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In the age of self-driving cars and space adventures, fault tolerance has become a first-

order design metric. Thus, it is vital to incorporate fault tolerance coherently into the

Very Large Scale Integrated (VLSI) design process. This is especially the case in state-of-

the-art complex heterogeneous Systems-on-Chip (SoC), which typically contain a variety of

dedicated hardware accelerators. These SoCs have to be taped out at shorter and shorter

periods while their complexity keeps increasing. This is driving designers to finally embrace

the use of C-based VLSI design called as High-Level Synthesis (HLS). HLS has shown to

significantly reduce the design and verification time compare to the use of low-level hardware

descriptions languages. Moreover, one significant advantage of raising the level of abstraction

is that C-based VLSI design allows to generate a variety of micro-architectures with different

trade-offs from the same untimed behavioral description.

Fault-tolerance at the hardware level has so far has been mainly based around building

N -modular redundant (NMR) systems like duplication and Triple Modular Redundancy

(TMR), where the hardware channel is identical.

In this work, we exploit HLS’s advantage to generate micro-architectures with different char-

acteristics from the same behavioral description for automatically generating fault-tolerant

systems.
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In particular, we first propose an automated framework that given a single behavioral de-

scription generates a set of NMR systems with different area and performance trade-offs by

choosing different mixes of micro-architectures.

Secondly, we leverage this advantage to generate redundant systems that minimize common-

mode failure (CMF). CMFs imply that multiple modules in the redundant system are affected

at the same time by a fault. Hence, it has been shown that adding diversity in the hard-

ware channels can make the system more tolerant to these type of faults. We also leverage

the power of machine learning to estimate the diversity through fast and efficient predictive

methods, thus, significantly speeding up the redundant system generation. A previously re-

ported design diversity metric called DIversity Metric based on circuit Path analysis (DIMP)

or RT-level fault injection based method is investigated to check if they can achieve similar

results compared to the gate-netlist fault injection based diversity calculation.

Lastly, a low-cost, universal fault-recovery/repair method that utilizes supervised machine

learning techniques to ameliorate the effect of permanent fault(s) in hardware accelerators

that can tolerate inexact outputs is proposed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the solutions being proposed to deal with the slowdown of Moore’s law (2) and

the breakdown of Dennard’s scaling (3) is to customize the computing platforms to the

application domain, also known as domain specific computing. At the computer level, by

incorporating CPUs with FPGA and at the chip level through integrating heterogeneous

Multiprocessor Systems on Chips (MPSoCs) with dedicated Hardware Accelerators (HWacc).

The ITRS roadmap 2009 edition (4) predicted: “The ultimate nanoscale device will have

a high degree of variation and a high percentage of non-functional devices right from the

start” and “Circuits that can dynamically reconfigure itself to avoid failing and failed devices

(or to change/improve functionality) will be needed”.

In these modern complex heterogeneous SoCs, large portions of the computations are

offloaded to dedicated hardware accelerators that can process these applications more effi-

ciently by exploiting the inherent parallelism of the accelerators. Although more complex,

these accelerators can perform computations faster at a much lower frequency and thus,

lower power.

Our work mainly targets hardware accelerators because they are typically the main dif-

ferentiating components between different IC vendors (e.g., Apples A11 bionic SoC with

its dedicated neural network accelerator). At the same time, the pressure to deliver these

new or updated ICs at shorter time periods and the use of new technologies makes these

accelerators more prone to hardware errors compared to more mature and tested IPs.

Fault tolerance is the capability of a system to continue functioning without interruption

in the occurrence of failure when one or more of its components fail. In an era of self-driving

cars and space adventures, fault tolerance has become a first-order design metric. Thus, it

1



is essential to incorporate fault tolerance coherently into the Very Large Scale Integrated

(VLSI) design process.

N -modular redundancy (NMR) techniques such as Duplication and Triple Modular Re-

dundancy (TMR) or additional logic are extensively popular for designing dependable sys-

tems with fault tolerance and data integrity. Data integrity is maintained if a system either

produces correct outputs or generates an error signal when incorrect outputs are produced.

This is especially the case in state-of-the-art complex Systems-on-Chip (SoC) containing a

variety of dedicated hardware accelerators.

Occurring faults in hardware are either transient or permanent. The first, cause no per-

manent damage to the circuit, while the other result in permanent destruction or degradation

of the circuit. Transient faults also known as Single-Event Upsets (SEUs) are errors due to

electrical noise or external radiation rather than manufacturing or design defects (5). These

effects were first predicted in 1962 by Wallmark et al. (6) and in 1975 the first anomaly in

a spacecraft system was encountered attributed to energetic heavy-ion passage (7). Besides,

process scaling has led to increasingly critical challenges in manufacturing and lifetime reli-

ability of integrated circuits (ICs). Common-Mode Failures (CMFs) is also a major concern

for redundant systems. CMF implies that multiple modules in the redundant system are

affected at the same time. CMF can occur due to external events, e.g., Electromagnetic

Interfere (EMI), power-supply disturbances, and radiation, internal or design mistakes (8).

Traditional same hardware module redundancy systems cannot protect against CMFs be-

cause the replicated hardware modules will produce the same erroneous output and hence

the voter will interpret the output as correct (9).

For larger electronic systems these channels are being built by sourcing parts from differ-

ent vendors. However, in VLSI design, the underlying hardware channel is exactly the same

since it is too expensive to design multiple hardware versions with the same specifications.

The Triple Module Redundancy (TMR) is one of the most successful implementations of

NMR systems as it can fully mask errors.

2



Most prior work on VLSI hardware reliability utilize NMR, assuming that each module

is the same. A voter is in turn used to determine if a fault has happened by comparing the

results. Although useful for independent component failures, rudimentary replication cannot

fully protect against soft-errors occurring in a redundant system and most importantly for

Common Mode failures (CMFs).

One of the proposed solutions is to use asymmetric redundancy (10), where multiple

functional equivalent modules are instantiated in parallel with a voter. The main idea is

to make faults occurring in both modules at the same time, visible at the outputs such

that each module generates a different value. The worst case scenario in any fault tolerant

system occurs if a system has a fault and the majority of the NMR modules produce the

same erroneous output. Asymmetric redundancy aims at specifically avoiding this case.

The main problem with asymmetric redundancy is that it involves creating multiple

different micro-architectures for each hardware channel. The most rudimentary form of

design diversity is to have multiple parallel teams building the same circuit using different

tools. This is obviously extremely expensive and inefficient. Thus, automated methods to

obtain different implementations of the same circuit are required.

We make use of one of the main advantages of C-based VLSI design, a.k.a. High Level

Synthesis (HLS) to generate fault tolerant systems. In particular, the main advantage that

we leverage is the ability to generate micro-architectures with unique area vs. performance

trade-offs without having to modify the input description. This is generally done by setting

different synthesis options, typically specified as comments or pragmas at the source code.

This allows to control how to synthesize loops (e.g., unroll or fold), arrays (e.g., memories

or registers with a different number of ports) and functions (inlined or not). This distinct

advantage is leveraged to generate more robust NMR systems. We also utilize the power of

Machine Learning, a model based on training data in order to make predictions to perform

a specific task, to build adaptive learning based systems.
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In the majority of this dissertation, ways to tackle faults that may happen after the

circuit is in use are examined, but in the last part, one method is proposed to recuperate

faults which are already present when a chip is manufactured. We proposed a machine

learning based permanent fault recuperation method to save the circuits, which would have

been discarded without any fault tolerant methods.

1.2 Dissertation Contribution

The work done in this dissertation leverages the power of High-level Synthesis and/or machine

learning to generate more robust hardware systems mainly against soft errors, common mode

failure and permanent faults. The overview of this dissertation is depicted in Fig. 1.1. This

dissertation makes the following contributions:

1. Optimizing TMR System Design: An automatic method to generate optimized

redundant hardware accelerator with maximum reliability given a single behavioral

description for High-Level Synthesis (HLS) is proposed

2. Diverse Design Generation: An automatic design space exploration (DSE) method

to generate optimized redundant hardware accelerator with maximum diversity is ad-

vocated given a single behavioral description utilizing High-Level Synthesis(HLS) to

protect against Common-mode Failure (CMF).

3. Learning-based Diversity Estimation: A fast machine learning based method

that facilitates the design space exploration (DSE) of single behavioral description is

proposed in order to generate optimized redundant hardware accelerator system with

maximum diversity to protect against CMFs is proposed.

4. Permanent Fault Compensation: A low-cost, universal fault recuperation method

that utilizes supervised machine learning techniques to ameliorate the effect of perma-

nent fault(s) in hardware accelerators that can tolerate inexact outputs is proposed.
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Figure 1.1: Overview: Targeted Heterogeneous SoC example and fault-tolerant techniques
proposed in this dissertation.

1.3 Dissertation Organization

This dissertation focused mainly on fault tolerance in hardware accelerators are divided into

eight chapters. The first chapter, the research work is motivated and the overall structure

is incised. The next two chapter highlights the previous and related works as well as the

background information in the area of this dissertation. As the boundaries of the technologies

are pushed towards the atomic level, the probability of the faults introduced in the circuits

or system is becoming significant due to factors like sub-atomic particle radiation. Chapter
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4 proposes a method to generate an optimized reliable triple modular redundant system to

protect against soft errors. Chapter 5 and 6, proposed methods to elevate the diversity of

a design pair and also a method to estimate the diversity in an adaptive manner to protect

a duplex system against common mode failure. Next, in Chapter 7, a machine learning

based fault compensation method is proposed to recuperate the permanent faults in faulty

hardware accelerators. In the final chapter, we conclude this dissertation and also suggest

possible future works.
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CHAPTER 2

BACKGROUND

This chapter introduces some important concepts required to fully appreciate the main con-

tributions of this dissertation. In particular, HLS, HLS design space exploration, and ma-

chine learning.

2.1 High-level Synthesis

Specialized heterogeneous architecture design is a recent trend to deal with the power wall

while increasing the performance of current chips. Manual RT-level hardware design is

challenging as it is extremely time consuming and requires complex coding.

In a traditional VLSI design flow, the hardware designer has to analyze a given behavioral

description and based on a set of constraints manually creates an RTL description that can

execute the given functionality efficiently. Raising the level of abstraction approach has

shown to shorten the time to market period (11). C-based VLSI design, has the additional

advantage of allowing the generation of micro-architecture with different characteristics from

the same behavioral description. This is typically done by setting different synthesis options

to e.g., control how to synthesize arrays, loops and functions.

Moreover, HLS increases the re-usability of the code by allowing to easily re-target it to

an FPGA or ASIC, by merely modifying a library & constraints files.

2.1.1 Design Flow of High Level Synthesis

Design cost and time-to-market are two primary issues that all hardware designers must

overcome. Manual hardware design is more expensive and time consuming, whereas HLS de-

creases these issues significantly. HLS also expedite the DSE for effective hardware/software

co-design. Although traditionally, design objectives for HLS were developing small and fast
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Figure 2.1: High-level Synthesis design flow.

designs. However, nowadays, designing power efficient design has gained more concerns as a

more critical design constraint.

High level synthesis simplifies evaluation of architectural choices such as hardware and

software designs, synthesis and verification, memory organization, and power management.

HLS starts with the algorithmic specification of an application (standard synthesizable

C/C++ source code or SystemC description), RTL design library (including component

characteristics e.g., area, delay, power, etc.), and design constraints (cost, performance,

power consumption, resources, testability criteria, pin-count, etc.) and which in turn would

later automatically generates RTL design of datapath and control logic (12; 13).
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Specification and Compilation

The standard description needs to be made synthesizable to make compatible with defining

a hardware description. The first step typically requires to refine the original behavioral de-

scription to make it synthesizable. This synthesizable description can, in turn, be explored,

creating designs with a unique area, time and/or other constraints. The functional specifica-

tion defines the input data, output data, and computational delays. HLS defines the variable

and data types at the software level. For a realistic hardware operation, we require alteration

from floating-point and integer data types into bit-accurate data types of a specific length.

Bit-accurate specification is critical in generating an optimized architecture. Designers can

implement a specification of an application like custom processor or custom hardware unit

using HLS.

The process starts with the compilation of the specification, allocates hardware resources

like functional units, memory units etc, schedules the operation by clock cycles, binds the

operations to functional units, variables to memory units, and generates the RTL micro-

architecture (11). HLS begins with the compilation of functional specification; it translates

the input specification to formal representation based on this formal representation CDFG

is generated. CDFG is a graph that describes the control and data dependency between

the operations (14). CDFG exhibits data dependencies in the basic blocks and captures

the control flow between those basic blocks. It is used to generate the actual hardware.

The following are the three main algorithms involved in High-Level synthesis: Allocation,

Binding, and Scheduling.

Scheduling

Scheduling determines the sequence in which the operations are executed in each control step

or each clock cycle. Let b be the operation to be scheduled, b= a op c, first variables a and

c will be read from their sources which could be either a storage component or a functional
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unit component and brought it to the input of a functional unit that can execute operation

op, and the result a will be sent to its destination. In this execution, the data dependency of

the variables a and c is analyzed before it is brought to its input. If there is a dependency of

operation preceding this constraint, the dependent operation is scheduled in the same way

before it proceeds to schedule the above operation. For any HLS platform, module library

comprising of circuits for various functionality like an adder, multiplier, registers etc will

exist. Based on the functional components to which the operation is mapped, the operation

can be scheduled within one clock cycle or several clock cycle. If there are sufficient resources

available, the operations can be scheduled in parallel (11).

Scheduling algorithms can be roughly categorized into data-flow based (DF-based) schedul-

ing and control-flow-based (CF-based) scheduling. DF-based scheduling concentrates on

data-flow-intensive applications (e.g., digital signal processing and image processing) which

based on the optimization goals can be divided further into two classes: timing-constrained

and resource-constrained. Force directed scheduling and list scheduling are popular meth-

ods to solve timing and resource constraints scheduling problem. Path-based scheduling

and Loop-directed scheduling are some of the CF-based scheduling that aims control-flow-

intensive applications (e.g., controllers and network protocol processors) (15). The most

basic scheduling techniques are i. As Soon As Possible (ASAP) scheduling and ii. As Late

As Possible (ALAP) scheduling. ASAP schedules operations in the earliest control step one

at a time whereas ALAP schedules it from the last control step towards the first (16).

Allocation

Allocation is defined by the number of hardware resources needed to meet the design con-

straints. Once the behavioral description is parsed, a functional unit constraint file containing

the type and the number of functional units required to map the particular input description

is generated. Based on the HLS tool, components like buses or interconnections among the
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components may be added during scheduling and binding tasks. RTL component library

is the source of the tool to select the components for allocation. At least one component

is a default requirement to operate a specific model. The library must also include compo-

nent characteristics such as area, power, and delay and its metrics for the synthesis tasks.

To achieve a high level of parallelism, the HLS tool will try to maximize the utilization of

functional units as much as possible. The user has the leverage to overwrite this constraint

file manually, setting the maximum number of functional units that the synthesizer can

instantiate.

Binding

Binding is the last stage in HLS. After all the operations are scheduled and allocated, we

conceive the exact information of the type of circuit models to be used and their numbers.

Binding maps each operation to a functional unit and each variable to a register. However,

we need more information to generate the RTL. During allocation, the operation in a control

step is handled by different modules; however, modules are shared across the operations that

are in different control steps. The binding task (also called resource-sharing step) assigns the

operations and variables to hardware modules. A resource such as an operational module

or register can be shared by different operations, data accesses, or data transfers if they are

mutually exclusive. Storage and functional unit binding also rely on connectivity binding,

which requires each handover from a component to a component be bound to a connection

unit (e.g., a multiplexer or a bus) (14). Binding is a critical stage in HLS since it affects the

routability of the final circuit and hence the wire length and critical path.

RTL Generation

The final step in the HLS process is the RTL generation. The RTL architecture genera-

tion step aims to apply all the design decisions made and generate an RTL model of the
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synthesized design. Generated RTL model includes a control path and data path. Data

path consists of components like registers, functional units like ALU, shifters, multipliers,

interconnect elements like tristate drivers, multiplexers, buses etc. Data inputs and outputs

are connected to the data path, and control inputs and outputs are connected to the con-

troller. The controller is a finite state machine; it manages the flow of data in the data path

by setting the values of the control signal. The controller’s input may come from primary

inputs or the data path components like a comparator. Every component may consume one

or more clock cycles to execute, can be pipelined, and can have input or output registers.

We can pipeline the entire data path and controller into several stages. (14).

2.1.2 Design Space Exploration

High Level synthesis is an efficient approach to reduce the design time and cost, optimize

all possible design constraint like area, execution time, functional unit constraints, memory

unit constraints etc, to generate multiple efficient architectures.

The activity to leverage design possibilities prior to the implementation by exploring

design alternatives of a system by varying the design metrics is denoted as Design Space

Exploration (DSE). Major tasks like rapid prototyping, optimization, and system integration

can be conducted on an ample design space of potential candidates by utilizing the power

of DSE. The main challenge of DSE appears when the size of a problem is immense and

complex making the design space enormous(17).

In this process, the specification is defined at the behavioral level and it is converted to

Register transfer level by exploring the design space efficiently. Architectural choices have

a significant impact on the performance and area of design. They also have a high impact

on power, though often in less predictable ways than for area and performance. Exploring

different choices and measuring their impact is greatly facilitated by HLS (12).
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Figure 2.2: High-level Synthesis Design Space Exploration.

The HLS process is mostly considered as a black box where three leading families of

synthesis knobs are set beforehand the process is executed. The knobs are (i) Synthesis

Directives, (ii) Global Synthesis and (iii) FU Exploration.

Table 2.1: Forms of Pragmas(1).

Operation Attribute Description

Loops

unroll = 0 do not unroll loop
unroll = x partial loop unroll
unroll = all unroll loop completely
folding = N fold loop N times

Functions

func = inline inline each function call
func = goto single function instantiation
func = seqopr function inst as sequential opr

func = pipeline function inst as pipeline opr

Arrays

array = RAM array synthesized as memory
array = logic constant arrays synthesized as logic

array = expand expand array
array = reg synthesize array as registers
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Knob 1: The knob that is extensively used is synthesis directives in the form of pragmas

inserted directly into the synthesizable source code. It is also the most powerful knob, as it

fixed the overall micro-architecture. The primary constructs in the behavioral description

which have the highest footprint on the final micro-architecture in HLS are loops, arrays and

functions. Table 2.1 highlights an example of different types of pragmas that can be inserted

in the behavioral description.

With these pragmas, it is possible to synthesize arrays as memories or registers. Loops

can be unrolled or pipelined and functions inlined or synthesized as single Hardware (HW)

blocks.

Figure 2.3: Example for Pragma Insertion as Comments in ave8 code.

The example in Fig. 2.3 highlights how local synthesis directives in an ave8 code can be

leveraged to control different levels of variations in pragma settings that can lead to a unique

micro-architecture that might or might not be Pareto-optimal.

Knob 2: The second exploration knob is global synthesis options that can only be applied

to the entire behavioral description to be synthesized. Clock constraint, scheduling type, data

initiation interval for pipelined designs, encoding scheme for the finite state machine (FSM)

controller, etc are some of the types of global synthesize options. These options if set, cannot
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be applied to specific portions. For example, the global synthesize frequency can be set to

500MHz/1GHz or the encoding of the controller FSM can be set to on hot encoding scheme.

Knob 3: This third exploration knob enables different levels of resource sharing, by

controlling the number and type of Functional Units (FUs) that the synthesizer can use.

Resource sharing is a well-known optimization technique that can be used to reduce the

area while increasing the latency of the circuit where a single functional unit (FU) is re-used

among various computational operations.

Authors of (18) presented a paper to simultaneously perform scheduling, allocation and

module selection using a problem-space genetic algorithm to optimize the hardware resources

(i.e., functional units, registers, and interconnection cost), clock period and control steps.

In (19), an efficient and accurate DSE technique using HLS for applications consisting of

multiple nested loops with or without data dependencies is presented.

Different types of DSE can be performed of a design in order to generate micro-architecture

that better meets the project needs. Brute force DSE can be time-consuming and expensive,

so several heuristic methods were proposed. Heuristics DSE techniques have been proposed

based on Genetic Algorithms (20) or Simulating Annealing (21) as exhaustive search is too

expensive for large solution space. Learning based methods are also proposed by several re-

searchers to speed up the exploration process. The authors of (1) present a Machine learning

predictive modeling high-level synthesis DSE. The method generates a predictive model for

a training set until a given error threshold is reached. Next, it continues with the exploration

using the predictive model, avoiding time-consuming synthesis and simulations of new con-

figurations. A learning-based method based on random forest algorithm and Transductive

Experimental Design is proposed to explore Pareto optimal set (22) efficiently.
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2.1.3 Commercial HLS Tool

There are various HLS tools in the market like NEC’s Cyberworkbench, Xilinx Vivado HLS,

Mentor’s Catapult, etc. which takes a behavioral description as input instead of structural

description (Table 2.2). A couple of the tools are shortly described below.

CyberWorkBench (CWB) is an HLS tool of NEC Corporation. CWB supports C,

Behavioral Description Language (BDL) and SystemC. CWB supports two types of schedul-

ing automatic and manual. CWB supports verification at different levels: behavioral, source

code, RTL and cycle accurate. Various simulation scenarios can be generated automatically

or by user provided test benches. CWB also includes a system explorer that can generate

design implementations for different combinations of compiler settings and represents them

with an area-latency diagram (23). We have used CWB for our research.

Stratus is the HLS tool of cadence which accepts ANSI C and C++ as input languages

and generate a SystemC wrapper. The wrapper generated by CtoS does not comply with

OSCI SystemC standards mainly used for ASIC design (23).

Vivado HLS tool by Xilinx accepts C, SystemC and C++ as input, and hardware

modules are generated in SystemC, Verilog and VHDL. During the compilation process,

different optimizations, such as operation chaining, loop unrolling and loop pipelining is

applied to perform micro architectural exploration (24).

Catapult C supports C, SystemC and C++ as input language. The tool does not

optimize memory accesses and array elements that are re-used in subsequent iterations are

fetched from memory on every use. The designer has to modify the source code to enable

local buffering (23).

2.2 Machine Learning

Current technology has seen an outburst in machine learning with an analogous necessity to

produce custom hardware for best area/performance, power efficiency and fault tolerance.
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Table 2.2: Various HLS tools.

Tool Company Input Output
Catapult (25) Mentor C,SystemC,C++ Verilog,VHDL

CyberWorkBench (26) NEC corporation BDL, C,SystemC, C++ Verilog,VHDL
Intel HLS Compiler (27) Intel C,C++ Verilog

LegUp HLS (28) LegUp Computing C Verilog
MATLAB HDL Coder (29) Mathworks Matlab Code Verilog,VHDL

Stratus (30) Cadence C,SystemC,C++ Verilog,VHDL
Synphony C Compiler (31) Synopsys C,C++ Verilog,VHDL,SystemC

Vivado HLS (32) Xilinx C,SystemC,C++ Verilog,VHDL,SystemC

Machine learning educates computers to learn from experience which comes naturally

to humans and animals. Machine learning algorithms employ computational methods to

“learn” directly from given data without depending on a preset equation as a model. The

algorithms adaptively improve with the number of samples available for learning grows.

Machine learning algorithms discover inherent patterns in data that generate perception

to produce better decisions and predictions. It is used in today’s world in medical diagnosis,

computational finances, image processing, face/motion detection, automotive, aerospace,

language processing etc.

Machine Learning

Supervised Learning

Classification Regression

Unsupervised Learning

Clustering Assosiation

Semi‐Supervised Learning

Classification Clustering

Figure 2.4: Machine Learning Classification.

i. Supervised learning and ii. Unsupervised learning iii. Semi-supervised learning are

three different kinds of machine learning algorithms (Fig. 2.4).

i. Supervised learning: This task-driven method uses known input and output re-

sponse data/observations to train a model to predict future outputs.
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ii. Unsupervised learning: From input data this method finds intrinsic structures or

hidden patterns in this data-driven method.

iii. Semi-supervised learning: In cases where some output observations are presents

and some are missing, semi-supervised learning algorithms is the best candidate.

2.2.1 Supervised Learning

In this dissertation works, supervised learning algorithm is used. Supervised learning is the

most crucial methodology in machine learning, which allows for a flexible, fast and scalable

way to generate accurate compensation routines, which are specific to the particular set

of application inputs and outputs. In supervised learning, a map between a set of input

attributes and an output variable is used to predict the unseen data or in other words to

build a brief model of the distribution of class labels according to predictor features (33).

The objective for supervised learning is to construct a concise model of the distribution

of class labels in terms of predictor features. The subsequent classifier is used to allocate

class labels to the testing instances where the values of the predictor features are known,

but the value of the class label is unknown.

Fig. 2.5 shows the steps in a supervised learning method. The first step is setting the

problem settings and collect data set. Next, data preparation, data pre-processing and

training data selection are done. Finding the right algorithm is partially based on trial

and error but a very critical step for the overall success. The next step is the training set

where a model is generated using known input and output responses to generate a model.

For the third step, unknown input data is used to validate the model. If the error rate is

non-tolerable, previous steps need to be re-run with parameter tweaks.

Types of supervised learning

A supervised learning algorithm intakes a known set of input variables (x) and known re-

sponses (y) to the data and trains a model y=f(x) to generate reasonable predictions for the
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Figure 2.5: Supervised Learning.

response to new data. Supervised learning based problems can be grouped into two kinds:

Classification and regression model. The main difference between the two tasks is the fact

that the dependent attribute is numerical for regression and categorical for classification.

Classification Algorithms: Classification algorithms build predictive models using

features learned from training data which have features and class labels. This model is used

to predict class labels on previously unseen new data. The output class for classification

is discrete, which attempts to estimate function (f) from the input variables (x) to discrete

or categorical output variables (y). Decision trees, random forests, J48, support vector

machines, random tree etc. are a couple of classification algorithm.

Regression Algorithms: Regression algorithms utilize input features and output values

obtained from the data to build a model to predict unknown output values based on the

training data. The output values are not discrete but continuous. These kinds of algorithms

attempt to assess the mapping function (f) from the input variables (x) to numerical or

continuous output variables (y). Linear regression, pace regression, regression trees, and
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lasso regression, simple linear regression etc. are a couple of different types of regression

algorithm.
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CHAPTER 3

FAULT TOLERANCE

The capability of a system to continue to perform its specified tasks after the occurrence

of faults is termed as fault tolerance (34). Fault tolerance is associated with successful

operation, reliability, and the absence of breakdowns. A fault-tolerant system ought to have

the ability to handle faults in individual software or hardware components, power failures,

or other types of unexpected problems while still meeting its specification.

Murphy’s law: “If anything can go wrong, it will.”(35)

Even though designers ensure the best to cleanse all the hardware defects and software

bugs out of the system in advance to the hardware going on the market, history displays that

such a goal is not achievable. Inevitably, either unanticipated environmental factor is not

taken into account, or some prospective user mistakes are not foreseen. Thus, even though

a system is designed and implemented correctly, faults are likely to be caused by situations

outside the control of the designers (36).

First, some important terms are explained below:

3.1 Faults, Errors, and Failures

Fault Error Failure

may cause may cause

Figure 3.1: Fault, Error, Failure.

Fault: A fault is an imperfection, physical flaw or defect that occurs in hardware or

software component; creates one or several latent errors in the component of occurrence. A
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physical fault can directly affect the physical layer components only, whereas human-made

faults may affect any component, e.g., are a short circuit between two adjacent interconnects,

a broken pin, or a software bug (36; 37).

We can categorize the origins fault into four domains. They are: Specification mistakes

(incorrect requirement, incorrect specification, incorrect algorithms, etc.), component defects

(manufacturing defect, random defect, wear out), external causes (electromagnetic interfer-

ence, noise, radiation, overheating etc.) and implementation mistakes (bad design, coding

mistakes etc.).

Error: An error is a deviation from perfection or accuracy in computation, which hap-

pens as a result of a fault. Errors are typically associated with incorrect values in the system

state. A given error in a given component may be subsequent to different kinds of faults. For

example, an error in a physical component (e.g., stuck at ground voltage) may result from:

a physical fault acting at the physical layer comprising the component, an information error,

caused by a design fault (37). A fault may stay dormant for a long time before it manifests

itself as an error.

Failure: A failure is nonperformance of some action which is projected or expected. A

system has a failure if the service provided to the user deviates from the compliance with

system specification for a specified period. A system may fail either because it does not

perform according to the specification, or because the specification did not satisfactorily

describe its intended function. A component failure occurs when an error affects the service

delivered (as a response to a request) by the component (36; 37). As the manifestation of an

error might cause a whole system to deviate from its required operation; one of the primary

goals of safety-critical systems is that error should not result in system failure.
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Figure 3.2: Hardware Fault.

3.2 Hardware Faults

Hardware faults can be triggered by three types of failure events that affect the hardware of

the system: permanent failures of hardware components, temporary malfunctions of compo-

nents and external interference through computer operation (38).

The faults can be classified depending on the duration, the extent and/or the value. The

duration of a fault can be temporary or permanent, whereas the extent refers to several

logic instantaneously affected by the fault. When there is an occurrence of a fault, the

value express whether the fault assumes a constant value (e.g., “stuck at 0” or “stuck at 1”)

throughout the whole duration or it varies.

Permanent Faults/Hard Fault: Permanent faults are caused by permanent (also

called “hard”) failures or physical changes in components of a logic circuit which permanently

modify the logic function defined by the designer. A permanent fault will remain active

until corrective action is taken, such as the addition of a duplicate (spare) component, or

provisions to continue operation without the failed part. Some physical defects usually cause

these faults in the hardware, such as broken interconnections, shorts in a circuit or stuck

cells in memory.

Transient Faults/Soft Errors: Though in late seventies single event upsets (SEU)

occurred in semiconductor memories by radioactive contamination and the cosmic ray flux,

nowadays logic circuitry, both sequential and combinational, are also getting increasingly
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susceptible to SEU (39). So, a single particle can either hit the combinational logic or the

sequential logic part in the silicon (40).

Due to lower supply voltages and higher VLSI complexity; the occurrence rate of particle-

induced transient faults, also known as soft faults, have increased. A soft error occurs when

a radiation event causes enough charge disturbance to flip or reverse the data state of a

latch, memory cell, register, or flip-flop. The error is called “soft” because the radiation does

not permanently damage the circuit/device itself— the device will store it correctly if a new

data is written to the bit (41).

Lower cell capacity, critical charge and supply voltage lead to higher soft error rates

(SERs) (42). It was presumed that combinational circuits were not as susceptible to SEU in

most previous works. However, authors of (5) showed that combinational circuits could be

as susceptible as memories in new circuits predominately due to the continuous feature size

reduction and number of pipeline stages increment, combined with escalated clock frequen-

cies.

Transient faults mostly caused by environmental factors such as alpha particles, beta

particles, atmospheric neutrons, electrostatic discharge, cosmic radiation, electrical power

drops or overheating are faults with specific duration that is detected through the errors

resulting in their propagation logic (5; 38; 39). Alpha particles and beta particles are the

nuclei of helium atoms and electrons enhanced to relativistic speed respectively whereas

cosmic radiation is a combination of primarily protons and a smaller quantity of heavy ions

speeded up to relativistic speeds (43; 44). External causes (electromagnetic interference,

noise in power supply, etc. or by temporary circuit malfunctions, e.g., overheating, overload

conditions, etc.) may simultaneously produce various transient faults throughout the system.

Therefore independent occurrence cannot be assumed for all transient faults (45).

Intermittent Faults: Intermittent faults are results of implementation flaws, aging,

and wear-out, and to unexpected operating conditions. For example, a loose solder joint in
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combination with vibration can cause an intermittent fault. Upon fault activation, this fault

creates errors to occur in bursts, at the same location, so replacement of the malfunctioning

circuit removes the intermittent fault. The fault may oscillate between being quiescent and

active. Intermittent faults often times precede the occurrence of permanent faults.

Common Mode Failure (CMF): CMF can be described as a fault that occurs at

multiple modules at the same time. Based on the fault, these faults have the potential

to propagate to the output manifesting as wrong, but identical outputs in two or more

modules. Thus, the voter will not be able to detect this fault, leading to a potentially

dangerous situation. The root cause of this kind of fault is the dependencies among the

redundant units that lead to simultaneous failure. Such as:

- common environmental factors,

- common buses within a system,

– a common source of power,

– design mistake.

3.3 Fault Tolerance and Redundancy

Fault prevention, fault removal, fault forecasting and fault tolerance are four techniques

to develop a dependable system. Fault prevention is to avoid the occurrence of any faults

which can be done by quality control though it is not possible to achieve 100% prevention.

Fault removal can be done during both development and operation stage of a system em-

ploying verification, diagnosis and correction. Fault forecasting is done to qualitatively and

quantitatively estimate the fault that can happen in the future and the consequences.

A system will fail if it ceases to perform its intended functions. Fault tolerance is necessary

because it is basically not possible to build a perfectly flawless system. With the increasing

complexity of a system, the reliability will decrease along with it if no tolerance measures
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are taken. The interest in the topic of fault tolerance increased substantially after world war

II with the space race being another catalyst (36).

The most common and reliable approach to achieve fault tolerance is redundancy. Re-

dundancy can be attained through hardware replication, check bit with a string of data, an

additional line of the program, among others. In 1950s, in the work called “Probabilistic

logic and synthesis of reliable organisms from unreliable components” John von Neumann

established the idea of incorporating redundancy in order to improve the reliability of a

system (46).

3.3.1 Types of redundancy

There are four kinds of redundancy that are studied: hardware, information, time and

software. Hardware faults are typically dealt with by using hardware, information, or time

redundancy, whilst software faults are protected against by software redundancy.

Software Redundancy: Software redundancy techniques provide structures to the

software system to prevent system failure from happening in case of a fault occurrence.

Single-version techniques include mechanisms for fault detection, containment, and recov-

ery to increase fault tolerance. This helps to prevent fault propagation for fault containment

and recovery. Redundant software components, majorly, recovery blocks, N-version program-

ming, and N self-checking programming following diversity rules are used in multi-version

software-based techniques. The secondary versions can be based on more straightforward

and less accurate algorithms to be used only when the failure of the primary software produce

unacceptable results. Just like hardware redundancy, the multiple versions of the program

can be executed either concurrently (requiring redundant hardware as well) or sequentially

(requiring extra time, i.e., time redundancy) upon a failure detection (47).

Time Redundancy: Time redundancy is reiterating the execution of some of the pro-

gram critical functions, computation or data transmission multiple times to compare and
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reach a consensus. Hardware redundancy impacts the size, performance, power consump-

tion, and cost of a system. It is more suitable to use extra time rather than extra hardware

to tolerate faults in some applications.

Fig. 3.3, depicts time redundancy in case of a TMR system. In (48), the authors, inves-

tigates time redundancy method to increase the reliability of a fully automated behavioral

C-Based MPSoCs on a parameterizable architecture.

Module1

Re‐
execution

Voter

Re‐
execution

Figure 3.3: Time Redundancy: Example.

Information Redundancy:

Information errors can be tolerated by leveraging coding techniques such as parity codes,

linear codes, arithmetic codes, cyclic codes, and unordered codes which will evade unwanted

information deviations during data storage or transmission (36).

Claude Shannon (49) and Richard Hamming (50) were the two pioneers to originate

coding theory using information redundancy changing the solitary use code triplication. The

goal for Shanon’s work was to compress a message in order to minimize the total number of

transmitted symbols while allowing the receiver to recover the message. Hamming introduced

the concept of hamming distance where a set of error-correction codes that can be used to

detect and correct the errors.
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Hardware Redundancy:

Redundancy can also be attained by repeating all or in parts of the functioning design

units, components, or data items, with the same or diverse designs, which is called hardware

space redundancy.

Voter

Module3Module2Module1

Figure 3.4: Space Redundancy: Example.

The principal idea behind hardware redundancy is to utilize NMR. N-modular redun-

dancy (NMR) techniques like duplication with compare (DWC) and Triple Modular Redun-

dancy (TMR) are widely used for designing dependable systems with data integrity. Data

integrity is maintained if a system either produces correct outputs or generates an error sig-

nal when incorrect outputs are produced. NMR is a majority voting system with N identical

hardware modules connected in parallel (51). There are two general cases: Duplication with

Compare (DWC) when N=2 and Triple-Modular Redundancy (TMR) where N=3. If case

of N=3, the structure can have the ability of fault tolerance. In case of N=2, errors can only

be detected but not corrected and a full re-computation is needed. The evident advantage of

DWC is that it requires less area than TMR systems. Fig. 3.4, depicts hardware redundancy

in case of a TMR system. Redundant systems can be very effective in masking errors. Either

transient due to, e.g., radiation single event upsets (SEU) and also permanent faults due to,

e.g., electromigration or time-dependent dielectric breakdown (TDDB).
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In (52), authors introduce an N-modular redundancy method that takes a single be-

havioral description as input for HLS and performs a source-to-source transformation to

directly annotate the N-modular redundancy on the behavioral descriptions to provide tol-

erance against soft errors.

Adding redundant components to the circuit can help in tolerating manufacturing defects

and thus increase the yield. However, too much redundancy may reduce the yield since a

larger-area circuit is expected to have a more significant number of defects. Moreover, the

increased area of the individual chip will result in a reduction in the number of chips that

can fit in a fixed-area wafer. Successful designs of defect-tolerant chips must, therefore, rely

on accurate yield projections to determine the optimal amount of redundancy to be added.

Hardware redundancy can be employed in three different forms: Passive, Active and

Hybrid (36; 47).

Passive/Static: Passive or static redundancy approach uses the concept of fault mask-

ing where the system depends on the voting mechanism to achieve fault tolerance. TMR

and extending to N-modular redundancy (NMR) are passive redundancy.

Active/Dynamic: Active or dynamic techniques achieve fault tolerance by first de-

tecting the occurrence of faults and performing necessary action to remove the fault and

return to the operation state of the system. These techniques use fault detection, location,

and recovery in an effort to attain fault tolerance. Duplication with Comparison, Standby

Redundancy, Pair-And-A-Spare are some examples of active redundancy.

Hybrid: Hybrid techniques combine the smart features of both passive and active

approaches. Hybrid redundancy combines the advantages of passive and active approaches.

Fault masking is used to prevent the system from producing momentary erroneous results.

Self-Purging Redundancy and N-Modular Redundancy with Spares are examples of hybrid

redundancy techniques.

In the next section, the need and importance for fault recuperation in hardware acceler-

ators are explained.
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3.4 Why Fault Recuperation in Hardware Accelerator is important?

Aggressive scaling of transistor sizes has driven these remarkable improvements in compu-

tational performance. Even though transistor count and chip density keep growing, ever

stricter technology constraints are compelling a revisit to a whole new dynamic in VLSI

design.

One promising resolution to deal with the breakdown of Dennard scaling is the cus-

tomization of the computing platforms to the application domain, also known as domain

specific computing. Customization is achieved by using CPUs with FPGA at the computer

level and through heterogeneous Multiprocessor Systems-on-Chips (MPSoCs) with dedicated

Hardware Accelerators (HWacc) at the chip level.

This dissertation mainly targets hardware accelerators because these often tolerate in-

accuracies in their computations and because they are typically the main differentiating

components between different IC vendors. Due to the evolution of technology constraints,

especially energy/power constraints; modern complex heterogeneous SoCs, large portions of

the computations are offloaded to dedicated hardware accelerators that can process these

applications more efficiently. At the same time, reduced turn-around-time with the pressure

to deliver these new or updated ICs at shorter time periods and the use of new technologies

make these accelerators more prone to hardware errors compared to more mature and tested

IPs.

The novel architecture of heterogeneous SoCs can provide sufficient application coverage,

energy efficiency and performance. More attention needs to be given to find a balance

between energy efficiency and fault tolerance while designing hardware accelerators. In

safety critical systems as health monitoring system, autonomous vehicles or space crafts,

lack of fault tolerance can have catastrophic consequences.

The accelerators consist of combinational and sequential circuits are susceptible to the

impact of permanent and transient faults. To achieve fault tolerant hardware accelerators,
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the inherit circuits should be tolerant against these faults. The balance between area, per-

formance and fault tolerance is essential to design an efficient modern heterogeneous SoC.

The Soft Error Rate (SER) of advanced CMOS devices is higher than all other reliability

mechanisms combined. Soft errors have recently become a massive apprehension in cutting-

edge CMOS products because if left uncorrected; they have the power to induce a failure

rate that is higher than all the other reliability concerns altogether. A soft error occurrence

in a circuit though does not permanently damage the circuit but when enough charge from

a radiation event is collected in a node, it will corrupt the data state of the circuit(41).

Transient faults or soft faults are the predominant faults in modern technologies, can

be caused by environmental conditions like temperature, pressure, humidity, voltage, power

supply, vibrations, fluctuations and electromagnetic interferences, crosstalk. (53). Due to

lower supply voltages and higher VLSI complexity; the occurrence rate of particle-induced

soft faults have increased. Lower cell capacity, critical charge and supply voltage lead to

higher soft error rates (SERs) (42). In most previous works, it was assumed that combina-

tional circuits were not as susceptible to SEU as historically, soft errors were a concern in the

design of memory elements, but the susceptibility of the combinational blocks to transient

faults increases as a side effect of technological scaling. In addition, authors of (5) has shown

that combinational circuits can be as susceptible as memories in new circuits mainly due

to the continuous feature size reduction and the increase in the number of pipeline stages,

combined with higher clock frequencies. There is a lot of existing research done for memo-

ries to protect against soft errors, but mitigation techniques for SER in logic circuits are not

researched enough.

Manufacturing defects or hard faults can coarsely be classified into spot defects and global

defects, both contributing to yield loss. Wafer mishandling scratches, over etching, under

etching, mask misalignments etc. cause large defects known as global defects.
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Spot defects are random small and local defects generated during the various steps of

fabrication. It is mostly resulted from the materials employed in the process and from en-

vironmental causes, generally the consequence of undesired chemical and airborne particles

deposited on the chip/wafer. In a well-controlled mature fabrication line, gross/global de-

fects can be minimized to a meager percentage. However, controlling spot defects are more

challenging to manage as a result of yield loss due to spot defect is inevitable and much

higher than the global defect (47).

3.5 Related Work

In this section, we review the main prior work in the area of fault-tolerance in HLS, soft errors,

CMF tolerance, automated diverse system generation and permanent fault compensation.

3.5.1 Fault tolerance using HLS

With regard to fault-tolerant HLS, Karri and Orailoglu developed the first HLS based fault

tolerance methodology to maximize performance in the presence of fault-tolerance constraints

for ASICs (54; 55). Their primary approach was to minimize the area overhead by sharing

functional units. Authors of (56) extended this work by proposing a hybrid time and hard-

ware redundancy system. Guerra et al. (57) proposed a technique for Built-in Self Repair

(BISR) in HLS to achieve fault tolerant circuits which exploits different resource allocation,

scheduling and bindings combined with transformations . Antola et al.(58) while keeping the

error aliasing small extended this work to exploit resource sharing to minimize the redun-

dancy. Later in (59), the authors pre-characterized different functional units’ implementa-

tions, e.g., ripple carry adder, Brent-Kung adder and Kogge-stone adders, and annotated the

reliability into the area and delay library used for HLS, leaving it up to the logic synthesis

tools to implement these accordingly to meet the delay constraint. The approach utilizes

high level synthesis and characterize library components in terms of reliability maximization
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by choosing the most efficient resource allocation, binding and scheduling. This work studies

Soft Error Rate (SER) in combinational components, as a the function of component area,

while the components relative SER is obtained by setting the reliability of ripple carry adder

to 0.999.

3.5.2 Fault tolerance to protect against soft-error

The authors in (60) propose increasing the reliability using redundant operations and multi-

ple binding of resources by estimating the reliability of different Data Flow Graphs (DFGs).

Both works consider the reliability of combinational logic as a function of the component

area. In (61), the authors investigate a comparative analysis of the area and delay constraints

in synthesis tools on reliability. They use Error Propagation Probability (EPP), defined by

(62), in a component that manifests in the output, as a metric to compare the reliability of

different components.

A HLS method of fault-tolerant multi-cycle datapaths is proposed in (63). They propose

a heuristics method for soft error detection and correction utilizing the TMR (triple-module

redundant) system for k-cycle fault tolerance. Recently in (64), the authors integrate vul-

nerabilities into the register binding phase of HLS along with a selective register protection

scheme. Also, the authors in (65) introduced scheduling and binding heuristic for HLS that

explores tradeoffs between resource usage, latency, and the amount of redundancy.

More recently, the authors in (48) proposed a reliable system that makes use of the slack

available in shared-bus architectures to re-compute the outputs of the slaves synthesized

using HLS. The authors in (66) follow a similar approach. Finally, in (67) the authors

introduce a compiler pass called StitchUp, which identifies the control critical parts of the

design in HLS, then automatically replicates only those parts.

Our proposed methodology allows choosing from a pool of micro-architectures with dif-

ferent levels of fault-tolerance to build the best TMR system under a given set of constraints

(i.e., area and latency). In addition, it presents a method to generate this pool automatically.
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3.5.3 Diversity automation for fault tolerance

With regard to asymmetric, diverse fault tolerant redundant systems, in the software do-

main, much work has been done since the 1970’s (68). This concept has recently also started

to being applied to security (69). This previous work mainly focused on developing cost-

effective ways to add diversity to the software automatically. N -version programming (NVP)

was defined by Avizienis et al. (68) as the independent generation of N ≥ 2 functionally

equivalent programs from the same initial specifications. Initially, independent generation

meant that different programming teams, without any interaction, would create these pro-

grams separately. Since then, automated techniques for NVP have been developed. Diverse

compiling is achieved by using different compilers (e.g., gcc, LLVM or icc) and setting a

different level of compiler optimizations (e.g., gcc -01, 02, -03). The main objective is to

minimize software faults in two or more versions (70).

The hardware community also adopted the idea of diversity in order to protect against

CMFs by perturbating the logic gate-netlist (71; 72; 73; 74). The core concept of diversity

depends on independent generation of different implementations. In order to measure the

effectiveness against CMFs, in (71), the authors proposed a metric to calculate diversity,

which requires the fault injection at individual points of the netlist of the different netlists

being evaluated.

Although accurate in measuring against CMFs, the Dmetric method has been shown to

be an NP-complete problem(75). To address this, recently, the authors of (76) proposed a

new diversity metric called DIversity Metric based on circuit Path analysis (DIMP) based

on the structural path analysis of the gate netlist. They nevertheless do not compare it

against the diversity metric proposed by (72) and hence, do not prove that maximizing the

DIMP between two designs also maximizes the fault-tolerance against CMFs. The Dmetric

calculation is explained more in Section: 6.1.1.
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This previous works mostly concentrated on generating a diverse design pair at the gate-

level granularity. In (77), the authors proposed a gate level exploration technique using the

Dmetric as a cost function and maximize the diversity of a duplex system. With a given

truth table of a combinational circuit N1 to be implemented, the objective was to synthesize

another implementation N2 where the diversity of N2 with respect to N1 is maximized. The

work is restricted to two-level synthesis in AND-OR form, generating multiple-output-prime-

implicants (MOPIs) (78) and constructing MOPI covering table.

In order to generate different gate implementations of each circuit, in (76), the authors

used synthesis optimization for different delay targets, from most demanding to most relaxed.

Our work is different from this previous work in multiple dimensions. First, it expands

the search of diverse systems by raising the level of abstraction and starting from a unique

behavioral description for HLS. Secondly, it proposes a new diversity metric based on a

predictive model that makes use of the synthesis results reported right after HLS in order

to find micro-architectures with the highest diversity. In this work, we also analyze if the

DIMP diversity metric is useful to protect against CMFs.

3.5.4 Permanent fault Compensation

There has been significant work on detecting and correcting errors in hardware. Many of

these techniques focus on using structural or information redundancy (i.e., error correcting

codes) to make a particular circuit or subsystem reliable (79).

For test-related applications, parity trees have been used extensively (80). While most

prior works focus on the detection of permanent faults, this work focuses on compensating

for the impact of the permanent faults on the circuit output.

Traditional circuit and redundancy based solutions, such as dual modular redundancy

for tolerating hardware errors, have become too expensive in terms of area, power and

performance overheads; inspiring new low-cost reliability solution (81).
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The increasing unreliability of hardware has generated a strong stimulus for the investi-

gation of hardware fault detection, tolerance and recovery. In the context of timing errors in

DSP and multimedia systems, researchers have shown that statistical methods can be used

to build compensation models and improve overall accuracy (82).

Some of the previous works have addressed the use of error compensation in the context of

digital signal processing (DSP) systems . Previous work in (82; 83), has proposed algorithmic

noise-tolerance (ANT) techniques for DSP systems where timing errors are permitted to

occur and then corrected by a statistical error control block.

In (84; 85), an approximate implementation of the main DSP block is used to estimate

the output and provide reliability in the presence of timing errors introduced by voltage over-

scaling. In (83), errors are corrected by using a composite error probability mass function

to compute the probability ratio for each output bit.

Authors of (86) developed a measure to quantify code’s vulnerability to permanent or

intermittent faults, and suggested a transformation technique to reduce the worst case fault

rate. On the other hand, (87) suggested a rollback and re-execute approach by comparing

the faulty circuit with a fault-free core.

Our approach is focused on basic benchmarks circuits and uses techniques focused on

predicting the entire output. The disadvantage of such a method is as the number of pre-

diction feature directly relates to the number of samples, which creates a significant area

overhead for larger circuits.

The accuracy of the machine learning algorithms decreases as the number of features

for prediction increases. As the number of unique values in the target feature increases, it

provides a negative effect on the accuracy of the prediction, because the probability of a

predicted sample to end up in a wrong boundary increases with the size of the unique value.

We investigate an approach for building compensation logic for dedicated hardware ac-

celerators amenable to approximate computing using supervised learning algorithms (i.e.,
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inferring a compensation function based on the set of circuit behavior training data acquired

during testing). For the proposed method, we do not need to generate bit-wise results for

each output, which provides the approach more flexibility, as opposed to using statistical or

Bayesian methods.
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CHAPTER 4

DESIGN AND OPTIMIZATION OF

RELIABLE HARDWARE ACCELERATORS:

LEVERAGING THE ADVANTAGES OF HIGH-LEVEL SYNTHESIS

The need for high performance and energy efficiency has led to a trend shift towards het-

erogeneous System-on-Chip (SoC), which includes multiple dedicated hardware accelerators.

At the same time, these heterogeneous SoCs have to be taped out at shorter and shorter

time frames. This is forcing designers to raise the level of abstraction by using High-Level

Synthesis. Shrinking geometries, lower operating voltages, higher operating frequencies and

higher density in these accelerators have led to an increased sensitivity towards soft errors.

These occur when a radiation event causes a disturbance significant enough to reverse a bit

in the circuit. When the bit is flipped in a critical control register or configuration memory, it

can cause the circuit to malfunction (88). This phenomenon raises the need for fault-tolerant

hardware accelerator design.

Fault-tolerance can be described as the ability of a system to continue to work after the

occurrence of an error. Fault-tolerant electronic systems are becoming a standard require-

ment in many industries ranging from aeronautics to automotive as electronics have become

pervasive in many industries.

Most previous work on VLSI design reliability is based on time or space redundancy. In

space redundancy, the main idea is to replicate the same channel N times, also called N -

Modular Redundancy (NMR). For larger electronic systems these channels are being built

by sourcing parts from different vendors. However, in VLSI design, the underlying hardware

channel is exactly the same since it is too expensive to design multiple hardware versions

with the same specifications. The Triple Module Redundancy (TMR) is one of the most

popular implementations of NMR systems as it can fully mask errors. Fig. 4.1 shows the

different TMR configurations using space and time redundancy.
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Figure 4.1: TMR Accelerator Variation (a) 3 same/different design in parallel. (b) 2 dif-
ferent/same design in parallel and one of them re-executed (c) One design re-executed 3
times.

There are multiple problems when implementing TMR system at the RT-level: (1) De-

signers tend to over-design the circuit by instantiating the same module thrice as shown in

Fig. 4.1(a), because it is easier to verify than using time redundancy. (2) The underlying

hardware is always the same, thus, in Fig. 4.1(a) D1 = D2 = D3. This implies that if there

is a fault/bug in the design, it will be present in all of them, and hence it will never be

detected, as the voter will always see the exact same output from the different modules. (3)

It is extremely hard to re-target the system when moving to another platform/system, with

different constraints (i.e., area, execution time, power) as this involves having to re-design

and re-verify the entire system, which is time- consuming and error-prone.

Reliability is tackled very differently in the software domain. In contrast to most hardware

faults, software faults (bugs) exist in every instance of the software. Therefore, the same

software program cannot just be replicated and executed onto different hardware channels.

In order to address this issue, software developers rely on code diversity (69). A classic

approach to add diversity is to set up multiple teams working in parallel and independently

on the same design (89). This obviously expensive method is still the standard approach

when extremely reliable systems are required. In order to make software diversity more

efficient, much research has been done to automate this process. One of the main techniques

investigated is diverse compiling (70).

Thus, this work applies similar techniques to C-based VLSI design to find multiple dif-

ferent micro-architectures from a single behavioral description and then given an area and
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timing constraint, find the most reliable TMR accelerator system design from the three 

options shown in Fig. 4.1. In this work, we build the most reliable TMR accelerator with 

respect to space and time within the given constraints by leveraging the unique advantage 

of C-based VLSI design of allowing the generation of different micro-architectures from the 

same behavioral description.

4.1 Motivation and Flow Overview

Fig. 4.2 compares the traditional fault tolerant flow with our proposed method. Tradi-tional 

VLSI design flow of an accelerator starts with a behavioral description and some constraints, 

e.g., real-time or power, that needs to be mapped onto hardware. In the tra-ditional flow, Fig. 

4.2(a), the hardware designer has to analyze the behavioral description and create a suitable 

RTL description that can be executed manually. This leads to a single micro-architecture with 

specific execution time, area and reliability. This module is in turn, instantiated thrice with a 

voter to mask faults. As mentioned previously, this implies that the system might be over-

designed as time redundancy could be used to reduce the area and that the reliability of the 

system is compromised if there is a bug in the hardware mod-ule. Thus, this work advocates a 

new approach to fault-tolerance, based on leveraging one of the main advantages of C-based 

VLSI design: the ability to generate micro-architecture with different characteristics from the 

same behavioral description. Fig. 4.2(b) highlights the proposed flow. In C-based VLSI design, 

the first step typically requires to refining the original behavioral description to make it 

synthesizable. This synthesizable description can, in turn, be explored creating designs with a 

unique area, time and reliability. Finally, the proposed method creates the system with the 

highest reliability by creating a space, time or mixed redundant TMR system as shown in Fig. 

4.1 based on the constraints given (area and timing).
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Figure 4.2: Design flow of traditional and proposed method.

Thus, C-based VLSI design seems a promising technology for automatic generation of

reliable systems. The problem addressed in this work can be formulated as follow:

Problem Formulation: Given a behavioral description (C), area (AreaBound) and exe-

cution time (TimeBound) constraints, automatically generate a design pool DP =

{D1, D2, . . . , Dn}, from C with each design Di = {Ai, Ti, Ri} having a unique combination

of area (A), time (T ) and reliability (R), optimize a triple modular redundant (TMR) ac-

celerator system with maximum reliability by choosing the best mix of designs from the

DP .
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4.2 ARMORED: Proposed Method

The proposed method, called ARMORED (A Reliable triple-MOdular REdundant acceler-

ator Design), is composed of two main phases summarized in algorithm 1. The first phase

performs the HLS designs space exploration (DSE) to generate the pool of designs (DP ) to

choose from, while the second phase determines which designs to choose to form the TMR

system, given an area and execution time constraint. These two phases are described in

detail below.

4.2.1 Phase 1: Reliability-aware Design Space Exploration

Although much work has been done in the past in the area of HLS DSE (19; 22), most

work only target area and latency or throughput as the exploration target, as the HLS tools

report these two metrics after the synthesis. In this work, we have included reliability as a

third exploration metric in order to explore the three-dimensional space of area, time and

reliability, but because commercial HLS tools do not provide reliability information, it is

required to estimate the reliability of each new designs after HLS during the exploration.

Reliability Estimation: For estimating the reliability of each newly generated design, this

work considers soft-errors caused by high-energy neutrons. Reliability is calculated as the

negative exponential of failure rate multiplied by total execution time as given in (90), as

follows:

R = e−λ.t (4.1)

In this case, the design failure rate (λ) is given as:

λ = SER× AV F (4.2)

where, AV F stands for Architectural Vulnerability Factor, defined as the probability that an

error (such as soft-error) results in failure, i.e., changes the sensible output of the architecture
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(91). In this work, the AV F value is considered as 1 which means a failure will always be

interpreted as an error. We obtain the Soft-Error Rate (SER) for combinational logic,

latches, and SRAMs from the model by authors of (5) as 0.00003, 0.00001 and 0.000009

respectively. For obtaining the total SER of a specific design, this method multiplies the

number of logic elements to the SER per logic and adds them up. Here, t is the design

execution time, obtained as:

t = Latency ∗ Critical Path Delay ∗No of Runs (4.3)

where, Latency is the number of cycles the design takes to generate a new output and Critical

Path Delay is the longest combinational delay in the design. Both are obtained from the HLS

tool. No of Runs is the number of times the module computes data. This work considers 10

million runs for the calculation.

Algorithm 1: Proposed flow overview.

input : {C,AreaBound, T imeBound,∆}
1 C : Input Behavioral Description
2 AreaBound: Area constraint of TMR system
3 TimeBound: Execution Time constraint of TMR system
4 ∆: Threshold value to decided which non-Pareto-optimal designs to use in

TMR system
output: {TMR = {D1, D2, D3}}

5 TMR: TMR system with the highest reliability for given constraints
6 Di: Micro-architecture of TMR system

7 /* Phase 1: Reliability-aware HLS DSE */
8 DPpragma = {D1, D2, ...Di} = pragma explore(C);
9 DPFUs = {D1, D2, ...Di} = fu explore(DP );

10 DP = DPpragma ∪DPFUs;
11 DPprune = prune DP (DP,∆);

12 /* Phase 2: TMR System Design */
13 TMR = ILP (DPprune, AreaBound, T imeBound);

14 return(TMR);
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Design Space Exploration: The HLS explorer proposed in this work is based on a genetic

algorithm (GA) which has shown to lead to good results in multi-objective optimization

problems like this one (92). In this case, the two objectives that need to be minimized are

area and execution time, while reliability needs to be maximized. Thus, the explorer uses a

cost function (C = αA+βL−γR), that is adaptively modified during the exploration process

in order to explore the complete trade-off plane. It should be noted that the reliability term

of the cost function is negative because the objective is to minimize area and execution time

and maximize reliability.

The explorer is divided into two steps. The first step explores the synthesis attributes in

the form of pragmas, while the second stage explores the number of functional units (FUs).

Step 1: Local Synthesis Attributes Exploration. This first step explores synthesis

directives in the form of pragmas inserted directly into the source code. It is also the most

powerful knob, as it fixed the overall micro-architecture. With these pragmas, it is possible to

synthesize arrays as memories or registers. Loops can be unrolled or pipelined and functions

inlined or synthesized as single Hardware (HW) blocks (gotos) (line 2).

Each explorable operation OP ∈ OPexp is represented as a gene to which a synthesis

attribute (pragma) AT is assigned. The list of all genes builds a chromosome Cr. Therefore

a gene ⇔ OP and a Cr ⇔ OPexp. In this work OPexp={arrays, loops, func}, where ar-

rays={register, expand, logic, RAM, ROM}, loop={no, partial, all, fold}, and func={goto,

inline}. The genetic algorithm first step is the random generation of an initial population

of N chromosomes. Then, each member of the population is paired with another randomly

selected member of the population and is given a chance to produce an offspring using the

crossover operator. The crossover operator selects a cut-point at random and combines the

left half of one parent with the right half of the other. The crossover operator is only a

certain percentage of the time, according to the specified crossover rate specified beforehand

by the user, rc. The offspring is then mutated, which involves randomly selecting one gene
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within the offspring chromosome and changing it to another random value. Only a certain

percentage of the offspring produced are mutated, the proportion of which is determined by

the mutation rate again passed by the user as an exploration parameter, rm. In this work rc

and rm are set to 0.8 and 0.1 respectively.

At this point, the mutated offspring is synthesized calling the HLS tool and the area,

critical path delay and latency of the synthesized design back-annotated. The reliability

is then computed using the reliability model described previously, hence leading to a new

design Dnew = {Anew, Lnew, Rnew}.

The newly generated offspring will replace one of the parents if one of the several con-

ditions is met: (i) If one of the parents is dominated by the offspring (i.e., is inferior to the

offspring across all of the objectives). (ii) If the offspring improves on one or more of the

best-so-far values, then the offspring replaces one of its parents (the parent to be replaced is

randomly chosen). Moreover, if an identical copy of the offspring already exists within the

population, then the offspring is discarded. The algorithm will continue until N number of

child designs do not improve any of the parents.

Step 2: FUs Exploration. This second exploration knob enables different levels of resource

sharing by controlling the number of Functional Units (FUs) that the synthesizer can use.

Resource sharing is a well-known optimization technique that can be used to reduce the area

while increasing the latency of the circuit. In resource sharing, a single functional unit (FU)

is re-used among different computational operations in the behavioral description. Thus,

once step 1 finishes, this next step explores the number of FUs of each micro-architecture.

The explorer retrieves the number of FUs required in step 1, which uses the default option of

allowing the synthesizer to use as many as required to parallelize the behavioral description

fully and reduces all FUs automatically by a fixed percentage (in this case 10% was used)

(line 3).

The result of these two steps is a 3-dimensional plane of dominating designs. Below is

the algorithm utilized to sort out the pareto-optimal design set.
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Algorithm 2: Pareto Optimal Design according to Area, Execution Time and
Reliability

input : Design Pool
1 Dtotal{D1(A1, T1, R1), D2(A2, T2, R2), ...Di(Ai, Ti, Ri)}
2 A: Area
3 T : Execution Time
4 R: Reliability
5 i: Number of Designs
6 j: Number of Pareto Designs

output: Pareto Optimal Design :
DPO{DPO1

(APO1
, TPO1

, RPO1
), DPO2

(APO2
, TPO2

, RPO2
), ...DPOj

(APOj
, TPOj

, RPOj
)}

7 /* Sort according to Area */
8 Dsort{D1(A1, T1, R1), D2(A2, T2, R2), ..., Di(Ai, Ti, Ri)} = sort(Dtotal)
9 /* Optimal Design Search */

10 for (i = 1; i < Number of Designs; i + +) do

11 if (T [i] < temp T || R[i] > temp R) then
12 if (T [i] < temp T ) then
13 temp T = T [i];
14 end
15 if (R[i] < temp R) then
16 temp R = R[i];
17 end
18 return(ParetoOptimalDesign : DPO[j]);
19 j + +;

20 end

21 end
22 return(Pareto Optimal Design : DPO);

Intuitively one would prune away all non-optimal designs and pass only the dominating

designs to the next phase in order to find the most reliable TMR system. As we show in the

experimental results section, this often leads to sub-optimal systems or in some cases, does

not even find a solution. Hence, we also have to pass non-dominating designs to the next

phase to generate optimal systems. The experimental results study the trade-off of quality of

results vs. runtime when passing non-dominating designs to the next phase (Pareto designs

+ ∆ threshold). The un-used designs are pruned away (line 5).
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4.2.2 Phase 2: TMR System Design

The input to this second phase is the design pool (DPprune) of designed passed from phase

1. As shown in Fig. 4.1, three possible systems can now be created: (a) Choose 3 design

of same/different architecture in parallel and run them simultaneously (Space redundancy).

(b) Choose 1 design and re-execute 3 times (Time redundancy). (c) Choose 2 different/same

design and re-executed one of them (Space-Time Mixed redundancy).

For this, the overall system reliability is calculated as:

Rtotal = 1−
3∏
i=1

(1−Ri)
n (4.4)

Here, Ri is the micro-architecture reliability and n is the number of times it is executed

(used). Based on this, we formulate the problem as an ILP.

ILP Formulation: Linear programming one of the most popular and efficient method to

formulate a mathematical model to calculate maximum profit with minimum cost. The ILP

formulation is used in this work is described below:

maximize 1−
3∏
i=1

(1− xiRi)
yi

subject to:

A1m1x1 + A2m2x2 · · ·+ Aimixi ≤ AreaBound

T1n1x1 + T2n2x2 · · ·+ Tinixi ≤ TimeBound

x1 + x2 · · ·+ xi = 3

xi =


1, if mi ≥ 1

1, if ni ≥ 1

0, otherwise

yi =


mi, if mi ≥ 1

ni, if ni ≥ 1

0, otherwise
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In the constraints of the formulation, the AreaBound has to be less than or equal to the total

area of the micro-architectures used and the TimeBound has to be less than or equal to the

total execution time of the micro-architectures used. Here, mi and ni represents how many

times a single micro-architecture is placed and executed, respectively. The objective of the

ILP formulation, is to maximize the TMR system reliability expressed as 1−
3∏
i=1

(1−xiRi)
yi ,

where xi represents if a design is used or not and yi represents how many times a design is

used. To design a TMR system, the total maximum number that a design can be used in

the system is set to 3.

4.3 Experimental Results

Six different benchmarks from the open source synthesizable SystemC benchmark suite

(S2CBench) (93) are used to evaluate the efficiency of our proposed method. The HLS

tool used is CyberWorkBench from NEC (26) and the target technology is Nangate Open-

source 45nm. The HLS target frequency is fixed in all cases to 100MHz. The experiments

are conducted on an Intel i7-6700 @3.50GHZ CPU and 16 GB memory, running CentOS 7.

The ILP formulation was done using Solver (94) by FrontlineSolver.

In order to fully characterize our proposed method, different area (AreaBound) and time

(TimeBound) constraints are set. The smallest AreaBound is set to three times the smallest

Pareto-optimal design area (3 × Amin) found during the HLS DSE, to enable a standard

space redundant TMR solution and incremented until three times the largest Pareto-optimal

design area (3×Amax). The same is done with the TimeBound, and the constraints combined

for practical reasons.

Three methods are compared. The first is a näıve method, which selects the smallest

design which instantiated three times meets the AreaBound and TimeBound constraints

from all the design pool composed of all the designs created during the exploration phase.

The second method is based on the ARMORED (ARMORED:Pareto), but only uses the
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Figure 4.3: Sytem reliability of TMR system for 6 different benchmarks.
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Pareto-optimal designs found during the exploration to build the systems. Finally, the last

method is again based on ARMORED, but uses the Pareto-optimal designs +∆ Area or

+∆ Latency, where in this case, ∆ = 5% (ARMORED:Pareto+∆). We have also observed

that additional designs selected through choosing ∆>5% do not contribute to improving

the results in any benchmark. This second method is crucial because intuitively one would

only use the Pareto-optimal designs found during the HLS DSE to build reliable systems.

Nevertheless, the results show that in this case, often sub-optimal solutions are found as well

as no solution at all, as in many cases using non-Pareto-optimal designs lead to an optimal

system.

Fig. 6.7 shows the results obtained for the 3 methods, where the x-axis shows the

TimeBound constraint in ns and the AreaBound constraint in µm2. Several observations

can be made. First, the näıve and ARMORED:Pareto method does not find any solutions

under some constraints. This involves that either the area and/or time constraints have to

be relaxed, leading to larger and/or slower circuits. Secondly, the ARMORED:Pareto+∆,

always finds a system that meets the constraints and is consistently better than the other

two methods. Fig. 4.4 highlights the reliability average overall constraints boundary of all

benchmarks for the three methods. It can be observed that the systems created by only using

the Pareto-optimal results lead to poor average reliability, mainly because it often cannot

find a solution, similar to the näıve method. Table 4.1, shows the reliability percentage

increase of utilizing ARMORED:Pareto+∆ method over traditional method.

Table 4.1: Average Improvement of Reliability after utilizing ARMORED

Design# Interpolation FIR ADPCM Decimation AES Sobel

Reliability 20% + 50% + 20% + 20% + 20% + 50% +
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4.3.1 Study of Area and Timing Overhead

From Table 4.2, we can observe, for the constraints where both näıve and ARMORED:

Pareto+∆ provides a solution, there is an area overhead of ∼ 1% and time overhead of

∼ 2%. The only exception is FIR, where there is an area reduction of 6% for 30% time

increase.

Table 4.2: Overhead for ARMORED over näıve method

Design# Interpolation FIR ADPCM Decimation AES Sobel

Area(µm2) 0.4% + 6.6% - 0.8% + 1.3% + 0.01% + 1.1% +

Time(ns) 3.9% + 30% + 0% 0% 1.7% + 4.1% +

4.3.2 Scalability Study

As well known, ILP formulations do not scale well to substantial problem sizes. This

is why it is essential to prune the search space using the ∆ threshold value. Fig. 4.5

compare the running time of the two ARMORED versions (ARMORED:PARETO and

ARMORED:Pareto+∆). The näıve method is not included because it is extremely fast
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and thus, the running time is negligible. It can be observed that for 5%, the running time is

still very low, as the design pool is still relatively small. On average, for ARMORED:Pareto

it is 36s and for ARMORED:Pareto+∆ it increases to 62s. This being a one time process,

the overhead is negligible in regards to the increase in system reliability achieved.
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Figure 4.5: ILP Run-time comparison.

In summary, based on the results, it can be concluded that our proposed method works

well and can find TMR accelerator systems with maximum reliability subject to different

area and time constraints.

4.4 Summary and Conclusions

This work exploits one of the main benefits of C-based VLSI design over traditional RT-

level design: The ability to generated micro-architectures with different characteristics from

the same behavioral description, to automatically generate reliable TMR systems, by either

performing space and/or time redundancy. In the RT-level, TMR systems are often over-
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designs in order to facilitate the verification of the system by merely instantiating the same

design three times.

To avoid this, this work proposed a High-level synthesis design space explorer that esti-

mate the reliability of each new micro-architecture and formulates the problem as an ILP

to find the optimal system under a set of a given area and timing constraints. Results show

the effectiveness of our proposed method, where a reliability improvement of at least 20% is

achieved.
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CHAPTER 5

COMMON-MODE FAILURE MITIGATION:

INCREASING DIVERSITY THROUGH HIGH-LEVEL SYNTHESIS

Redundancy and diversity have been widely used throughout disciplines and mankind to

tolerate design faults. E.g., airlines require a pilot and a co-pilot in each cabin and for

complicated surgeries, two or more surgeons need to be present. In most of the safety-critical

systems which require mechanisms to tolerate faults and the typical way to address these

is through redundant systems. These systems are built by replicating the same hardware

N times. This is typically called N -Modular Redundancy (NMR). Although effective, this

approach cannot protect against Common Mode failures (CMFs). CMFs can result from

failures that affect more than one module at the same time, generally due to a common

cause in a redundant system. CMF can occur due to external (e.g., EMI, power-supply

disturbances, and radiation), internal or design mistakes. Although redundancy can be

adequate for physical fault detection and system recovery; but simple redundant systems

cannot protect against CMFs because the replicated hardware modules will produce the

same erroneous output and hence the voter will interpret the output as correct (10).

Design diversity has been proposed to address CMF detection. While for larger electronic

systems these channels have been built by sourcing parts from different vendors. The most

rudimentary form of design diversity is to have multiple parallel teams building the same

circuit using different tools. Nevertheless, the reliability of these redundant systems does

not only depend on the reliability of each version, but also on the differences (dissimilari-

ties) between them. This technique adds a considerable cost overhead to the overall design

proportional to the level of redundancy. Thus, automated methods to obtain different im-

plementations of the same circuit which output different values in the presence of CMFs are

required.
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Figure 5.1: Duplex System.

5.1 Diversity

The need for high performance and energy efficiency has led to a trend shift towards het-

erogeneous System-on-Chip (SoC), which includes multiple dedicated hardware accelerators.

At the same time, these heterogeneous SoCs have to be taped out at shorter and shorter

time frames. This is forcing designers to raise the level of abstraction by using High-Level

Synthesis, especially to design the dedicated hardware accelerators.

In a traditional VLSI design flow, the hardware designer has to analyze a given behavioral

description and based on a set of constraints manually creates an RTL description that can

execute the given functionality efficiently. To design redundant systems at the RT-level,

55



designers tend to over-design the circuit by instantiating the same module multiple times.

This approach is easier as only one module has to be fully verified. This implies that if

there is a fault/bug in the design, it will be present in all of them, and hence it will never

be detected, as the voter will always see the exact same output from the different modules.

Fig. 5.1(a) shows this traditional flow. One additional problem with this approach is that

it is extremely hard to re-target the system when moving to another platform/system, with

different constraints (i.e., area, execution time, power) as this involves having to re-design and

re-verify the entire system, which is time-consuming and error-prone. Besides, as mentioned

previously, replicating identical modules does not protect against CMF. Thus, we raise the

level of abstraction to create a diverse design pool to choose from to increase the error

detection probability and preserve data integrity. Fig. 5.1(b) shows this alternative new

approach to generate NMR systems that can also protect against CMFs automatically.

In C-based VLSI design, the first step typically requires to refine the original behavioral

description to make it synthesizable. This synthesizable description can, in turn, be explored

creating designs with a unique area, time and reliability. C-based VLSI design seems a very

promising technology for automatic generation of reliable systems, including CMFs.

Common Mode Failure (CMF): CMF can be described as a fault that occurs at multiple

modules at the same time. Based on the fault, these faults have the potential to propagate

to the output manifesting as wrong, but identical outputs in two or more modules. Thus,

the voter will not be able to detect this fault, leading to a potentially dangerous situation.

The root cause of this kind of fault is the dependencies among the redundant units that lead

to simultaneous failure (e.g., common environmental factors or buses within a system).

Fig. 5.2 shows an example. The two modules (M1) represent the same identical designs,

where, Z1 = Z2 = A · (B+C). If a CMF, modeled as a stack-at-fault in the figure, leads to

the output of the OR gate that produces B + C to be a logic 0 when the inputs are either

ABC=101,110,111, then Z1=Z2=0, whereas the correct output should have been Z1=Z2=1.
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Figure 5.2: Common-mode failure in Identical Design Instantiation.

Figure 5.3: Common-mode failure in Different design Instantiation.

Because both modules produce the same result, the voter will assume that the wrong output

is correct and continue normal operation.

Fig. 5.3 shows a diverse redundant system composed of two modules (M1 and M2) that

are functional equivalent, but have different gate-netlists. In this case Z1 = A · (B + C)

and Z2 = A · B + A · C. In this case, if a CMF happens, as shown in the figure, the only

combination that will now lead to the same erroneous output is for the case of ABC=101.

Thus, the risk against CMF has decreased significantly by increasing the diversity of the

redundant system.

Based on this, intuitively, the larger the design pool from which to choose the micro-

architectures for each module in the NMR system, the more robust a system against CMF
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will be. Nevertheless, sheer usage of dissimilar implementations does not always assure higher

diversity compared to redundant systems with identical implementations, so it is essential

to analyze and measure the diversity of redundant systems using a dependable metric.

5.2 Diversity Calculation Techniques

To the best of our best knowledge, there are two published existing methods to quantify

diversity.

Dmetric

The authors of (71; 73; 74) proposed a diversity metric (Dmetric) based on gate-level fault

injection, given as:

DV =
1

m

∑
fi,fj

di,j (5.1)

where, di, j is the probability of both designs not producing identical faulty output in re-

sponse to a given input sequence with respect equally probable m fault pairs (fi, fj) in two

designs implementing the same function. di, j’s generate a diversity profile for the two im-

plementations in a duplex system with respect to a fault model. The implementations can

produce one of the following cases at their outputs In response to any input combination;

(a) Both of them produce correct outputs, (b) One of them produces correct output and the

other produces incorrect output, (c) Both of them produce the same incorrect value.

This motivates the concept of joint detectability, ki, j which is defined as the number of

input patterns that produce the same erroneous output pattern in both implementations.

For all the input patterns are equally likely, di, j can be specified as:

di,j = 1− ki,j
2n

(5.2)
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The main problem with this method is that it is an NP-complete problem, as it requires

to simulate all possible fault-pairs in order to observe when the output of both netlists are

identical and erroneous. The diversity value is between 0 to 1. This method nevertheless

gives an accurate picture of how tolerant a design pair is against CMFs.

DIMP

To speed up the diversity computation process, the authors in (76) proposed a fast method

called DIversity Metric based on circuit Path analysis (DIMP) based on the static analysis

of the different gate netlists. The idea is based on the concept that lack of diversity happens

when a given input signal Ii propagates to a given output signal Oj through similar gates

in both circuit instances. So, to quantify diversity, DIMP takes into account whether the

same netlists are traversed in the same order from Ii to Oj in both circuit instances. To

achieve this, all paths of a given circuit are taken as inputs and circuit paths timing reports

are obtained as output after logic synthesis listing all paths.

DIMP =
∑

weight(p1i,j ,p2i,j).(1− overlap(p2i,j ,p2i,j))

MaxDIMP =
∑

weight(p1i,j ,p2i,j)

DV =
DIMP

maxDIMP

(5.3)

In this case, the overlap is the number of gates repeated across paths in the same order, and

weight is the maximum gate count of the paths. Two identical circuit instances will lead to

a diversity of 0 since all the path are identical. The closer the diversity value is to 1, the

more diverse the designs are and intuitively less susceptible to common-mode failure.

This method is much faster than the previous method, but still requires the logic synthesis

and the path calculation for every micro-architecture, which for larger sequential circuits is
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also very time-consuming. Besides, the authors did not prove that two most diverse micro-

architectures based on DIMP are at the same time the most efficient against CMFs, as the

primary goal of asymmetric redundancy is to have circuits behave differently in the presence

of a given fault (basically the outputs should be different).

5.3 Motivation

Fig. 5.4 shows a motivational example for this work. Fig. 5.4(a) shows a traditional fault-

tolerant flow which does not take into account hardware diversity.
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Figure 5.4: Design flow for Common-mode failure avoidance in Traditional and Proposed
method.

In this case, the exact same hardware channel is replicated twice and a voter checks if

the outputs match or not, also called Duplication with compare (DWC). This configuration
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cannot detect CMF, which lead to the same erroneous outputs. To address this, previous

work achieved diversity by synthesizing the RTL description with different constraints, such

as maximum fanout, target synthesis frequency, etc (74; 76). As shown in Fig. 5.4(b), this

leads to a family of micro-architectures with different performance and area, which in some

cases, can detect CMFs.

Currently, VLSI design methodology is transitioning from the use of low-level Hard-

ware Description Languages (HDLs) to higher levels of abstraction. This work advocates a

new approach to fault-tolerance for CMF avoidance, based on leveraging one of the main

advantages of C-based VLSI design: the ability to generate micro-architecture with differ-

ent characteristics from the same behavioral description. Fig. 5.4(c) highlights the proposed

flow. As seen, the design space is much larger than in Fig. 5.4(b) because completely different

micro-architectures can be obtained from the behavioral level by setting different synthesis

options as opposed to modifying the RTL synthesis constraints. The main synthesis direc-

tives used in HLS include the specification of how to synthesize arrays, loops and functions.

E.g., arrays can be synthesized as RAMs (with a different number of ports) or registers,

loops unrolled, partially unrolled or pipelined and functions inlined or not. Setting different

combinations of these synthesis attributes leads to a completely new micro-architecture with

unique area, power, performance and reliability tradeoffs. The main goal of this work is to

investigate if the unique ability of behavioral VLSI design of diverse synthesis can be used

to create diverse redundant hardware systems.

As we observe in Fig. 5.5, for both instances, design space exploration in High-level

synthesis creates a larger design pool compared to the exploration result at the RT-level. In

summary, the main contributions of this work are:

• Present an HLS design space explorer to maximize the diversity of hardware accelera-

tors to protect against CMFs.
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• Study the increase in diversity and hence CMF protection of traditional RT-level design

diversity compared behavioral-level diversity.

Figure 5.5: Design Space Exploration in Traditional and Proposed method.

5.4 Proposed Method

The proposed method is called High-Level Synthesis Design Space Exploration Method for

Diverse Design Implementation (HDMI). Algorithm:3 summarizes the flow of our proposed

method. The input to HDMI is a single behavioral description (Cin) and the output a set of

gate netlist pairs with the highest diversity. The proposed method is based on a traditional

HLS design space exploration (DSE) with modified cost function to maximize diversity.

Thus, before we explain in detail how HDMI works, we define how to measure diversity.

5.4.1 Diversity Calculation

In this work, we utilize DIMP(76) method to quantify Diversity. In the next chapter, we

will compare all different diversity estimation method and propose our noble technique.
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Algorithm 3: Proposed Flow Overview.

input : C: Input Behavioral Description,
M : Exploration mode; mr: mutation rate

output: DMR = {D1, D2}
DMR: Dual Modular Redundant System

1 /* Genetic Algorithm */
2 population(D1, D2, ..., Dn) = gen population(C);
3 do
4 pi,pj= gen parents(population);
5 Cpi,pj = compute cost(pi, pj,M);
6 do
7 opi,pj = gen offspring(pi, pj,mr);
8 Cpi,oij = compute cost(pi, oi,j,M);
9 Cpj,oij = compute cost(pj, oi,j,M);

10 substitute parent(pi, pj, oij, Ci,j, Ci,ij, Cj,ij);
11 while (N number of child doesn’t improve result);
12 while (No smaller cost function obtained);
13 return (DMR with Cmin);

5.4.2 Diversity-aware HLS Design Space Exploration:

The proposed HLS explorer is based on a Genetic Algorithm (GA), which has shown to lead

to good results in multi-objective optimization problems (92). The explorer has three objec-

tives. Two objectives need to be minimized, area and execution time and one maximized,

the diversity. Because the final goal is to find design pairs to implement the DMR system

shown in Fig. 5.4, a cost function that considers these three metrics for each new design

pairs is needed.

The cost function nevertheless depends on the execution mode of the explorer, which can

run in two modes: The first mode is the unconstraint case, in which the only objective is

to find the design pairs with the highest diversity (highest DIMP value). In this case the

cost function is defined as (Cdi,dj = 1/DVi,j), with DVi,j being the DIMP value between the

two designs (Di and Dj) being considered, with each design characterized by its area and

latency, Di = {Ai, Li} and Dj = {Aj, Lj}. In this case, a high diversity value is better as

the objective is to maximize the diversity, which in turns reduces the cost function. This
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cost function is subject to the given total area (Amax) and execution time (Lmax) constraint,

and thus ADMR = {Ai + Aj} ≤ Amax is the area of the complete DMR system composed of

the two modules (Ai and Aj])(the voter is excluded as it is the same in all of the solutions)

and LDMR = max(Li, Lj) ≤ Lmax the longest latency in clock cycles of the two designs, as

these operate in parallel. In the unconstraint case, the explorer has to sweep the complete

design space finding Pareto-optimal pairs of unique area vs. latency vs. diversity. Hence,

the cost function used is defined as C = αA + βL − γD, where α, β and γ represents the

weights representing the importance to minimize either the area, the latency or to maximize

the diversity (thus, the negative sign in the diversity term). In this second unconstraint case,

the explorer adaptively modifies these weights to sweep across the entire search space. The

next subsections describe in detail how the explorer works.

HLS provides multiple knobs to generate different micro-architectures. They include

global synthesis option that allows to e.g., control the FSM encoding and the target synthesis

frequency, function unit constraints (limit of functional units to be instantiated) and local

synthesis attributes in the form of pragmas or comments to control how to synthesize mainly

arrays, loops and functions. These are basically comments inserted directly in the source code

before the explorable operation. Our proposed explorer explores these last two knobs as they

are also the most important knobs as they lead to completely different micro-architectures.

Algorithm:1 illustrates an overview of the proposed GA-based diversity aware HLS DSE.

The first step parses the behavioral description and extracts all the explorable operations

in the code. These are operations that can be controlled through synthesis directives (in

this work we consider arrays, loops and functions). It then continues by generating a pool

of parents by randomly assigning each parent a unique list of pragmas. Each explorable

operation is represented as a gene to which a synthesis attribute (pragma) is assigned. In

this work, the pragmas we have used are: arrays={register, expand, logic, RAM, ROM},

loop={no, partial, all, fold}, and func={goto, inline}. With these pragmas, it is possible
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to synthesize arrays as memories or registers. Loops can be unrolled, partially unrolled or

pipelined and functions inlined or synthesized as single hardware blocks (gotos). Two parents

are in turn randomly selected (pi and pj) and their cost function computed depending on the

type of exploration that is being run (unconstrained or constrained), thus leading to DMR

system characterized by these three metrics DMRpi,pj = {ADMR, LDMR, DVi,j} . The list

of attributes is then combined based on a randomly chosen cut-off point and some of the

attributes mutated by choosing a different one from the attribute library. The mutation rate

depends on the mutation rate mr specified by the user, which by default is set to mr = 0.1.

The mutated offspring is then synthesized by calling the HLS tool and performing a logic

synthesis on the generated RTL code (required to compute the DV) and the area and latency

annotated. The diversity value is then computed using the DIMP value described previously,

for the offspring and each of the parents leading to two new design pairs (DMR systems)

DMRpi,oij = {ADMR, LDMR, Di,ij} and DMRpj,oij = {ADMR, LDMR, Dj,ij}. The offspring

substitutes one of the parents if the cost of the new design pairs is lower than the cost of

the two parents. Each new offspring is synthesized using the maximum number of functional

units to fully parallelized the micro-architecture based on the pragma list and then again

with a single functional unit of each time to maximize resource sharing. The algorithm will

continue until N number of child designs do not improve any of the parents.

5.4.3 Predictive HLS DSE Method for Diverse Design Implementation (pHDMI)

One of the problems with the previously described GA-based diversity explorer is that in

order to compute the DIMP value, it has to perform a logic synthesis for each newly generated

offspring. We have observed that the HLS process is relatively fast (in the order of seconds),

while the logic synthesis process is much slower (in the order of minutes). To speed up

the exploration, we, therefore, investigated the use of predictive models that can be used

to predict the diversity of a design pair with the information obtained right after the HLS
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process. For this, we used a well-known machine learning tool (WEKA (95)) which contains a

library of predictive methods and run it on the results obtained from the GA-based explorer.

The predictors were the area, segregated based on type (i.e., sequential vs. combinational,

functional unit area, muxes area, decoder area, etc.), latency and delay values reported by

the HLS tool and the predicted value the DIMP value calculated from the gate netlists. It

was found that the differences in sequential logic ∆Si,j = Si − Sj (basically registers) could

be used as a simple predictor for diversity. We call this method predictive HDMI (pHDMI)

The experimental section compares the results for the GA-based exploration with gate netlist

DIMP calculation and using ∆Si,j as DIMP estimation.

5.4.4 RT-Level Design Space Exploration

Previous work, create diversity by generating functional equivalent gate netlists from a given

RTL code. This can be achieved by setting the mapping effort to different levels, power

effort, maximum fanout and target clock frequency. As shown in the motivational example,

this leads to different netlists, but the actual micro-architecture does not change, thus,

leading to a smaller search space and hence, diversity range. To compare our proposed

method, we have implemented an RTL explorer which takes as inputs an RTL description

in Verilog or VHDL and synthesizes it (logic synthesis) using the following knobs : mapping

effort={medium, high}, area effort={medium, high}, and power effort={medium, high},

fanout={2,4,6}, clock = {n,n/2,n/4,2n}, where n is the original target synthesis frequency.

Because an exhaustive enumeration of all the exploration knobs is not large, we perform a

brute force search.

5.5 Experimental Results

We have chosen six different benchmarks with different complexities from the open source

synthesizable SystemC benchmark suite (S2CBench)(93) as hardware accelerators to test
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Figure 5.6: Top 3 design pair choices using High-level synthesis and RT-level Design Space
Exploration methods.

the effectiveness of our proposed method. The tool used for the HLS exploration is Cyber-

WorkBench v.6.1 from NEC (26) and Synopsys Design Compiler (DC)(96) as logic synthesis

tool. The target technology is Nangate Opensource 45nm. The experiments are conducted

on an Intel i7-6700 @3.50GHZ CPU and 16 GB memory, running CentOS 7.

The 6 benchmarks were explored in an unconstrained mode to fully observed the benefits

of raising the level of abstraction. Fig. 5.7 shows the results of the three methods highlighting

the three design pairs found by each of the methods with the highest diversity.

For the traditional RTL-based method, we synthesized the behavioral description using

the default options from the HLS tools and fed the RTL code generated to the RTL-based

explorer. HDMI is the full GA-based explorer performing a logic synthesis on each newly

generated offspring and pHDMI is the predictive-based HDMI version that only uses the

difference in sequential logic as diversity predictor and then fully computing the DIMP

value for the selected design pairs in order to report the actual diversity values. For all

the benchmarks, we observe that raising the level of abstraction to C leads to more diverse

designs.
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The average diversity value increased by 1.75× and 1.70× for the HDMI and pHDMI

method, respectively. This proves that using HLS leads to more robust designs against

CMFs.
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Figure 5.8: Comparison between simulation times for unconstrained and search space reduc-
tion methods.

Fig. 5.8 compares the three methods in terms of the runtime to obtain these results.

The full HDMI method takes on average 6× longer than the predictive HDMI (pHDMI)
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and on average 66× longer than the RTL-based exploration. The main reason for the long

running time for the HDMI method is that it requires a full logic synthesis for every new

offspring. Although the runtime is high, we believe that it is still acceptable, especially

considering the extra fault tolerance achieved and that this exploration process only requires

to be executed once. Based on these results, we can conclude, raising the level of abstraction

can significantly increase the design diversity and hence protect against CMFs.

5.6 Conclusion

In this work, we have shown that raising the level of abstraction from RT-level to C-level has

the additional superiority of being able to increase the design diversity to detect common

mode failures. Experimental results have shown that the diversity achieved at the behavioral

level of abstraction is on average 2× higher, thus, proving the benefit of using HLS in fault

tolerance designs.
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CHAPTER 6

LEARNING-BASED DIVERSITY ESTIMATION:

LEVERAGING THE POWER OF HIGH-LEVEL SYNTHESIS TO

MITIGATE COMMON-MODE FAILURE

In an era of self-driving cars and space adventures, fault tolerance has become a first-order

design metric. Thus, it is incredibly crucial to integrate fault tolerance seamlessly into the

Very Large Scale Integrated (VLSI) design process. This is especially the case in state-of-the-

art complex Systems-on-Chip (SoC), which typically contain a variety of dedicated hardware

accelerators. At the same time, these SoCs have to be taped out at shorter and shorter time

frames. This is forcing designers to embrace the use of High-Level Synthesis finally, also

called C-based VLSI design, mainly to design the dedicated hardware accelerators, which

are often the main differentiating parts of these SoCs (e.g., Apples A11 bionic SoC with its

dedicated neural network accelerator).

Occurring faults are either transient or permanent. The first, cause no permanent damage

to the circuit, while the latter result in permanent degradation or destruction of the circuit.

Transient faults also called as single-event upsets (SEUs) are errors due to electrical noise

or external radiation rather than design or manufacturing defects (5). These effects were

first predicted in 1962 by Wallmark et al. (6) and in 1975 the first anomaly in a spacecraft

system was encountered attributed to energetic heavy-ion passage (7). In addition, process

scaling has led to increasingly critical challenges in manufacturing and lifetime reliability

of integrated circuits (ICs). N -modular redundancy (NMR) techniques like duplication and

compare (DWC) and Triple Modular Redundancy (TMR) are widely used for designing

dependable systems with data integrity. Data integrity is maintained if a system either

produces correct outputs or generates an error signal when incorrect outputs are produced.

Most prior work on VLSI hardware reliability makes use ofNMR, assuming that each module
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is the same. A voter is in turn used to determine if a fault has happened by comparing the

results. Although effective for independent component failures, this approach cannot fully

protect against Common Mode failures (CMFs). A CMF implies that multiple modules in

the redundant system are affected at the same time. CMF can occur due to external events,

e.g., Electromagnetic Interfere (EMI), power-supply disturbances, and radiation, internal or

design mistakes (8). Traditional same hardware module redundancy systems cannot protect

against CMFs because the replicated hardware modules will produce the same erroneous

output and hence the voter will interpret the output as correct (9).

One of the proposed solutions to deal with CMF is to use asymmetric redundancy (10).

In asymmetric redundant systems, multiple functional equivalent modules are instantiated in

parallel with a voter. The main idea is to make faults occurring in both modules at the same

time, visible at the outputs such that each module generates a different value. The worst

case scenario in any fault tolerant system occurs if a system has a fault and the majority

of the NMR modules produce the same erroneous output. Asymmetric redundancy aims at

specifically avoiding this case.

The main problem with asymmetric redundancy is that it involves creating multiple

different micro-architectures for each hardware channel. The most rudimentary form of

design diversity is to have multiple parallel teams building the same circuit using different

tools. This is obviously extremely expensive and inefficient. Thus, automated methods

to obtain different implementations of the same circuit that output different values in the

presence of CMFs are required.

In this work, we make use of one of the main advantages of C-based VLSI design, a.k.a.

High Level Synthesis (HLS) to generate these asymmetric fault tolerant systems. In par-

ticular, the main advantage that we leverage is the ability to generate micro-architectures

with unique area vs. performance trade-offs without having to modify the input description.

This is typically done by setting different synthesis options, typically specified as comments
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or pragmas at the source code. This allows to control how to synthesize loops (e.g., unroll

or fold), arrays (e.g., memories or registers with a different number of ports) and functions

(inlined or not). This distinct advantage is leveraged to generate more robust NMR systems.

In (97), we already showed that HLS could be used to increase the diversity of hardware

accelerators to protect against CMFs. In this work, we extend this work and propose a fast

and efficient predictive learning method to estimate the diversity between different micro-

architectures right after HLS such that no fault injection is required, thus, significantly

speeding up the redundant system generation.

Figure 6.1: Design Pool generation at a different level of abstraction for FIR filter (a) RT-
level Exploration (b) High-level synthesis Exploration.

Fig. 6.1 depicts the design pool generated at the Register-Transfer Level (RT-level) vs.

High-level for the same FIR filter. In the first case, Fig. 6.1(a), the RTL Code (Verilog) is

synthesized (logic synthesis) with different constraints (i.e., timing constraints). It can be

observed that a much larger set of unique micro-architectures can be generated by raising

the level of abstraction from RTL to the behavioral level as the pragmas allow generating

completely different micro-architectures (Fig. 6.1(b)). Thus, it is tempting to investigate

72



if raising the level of abstraction can help protect against CMFs. In summary, the main

contributions of this work are:

• Investigate if a previously reported design diversity metric called DIversity Metric

based on circuit Path analysis (DIMP) (76) based on the structural analysis of the

gate netlist is effective against CMFs.

• Study if performing fault injections at the RT-level as compared to the gate-netlist can

accelerate the diversity computation and achieve similar results.

• Present a new machine learning based method to estimate the diversity of design pairs

right after HLS quickly.

• Make use of the new diversity metric to perform quick HLS design space exploration

in order to find the design pairs that protect best against CMF.

• Study and compare different diversity estimation methods for CMF protection.

6.1 Proposed Method

The proposed flow is composed of two main phases. Phase 1 is the training phase that

creates the predictive model to quickly estimate the diversity (DV ) value between two micro-

architectures. Phase 2 then, in turn, uses this predictive model to explore the search space

of hardware accelerator specified as a behavioral description for HLS that needs to be made

fault-tolerant against CMFs. The input of the proposed flow is a single behavioral description

and the output is the design pair (two micro-architectures) with the highest diversity DVi,j.

Our proposed method, as shown in Fig. 6.2, can also output a trade-off curve with complete

DWC systems with unique diversity vs. area and/or latency trade-offs, depending on the

explorer’s cost function (every point in the trade-off curve is a design pair). The next

subsections describe these two phases in detail.
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Figure 6.2: Complete proposed flow overview of the Proposed scheme composed of two
phases. Phase 1: diversity calculation. Phase 2: Diversity-driven HLS design space explo-
ration.

6.1.1 Phase 1: Diversity Calculation

To the best of our best knowledge, there are two published existing methods to quantify

diversity, Dmetric and DIMP .

The main problem with this method is that it is an NP-complete problem, as it requires

to simulate all possible fault-pairs in order to observe when the output of both netlists are

identical and erroneous. The diversity value is between 0 to 1. This method nevertheless

gives an accurate picture of how tolerant a design pair is against CMFs.

This method is much faster than the previous method, but still requires the logic synthesis

and the path calculation for every micro-architecture, which for larger sequential circuits is

also very time-consuming. In addition, the authors did not prove that two most diverse
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Figure 6.3: Training of Machine learning for Cost Function generation.

micro-architectures based on DIMP are at the same time the most efficient against CMFs,

as the primary goal of asymmetric redundancy is to have circuits behave differently in the

presence of a given fault (basically the outputs should be different).

To address the shortcomings of these two diversity metrics, we propose a new metric

based on a predictive model that we call the Predictive Model Diversity Estimator (PMDE).

Fig. 6.3 outlines the training phase. The original goal was to find a unique predictive model

that could be used for any new behavioral description. Unfortunately, this did not lead

to good results and hence, we had to base our approach on training each new design in

order to generate a unique predictive model for that particular design. The predictive model

generation is based on 4 steps:
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Step 1: Stratified Random Sampling: This first step generated random design pairs

DPairi,j = (Di, Dj), by creating a unique set of synthesis directives (pragmas) for each of

Design, such that Di = {pragmaa, pragmab, . . . , pragmak} and design two Dj =

{pragmam, pragman, . . . , pragmaz}, wherein this work we consider all the pragmas to control

how to synthesize loops, arrays and functions.

Step 2: Synthesis: In this second step, the behavioral description annotated with the two

different sets of pragmas is synthesized (HLS) leading to two unique functional equivalent

micro-architectures specified in RTL (Verilog or VHDL), each with a unique area and per-

formance. A logic synthesis is in turn performed on these two micro-architectures in order

to obtain their gate-netlist.

Step 3: Diversity Estimation: This step computes the diversity of the DPairi,j. As

mentioned previously, there are two available metrics Dmetric and DIMP . In this work, we

use Dmetric as this metric actually measures fault-tolerance and as we will show in the exper-

imental results section using DIMP leads to sub-optimal results. We follow the instructions

of (10) and shown in equation (1) and inject fault pairs in the two gate-netlists to calculate

the Dmetric.

Step 4: Predictive Model Generation: This last step calls a predictive model generator

that contains a library of well known predictive models (95). The predictors of the model

are the HLS synthesis report outputs in terms of area of different logic resources (area of

muxes, decoders and functional units), number of registers and the number of states of the

micro-architecture and the predictive value is the Dmetric. The output of this step is the

predicted model diversity estimator (PMDE) and a confidence interval reported by the

predictive modeling tool. These 4 steps are repeated until the model generator reports a

confidence in the prediction of at least 95%.

Machine Learning Algorithm: We explore various machine learning algorithms i.e., Ex-

traTree, GuassianProcesses, Ibk, LeastMedSq, LinearRegression, LWL, M5P, M5Rules, Ran-
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Figure 6.4: Mean Absolute Error (MAE) comparison among different algorithms. Lesser the
value reflects more Accurate the result.
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Figure 6.5: Correlation Coefficient (CC) comparison among different algorithms. Higher the
value reflects more precision.

domTree, RBFNetwork, REPTree and SMOreg, which are suitable for our specific dataset.

For this, we run the training phase for multiple benchmarks and compute the Mean Absolute

Error (MAE) and the correlation coefficient.

MAE is the summation of the error values over the given number of samples. The lower

the value of MAE is, the better the results are considered.
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Mean Absolute Error (MAE) = 1
n

n∑
i=1

|yic − yio|

where yio and yic are the golden output and the output being compared. ‘n’ represents sample

size.

Nevertheless, only using MAE can sometimes be misleading as some model with lower

accuracy might have higher predictive power for a specific problem domain. The correlation

shows how close the prediction is to the actual value where a value 0 means the strongest

possible disagreement and value 1 means total correlation.

In Fig. 6.4 & 6.5, we show the MAE and correlation of the different predictive models

for two different benchmarks: FIR and Quantizer. From all the explored machine learning

algorithms, M5rules consistently proved most efficient in respect to accuracy and precision.

M5Rules is a supervised machine learning algorithm that generates a decision list for regres-

sion problems using separate-and-conquer wherein every iteration it builds a model tree using

M5 and makes a rule out of the best leaf. This algorithm is basically a regression tree based

method to predict a linear relationship between a predictor and the continuous response

variable. Regression trees derive predictions from if-then-else conditions by portioning the

data set into small groups and then fit a simple regression model for each subgroup. Basic

tree models can become highly unstable and predict poorly. Nevertheless, by combining

the power of regression and decision tree, the amalgamated model becomes effective and

powerful.

Once the PMDE is generated, the HLS design space explorer can start in order to find

the two micro-architectures with highest PMDE.

6.1.2 Phase 2: Diversity Driven HLS Design Space Exploration

The predictive model generated in phase 1 is used in our modified HLS design space explorer

that finds the micro-architecture pairs with the highest diversity. Fig. 6.6 gives an overview of

78



Figure 6.6: Overview of proposed Genetic Algorithm HLS Design Space Explorer for testing
ML model.

the proposed diversity-aware Genetic algorithm-based HLS DSE. Although many heuristics

for HLS DSE have been proposed (e.g.,(19; 22)) we choose Genetic Algorithm (GA), because

it has proven to lead to effective results in multi-objective optimization problems (98). It

should be noted that the main contribution of this work is not on the actual exploration

method.

For the sake of simplification, we have set the cost function to maximize diversity. Thus,

the cost function is set to (Cdi,dj = 1/DVi,j), (to minimize the cost between exploration

runs), with DVi,j being the diversity value between the two designs (Di and Dj).
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A more realistic case would involve minimizing multiple objectives at the same time, like

area, delay, while maximizing diversity. This would lead to a three-dimensional search space

result from which the user can then choose the design pair that better meets the projects’

needs. This phase can be further subdivided into 3 steps as follows:

Step 1: Explorable Operations Extraction: The first step of the exploration is to

extract all the explorable operations in the code by parsing from the behavioral description.

Synthesis directives (in this work, we consider arrays, loops and functions) can control these

operations.

Step 2: Parents Generation: This second step generates a pool of parents by randomly

assigning each parent a unique list of pragmas. A synthesis attribute (pragma) is assigned

to each exploration operation, which is represented as a gene. The pragmas in this work are:

arrays={register, expand, logic, RAM, ROM}, loop={no, partial, all, fold}, and func={goto,

inline}.

These two steps can be nevertheless skipped as they are also required to generate the pre-

dictive model in phase 1. Thus, our method uses the designs generated during the sampling

stage of phase 1 as the parent pool.

Step 3: Genetic Algorithm DSE: Two parents are in turn randomly selected (Pi and

Pj). The list of attributes is then combined based on a randomly chosen cut-off point and

some of the attributes mutated by choosing a different one from the attribute library. The

mutation rate mr is specified by the user, which in our case is set to mr = 0.1. The mutated

offspring (oi,j) is then synthesized calling the HLS tool leading to micro-architecture with a

unique area and latency Oi,j.

Next, the diversity value is evaluated using the predictive model diversity estimator

(PMDE) generated in phase 1, for the offspring and each of the parents leading to two new

design pairs. Thus, the following designs pairs are created: DPairPi,Oij and DPairPj,Oij.

The offspring substitutes one of the parents if the cost of the new design pair is lower than
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the cost of the two parents. Each new offspring is synthesized using the maximum number of

functional units to fully parallelize the micro-architecture based on the pragma list and then

again with a single functional unit each time to maximize resource sharing. The algorithm

will continue until N number of offspring designs do not improve any of the parents. In this

work, we set N=10.

6.2 Experiments

This next section presents the experimental results. It first introduced the experimental

setup in order to allow the reproducibility of the results and the continues comparing the

different methods.

6.2.1 Experimental Setup

We have chosen eight different benchmarks from different domains from the open source

synthesizable benchmark suite (S2CBench) (93) as hardware accelerators to evaluate the

effectiveness of our proposed method. In particular, Ave8, ADPCM, Cholesky, FIR, PWM,

Qsort, Quantizer, and Sobel. Most of these benchmarks are small in order to allow us to

find the optimal solution using an exhaustive enumeration of all the CMF cases, modeled as

stack-at-faults.

CyberWorkBench v.6.1 from NEC (26) is used for HLS and Synopsys Design Compiler

(DC)(96) used for logic synthesis. The target technology is Nangate Opensource 45nm. The

experiments are conducted on an Intel i7-6700@3.50GHZ CPU and 16 GB memory, running

CentOS 7. In order to evaluate Dmetric, comprehensive stuck-at-0 or stuck-at-1 faults were

inserted in the gate-netlists of the 8 benchmark circuits using Modelsim (99). WEKA (95)

is used to perform the machine learning phase.

Four different diversity calculation methods are compared to characterize our proposed

method fully. These four methods are used to calculate the diversity of the design pairs
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generated by the proposed GA-based HLS DSE. Due to the randomness in the GA method,

the GA-based explorer is executed five times and the best results reported.

Dmetricgln: The first method (Dmetricgln) is based on the original Dmetric method

proposed by Mitra et al.(10; 71; 73) computed at the gate netlist level. This method has

proven to be the most accurate method to estimate fault-tolerance against CMF but is also

the most time consuming one.

Dmetricrtl: The second method is based on the Dmetric, but applies at the RT-level

(Dmetricrtl). This reduces the search space as the RTL code has not expanded arithmetic

operations like additions and multiplications.

DIMP: The third method is the DIMP method (76) based on path-based static analysis

of the design pairs’ gate-netlists.

PMDE: The last method is our predictive model based method (PMDE).

These four metrics will be used to guide our proposed method in generating the most

diverse system with highest CMF reliability, where using Dmetricgln is used as the baseline

method as this more accurately measures the resilience against CMFs. Moreover, to better

comprehend the impact that the diversity metric used has on the final system reliability, we

generated 65 micro-architecture pairs for each benchmark and calculate diversity using all

methods for each micro-architecture pair. We again use Dmetricgln as our reference model

for ranking the design pairs with respect to diversity.

Thus, the experimental results try to answer the following questions? Can we accelerate

the Dmetric calculation by doing it at the RT-level instead of at the gate-netlist level? Is

DIMP a good metric to predict resilience against CMF? Can our predictive model diversity

estimation accurately predict the Dmetric?
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(a) ADPCM
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(b) ave8
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(c) Cholesky
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(d) fir
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(f) Qsort
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(g) Quantizer
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(h) Sobel

Figure 6.7: Diversity result comparison among all four Diversity Estimation Methods:
Dmetricgln(Dgln), Dmetricrtl(Drtl), DIMP and PMDE.
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6.3 Experimental Results

This section answers the questions posed previously.

Is Dmetricrtl Efficient?

Intuitively there are fewer fault points in the RTL description generated after HLS compared

to the gate-netlist. This is mainly because the RTL code contains ‘+’ and ‘*’ symbols for

adders and multipliers etc, while the gate-netlist fully flattens these out. Here, the questions

that we try to answer in this work is, if the Dmetric calculation can be speed up by doing

the fault injection at the RT-Level.

Fig. 6.7 shows the experimental results when comparing the Dmetric calculated at the

gate-level and RT-level. We can observe that for any 8 benchmarks the RT-level Dmetric

does not produce the same result as the gate-level metric. Table 6.1 further highlights the

difference showing design pair that Dmetricrtl chose as best ranked against the actual value

using Dmetricgln . The results imply for all the experiments; on average, Dmetricrtl chooses

the 20th ranked design as it is the top diverse choice. One obvious advantage of doing the

Dmetric calculation at the RT-Level is that it is 4× faster as the search space is dramatically

reduced.

Is DIMP Efficient?

The DIMP method was proposed as an alternative to the computationally intensiveDmetricgln

method to calculate diversity. Although it is efficient to determine how different the designs

are from each other, it has not also been proven to find design pairs resilient to CMFs. Fig. 6.7

also shows the comparison between Dmetricgln and DIMP results for all 8 benchmarks.

It can also be observed, from Table 6.1 that the DIMP method selects in 7 out of 8 cases

a design-pair as the best choice which is not even in top 20 reference design choices. The

advantage again is that it is very fast, achieving an average speedup across all test cases of

8.77×.
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Table 6.1: Best design choice selection Ranks and Speed up for three Diversity Estimation
methods compared to Baseline (Dmetricgln).

Benchmark
Ranking Time Saving

Dmetricrtl DIMP PMDE Dmetricrtl DIMP PMDE
ADPCM 15 39 3 2.46 3.69 12.58

Ave8 51 41 1 2.27 16.89 12.24
Cholesky 7 23 2 5.83 5.94 11.37

FIR 6 58 1 1.95 2.06 7.52
PWM 7 26 2 1.95 2.06 7.26
Qsort 19 28 1 5.35 2.44 10.54

Quantizer 4 3 1 8.38 13.92 10.67
Sobel 51 41 1 4.37 23.15 11.76

Average 20 32.4 1.5 4.00 8.77 10.5

Effectiveness of PMDE

Finally, we study the effectiveness of our proposed machine learning based method. Fig. 6.7

and Table 6.1 summarize the results. From the results, we observe that our method (PMDE)

can in most cases (6 out of 8) find the same design pairs as the Dmetricgln. The average

diversity is 0.99542 for Dmetricgln and 0.99534 for PMDE, which proves the efficiency of

our method. Our prediction-based method, on the contrary, can find design pairs as the best

choice from the top 3 baseline design choices for all benchmarks. In addition, our method is

the fastest of all methods with an average speedup of 10× compared to Dmetricgln, reducing

the search time from hours to minutes.

In summary, we can conclude that Dmetricrtl and DIMP lead to similar results, with

Dmetricrtl leading to slightly better results on average. It should be noted that although in

all cases the diversity values are over 0.99, in fault-tolerance, the main objective is to achieve

0% faults as a single fault could have catastrophic consequences.

6.4 Conclusion

In this work, we have extensively studied different diversity metrics and compared them

qualitatively. We have also presented a learning-based diversity estimation method to facil-
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itate the generation of redundant systems that mitigate the effect of common mode failures.

This diversity estimation method has been used in a genetic algorithm-based HLS design

space explorer to find design pairs with the highest diversity. Experimental results show

that our method leads to better result compared to one state of the method and to almost

the same results as the most accurate method while being much faster.
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CHAPTER 7

A MACHINE LEARNING BASED HARD FAULT RECUPERATION

MODEL FOR APPROXIMATE HARDWARE ACCELERATORS

The necessity for fault tolerance is increasing as a result of the persistent acceleration in the

density and the total number of devices in VLSI. Imperfections caused by manufacturing

defects are inevitable in VLSI chips containing Millions of submicron devices triggering a

reduction in yield. Yield is the percentage of operational chips out of the total number

fabricated.

Transient and permanent are two types of faults typically occurring in hardware. The

first, cause no permanent damage to the circuit, while the latter result in permanent degra-

dation or destruction of the circuit (87). Process scaling has led to increasingly critical

challenges in manufacturing and lifetime reliability of integrated circuits (ICs). Future VLSI

design is likely to lead to a compromise between lower reliability due to process manufac-

turing issues and cost, mainly due to fundamental limitations in device physics and the

manufacturing process (100; 101).

In the case of permanent faults, the fault persists during the entire lifetime of the device.

Thus, in order to continue benefiting from Moore’s law, it is paramount to develop methods

that can compensate for these permanent faults with minimal overheads.

The conventional approach is to test extensively for permanent faults. As ICs increase

in complexity, this involves increasingly more significant testing time and thus cost. After

testing, depending on the severity of the defects found, faulty circuits are typically either

discarded (providing reliability at the cost of reducing yield), or in some cases, partially

disabled circuits (providing reliability at the cost of performance) (102; 103).

However, as the rate of permanent faults increases, due to the increase in transistor count

and increasing variability, there is an increasingly significant cost associated with yield and
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performance loss. Thus, it makes sense to tackle this issue at the design stage in order to

build compensation circuits that can mitigate the effect of hard faults into the ICs.

If there is an active permanent fault in the circuit (which is not masked by the circuit

propagation) the fault will cause the output to deviate from the golden expected output. In

parallel, emerging applications implemented in hardware accelerators have been shown to

have output solution spaces that contain a range of valid outputs rather than a single golden

output (104).

Much work has already begun to explore energy/accuracy trade-offs in the context of ap-

proximate applications (105; 106). These applications are inherently resilient to inexactness

or approximations and for that reason are tolerant to some loss of quality or optimality in

their computed results (e.g., multimedia processing, DSP and machine learning) (107).

YesFault Found

Accept 

Reject

Accept

Traditional 
Method

Proposed 
Method

Generate compensation 
model and Activate 
Additional Logic

Post‐silicon
Test Phase

No

Figure 7.1: Fault Recuperation.

In modern complex heterogeneous SoCs, large portions of the computations are offloaded

to dedicated hardware accelerators that can process these applications more efficiently by

exploiting the inherent parallelism of the accelerators.
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In this work, we propose, SMURF: A Smart Model for Universal Recuperation of Hard

Faults in Approximate Computing Applications, an error compensation approach that can

compensate circuits of any complexities like the ones commonly found in dedicated hardware

accelerators.

This work mainly targets hardware accelerators because these often tolerate inaccuracies

in their computations and because they are typically the main differentiating components

between different IC vendors. At the same time, the pressure to deliver these new or updated

ICs at shorter time periods and the use of new technologies make these accelerators more

prone to hardware errors compared to more mature and tested IPs.

As shown in, Fig. 7.1, the hardware accelerators will be manufactured with a SMURF

module (Fig. 7.2) which can be activated if a permanent fault is found in the testing phase.

The proposed SMURF module compensates the impact of a fault by predicting the relative

difference of the correct and faulty outputs, rather than predicting the whole output.

Figure 7.2: Abstract diagram proposed compensation logic integrated in Heterogeneous
Multi-Processor System-on-Chip.

The compensation of the output is done by learning the difference distribution. This

allows the method to scale much better with significantly less area overhead. This is because,

we have observed that permanent faults commonly result in a small set of unique differences
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between the correct and faulty outputs, compared to a large number of unique outputs

generated by the accelerator.

In summary, this work makes the following contributions:

• We propose a scalable approach for building error compensation modules by focusing

on the difference in the result of the faulty and golden output for hardware accelerators

that can tolerate inaccuracies in their outputs.

• We perform gate-level experiments figfor different accelerators of different complexi-

ties (purely combinational and sequential) and evaluate different supervised learning

predictive methods for building the compensation logic.

7.1 Hard Fault Recuperation Model for Approximate Hardware Accelerators

In this work, we investigate an approach for building compensation logic for dedicated hard-

ware accelerators amenable to approximate computing using supervised learning algorithms

(i.e., inferring a compensation function based on the set of circuit behavior training data

acquired during testing).

For the proposed method, we do not need to generate bit-wise results for each output,

which provides the approach more flexibility, as opposed to using statistical or Bayesian

methods. We believe our method is orthogonal to much of the previous work.

Most prior works focusing on error compensation is highly application dependent. Our

proposed approach is application independent and scales very well with the number of faulty

outputs. Thus, it is particularly well suited in the context of permanent fault models, as the

activation of the fault is solely dependent on the inputs, and not the previous circuit state

or environmental conditions (83).

Our proposed approach leverages the wrong outputs as an asset for fault compensation,

as the number of erroneous outputs made visible at the accelerator’s outputs is relatively

low compared to the total number of input test-vectors.
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Figure 7.3: SMURF Module for Hard Fault Recuperation.

The proposed compensation logic is composed of a tunable module making it flexible

enough to compensate for different permanent faults. Although the compensation logic does

not fully generate the correct output, it mitigates the overall error. Thus, it is specifically well

suited for hardware accelerators that can tolerate inaccuracies in their outputs (approximate

computing). The next subsections describe in detailed the proposed compensation logic and

how it is tuned to compensate for errors.

7.1.1 Architecture

In order to perform the correction of a permanent fault, typically, the location of the in-

termediate node that contains the fault needs to be located. The main problem is that the

presence and the location of permanent faults can only be determined post-silicon. This im-

plies that any compensation logic would require as many additional signals as any potentially

faulty nodes in the original circuit. This is nevertheless not practical.

For approximate computing applications, like the ones targeted in this work, the com-

pensation logic only needs connections from the global inputs and global outputs, as shown
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in Fig. 7.2, thus, reducing and simplifying the overall circuit design. Therefore the IOs to

the SMURF module is only the global input and output signals of the accelerator.

The proposed fault compensation architecture is instantiated along all of the hardware

accelerators that are amiable to approximate computing. Fig. 7.3 shows an overview of the

SMURF module, which is divided into two main parts: A programmable input tree module

and an output adder module.

The programmable tree itself is composed of two main modules: a coefficient block and a

comparator tree. The coefficient block contains unique vectors that result in wrong outputs.

We call these vectors, Error Distance values ED, and are described in detail in the next

subsection.

The programmable tree module is fixed and needs to be tuned by choosing a set of

coefficients to compensate for different faults in the accelerator of each unique chip. The

size of this tree is independent of the complexity of the accelerator and depends only on the

number of inputs. Thus, the area grows log(inputs), which is an additional advantage of the

proposed compensation logic.

The last module is a n-bit adder where n is the number of outputs of the accelerator.

The adder compensates the faulty outputs by adding a compensation vector (EDSMURF ) to

the faulty output value OutputFaulty as shown:

OutputSMURF = OutputFaulty + EDSMURF

This reduces the output error (ESMURF ) compared to the faulty error without compen-

sation (EFaulty), such that:

ESMURF < EFaulty

This output stage also grows linearly with the number of outputs and hence further

contributes to the scalability of the proposed compensation logic.
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Given the trend toward heterogeneous System-on-Chip (SoC) architectures containing

numerous hardware accelerators, another important usage scenario for the compensation

module would be as a shared component among different accelerators. The area costs could

then be amortized by sharing the compensation module among these accelerators. The next

subsection describes in detail how this tuning is done using learning-based methods, also

summarized in Algorithm 1.

7.1.2 SMURF: Methodology

The SMURF method is divided into four main steps. The first step finds the test-vectors

that lead to observable erroneous outputs, while the second step tunes the compensation by

generating the error distance. The third step generates the model by leveraging supervised

machine learning while the last step activates the recuperation model.

Input 
TestVectors

OutputGolden
Golden 
Module

Input 
TestVectors OutputFaulty-2

Faulty 
Module

Input 
TestVectors OutputFaulty-1

Faulty 
Module

Input 
TestVectors OutputFaulty-n

Faulty 
Module

Figure 7.4: SMURF: Data Preparation.

Step 1: Data Preparation: The very first step in our proposed flow is to find which

input test-vectors (TV s) lead to observable errors in the outputs. Thus, all of the ICs are

analyzed using the same input patterns and their outputs compared against the golden, fault-
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free, outputs. Faulty circuits are generated by injecting single stuck at fault with gate-level

simulation. Input test vectors (TV), OutputGolden and OutputFaulty are collected.

Step 2: Compensation Tuning -Error Distance (ED) Vectors:

In order to tune the compensation logic, a measurement unit called Error Distance (ED)

vectors is introduced, were ED can be defined as the difference between the golden output

and the faulty output.

Figure 7.5: Number of Unique ED value distribution in various benchmarks.

ED = |OutputGolden − OutputFaulty|

This phase stores all the TV s and outputs. A database of all these TV is stored in the

comparator tree of the SMURF module to detect when n given input will generate wrong

output.

Although it might seem that the number of TV s leading to an observable erroneous

output might be large, in the case of permanent faults, the unique number of ED, is typically

very low.
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Fig. 7.5 shows the unique number of ED for 7 accelerators for 100,000 input test vectors

when a single random permanent fault is inserted in them (modeled as a stuck-at 0 or 1). It

can be observed that the number of EDs is very low, typically less than 5.

Algorithm 4: Proposed flow overview.

Input : {TV s,OutputGolden, OutputFault}
1 TVs : Input test vectors
2 OuputGolden: Error free outputs
3 OutputFaulty: Faulty outputs when IC has permanent fault

Output: {OutputSMURF}
4 OutputSMURF : Corrected approximated outputs
5 /* Compensation Tuning */
6 ED = ErrorDistCalc(TV s,OutputGolden, OutputFaulty)
7 /* Supervised Learning */
8 EDSMURF = HoeffdingTree(Input, OutputGolden, OutputFaulty)
9 /* SMURF Module Activation: Load Co-efficient */

10 OutputSMURF = ActiveSMURF (OutputFaulty, EDSMURF )

11 return(OutputSMURF );

Step 3: Supervised learning- Compensation Coefficient: Our method then continues

by analyzing the input vectors and faulty outputs pairs in order to tune the proposed com-

pensation logic, and in particular the input coefficient block. A supervised machine learning

method is used for this tuning.

Supervised learning allows for a fast, flexible, and scalable way to generate accurate com-

pensation routines that are specific to the particular set of application inputs and permanent

faults. It allows automated data analysis with a set of methods which not only detect pat-

terns in the given data set but also predict future data. In supervised learning, a map

between a set of input attributes and an output variable is used to predict the unseen data

or in other words to build a model of the distribution of class labels according to predictor

features(33; 108).

Both linear and non-linear classification/regression algorithms can be used for the com-

pensation block. Different algorithms typically have different trade-offs (e.g., accuracy vs.
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size). In this case, Hoeffding Tree was found to provide the best accuracy results as the

compensation of fault is highly non-linear.

A Hoeffding tree is an incremental, anytime decision tree induction algorithm that is

capable of learning from massive data streams, assuming that the distribution generating

examples does not change over time, like in our case. It is a fast decision tree classifier,

that grows a decision tree incrementally based on the theoretical guarantees of the Hoeffding

bound (or additive Chernoff bound). A node is expanded as soon as there is sufficient statis-

tical evidence that an optimal splitting feature exists, a decision based on the distribution-

independent Hoeffding bound (109). This leads to a compact and precise tree model.

To train the tree, the inputs (TV s), golden outputs (OutputGolden), tested outputs

(OutputFaulty) and ED values collected in the previous phase are used.

Known Output 
Response

(ED)

Model

Known Input Data
(90,000 TestVectors, 

OutputGolden, OutputFaulty)
Training

Machine 
Learning 
Algorithm

Predicted Output 
Response
(EDSUMRF)

Unknown Input 
Data(10,000 TestVectors, 
OutputGolden, OutputFaulty)

Various Algorithms

Linear Regression, ZeroR, 
Random Forest, M5P,

Hoeffding Tree

Figure 7.6: SMURF:Supervised Learning.

Feature selection is an important measure to get accurate results during the prediction.

Thus, the supervised learning method selects the attributes from the training data provided

to build an accurate and precise model.

96



The target variables that need to be predicted have a tremendous impact on the perfor-

mance of a machine learning scheme. The accuracy of the scheme improves if the unique

number of classes that need to be predicted decrease, as the probability of a prediction sam-

ple falling into a wrong target variable boundary decreases as the number of unique target

variable decreases.

For typical DSP, image processing and mining accelerators, n unique input pattern can

reciprocate to n different output pattern. Thus, predicting a large number of unique outputs

will lead to an extremely large circuit, making this impractical.

Therefore, the proposed method predicts the ED values as the target values. Again from

Fig. 7.5, it can be observed that the number of predicted values is much smaller than if the

total number of outputs would need to be predicted. This significantly reduces the size of

the compensation logic. Fig. 7.6 overview the steps for the supervised learning process to

generate the compensation coefficient to be added to the faulty output.

Step 4: SMURF Module Activation: When a module is found faulty, the SMURF

module will be activated with the correct model for the particular fault. The outputs of

this training phase are the EDSMURF vectors that need to be added to the fault outputs

generated by the module when an input combination that triggers the permanent fault is

passed to the module.

7.2 Experimental Setup

We have chosen multiple accelerators for evaluating our proposed methodology. In particular:

Butterfly, DCT, Sobel, RGB, MAC, Division, and Round-Robin Arbiter taken from various

open source benchmark suite (110; 111). These have been synthesized using Yosys (112) in

order to obtain their gate-netlists.

In order to simulate permanent faults, random stuck-at-0 or stuck-at-1 faults were in-

serted in the gate-netlists of the 7 benchmark circuits. These were simulated using Modelsim
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(99) before and after the fault was inserted using 100,000 random inputs. WEKA (95), is

used to perform the machine learning phase. For the benchmarks described above, more

than 100,000 random inputs did not improve the quality of the machine learning accuracy

any further.

A more extensive test set may be needed for more massive accelerators to generate

accurate recuperation models. With large accelerators, Automatic Test Pattern Generation

(ATPG) and fault collapsing method (113), can also be utilized for further improvement of

model accuracy and reduction of the number of faults.

7.3 Experimental Results

This section presents the experimental results obtained for the 7 benchmarks circuits in

terms of accuracy and precision. Finally, we compare the quality of results (QoR) when

using the Hoeffding tree, vs. other predictive methods, e.g., linear regression and RepTree.

7.3.1 Accuracy

The accuracy of the proposed method is shown in Fig. 7.7, when using our SMURF com-

pensation logic compared to not using any. Fig. 7.7 shows the percentage of time when the

module is producing the correct results (same as the golden outputs). The closer the value

is to 100%, the better the model is considered.

The accuracy of the faulty modules is on average 57%, while it increases to 96% on

average. The exact output generation is significant, as this indicates that our proposed

method might also be useful for non-approximate computing applications.

Here we also observe, that the accuracy of the faulty module has a broader distribu-

tion ranging from 30% to 90%, while the accuracy after using SMURF, reduces the overall

distribution significantly.
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Figure 7.7: Accuracy Measurement: Distribution of exact output generation before and after
the use of SMURF.

Next, the overall error in the benchmarks is analyzed using Mean Absolute Error. Mean

Absolute error is the summation of the error values over the number of samples.

Mean Absolute Error (MAE) = 1
n

n∑
i=1

|yic − yio|

where yio and yic are the golden output and the output being compared. ‘n’ represents sample

size.

To normalize the value of MAE, we have calculated the percentage decrease in MAE in

other words, improvement in accuracy. Here, larger values mean more decrease in error,

thus, an increment in accuracy.

Decrease in MAE =

(MAEFaulty - MAESMURF ) / MAEFaulty X 100%

Fig. 7.8 shows the decrease in MAE after using SMURF model in the faulty modules.

For benchmarks, Division, MAC, RGB and Sobel, we observe above 95% improvement in
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Figure 7.8: Improvement of Mean Absolute Error after using SMURF model.

accuracy. We also observe around 90% improvement in accuracy for Butterfly, DCT and

Robin benchmarks. The utilization of the SMURF model provides a significant increase in

accuracy for hard fault compensation.

7.3.2 Precision

Kappa statistics are widely used to analyze a machine learning’s reliability. Kappa is intended

to produce a quantitative measure of the magnitude of agreement between observations; in

other words, represent the precision of prediction (114). A value closer to 1 represent better

precision.

In our simulation results, we observe kappa value closer to 1 for all the benchmarks,

which signifies the reliability of the machine learning output (Table 7.1).
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Table 7.1: Prediction Precision Analysis: Kappa Statistic

Benchmark Btfly DCT Sobel RGB MAC Div Robin

Kappa
0.9122 0.8906 0.8157 0.8604 0.9676 0.9635 0.8904Statistics

7.3.3 Comparison

In these last set of experiments, we compare different predictive methods. In particular, the

Hoeffding tree explained previously vs. Linear Regression and RepTree machine learning

algorithms. In all cases, the same benchmarks and the same faults were used as described

previously. For Butterfly, DCT, MAC and Robin, we clearly observe that SMURF model

has a lower MAE value. In the case of Sobel and RGB, the MAE values are close.
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Figure 7.9: Comparison of Mean Absolute Error among different models.

Nevertheless, one significant observation is that the proposed Hoeffding tree model is

consistently very accurate for all the benchmarks, 95% of the time, thus suggesting a
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significantly robust method. In contrast, the regression method leads only to 90% of the

times to accurate results, while the RepTree in 93% of the times on average.

In addition, the size of the decision tree produced by the RepTree model is much larger

compared to SMURF model. In order to highlight this, we inject the same stuck at fault in

a specific node of the butterfly circuit and simulate using RepTree and the Hoeffding tree

method. Fig. 7.10, shows the two trees produced by the two models. The tree generated by

the Hoeffding model is significantly smaller than the RepTree, and therefore uses less area

and consumes less power.

Figure 7.10: Tree size comparison.

7.3.4 Overhead

Finally, Table 7.2 shows the area overhead in percentage for various applications of our

proposed compensation logic methodology. For most of the applications, the area overhead

is on average 5%. We believe that this overhead is acceptable, considering the improvement

in error correction achieved.
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Table 7.2: Area overhead

Benchmarks Btfly DCT Sobel RGB MAC Div Robin

Area
7.26 6.41 9.33 3.88 3.37 1.53 8.29Overhead (%)

7.4 Conclusion and Future Work

In this work, we have proposed a low-cost low-level recovery/repair method for permanent

hardware faults to reduce the impact of hard faults in hardware accelerators that tolerate

a certain level of errors by using supervised learning algorithms. We have performed gate-

level experiments for a variety of complex, multi-level circuits and provided comprehensive

experimental results for diverse complex hardware accelerators, showing significant error

reduction.

Our proposed method is based on compensating for the effect of faults on the output by

predicting the relative difference of the output rather than predicting the actual full output.

The proposed method is shown to improve the exactly accurate result by 50% and decrease

the overall mean error rate by 90% with an area overhead of 5%.

The proposed method has the additional advantages that it considers the accelerator as

a black box. The complexity of the solution does not depend on the size or complexity of

the application. It only depends on the number of inputs and outputs. As a result, our

proposed method is scalable as the size of the SMURF module will not increase along with

the size and complexity of the application.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

This section concludes the work completed in this dissertation and addresses possible future

work directions.

8.1 Conclusion

One of the main benefits of C-based VLSI design over traditional RT-level design: The abil-

ity to generated micro-architectures with different characteristics from the same behavioral

description, is leveraged to automatically generate reliable TMR systems, by either per-

forming space and/or time redundancy. Experimental results show, the proposed method

provides a 20% reliability increase compared to the most common approach of simply using

a single micro-architecture and instantiating it multiple times with no significant area or

timing overhead.

Next, we have shown that raising the level of abstraction from RT-level to C-level has

the additional advantage of being able to increase the design diversity to detect common

mode failures. Experimental results show that the proposed method provides a significant

diversity increment compared to using RTL-based exploration for diverse design generation.

Furthermore, we have extensively studied different diversity metrics and compared them

qualitatively. We have also presented a learning-based diversity estimation method to facili-

tate the generation of redundant systems that mitigate the effect of common-mode failures.

This diversity estimation method has been used in a genetic algorithm-based HLS design

space explorer to find design pairs with the highest diversity.Experimental results show, our

proposed method is a fast and efficient way to generate diverse designs to protect the system

against CMFs.

A low-cost low-level recovery/repair method for permanent hardware faults to reduce

the impact of hard faults in hardware accelerators that tolerate a certain level of errors by
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using supervised learning algorithms is also proposed. Experimental results show that the

proposed method improves the accuracy by 50% and decreases the overall mean error rate

by 90% with an area overhead of 5% compared to execution without fault compensation.

8.2 Future Works

Future work could extend this work to additional components of the MPSoCs other than only

the HWAcc. In addition, the methods, ARMORED, PMDE and SMURF can be combined

to produce a more robust system. Furthermore, these methods can be further studied in

more complex applications such as neural network, face recognition, etc.
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