 ,

 V ZG

GZ′ G


 .

(b) Y ∼ Nm(Xβ,V). Its probability density function f(y) is given as
(2π)−r/2|C′C|−1/2 exp

(
−1

2
(y −Xβ)′V−(y −Xβ)

)
, if (I−PV)(y −Xβ) = 0,

0, otherwise,

where r is the rank of V and CC′ is a rank factorization of V.
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(c) b|Y ∼ Nq (E(b|Y), var(b|Y)), where

E(b|Y) = GZ′V−(Y −Xβ), var(b|Y) = G−GZ′V−ZG.

Proof. Let t1 ∈ Rm, t2 ∈ Rq and t′ = (t′1, t
′
2). The moment generating function of (Y,b)

can be written as

M(t) = E{exp(t′1Y + t′2b)} = exp(t′1Xβ)E{exp(t′1ε)}E{exp((Z′t1 + t2)
′b)},

where the last equality follows from independence of ε and b. Upon substituting the moment

generating functions of ε and b from part (a) of Proposition 4.6 and simplifying, we get

M(t) = exp

{
t′1Xβ +

1

2
(t′1Vt1 + t′1ZGt2 + t′2GZ′t1 + t′2Gt2)

}
.

Now (a) follows by noting that M(t) is the moment generating function of the multivariate

distribution given in the result. The first part of (b) follows from (a) upon applying part (c)

of Proposition 4.6. The density follows from Proposition 4.5. The result in (c) also follows

from (a) upon applying part (g) of Proposition 4.6.

As in Section 4.2.3, singularity of R implies a partly deterministic structure on the error

ε, which in turn implies deterministic structures on (Y,b) within the context of their joint

distribution and on Y within the context of its marginal distribution. The next result

provides these constraints.

Proposition 4.11. For a singular mixed model, the following conditions are equivalent.

(a) R is singular.

(b) (I−PR)(Y −Xβ − Zb) = 0 with probability 1 with respect to (Y,b).

(c) (I−PR)(I−VV−)(Y −Xβ) = 0 with probability 1 with respect to Y.
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Proof. Suppose R is singular. From Proposition 4.3, this means (I−PR)ε = 0 with proba-

bility 1. The result in (b) follows since ε = Y −Xβ − Zb. To get (c) from (b), fix any Y.

Then, given this Y, the conditional probability

Pb|Y((I−PR)Zb = (I−PR)(Y −Xβ)|Y) = 1,

implying that (I − PR)Zb equals the constant (I − PR)(Y −Xβ) with probability 1 with

respect to b|Y. If a random quantity is constant with probability one, the constant must be

its expectation. Thus, for the given Y, we have

(I−PR)(Y −Xβ) = (I−PR)ZE(b|Y) = (I−PR)VV−(Y −Xβ), (4.5)

where the last equality follows from substituting the expression for E(b|Y) from Proposi-

tion 4.10 and using (I−PR)PR = 0. This gives (c) since the fixed Y is arbitrary.

Next, we need to get (a) from (c). Suppose (c) holds. Then, reversing the arguments, we

have from (4.5) that for any fixed Y, E((I−PR)Zb|Y) = (I−PR)(Y−Xβ). Further, using

the expression for var(b|Y) from Proposition 4.10 and applying the facts that VV−V = V

and (I − PR)PR = 0, it can be seen that var((I − PR)Zb|Y) = 0. Thus, it follows that,

for any fixed Y, (I−PR)Zb equals the constant (I−PR)(Y−Xβ) with probability 1 with

respect to b|Y, i.e., (4.5) holds. Since Y is arbitrary, this implies (b), which in turn implies

that (I−PR)ε = 0 with probability 1 with respect to ε, giving (a).

When R is singular, it implies the constraint (I−PR)ε = 0 on the marginal distribution of

ε. The results (b) and (c) above imply the corresponding constraints on the joint distribution

of (Y,b) and the marginal distribution of Y. Thus, from this result, R is singular if and

only if (I− PR)(I−VV−)(Y −Xβ) = 0 with probability 1 with respect to Y. If here we

use the Moore-Penrose inverse V+ in place of a generalized inverse V−, then PV = VV+.

Upon applying Proposition 4.12 below, the constraint becomes

(I−PV)(Y −Xβ) = 0 with probability 1 with respect to Y, (4.6)
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which is same as the condition needed in Proposition 4.10 for the probability density function

of Y to be non-zero. This is same as saying Y ∈ C(X : V) with probability 1, which is the

condition needed for consistency of data with the model (see also Proposition 4.7).

Proposition 4.12. Under the singular mixed model, (I−PR)(I−PV) = (I−PV).

Proof. Under the model, we have cov(Y, ε) = σ2R. From Proposition 4.4, this implies

C(R) ⊆ C(V). Next, take any any x ∈ C(V)⊥ = C(I−PV). Since this x is also orthogonal

to C(R), we have PRx = 0. Thus, it follows that PR(I − PV) = 0, which implies the

result.

For the example in Section 4.4, we also have (I−PR)(I−VV−) = I−PV, although it

is not clear if this holds in general for any generalized inverse V−.

4.4 A simple illustration

For illustration of constraints imposed by singularity of R, consider a simple example with

m = 4. Take σ2 = 1 and

R =



1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0


.

The rank of R is 2. The singularity of R implies that ε1 and ε2 have correlation 1 and

var(ε4) = 0. Since the errors have mean zero, this constraint becomes ε1 = ε2 and ε4 = 0. It

can be seen that

I−PR =
1

2



1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 1


, (I−PR)ε =

1

2



ε1 − ε2

−ε2 + ε1

0

ε4


.
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Thus, the constraint on errors from Proposition 4.3 that (I−PR)ε = 0 becomes ε1 = ε2 and

ε4 = 0. This is identical to what we get above from a direct examination of R. Next, take

X =



1 0

0 1

1 0

1 0


, Z =



1 0

1 0

0 1

0 1


,

yielding

Xβ+Zb =



β1 + b1

β2 + b1

β1 + b2

β1 + b2


, (I−PR)Y =

1

2



Y1 − Y2

−Y2 + Y1

0

Y4


, (I−PR)(Xβ+Zb) =

1

2



β1 − β2

−β2 + β1

0

β1 + b2


.

Therefore, the constraint on (Y,b) from Proposition 4.11 that (I−PR)(Y−Xβ−Zb) = 0

becomes Y1 − Y2 = β1 − β2 and Y4 = β1 + b2. We may also get this constraint by directly

substituting ε1 = ε2 and ε4 = 0 in the model equation Y = Xβ + Zb + ε.

Next, to get the constraint on the marginal distribution of Y, take G = I, leading to

V =



2 2 0 0

2 2 0 0

0 0 2 1

0 0 1 1


, I−PV =

1

2



1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0


and

(I−PV)(Y −Xβ) =
1

2



(Y1 − β1)− (Y2 − β2)

−(Y1 − β1) + (Y2 − β2)

0

0


.
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The rank of V is 3, one more than that of R, and it is rank deficient by one. The rank

deficiency corresponds to a correlation of one between Y1 and Y2. We get the same constraint

from (4.6) as (I−PV)(Y −Xβ) = 0 becomes Y1 = Y2 + (β1 − β2). Further, by taking

V− =



0 0 0 0

0 0.5 0 0

0 0 1 −1

0 0 −1 2


,

as a generalized inverse of V, we see that (I − PR)(I − VV−) = (I − PV). Therefore,

the constraint from Proposition 4.11 that (I − PR)(I − VV−)(Y − Xβ) = 0 is also Y1 =

Y2 + (β1 − β2). It may be noted that PR(I − PV) = 0 as given by Proposition 4.12 holds

here but PR(I−VV−) 6= 0.

4.5 Fitting a singular mixed model

Suppose there are n subjects in the data and subject i provides a m × 1 response vector

Yi, i = 1, . . . , n. We assume that each of these response vectors follows the singular mixed

model from Section 4.3 and the responses from different subjects are independent. Thus,

the model for all the data together is

Yi = Xβ + Zbi + εi, bi ∼ Nq(0,G), εi ∼ Nm(0, σ2R), (4.7)

where bi and εi are independent for i = 1, . . . , n and the two vectors are also mutually

independent. Although by not letting X and Z matrices depend on i, we are assuming a

balanced design for data, but this assumption can be relaxed. Further, as in singular linear

models, we assume that R is known. Thus, the unknowns in this model are β, G, and σ2.

The singularity of R imposes the constraint (4.6) for each i, i.e.,

(I−PV)(Yi −Xβ) = 0 with probability 1 with respect to Yi, i = 1, . . . , n.
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Thus, altogether there are n constraints related to singularity. Assuming that all the response

vectors are individually consistent with the model, i.e., Yi ∈ C(X : V) with probability 1 for

i = 1, . . . , n, fitting this model involves finding a common β that satisfies all the constraints.

But such a β usually does not exist, limiting the practical utility of the model. However, we

can make progress by taking an approximate, two-step approach.

To describe the first step, let C = (X : Z) be the combined m × (p + q) design matrix

and βi = (β : bi)
T . The model for subject i becomes Yi = Cβi+εi, ε ∼ Nm(0, σ2R), which

is treated as a singular linear model from Section 4.2.3 with X = C. Assuming individual

consistency between Yi and the model, we fit this model separately for each subject. This

yields estimates β̂i for βi and σ̂2
i for σ2 and the fitted response vector as Ŷi using (4.2),

(4.4), and (4.1), respectively. To get a common estimate σ̂2 of σ2, we can simply pool the

individual estimates in the usual manner.

In the second step, we separate the common fixed effect from the random subject effects.

For this, we take Ŷi, i = 1, . . . , n obtained in the first step as the observations and perform

a functional principal components analysis4,5. This eventually amounts to fitting a mixed

effects model Ŷi ≈ Xβ + Z∗b∗i + δi, where Z∗ is a new m ×K design matrix obtained via

eigenanalysis, with K as the number of functional principal components selected; b∗i is the

associated K×1 random coefficient vector with mean zero and diagonal variance matrix G∗;

and δi is the error term. It yields the estimates β̂, Ĝ∗, and b̂∗i of β, G∗, and b∗i , respectively,

and the error δi is ignored. Thus, the final fitted model on which all subsequent inference is

based is

Yi = Xβ̂ + Z∗b∗i + εi, b∗i ∼ NK(0, Ĝ∗), εi ∼ Nm(0, σ̂2R).

Under this model, V̂ ∗ = Z∗Ĝ∗Z∗′ + σ̂2R. However, due to the approximation resulting

from selecting a presumably small number of principal components and ignoring δi, (I −

PV̂∗)(Yi −Xβ̂) may not be equal to 0.
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4.6 Summary and future work

As mentioned in Section 4.1, our development in this chapter for singular mixed models

amounts to a first step. Further research is needed to make the methodology viable. We

specifically plan to explore the following in the near future:

• Implement the fitting method described in Section 4.5 for known R and test it on real

and simulated data.

• Extend the methodology to allow for dependent subjects from family data (as in Chap-

ter 3) for known R and test it on real and simulated data.

• Having family data as in Chapter 3 would allow us to separate covariance structure due

to random effects and error covariance structure without any parametric assumption

for the latter. We can then allow R to be unknown and estimate it using, e.g., low-rank

smoothing or functional principal components analysis, within an iterative framework.

Implement this methodology, test it on real and simulated data, and compare it with

alternative competing methods.

• Develop an R package to implement the methodology and make it publicly available.
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