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Locomotion is inherently an energy regulation challenge; ground impacts deplete the me-

chanical energy of the walking system with every step. When a person’s leg is amputated,

one of the conventional medical devices used to help them recover their mobility is a passive

prosthesis. However, this device is incapable of doing positive work on the human body to

counteract energy depletion and restore the user’s mechanical energy. Powered prostheses

have been developed and researched to address this, but recent control methods have focused

on tracking joint trajectories or impedance while ignoring the fundamental kinetic aspect

of human locomotion. The prevailing goal of this work is to construct a control method

for a powered lower-limb prosthesis that explicitly and directly enhances the kinetics of the

combined human-prosthesis system to assist human locomotion. The method proposed to

accomplish this utilizes energy and passivity based control techniques to modify the dynam-

ics of the prosthesis. This dissertation develops control theory related to these techniques

for autonomous bipedal robots so that they can then be translated onto the target pros-

thesis system. Specifically, it shows how to use energy shaping and regulation to change

characteristics of a walking gait, like walking speed, via switching of a small set of physi-

cally meaningful parameters. Experimental results that demonstrate proof-of-concept on a

powered knee-ankle prosthetic leg are presented.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Locomotion is inherently an energy regulation challenge; ground impacts deplete the me-

chanical energy of the walking system with every step. When a person’s leg is amputated,

one of the conventional medical devices used to help them recover their mobility is a passive

prosthesis. However, this device is incapable of doing positive work on the human body to

counteract energy depletion and restore the user’s mechanical energy. This leads to lower

walking speeds, higher metabolic costs, and gait abnormalities [2]. Powered prostheses have

been developed and researched to address this, but recent control methods have focused on

tracking joint trajectories or impedance while ignoring the fundamental kinetic aspect of

human locomotion. The prevailing goal of this work is to construct control methods for a

powered lower-limb prosthesis that explicitly and directly enhance the kinetics of the combined

human-prosthesis system to assist human locomotion.

1.1 State of the Art in Powered Lower-Limb Prostheses

A prosthesis is a mechanical structure that replaces the functionality of a missing limb

segment. These devices can be classified into passive versus powered devices. Most com-

mercially available lower-limb prostheses fall into the passive category, in that they cannot

generate net positive work [3]. The history of passive devices is long; it begins pre-20th

century with wooden structures like peg-legs and the Hanger Limb [4], a knee-ankle pros-

thesis made from barrel staves after the American Civil War. The design focus for modern

passive prosthetic legs is weight and friction minimization, to reduce socket interaction forces

against the wearer’s skin and muscle fatigue from moving the device. This has largely been

accomplished by improvements in material selection (e.g., using aluminum and carbon fiber).

Powered devices are inherently heavier and bulkier than passive devices due to the addition
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of actuation components. Older designs of powered devices used heavy, high friction power

transmission components [5] that were not back-driveable. Recent work has created a lighter,

more compact, back-driveable, knee-ankle prosthetic leg [6]. This back-driveability is par-

ticularly important in regard to control, because it is much simpler to use impedance and

energy based control methods on this style of device [7].

While powered devices are still confined to research spaces, they have been demonstrated

to have the potential to provide better patient outcomes than conventional passive devices [2].

The first landmark research into the control of powered knee-ankle limb comes from Goldfarb

[8] in the early 1990s, which outlines a five mode finite state controller that switches based

on where the user is in their gait cycle. Each one of these states uses a different rule to

generate joint torques (e.g., lock the knee during stance, then command a set torque during

early swing, then damp the joints during late swing). Research into impedance based rules

followed [9], with some focusing on biomimetically emulating human leg impedance [10].

An effort to reduce the number of different rules in the overall control emerged in recent

years with [11]. Inspired by research into autonomous bipeds [12], [11] uses an Inertial

Measurement Unit on the users hip to generate a phase variable that provides a single,

continuous measurement of gait cycle progression. This phase variable parameterizes joint

trajectories derived from human motion capture data, and are played back as the user walks

using a high gain Position-Derivative controller. However, if the user wishes change tasks by

changing their walking speed or walking up a slope, the desired joint trajectories must also

be changed. This is partially addressed in [13], which generates multi-dimensional trajectory

surfaces parameterized by phase and task variables. However, the research into the control

of prosthetic legs largely focuses on simply placing the leg in front of the user and supporting

them during stance. This paradigm ignores the primary advantage of powered devices over

passive devices, positive work generation, which emerges as a byproduct of trajectory error

rather than as an explicit output of the control law.
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1.2 Energy Shaping and Regulation Control as an Alternative Approach

A paradigm shift from a desired kinematic behavior to a desired kinetic behavior of energy

regulation and/or force output could allow us to frame positive work generation as an explicit

output of the prosthesis system. I believe the best control framework to achieve this is that

of energy shaping [14] (although the phrase is a bit of misnomer). The general idea is to

define a target system for the closed-loop dynamics that can be described by an energy

function or Hamiltonian. Feedback control is used to make up for the difference in the open-

loop energy function and the target energy function, matching the closed-loop energy to

the target energy (so perhaps a better label would have been “dynamics matching”). This

energy difference could allow us to explicitly generate positive work on the human-prosthesis

system. In the field of biped locomotion, energy shaping has been applied to generate walking

gaits by various changes to the kinetic and potential energy functions [15, 16]. Research in

the application of this technique to exoskeletons has recently emerged in [17, 18], but the

powered prosthetic leg application remains open. A complimentary idea to energy shaping

is energy regulation, although the two ideas are sometimes lumped together [15, 19]. Here,

the idea is to drive the closed-loop energy of the system to a reference value associated with

a passive or “natural” limit cycle. This leaves the mechanical energy function unaltered,

but prescribes that it take a desired value. This allows energy to an explicit output of the

system, increases limit cycle robustness [15, 20], and can help counteract energy losses from

unmodeled dynamics.

1.3 Organization of the Dissertation

This dissertation expands upon research in orbital stabilization of hybrid biped locomotion

by considering ways to dynamically change gaits during online operation through switches in

a very small set of control parameters in simple walking systems. It also investigates methods
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to leverage these ideas on complex biped models and a powered knee-ankle prosthesis. In

Chapter 2, background information necessary to model biped locomotion and stable walking

motion is given, along with the notion of passivity. Next in Chapter 3, the mathematical

details of energy shaping and regulation control are shown, and the ability to regulate a time

varying work based energy function in the passivity based framework is demonstrated. The

following Chapter 4 covers the control application on simulations of several biped models,

ranging from simple to complex. I show how the concepts of energy shaping and regulation

can be used in conjunction to allow online gait changes through parameter switching, that

the exact reference energy associated with a limit cycle does not need to be known prior to

online operation, and that the simple biped models can be exactly embedded into higher

order models to facilitate locomotion. Chapter 5 covers the control application on a physical

prosthetic leg, how a virtual spring with energy regulation can be embedded, and offers

a proof-of-concept experimental implementation. The final Chapter 6 summarizes all the

results of the dissertation and has directions for future work.
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CHAPTER 2

MODELING BIPED LOCOMOTION

Understanding how a system works requires a model of its behavior. Models of biped walking

range from simple models like the inverted pendulum [21] to extremely complicated muscu-

loskeletal models like [22] that simulate the mechanical properties of a human body. In this

dissertation, I consider three biped models: the Spring Loaded Inverted Pendulum (SLIP),

the Compass Gait Biped, and a 6-Link Flat Foot Biped. The SLIP model is composed of

a point mass that “walks” via connecting the ball to the ground through massless springs.

It is mathematically and conceptually simple, it exhibits kinematic and kinetic behaviors

that are extremely similar to key markers of healthy human locomotion [23], and its walking

and running behaviors occur naturally without external control. However, the gait of this

model is not stable. The Compass Gait Biped is another mathematically simple model that

exhibits “passive dynamic walking”, which describes the ability of the biped to walk down a

shallow slope under the power of gravity, alone. It has two legs modeled as rigid links with

point mass, and a point mass at the hip. While the gait of this model is far less similar to

human walking than the SLIP model, the gait is locally asymptotically stable [24]. While

most of the literature on the SLIP and Compass Gait models considers their motion through

a 2-dimensional plane, they can be extended to the 3-dimensional case [25, 26]. The simplic-

ity of these models makes them useful testbeds and templates for designing controllers that

can leverage preexisting limit cycles or gaits, and augment their properties such as speed or

step length. However, they are not complex enough to capture the all the salient features of

humanoid locomotion [27].

The human body is relatively compliant [28, 29, 30]; in order to use a rigid kinematic

chain as an abstraction of human motion certain compromises in model fidelity must be

made. For example, some researchers choose to use a rigid curved foot [31] to capture the

motion of the center-of-pressure and roll-over shape of the leg [32]. However, this type of
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model does not rigorously capture the kinematics and kinetics of the heel, flat foot, toe off

gait pattern that is present in human walking [33]. In order to model a human walking

with a prosthetic leg, I consider a 6-link biped model with a hip, knees, ankles, heels, and

flat feet. This model has been utilized to model a person walking with an exoskeleton in

previous work [17]. The treatment of the feet a flat, rigid links is compromise on fidelity,

since foot stiffness and flexion has been shown to be mostly irrelevant [34]. The model lumps

the motion of the head, arms, and torso into a large point mass at the hip, which has been

demonstrated to be a reasonable approximation in [35].

The principle tools to generate the mathematical description of the motion of these models

is Lagrangian mechanics. This chapter reviews a general form for Lagrangian mechanics of

rigid kinematic chains, combines this with a dissipative impact model to create a hybrid

system, and then gives a definition for orbital stability and a numerical method for checking

it. Passivity properties of this system class are reviewed, and finally a detailed description

of SLIP, Compass Gait, and 6-Link Flat Foot models is given.

2.1 Lagrangian Mechanical Systems with Holonomic Constraints

The state of an n Degree-Of-Freedom (DOF) mechanical system can be described by a con-

figuration space Q and its tangent bundle TQ =
⋃
q∈Q TqQ, which are generalizations of

positions and velocities, respectively. The idea of Lagrangian mechanics is that the differ-

ential equations that govern the motion of a mechanical system can be generated by the

Euler-Lagrange equation [36]

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= τ − A(q)>λ. (2.1)

Here, the generalized position or coordinate vector is q ∈ Q, the generalized velocity vector is

q̇ ∈ TQ, and L(q, q̇) : TQ→ R is a smooth function called the Lagrangian. For mechanical
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systems, the Lagrangian takes the form

L = K(q, q̇)− P(q) (2.2)

=
1

2
q̇>M(q)q − P(q), (2.3)

which is the difference between the system’s kinetic energy K and potential energy P . The

kinetic energy is a quadratic form defined by M ∈ Rn×n, which represents the generalized

mass and inertia of the system. The generalized external forces and torques on the system are

τ ∈ Rn, and the constraint forces λ ∈ Rm are mapped into the dynamics via the constraint

matrix A(q) ∈ Rn×m. The dimensions of the constraint variables indicate that there are m

holonomic constraints on the system. In biped robotics, holonomic constraints are generally

used to model interactions with a rigid environment like a wall or the ground that restrict

the motion of the biped [37].

The application of the Euler-Lagrange equation (2.1) to the Lagrangian (2.2) yields the

2nd order differential equation that describes the motion of the system,

M(q)q̈ + C(q, q̇)q̇ +N(q) + A(q)>λ = τ. (2.4)

Here, the matrix C(q, q̇) ∈ Rn×n accounts for Coriolis/centrifugal forces generated by implicit

constraints on the rigid components on the system and can be computed from the Christoffel

symbols [37] of M . The matrix N(q) = ∂P(q)
∂q
∈ Rn is the effect of potential forces on the

system (e.g., gravity). Our ability to control the system comes from the external forces and

torques

τ = B(q)u+ J>(q)F. (2.5)

The control torques u ∈ Rp are mapped into the dynamics through the matrix B ∈ Rn×p,

while additional unmodeled forces are represented by the wrench F ∈ R6×1 are mapped into

the dynamics through the Jacobian matrix J ∈ R6×n. B is assumed to have full column

rank, i.e., rank(B) = p. If p < n−m, i.e., the number of actuators is less than the number
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of unconstrained DOF’s of the system, the system is considered to be underactuated. If

p = n−m the system is fully actuated, and if p > n−m the system is overactuated.

The constraint forces λ and matrix A are generated from a function σ(q) : Q → Rm,

a holonomic constraint that specifies restrictions on the motion of the system. By taking

derivatives of this equation,

A =
∂σ

∂q
. (2.6)

the acceleration variables are revealed with

σ̈ = A(q)q̈ + Ȧ(q)q̇ = 0. (2.7)

The constraint forces can then be solved for by combining (2.7) and (2.4) to arrive at

λ = (AM−1A>)−1
(
AM−1(τ − Cq̇ −N) + Ȧq̇

)
. (2.8)

The forces induced by ground contact constraints are exactly the ground reaction forces.

λ can then be substituted back into (2.4) to have a complete description of the system

dynamics in terms of the state variables q, q̇. The dimension reduced equivalent constrained

dynamics can be obtained by substitution of the constraint equations h(q) directly into the

Lagrangian and computing the dynamics via the Euler-Lagrange equation, in the case that

the constraints are holonomic [37]. This eliminates the term A(q)>λ from the dynamics and

reduces the dimensionality of the system, which can make analysis and simulation simpler.

However, the information of the constraint forces is lost. Using the notation from [38], the

equivalent constrained dynamics are written as

Mλ(qλ)q̈λ + Cλ(qλ, q̇λ)q̇λ +Nλ(qλ) = Bλu+ J>λ F. (2.9)

The matricesMλ, Cλ ∈ R(n−m)×(n−m), Bλ ∈ R(n−m)×p, J ∈ R6×(n−m) and vectors q̈λ, q̇λ, qλ, Nλ ∈

Rn−m are subscripted to indicate they are from the equations for the constrained, reduced

order system.
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The 2nd order differential equation (2.4) can be converted to a 1st order differential

equation by defining a new state variable vector x> = [q>, q̇>]> ∈ R2n. This allows the

system to be written in control affine form [39] as

ẋ = f(x) + g(x)u, (2.10)

where f ∈ R2n and g ∈ R2n×p are defined as

f(x) =

 q̇

−M−1(Cq̇ +N + A(q)>λ− J>F )

 , g(x) =

 0n×p

M−1B

 . (2.11)

A similar method can be applied to obtain a 1st order representation of equation 2.9, as well.

2.2 Rigid Impact Dynamics

Impacts are fundamental to locomotion, as opposed to other methods of movement like

rolling, slithering, swimming, or flying. Bipeds generally have impacts when the swing leg

contacts the ground, and some of their kinetic energy is dissipated by the inelastic nature of

the impact. If the biped is modeled as a rigid kinematic chain, the impact dynamics can be

modeled using the following assumptions from [40]:

1. The impact is instantaneous.

2. The impact has no rebound and no slippage, so the post-impact contact point/surface

is constrained to the ground through the function hI(q).

3. Externally applied forces during impact can be represented by impulses FI .

4. The actuators cannot generate impulses, so they can be ignored during impact.

5. The impulsive forces may cause an instantaneous jump in the velocity, but the config-

uration does not jump.
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These modeling assumptions can be combined with the principle of momentum conser-

vation [40] to generate a mathematical formula that gives the post-impact state x+ as a

function of the pre-impact state x−. This formula isq̇+

FI

 =

R 0

0 Ip×p


M(q−) −A>I (q−)

AI(q
−) 02x2


−1 M(q−)

02x2

 q̇− (2.12)

q+ = Rq−.

Here, AI = ∂σI
∂q
∈ Rp and accounts for the unilateral ground constraint during impact, while

R ∈ Rn×n is a relabeling matrix that swaps the stance and swing legs at the end of a gait

cycle. The exact form of R depends on the choice of coordinates used to represent the biped

configuration, but it must be a circular matrix, i.e., RR = I. Some biped models may have

multiple contact phases and impacts over a single gait cycle; in the case of intermediate

impacts R = In×n. In general, this impact model is inelastic with K− > K+, which follows

from the mathematical statement of assumption 2, AI q̇
+ = 0.

2.3 Hybrid Biped Dynamics and Orbital Stability

The description of the motion of a biped involves the combination of the continuous motion

equation (2.11) with the discrete impact equation (2.12) to form a hybrid system. In this

section, I offer a rigorous general definition of a hybrid system and its solutions. I then

give a definition for the stability of an orbit (e.g, a stable biped gait) and discuss Poincaré’s

method for verifying this stability.

Combining definitions and notations from [40, 41, 42] gives the following general defini-

tion:

Definition 1. A hybrid control system H has the form

H :


ẋ = f(x) + g(x)u x ∈ D \ S

x+ = ∆(x−) x ∈ S
(2.13)
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where the set D is called the domain of admissibility, the set S is called the switching surface,

and the function ∆ : S → D is called the impact map. The superscripts “-” and “+” indicate

the variables before and after impact.

For rigid bipeds, the reset map can be formulated based on equation (2.12). I consider

the domain of admissibility to be the set of the states where the biped is not moving through

the ground. The switching surface is the set of states where the biped impacts the ground.

The general form of hybrid biped dynamics with a swinging leg is then

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ J>(q)F if h(q) > 0 (2.14)

q̇+

FI

 =

R 0

0 Ip×p


M −A>

A 02x2


−1  M

02x2

 q̇− if h(q) = 0 and ḣ < 0 (2.15)

q+ = Rq−.

where h defines the switching surface and is a function that measures the distance from the

ground to the closest point on the swing foot of the biped. In the case that both legs are in

contact with the ground and the biped is in double support, the switching surface is set of

states where a leg lifts from the ground. Mathematically, this is when λy < 0 at a contact

point, which can be computed from equation (2.8).

In this representation, a stable biped gait is a stable periodic solution (or limit cycle) of

the hybrid system. Let x(t) be the solution of the continuous dynamics of H. The solution is

n-periodic if x(t) = x(t+
∑n

i=1 Ti where Ti is constant and is the time between impact i and

i+ 1. From the geometrical point of view, the set of points in the phase space corresponding

to x(t) are an invariant set

O := {x ∈ D |x = x(t) for t ∈ [0, Ti]}, (2.16)
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called an n-periodic hybrid orbit. I use the following definition for the stability of O from

[12]

Definition 2. O is stable in the sense of Lyapunov if for every ε > 0 there is an open ball

Br(x) := {y | ||y − x|| < r} such that for every p ∈ Br there is a solution φ(t), φ(0) = p for

(2.13) where ||φ(t),O|| < ε for all t > 0.

In general, it is difficult to analytically demonstrate an orbit is stable because closed form

functions for x(t) do not always exist. However, there is a well-known numerical method,

detailed in [12], for checking orbital stability called Poincaré’s sections. The basic idea is to

identify a fixed point x∗ in the state space about which the step-to-step dynamics are lin-

earized, perturb the system off this point, then compute the eigenvalues of the linearization.

Define the Poincaré map P(x) : E → E where the event set E = {x|h(x) = 0} is a section

of the state space, and a discrete system x(k + 1) = P (x(k)) from event to event. If x∗ is a

locally stable point of this system, then O is locally stable. This can be verified numerically

through a perturbation analysis as described in [24] and then a check that max|λ| < 1 where

λ is the set of the eigenvalues of Jacobian ∇xP(x∗).

2.4 Passivity

Consider the control affine system as described in (2.10) with an output y(x) ∈ Rn. I use

the following notion of passivity from [43] for this output:

Definition 3. Let S(q, q̇) : R2n → R be a continuously differentiable, non-negative scalar

function. A system is passive from input u to output y with storage function S(q, q̇) if

y>u ≥ Ṡ(q, q̇).

The idea of passivity is an extension of the idea of an energy function for a system, where

S plays the role of the energy that can only change due to power input from the control u.

12



Passivity is a useful property for a system to have for many reasons. Primarily, it can be

used to prove Lyapunov stability under feedback control by the following lemma from [44]:

Lemma 1. If a control-affine system is passive from u to y with storage function S, and

u = ζ(y) where ζ(y) is a continuous function that satisfies y>ζ(y) < 0, then the zero level-set

Z = {y | ζ(y) = 0} is stable in the sense of Lyapunov and is asymptotically attractive.

A specific choice for ζ(y) that satisfies the lemma is

u = ζ(y) = −κΩy, (2.17)

where κ > 0 is a scalar gain while Ω ∈ Rn×n is a positive definite weighting matrix with each

element less than one. This is essentially feedback of a scaled form of the passive output y.

This control retains the passivity property under saturation of u as

y>sat(−κΩy) < 0, (2.18)

because saturation is a so-called first and third quadrant nonlinearity [45]. Stability is then

ensured under saturation of the control input, which occurs in all physically realizable robotic

systems.
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CHAPTER 3

ENERGY SHAPING AND REGULATION CONTROL

The origin of the term “energy shaping” to describe a controller is based on the idea of

defining a target virtual dynamical system based on an energy function, and using the

control input to cause the plant to act like this target system. Seminal works in this area

of research are on “Controlled Lagrangians” [14] by Bloch et al. and “Interconnection and

Damping Assignment Passivity-Based Control” (IDA-PBC) by Ortega et al. While the focus

of these works is stabilization of an equilibrium point, there has been an effort to extend these

methods to generate and stabilize periodic orbits [19]. Energy shaping is particularly useful

for emulating walking gaits of passive systems by creating a virtual Lagrangian system, as

seen in [15, 16]. In [15], the direction of the virtual gravity vector of the compass gait biped

is controlled to emulate a passive walking gait on arbitrary slopes (but the structure of the

dynamics remains the same). In [16], new structure/parameters are added to the virtual

mass matrix of the compass gait biped, resulting in the generation of new gaits. These

ideas have begun to be applied in wearable robotics as in [18], where the virtual gravity of

a human-exoskeleton system is controlled to provide motion support or resistance for stroke

rehabilitation. A natural extension of this research direction is to apply similar methods to

a leg prosthesis.

A closely related idea that is sometimes lumped into “energy shaping” is “energy regu-

lation” (see [19]), where a control explicitly drives the energy of the system to a particular

value associated with a walking gait [15, 46, 42, 47]. In autonomous bipeds, this kind of

0Chapter 3 is in part is a reprint of material published in:
© 2019 ASME. Reprinted, with permission, from M. Yeatman, G. Lv, and R. Gregg, “Decentralized

Passivity-Based Control with a Generalized Energy Storage Function for Robust Biped Locomotion,” ASME
Journal of Dynamic Systems, Measurement, and Control, 141(10): 101007, 2019..
© 2020 ASME. Reprinted, with permission, from M. Yeatman and R. Gregg, “Using Energy Shaping

and Tracking to Generate Natural Limit Cycles in Mechanical Systems with Impacts,” ASME Journal & of
Computational and Nonlinear Dynamics, under review.
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method can improve a metric of stability margin or robustness by increasing the so-called

basin of attraction (the set of initial conditions of the system that will converge to the limit

cycle). As remarked in [15, 42], a key component to this effect is the identification of a limit

cycle trajectory where the system energy is conserved so that the energy regulation control

is zero on the desired orbit. Energy shaping and energy regulation can be combined [19, 15]

to change the virtual closed-loop dynamics, then drive the virtual energy to a desired value

to achieve a limit cycle. To-date there has been no research into applying energy regulation

methods to any wearable device. Part of the novelty and contribution of this dissertation is

to understand how human interaction and assumed passivity can affect systems with energy

regulation.

In the following sections I will cover some mathematical theory for energy shaping and

regulation control. The open-loop/plant dynamics are a biped with hybrid dynamics (2.14).

The control u = us + ur is partitioned into two components, where us performs energy

shaping and ur performs energy regulation. These controllers are designed in stages so that

ur operates on the energy of the shaped system that results from us as seen in the block

diagram figure 3.1. I will then propose a specific control structure for a powered prosthetic

leg that embeds an energy regulated virtual spring. The idea is that the virtual spring will

allow the dynamics of the residual limb and attached prosthesis to behave like the SLIP

model, which has forces, motion, and energy properties similar to a healthy leg. The energy

regulation control will enable explicit positive work generation of the prosthesis to counteract

energy dissipation caused by impact.

3.1 Energy Shaping

Here I will review a method of energy shaping with Controlled Lagrangians. For simplicity, I

assume that the open-loop biped dynamics are in the equivalent constrained form (2.9) and

15



Plant𝑈𝑈𝑠𝑠

𝑈𝑈𝑟𝑟

Shaped System �𝐸𝐸

Figure 3.1: Block diagram of the hierarchy for energy shaping and energy regulation control.

drop the subscripts. The system dynamics in terms of the open-loop Lagrangian is

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= B(q)u+ J>(q)F. (3.1)

Following the methods in [14, 48, 49], I define a desired closed-loop virtual Lagrangian L̃

with dynamics of the form

d

dt

∂L̃(q, q̇)

∂q̇
− ∂L̃(q, q̇)

∂q
= B̃ur. (3.2)

In [48], it is shown that 3.2 leads to two equations,

B>(
d

dt

∂L̃(q, q̇)

∂q̇
− ∂L̃(q, q̇)

∂q
) = 0 (3.3)

B⊥(
d

dt

∂L̃(q, q̇)

∂q̇
− ∂L̃(q, q̇)

∂q
) = 0, (3.4)

where B⊥ is a full rank left annihilator of B, i.e., B⊥B = 0. These two equations are the most

general form of the so-called “matching conditions” for energy shaping control. Equation 3.1
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is said to match 3.2 if 3.3 and 3.4 hold along the system flow. Matching the systems is easier

when the system is fully actuated with rank(B) = n. The first equation can be achieved by

feedback control, with

us = (B>B)−1B>

(
−J>(q)F + (

d

dt

∂L
∂q̇
− ∂L
∂q

)− (
d

dt

∂L̃
∂q̇
− ∂L̃
∂q

)

)
. (3.5)

The second equation is enforced by the assumption of full actuation, because B⊥ = 0.

If the system is underactuated, then the problem becomes significantly more complicated.

Equation 3.4 can lead to a set of nonlinear partial differential equations that must hold along

the system flow [48]. In general, the only way to verify these equations hold is to solve them,

which is a notoriously challenging prospect and outside the scope of this dissertation. Later

in Section 5 I will show that this problem can arise in attaching a virtual spring to the center

of pressure of a biped. However, this problem can be made much easier by restricting the

class of plant and target systems.

In the case where the plant and target dynamics are restricted to the class of mechanical

systems, the virtual Lagrangian of the form

L̃ = K̃(q, q̇)− P̃(q) =
1

2
q̇>M̃(q)q − P̃(q). (3.6)

The expression for the target dynamics are derived by applying the Euler Lagrange equation

(2.1) to (3.6) which results in

M̃(q)q̈ + C̃(q, q̇)q̇ + Ñ(q) = M̃M−1Bur. (3.7)

The control that achieves these closed-loop continuous dynamics on system (2.14) is then

us = (B>B)−1B>(Cq̇ +G−MM̃−1(C̃q̇ + G̃)), (3.8)

and the matching condition is simplified to

B⊥(Cq̇ +G−MM̃−1(C̃q̇ + G̃)) = 0. (3.9)
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This matching condition basically ensures that the difference between the plant and target

dynamics never has a component in the nullspace of B. The energy for this closed-loop

system is Ẽ = K̃(q, q̇) + P̃(q). It is important to note that in all cases the impact dynamics

(2.15) remain unchanged (because there is no control input in equation (2.12)), meaning

the general hybrid dynamics cannot be arbitrarily shaped to match another hybrid system.

Additionally, this does not address potential issues with matching the switching surface of

the system to some desired behavior.

3.2 Energy Regulation

The method of energy regulation presented here is based on the work in [15] and is “passivity-

based”, meaning the control is a form of negative feedback of a passive output as given in

Definition 3. This stands in contrast to other energy regulation control techniques that do

not preserve passivity, such as [42] and [46]. I begin by defining the storage function

S =
1

2
(Ẽ − Eref)

2, (3.10)

where Ẽ is the virtual energy of the closed-loop system from equation 3.7 and Eref is the

reference energy. The time derivative of this storage function is

Ṡ = (
˙̃
E − Ėref)(Ẽ − Eref). (3.11)

From equation 3.7, the instantaneous change in energy is

˙̃
E = q̇>M̃M−1Bur (3.12)

= q̇>B̃ur (3.13)

Ṡ = (q̇>B̃ur − Ėref)(Ẽ − Eref). (3.14)

First, I will consider the case where the reference energy is constant, i.e., Ėref = 0. From

substitution,

Ṡ = q̇>B̃ur(Ẽ − Eref), (3.15)
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and by Definition 3 the energy-based passive output can be identified as

y(q, q̇)> = (Ẽ − Eref)q̇
>Bu. (3.16)

Using the paradigm of negative passive feedback [43], Ṡ can be rendered negative semi-

definite by feedback of the scaled output with

ur = −κΩy = −κ(Ẽ − Eref)ΩB̃
>q̇. (3.17)

Here, κ > 0 is a scalar gain while the weighting matrix Ω ∈ Rn×n is positive definite with

each element less than one. The storage function and its time derivative are related by

Ṡ = −κ(Ẽ − Eref)
2q̇>B̃ΩB̃>q̇ (3.18)

= −2κ||q̇||ΩS, (3.19)

where the term q̇>B̃ΩB̃>q̇ is a norm. The asymptotic convergence of the virtual energy to

the target reference energy is guaranteed if the system state cannot enter some positively

invariant set where ||q̇||Ω = 0.

While it is possible to regulate a general non-constant reference energy Eref(q, q̇, t) func-

tion that varies with state and time, I argue that the result is identical to the technique

of partitioning the control into an energy shaping step and then an energy regulation step.

Furthermore, the result of directly regulating the varying reference energy is unclear without

this partitioning. I can define a new energy function Ẽ = E−Eref(q, q̇, t) then use the Legen-

dre transformation to derive the associated Lagrangian L̃, assuming that the transformation

is well-defined. The target dynamics can be obtained through the EL equation and the Con-

trolled Lagrangians technique used to arrive at an energy shaping control (because of this

more general form of Eref , more general matching conditions from [48] must be satisfied). If

the reference energy has some constant term C such that Eref = f(q, q̇, t) +C, it will vanish

after the EL equations are applied. However, the desired convergence can be recovered by
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applying an outer-loop energy regulating control with Ẽ = E− f(q, q̇, t) and Eref = C. This

two step procedure allows us to clearly interpret the effect of the control as determining the

shape of an energy level set through the shaping step and then stabilizing the set through

energy regulation, similar to [19]. Directly regulating a time-state varying reference energy

results in a less clear effect. This point is particularly salient in the next section on using a

time-integral based energy function that accounts for the work done by dissipative forces in

the system.

3.2.1 Regulation of a Work-Based Energy Function

As shown in [42, 47], I can define a generalized system energy as

E(q, q̇, v, t) = K(q, q̇) + P (q)−W (q, q̇, v, t). (3.20)

where the work done by some torque/force input v is

W =

∫ t

0

q̇>Bvv dτ . (3.21)

The work W accounts for the energy stored, added, and dissipated over time t by v. Note

that the exact form of this input is left arbitrary; the important feature is that it generates

a limit cycle for the biped. The time derivative of this new work-based energy function is

Ė =
d(K + P )

dt
− dW

dt
. (3.22)

From the definition of W , the application of the fundamental theorem of calculus, and the

conservation of energy in a mechanical system,

Ė = (q̇>Buu+ q̇>Bvv)− q̇>Bvv = q̇>Buu. (3.23)

Achieving this power relation is the main “trick” behind including W in the system energy

function 3.20. In term of the biped dynamics 2.14, we can consider Bvv = J>F .
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From here, the analysis follows the same pattern as in the previous section. Reusing

the storage function from equation 3.10 and its time derivative 3.11, I again assume Eref is

constant so that

Ṡ = (E − Eref )q̇>Buu, (3.24)

with passive output

y(q, q̇, v, t)> = (E − Eref )q̇>Bu. (3.25)

A critical difference between 3.16 and 3.25 is that the new output is now dependent on time

and the input v. This output can be substituted into the energy regulation control 4.45.

3.3 Application to Hybrid Locomotive Systems

Autonomous walking systems have limit cycles with trajectories, stability properties, and

other gait characteristics that can depend on the value of the system parameters [24, 23].

This means that by changing these parameters, it is possible to change the limit cycle

properties to make a biped change speeds or walk up a slope [15]. The basin of attraction

of these limit cycles are typically small, hence I will use energy regulation to increase the

basin in order to make gait transitions more robust as shown in [15]. This method of gait

transition is basically the idea of Lyapunov funneling, see [50, 51]. However, the hybrid

nature of the dynamics can present conceptual challenges to the application of both energy

shaping and regulation control methods.

If the impact map ∆ depends on the system parameters and the system is limited only to

continuous/non-impulsive control, then arbitrary virtual hybrid systems cannot be exactly

emulated. This idea is related to work on energy shaping and Controlled Symmetries [52],

of which a key component was demonstrating that the impact dynamics of a rigid biped are

invariant with respect to the ground slope parameter. However, it is completely possible to
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change the virtual parameters of only the closed-loop continuous dynamics, while using the

original open-loop impact dynamics. I expect that the qualitative relationship between gait

characteristics (e.g., walking speed) and parameters will be similar between the true system

and partially emulated virtual system.

The impact map also influences the construction of an energy regulating control. If a

passive walker has a conserved energy on its periodic orbit in the continuous dynamics,

then the energy must be conserved across the discrete dynamics as well. This implies an

equilibrium between the kinetic energy lost from dissipative impact and the potential energy

gained from shifting the world frame [53]. This equilibrium can be unstable, such that

a small perturbation will cause the impact dynamics to drive the energy away from the

limit cycle [24]. However, it could be possible to use energy regulation to stabilize these

passively unstable limit cycles. The idea is that over the flow of the continuous dynamics, the

energy regulating controller compensates for the destabilizing effect of the impact dynamics.

Consider the step to step storage function

S−i+1 =

∫ ti

0

(q̇>Bur)(E − Eref) dτ + S+
i (3.26)

=

∫ ti

0

(q̇>Bur)(E − Eref) dτ + ∆S(q−, q̇−) + S−i , (3.27)

where ti is the time between impacts and ∆S is the change in the storage function at impact.

If

0 ≥
∫ ti

0

(q̇>Bur)(E − Eref) dτ + ∆S(q−, q̇−), (3.28)

then S−i+1 ≤ S−i , meaning the storage function is always decreasing between impacts and the

energy is converging to the target energy. This is basically the notion of a hybrid storage

function and so-called “jump and flow passivity” [54], but applied to orbital stabilization.

For an unstable passive limit cycle, ∆S > 0, while a stable one corresponds to ∆S < 0.

From equation (3.18), the amount of storage dissipated over the continuous dynamics can

be modulated with the gain κ. Again, even if the inequality (3.28) is satisfied and the
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reference energy is asymptotically stable, this is only a necessary but not sufficient condition

for achieving a limit cycle in general.

3.4 A Hopping Robot Example

This section considers a simple model of a hopping robot with 1 degree-of-freedom (DOF).

The simplicity of the model allows analytical proofs of stability and performance due to the

linear open-loop continuous dynamics and low dimensionality. Some of the information on

the passive dynamics is similar to other works on hoppers [55] and the rimless wheel [56].

The model serves as a simple non-abstract example to demonstrate and develop methods for

application on higher order and more interesting models later in the dissertation.

3.4.1 Hopper Dynamics

Consider an actuated mass-spring system hopping on a static flat surface and constrained

to move along the vertical axis (a simplified version of the SLIP model). The continuous

dynamics has two phases/equations

Stance (ST) u = mÿ + k(y − y0) +mg (3.29)

Flight (FL) 0 = mÿ +mg (3.30)

where the mass of the point is m, the distance from the point to the ground is y, the relaxed

length of the spring is y0, the gravitational acceleration constant is g, and the actuation force

is u. The discrete dynamics that govern the switch between these phases are

if phase == FL and y ≤ yc (3.31)

ẏ+ = e ẏ−

phase := ST

if phase == ST and y ≥ y0 (3.32)

phase := FL
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where the superscripts - and + indicate pre-impact and post-impact states, respectively. The

spring length at impact is yc ≤ y0, and e is the coefficient of restitution. If e = 1, then the

impact is elastic. If 0 < e < 1, the impact is plastic.

Periodic orbits in Lagrangian systems necessarily have a conserved energy, which implies

the system energy must be conserved at impact. For the passive hopper, this means the

energy added in by the spring length offset must equal the energy dissipated by the impact,

i.e., 1
2
k(y0 − yc)2 = 1

2
m(1 − e)2(ẏ−)2. If the impact is plastic, then the orbit can be shown

to be locally exponentially stable in the sense of Lyapunov by considering the energy state

from impact to impact. Before impact,

E−i =
1

2
m(ẏ−)2 +mgyc, (3.33)

and after

E+
i =

1

2
m(eẏ−)2 +

1

2
k(y0 − yc)2 +mgyc. (3.34)

Since energy is conserved over the continuous dynamics, E+
i = E−i+1, which implies that

E−i+1 = e2E−i +
1

2
k(y0 − yc)2 + (1− e2)mgyc. (3.35)

Because 0 < e < 1, this discrete system is exponentially stable and

E → k(y0 − yc)2

2(1− e2)
+mgyc = Elim. (3.36)

This forms an analytical Poincaré map [12], thus there is always a locally exponentially

stable hybrid limit cycle for the hopper.

For all parameter cases of the passive hopper, the system will get stuck in the stance

phase if the energy is too low to achieve liftoff. In addition, the mass can bottom out against

the ground if the energy is too large, which we consider to be a system failure. This implies

that basin of attraction is bounded by these two energy level sets as

mgy0 < E <
1

2
ky2

0. (3.37)

If e = 1 and yc = y0, the energy is always conserved across all dynamic regimes and there is

a family of marginally stable periodic orbits within these energy bounds.
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3.4.2 Hopper Control

The hopping height yapex is limited by the upper bound on the energy with the expression

yapex <
ky2

0

2mg
. (3.38)

The good news is that energy shaping can be used to change the virtual spring stiffness k̃

to increase the basin ceiling and achieve arbitrary hopping heights, while energy regulation

can be used to create energy for liftoff and minimize the basin floor. The resulting control

and closed loop stance dynamics are

u = us + ur (3.39)

= (k − k̃)(y − y0)− κ(Ẽ − Eref)ẏ (3.40)

0 = mÿ + κ(Ẽ − Eref)ẏ + k̃(y − y0) +mg, (3.41)

where Ẽ = 1
2
mẏ2 + 1

2
k̃(y− y0)2 +mgy. If there is a linear damping term (d · ẏ) in the stance

dynamics, it acts as a shift on the reference energy as Enew = Eref− d
κ

so the damped hopper

system can be addressed by this example as well. Interestingly, the new stance dynamics

correspond exactly to the harmonic Rayleigh-Van-der-Pol oscillator from [57].

In the case of e = 1 and yc = y0, we can choose any reference energy that satisfies equation

(3.37) to achieve a virtual passive limit cycle. In the case of 0 < e < 1 and 0 < yc < y0, we

must choose Eref to be exactly equal to Elim from equation (3.36) if we want to ensure that

the hopping limit cycle mimics a passive system. Consider the step-to-step storage function

at impact,

S+
i =

1

2
(E+ − Eref)

2 (3.42)

=
1

2
(e2E−i +

1

2
k(y0 − yc)2 − Eref)

2. (3.43)

If 0 < e < 1 and Eref = Elim, then S+
i = e4S−i and the storage function decreases after

impact, i.e., S+
i ≤ S−i . The energy regulation control causes the storage to decrease over the
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continuous dynamics, implying S−i+1 ≤ S+
i . It follows then that S−i+1 ≤ S−i ; the post impact

storage function monotonically decreases from event to event. Thus, the hybrid limit cycle

of the system under the energy regulation control is asymptotically stable.

3.4.3 An Impact-to-Impact Energy Update Law

One can generally expect a hopping robot to encounter many different surfaces that result

in varying coefficients of restitution that cannot be estimated beforehand, implying different

natural energy levels associated with the natural limit cycle. So it would be useful in practice

to have a method of updating Eref . Inspired by structure of the impact dynamics, we propose

the update policy

Erefi+1
= Erefi + Λ(E+

i − E−i ) (3.44)

= Erefi + (e2 − 1)ΛE−i + Λ

(
1

2
k(y0 − yc)2 + (1− e2)mgyc

)
. (3.45)

where Λ is a scaling gain. Essentially, if the impact dynamics cause a net gain in E then

Eref is increased, and vice-versa. From the convergence of S in the continuous dynamics,

|E−i+1 − Erefi | ≤ |E+
i − Erefi |, (3.46)

The triangle inequality [58] can be applied so that

E−i+1 ≤ e2E−i +
1

2
k(y0 − yc)2 + (1− e2)mgyc (3.47)

E−i+1 ≥ −e2E−i −
1

2
k(y0 − yc)2 − (1− e2)mgyc. (3.48)

This allows the discrete system Erefi+1

E−i+1

 = f(Erefi , E
−
i ) (3.49)
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to be bound as Erefi+1

E−i+1

 ≤
1 Λ(e2 − 1)

0 e2


Erefi

E−i

+

Λc

c

 (3.50)

Erefi+1

E−i+1

 ≥
1 Λ(e2 − 1)

0 −e2


Erefi

E−i

+

Λc

−c

 (3.51)

c =
1

2
k(y0 − yc)2 + (1− e2)mgyc (3.52)

By inspection, both of bounding systems are linear and exponentially stable when 0 < e < 1

and 0 < Λ < 1. The contraction mapping theorem [59] can be applied to show that Erefi

and E−i both converge to Elim.

This update law can generalize to higher dimensional systems, which we show through

numerical simulation on the compass gait biped in a later section. We remark that in

practice, using a different constant value of Eref can still result in a limit cycle as in [55],

but the asymptotic trajectory will not emulate a virtual passive system and is dependent on

the value of the gain κ. Finally, the stability of the system with the update law relies on

the stability properties of the passive limit cycle, 0 < e < 1. This leads us to believe that in

general, the energy associated with an unstable limit cycle cannot be arrived at via (3.44).
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CHAPTER 4

APPLICATION ON BIPED ROBOTS

In this Chapter I present, from simple to complex, a series of locomotive mechanical systems

and use energy shaping and regulation control to stabilize and generate walking and running

gaits. In simple walking models, like the Spring Loaded Inverted Pendulum and the Compass

Gait Biped, characteristics of a gait such as walking speed and step length are directly

linked to model parameters like spring stiffness and mass. Thus, it makes sense to use

energy shaping to virtually change the model parameters to induce desired properties like

increasing the walking speed. However, this type of control does nothing to increase the

basin of attraction of the virtual system. Thus, it makes sense to use energy regulation

to increase the basin and facilitate transitions during parameter switching. By using these

techniques, the simple models can then be embedded into more complex biped systems and

serve as templates to generate motion, similar to the ideas in [60]. This gives a baseline of

how to use templates for human locomotion to control complex models of powered prostheses

and orthoses.

4.1 The Spring Loaded Inverted Pendulum

The SLIP is a widely known walking model that exhibits behaviors and properties similar

to human walking [23]. It is comprised of a point mass that “walks” via connecting the ball

to the ground through massless springs. Because it is not a rigid kinematic chain, there is

no rigid impact. The SLIP model considered in this dissertation moves in a two-dimensional

0Chapter 4 is in part is a reprint of material published in:
© 2019 ASME. Reprinted, with permission, from M. Yeatman, G. Lv, and R. Gregg, “Decentralized

Passivity-Based Control with a Generalized Energy Storage Function for Robust Biped Locomotion,” ASME
Journal of Dynamic Systems, Measurement, and Control, 141(10): 101007, 2019.
© 2020 ASME. Reprinted, with permission, from M. Yeatman and R. Gregg, “Using Energy Shaping

and Tracking to Generate Natural Limit Cycles in Mechanical Systems with Impacts,” ASME Journal & of
Computational and Nonlinear Dynamics, under review.
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plane, can exhibit both walking and running behaviors, and has additional actuation along

the spring axis. The walking behavior alternates between a single support phase and a

double support phase, while the running behavior alternates between a single support phase

and a flight phase. The system has no dissipation, which implies that the energy is always

conserved and that the model is not physically realizable. A diagram of the system is given

in Fig. 4.1.

𝛼𝛼
𝑦𝑦

𝑥𝑥

𝐿𝐿0

𝑘𝑘

𝑔𝑔

𝑢𝑢 + 𝐹𝐹

𝑚𝑚

Figure 4.1: Diagram of the spring loaded inverted pendulum.

In general, the energy of the system is

E = K(q̇) + P(q) (4.1)

=
1

2
(m)(ẋ2 + ẏ2) +

1

2
k(L1(x, y)− Lo)

2 +
1

2
k(L2(x, y)− Lo)

2 +mgy (4.2)

The configuration vector of the model is q = [x, y]>, the point mass is m, and the length and

stiffness of the springs are L and k, respectively. The gravitational acceleration constant is

g, and is along the vertical coordinate y. At L = Lo, the system releases a spring from the
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ground and engages the spring again at the contact angle α when y = L sin(α). This gives

the ground contact point pf. The springs are labeled 1 and 2, left to right, when they are

in contact with the ground. The rules for releasing and engaging the springs imply that the

system energy does not jump at these switches, thus the spring energy and force expressions

can be dropped when they are not engaged with the ground. These switching rules and the

application of the Euler-Lagrange equation (2.1) lead to the following equations of motion:

Double Support (DS) J>1 u1 + J>2 u2 = Mq̈ + J>1 F1 + J>2 F2 +G (4.3)

Single Support (SS) J>1 u1 = Mq̈ + J1F1 +G (4.4)

Flight (FL) 0 = Mq̈ +G (4.5)

if phase == DS and L2 ≥ Lo (4.6)

phase := SS

if phase == SS and y ≤ Lo sin(α) (4.7)

phase := DS

if phase == FL and y ≤ Lo sin(α) (4.8)

phase := SS

if phase == SS and L1 ≥ Lo (4.9)

phase := FL

M =

m 0

0 m

 , G =

 0

mg

 , Ji =

x−pfxi
Li

y−pfyi
Li

 ,
Li =

√
(x− pfxi)

2 + (y − pfyi)
2 , Fi = k(Li − Lo)

The motion of the mass is extremely similar to the motion of a human’s center of mass

in the sagittal plane, and the qualitative “double hump” in the ground reaction force is

characteristic of both human walking and the SLIP model[23] as seen in Figures 4.2 and 4.3.
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Figure 4.2: Sample walking trajectory of the SLIP model, average walking speeds of 1.1ms−1.
m = 70kg, k = 12250Nm−1, Lo = 0.94m.

4.1.1 Control

In [23], it is shown that for a constant spring stiffness k and touchdown angle α, there is a

compact set of energies that correspond to walking or running periodic orbits in the SLIP

model. They also show that these energy sets exist and change for a range of stiffnesses

and touchdown angles. This is our motivation to use energy shaping to change the spring

stiffness. Because the energy of the open-loop system is conserved, any periodic orbit is

only marginally stable. Thus, it is reasonable to use energy regulation to stabilize the

orbit. However, because the SLIP model has a 4 dimensional state space instead of the 2

dimensional space of the hopper, a single energy value does not uniquely define a trajectory

of the open-loop system. Additionally, work in both [23] and [61] indicates that controlling

the contact angle is critical to the stability of this model. Inspired by [61], we use the policy

αi+1 =
1

2
(αi + π − θi) (4.10)
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Figure 4.3: The ground reaction force of one “foot” along the sample trajectory, starting at
touchdown.

to update the contact angle, where θi is the take off angle. This policy reaches an equilibrium

when the touchdown and liftoff positions are symmetric about the y axis.

The control is partitioned into u = us + ur. The stiffness change is accomplished with

us = (k − k̃)(L− Lo). Using the storage function of equation (3.10), the time derivative is

Ṡ = (Ẽ − Eref)q̇
>J>ur (4.11)

which means we should choose

ur = −κJq̇(Ẽ − Eref) (4.12)

= −κL̇(Ẽ − Eref) (4.13)

to ensure that Ṡ is negative semi-definite. The closed loop dynamics of this system are then

0 = Mq̈ + J>F̃ +G+ J>(κL̇(Ẽ − Eref)) (4.14)
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In section 3.4.2 we mentioned that the energy regulation control caused the closed-loop

hopper system to take the form of a harmonic Rayleigh-Van-der-Pol oscillator. By inserting

these closed loop dynamics into the SLIP model, we can examine the effect of the “unmod-

eled” rotational dynamics around the spring contact point. The motivation is that this will

be suggestive of qualitative behavior of embedding this energy regulated SLIP model into

higher order biped models as in [46] without aggressive compensation of dynamics transverse

to the spring action. The recycling of the 1-DOF hopper controller for the SLIP model is

accomplished by using only the energy of the SLIP model along the spring axis as

ur = −κL̇(ẼL − Eref) (4.15)

ẼL =
1

2
mL̇2 +

1

2
k̃(L− Lo)

2. (4.16)

The closed loop dynamics are then

0 = Mq̈ + J>F̃ +G+ J>(κL̇(ẼL − Eref)). (4.17)

The potential benefit of controller (4.15) over (4.12) is that it requires less state information,

but with the drawback that the limit cycle trajectory will certainly not emulate a passive

system.

4.1.2 Simulations

This section offers simulation results that demonstrate the ability to use energy shaping

regulation methods to achieve different running speeds on the SLIP model. The control in

equation (4.12) is termed the regulation control while equation (4.15) is termed the oscillator

control. We started with an initial known running gait from [61], with m = 70 kg, Lo = 1 m,

α = 55◦, k̃ = k = 8200N
m

, and E = 1860J (marked as a red dot in Fig. 4.4-4.8). For all cases,

κ = 1. For the oscillator, we heuristically found a reference energy value E = 583J that

resulted in an average speed similar to the known gait (≈ 6m
s

). We created a grid of target
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energies and stiffnesses around this configuration, used the flight apex of the known gait as

the initial condition for every grid point, and allowed the system to converge to a new limit

cycle. This means that every stable grid point is a stable transition from the initial limit

cycle to a new limit cycle due to a single change in reference energy and/or virtual stiffness.

The existence and stability of the limit cycle were confirmed via the numerical linearization

of the Poincaré return map via the method from [12].

The results for the stable average running speed of the model under the energy shaping

and regulation control and the embedded harmonic Rayleigh-Van-der-Pol oscillator are given

in Fig. 4.4 and 4.6. The edge of each surface indicates the edge of the sampling grid, or a

case where the model fell through the floor or went backwards. For the regulation control

in Fig. 4.4, the speed level set projections indicate that stiffness does not determine the

average speed which agrees with the results of [23] that show a range of walking speeds

for a given spring stiffness. However, the oscillator control causes a qualitative change in

this relationship so that the average speed does depend on stiffness and reference energy as

seen in Fig. 4.6. The two methods give a similar range of achievable walking speeds. We

emphasize again that these new gaits are all the result of stable transitions from the passive

known gait. A sample trajectory for the energy regulation controller is given in Fig. 4.5,

where the known gait is run for 3 steps then the parameters are switched and the trajectory

and contact angle converge to a new gait.

Plots of the equilibrium contact angle as a function of stiffness and energy are given in

Fig. 4.7 and 4.8 for direct comparison to the results in [23]. Both methods have a similar

range of contact angles; the difference between them is largely that the embedded oscillator

surface in Fig. 4.8 seems to be flatter than the surface in Fig. 4.7. This indicates that there

might be some constant normal vector in this space associated with stability for the system

under the embedded oscillator.

The most important take away from these simulation results is that a single change in

parameters using energy shaping and regulation can achieve a stable transition between

34



Figure 4.4: Speed-Energy-Stiffness surface for the SLIP model under the regulation control.
The minimum speed achieved was 2.82m

s
, the maximum 7.95m

s
.
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Figure 4.5: Sample trajectory of transition from 6m
s

to 3m
s

under the regulation control. The
stiffness and reference energy were switched at the horizontal dashed line.
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Figure 4.6: Speed-Energy-Stiffness surface for the SLIP model under the oscillator control.
The minimum speed achieved was 3.65m

s
, the maximum 8.05m

s
.

Figure 4.7: Contact Angle-Energy-Stiffness surface for the SLIP model under regulation
control.
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Figure 4.8: Contact Angle-Energy-Stiffness surface for the SLIP model under the oscillator
control.

fast and slow running. Also, the principles of energy shaping and regulation control can

be applied to a subcomponent of the system to achieve qualitatively similar behavior. We

expect that this could be extremely useful in the application of these methods to wearable

devices to assist locomotion, like a powered prosthesis [11] or orthosis [18], where measuring

the total energy of the combined human-robot system is infeasible.

4.2 The Compass Gait Biped

The compass gait biped is titled as such because it has two rigged legs and looks like a

compass drawing tool [62]. It is composed of two legs modeled as rigid links with point mass,

and a point mass attached at the hip connection. The compass gait biped has historically

served as a test bed to explore new walking controllers because it is viewed as “the simplest

walking model” [63] that can account for plastic impact dynamics, underactuation, and swing

leg dynamics. Historically, much of the literature on the model has considered the case where
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Figure 4.9: Diagram of the compass gait biped.

the biped is on a shallow slope and thus exhibits the “passive dynamic walking” phenomena

[53]. More recent work has considered random terrain [64] and stair environments [65] as

well. Some authors have posited similarity between human locomotion and the compass

gait model in terms of passive swing leg mechanics [66], but this a very rough generalization

that does not hold in general [67]. Similar to the SLIP model, there is no dissipation in the

continuous dynamics and the passive walking motion cannot be physically realized without

adding a swing leg that retracts. A diagram of the model is given in Figure 4.9.

The energy of the system is

E = K(q, q̇) + P(q) (4.18)

=
1

2
q̇>M(q)q̇ + g

3∑
i=1

miyi (4.19)

where the configuration vector q = [x; y; θ1; θ2], the mass matrix is M , and the summation∑3
i=1 miyi accounts for the three point masses and locates their vertical position yi relative

to the potential energy datum at y = 0. The position of the stance foot is located in the
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world frame by (x, y), and is constrained to the ground by equations x = 0, y = 0. Thus,

the world frame is shifted to the contact point after every impact.

The constrained continuous dynamics where qλ = [θ1; θ2] are described by (2.14), where

M =ms (a− cos (θ2) (a+ b))2 +ms b
2 + (mh +ms sin (θ2)2) (a+ b)2 ms a (a− cos (θ2) (a+ b))

ms a (a− cos (θ2) (a+ b)) ms a
2


(4.20)

C =

 ms a θ̇2 sin (θ2) (a+ b) ms a sin (θ2) (a+ b)
(
θ̇1 + θ̇2

)
−ms a θ̇1 sin (θ2) (a+ b) 0

 (4.21)

G =

−g (sin (θ1) (ms (a+ 2 b) +mh (a+ b))−ms a sin (θ1 + θ2))

ms a g sin (θ1 + θ2)

 (4.22)

h = (a+ b) (cos (θ1 + θ2)− cos (θ1)) (4.23)

The discrete dynamics are described by equation (2.15) where

A =

(a+ b) (cos (θ1 + θ2)− cos (θ1)) cos (θ1 + θ2) (a+ b)

(a+ b) (sin (θ1 + θ2)− sin (θ1)) sin (θ1 + θ2) (a+ b)

 (4.24)

R =

1 1

0 −1

 (4.25)

There is an additional rule for the switching surface, θ2 > 0 which ensures that the swing

leg is in front of stance leg at impact. This allows the swing leg to clip through the ground.

Unlike the SLIP model, the compass gait biped has only one phase of continuous motion,

single support. This is because a double support phase would completely constrain the

motion of the biped (there are 4 DOF’s, constraining both feet in the Cartesian x and y

coordinates is 4 constraints).
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Passive dynamic walking describes a stable limit cycle that emerges due to the combi-

nation of both the continuous and discrete dynamics. On this cycle, the kinetic energy lost

from the impact dynamics is exactly equal to the potential energy gained by the shift of

the potential energy datum to the impact foot. An example plot of the phase portrait of a

passive walking limit cycle is given in Figure 4.10.
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Figure 4.10: Projected phase portrait of a passive limit cycle. The trajectory starts at the
starred points. mh = 10kg,ms = 5kg, a = 0.5m, b = 0.5m.

4.2.1 Control

Using the framework from Chapter 3, the energy shaping control is

us = −MM̃−1(C̃q̇ + G̃) + Cq̇ +G, (4.26)

while the energy regulation control is

ut = −κ(Ẽ − Eref)MM̃−1Ωq̇. (4.27)
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The closed-loop dynamics are then

M̃ q̈ + (C̃ + κ(Ẽ − Eref)Ω)q̇ + G̃ = 0. (4.28)

The parameters available for shaping in the energy function of the system are: m̃h, m̃s, ã, b̃

and g̃. The question then becomes: how should we choose these values? In [68], the effect of

gravity shaping on the compass gait biped is thoroughly explored, indicating that average

walking speed is proportional to
√
g̃. In [24], it is shown that the dynamics can be normalized

to depend on the mass ratio µ = mh

ms
and the length ratio β = b

a
, which both influence the

average speed. Because the impact dynamics depend only on M , we can exactly emulate a

target g̃ but not for β̃ and µ̃. This means we can exactly reproduce the results from [68] in

the closed-loop hybrid dynamics, but changing µ̃ and β̃ will give different results from [24].

A well-known effect of mass parameter variation in the compass gait biped is bifurcation

induced when the period-1 gait becomes unstable. However, a new result that we show in

simulation is that energy regulation can be used to stabilize these gaits and increase the

range of achievable passive period-1 limit cycles.

In the hopper with plastic impacts, we were able to analytically compute the Eref for a

given passive limit cycle using equation (3.36). In general, it is not possible to know the

energy of a passive biped limit cycle without simulating it numerically. This poses a challenge

to dynamically changing the virtual parameters and reference energy to achieve new passive

limit cycles without making a library of pre-computed gaits. In [66], a discrete step-by-step

update law for Eref in an energy regulation control is proposed, as

Erefi+1
= Erefi + λ(vref − vi). (4.29)

This law achieves a desired average walking speed vref , where λ is a scaling gain and vi is

the average walking speed for the ith step. However this law simply shifts the problem to

picking the vref associated with a natural limit cycle before hand, instead of Eref . Instead,
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we can reuse the update law in equation (3.44) from the 1-DOF hopper and apply it to the

compass gait biped. A comparison between these strategies on a simulated biped is given in

the following section. We use unat to denote the control under equation (3.44) and uvel for

equation (4.29).

4.2.2 Simulations

We now present simulation results for the compass gait biped under the energy shaping and

regulation controls. The baseline parameters we use are mh = 10kg,ms = 5kg, a = 0.5m, b =

0.5m,Ψ = 3.7◦ with a known initial condition for a stable limit cycle from [24]. We compare

changes in the true ratios β against changes in the virtual ratios β̃ during the continuous

dynamics. We omit results for µ and µ̃ for brevity. The energy regulation controls uvel
t and

unat
t are applied to the system with the virtual ratios, using the control parameters λ = 0.5,

κ = 100, and Ω = diag([1, 0]). Each reference velocity vref for a given ratio is taken from the

corresponding physical ratio limit cycle. The ratios that we sample are on a uniform grid

from 0.5 to 1, and we do not display data points in the grid range that either bifurcated or

were unstable within our search tolerance. We confirm the stability of the limit cycles using

the linearized Poincaré return map.

The results are shown in Figs. 4.11, 4.12, and 4.13. We can see that shaping the

continuous dynamics alone through β̃ does not reproduce the same limit cycle as physically

changing the parameters. In Fig. 4.11, the virtual length ratio β̃ has the same general

trend between ratio and speed as β, but it causes a larger increase in walking speed. The

introduction of unat
t enables Eref to converge to Ẽnat, as evidenced where the circle and cross

data points overlap in the figures. It also increases the range of achievable speeds, as seen

by the circle data points that do not overlap the cross points. The velocity update law uvel
t

causes the shaped system to converge to the targeted walking speed of the associated physical

system, as seen by the overlap of the squares and stars. Fig. 4.12 shows the energies that
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Figure 4.11: Length ratio versus average speed for physical and virtual dynamics. β is the
physical length ratio, β̃ is the virtual length ratio, uvel

t converges to a desired walking speed,
unat
t converges to the energy equilibrium induced by the discrete dynamics. Data points that

bifurcated or were unstable are not displayed.

the update laws converge to, indicating the real parameters shift energy down more than

the virtual ones. In Fig. 4.13, we can see that uvel
t causes limit cycles that are less efficient

compared to those from unat
t , in the sense that they require more torque output from the

control to achieve the same walking speed. These inefficient cycles are due to the fact that

they are unnatural and must compensate for the energy mismatch between Ẽref and Ẽnat.

Finally, we offer a simulation example of using energy regulation to stabilize an unstable

limit cycle. In this case, the terrain is changed from a slope to stairs of a similar geometry.

Thus, the impact map ∆(q, q̇) remains the same but the switching surface S and distance

function h are changed. The stair impact map still admits the energy equilibrium from the

slope dynamics, however as seen in Fig. 4.14 this is not associated with a stable period-1

limit cycle for the passive system. In Fig. 4.15, we present a stair walking simulation where

we switch on the energy regulation control after 4 steps and run it for 10 more steps. This

causes the biped to converge to the period 1 slope limit cycle while walking on the stairs

terrain, indicating that we have stabilized this previously unstable gait.
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Figure 4.12: Energy versus length ratio for the adaptive energy regulation controllers. Data
points that bifurcated or were unstable are not displayed.
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Figure 4.13: Time integral of torque squared versus average speed for physical and vir-
tual dynamics length ratio changes. Data points that bifurcated or were unstable are not
displayed.
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Figure 4.14: The slope period-1 passive limit cycle versus the stairs period-2 passive limit
cycle.
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Figure 4.15: Transition from passive period-2 limit cycle to an energy regulated period-1
limit cycle. The energy regulation control is turned on after 4 steps, at the green vertical
line.
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Figure 4.16: Diagram of the Rabbit biped, a 5 Link robot with a torso and knees. The
virtual spring between the hip and the ground is shown in purple.

4.3 The RABBIT Model

The RABBIT walking model is a 5 link biped with knees, a hip, and a torso. It is based of

hardware developed in the early 2000s in France that served a one of the first truly dynamic

walking bipeds that did not rely on quasi-static/ Zero-Moment-Point control techniques

[69], and is the primary biped model used in the definitive book on control of dynamic

biped locomotion [12]. Details of the modeling and equations of motion can be found in

[12], the general methods used are the same as specified in Chapter 2. The RABBIT model

is an improvement on the compass gait model in the sense that 1) the swing leg does not

need to pass through the ground 2) it is capable of a meaningful double support phase. A

visualization of the model is given in Figure 4.16.

The configuration vector of the biped is q = [px, py, θh1, θk1, θh2, θk2, θt]
> ∈ R7×1, where px

and py are the Cartesian position of the hip joint in the inertial reference frame. The legs are
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labeled 1 (stance) and 2 (swing) until the legs are swapped at the end of double support. The

mass mj, length lj and inertia Ij of the links are indexed by the subscript j ∈ {tor, th, sh}

which denotes the torso, thigh, and shank respectively. The model switches between single

support and double support phases as the trailing leg lifts from the ground and the swing leg

impacts the ground, respectively. The point feet are constrained to a static point on ground

at the point of impact, leading to the constraint equation σSS = [fpx1, fpy1]> during single

support and σDS = [fpx1, fpy1, fpx2, fpy2]> during double support. These functions induce the

constraint matrices ASS and ADS respectively. The equations of motion have the form of

the hybrid biped dynamics from Section 2.3 where

Double Support (DS) Mq̈ + Cq̇ +G+ A>DSλ = Bu (4.30)

Single Support (SS) Mq̈ + Cq̇ +G+ A>SSλ = Bu (4.31)

if phase == DS and λy2 ≤ 0q̇+

FI

 =

R 0

0 Ip×p


M(q−) −A>SS(q−)

ASS(q−) 02x2


−1 M(q−)

02x2

 q̇−
q+ = Rq−.

phase : = SS

if phase == SS and fpy2 ≤ 0q̇+

FI

 =

R 0

0 Ip×p


 M(q−) −A>DS(q−)

ADS(q−) 02x2


−1 M(q−)

02x2

 q̇−
q+ = Rq−.

phase := DS
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4.3.1 Control

The goal of this section is to embed the dynamics of the lower dimensional energy regulated

SLIP model into the higher dimensional RABBIT model via energy shaping and regulation

control. Similar previous work exists in [46], however this dissertation improves upon it

by demonstrating a stable period 1 limit cycle using the method of Poincaré. In addition,

I match the dynamics of the hip joint in Cartesian space to the SLIP model, rather than

the COM. This brings the problem much closer to the human-prosthesis application since

its COM cannot be reliably estimated without motion capture. Finally, in this section the

swing leg trajectory is generated by embedding the dynamics of a pendulum instead of by

virtual constraints as in [46]. The torso angle is regulated to a set-point using a PD Feedback

Linearization controller [45].

As in the previous section, I partition the control into u = us + ur that perform energy

shaping and regulation. Since I want to match the SLIP dynamics to the hip joint of the

RABBIT model in the Cartesian plane, I need to express the hip joint coordinates. Let

z = [hpx, hpy]> be a vector of the hip x-y position. The equations of motion in these

coordinates are then

ż = Jhq̇ (4.32)

z̈ = Jhq̈ + J̇hq̇, (4.33)

where Jh is the hip Jacobian. The desired dynamics for z̈ are the energy regulated SLIP

equations of (4.14). The SLIP single support should be matched to the RABBIT single

support, and the same for double support. This means the desired closed loop behavior

should be

z̈S = M−1
S

(
−J>S FS −GS − J>S (κL̇(ẼS − Eref))

)
(4.34)

ẼS =
1

2
ż>MSż +mh(g)(hpy) +

1

2
k(LS − Lo)

2 (4.35)
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where FS and JS are the target virtual spring force and its mapping Jacobian, while MS and

GS are constant target mass and gravity matrices from the SLIP model. In the coordinates

for RABBIT during single support, FS = −k(LS − Lo), LS = ||
−→
hp −

−→
pf||, and JS = Jf − Jh

where Jf is the foot Jacobian. These expressions are copied and stacked so that the SLIP-to-

RABBIT embedding is consistent during double support. While in physical implementation

it is advisable to obtain the equivalent constrained dynamics from equation (2.9) for the

system and/or use force sensors to estimate λ, in simulation the values for λ are determined

by satisfying

Aphaseq̈ + Ȧphaseq̇ = 0. (4.36)

as shown in equation (2.8). Mathematical manipulation the following equations,

Aphaseq̈ + Ȧphaseq̇ = 0

Jhq̈ + J̇hq̇ = z̈S

Mq̈ + Cq̇ +G =

[
B −A>phase

]us
λ

 ,
to eliminate q̈ can yield the initial version of the energy shaping and regulation problem as

solving

Q

us
λ

 =

Aphase

Jh

M−1(−Cq̇ −G) +

−Ȧphaseq̇

z̈S − J̇hq̇

 (4.37)

Q =

Aphase

Jh

M−1

[
B −A>phase

]
(4.38)

for us and λ.

However matching the full hybrid dynamics of the SLIP to RABBIT requires more than

just solving equation (4.37) for us, the switching surfaces and impact dynamics need to match

as well. For single support, this means that 1) the position and velocity of the hip joint should
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be invariant over the impact dynamics, 2) the virtual spring is relaxed at touchdown, and 3)

the angle between the ground and
−→
hp−

−→
pf is equal to α. For double support, this means that

the trailing leg should lift from the ground when L2 = Lo. Equation (4.37) can be modified

to control the normal contact force between the trailing leg and the ground by partitioning

the constraint matrix into Ao and Ad (0 for open and d for desired), where Ao is derived

from σo = [fpx1, fpy1, fpx2]> and Ad from σd = fpy2. I then specify the normal contact force

as λy2 = λd = Fsy2, the trailing leg y force from the slip model, and obtain a control that

performs force control and energy shaping as

Q

us
λo

 =

Aphase

Jh

M−1(−Cq̇ −G+ A>d λd) +

−Ȧphaseq̇

z̈S − J̇hq̇

 (4.39)

Q =

Aphase

Jh

M−1

[
B −A>o

]
. (4.40)

This ensures that λy2 → 0 as  L2 → Lo so that the timing of trailing leg of RABBIT lifting

matches the SLIP model.

There are no swing leg dynamics in the SLIP model; the assumption is that contact angle

can be arbitrarily controlled. This poses an issue for embedding the SLIP dynamics because

it means I have to generate the motion of the swing leg to coordinate the motion of the

swing foot with the hip so that the contact angle is emulated and the energy of the virtual

model is conserved. In order to stay in the energy shaping framework, I match the dynamics

of the swing foot to that of a pendulum. The parameters of the target pendulum system are

chosen via an optimization procedure that ensures the swing foot impacts the ground with

contact angle α and zero velocity when hpy = Lo sin(α). Thus, the energy shaping control

during single support is also a modification of equation (4.37), with coordinates and desired
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Figure 4.17: Diagram of the embedded virtual pendulum and swing foot trajectory.

dynamics

z = [hpx, hpy, fpx2, fpy2]> (4.41)

z̈ =

 z̈S

M−1
P (−CPżfp −GP)

 (4.42)

where MP, CP, and GP are the matrices of the pendulum system with free parameters

cx, cy, Lp, and gp as the pendulum center location, length, and gravitational acceleration

constant. The values for cx, cy, and Lp are chosen by constraining the geometry of the

problem as in Figure 4.17 so that the point of maximum height yclear is collinear with the

stance foot along the horizontal axis. The center point (cx, cy) and contact angle α are

updated at every the beginning of every transition to single support. The contact angle

is determined by policy in equation (4.10). The expected hip position at foot strike is

assumed to be symmetrical about the stance foot, which is then used calculate the desired
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foot position. The center point (cx, cy) is derived from the circle of radius Lp that passes

through the starting, ending, and yclear foot positions. The virtual gravity gp chosen via

off-line optimization and kept constant during operation.

4.3.2 Simulation

The control was verified in a simulation using MATLAB. I attempted to generate the example

trajectory from Figure 4.2 in the section on the SLIP model. Using the initial conditions

from there, the limit cycle for the closed-loop RABBIT biped under the energy shaping and

regulation was found via numerical search. The parameters of the model that were used

are given in Table 4.1. The trajectory from the SLIP was not stable, but the simulation

converged to a new limit near the target cycle as seen in Figure 4.18. This new trajectory

has a much smaller oscillation amplitude (and energy) in the y direction, thus some of this

energy is transferred into the x direction and the average walking speed increases slightly.

There is also a sort of phase shift in the trajectory; in the pure SLIP model the mass achieves

its nadir in double support and its apex is single support, however in the new trajectory on

the RABBIT this is flipped. The energy of the new limit cycle is also not conserved at

impact, which is shown in Figure 4.19. The energy regulation controller dissipates some

energy that is injected to the hip via momentum transfer at impact. In the context of the

overall approach of energy shaping plus regulation control, this example highlights the point

that the discrete dynamics can not be shaped. Thus, the attempt to match hybrid systems

with different impact maps and switching surfaces is not exact. However, energy regulation

can add some robustness against this issue, in the sense that a stable limit cycle in the

neighborhood of the target can still emerge.
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Table 4.1: Rabbit Model Simulation Parameters

Parameter Variable Value

Torso mass mtor 40 [kg]
Thigh mass mth 10 [kg]
Shank mass msh 5 [kg]
Torso moment of inertia Itor 0[kg·m2]
Thigh moment of inertia Ith 0 [kg·m2]
Shank moment of inertia Ish 0 [kg·m2]

Thigh length ltor 0.5 [m]
Shank length lth 0.5 [m]
Heel length lsh 0.5 [m]

Spring stiffness k 12250 [N·m−1]
Spring relaxed length Lo 0.94 [m]
SLIP mass ms 70 [kg]
Torso set point θ̄tor −5 [deg]
Energy regulation gain κ 10
Swing clearance yclear 0.1 [m]
Pendulum gravity gp 192 [m · s−2]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.84

0.86

0.88

0.9

0.92

Figure 4.18: Simulation of the RABBIT biped with embedding of the energy regulated SLIP
model versus the true SLIP model.
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Figure 4.19: Energy over the Rabbit-SLIP embedded limit cycle.

4.4 The Flat Foot Biped

The equations of motion for the 6 link flat foot biped model have the form given in 2.14 and

2.15. A diagram of the model with the coordinates is given in Figure 4.20. The generalized

coordinates are defined as q = [px, py, φ, θs, θt, θh, θsk, θsa]> ∈ R8×1, where px and py represent

the Cartesian position of the stance heel in the inertial reference frame, and φ is the angle of

the heel-to-ankle vector with respect to the vertical axis. The subscript i ∈ {a, k, h, sk, sa}

denotes the ankle, knee, hip, stance knee, and stance ankle, respectively, and is used to

describe the angles θi between each link. The mass mj, length lj and inertia Ij of the links

are indexed by the subscript j ∈ {f, s, t, h, st, ss, sf} which denotes the stance foot, stance

shank, stance thigh, hip, swing thigh, swing shank, and swing foot, respectively.

Besides the increased dimension of the state space, the primary difference between this

model and the compass gait biped is flat versus point feet. Flat feet induce contract con-

straints than change as the biped progresses through a gait cycle. For the stance leg in a
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Figure 4.20: Diagram of an 8-DOF flat foot humanoid biped with overlayed coordinate
system.

human-like gait, the heel strikes the ground, then the biped rolls over the heel until the foot

slaps the ground, until finally the center of pressure reaches the toe and the heel pickups

while rolling over the toe. During this process, the swing leg is moving until it hits the ground

in front of the stance leg. The biped can enter a brief period of double support until the

trailing toe lifts from the ground. Thus, there are 4 phases of continuous dynamical phases

and constraint matrices: heel, flat, toe, and double support (DS). Backwards transitions are

not allowed and are considered system failures.
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Using the methods in Chapter 2, the hybrid dynamic regimes over one step are computed

in the following sequence:

heel regime :

1. Mq̈ + T (q, q̇) + A>heelλ = τ if aflat 6= 0,

2. q̇+ = (I −X(AflatX)−1Aflat)q̇
− if aflat = 0,

flat regime :

3. Mq̈ + T (q, q̇) + A>flatλ = τ if |cp(q, q̇)| < lf,

4. q̇+ = q̇−, (q(1)+, q(2)+)> = G if |cp(q, q̇)| = lf,

toe regime :

5. Mq̈ + T (q, q̇) + A>toeλ = τ if h(q) ≥ 0,

6. (q+, q̇+) = R(q−, q̇−) if h(q) = 0

The vector T groups the Coriolis/centrifugal terms and potential forces for brevity. The

superscripts “−” and “+” indicate the pre-impact and the post-impact values, respectively.

The terms X = M−1A>flat and G = (lf cos(γ), lf sin(γ))> model the change in inertial reference

frame, cp is the location of the center of pressure, γ is the ground slope angle, and lf is the

foot length. The ground clearance of the swing heel is denoted by h(q), and R denotes the

swing heel ground-strike impact map derived based on [40].

Part of the model from [38] is a set-point Proportional-Derivative (PD) controller that

generates a stable limit cycle while walking down a shallow slope. It has the form

v = −Kp(qm − θ̄)−Kd q̇m. (4.43)

Here, qm is the actuated coordinates vector, θ̄ is the equilibrium vector, and the diagonal

control gain matrices are denoted as Kp, Kd ∈ R5×5. The mapping matrix Bv is constructed

such that the PD controller actuates the ankles, knees, and hip of the biped. This PD
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controller v is termed the “inner loop” and the to-be-derived PBC u the “outer loop”, since

the PBC relies on the existence a limit cycle.

In Section 3.2.1 I went over the details of regulating a time-varying energy function that

accounts for non-conservative work done on a system. That method is relevant in this context

of a PD controller generating a walking gait on the 6 Link Flat Foot biped. The work done

by v is

Wv =

∫ t

0

q̇>Bvv dτ (4.44)

and the generalized system energy is E = K+P −W . The energy regulation controller that

results from the procedure in Section 3.2.1 is then

ur = −κ(Ẽ − Eref)ΩB̃
>
u q̇. (4.45)

4.4.1 Centralized Simulations

This section offers simulations to exemplify how the centralized PBC affects the qualitative

behavior of the biped system and demonstrate the analysis methods we used to quantify

performance. A nominal limit cycle was found in [38] for a walking gait down on a slope of

α = 0.095 radians. This limit cycle is used to determine the reference energies for the PBC.

The exact parameters used in the biped model and in the PD control are specified in Tab.

4.2, which are adopted from [38] and are human inspired. The PBC is applied as an outer

loop of the PD control (inner loop). Since px, py are always constrained to the ground, the

biped is fully-actuated during the flat foot phase and underactuated with degree one during

heel and toe contact due to φ. The entries in the diagonal vector for Ω that correspond to

px, py are, and φ are always zero since they are unactuated. The PBC is always saturated

at 50 Nm, as a reasonable limit of the physical capability of the actuators on an exoskeleton

[18].

The PD controlled biped has three contact configurations which cause the nominal limit

cycle to transition between three different constant system energies, Eheel → Eflat → Etoe.

57



Table 4.2: Flat Foot Model Simulation Parameters

Parameter Variable Value

Hip mass mh 31.73 [kg]
Thigh mass mt 9.457 [kg]
Shank mass ms 4.053 [kg]
Foot mass mf 1 [kg]
Thigh moment of inertia It 0.1995 [kg·m2]
Shank moment of inertia Is 0.0369 [kg·m2]

Full biped thigh length lt 0.428 [m]
Full biped shank length ls 0.428 [m]
Full biped heel length la 0.07 [m]
Full biped foot length lf 0.2 [m]

Hip equilibrium angle θ̄h −0.5 [rad]
Hip proportional gain Kph 182.250 [N·m/rad]
Hip derivative gain Kdh 35.100 [N·m·s/rad]
Swing knee equilibrium angle θ̄sk 0.2 [rad]
Swing knee proportional gain Kpsk 182.250 [N·m/rad]
Swing knee derivative gain Kdsk 18.900 [N·m·s/rad]
Swing ankle equilibrium angle θ̄sa −0.25 [rad]
Swing ankle proportional gain Kpsa 182.250 [N·m/rad]
Swing ankle derivative gain Kdsa 0.810 [N·m·s/rad]
Stance ankle equilibrium angle θ̄a 0.01 [rad]
Stance ankle proportional gain Kpa 546.750 [N·m/rad]
Stance ankle derivative gain Kda 21.278 [N·m·s/rad]
Stance knee equilibrium angle θ̄k −0.05 [rad]
Stance knee proportional gain Kpk 546.750 [N·m/rad]
Stance knee derivative gain Kdk 21.278 [N·m·s/rad]

This can be seen in the periodic, constant jumps in Fig. 4.21, which shows the trajectory

for the generalized energy E = K + P −W versus time, for three steps. The jumps are an

artifact caused by the physical decrease in kinetic energy due to an impact, the shift of the

virtual potential energy datum between different locations on the biped, and the reset of the

work integral between steps. The three distinct energies Eheel, Eflat, and Etoe are used as the

reference values for the centralized PBC during the corresponding contact constraint.
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Figure 4.21: Generalized energy (E) of the PD controlled (inner-loop) biped system while
traversing the limit cycle. There are three constant energy levels with discrete jumps between
them.

Storage Convergence

When the system is solely under the influence of the PD controller, the storage function

S and system energy E remain constant during the continuous dynamics, and are only

changed by the discrete dynamics (i.e., impacts). Implementing the PBC on top of the

PD controller qualitatively changes the system behavior by forcing the storage function to

converge during the continuous dynamics as well. This is demonstrated in Fig. 4.22, which

gives the storage over time of the biped system perturbed by ∆xo = [08×1; 0.4 q̇o]. Here, the

control parameters Ω = [0, 0, 0, 1, 1, 0.001, 1, 1]I8×8 and k = 1 were chosen for simplicity and

to respect the physical symmetry of the biped. Similar to Fig. 4.21, the discrete jumps in

the storage are caused by the impact dynamics. The storage decreases between periods of

the same contact configuration (e.g., the second instance of the heel phase has less storage

than the first) with or without PBC, which is important for the notion of hybrid passivity
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Figure 4.22: Centralized storage function for the perturbed system with PBC and without
PBC, over 5 steps. The transition between steps is marked by a large decrease in storage,
caused by heel impact.

from [70]. The convergence of the storage function during the continuous dynamics appears

to be exponential for the PBC case, with different rates for each contact condition. The

effect of this behavior is that the centralized PBC forces the storage close to zero in 5 steps,

which is much faster than the PD control alone. If we consider the storage as a metric for

how close the biped is to the nominal limit cycle, then we can conclude that the PBC causes

the biped to reach steady-state walking faster. However, the storage only gives an indication

of convergence speed. It does not definitively demonstrate stability of the hybrid limit cycle

nor does it demonstrate a notion of robustness; these ideas are discussed in Sec 4.4.1.

Control Torques

The torques of PBC for the first three steps of the simulation from Fig. 4.22 are given in

Fig. 4.23. The specific joint where the control torque ui acts is indicated by the subscript
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i ∈ {a, k, h, sk, sa}. The figure indicates that the saturation effect does significantly influence

the torque profile, especially for the stance ankle actuator. It is interesting to note that the

torques for the stance leg are generally larger than those for the swing leg; this is because

the velocities of the joints in the swing leg are smaller in general. The torque trajectory in

the first phase has an exponential like trajectory for all the joints, which corresponds to the

exponential convergence of the energy to the reference since the torque is proportional to

this term. When the energy error becomes small enough, the dynamics of the joint velocities

begin to have a larger influence on the control torques. Again, the jumps in the control

torque are caused by the instantaneous changes in velocity and energy at impact.

Stability and Robustness

I stated that the stability of the limit cycle of the hybrid system can be determined by

calculating the eigenvalues of the linearized Poincaré map. If the eigenvalues Λ of the lin-

earization lie within the unit circle, then the limit cycle is locally exponentially stable [12].

Fig. 4.24 displays the largest magnitude of all the eigenvalues as k is varied from 0 to 10

with Ω = [0, 0, 0, 1, 1, 0.001, 1, 1]I8×8. This single value is displayed for clarity and concise-

ness, because the linearization has 16 eigenvalues. The figure indicates that the system is

stable for this range of gains since the value is always less than one.

The linearization of the Poincaré map can give some notion of robustness, namely the

margin from largest eigenvalue to the unit circle (basically a gain margin). However, there is

not a consensus in the field of biped locomotion on what exactly “robustness” means. Many

researchers use the eigenvalues as described and say that an increased margin indicates a

more robust walking gait [71, 72]. This has drawbacks, namely that eigenvalues characterize

local stability and rate of convergence; they contain little information about global properties

of the nonlinear system like basin of attraction or robustness. Furthermore, sensitivity to

numerical error can result in unstable eigenvalues for a stable orbit (an effect we saw while
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Figure 4.23: Torque over time for the centralized controller U for the first three steps.
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Figure 4.24: Maximum absolute value of the eigenvalues of the linearization of the Poincaré
map as the gain k is varied from 0 to 10.
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working with these simulations). A more thorough discussion of the robustness of walking

bipeds exists in other works [73, 74]. Because of these issues, we turn to a modification of

this metric.

A metric called the “gait sensitivity norm”, with the notation ||∂g/∂e||2, was proposed

in [74] to provide a measure of the robustness of bipedal gait. It has been subsequently

utilized in several other works [75, 76, 77]. We use it to compare the effectiveness of the

different controls in our simulations by considering an increase in 1/||∂g/∂e||2 as an increase

in robustness. The calculation of this norm requires gait indicators, gait perturbations, and

a linearization of the Poincaré return map. The indicators are essentially failure modes

of the system and the perturbations are characteristic of actions on the system that cause

failure. We regard “failure” as the biped ceasing to walk. The gait indicators are step

length, step time, and the minimum ground clearance of the swing leg heel over the duration

of midstance. The disturbances are a change of slope by +/− 1 radian and a perturbation

vector ∆xo = [08×1; 0.4 q̇o] that introduces a scaled initial velocity at heel strike. We calculate

the Poincaré return map [12] at heel strike after 3 steps in our analysis. Based on our choice

of indicators and perturbations, we can interpret limit cycles with “better” gait sensitivity

norms as being robust to changes in ground slope and velocity disturbances, in the sense

that they are farther away from the minimum “allowable” indicator values.

The nominal limit cycle of biped system under PD control alone has a reciprocal norm

of 1/||∂g/∂e||2 = 0.1584. The biped with the centralized PBC with the parameters used

to generate Fig. 4.22 has a reciprocal norm of 1/||∂g/∂e||2 = 0.0248, which indicates a

less robust system. This might seem to indicate that the PBC cannot achieve the goal of

improving the robustness of the biped. However, by simply changing the PBC parameters to

Ω = [0, 0, 0, 1, 1, 0.001, 1,0]I8×8 (removing the PBC actuator at the swing ankle and keeping

everything else the same), we find an increase in robustness with 1/||∂g/∂e||2 = 0.6341.

This demonstrates that it is important to judiciously choose values in Ω. To understand
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why such a dramatic change occurs, consider an edge case when Ω = [0, 0, 0, 0, 0, 0, 0,1]I8×8.

Essentially, this causes the swing foot to act as a reaction wheel pendulum in a similar

manner to [78]. Since the impact map is extremely sensitive to the state of the swing foot at

impact, this control parameter choice contracts the basin of attraction of the desired limit

cycle dramatically. This causes the biped to fall over when the generalized energy is slightly

perturbed.

4.4.2 Decentralized Model

The controller in the previous section relies on the ability to measure all inertial and ge-

ometrical properties of the biped. It also relies on measuring all the joint positions and

velocities, inner-loop torques, and external forces applied to the system in order to continu-

ously calculate the generalized system energy. In the context of the application to a powered

prosthesis or exoskeleton, one generally has an accurate model of the powered device and

rough estimates of the user’s mass distribution and geometry. The biggest challenge relates

to the inability to measure all of the user’s joint velocities and torques. The straightforward

approach might seem to be to partition the system into user and device [79], and then use

the energy of the device to construct a PBC. However, we can improve upon this with a

partitioning scheme that utilizes all the available model parameter and state information to

construct a PBC that is robust to parametric error.

The actuation for the UTD Leg 2 design has knee and ankle joints driven by electric

motors. The sensing mechanisms available are: laser-based digital rotary encoders on the

joints, an inertial measurement unit (IMU) with accelerometers and gyroscopes mounted

above the knee on the shank, and a 6-axis load cell/force sensor. Because none of these

sensors are capable of giving explicit measurements of the motion of the human body, there

is a motivation to create a decentralized model of the human-prosthesis system that utilizes

the maximal amount of available state information. A diagram is given in 4.25.
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Figure 4.25: Diagram of a decentralized model of the human-prosthesis system.

Let the set of model parameters be Θ and contain all of the mass, inertia, and link length

parameters of the biped given in 4.20. Let the set of measured parameters be ΘO ⊂ Θ and

collect all of the model parameters that are measurable. Similarly, a vector of measurable

states xO = [qO; q̇O] ∈ R2b×1 can be extracted from the state vector x = [q; q̇], where

the vectors of measured position and velocity variables are qO ∈ Rb×1 and q̇O ∈ Rb×1,

respectively. The number of joints with position and velocity measurements is given by b.

Equipped with ΘO and xO, I can find a subexpression in the Lagrangian of the mechanical

system L(x,Θ) = K − P that represents the measurable subsystem LO(xO,ΘO) such that

L = LO + LO, (4.46)
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where LO is an unmeasured or unmodeled part of the system that cannot explicitly enter

into the controller. To do this, I proceed by finding a subexpression KO(qO, q̇O,ΘO) for the

kinetic energy and PO(qO,ΘO) for the potential energy such that LO(qO, q̇O,ΘO) = KO−PO.

Beginning with the kinetic energy, the mass matrix M can be calculated using the method

from [37] as

M =
n−1∑
j=1

J>j (q)MjJj(q). (4.47)

This method constructs the mass matrix link by link, where Jj ∈ R6×n and Mj ∈ R6×6 are

the body Jacobian and generalized inertia matrix of the jth link, respectively. The sum is

from 1 to n− 1 because the biped models I consider are in a 2-dimensional plane. The mass

matrix can be partitioned into

M = MO(qO,ΘO) + Ψ (4.48)

MO =
n−1∑
j=1

Jj
>
OMjOJjO, (4.49)

where MO(qO,ΘO) is a modified mass matrix that collects additive terms in M that are

functions of the symbols in ΘO and xO, exclusively. As it will be shown, MO is constructed

by obtaining a modified body Jacobian JjO(qO,ΘO) and a modified inertia matrixMjO(ΘO)

for each link through a partitioning scheme. The remainders of the terms from this scheme

are all collected in the variable Ψ, and no claims about its properties are made.

The matrix Mj is always positive definite by construction because it has the form

Mj = diag(mj,mj,mj, Ijxx, Ijyy, Ijzz) (4.50)

which contains on the diagonal the mass and the inertias about the principal axes of the

link. It can be decomposed into

Mj =MjO +MjO, (4.51)
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where MjO is a diagonal matrix that extracts all the symbols in Mj that are also in ΘO. It

is important to note that any MjO is positive semi-definite as long as Mj contains at least

one symbol in ΘO. The remainder MjO is collected into Ψ.

Consider the body Jacobian, specifically that each element ei,k in Jj has the form

ei,k =
n−1∑
z=1

fz(qz,Θz) (4.52)

based on [37]. The exact form of fz depends on the type of joints, revolute or prismatic, that

make up the kinematic chain. However, in general, each fz is a function of a vector of position

state variables qz and a set of system parameters Θz. Each element can be partitioned into

ei,k = eOi,k + eOi,k, (4.53)

where eOi,k is the summation of the terms where Θz ∈ ΘO and all the symbols in qz are in

xO. The term eOi,k is collected into the remainder Ψ. The body Jacobian matrix can then

be partitioned element-by-element so that JjO is constructed from the eOi,k elements.

Thus I have demonstrated the methods for constructing the JjO andMjO terms in (24).

As previously noted, each MjO is positive semi-definite, which implies MO is also positive

semi-definite. By substitution of (4.48), the kinetic energy can be written as

K =
1

2

[
q̇>O q̇

>
O

]
(MO + Ψ)

q̇O
q̇O

 . (4.54)

The subexpression KO retains a quadratic form of

KO =
1

2

[
q̇>O 0

]
MO

q̇O
0

 (4.55)

so that KO ≥ 0. This means that KO can be treated as the kinetic energy of a subsystem.

Similarly, I can partition the potential energy into two components. To see this, consider

the definition for the potential energy

P (q) =
∑
n=1

mjhj(q,Θ)g. (4.56)
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It is also possible to partition this energy into

P = PO(qO,ΘO) + PO, (4.57)

by extracting the terms in the summation that belong to qO and ΘO. Since P depends only

on position state information, any subexpression PO will also depend on only position state

information and as such can be considered a new potential energy. Thus, the subexpression

LO is Lagrangian and defines a Lagrangian subsystem. The subsystem dynamics are

MO(qO,ΘO)q̈O + CO(qO, q̇O,ΘO)q̇O +NO(qO,ΘO) =

Γ(q, q̇,Θ, v, uO) +BOuO, (4.58)

where MO ∈ Rb×b is the mass matrix for the subsystem, CO ∈ Rb×b is the corresponding

Coriolis/centrifugal matrix, and NO ∈ Rb×1 is a gravitational force vector. Torques generated

by both the interaction with the un-modeled system LO and the inner-loop control v are

represented by Γ, while the torques applied by local actuators and their mapping into the

subsystem are represented by the term BOuO.

4.4.3 Decentralized Energy Regulation

This kind of regulation of a generalized system energy is useful in the control of the decen-

tralized biped system presented in Section 4.4.2. Over the flow of the biped moving along a

limit cycle, energy is exchanged between the measurable system derived from LO and the un-

measurable system LO. In general, the dynamics of this exchange are crucial to the walking

behavior and largely governed by forces generated from outside the measurable subsystem.

An attempt to regulate the true mechanical energy of the subsystem KO +PO to a constant

value would inhibit/destroy this flow, and could be counterproductive to supporting walking

behavior. Because the generalized system energy can account for external work done on the

system, if measured properly, the energy flow between LO and LO can remain unperturbed

along the trajectory of a stable limit cycle.
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The mathematical demonstration of this is as follows: begin with

EO(qO, q̇O,ΘO,Γ, t) = KO + PO −WO(qO, q̇
>
O ,Γ, t) (4.59)

where

WO =

∫ t

0

q̇>OΓ dτ , (4.60)

and define a storage function for the decentralized subsystem as

SO(qO, q̇O,ΘO,Γ, t) =
1

2
(EO − EOref)

2. (4.61)

Take the time-derivative of SO to find

ṠO = (EO − EOref)(ĖO − ĖOref), (4.62)

and EO to find

ĖO =
d(KO + PO)

dt
− dWO

dt
(4.63)

= (q̇>OBOuO + q̇>OΓ)− q̇>OΓ

= q̇>OBOuO, (4.64)

which follows from (4.58) and (4.60). By substituting ĖO into ṠO, the storage time derivative

is

ṠO = (EO − EOref)(q̇
>
OBOuO − ĖOref) . (4.65)

Upon inspection of ĖO, it is apparent that the generalized energy does indeed take a constant

value on the limit cycle, since ĖO = 0 when uO = 0. This means ĖOref = 0 on the limit cycle

for the uncontrolled subsystem. The decentralized controller is then

uO(qO, q̇O,ΘO,Γ, t) = −kOΩO(EO − EOref)B
>
O q̇O (4.66)

with similar passivity, saturation, and exponential convergence properties to the centralized

case.
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4.4.4 Decentralized Simulations

This section explores the behavior of the biped with two different decentralized controls

while comparing them amongst each other, to the centralized PBC, and to the biped with

only PD control. The motivation behind these comparisons is to gain an understanding for

the potential application to an exoskeleton. The centralized PBC represents the theoretical

case if we could get perfect measurements of the human parameters and motion, while the

decentralized cases represent the compromise made by the choice of the system model. The

PD control alone represents the human walking without any assistance. Again, all the PBC

controllers were saturated at 50 Nm.

We have the two decentralized controls Uζ , Uξ and the centralized control U . The main

difference between the two decentralized controls is the model information that they use.

Specifically, Uζ utilizes the same full model parameter set Θ as the centralized control U ,

but it restricts the state information to a vector xO local to the stance leg such that

xO = [px, py, φ, θs, θt, ṗx, ṗy, φ̇, θ̇s, θ̇t]
>. (4.67)

The second decentralized PBC Uξ uses the restricted state information xO and also uses a

restricted model parameter set

ΘO = {mf ,ms, If , Is, lf , ls} (4.68)

that is also local to the stance leg. This is essentially modeling the stance leg as a completely

separate subsystem. This gives rise to subsystems with generalized energies Eζ(xO,Θ) and

Eξ(xO,ΘO) that are used to construct the controls Uζ and Uξ, respectively. The energy Eξ

has a physical interpretation: it is the energy of the stance shank and foot. The energy Eζ

does not have such an intuitive meaning.

In order to implement the decentralized controllers Uζ and Uξ, we need target reference

energies for each of them at each contact configuration. These can be found in simulation
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Figure 4.26: Generalized energy of all three systems while traversing the limit cycle. There
is a break in the y-axis of the graph to accommodate the difference in average magnitude of
the energy trajectories.

by simply computing the value of their generalized energies over the nominal limit cycle

of the biped under PD control alone. We see in Fig. 4.26 that the decentralized energies

take constant values on the limit cycle, as expected. Since the construction of Eξ ignores the

majority of the mass and inertia terms of the biped system, it is expected that its value along

the limit cycle is significantly smaller compared to the other two energies. In contrast, when

Eζ is compared to the real system energy E, it has an increased virtual potential energy

which makes it larger than E.

Storage Convergence

We constructed an experiment of four simulations with a perturbation to the biped’s initial

condition on the limit cycle. The independent variable is the control method used in each

simulation. The control parameters for all three PBC controllers were kept the same, with

Ω = [0, 0, 0, 1, 1, 0, 0, 0]I8×8 and k = 1, which limits actuation to the stance side knee and
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ankle. The same perturbation to the state of the biped on the limit cycle at heel strike

∆xo = [08×1; 0.4 q̇o] was used in each simulation. Since the point of introducing control into

the system is to make the entire biped system converge back to the limit cycle, we examined

the centralized storage function that utilizes the full state and model parameter information.

By contrast, the storage function of one of the decentralized systems only gives information

about the convergence of a portion of the biped.

From Fig. 4.27, we can see that the behavior for the PBC Uξ is very close to the system

with PD control only, while the decentralized PBC Uζ is very close to the “best case” scenario

of the centralized system. Again, the convergence rate back to the limit cycle is significantly

faster for U and Uζ than for Uξ and PD control alone. This confirms that there a gain in

performance from the decentralized partitioning scheme to generate Uζ rather than simply

modeling the stance leg as a localized subsystem to generate Uξ. The decentralized control

Uζ does not converge quite as quickly as U , but this is to be expected since it does not utilize

the full state feedback.

The reason why the decentralized control Uξ essentially acts like the biped with PD

control alone is because the magnitude of the energy error is small compared to the other

controls. This means less storage is injected to the system at each impact and since this

storage does not accurately account for the “real distance” to the limit cycle, the control

is less effective. The decentralized PBC Uξ resembles the performance of to the centralized

control U precisely because the generalized energy for that decentralized subsystem is close

to the centralized energy.

Robustness

The robustness properties of each system are characterized by the gait sensitivity norm. We

performed a simulation experiment to examine this across an array of different scaling gains

k for each control while maintaining the same weighting matrix Ω = [0, 0, 0, 1, 1, 0, 0, 0]I8×8.
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Figure 4.27: System storage function across PBC implementations.

This allows a rigorous comparison of the robustness of the different controls. The results of

this experiment are displayed in Tab. 4.3. This table demonstrates the same relationship

observed in the storage analysis; that U and Uζ are similar in behavior while Uξ acts more like

PD control alone. Also, there is a strict ordering of the control methods across all the selected

gains, in terms of robustness, that correlates with the amount of information available to

the control. In other words, utilizing a larger information set to construct the PBC makes

the biped more robust. While the table seems to indicate that increasing the scaling gain

always makes the gait more robust, this is not always the case. For example, increasing the

gain of the centralized control to k = 100 makes the reciprocal of the gait sensitivity norm

1/||∂g/∂e||2 = 2.0055, and increasing further still to k = 1000 makes 1/||∂g/∂e||2 = 0.001,

which is a large decrease in robustness. These results reveal that there exists a limit on the

scaling gain such that exceeding the limit actually makes the system performance worse.
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Table 4.3: Reciprocal of the gait sensitivity norm calculated across controllers and scaling
gains

Reciprocal of Gait Sensitivity Norm ( 1/||∂g/∂e||2 )
k =
0.01

k = 1 k = 10

U 0.1614 0.6614 3.0454
Uζ 0.1594 0.3345 2.2086
Uξ 0.1584 0.1597 0.1755
PD 0.1584

4.4.5 Model Parameter Error

In this section we explore the effect of parameter error in the energy function of the de-

centralized control Uζ . Based on the results in the previous section, this control represents

the best version that could be implemented on a wearable device. However, it is practically

guaranteed that measures or estimates of the inertia of the user will have some error. Fur-

thermore, we believe that the characteristics of the parameter error in this scenario should

generalize to the other control cases. An example simulation is given in Fig. 4.28 that uses

Uζ with control parameters Ω = [0, 0, 0, 1, 1, 0, 0, 0]I8×8, k = 1, and a set of arbitrarily chosen

model parameter errors of +− 30% difference from the parameters in Θ. It is perturbed off

the limit cycle at heel strike by ∆xo = [08×1; 0.4q̇o]. It is important to note that the reference

energies are calculated with the inaccurate model parameters and then used in the control

with the same error. This method ensures the storage function is zero along the limit cycle

and also is reflective of a real-world implementation.

Even with model parameter error, the decentralized control still causes the biped to

converge to the limit cycle in less steps than without PBC, as seen in Fig. 4.28. During heel

contact of the second and third step, it seems that the storage function is larger than the non-

PBC case but this behavior is transient and quickly disappears. In addition, the value of the
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Figure 4.28: System storage function for a decentralized PBC with perfect model parameters
versus a decentralized PBC with random +− 30% error in the model parameters.

reciprocal gait sensitivity norm for the control with parameter error is 1/||∂g/∂e||2 = 0.6614,

which is greater than the non-PBC system.

To investigate the general behavior of the PBC under model parameter error, we ran an

experiment with consistent control parameters where we calculated the gait sensitivity norm

for the system with 30 random sets of model parameter errors. The error multiple for each

parameter µ ∈ Θ was a uniform random variable in +−0.3, and we calculated the parameter

error norm as the 2-norm of all these error values. A scatter plot of the results is given in

Fig. 4.29. All of the values on the plot are significantly larger than the gait sensitivity norm

for the PD control alone. These results support the idea that as long as the scheme for

calculating the storage injection at each impact correlates with the energy of the system,

the control should make the system more robust. The major point of the experiment is to

show the efficacy of the PBC under random parametric error and not some “cherry-picked”

values.
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Figure 4.29: Robustness of decentralized control vs model parameter error norm with k = 1.
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CHAPTER 5

APPLICATION ON A POWERED PROSTHETIC LEG

This chapter focuses specifically on the control of a powered knee-ankle prosthetic leg to

aid people with trans-femoral amputations. The additional capability of a powered device

over a passive device is two-pronged; it can enable more reliable and precise position control,

and it can impart positive work to the user. The success of recent research on translating

methods of autonomous biped control into prosthesis leg control has largely been related

to the position control aspect. In [11], knee and ankle trajectories for an entire stride are

parameterized by the position of the user’s hip angle, which automatically synchronizes the

motion of the device to the user and allows highly volitional motion. In [80], a virtual

constraint to maintain the so called “roll-over shape” is used to support the user during

stance. The primary issue with these examples and other trajectory based control methods is

that they are not explicitly designed to propel the user or perform positive work. Impedance

based control methods such as the one from [81], which has a tunable pushoff impulse and

emulates estimates of human joint impedances, are more effective at directly restoring energy.

This chapter seeks to expand upon this paradigm by using energy shaping control to cause

the prosthesis to emulate a virtual spring similar to the SLIP model, and then use energy

regulation to explicitly perform positive work on the human-prosthesis system.

5.1 Model and Hardware

While a human using a wearable device is not the same an autonomous biped, many of the

principles of modeling, motion, and control are the same in both applications. The additional

challenge of controlling a wearable system is predicting/sensing what the user is doing. In

the case of a prosthesis, it is desirable to keep the sensing localized so that donning/doffing

is easy and the mechanical components remain relatively unobtrusive. However, this makes
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the problem of controlling the prosthesis to influence the combine human-prosthesis system

a decentralized control problem. The human body has 320 skeletal muscle pairs [82] that

allow volitional motion, so any tractable model that gives meaningful insight into walking

behavior will necessarily be an abstraction of the rich dynamics of the human body. The

model of the system that I use is the decentralized variation of the Flat Foot model from [38]

detailed in Section 4.4.2. On the specific hardware that I used, the UTD Leg 2, a controller

is limited to sensing positions of the global thigh angle, the knee angle, and ankle angle of

the prosthesis. It can also sense the net wrench applied at the physical interface of the foot

with the shank. A picture of the hardware is shown in Figure 5.1.

5.2 Control

In Section 4.3.1, I embedded the energy regulated SLIP model into the RABBIT biped

and achieved an exact match of the hip point energy to the SLIP energy. This required

both full state information and full actuation. The prosthesis system has neither of these

properties. In order to address this issue I will add in the dynamics of a virtual spring

without compensating for the natural nonlinear dynamics, which has been demonstrated

to be a viable approach for generating walking motion on a biped robot in [46]. The key

distinction is that I will use the user hip joint as a proxy for the COM, which allows the

virtual spring dynamics to be a function of only the knee and ankle positions. The oscillator

dynamics of equation (4.15), which uses the energy of the SLIP model that can be calculated

using just the spring position and velocity, will be added in as well to perform positive work

generation while again only using local sensing. This virtual spring control will only be

active during stance; in swing, the phase variable based joint trajectory controller from [11]

will be used. This choice is motivated from the biomechanics of human walking in which

push-off at the end of stance provides the majority of the propulsive force, and that the main
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Figure 5.1: A picture of the experimental setup with UTD Leg 2.
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outcome of swing is the placement of the foot in front of the user’s hip which is more suited

to position/trajectory control.

A critical difference between the RABBIT model and the prosthesis model is the geome-

try of the feet and a changing contact condition. The prosthesis model has a flat foot which

experiences the heel-flat-toe contact pattern from Section 4.4. In the heel and toe configu-

rations, the ground contact is at a single point and the virtual spring connection points are

obvious. The connection point needs to travel from the heel to the toe in a smooth manner

over the flat foot phase; to this purpose I will use the local center of pressure as the virtual

spring connection point. I will show how attempting to use a pure energy shaping approach

requires solving a partial differential equation, thus it is helpful to use a force sensor to

calculate the COP as a system input. A diagram is given in Figure 5.2.

The Virtual Spring

In the biped model, the COP can be calculated from the constraint forces λ(q, q̇, u, F ) (as

defined in 2.8). Directly using this expression to formulate an energy shaping control has two

challenges. First, because λ depends on u, a partial differential equation must be solved in

order to even compute the expression for the virtual spring control. Consider the expression

for the energy stored in a virtual spring between the hip center and COP,

Ps(q, λ) =
1

2
k(L(q, λ)− Lo)

2. (5.1)

The spring length L is the distance between the hip center and COP. The expression for this

is

L = ||
−→
Hip(q)−

−−−→
COP(q, λ)|| (5.2)

At heel and toe phases, the COP is simply at the heel and toe and only thus depends on

q. During the flat foot phase, the constrained coordinate vector is h = [x, y, φ]> and the
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Figure 5.2: Virtual spring between the center of pressure and a surrogate for the center of
mass.

corresponding generalized constraint force is λ = [λx, λy, λm]>. The center of pressure can

be calculated from

COPfx =
λm − la · λt

λn
(5.3)

where λn, λt are the normal and tangential force components relative to the ground and

COPfx is the distance along the foot from the heel to the COP. A constant rotation matrix

based on the ground slope and its inverse can be used to convert between λn, λt and λx, λy.

A diagram is given in Figure 5.3. From 2.8, the COP becomes a function of q, q̇, and u, and

thus Ps(q, q̇, u) does not fit the form for the potential energy of a mechanical system. So the
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Figure 5.3: Diagram of relation of COP to constraint forces for the flat foot contact condition.

more general energy shaping control 3.5 must be used, leading to

us = (B>B)−1B>

(
(
d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
)− (

d

dt

∂L̃(q, q̇, λ)

∂q̇
− ∂L̃(q, q̇, λ)

∂q
)

)
(5.4)

= (B>B)−1B>
(
− d

dt

∂Ps(q, q̇, λ)

∂q̇
+
∂Ps(q, q̇, λ)

∂q

)
(5.5)

Expanding the expressions for the potential energy partial derivatives yields

∂Ps(q, q̇, λ(q, q̇, us)))

∂q̇
=
∂Ps
∂L

∂L(q, λ(q, q̇, us))

∂q̇
=
∂Ps
∂L

∂L

∂λ

∂λ

∂us

∂us
∂q̇

(5.6)

∂Ps(q, q̇, λ(q, q̇, us)))

∂q
=
∂Ps
∂L

(
∂L

∂q
+
∂L

∂λ

∂λ

∂us

∂us
∂q

), (5.7)

and when substituted back into equation (5.5) they reveal the existence of a partial differ-

ential equation in us (emphasized by the highlighted portions of the equations). Practically,

this means even with full state and parameter information, the control to achieve both the

matching conditions for this problem is intractable.

There is an approximation of the desired effect that can be made. Because the prosthesis

is equipped with a load cell, I will treat λ as an input to the system using this sensor and

consider ∂λ
∂q

= ∂λ
∂q̇

= 0 in order to reduce the problem complexity and view Ps(q, λ) as a
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mechanical potential energy. In addition, because the hip center is calculated using local

state and parameter information, the second matching condition is trivially satisfied. So the

approximate energy shaping law takes the form

us = (B>B)−1B>(−∂Ps
∂q

) (5.8)

= (B>B)−1B>(−∂Ps
∂L

∂L

∂q
) (5.9)

= −ks(L(q, λ)− Lo)(B
>B)−1B>

∂L(q, λ)

∂q
. (5.10)

The conceptual downside of this method is that the energy in the virtual spring can be

changed by the motion of the COP which muddles the physical interpretation of an energy

regulation control even further.

Energy Regulation

Ideally, an energy regulation controller would act directly on a measurement of the energy

of the human-prosthesis system. As has been discussed, lack of sensing makes this difficult/

intractable. Instead, I will use a modification of the energy based method from equation

(4.15)

ur = −κL̇(ẼL − Eref) (5.11)

ẼL =
1

2
mL̇2 +

1

2
k̃(L− Lo)

2, (5.12)

that creates a harmonic Van-der-Pol Rayleigh oscillator along the virtual spring axis. As seen

in Section 4.2.2, this can create walking behavior similar to the dynamics that result from

controlling the total energy in simulation. The physical prosthesis system and virtual spring

control have nonlinear dynamics and a moving virtual spring connection point that add

additional complexity to this approximation. In human walking, different joints contribute

different proportions to the total power output [83, 84]. The most significant contribution
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of net positive work comes from the ankle during pushoff [85, 1] and net negative work from

the knee during heel strike. This behavior can be emulated through a biomimetic torque

saturation scheme on the energy regulation portion. This ensures that the only “extra” work

performed, outside of the virtual spring, is positive from the ankle and negative from the

knee. This is especially useful since the energy function is not the total system energy, so it

is guaranteed to fluctuate. This saturation preserves passivity (see equation 2.18).

Energy regulation is additionally challenged by the need for velocity estimation, since

the sensing is limited to joint encoders at the knee and ankle. A straightforward method to

estimate velocity from the position signal is to use a numerical difference

v(tk) =
p(tk)− p(tk−1)

tk − tk−1

, (5.13)

which divides the difference is position between two position readings by the sampling pe-

riod. This is well-known to encounter issues related to quantization in the physical sensing

mechanism of an encoder and the sampling rate versus dynamics time scales [86]. The veloc-

ity estimation can be improved by using “exponential smoothing” [87], which stores previous

samples of the estimated velocity and outputs a weighted linear combination of estimates.

The method used on the prosthesis system is

v(tk) = βv · v(tk) + (1− βv) · v(tk−1), (5.14)

where v(tk) is the smoothed velocity and v(tk) is the numerical difference. The parameter βv

is a “forgetting factor” that controls has much influence the summed older samples v(tk−1

have. βv = 1 corresponds to having no smoothing effect. The exponential smoothing can

be viewed as storing all of the previous samples with weight that exponentially decays over

time, and has the effect of reducing “ripples” that can occur when an encoder moves across

a tick [78] and other forms of noise. By inspecting the equation for energy regulation, one

can see that the velocity of the virtual spring enters the control as a cubic polynomial. This
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can amplify noise effects on a much larger order of magnitude than traditional PD control

techniques. Therefore, I implement additional layers of smoothing on the output of the

energy regulation control and saturate its rate of change as

ur(tk) = βv

(
ur(tk−1) + sat(

ur − ur(tk−1)

tk − tk−1

)

)
+ (1− βv) (ur(tk−1)) , (5.15)

The biomimetic power saturation is then implemented on the smoothed output ur(tk) as

if ur,kneeq̇knee > 0

ur,knee := 0

if ur,ankleq̇ankle < 0

ur,ankle := 0.

Energy Regulation with a Velocity Observer

An alternative approach to these smoothing techniques is Kalman filters or observers, which

exploit knowledge of the model/system dynamics to obtain velocity estimations. While

there is some evidence that the performance difference between model based filters and

exponential smoothing is negligible [87], the model based designs better lend themselves to

rigorous analytical proofs of stability and performance. In this section, I will recapitulate

a passivity-based velocity observer from [86] for a rigid robot with position sensing only,

then demonstrate local asymptotic stability when combined with a passivity based energy

regulation controller. This is simply presented as a theoretical alternative, and is not actually

implemented in the experiment section.

The structure of the observer is based on the general model for rigid robots from equation

(2.14), and is

˙̂q = z + Ldq̂ (5.16)

ż = M−1(q)
(
Bu+ J>F − C(q, q̇0)q̇0 −G(q)

)
+ Lp(q − q̂), (5.17)
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where [q̂; z] is the observer state. The variable q̇0 = ˙̂q−Λ(q− q̂) (with Λ positive definite) is

a weighting between the velocity estimation and the observer position error, which serves to

exploit passivity properties of the robot dynamics and ensure convergence of the estimated

velocity to the true velocity. Ld = rIn×n + Λ and Lp = rΛ are positive definite observer gain

matrices, and r > 0 is the scaling gain. Under some assumptions: 1) there are bounds on the

magnitude of norms Vp,Mm,Cm of the velocity vector, mass matrix, and Coriolis/centrifugal

matrix, respectively, 2) that r > M−1
m CmVp, then the observer position and velocity are

guaranteed to locally exponentially converge to the true states. The region of attraction of

the observer is a ball in the state space with a radius proportional to r. In hardware, this

observer can be implemented using a numerical integration technique like Euler’s method

[88].

An energy regulation controller can be formed by basing the energy function off the

estimated velocity. Following the same derivation from Section 3.2, define a storage function

S =
1

2
(Ê − Eref)

2 (5.18)

Ê =
1

2
˙̂q>M(q) ˙̂q + P(q). (5.19)

Its time derivative is then

Ṡ = (
˙̂
E)(Ê − Eref) (5.20)

= ˙̂q>
(
M(q̂)¨̂q +

1

2
Ṁ(q̂) ˙̂q +G(q̂)

)
(Ê − Eref). (5.21)

From equation (5.16), ¨̂q = ż + Ld(z + Ldq̂), and by some substitution

Ṡ = ˙̂q>
(
M(q̂)M(q)−1Bu+R

)
(Ê − Eref) (5.22)

R = M(q̂)
(
M(q)−1(J>F − C(q, q̇0)q̇0 −G(q)) + Ld(z + Ldq̂)

)
(5.23)

+
1

2
Ṁ(q̂) ˙̂q +G(q̂). (5.24)
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Consider the case where B is full rank. In the prosthesis application, this can by achieved

by modeling the system so that the knee and ankle joint angles are the only state variables

and using the force sensor to estimate the effect of the unmodeled dynamics. Again, since

this is theory, I omit the details of this model. An energy regulation controller can be chosen

as

ur =
(
M(q̂)M(q)−1B

)−1
(−R) +−κ

(
M(q̂)M(q)−1B

)> ˙̂q(Ê − Eref), (5.25)

which ensures

Ṡ = −2κ||q̇||2S, (5.26)

so the observer energy converges to the reference energy. If the observer state is also converg-

ing to the true state, then the true system energy is guaranteed to converge to the reference

energy.

5.3 Experiments

This section covers a proof-of-concept experiment of using the proposed embedded virtual

spring with an energy regulation controller on a powered prosthetic leg. Here, I use the

prosthesis using a bypass that folds my leg back and a platform sole on the other foot

(see Figure 5.1), so this example is somewhat removed from the target use case of amputee

locomotion. To clarify, the controller during stance is a combination of the COP-to-hip

embedded virtual spring from equation (5.10), with the energy oscillator from equation (5.11)

and associated smoothing and saturation. The control parameters, ks = 16000N ·m−1, Lo =

0.440m,ms = 1kg, κ = 0.1 were found via heuristically testing for comfort, stability, and

safety. The energy oscillator control rate of change is saturated at 50N · m · s−1, and the

weight β = 0.5 for the exponential smoothing filters. The COP estimation is saturated to fit

in between the heel and toe of the prosthetic foot, [−0.04m, 0.06m]), and is not allowed to

go backwards. During swing, a PD controller from [81] was used to track joint trajectories
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Figure 5.4: Knee and ankle positions versus time of the prosthesis and reference biological
data from [1]. The blue highlighted area is stance, the yellow is swing.

parameterized by the hip position of the user, with Kp = Kd = 7. The transition from

stance-to-swing and vice versa is facilitated by sensing the magnitude of the force applied

foot-shank force sensor, with a transition threshold of 100N and a hold time of 0.1s to

prevent high frequency switching. During the switch, the stance and swing controllers are

interpolated with a time varying weighting over the hold time to ensure smooth transitions

between control phases. The data presented in the figures in this section is from treadmill

walking at 2.2 mph on level ground for 8 steps.

Figure 5.4 is a plot of the joint angles of the prosthesis over time during the experiment

compared to the biological reference data [1] used to generate the trajectories for the swing

controller. During swing, the joints follow Winter’s data quite closely which makes sense

because the control is specifically designed to accomplish this. The interesting feature is

that the knee joint during stance also strongly resembles Winter’s data as well, which is an

emergent behavior from the closed-loop dynamics. The ankle trajectory of the prosthesis at

the beginning of stance also strongly follows the biological trajectory then overshoots the
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Figure 5.5: A smoothing spline fit to the COP-virtual spring contact point over normalized
stance time. The COP is measured relative to the heel, with the positive direction being the
way the user is facing.

peak value of Winter’s data. These results indicate that the virtual spring embedding does

result in behavior similar to the biological system (the human leg). The increased ankle

motion at the end of stance could be viewed as an beneficial outcome because this correlates

to an increased distance over which to perform positive work during push-off. It could also

be a result of asymmetry in the relative location of the prosthesis knee versus the sound side

knee in the experimental setup and the use of the platform sole.

Figure 5.5 plots a fit of the average COP trajectory vs time over stance. Here, we can see

that the user quickly rolls the heel and the virtual spring contact point spends the majority

of stance close to the toe. The commanded net torque at the knee and ankle over time

is shown in Figure 5.6, while the torques for the virtual spring and energy oscillator are

shown in Figures 5.7 and 5.8. Again, the stance control output is calculated all the time

but applied with a weighting that depends on phase. During the yellow shaded region in

swing, these torques are basically not applied. The takeaway from these results is that
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Figure 5.6: Net torques.

the nonlinear embedding of a virtual spring with an energy oscillator is a viable method

of enabling biomimetic locomotion using a powered prosthetic leg. However, the efficacy in

terms of improvement over a passive device or other methods of controlling a powered device

is still undetermined and is a subject for future work.
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Figure 5.7: Spring torques.

27 28 29 30 31 32 33

-6

-4

-2

0

2

4

6

Figure 5.8: Energy oscillator torques.
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CHAPTER 6

CONCLUSIONS

This dissertation contributes to both the fields of biped locomotion and wearable assis-

tive/rehabilitation devices by improving the understanding of how to embed simple models

of locomotion into complex systems and how to put energy at the forefront of the design

process.

In Chapter 3, I introduce a passivity based framework for energy regulation in arbitrarily

underactuated mechanical systems. I also consider a framework for regulating a time-varying

reference energy and show how this can be used to regulate a work based energy function

for dissipative hybrid systems with passive limit cycles. I also introduce a scheme for up-

dating the reference energy online based on the output of the impact dynamics which allows

implementation without a priori knowledge of the precise energy associated with a passive

limit cycle.

In Chapter 4, I go over ways to use energy shaping and regulation to generate and

stabilize limit cycles in: the Spring Loaded Inverted Pendulum, the Compass Gait Biped,

the RABBIT model, and the Flat Foot Biped model. In the SLIP model, I show how energy

regulation is necessary to stabilize the model’s natural periodic orbits and that a large range

of running behaviors can be achieved through parameter total energy regulation and through

an energy based oscillator. For the compass gait model, I show how the virtual mass ratio

can be changed to generate new walking speeds and that the impact based reference energy

update scheme is effective in this scenario. I also demonstrate that energy regulation can

stabilize natural limit cycles that are unstable for the passive system through a simulation

that substitutes stairs for a shallow slope. For the RABBIT model, I show how to embed

the SLIP model with energy regulation to achieve a walking gait. Using the Flat Foot

Model, I develop a new decentralized formulation that provides a theoretical framework to

address both uncertainty in the biped model and a lack of sensing, by allowing the designer
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to ignore arbitrary states and model parameters in the system. This scheme is desirable in

the control of biped locomotion because it can allow for a reduction of sensing components

in the hardware, compensate for uncertainties in the dynamic model of the biped, and

reduce the computational complexity of the control. The decentralized PBC retains useful

qualities of the centralized approach, such as arbitrary underactuation, synergy with inner-

loop controllers, and improved robustness and convergence rate of the limit cycle.

In Chapter 5, I demonstrate that the ideas developed in Chapter 4 for energy shaping

and regulation control for biped locomotion can be translated into the prosthesis control

application. Here, I embed a virtual spring between the user’s hip and the local center

of pressure of the prosthetic foot, based on the SLIP model. On top of this, an energy

based oscillator is introduced to perform positive work against the system. This system

is demonstrated to effectively achieve a biomimetic walking behavior. Finally, I introduce

a proof of stability for a rigid robot system with a passivity based observer and energy

regulation controller.

Future Work

There are several avenues for future work in the area of energy shaping and regulation control

for both biped locomotion and wearable assistive devices. In the area of biped locomotion,

there are tasks beyond simply changing walking speed and slopes; there is obstacle avoidance,

slipping, walk-run transitions, fall recovery, and others. I think it would be worthwhile to

perhaps find a template model capable of negotiating a wider range of tasks or switching

between target systems designed to deal with specific tasks. Many of the methods I describe

in Chapter 4 have also yet to be implemented in a real autonomous biped system like ATLAS

[89] or Valkyrie [90]. There are also interesting implications for power regeneration based on

energy shaping control, since under this method the closed-loop energy along the limit cycle

should be conserved.
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In the domain of assistive devices, the application of energy regulation has yet to be

explored for exoskeletons. However, the torques induced by passivity based energy regulation

method in Chapter 3 can spike very quickly, so perhaps some modification of the technique

is required when actuators are collocated with a user’s joints. For both exoskeletons and

prosthetic devices, it could be interesting to construct higher DOF data driven Lagrangian

dynamics to match through energy shaping, rather than analytical simple models like the

SLIP. Finally, the obvious extension of my work in Chapter 5 is to perform testing with

the target population the device and control is meant to help, people with trans-femoral

amputation.
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[78] D. J. Block, K. J. Åström, and M. W. Spong, “The reaction wheel pendulum,” Synthesis
Lectures on Control and Mechatronics, vol. 1, no. 1, pp. 1–105, 2007.

[79] A. E. Martin and R. D. Gregg, “Stable, robust hybrid zero dynamics control of powered
lower-limb prostheses,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3930–3942,
2017.

[80] R. D. Gregg, T. Lenzi, L. J. Hargrove, and J. W. Sensinger, “Virtual constraint control of
a powered prosthetic leg: From simulation to experiments with transfemoral amputees,”
IEEE Trans. Rob., vol. 30, no. 6, pp. 1455–1471, 2014.

[81] T. Elery, S. Rezazadeh, C. Nesler, and R. D. Gregg, “Design and validation of a powered
knee–ankle prosthesis with high-torque, low-impedance actuators,” IEEE Transactions
on Robotics, 2020.

[82] G. Stewart, The skeletal and muscular systems. Philadelphia: Chelsea House Publish-
ers, 2004.

[83] D. J. Farris and G. S. Sawicki, “The mechanics and energetics of human walking and
running: a joint level perspective,” Journal of The Royal Society Interface, vol. 9, no. 66,
pp. 110–118, 2011.

[84] J. M. Donelan, R. Kram, and A. D. Kuo, “Simultaneous positive and negative external
mechanical work in human walking,” Journal of biomechanics, vol. 35, no. 1, pp. 117–
124, 2002.

[85] S. W. Lipfert, M. Günther, D. Renjewski, and A. Seyfarth, “Impulsive ankle push-off
powers leg swing in human walking,” Journal of experimental biology, vol. 217, no. 8,
pp. 1218–1228, 2014.

[86] H. Berghuis and H. Nijmeijer, “A passivity approach to controller-observer design for
robots,” IEEE Transactions on robotics and automation, vol. 9, no. 6, pp. 740–754,
1993.

101



[87] J. J. LaViola, “Double exponential smoothing: an alternative to kalman filter-based
predictive tracking,” in Proceedings of the workshop on Virtual environments 2003,
2003, pp. 199–206.

[88] T. I. Lakoba, “Simple euler method and its modifications,” Lecture Notes for MATH334,
2012.

[89] G. Nelson, A. Saunders, and R. Playter, “The petman and atlas robots at boston
dynamics,” Humanoid Robotics: A Reference, pp. 169–186, 2019.

[90] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen, A. S.
Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater et al., “Valkyrie: Nasa’s first
bipedal humanoid robot,” Journal of Field Robotics, vol. 32, no. 3, pp. 397–419, 2015.

102



BIOGRAPHICAL SKETCH

Mark was born in Macon, Georgia, and after moving all over the country, ended up at The

University of Texas at Dallas with a full-ride scholarship for undergrad in 2011. There, he

met his future advisor and mentor, Dr. Robert Gregg, who solidified his interest in robotics

and control through undergrad research. Mark graduated in 2015 with a double degree in

Mechanical Engineering and Computer Science, then moved to Los Angles, California for

an internship at Hyperloop Technologies and work for Haas Automation. This experience

in industry convinced him that if he wanted to lead the development of interesting, cutting

edge technology, he needed a PhD. Thus, he came back to UTD to work in the Locomotor

Control System Laboratory from 2016-2020. Mark hopes to continue to innovate at the

intersection of robotics, autonomy, and human-machine interaction.

103



CURRICULUM VITAE

mark.x.yeatman@gmail.com
www.mark-yeatman.net
Phone: +1 (469) 263-6520

Education University of Texas at Dallas
Ph.D. Mechanical Engineering, 2020 (Expected)

Fields: Dynamics and Control Systems

University of Texas at Dallas
B.S. Mechanical Engineering, 2015
B.S. Computer Science, 2015

Domain
Expertise Nonlinear Control, Robotics, Optimization, Biomechanics

Technology Matlab/Simulink, Python, C/C++, Labview,

Expertise Git/SVN, Linux, Embedded Systems Programming, Motor Control

Dissertation “Energy and Passivity Based Control for Bipeds and
Assistive Walking Devices”

The primary outcome of this work is a control method for a powered
lower-limb prosthesis that explicitly injects energy into the combined
human-prosthesis system to assist amputee locomotion. The method
accounts for the human energy input which allows the prosthesis to
work with the user rather than fighting them. It was implemented on
UTD Leg 2 and tested using a bypass adapter.

Teaching Feedback Systems — University of Texas at Dallas
Fall 2017, Fall 2018
Title: Teaching Assistant

Robotics Team Coach — ACE High School, Camarillo CA
Spring 2016
Title: Programming Coach

mailto:mark.x.yeatman@gmail.com
www.mark-yeatman.net


Industry Haas Automation — Oxnard, CA

Experience Sept 2015 - May 2016
Title: Software QA Engineer

Performed software and hardware tests of CNC mills and lathes to
ensure correct implementation of features, requirements, and specifica-
tions. Wrote scripts using custom software and G-Code, provided bug
reports for development team.

Hyperloop Technologies — Los Angeles, CA
Summer 2015
Title: Systems, Controls, and Dynamics Intern

Analyzed structural, thermal, and dynamic constraints to design an
experimental and novel rotor component in a linear induction motor.
Integrated the convex optimization framework CVX into systems level
optimization of power system design and route planning.

Journal
Publications

M. Yeatman, G. Lv, and R. Gregg, “Decentralized Passivity-Based
Control with a Generalized Energy Storage Function for Robust Biped
Locomotion,” ASME Journal of Dynamic Systems, Measurement, and
Control, 141(10): 101007, 2019.

M. Yeatman and R. Gregg, “Using Energy Shaping and Tracking to
Generate Natural Limit Cycles in Mechanical Systems with Impacts,”
ASME Journal & of Computational and Nonlinear Dynamics, under
review.

Conference
Publications

M. Yeatman, G. Lv, and R. Gregg, “Passivity-Based Control with a
Generalized Energy Storage Function for Robust Bipedal Walking,” in
American Control Conference, Milwaukee, WI, 2018.

Poster
Presentations

M. Yeatman and R. Gregg, “Energy and Passivity Based Control of
Biped Locomotion”, Texas Systems Day, College Station, TX, 2019

M. Yeatman, S. Rezazadeh, and R. Gregg, “Energy Shaping and
Tracking for Natural Limit Cycles in Hybrid Systems”, Dynamic Walk-
ing, Online, 2020


	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction and Motivation
	State of the Art in Powered Lower-Limb Prostheses
	Energy Shaping and Regulation Control as an Alternative Approach
	Organization of the Dissertation

	Modeling Biped Locomotion
	Lagrangian Mechanical Systems with Holonomic Constraints
	Rigid Impact Dynamics
	Hybrid Biped Dynamics and Orbital Stability
	Passivity

	Energy Shaping and Regulation Control
	Energy Shaping
	Energy Regulation
	Regulation of a Work-Based Energy Function

	Application to Hybrid Locomotive Systems
	A Hopping Robot Example
	Hopper Dynamics
	Hopper Control
	An Impact-to-Impact Energy Update Law


	Application on Biped Robots
	The Spring Loaded Inverted Pendulum
	Control
	Simulations

	The Compass Gait Biped
	Control
	Simulations

	The RABBIT Model
	Control
	Simulation

	The Flat Foot Biped
	Centralized Simulations
	Decentralized Model
	Decentralized Energy Regulation
	Decentralized Simulations
	Model Parameter Error


	Application on a Powered Prosthetic Leg
	Model and Hardware
	Control
	Experiments

	Conclusions
	References
	Biographical Sketch
	Curriculum Vitae

