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DYNAMIC RESOURCE COORDINATION TOWARDS RELIABLE AND FLEXIBLE

NETWORK SLICING

Genya Ishigaki, PhD
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Supervising Professor: Jason Jue, Chair

The increasing demand for a diverse array of network applications entails a more flexible

and reliable networking paradigm. Network slicing is envisioned to package a set of net-

working, computing, and storage resources in a coordinated manner, so that the network

slice with the tailored set of resources satisfies service requirements unique to each network

application. A key enabling technology of network slicing is network softwarization, exem-

plified by Software Defined Networking (SDN) and Network Function Virtualization (NFV),

which enable swift migration of both networking and computing resources. While network

slicing sets a conceptual foundation for next-generation networking for diverse applications,

the resource coordination mechanism that dynamically operates and manages the resources

remains a challenging issue. This is more so when considering the computational complexity

induced by the dependency relationship among the softwarized resources and the uncertainty

of future network states, such as network failure scenarios and traffic patterns.

This dissertation features four resource allocation problems that collectively facilitate the

agile operation and management of end-to-end network slices. The first two problems are

related to the reliability aspect of network slicing. In particular, we discuss protection

and recovery problems of interdependent network components from a resource allocation

standpoint. The third problem deals with a dynamic bandwidth allocation in optical access

vii



networks. The dynamic adjustment of allocated bandwidth assists more effective resource

utilization and the accommodation of different types of network services. Furthermore, SDN

controller placement, which determines responsiveness to a request for end-to-end resource

coordination, is examined as the fourth problem.

The theoretical analysis and proposed algorithms for the problems not only solve the specific

resource allocation tasks, but also provide fundamental insights to tackle similar allocation

problems under entangled dependency and future uncertainty. In particular, the proposed

learning-based approaches project an automated resource coordination system for more ef-

fective utilization of network resources in 5G and beyond networks.
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CHAPTER 1

INTRODUCTION

1.1 Next-Generation Networking: 5G and Beyond

Network technology has been evolving to accommodate the increasing volume of Internet

traffic since its birth in the 1980s. However, the recent emergence of diverse vertical network

applications, such as the Internet of Things (IoT) and autonomous driving vehicles, has

posed a set of unprecedented challenges to network design, operation, and management.

Those challenges and expectations for next-generation networking technologies compel an

ideological shift in many aspects of network design and operational methodology due to the

uniqueness of the problems. The uniqueness arises from the fact that the next-generation

networks are envisioned to support not only the increasing volume of traffic, which had been

a central evolving factor till the current-generation networks, but also differentiated classes

of network service requirements. This infers the departure from the long-standing philosophy

of one-size-fits-all network design for a custom-made networking approach [50].

One of the most pressing challenges is the coordination of networking and computing

resources to provide such tailored networks for each network user [65]. While traditional

networks depend on monolithic network designs and proprietary hardware appliances, next-

generation networks should be more flexible, dynamic, and, simultaneously, reliable. The

development of network softwarization techniques, exemplified by Software Defined Network-

ing (SDN) and Network Function Virtualization (NFV), in the past ten years enables network

operators to serve the flexibility and dynamics through the use of commodity networking

and computing resources.

5G networks are a precursory realization of such next-generation networks, which own

the capability to support a diverse array of network applications [2]. The 5G standard

mainly targets three types of network applications that each demonstrate an extreme use-

case; namely, Enhanced Mobile Broadband Connectivity (eMBB), Massive Machine Type
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Communications (mMTC), and Ultra-Reliable Critical Communication Services (URCC)

[81]. eMBB is an extension of the current mobile broadband by extending network coverages,

including three-dimensional connectivity. Industrial and IoT applications are supported by

mMTC that accept highly dense connectivity. URCC is envisioned to serve for real-time

applications such as autonomous driving vehicles and remote medical usages.

The capability of 5G networks hosting different types of network services is enabled by

a concept called network slicing [20]. Network slicing prepares a virtual network, which

consists of virtualized networking, computing, and storage functions, for each network user,

as if the user is provided a dedicated physical network tailored for the specific user. Since

each network slice is composed to meet the requirements of the network services running on

it, network users can experience the guarantee of end-to-end service performance. Figure 1.1

illustrates a simplified 5G network architecture including a network slice spanning from an

access network to the core network.

While network slicing sets a successful guideline for the provisioning of custom-made

virtual networks, this concept can be implemented only with effective resource coordination

that helps network slice providers to profit. Nevertheless, the coordination tends to be

complex due to the entangled interactions among virtualized and physical infrastructure

resources. Furthermore, more autonomous coordination will become demanding certainly in

6G and beyond networking, as the composition of such network slices become more complex

with the dynamics of network traffic and more diverse applications [59, 38]. Therefore, this

dissertation tackles multiple resource optimization problems that collectively perform the

resource coordination for network slicing. The rest of this chapter describes preliminary

information about network slicing and highlights the problems discussed in this dissertation.
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Figure 1.1. 5G Network Architecture: Network slicing over an infrastructure network.

1.2 Key Enablers of Next-Generation Networking

1.2.1 Software Defined Networking (SDN)

Software Defined Networking (SDN) is a networking technology that realizes the programma-

bility of network components through decoupling of the control plane from the data plane

of networks [49]. A logically centralized SDN controller monitors and manages the topology

and routing of a data plane, while the routers and switches in the data plane naively forward

datagrams based on the policy delivered from the SDN controller.

The centralization and decoupling provide a network with more manageability and flex-

ibility. In traditional networks, the deployment of a change in routing policy required sig-

nificant effort, since the routers and switches update their routing tables in a distributed

manner. In contrast, an update on routing policy can be immediately communicated from

a controller to all routers and switches with SDN, which facilitates more dynamic configu-

rations of networks. This SDN architecture also supports faster failure recovery as an SDN

controller can determine an optimal recovery plan based on a global view of a network after

identifying a link or node failure.
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OpenFlow is one of the most popular standardized SDN protocols that define a com-

munication protocol between an SDN controller and SDN switches [36]. This southbound

interface standardization absorbs the differences among heterogeneous routers and switches

from different vendors. SDN also provides a northbound API for the controllers, so network

operators can implement new routing and failover logic. This programmability promotes the

use of an advanced networking operation with a complex algorithm, as a network operator

does not need to translate their complex logic to the actual router configurations.

1.2.2 Network Function Virtualization (NFV)

Network functions can be seen as software appliances when employing Network Function

Virtualization (NFV) [1]. Traditionally, network functions were implemented on dedicated

hardware in an entangled way. NFV makes a clear separation between the logical function-

ality and hardware requirements so that Virtualized Network Functions (VNFs) can run on

general-purpose servers.

NFV realizes another level of flexibility in resource allocation, which eventually enhances

the scalability of a network. As a network function is a software module with NFV, it

becomes easier to move the location of function deployment across a network. It is beneficial

to meet a specific service requirement in latency. Moreover, the volume of a network function

can be easily scaled up or down depending on the demand for the function, which further

accelerates the dynamic reconfigurations of a network. The dynamic reconfigurations are only

made possible through NFV, since the scaling can be conducted by software deployment on

general-purpose servers, instead of hardware deployment.

European Telecommunication Standards Institute (ETSI) defined NFV management and

orchestrator (NFV-MANO) to provide an architectural view of NFV [16, 80]. Multiple sub-

functions of NFV-MANO collaboratively manage the life-cycle of VNFs. In particular, Virtu-

alized Infrastructure Managers (VIMs) manages the abstraction of general-purpose hardware
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to host VNFs, which provides Network Function Virtualization Infrastructure (NFVI), and

VNF Managers (VNFMs) are in charge of software (VNF) deployment. Figure 1.2 illustrates

the logical layering used by NFV-MANO.

1.2.3 Network Slicing

Network slicing is an advanced network virtualization concept where virtualized computa-

tion, communication, and storage resources are packaged as a network slice tailored for a

specific network service [20, 73, 81]. The dedication of resources in a network slice enables

one physical network to accommodate multiple network tenants who each provide a network

service with different performance requirements.

While network slicing is an extension of Network Virtualization (NV) and NFV, it is

supposed to provide additional features that have not been specified in NV or NFV to ac-

commodate diverse network applications in the 5G and beyond era. One of the additional

features is slice isolation which ensures performance guarantees for each network slice in-

dependent from states of the other network slices in the same physical network [73]. In

other words, failure, security incidents, or load increase in coexisting network slices must
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not affect the performance of the other slice. Another important feature is abstraction of

service requirements from each tenant [20]. This aspect is closely related to Infrastructure-

as-a-Service (IaaS), which provides high-level APIs to configure computing, networking, and

storage infrastructures. Usually, slice tenants are the entities who want to run a specific net-

work service to their customers and are not necessarily trained for the detailed configuration

of networking infrastructure. With this assumption, a network slice provider should provide

high-level APIs, so that such tenants can describe their requirements in a form of Service

Level Agreements (SLA) without specialized knowledge. Therefore, it is the responsibility of

a slice provider to translate a given SLA into an actual resource configuration. Furthermore,

service requirements for a network slice tend to be specified as an end-to-end SLA, since

slice tenants intend to guarantee certain service performance at the application level.

Those features desired for network slicing enable slice tenants to provide more reliable

and scalable network services. The isolation of network slices naturally brings robustness

against network attacks and failures. Also, slice tenants do not need to worry about the

details of a mechanism to ensure a certain SLA, as they can use high-level APIs to specify

the SLA. Furthermore, the high-level view of a provided network slice provides more flexi-

bility in resource scaling. As many network services experience temporal and geographical

demand dynamics, it is expected for network slicing to serve easily reconfigurable network

infrastructures. From the perspective of network slice providers, they could increase the

revenue when utilizing the physical resources in an efficient way. In particular, the deploy-

ment of general-purpose physical infrastructures with virtualization techniques opens a way

to adjust their virtual resources for popular services and high-profit types of tenants.
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1.3 Unique Challenges towards Reliable and Flexible Network Slicing

1.3.1 Interdependency

As illustrated in Figure 1.2, a benefit of the virtualization techniques is the decoupling

of network functions and infrastructure hardware. Due to the clear separation between

the network function layer and infrastructure layer, a network operator can adjust network

resources to satisfy varying demands from different users.

Nevertheless, the decoupling also brings additional complexity into networks by introduc-

ing dependency among network components. The dependency of the network function layer

on the infrastructure layer is one the most obvious relation that introduces a new aspect

of network fragility. It is possible for multiple network slices to simultaneously experience

network failures due to a failure of a single infrastructure node, when the infrastructure

node hosts multiple network functions deployed on the network slices. This type of failure

propagation has been studied as a Shared Risk Resource Group (SRRG) [40]. Furthermore,

the opposite direction of dependency where the infrastructure layer requires a connection

to the network function layer is also observed, especially when the control plane functions

are deployed. This is because the control or orchestration functions in the network function

layer are necessary for infrastructure resources to be coordinated to fulfill the designated

functionality [39].

As resource virtualization is a core technology to realize reliable and flexible network

slicing, it is necessary to consider the interdependency among the network function and

infrastructure layers for slice resource coordination. An interdependent network is an effective

representation in which the dependency relationship among the virtualized and physical

resources is abstracted as directed edges [52]. The graph-theoretic formalism provides a

framework to discuss the fragility caused by the interdependency.
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1.3.2 Uncertainty of Future Demand and Available Resources

One of the biggest expectations for next-generation networking is the elasticity of resource

provisioning. Network slice tenants expect to save the cost related to extra resources reserved

for unknown future demand, assuming the ability of network slices to scale on demand. From

the perspective of a slice provider, more sophisticated coordination is required to guarantee

such scaling and the isolation of network slices on the same physical network.

The uncertainty of future traffic patterns has been a challenging issue in the networking

field. While many traffic estimation methods are available for long-term statistical patterns,

it is still difficult to estimate short-term traffic trends. The diversity in network applications

in 5G and beyond networks will add additional complexity to the estimation problem, be-

cause the behaviors of network users become more complicated due to their mobility, types

of communications, and dynamic resource reservation.

In addition to the uncertainty of future demand, uncertainty about the availability of

resources could be another challenge. When network slice providers are only given incomplete

information about the amount and timing of future resource dispatches, they cannot schedule

their resource allocation actions in advance. In this type of scenario, they need to either

estimate the resource availability to solve the resource scheduling problem or come up with

a robust allocation solution that accommodates multiple scenarios within a certain range of

resource availability.

1.4 Research Statement

A fundamental question underlying this dissertation is about the tradeoff in resource allo-

cation: How does a network operator balance the maximization of resource utilization and

the reservation of spare capacity for future demands? Even though the tradeoff has been a

paramount agenda of resource optimization research per se, the new features introduced for

Next-Generation Networking present additional challenges to answer the question.

8



Table 1.1. Problem Space Discussed in Each Research Problem.

Problem Problem Space Chapter

Problem I Interdependency (Protection) Chapter 2

Problem II Interdependency (Recovery), Resource Uncertainty Chapter 3

Problem III Traffic Uncertainty Chapter 4

Problem IV Coordination towards Flexible Network Slices Chapter 5

In particular, this dissertation focuses on resource optimization under the complex de-

pendency of network components and uncertainty over future network and resource states,

which are commonly observed in recent networking paradigms. While discussing different

types of resource allocation problems appearing in 5G and beyond networks, we propose a

set of resource allocation algorithms that collectively realize the reliable and flexible network

slicing for diverse network services.

Each resource allocation problem discussed in this dissertation is summarized below.

Chapter 2 and 3 deal with resource allocation for the protection and recovery of networks with

an emphasis on the interdependency among infrastructure resources and virtualized network

components. A bandwidth allocation algorithm is proposed for optical access networks in

Chapter 4, considering the uncertainty of future traffic. In Chapter 5, we discuss a placement

problem of SDN controllers that each manage a domain of physical networks and coordinate

resource allocation for end-to-end network slices.

1.4.1 Problem I: Reliable Network Design considering Interdependency

The effective use of virtualization techniques requires sophisticated management of relation-

ships among softwarized modules, since a set of the modules and hardware hosting them

collaboratively provide network service functionality. Several prior research works demon-

strate that poor management of such inter-module relations could cause unique fragility of

networks called cascading failure [52, 39]. In a cascading failure, a failure of a part of a
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network propagates to the rest of the network along with the dependency relations among

the modules and hardware. The focus of my work is to (i) identify dependency structures

that can mitigate the impact of cascading failures and (ii) propose a protection method

that constructs such robust dependency structures by appropriate resource allocation. In

Chapter 2, a combinatorial algorithm to improve the robustness of interdependent network

components is presented based on the analytical work on such robust dependency structures.

1.4.2 Problem II: Recovery Resource Allocation for Interdependent VNFs

In addition to network protection, the recovery of failed dependent network components is

a challenging task that involves additional complexity compared to the recovery of indepen-

dent network components. In particular, the challenge becomes evident when the recovery

is conducted progressively due to limited repair resources. The ordering of resource alloca-

tion in the recovery phase influences the interim computation and communication capability.

This is because certain network components require not only repair resources but also the

working operation of other network components in order to function properly. This combi-

natorial utility on repair resource allocation makes the recovery problem more complex than

typical network recovery problems. Hence, our work deals with a progressive recovery prob-

lem under limited resources in networks with interdependent VNFs. In Chapter 3, a Deep

Reinforcement Learning (Deep RL)-based solution for the progressive recovery problem is

described along with the intractability analysis of the problem. Furthermore, a set of our

theorems show that a broader class of progressive recovery problems can be reduced to the

cases solved in this work.

1.4.3 Problem III: Dynamic Bandwidth Allocation for Optical Access Networks

While network resources can be statically allocated to each network slice, it is further benefi-

cial for both slice tenants and slice operators to dynamically adjust the allocation and utilize
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the spare capacity efficiently. This type of network slice is called an elastic network slice. An

indisputably important problem is the dynamic resource allocation under uncertain traffic

trends. Furthermore, the profitability and scalability will be dominated by such allocation

strategies when network functions on the slices collaboratively realize service functional-

ity. This work aims to propose a resource allocation methodology to deal with the tradeoff

between over- and under-provisioning for network slices. Chapter 4 discusses a dynamic

bandwidth allocation problem in optical access networks, which is the initial step towards

the elasticity of end-to-end network slices from the network edge to the core network. The

dynamic allocation is realized by a learning algorithm called Online Convex Optimization

(OCO) that guarantees performance bounds in terms of the hindsight optimum called regret.

1.4.4 Problem IV: Controller Placement towards Scalable SDN

The end-to-end service requirements for network slices demand resource coordination across

multiple network domains from access networks to the core network. Assuming the deploy-

ment of SDN technologies at each domain, the coordination is conducted through a logically

centralized orchestration function that communicates with all the SDN controllers responsi-

ble for each domain. In practice, the logical orchestrator function is implemented through

exchanges of orchestration messages among the SDN controllers. Chapter 5 discusses an SDN

controller placement problem that minimizes the communication latency of the exchanges of

orchestration messages among multiple controllers. Inspired by an approximation algorithm

for the knapsack problem, we propose a greedy controller placement algorithm that reduces

the distance among the controllers.
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CHAPTER 2

IMPROVING THE SURVIVABILITY OF CLUSTERED

INTERDEPENDENT NETWORKS BY

RESTRUCTURING DEPENDENCIES

The interdependency between different network layers is commonly observed in communi-

cation networks adopting the dissociation of logic and hardware implementation, such as

Software Defined Networking and Network Function Virtualization. This chapter1 discusses

a network design problem to improve the survivability of existing interdependent networks by

restructuring the dependency relationships between the network function and infrastructure

layers. A characteristic of the proposed algorithm is that the continuous availability of the

entire system is guaranteed during the restructuring of dependencies by the preservation of

certain structures in the original networks. Our simulation results demonstrate that the pro-

posed restructuring algorithm can substantially enhance the survivability of interdependent

networks, and provide insights into the ideal allocation of dependencies.

2.1 Introduction

Many network systems encompass layering and integration of the layers in both explicit and

implicit manners. For example, Software Defined Networking (SDN) decouples the control

logic from forwarding functions to realize the flexibility and agility of communication net-

works. Also, Network Function Virtualization (NFV) involves the separation of network

1The content of this chapter is based on the following earlier works.
c© 2019 IEEE. Reprinted, with permission, from G. Ishigaki, R. Gour and J. P. Jue, “Improving the

Survivability of Clustered Interdependent Networks by Restructuring Dependencies,” in IEEE Transactions
on Communications, vol. 67, no. 4, pp. 2837-2848, April 2019, doi: 10.1109/TCOMM.2018.2889983.

c© 2018 IEEE. Reprinted, with permission, from G. Ishigaki, R. Gour and J. P. Jue, “Improving the Sur-
vivability of Interdependent Networks by Restructuring Dependencies,” 2018 IEEE International Conference
on Communications (ICC), Kansas City, MO, USA, 2018, pp. 1-6, doi: 10.1109/ICC.2018.8422614.
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function logic from hardware. The concept of separating logic from hardware implementa-

tions is also commonly adopted in Cyber Physical Systems (CPS), such as smart grids, in

which computing capability manages physical entities.

The dissociation of logic and functions, which is effective for system flexibility, has accel-

erated the amount of layering and obscure dependencies in network systems. The work [57]

on software defined optical networks points out the dependency of logical nodes on physi-

cal nodes that provide physical paths for connections among logical nodes, as well as the

dependency of physical nodes on the logical nodes through SDN control messages, which

define the operations of the physical nodes. Similarly, it is revealed that NFV embraces the

interdependency between Virtual Network Functions (VNF) and physical servers hosting the

VNFs, when a virtualization orchestrator is recognized as one of the VNFs [39]. Further-

more, the integration of a control information network and an electricity network seen in

smart grids is a typical example of the interdependency of two different layers in CPSs [51].

This tendency of layering and collaborative functionality of layered networks is likely to be

more evident for next-generation network systems.

However, it has been revealed that certain types of dependencies between different layers

of networks can deteriorate the robustness of the entire interdependent system [61]. Con-

secutive multiple failure phenomena called cascading failures exemplify the unique fragility

of such network systems. In networks without interdependencies, a failure would influence

a certain part of a network. Nonetheless, in networks with interdependencies, some nodes

that are not directly connected to the failed portion can become nonfunctional due to the

loss of service provisioning from nodes in other layers, which are directly influenced by the

initial failure.

Figures 2.1 - 2.4 show an example of such a cascading failure, which starts as a single node

failure of v1 and results in the entire network failure. Suppose that a network G1 consists

of physical servers v1 and v′1, and G2 represents logical computing nodes v2 and v′2 hosting
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Figure 2.1. An interdependent network with two constituent graphs representing physical
and logical network.
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Figure 2.2. Initial failure at a physical server v1.
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Figure 2.3. Cascading failure affecting a logical node v2.
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Figure 2.4. Cascading failure affecting a physical server v′1. The entire network becomes
nonfunctional.

VNFs. The orchestrator, which coordinates the mapping between physical and logical layers,

is realized as one of the VNFs on v2. The arcs from G1 to G2 ((v1, v2), (v
′
1, v
′
2)) illustrate the

dependency of NFVs or computing nodes on the physical servers, while the arcs from G2 to

14



G1 ((v2, v1), (v2, v
′
1)) indicate the dependency of physical servers on a logical node in terms

of the flow of coordination messages from the orchestrator to the physical servers. When

the physical server v1 fails, the logical node hosting the orchestrator v2 loses its dependent

physical node v1, and becomes nonfunctional. This induces another loss of the dependent

node of v′1, and eventually, the single node failure causes a failure of the whole network.

Cascading failures can also lead to the malfunctioning of CPSs. In fact, it has been

reported that some major electricity outages in smart grids, such as the 2003 nation-wide

blackout in Italy [7], and the 2004 blackout over 8 states in the US and 2 provinces in Canada

[4], were due to cascading failures induced from poorly designed dependencies between the

electricity network and control information network.

Many contributions have been made since the first theoretical proposal on the cascading

failure model by Buldyrev et al. in 2010 [9]. The pioneering works [9, 22] focus on analyz-

ing the behavior of cascading failures rather than proposing design strategies. In contrast,

some following works identify vulnerable topologies in interdependent networks to avoid such

fragile structures in the design phase by investigating the relationship between node degree

and failure impacts [68], or evaluating the importance of nodes exploiting the algebraic ex-

pression of dependencies [58]. Furthermore, other works propose design strategies in more

realistic models to consider the impact of failures caused by a single component [84], inte-

grated factors within and between layers [56], or the heterogeneity of nodes in each layer

[64].

This paper discusses a design problem for interdependent networks to improve their sur-

vivability, which is a measure of the robustness against a whole network failure, by modifying

an existing network topology. The contribution that contrasts our work with other related

works is the consideration of existing network facilities. Our method is aimed at redesign-

ing a relatively small part of the existing network to enhance the survivability so that the

entire network remains operational even during the restructuring process. To realize this
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continuous availability, a special type of dependency, whose removal does not influence the

functionality of the entire system, is identified in the first step of our restructuring method.

Our heuristic algorithm increases the survivability of entire systems by the relocations of

these dependencies. While our previous work [30] allows a node to have dependencies with

any nodes in the other layer, this paper extends the model by considering geographical, eco-

nomic, or logical accessibility of provisioning by nodes. These constraints are represented as

clusters of nodes, and an interdependent network is modeled as a directed graph consisting

of multiple clusters. The membership of a node in a specific cluster imposes restrictions on

the nodes to which the node can provide support, and the nodes from which the node can

receive support. Hence, possible modifications to the dependencies between nodes would

vary, depending on the cluster to which a node belongs. Finally, our method is evaluated by

simulations in different pseudo interdependent networks.

2.2 Related Works

Most of the preceding works on interdependent networks attempt to analyze the behavior

of cascading failures in well-known random graphs, which have certain characteristics in

degree distributions and underlying topology [9, 22]. Those works analyze the propagation

of failures based on percolation theory developed in the field of random networks. Following

the directions shown by a seminal work by Buldyrev et al. in [9], more general models are

discussed in [22].

The works [68, 58, 56, 64, 84] focus on the design aspect of interdependent networks. The

relation between the impact of failures and interdependencies is empirically demonstrated to

decide appropriate dependency allocations in [68]. A method to evaluate the importance of

nodes in terms of network robustness is proposed in [58] by introducing a novel representation

of interdependencies based on boolean algebra. This evaluation enables network operators to

prioritize the protection of the nodes that contribute more to the robustness of the network.
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In [56], the authors consider dependency relations not only between layers but also within

a single layer. Combining multiple factors that make a node nonfunctional, their method

adjusts the dependency of a node on the other nodes. The work in [64] also considers

the influence within a single-layer, supposing the heterogeneity of nodes. In this model, a

network can have different types of nodes such as generating and relay nodes. Zhao et al.

[84] formulate an optimization problem enhancing the system robustness, defining Shared

Failure Group (SFG), a group of nodes that can simultaneously fail due to a cascading failure

initiated by the same component.

Another branch of interdependent network research is recovery after failures [63, 21, 6,

53, 83, 41]. The works in [63, 21, 6] analyze the behaviors of failure propagations when each

node performs local healing, where a functioning node substitutes for the failed node by

establishing new connections with its neighbors. The speed of further cascades and resulting

network states are revealed by percolation theory [63, 21] or steady state analysis in the belief

propagation algorithm [6]. Also, resource allocation problems, which consider the different

roles of network nodes are discussed in [53, 83, 41]. The order of assigning repairing resources

is a critical problem during the recovery phase when the amount of available resources is

limited. The works in [53, 83] propose node evaluation measurements to decide the allocation,

while an equivalent problem in the phase diagram is discussed in [41].

Our work proposes a method to improve the survivability of interdependent networks,

following the survivability definition in [52]. Our work would be classified into the category of

protection design methods before failures. Specifically, the proposed method is exploited in a

redesign process of an existing network to enhance the survivability, while the existing works

[68, 58, 84, 56, 64] discuss the initial design of an entire network. Our protection method,

considering the functionality during the redesign, would reduce the cost of survivability

improvement in contrast to the entire reconstruction of the systems.
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2.3 Modeling and Motivating Example

In this section, we present a mathematical model for describing interdependent networks,

and we present a motivating example of our method. Section 2.3.2 summarizes related work

[52] defining the survivability for interdependent networks, which we adopt to evaluate the

networks.

2.3.1 Network Model

An interdependent network consists of k constituent graphs Gi = (Vi, Eii) (1 ≤ i ≤ k) and

their interdependency relationships, which are defined by sets of (directed) arcs Aij (1 ≤

i, j ≤ k, i 6= j) representing the provisioning between a pair of nodes in different graphs.

Edges in Eii ⊆ Vi×Vi are called intra-edges because they connect pairs of nodes in the same

network. In contrast, arcs in Aij ⊆ Vi × Vj (i 6= j) are called inter- or dependency arcs. If

there exists an arc (vi, vj) ∈ Aij (vi ∈ Vi, vj ∈ Vj), it means that a node vj has dependency

on a node vi. The node vi is called the supporting node, and vj is a supported node. A node

v is said to be functional if and only if it has at least one functional supporting node.

When an interdependent network is logically partitioned, each constituent graph Gi has

a clustering function κi : Vi −→ {1, 2, ..., γi}, where γi ∈ N is the number of clusters in

Gi = (Vi, Eii). Then, a graph Ixi = (W x
i ⊆ Vi, Eii(W

x
i )) induced by a node set W x

i = {v |

κi(v) = x (1 ≤ x ≤ γi)} is called a cluster. Note that this definition insists that a node is in

exactly one cluster.

In order to emphasize the dependency between constituent graphs, an interdependent

network can be represented as a single-layer directed graph G = (V,A), where V :=
⋃
i Vi,

and A :=
⋃
{(i,j)|i 6=j}Aij by abbreviating intra-edges. With this notation, a node v is said

to be functional if and only if degin(v) ≥ 1. Note that all the discussions in the rest of this

paper follow this single-layer graph representation.
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Additionally, we introduce a different notation of arcs with respect to their source nodes.

Let A(v) ⊆ A represent a set of arcs whose source node is v ∈ V . To identify each arc

during the restructuring process, where some arc temporarily loses its destination, each arc

is denoted as (v, ·)m (m = 1, ..., degout(v)). The index m is a given fixed identification number

for each arc in A(v). Hence, every arc in A can be specified by providing source node v and

its identification number m.

A set of constituent graphs is totally ordered by the number of nodes that are the source

of at least one intra-arc: |V out
i |, where V out

i := {v ∈ Vi | A(v) > 0}. A constituent graph

that has the least number of nodes with outgoing arcs is named the minimum supporting

constituent graph Gi: |V out
i | ≤ minj |V out

j |.

2.3.2 Survivability of Interdependent Networks

Parandehgheibi et al. [52] propose an index that quantifies the survivability of interdependent

networks against cascading failures exploiting the cycle hitting set, and they prove that the

computation of the survivability is NP-complete. They show that a graph needs to have

at least one directed cycle in order to maintain some functional nodes; in other words, the

existence of one cycle prevents an interdependent network from its entire failure. Thus, the

survivability of interdependent networks is defined as the cardinality of the minimum cycle

hitting set whose removal brings non-functionality for the entire network. Note that a cycle

hitting set S is a set of nodes such that any cycle C = (V (C), E(C)) in a given graph

G = (V,A) has at least one node in the hitting set: S ∩ V (C) 6= ∅, ∀C ∈ C(G), where C(G)

is the set of all cycles in the given graph. This definition implies that the entire failure of an

interdependent network occurs when the corresponding graph becomes acyclic. Let H(G)

denote a cycle hitting set with the minimum cardinality: |H(G)| := minS∈S |S|, where S is

the set of all the cycle hitting sets in G. Formally, the survivability of an interdependent

network G is the cardinality of the minimum cycle hitting set, |H(G)|.
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Figure 2.5. Graph G with (v1, v9).
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Figure 2.6. Graph G′ with (v1, v6).

2.3.3 Motivating Example

Adopting the survivability definition shown above, improving survivability would be equiv-

alent to increasing the number of disjoint cycles in a graph. Figures 2.5 and 2.6 show an

example comparing two similar interdependent networks.

In graph G in Figure 2.5, there exists two cycles: C1 and C2. If v2, which is in both

V (C1) and V (C2), becomes nonfunctional because of a failure, all the nodes in G eventually

lose their supporting nodes and become nonfunctional: H(G) = {v2}. On the other hand, no

single node failure can destroy all the three cycles in G′ in Figure 2.6, while a two-node failure

can make it acyclic (e.g. H(G′) = {v2, v7}). Therefore, the graph G′ is more survivable than

G, since 1 = |H(G)| < |H(G′)| = 2, although they differ only in the destination node of one

dependency arc ((v1, v9) in G or (v1, v6) in G′). Supposing that G is an existing topology

of a network, a method that relocates (v1, v9) to (v1, v6) can achieve an enhancement of the

survivability.
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2.4 Problem Formulation

2.4.1 Assumptions

This paper deals with the case in which interdependent networks have two types of homo-

geneous constituent networks with identical dependencies (k = 2). However, our discussion

with the restriction on k can be easily extended to more general cases. In more advanced

network models, each constituent network can have different types of nodes, such as in-

dependently functional generating nodes and relay nodes, which need provisioning from a

generating node via paths of intra-edges [64]. Nevertheless, for simplicity, this work follows

the assumption in [52] that each node in a constituent network is directly connected to a

reliable conceptual generating node by a reliable edge (homogeneous constituent graphs).

Moreover, it is assumed that each supporting node provides a unit amount of support that is

enough for a supported node to be operational (identical dependencies), following the same

model in [52].

Additionally, this paper presumes that each cluster x receives some support from at least

one of the clusters that are supported by cluster x. In other words, this presumption excludes

the case that a cluster does not receive provisions from any of the clusters that the cluster

is supporting.

2.4.2 Requirement Specification

One aspect contrasting our scheme to other works is the consideration to improve the surviv-

ability of existing interdependent networks by changing some topological structures. Because

all the nodes need to remain functional even during the relocations of dependency relations,

it is necessary to avoid the loss of all supporting nodes for any node at any stage of the

restructuring. In other words, each node needs to be survivable from a cascading failure,

which requires the direct or indirect support by the nodes in directed cycles. This constraint

is formally represented as the following rule for the live restructuring.
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1. Every node remains reachable from a node in a directed cycle via at least one directed

path at any stage of the restructuring.

In addition to guaranteeing the continuous availability, the amount of provisioning pro-

vided by each supporting node should remain the same after the restructuring in order to

consider the capability of each node. The capability could be, for example, the limit on

electricity generation, computation performance, or the number of ports available.

2. The number of supports that a node provides must remain less than or equal to its

original provisioning capability.

Furthermore, depending on which cluster a node in graph Gi belongs to, the node has a

constraint on clusters in Gj that it can support. The constraint is given by a supportability

function σij : Vi −→ 2γj , where 2γj is the power set of the cluster indices in a constituent

network Gj. This means that a node v (∈ Vi) can provide its support to the nodes in the

clusters of Gj given by the supportability function. This specification corresponds to the

geographical, economic, or logical constraints on the accessibility of supports from a node

to specific groups of nodes. For example, it is impossible for information control node v to

have electricity supply from node u if v and u are geographically far apart or managed by

different administrative institutions. The geographical or administrative domain is shown as

a cluster in each constituent graph, and dependency relations of the nodes should be closed

within a set of permitted nodes, which are geographically close, or managed by the same

company or allied companies, since each cluster should be independent from the outsiders.

This constraint relating to network clustering is simply expressed as follows.

3. All the provisionings from a node u are directed towards the nodes in the clusters that

u can support, as designated by the supportability function σij.
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2.4.3 Clustered ∆H Problem

This section formulates the clustered ∆H problem, which is aimed at enhancing the surviv-

ability of a given interdependent network with clusters by restructuring dependency relation-

ships, considering the continuous availability, supporting capability, and clustering constraint

of each node.

Considering the continuous availability of an existing network during restructuring leads

to the formulation of a gradual reconstruction problem, where no relocation of two or more

different arcs is conducted at a time. Each phase relocating one arc is named a step. Let

Gs = (V,As) denote the graph representing the interdependent network topology at step s.

The improved interdependent network Gs+1 after step s consists of a node set V , which is

the same node set as in graph Gs, and an arc set As+1 amended by the relocation of an arc

(u, v) ∈ As to (u, v′), where v′ ∈ V is a new destination for the arc (u, v).

The clustered ∆H problem is to maximize the difference in survivability between a given

interdependent network, which is recognized asG0, and the resulting network after a sequence

of consecutive improvements. The resulting network is represented as Gf , where f denotes

the step at which the last arc relocation is completed. Formally, the objective is to maximize

the difference between |H(G0)| and |H(Gf )|, which is defined as ∆H.

Problem 1 (Clustered ∆H Problem). For a given G0 = (V =
⋃
i Vi, A

0), the number of

clusters γi ∈ N in each constituent graph Gi, a clustering function κi : Vi −→ {1, 2, ..., γi}

for each constituent graph Gi, and supportability functions σij : Vi −→ 2γj , maximize

∆H := |H(Gf )| − |H(G0)|, where Gs+1 = (V,As+1) (0 ≤ s ≤ f − 1) is obtained by the

relocation of the destination of a single arc in As: As+1 = As \ (u, v) ∪ (u, v′), satisfying

1. degin(v)Gs ≥ 1 ∀v ∈ V ,

2. degout(v)Gs+1 = degout(v)Gs ∀v ∈ V ,
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3. κj(v ∈ Vj) ∈ σij(u ∈ Vi) ∀(u, v) ∈ As.

These three conditions correspond to the three rules described in Section 2.4.2. The

second and third conditions are easily derived from the corresponding rules. Lemma 1 shows

the equivalence of the condition 1 and Rule 1.

Lemma 1. When degin(v)G ≥ 1 (∀v ∈ V ) in a connected directed graph G = (V,A), (a) G

has at least one directed cycle, and (b) any node v ∈ V is reachable from a node u ∈ V that

is contained in a directed cycle.

Proof. degin(v)G ≥ 1 (∀v ∈ V ) insists that any node v has at least one parent v′. The path

v ← v′ ← ... composed by repeating the trace of parents can be acyclic until the length of the

path is |V −1|. However, the |V |th node must have at least one parent from the assumption.

Thus, the pigeonhole principle indicates that it is necessary that the path forms a directed

cycle.

2.4.4 Problem Analysis

This section provides the analysis on the trivial optimal case of the clustered ∆H problem

with a special setting, where each of constituent graph consists only of one cluster. Let

ρ((u, ·)m) denote the number of relocations that arc (u, ·)m ∈ A experienced during the

restructuring process. Note that
∑

u∈V
∑degout(u)

m=1 ρ((u, ·)m) = f.

From the definition, the optimum survivability cannot exceed the number of supporting

nodes, which each have at least one outgoing arc, in the minimum supporting constituent

graph Gi. This is because a set of such nodes covers all the directed cycles in an interdepen-

dent network G. This observation implies that the optimum survivability is achieved when

every node vi ∈ Vi of Gi has an injective mapping to a node in Vj (j 6= i). In other words, for

each node vi in Gi, there exists at least one unique disjoint cycle whose length is 2 with vj

in Gj. The following lemma gives a sufficient condition to reach the ideal state by repeated

relocations while preserving the problem constraints.
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Gj

v′

u′ u′′ u′′′

Figure 2.7. Original Dependencies, where
(v′, u′) is missing. Note that this figure only
shows Aji. The symmetric discussion can be
done for Aij.

(1)

Gi

Gj

v′

u′ u′′ u′′′

(2)

Figure 2.8. Relocation Steps (1) to maintain
the functionality of u′′′, and (2) to form a
length-2 cycle with v′ and u′.

Lemma 2. When the number of relocations for each arc ρ((u, ·)m) is not upper bounded,

in order to have the optimum restructuring, it is sufficient that the minimum supporting

constituent graph Gi satisfies |Vj| <
∑

u∈Vi |A(u)| and
∑

v∈Vj |A(v)| > |Vi| (j 6= i). Then,

the optimum survivability becomes |V out
i |.

Proof. The maximum survivability achievable by restructuring is equal to the number of

nodes that have at least one outgoing arc |V out
i | in the minimum supporting constituent

graph Gi = (Vi, Eii), because the removal of such nodes from Gi must destroy all the cycles

between Gi and another constituent graph. In order to achieve the maximum survivability

via the restructuring process, it is necessary that each node u ∈ V out
i belongs to a cycle

whose length is 2. Otherwise, the cycle contains another node w ∈ V out
i , and the removals

of such w’s make u lose all incoming arcs. Note that a node in Vi \ V out
i is never a part of

directed cycles, since it has no outgoing arc.

Suppose that we have the minimum supporting constituent graph Gi and another con-

stituent graph Gj that satisfy the two conditions in the lemma. From the definition of the

minimum supporting constituent graph, we can make |V out
i | pairs of nodes 〈u ∈ V out

i , v ∈

V out
j 〉, which are expected to form a length-2 cycle together after restructuring, so that no

two nodes in Vi are paired with the same node in V out
j .
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Figure 2.9. Original graph G with Marginal Arcs (v2, v3) and (v5, v3).

Figures 2.7 and 2.8 illustrate a general example of a restructuring process to form such

a length-2 cycle by dependency arc relocations. Note that the figures only show Aji, but

the symmetric argument can be done for Aij. Let 〈u′ ∈ V out
i , v′ ∈ V out

j 〉 be a pair such that

(v′, u′) /∈ Aji. In order to make a length-2 cycle between v′ and u′, the arc (v′, u′′′) should be

relocated to (v′, u′). However, the relocation makes u′′′ lose all of its incoming arc. The loss

of incoming arc of u′′′ is always avoided by relocating one of the arcs incoming to u′′ to u′′′

(See Figures 2.7 and 2.8 (1)). The supposition in the lemma and the pigeonhole principle

suggest the existence of at least one node u′′ ∈ Vi that has two incoming arcs. After the

adjustment of the provisioning for u′′′ by this relocation, the arc (v′, u′′′) can be relocated to

(v′, u′) (See 2.7 and 2.8 (2)).

For a pair 〈u′ ∈ V out
i , v′ ∈ V out

j 〉 such that (u′, v′) ∈ Aij, similar relocations are al-

ways possible, because |Vj| <
∑

u∈Vi |A(u)|. Thus, these relocations eventually achieve

the maximum survivability by forming |V out
i | length-2 cycles that each consist of a pair

〈u ∈ V out
i , v ∈ V out

j 〉.

Some propositions similar to Lemma 2 appear in related literature [84, 10]. The sufficient

condition provided in Lemma 2 allows the entire restructuring of inter-arcs by repeated

relocations of each arc. Therefore, the ∆H problem is recognized as a design problem of an

entire interdependent network discussed in [84] under these assumptions. Also, the work [10]
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Figure 2.10. Modified graph G′ with a new arc (v5, v1).
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Figure 2.11. Modified graph G′′ with a new arc (v2, v4).

claims that such a one-to-one provisioning relation realizes the robustness, while assuming

certain structural characteristics of random graphs.

However, it is unrealistic to relocate a dependency arc many times, when considering

the overhead of the changes of provisioning relations in network systems. Therefore, the

following part of our paper discusses the case where the number of relocations are strictly

restricted: ρ((u, ·)m) ≤ 1 (1 ≤ m ≤ degout(u), ∀u ∈ V ). Under this condition, it cannot

be guaranteed to obtain the optimum survivability even when the sufficient condition above

holds.
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2.5 heuristic algorithm for ∆H Problem

This section proposes a heuristic algorithm for the clustered ∆H problem. Before providing

the details of our heuristic algorithm, we first define special types of arcs named Marginal

Arcs (MAs), which are candidates for the relocations in Section 2.5.1. Then, the heuristic

algorithm, which consists of two algorithms: Find-MAs and ∆H, is described. The Find-

MAs algorithm enumerates all the arcs that match the definition of MAs. With the set of

MAs found by the Find-MAs algorithm, the ∆H algorithm decides appropriate relocations

of the dependency arcs in the set, considering the disjointness of newly formed cycles, so

that it can improve the survivability of a given network.

After the discussion for a simple case with only one cluster in each constituent graph in

Sections 2.5.2 to 2.5.3, Section 2.5.4 explains how the other cases with multiple clusters are

broken down into the simple case.

2.5.1 Restructuring of Dependencies

To guarantee continuous availability, it is necessary to classify the dependency arcs into either

changeable or fixed arcs. However, it is computationally difficult to know the classification

beforehand under the condition of ρ((u, ·)m) ≤ 1 (∀u ∈ V ), because this process involves

enumeration of all the permutations of arc relocations and their combinations of destinations.

Thus, in this paper, the classification is simplified by using a sufficient condition, while this

enumeration is likely to become another optimization problem for further investigation.

As observed in Section 2.3.3, increasing disjoint cycles in a given network could be an

important factor to enhance overall survivability. Hence, our method maintains all existing

cycles, which is sufficient to avoid cascading failures, and tries to reallocate the destinations

of the arcs that do not belong to directed cycles and that do not make their descendant nodes

nonfunctional. Let the arcs that are not in any cycles in a given directed graph G = (V,A)
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be called Marginal Arcs (MAs). Formally, the set M ( A of MAs is defined as

M := {(u, v) | (u, v) /∈ A(C) ∀C ∈ C(G)}. (2.1)

Lemma 3. A removal of any marginal arc never decreases the survivability of an interde-

pendent network: |H(G)| ≤ |H(G)|, where G is a given graph, and G is the graph obtained

by the removal.

Proof. Let M be a set of marginal arcs. From the definition of MAs (Eq. (2.1)), the

removal of MAs does not destroy or connect any existing cycles in G = (V,A). Therefore,

|H(G)| = |H(G)|, where G = (V,A \M).

Moreover, appropriate relocations of the removed MAs could improve the survivability of

interdependent networks, assuring operability during the relocation process and maintaining

the provisioning capability of each node. Let us analyze the effect of dependency relocations

using simple examples in Figures 2.9-2.11. The given graph G in Figure 2.9 has two marginal

arcs: M = {(v2, v3), (v5, v3)}. In order to maintain at least one supporting node for v3, one

of the MAs has to remain the same, and the other can be relocated. Figure 2.10 shows

the case of relocating (v5, v3) to (v5, v1); on the other hand, Figure 2.11 indicates the case

of relocation of (v2, v3) to (v2, v4). Even though one new cycle (C3 and C ′3 respectively)

is formed by each relocation, the modified graphs G′ and G′′ have different survivability:

|H(G′)| = 1 (= H(G)), and |H(G′′)| = 2. This is because the cycles in G′ are not disjoint

with each other: V (C1) ∩ V (C2) ∩ V (C ′3) 6= ∅; in contrast, V (C1) ∩ V (C2) ∩ V (C ′′3 ) = ∅ in

G′′. Therefore, it could be said that the appropriate relocation for improving survivability

is to form disjoint cycles.

2.5.2 Find-MAs Algorithm

The Find-MAs algorithm first distinguishes MAs M , which are candidate arcs for relocations,

from the arcs in directed cycles in a given graph G = (V,A), by employing Johnson’s
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Algorithm 1 ∆H-algorithm(G, l)

Input: subgraph (directed graph) G = (V,A), maximum hop l ∈ N (odd)
1: M ← find-MAs(G) # M ⊂ A
2: for each (v, w) ∈M do
3: if degin(w) ≥ 1 after A \ {(v, w)} then
4: while True do
5: pick C ∈ C(v) (randomly)
6: for i← l; i > 0; i← i− 2 do
7: pick u ∈ V (C) : dC(v, u) = i
8: if u /∈ U then
9: A← A \ (v, w) ∪ (v, u)
10: U ← U ∪ {n | dC(v, n) ≤ i}
11: break to next arc in M (line 2)
12: end if
13: end for
14: end while
15: pick (u, v) ∈ Ain(v) (randomly) # Minimal-add process (line 15,16)
16: A← A \ (v, w) ∪ (v, u)
17: end if
18: end for

algorithm [31]. Johnson’s algorithm enumerates all elementary cycles in a directed graph

within O((|V |+ |E|)(|C(G)|+ 1)). It is enough for distinguishing MAs to obtain elementary

directed cycles because any non-elementary cycle can be divided into multiple elementary

cycles within which dependency relationships are closed. After the enumeration of cycles in

G by Johnson’s algorithm, the set of MAs is obtained by M ← A \⋃C∈C(G)A(C).

2.5.3 ∆H Algorithm

With the set of MAs obtained by Johnson’s algorithm, the ∆H algorithm (shown as pseudo

code in Algorithm 1) relocates the destinations of MAs, considering the disjointness of newly

created cycles. (See the discussion in Section 2.5.1.) For each MA (v, w), our algorithm first

checks whether or not the relocation of this MA causes the loss of supports for the current

destination w: degin(w)G=(V,A\{(v,w)}) ≥ 1 (line 3).
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Figure 2.12. A given graph G with M = {(v1, v5), (v2, v6), (v3, v7), (v6, v7),
(v1, v7), (v3, v5), (v5, v6)}.

If w still has some supporting node after the removal of (v, w), the next step is determining

a new destination for (v, · ). Our algorithm randomly selects one of the cycles that contains

the source v denoted by C ∈ C(v) (line 5). There may be multiple possible candidate nodes

for a new destination in the cycle C. Thus, the new destination is decided by the size of the

newly formed cycle, which is a result of the relocation (lines 6, 7). To represent the size of

the newly formed cycle, the distance from a node v to a node u in an (existing) cycle C in

the counter direction is denoted as dC(v, u) in our pseudo code. When the maximum hop is

designated by l, the algorithm tries to make a new cycle with size l+ 1 using a node u, such

that dC(v, u) = l, as the destination of the MA. If it fails to form the cycle, it attempts to

compose a smaller cycle using a node u′ such that dC(v, u′) = l−2. Because of the definition

of the dependency, an arc must span between two different layers or constituent networks.

Since the node at dC(v, u) = l−1 in C is in the same constituent network as the source node

v, it cannot be a new destination.

Consider an example using a given graph G shown in Figure 2.5 and the restructured

graph in Figure 2.6. Since the removal of (v1, v9) does not make v9 lose all its incoming

dependency arcs, our algorithm tries to relocate the destination of this arc to one of the

nodes in the cycle C1, which are v2, v6, v8. For instance, in the case l = 3, a new cycle C3 is

31



C2

v1

v3v4 v5 v6 v7

v2

C1

C3

C4

C5

Minimal-add

Regular 
relocation

Figure 2.13. A modified graph G′ with new arcs: (v1, v4), (v3, v2), (v2, v1), (v6, v5).

formed as depicted in Figure 2.6 by choosing v6, that satisfies dC1(v1, v6) = l (= 3). Similarly,

if l is initialized to 1, a new cycle C3 is formed using {v1, v8}.

After selecting a destination candidate u in line 7, our algorithm checks if u is already

used to create a new cycle (line 8). This is confirmed by a set of nodes U storing all the

nodes that are in newly formed cycles: {n | dC(v, n) ≤ i} (line 10). For instance in Figure

2.6, U ← U ∪ {v1, v6, v7, v8}. As will be understood, when another MA tries to form a new

cycle using one of these nodes in U , the new cycle and C3 share some nodes, which means

that those cycles are not disjoint. Also, the arc set A is updated when the new destination

is finally fixed (line 9).

If there exists no possible destination for an MA (v, w) that satisfies all the conditions,

the relocation of the MA is conducted by randomly selecting an incoming arc of v, (u, v) and

relocating (v, w) to (v, u), so that it composes a cycle of length 2 (line 15, 16). This random

selection is named Minimal-add process.

The MAs relocated by the Minimal-add process satisfy either of the following cases: 1)

The node v does not belong to any cycles: C(v) = ∅, or 2) all the nodes in the cycles of

C(v) are already used to compose new cycles by other MAs. Figures 2.12 and 2.13 show

examples of these two conditions (dashed arcs). A given graph G has the MA set M =

{(v1, v5), (v2, v6), (v3, v7), (v6, v7), (v1, v7), (v3, v5), (v5, v6)}. Eventually, the ∆H algorithm

respectively relocates (v1, v5) and (v3, v7) to (v1, v4) and (v3, v2). Because v6 is not in any
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cycles in G (reason 1), the Minimal-add process picks the source of one of the current

incoming arcs in Ain(v), v5 as the new destination. Also, (v2, v6) does not have any possible

destinations that are not in the set U (reason 2), and it is relocated to (v2, v1) by the

Minimal-add process.

2.5.4 Application to Clustered Networks

Our heuristic algorithm employs another algorithm named Decompose-cluster to form sub-

graphs, which indicate candidate destinations for the MAs in each cluster, from a given

interdependent network. When interdependent networks are clustered, the modification of

the destinations of MAs needs to be conducted under more constraints given by supporta-

bility functions σij: κj(v ∈ Vj) ∈ σij(u ∈ Vi) ∀(u, v) ∈ A. The Decompose-cluster algorithm

selects each cluster (node set W x
i (1 ≤ i ≤ k, 1 ≤ x ≤ γi)) and collects MAs (u, v) whose

sources are in the cluster (u ∈ W x
i ), or whose destinations and sources are respectively in

the cluster W x
i and in a cluster in σij(v) (v ∈ W x

i & κj(u ∈ Vj) ∈ σij(v))). Using the col-

lected MAs and their endpoints, a subgraph Y for reallocations of MAs in W x
i is composed.

Each subgraph for each cluster is given to the ∆H-algorithm so that it can improve the

survivability by restructuring dependencies in the subgraph.

As will be understood, no directed cycles exist if no MA matches the condition of v ∈ W x
i

& κj(u ∈ Vj) ∈ σij(v). However, this is not going to happen in our work due to the

assumption mentioned in Section 2.4.1. Note that the absence of such MAs means that

nodes in a cluster x are not provided any support by the nodes that receive some supports

from the nodes in the cluster x.

2.5.5 Complexity Analysis

The Decompose-cluster algorithm extracts
∑k

i=1 γi subgraphs from a given graph G = (V,A).

The number of clusters γi in each constituent graph tends to be much smaller than the
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Algorithm 2 Decompose-cluster(G)

Input: interdependent network (directed graph) G = (V =
⋃k
i=1 Vi, A),

clustering functions κi
1: D ← ∅
2: for a node set W x

i (1 ≤ i ≤ k, 1 ≤ x ≤ γi) do
3: P ← ∅, R← ∅
4: for each (u, v) ∈ A \D do
5: if u ∈ W x

i or (v ∈ W x
i & κj(u ∈ Vj) ∈ σij(v)) then

6: P ← P ∪ {u, v}
7: R← R ∪ (u, v)
8: D ← D ∪ (u, v)
9: end if
10: end for
11: compose graph Y = (P,R)
12: ∆H-algorithm(Y, l)
13: end for

number of nodes; thus,
∑k

i=1 γi can be considered as a constant. In order to compose

each subgraph, the algorithm requires checking the source and destination of each arc in

A. However, each edge appears in exactly one subgraph because of the used edge set D.

Therefore, the total complexity of the Decompose-cluster algorithm is O(|V |+ |A|).

The complexity of the ∆H-algorithm is sensitive to the number of cycles in the interde-

pendent network. It is known that Johnson’s algorithm finds all elementary cycles within

O((|V |+ |E|)(|C(G)|+ 1)). The ∆H-algorithm determines a new destination after l
2
×C(G)

searches for each MA, in the worst case. When only one cycle whose size is 2 exists in

the input, and the other nodes are supported by the cycle, the size of the set M becomes

|E| − 2. It is obvious that the complexity of the Minimal-add process is O(1), so the worst

case analysis takes the case where all MAs are reallocated by the ∆H-algorithm. Thus, its

complexity is O((|V |+|E|)(|C(G)|+1))+O((|E|−2)(d l
2
e×|C(G)|)). Assuming the maximum

hop l is small enough to be considered as a constant, the overall complexity of our heuristic

algorithm becomes O((|V | + |E|)|C(G)|). Note that the assumption on l is valid with our

strategy, which tries to increase disjoint directed cycles in a given graph.
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2.5.6 Optimality in Special Graphs

To analyze the performance of our heuristic algorithm, we consider the survivability improve-

ment in special graphs where either an exhaustive search gives us the optimum survivability,

or some special properties allow us to compute the optimum.

In the analysis, the upper bound of the survivability improvement, which is used as a

benchmark for the rest of this paper, is calculated based on the number of the MAs that

satisfy the following two conditions. First, let Vs be a set of nodes that hold more than one

MA, and Ms be a set of MAs whose source nodes are in Vs. Even when the MAs from v ∈ Vs
form more than one new cycle, the removal of such a source node v can destroy all the newly

formed cycles. This indicates that restructuring increases the survivability by at most |Vs|,

when relocating MAs in Ms. Second, let Vd be a set of nodes whose incoming arcs are all

MAs, and Md be a set of MAs whose destination nodes are in Vd. If all the MAs incident to

v ∈ Vd are relocated, v loses its functionality during this restructuring. Therefore, at least

one MA should remain as an incoming arc to v. This implies that the number of cycles newly

formed by the MAs in Md is at most |Md| − |Vd|. Thus, the upper bound U is obtained by

|M | − |Ms|+ |Vs| − |Vd|.

Figure 2.14 illustrates a comparison of our algorithm with the optimum solution in a small

interdependent network such that each constituent graph has 15 nodes, and the number of

dependency arcs is 84, including 5 MAs. The optimum solution is obtained by an exhaustive

search of 759,375 combinations of reallocations. This numerical example shows that the

solution given by the ∆H algorithm would not provide solutions that are exceptionally

divergent from the optimum solution. It also infers that the upper bound is not tight in

general.

Figure 2.15 indicates that the survivability obtained by our restructuring heuristic al-

gorithm matches the optimum in a special class of graphs, which are named MA-saturated
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Figure 2.14. Numerical comparison with the optimum solution in a small interdependent
network.
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Figure 2.15. Survivability of MA-saturated Path-Sunlet graphs ζ2(G ∈ L) with two length-3
paths: |P| = 2, ki = 3 (∀Pi ∈ P).

Path-Sunlet Graphs ζ2(G), G ∈ S. The optimum value of survivability for these graphs is

always computable based on the following discussion.

Definition 1. Path-Sunlet Graphs L: A set of graphs satisfying the following conditions

are named Path-Sunlet graphs. Let L denote the set of Path-Sunlet graphs.
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• G ∈ L only has one cycle C.

• The arcs that are not in the cycle C form a set of disjoint paths whose initial nodes

are in C: P = {Pi = (vi1, v
i
2, ..., v

i
ki

) | vi1 ∈ C and Pi ∩ Pj = ∅ (∀Pj 6=i ∈ P)}.

Definition 2. MA-saturation ζδ(G) of a graph G: The MA-saturation is an operation of

adding additional arcs to a given graph until any addition of an arc makes the graph non-

simple, maintaining the out-degree constraint that the out-degree of any node does not

exceed a given constant δ ∈ N.

Claim 1. The optimal restructuring of MAs in MA-saturated Path-Sunlet graphs ζ2(G), G ∈

L consists of forming length-2 cycles using an MA and an edge in either Pi ∈ P or C.

We consider the cases where |P| ≥ 1, because the survivability in the case of |P| = 0 is

obviously
⌈
|V (C)|

2

⌉
.

Lemma 4. By removing arcs that are not in any cycle, the optimally restructured MA-

saturated Path-Sunlet graph ζ2(G) is decomposed into some sequence of cycles.

Proof. Three or more cycles do not meet at the same node, since δ = 2. Therefore, the only

possible topology with multiple length-2 cycles is a chain of cycles, in which two cycles share

exactly one node.

Lemma 5. The survivability of the optimally restructured MA-saturated Path-Sunlet graphs

ζ2(G), G ∈ L is
∑

q∈Q
⌈
q
2

⌉
, where Q is the set of all the sequences of cycles obtained by

removing the arcs that are not in any cycles.

Proof. Removal of one node that is shared by two cycles breaks the two cycles. When q is

even, the process gives us the survivability of q
2
. If q is odd, one additional removal is needed

to destroy the remaining cycle. Thus, the survivability of a sequence of q cycles is
⌈
q
2

⌉
.

Since each sequence in Q is disjoint with the other, the survivability of the entire graph

is obtained by summing up the survivability of each sequence.
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2.6 Simulation

To understand the performance of the proposed algorithm, our simulations are conducted

in both non-clustered and clustered interdependent network models of different sizes. The

results from the simplest cases where each constituent network only consists of one cluster

(non-clustered) are first described, and the clustered cases follow.

2.6.1 Network Topology

The performance of the proposed algorithm is analyzed in random directed bipartite graphs

that contain at least one directed cycle. Assuming the situation in which a current in-

terdependent network is working normally, each node is either a member of some cycle or

reachable from a node in a cycle through some directed path in the input graph. Because

our algorithm only concerns the dependency arcs between 2 constituent graphs (k = 2), any

interdependent network is represented as a directed bipartite graph whose arcs connect a

pair of different types of nodes.

Each random bipartite graph is generated by specifying the following parameter: Vi,

maxv∈V degin(v) and minv∈V degin(v). In order to observe the performance in different con-

ditions, experiments are conducted in symmetric and asymmetric interdependent networks.

A symmetric interdependent network has constituent networks which each have identical

number of nodes: |V1| = |V2|, while constituent networks of an asymmetric interdependent

network have different number of nodes: |V1| = |V2|
q

(q ∈ N). The degree of each node is

determined based on the uniform distribution between the given maximum and minimum

incoming degree.

2.6.2 Clustering Settings

As the non-clustered cases have symmetric and asymmetric constituent graphs, clustered

interdependent networks are also examined in three patterns of topology configurations. In
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Figure 2.16. Dependency models of clustered interdependent networks. Arrows show the
dependency relationships between clusters. Model 1: solid. Model 2: solid and dashed.
Model 3: solid, dashed, and dotted.

our simulations, each constituent graph has three clusters: W 1
i , W 2

i and W 3
i (i = 1, 2) (See

Figure 2.16). In symmetric cases, a pair of corresponding clusters in different constituent

graphs have the same number of nodes: W x
1 = W x

2 , while a cluster is half-sized to the

corresponding cluster in the other constituent graph in asymmetric models: W x
1 =

Wx
2

2
.

Also, Figure 2.16 illustrates the three models that have different dependency relationships

indicated as arrows. Note that when an arrow is drawn from W x
i to W x′

j , it means that the

nodes in cluster W x′
j can have supports from the nodes in W x

i . Model 1 consists only

of the solid arrows, which means that each pair of corresponding clusters has dependency

relationships. Model 2 has the dependencies illustrated by the solid and dashed arrows,

while Model 3 has all the arrows (solid, dashed, and dotted). A major difference between

these models is the possibility for a network to have some directed cycles over three or more

clusters. In Models 1 and 2, directed cycles can exist only in a subgraph consisting of W 1
1

and W 1
2 , W 2

1 and W 2
2 , or W 3

1 and W 3
2 , while a directed cycle can lie over the entire graph

containing all the clusters in Model 3.

2.6.3 Metrics

The survivability of the given graphs, restructured graphs, randomly reassigned graphs, and

the upper bound of the improvement are illustrated in our results. The random reassignments
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Figure 2.17. Survivability of interdependent networks before and after the improvement
under |V1| = |V2|, maxv∈V degin(v) = 4, and minv∈V degin(v) = 2, and l = 1, 3.
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Figure 2.18. Survivability of interdependent networks before and after the improvement
under |V1| = |V2|

2
, maxv∈V degin(v) = 4, minv∈V degin(v) = 2, and l = 1, 3.

of MAs are conducted with a uniform distribution over all the nodes in the other constituent

graph from the constituent graph that includes the source of an MA.
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Figure 2.20. Survivability of clustered interdependent networks (Model 2) before/after the
improvement under |W 1

1 | = |W 3
1 | = |W 1

2 | = |W 3
2 |, |W 2

1 | = |W 2
2 |, maxv∈V degin(v) = 4,

minv∈V degin(v) = 2, and l = 1.

Computing the size of the cycle hitting set is known to be NP-complete even in bipartite

graphs, so the exact value cannot be obtained in larger graphs. Our evaluation is conducted

using a well-known approximation algorithm whose approximation factor is ln |V |+ 1 [12].
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Figure 2.22. Comparison of survivability among different dependency models.

Furthermore, the density of a given graph G = (V,A) defined by |A|∏
i |Vi|

is used to examine

the relationship between the survivability improvement, and the maximum and minimum

degrees.
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2.6.4 Results

Non-clustered Cases

Figures 2.17 and 2.18 illustrate the survivability of the given and restructured graphs with

identical and halved size constituent graphs, respectively. In both cases, our method demon-

strates more improvement of the survivability compared to the random reassignment. The

survivability of the original graphs |H(G)| maintains a similar value regardless of the size of

graphs, though the survivability of the graphs restructured by our method |H(G′)| steeply

increases along with the size of the graph. Since, in the original graph G, arcs are randomly

added, it could be difficult to form larger directed cycles. Therefore, it is reasonable that

the number of disjoint cycles indicates the tendency to stay within a similar range of values.

On the other hand, there would exist more MAs in larger graphs, because these graphs have

more arcs that are not in directed cycles. This results in a dramatic enhancement of the

survivability in larger graphs. The difference caused by the given maximum hop l for our

algorithm remains small over all sizes of a graph.

Figure 2.19 indicates the relationship between the density of graphs and ∆H, the amount

of survivability improvement. We compare our method to the random reassignment. The

result shows that, in graphs with lower density, our method has greater success in increasing

the survivability. An observed general trend of our method is the gradual decrease in ∆H in

accordance with the density. This trend seems to be induced by the fact that the graphs with

more arcs have a higher possibility of composing cycles even in the original topology. This

implies that graphs with higher density have fewer MAs that can form new disjoint cycles.

On the other hand, the random reassignment does not demonstrate its effectiveness for the

improvement in graphs with any density, which is the same result from Figures 2.17 and

2.18. Moreover, the random reassignment sometimes decreases the survivability (∆H < 0).

It is conceivable that the reassignment connects two (or more) cycles and makes it possible
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to decompose all these cycles by the removal of a node. This result implies that imprudent

restructuring of the dependency may cause more fragility of the interdependent networks.

Clustered Cases

The results in clustered interdependent networks whose dependency relationships follow

Model 2 are shown in Figures 2.20 and 2.21. Similar trends to non-clustered cases are

observed for both symmetric and asymmetric cases. The proposed method succeeds in

increasing the survivability for different sizes of interdependent networks.

Figure 2.22 illustrates the difference in survivability after restructuring among the three

types of dependency models of symmetric networks. The value of “Additive” is obtained by

the simple addition of non-clustered cases that jointly compose a clustered case. For instance,

the case of clustered networks consisting of 20, 40, and 20 nodes clusters is compared with

the sum of the survivability of the cases of non-clustered networks of 20, 40, and 20 nodes

shown in Figure 2.17. The dependency relations among clusters increase from Model 1 to

Model 3 (See Fig 2.16).

Model 1 gives similar survivability to the simple addition of non-clustered cases, since a

pair of corresponding clusters in two constituent graphs is independent from the other pairs

in this model. In Model 2, the survivability of the entire network increases, because the nodes

in cluster W 2
i can have more supports from the clusters whose cycles are disjoint from the

cycles in W 2
i . Although more supports exist among the clusters in Model 3, its survivability

is less than the other models. In Model 3, a cycle can lie on more clusters because of the

bidirectional dependencies among all the clusters. This topological characteristic is likely

to increase the overlapping of multiple cycles and results in the decline of survivability in

this model. These results cast a doubt on a naive statement claiming that the increase of

dependencies induces more fragility in general interdependent networks.
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Figure 2.23. The number of failed nodes (Worst case and Average) after a single node failure
under |V1| = |V2|, maxv∈V degin(v) = 4, minv∈V degin(v) = 2, and l = 1.

2.7 Discussion: Impact Alleviation vs Survivability

Although it is not the primary focus of this paper, in this section, we evaluate the behavior of

the proposed algorithms in terms of their effect on the size or impact of a cascading failure.

Figure 2.23 illustrates the influence of our dependency modifications on the size of cascading

failures induced by a single node. In this experiment, the impact of a single node failure at

a node v is defined as the number of nodes θv that become nonfunctional after a cascading

failure initiated by the failure of v. The results are analyzed in terms of the following two

metrics:

• Worst (non-filled points): the size of the largest cascading failure: maxv∈V θv,

• Average (filled points): the average size of all possible cascading failures:
∑

v∈V θv
|V | .

The robustness of restructured networks against a single node failure always declines in

comparison with the original topology. The decline in the size of the largest cascading failure

is most remarkable in the case of |V1| = |V2| = 50 in our simulation. In this case, the size of

a cascading failure increases by 1 node after the restructuring.
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In general, the concentrations of provisioning on a certain portion of a network can

improve the survivability, though it can make the other portions more fragile. In contrast,

appropriate distributions of provisioning are necessary to alleviate the impact of any possible

single node failure. This difference in robustness against single node failures and system

survivability could be a reason for the decline.

However, when examining the average size of cascading failures, it is observed that the

increase in the average number of failed nodes is suppressed within 0.1 nodes over all network

sizes. Thus, it could be said that our method does not deteriorate the robustness against

single node failures.

2.8 Conclusion

This paper addresses the design problem of survivable clustered interdependent networks un-

der some constraints relating to the existence of legacy systems during restructuring. Based

on the definition of the survivability proposed in related work, it is claimed that the increase

of disjoint cycles could enhance the survivability. The proposed heuristic algorithm tries to

compose new disjoint cycles by gradual relocations of certain dependencies (Marginal Arcs)

to guarantee the functionality of existing systems. Our simulations indicate that the algo-

rithm succeeds in increasing the survivability, especially in networks with fewer dependencies.

Moreover, the empirical result implies that the number of dependencies, in general, is not

the root cause of the vulnerability to cascading failures. Rather, the appropriate additions

of dependencies can improve the overall survivability, while poorly designed dependencies

make networks more fragile. When redesigning the interdependency between control and

functional entities in SDN, NFV, or CPSs based on the proposed algorithm, the possibility

to experience catastrophic cascading failures would decrease.
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CHAPTER 3

DEEPPR: PROGRESSIVE RECOVERY FOR INTERDEPENDENT VNFS

WITH DEEP REINFORCEMENT LEARNING

The increasing demand for diverse network services entails more flexible networks that are

realized by virtualized network equipment and functions. When such advanced network

systems face a massive failure by natural disasters or attacks, the recovery of the entire

system may be conducted progressively due to limited repair resources. The prioritization

of network equipment in the recovery phase influences the interim computation and com-

munication capability of systems since the systems are operated under partial functionality.

Hence, finding the best recovery order is a critical problem, which is further complicated by

virtualization due to the interdependence between Virtualized Network Functions (VNFs)

and infrastructure components. This chapter1 discusses a progressive recovery problem un-

der limited resource availability in networks with VNFs, where some interdependencies exist.

We prove the NP-hardness of the progressive recovery problem and approach the optimum

solution by introducing DeepPR, a progressive recovery technique based on Deep Reinforce-

ment Learning (Deep RL). Our simulation results indicate that DeepPR can achieve near-

optimal solutions in certain networks and is more robust to adversarial failures, compared

to a baseline heuristic algorithm.

1The content of this chapter is based on the following earlier works.
c© 2020 IEEE. Reprinted, with permission, from G. Ishigaki, S. Devic, R. Gour and J. P. Jue,

“DeepPR: Progressive Recovery for Interdependent VNFs With Deep Reinforcement Learning,” in IEEE
Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2386-2399, Oct. 2020, doi:
10.1109/JSAC.2020.3000402.

c© 2019 IEEE. Reprinted, with permission, from G. Ishigaki, S. Devic, R. Gour and J. P. Jue, “DeepPR:
Incremental Recovery for Interdependent VNFs with Deep Reinforcement Learning,” 2019 IEEE Global
Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, doi: 10.1109/GLOBE-
COM38437.2019.9013358.
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3.1 Introduction

Network Function Virtualization (NFV), which realizes various network functions as software

components running on commodity servers, is a key enabler of the fifth generation (5G)

mobile networks. To accommodate different types of requests with diverse performance

requirements in the 5G era, Network Service Providers (NSPs) deliver network slices, which

are sets of virtualized computing, storage, and communication equipment. Network slicing

benefits each user by allocating an independent network slice carefully tailored for a specific

request from the user. Network slicing is also potentially beneficial for NSPs in terms of

economics and ease of configuration, compared to the case in which multiple services to

different users are provided over a single uniformly designed network.

The sophisticated tailoring of resources across multiple types of network equipment de-

mands effective orchestration that manages, monitors, and reconfigures the equipment. ETSI

defines a basic framework, NFV Management and Orchestration (MANO), for this purpose

[15, 14]. Figure 3.1 illustrates simplified interactions between MANO and other network

components. The virtualized infrastructure (or physical) components are servers, storage,

and a network. Given the state information of the infrastructure, MANO dynamically con-

figures VNFs to provide a requested service. Usually, each VNF is designed to be a simple

functional module such as a mobile content delivery network, traffic offloader, virtual EPC,

or deep packet inspection (DPI) [66, 24].

The interactions among the servers, MANO, and VNFs introduce unique properties to a

network system known as an interdependent network where two different types of nodes (i.e.,

VNFs and infrastructure nodes) depend on each other. This interdependency originates from

the fact that MANO itself could be implemented as a special network function that runs on

a commodity server with other VNFs [15]. For example, a production-quality MANO stack

is available through an open-source project named Open Source MANO run by ETSI. In this

paper, we refer to the VNFs and MANO as the function layer, and the physical components
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Figure 3.1. An Architecture of Service Platforms with MANO.

as the infrastructure layer. Under the assumption of MANO realized as a special VNF, all

servers that are hosting other VNFs should be reachable to the virtualized MANO using

a path on the infrastructure network; otherwise, they cannot collaboratively provide an

appropriate network slice specified by orchestration decisions. Simultaneously, MANO can

be functional only when a working server hosts it. This bidirectional dependency between

MANO and infrastructure servers causes the interdependency. This interdependency model

with the orchestration function is also discussed by Liu et al. in their work [39].

Although the system controlled by such orchestrators relishes flexibility in configuration,

the interdependency also introduces new fragility, which potentially can induce a massive

failure over the entire system and additional complexity during recovery [39, 35, 57]. The

works [39, 57] show that cascading failure phenomena, which are chained failure events

spread from the failure of some network node through the interdependency, can cause massive

failures in such interdependent networks.

After massive failures, it is critical to start providing best-effort connections and services

by using available repair resources such as manpower or backup equipment, which would be

very limited at earlier stages of recovery. Our goal in this paper is to provide a recovery

strategy to cope with such failures specifically under the limited amount of resources. The
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Figure 3.2. A Motivating Example: Every infrastructure node requires a connection to at
least one orchestration function node in the function layer to receive orchestration mes-
sages. Also, each function node needs to be provided with computation resources by the
infrastructure node hosting it.

repair resource allocation problem to decide the prioritization of equipment recovery is well-

studied in [76, 53, 13] for networks without the interdependency. Also, the work in [19]

considers one-directional dependency in a variation of the prioritization problem in inter-

datacenter networks. However, this prioritization becomes more complex when there is

interdependency between two types of nodes in a network since the role of each node is

determined not only by the topology of a network but also by the interdependency [83, 41].

The following example characterizes the inherent complexity of the problem.

Let us consider an example illustrated in Figure 3.2, which simplifies the relationship

between the function layer and the infrastructure layer depicted in Figure 3.1. The network

consists of two types of nodes: function nodes in the function layer (G0), and infrastructure

nodes in the infrastructure layer (G1). Suppose that each infrastructure node vi on G1

hosts one function node, and v1 and v2 have replicas of a virtualized orchestration function

(MANO). The dotted arrows in Figure 3.2 illustrate the interdependency between function

nodes and infrastructure nodes. Function nodes are dependent on the infrastructure nodes

that host them, and infrastructure nodes are dependent on the MANO function nodes that

control them.

To model a recovery problem after a major failure, two node parameters, demand and

utility, are introduced. The demand of an infrastructure node represents the degree of damage
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from which the node suffers. For example, each server would receive different damages from

an earthquake depending on the distance from the epicenter. The utility of an infrastructure

node indicates the importance of the node based on the quantified popularity of the functions

that the node hosts. For instance, a node that provides VNFs that are requested by more

network slices has a higher utility since the recovery of the node contributes to more users.

Note that it is assumed that the system is already equipped with monitors, which have

monitoring capability similar to the monitors in [13], and can estimate appropriate demands

for every node.

Our problem is to determine the recovery order of the infrastructure nodes over multiple

time steps while assuming that a certain amount of repair resources becomes available at

each time step. The progressive property can be interpreted as a situation where manpower

and physical resources gradually arrive to fix the failure as time passes from the first failure

incident. Here, the following two recovery orders are compared: P1 : v1 → v2 → v3 → v4 and

P2 : v4 → v3 → v2 → v1. For simplicity, it is assumed that every infrastructure node has a

utility of 1, and only one unit of resource is available at each time step ti (1 ≤ i ≤ 7).

Table 4.2 describes the accumulative utility at each time step when following each re-

covery order, P1 and P2. As explained above, the interdependency insists that a node must

have both sufficient resources and a path to a working orchestration function (MANO) to

be considered recovered. For instance, in P1, we first recover v1 and obtain utility of 1 at t2

since it takes two steps to satisfy the demand of the node. A recovered node stays functional

until the last step t7 and continues providing the same utility at every step. In P2, the

interdependency plays an interesting role in the recovery process. Even though sufficient

resources are assigned to v4 and v3 in the first two steps, the utility remains 0 until v2 is

recovered. This is because the two nodes (v3, v4) are not reachable from the orchestrator.

Hence, the total utility jumps to 3, once v2 is recovered at t5. As a result, the total utility

of P1 over time is 12 while the total utility of P2 is 10.
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Table 3.1. Utility during Recovery Process: The difference in the recovery order causes loss
of potential interim utility.

t1 t2 t3 t4 t5 t6 t7
P1 0 1 (v1) 1 1 2 (v2) 3 (v3) 4 (v4)
P2 0 0 0 0 3 (v2, v3, v4) 3 4 (v1)

Hence, the total utility available during recovery is different depending on which recovery

order we adopt. Motivated by this simple example, the question addressed in this paper

is the following. How do we find a recovery order that maximizes the accumulated utility

during the recovery process in networks with interdependency between the function layer and

the infrastructure layer? This problem is a variant of the progressive recovery problem

[76], which aims at maximizing the total flow going through a network during the recovery

process. However, the fundamental difference lies in the consideration of the interdependency

between nodes in the two layers. In a network without interdependency, an infrastructure

node is recovered if sufficient repair resources have been allocated to the node. However, in

interdependent networks, allocating a sufficient amount of resources is not enough to recover

an infrastructure node, because each infrastructure node also needs to be reachable to a

working orchestration function. This reachability constraint for recovery of infrastructure

nodes would suggest a certain order that balances the prioritization of the infrastructure

nodes that have larger utility and the effectiveness to assign resources to the infrastructure

nodes that can become functional immediately after the resource allocation.

Our major contribution is twofold: (1) a set of theoretical results, which narrow down

decision-making factors during the recovery process, and (2) a Deep Reinforcement Learning-

based (Deep RL) algorithm to decide the recovery order. Combined with the theoretical

results that provide guidelines on the selection of a recovery order, the Deep RL technique

demonstrates its performance as a general method to solve the recovery problem, which

answers the research question above.
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In our preceding conference paper [29], we have demonstrated the performance of our

Deep RL based algorithm (DeepPR) under random failures. This journal paper provides

an analysis of DeepPR under more failure scenarios, which include adversarial scenarios.

In other words, we analyze the robustness of a recovery algorithm in the case where a

malicious party attempts to decrease the total interim utility offered by the network. This

reconsideration motivates us to integrate a promising classical heuristic into DeepPR, which

further suggests a general methodology of solving intractable combinatorial optimization

problems using Deep RL. Additionally, a complete view of the theoretical results, which

are partially discussed in the conference version, is provided. The theoretical discussion

enables us to cope with varieties of input instances of the progressive recovery problem in

interdependent networks and to use DeepPR in any interdependent networks.

The following summarizes the contributions of this paper.

• We prove that the progressive recovery problem in an interdependent network al-

ways has an equivalent progressive recovery problem in a special graph called an

interdependency-embedded graph (Section 3.5 - Theorem 4).

• The NP-hardness of the progressive recovery problem in small interdependency-embedded

graphs is shown, which implies that the problem in any interdependent network cannot

be solved in polynomial time (Section 3.4 - Theorem 1).

• A Deep reinforcement learning-based algorithm for Progressive Recovery (DeepPR) is

proposed, incorporating the benefit of a baseline heuristic algorithm, RATIO (Section

3.7).

• Our simulation results indicate that DeepPR can achieve near-optimal solutions under

not only random failures but also intentional failures under which RATIO cannot

perform well. (Section 3.8)
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• Our results suggest that the integration of reinforcement learning and a heuristic al-

gorithm that is specifically designed for an optimization problem provides a means

to solve optimization problems more effectively than the simple use of reinforcement

learning or heuristic algorithms alone (Section 3.9).

3.2 Related Works

Many works have addressed the problem of improving the reliability of network slices or

Service Function Chains (SFCs) through the proper placement and replication of functions

[17, 55, 18]. However, interdependent networks could encounter larger failure events because

of the cascading failures that a failure of a small portion of a network spreads throughout

the entire network along with chains of interdependencies.

Pioneering work [76] on the progressive recovery problem focuses on determining the

recovery order of communication links that maximizes the total flow on the recovered network

with limited resources. As an extension, the work [53] proposes node evaluation indices

to decide the recovery order to maximize the number of virtual networks accommodated.

Considering the necessity of monitoring to observe failure situations, the joint problem of

progressive recovery and monitor placement is discussed in [13]. The work [19] discusses an

advanced recovery problem to maximize the overall reachability to content when considering

the one-directional dependency between content and physical network equipment.

The fragility induced by dependency between networks consisting of different types of

nodes has been studied in the context of interdependent network research [57, 39, 61]. In

particular, the interdependency between virtualized nodes and physical nodes in optical net-

works is considered in [57]. A similar dependency caused by VNF orchestration is discussed

in [39].
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The works in [63, 21, 6] analyze the behaviors of failure propagations in such interdepen-

dent networks when each node performs local recovery (healing), where a functioning node

substitutes for the failed node by establishing new connections with its neighbors.

Progressive recovery problems in interdependent networks have been discussed in [42,

83, 41, 37]. Classifying the progressive recovery problems by the types of interdependency,

the work [42] proposes the optimum algorithm for a special case and heuristic algorithms

for other cases. ILP and Dynamic Programming-based algorithms are employed to solve a

variant of the progressive recovery problem in [83].

Other works [58, 48] propose some metrics to evaluate network nodes that can be used

to decide the priority among the nodes.

3.3 Model

3.3.1 Network Model

A network, which consists of virtualized functions and infrastructure nodes hosting the func-

tions, is modeled by an interdependent network that is formed by two constituent graphs

Gi = (Vi, Eii) (i ∈ {0, 1}), which correspond to the function layer (G0) and the infrastruc-

ture layer (G1). Multiple orchestration function nodes in G0 are assumed to be replicas at

geographically isolated servers for the purpose of providing protection against failures. We

do not assume any other protection methods in the network. A pair of nodes in different

constituent graphs can be connected by an arc representing their dependency relationships:

Aij (i, j ∈ {0, 1}, i 6= j). Edges in Eii ⊆ Vi × Vi are called intra-edges because they connect

pairs of nodes in a constituent network. In contrast, arcs in Aij ⊆ Vi × Vj (i 6= j) are called

inter- or dependency arcs. An arc (vi, vj) ∈ Aij (vi ∈ Vi, vj ∈ Vj) indicates that a node vj

has dependency on a node vi. The node vi is called a supporting node, and vj is a supported

node.
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Two node attribute functions are defined to capture the characteristics of each node:

demand and utility functions. The demand function d : V → N represents how many

resources need to be assigned to fully recover a given node. This demand can be interpreted

as the cost or manpower to repair a specific node in the context of recovery problems. The

utility function u : V → N indicates the importance of a given node, such as the number of

slices using the functions on it when it is fully recovered.

3.3.2 Network Failure and Progressive Recovery Plan

When a network failure event occurrs at time t0, some nodes in the network become nonfunc-

tional. Let F [tk] ⊆ V (=
⋃
i∈{0,1} Vi) denote a set of nonfunctional nodes at time tk. With this

notation, the nonfunctional nodes right after the failure are represented as F [t0]. A failure

is represented by a node set in this paper because any failure of an edge can be converted

to a node failure by replacing the nonfunctional edge (vi, vj) ∈ E with a nonfunctional node

vij and two functional edges {(vi, vij), (vij, vj)}.

In progressive recovery scenarios, we receive a limited amount of resources at each time

step after a failure. The time steps can be understood as discretized time units staring at the

time of the occurrence of an initial failure. The resource function r : ti 7→ ci ∈ N indicates

the amount of the repair resources available at time ti (i ∈ {0, ..., T} ⊂ N).

A progressive recovery plan P is an assignment of the available resources to the non-

functional nodes. Formally, P is a (T + 1) × |V | matrix whose entries indicate the amount

of resources assigned to a specific node at a specific time. Because of the limitation on the

available resource amount, P [ti]
(
:=
∑

v∈V P [ti][v]
)

= r(ti) for every ti.

During the recovery process, nodes can be classified by two measures: the amount of

resources assigned to the node and the functionality of the node. A node v is saturated when

it has received enough recovery resources: d(v) ≤ ∑k
i=0 P [ti][v]. Let K[ti] denote a set of

saturated nodes at time ti. A node v is said to be functional if and only if it is (1) saturated
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and (2) reachable from at least one saturated supporting node in the other constituent

graph via a simple path consisting of functional nodes. When a node v is functional at

time ti (i ∈ {0, ..., T} ⊂ N) under a recovery plan P , the node state function αPi (v) = 1;

otherwise 0. A node v is recovered at ti only when it becomes functional by assigning

P [ti][v]. In real networks, a nonfunctional saturated node can be interpreted as either an

infrastructure node unreachable from an orchestration function or a virtualized function

that is hosted on an infrastructure node that is nonfunctional. The total number of time

steps, T , is always computable from the demand function d and the resource function r:

T =
∑∞

i=1 1(
∑

v∈V d(v)−
∑i

j=1 r(tj))≥0
, where, for a given condition A, 1A = 1 if the condition A

is satisfied; otherwise 0. This is because every node must be recovered when the demands of

all nodes are satisfied.

A resource assignment P [ti] at each step ti is called a splitting assignment when it prevents

any nodes from saturation or recovery even though there exists a node that can be saturated

or recovered at ti. Contrarily, a concentrating assignment saturates or recovers some node

if possible, and provides all the additional resources, which cannot saturate nor recover any

node, to one unsaturated node.

3.4 Problem Formulation

This section formulates the progressive recovery problem in interdependent networks and

discusses and proves some properties of the problem.

3.4.1 The Problem and Special Cases

The progressive recovery problem is to find a recovery plan P represented by a (time step

× node)-matrix that maximizes the sum of utility provided by functional nodes during the

recovery. Formally, the recovery problem is formulated as a combinatorial optimization
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problem with a variable matrix P that determines the state αPi (v) of each node v at each

time step ti.

Problem 2. Progressive Recovery Problem (PR): Given a graph N = (V = V0 ∪

V1, A = A01 ∪A10 ∪ E00 ∪ E11), a demand function d, an utility function u, a set of initially

failed nodes F [t0] ⊆ V , and a resource function r, maximize the network-wide utility UP =∑T
i=0

∑
v∈V u(v)αPi (v) by deciding a resource assignment matrix P .

A simpler case of the problem is one in which it is assumed that the functionality of

virtualized functions totally depends on the functionality of a physical server hosting the

function. In other words, there is no need for the assignment of recovery resources to repair

virtualized functions since the unavailability of the functions occurs only due to the loss

of physical servers hosting them. In our terminology when virtualized function nodes are

nonfunctional, they are always saturated. The interdependency between the virtual and

infrastructure network still exists even with the above assumption since any physical machine

needs at least an indirect connection with a virtual control function. Obviously, a virtual

function needs at least one physical machine, which can host it, to be functional. This

scenario is formally defined as follows.

Definition 3. A graph N = (V,A) in the progressive recovery problem is said to be

interdependency-embedded when nodes in G0 = (V0, E00) never require repair resources to be

functional. In other words, nodes in G0 are nonfunctional only because the loss of supporting

nodes in the other constituent graph: v ∈ K[t0] for any node v ∈ (V0 ∩ F [t0]).

3.4.2 Intractability

To prove the intractability of the problem, we discuss the hardness of solving a minimal case

of the progressive recovery problem named StarPR.
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Problem 3. Interdependency-embedded star case (StarPR): Assume that the graph

topology is a star whose nodes are in G1, except for the center node v ∈ V0; also, each node

u ∈ V1 is biconnected with v ∈ V0. An example is illustrated in Figure 3.3.

Definition 4. Time-Invariant Incremental Knapsack Problem (IIK) [8]: Let X =

{xi} denote a set of items, which each have value a(xi) and weight w(xi). For any subset

X ′ of X, the value and weight are defined as follows: a(S) =
∑

xi∈S a(xi), and w(X ′) =
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∑
xi∈S w(xi). IIK is to find a sequence of subsets of X, [S1, S2, ..., ST ] (Si ⊆ Si+1, i =

1, ..., T − 1) from time 1 to T that maximize
∑T

t=1 a(St) subject to w(St) ≤ Bt (t = 1, ..., T ),

where Bt is the available capacity of the knapsack at time t. Note that IIK is known to be

NP-hard.

Theorem 1. The interdependency-embedded star case (StarPR) is NP-hard.

Proof. We show IIK ≤p StarPR.

Given an instance of IIK, an instance of StarPR is constructed as follows. We construct

a graph with vi’s that corresponds to each item xi ∈ X and a special node v. Edges are

added so that each vi is adjacent to v: E = {(v, vi)}. Formally, N = ({v} ∪ {vi}, E). The

set of failed nodes F consists of vi’s. The demand d and utility u functions are defined using

the given weight w and value a functions, respectively. The available resource function value

r(t) for time t is defined by the given capacity function Bt. This conversion is obviously

executed in polynomial time.

Clearly, IIK reaches the optimum if and only if StarPR reaches the optimum since the

objective functions of these two problems are identical with the settings above. The progres-

sive property of StarPR, which accumulates utility over time, is inherited in the property of

IIK solutions that Si ⊆ Si+1 (i = 1, ..., T − 1).

Therefore, the PR problem is, in general, an NP-hard problem. This proof also implies

that the intractability of a progressive recovery problem changes, depending on the d, u,

and r functions. The work [42] provides a polynomial time optimum algorithm for the

interdependency-embedded star case (Case 1 in [42]) with r : ti 7→ C and d : V → C, where

C is a constant.

3.5 Problem Reduction with Interdependency Embedding

An instance of the progressive recovery problem is characterized by network topology, the

distribution of damages (demand) and functional importance (utility), and the amount of
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available resource. Moreover, the network topology could demonstrate multiple variations in

the number of virtualized orchestration functions V0, the connectivity between the function

layer and the infrastructure layer, and the connectivity within the infrastructure network

G1.

The multitude of possible configurations of problem instances makes it difficult to provide

a general algorithm to solve the problem with high performance. Therefore, we first limit the

problem space to interdependency-embedded graphs, where only one orchestration function

exists (Definition 3), and show that only a certain set of resource allocation actions can

achieve the optimal solutions in such special graphs (Theorem 3). Next, it is shown that

all the problem instances in which the virtual function nodes have zero demand can be

reduced to the progressive recovery problem in interdependency-embedded graphs. Since

the assumption that virtual functions do not suffer from the physical damage (i.e. the

demand is 0) is reasonable, we can claim that it is enough to provide a general algorithm

for the interdependency-embedded cases to solve the entire problem space of the progressive

recovery problem in interdependent networks (Theorem 4).

An important fact about the interdependency embedding is that a resulting interdependency-

embedded graph maintains the complex nature of interdependency between two layers in a

simpler form. When deciding a recovery plan, the factor incurred by the interdependency is

a requirement of the reachability from each infrastructure node to a virtualized orchestra-

tion function. An interdependency-embedded graph represents the requirement as a path

from special nodes (V0) to the other nodes. Hence, the heterogeneity of constituent nodes

in interdependency-embedded graphs preserves the features of the recovery problem in in-

terdependent networks.
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Problem 4. Interdependency-embedded rooted tree case: Extend a star in Problem

3 by adding more nodes that are not adjacent to the node in G0. i.e., the graph is a tree

rooted at the node v in G0. An example is illustrated in Figure 3.4.

Lemma 6. The optimum recovery plan P ∗ for any interdependency-embedded star graph

only consists of concentrating assignments when r : ti 7→ C (∀ti). (See Figure 3.3.)

Proof. First, we argue that the statement is true for a star graph with two nodes where C

is set to 2, and the demands of the nodes are divisible by C. Suppose P only consists of

concentrating assignments, and P ′ includes some splitting assignments.

Because P concentrates resources on a node vi, the node becomes functional after d(vi)
C(=2)

steps. After these steps, it takes
d(vj)

2
additional steps to recover the other node vj. Note

that during these
d(vj)

2
steps, the network-wide utility is always u(vi). Therefore, UP =

d(vj)

2
× u(vi) + u(vj).

Consider P ′, which contains a splitting assignment at one time step tk and concentrating

assignments for the other steps. The splitting must be conducted before vi becomes func-

tional since there are only two nodes. Then, it takes d(vi)
2

+ 1 steps to recover vi and
d(vj)

2
− 1

steps for vj. Note that vj receives one unit of resource at both step tk and step (d(vi)
2

+ 1).

Therefore, UP ′ = (
d(vj)

2
− 1)×u(vi) +u(vj) < UP . The same discussion can be applied to the

cases with more splitting. Thus, UP ′ decreases when more splitting assignments are included

in P ′.

Second, we relax the settings by allowing more general demands: d(vi), d(vj) ∈ N.

Without loss of generality, suppose d(vi) > d(vj). There are three recovery plans to be

compared. Let Pl denote the recovery plan only consisting of concentrations with the pri-

oritization of vl and P ′ be a plan including splitting. Based on the previous discussion,

UPi
=
⌈
d(vj)

2

⌉
× u(vi) + u(vj), and UPj

=
⌈
d(vi)
2

⌉
× u(vj) + u(vi).

When P ′ uses the splitting assignment at one step, vj is recovered at step
⌈
d(vj)

2

⌉
, and

it takes
⌈
d(vi)−1−x

2

⌉
additional steps to recover vi, where x = d(vj) mod 2. This is because
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the splitting assigns one unit of resources to vi, and the ceiling function at step
⌈
d(vj)

2

⌉
may assign another excess unit, depending on if d(vj) is divided by C. Therefore, UP is

at most
⌈
d(vi)−1

2

⌉
× u(vj) + u(vi) ≤ UPj

. When P ′ exploits more splitting assignments, the

network-wide utility decreases as observed in the previous setting.

It is easily shown by a similar discussion that, for any C(> 2), a recovery plan that

only includes concentrating assignments is better than plans including splitting assignments.

This is because the difference in resource amounts is just a problem of scaling of C and d.

Thus, the inherent property of the spitting and concentrating assignments does hold even

with any different C.

It is also obvious that similar discussions hold for general star graphs with n nodes.

The key property here is that the splitting delays recovery of a certain node by assigning

resources to more nodes even though the number of steps required to recover all nodes is

fixed:
⌈∑

v∈V d(v)

C

⌉
.

Lemma 7. The optimum recovery plan P ∗ for any interdependency-embedded rooted tree

never saturates any node that is not adjacent to a saturated node; i.e., the candidate nodes

for resource assignments are always adjacent to a saturated node when r : ti 7→ C (∀ti).

Proof. For contradiction, consider the case where saturation gives us better network-wide

utility. Suppose there are two adjacent nodes vi, vj in a rooted tree, such that vi is adjacent

to a saturated node, but vj is not.

First, we consider the case only with concentrating assignments. After saturating vj, it

takes
⌈
d(vi)
C

⌉
steps to recover vi. During these steps, the utility provided by vj remains 0.

In contrast when vi is recovered before vj, it takes
⌈
d(vj)

C

⌉
to recover vj, and vi will provide

utility of u(vi) at each of these steps. This generates contradiction since the number of total

steps in both scenarios stays the same.

Second, let us try to improve the total utility, by introducing the splitting assignments,

from
⌈
d(vj)

C

⌉
× u(vi) + u(vj). However, this is impossible based on the discussion in star

64



graphs. When exploiting the splitting at one step, the duration that vi is functional is

strictly less than
⌈
d(vj)

C

⌉
.

Theorem 2. The optimum recovery plan P ∗ for any interdependency-embedded rooted

tree only consists of concentrating assignments that allocate resources to nodes adjacent to

a saturated node when r : ti 7→ C (∀ti). (See Figure 3.4.)

Proof. When a network has only one initially saturated node, Lemma 7 eliminates the pos-

sibilities to assign resources beyond the neighbors of the saturated node. Then, the network

can be considered as a star graph consisting of the saturated node and its neighbors. Hence,

the statement holds because of Lemma 6.

Accordingly, the node that becomes saturated next is adjacent to a saturated (functional)

node. By contracting the edge between the two saturated nodes, the problem is reduced to

the original problem with one saturated node.

Definition 5. Pseudo star graph SG(αPk ): Given a graph G = (V,E) and a node

state function αPk at time tk under a recovery plan P , the logical star graph SG(αPk ) =

(V (SG(αPk )), E(SG(αPk )) consists of one logical functional node s and the nodes adjacent to

any of the functional nodes in original graph, and edges connecting s and the others. (See

Figure 3.5.)

Using the pseudo star graph, we prove Theorem 2 can be extended to any interdependency-

embedded graphs.

Theorem 3. For any interdependency-embedded graph, the optimum recovery plan P ∗ only

consists of concentrating assignments that allocate resources to nodes adjacent to a saturated

node when r : ti 7→ C(∀ti).

Proof. It is trivial that the optimum recovery plan does not saturate any node that is not

adjacent to a saturated (functional) node even when a graph has more than one initially
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Figure 3.6. Supporting Pairs (v1, v
′
1) and

(v2, v
′
2): The first recovery occurs only when

two nodes in a pair are saturated.
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Figure 3.7. Conversion into an
Interdependency-embedded Graph: The
graph in Figure 3.6 is converted by adding
a new node x, which forms the new function
layer G′0. The other nodes form the new
infrastructure layer G′1.

saturated node. Based on a discussion similar to Lemma 7, the saturation of a node adjacent

to a functional node always provides more network-wide utility over time since the node to

which resources are assigned starts contributing to the utility in an earlier step. Thus,

the candidate nodes for resource assignment at each step tk are the nodes adjacent to any

saturated (functional) node.

Therefore, a resource assignment decision at each time step, P [tk] is equivalent to the

progressive recovery problem in a logical star graph SG(αPk ), where αPk is a node state function

reflecting recovery from t0 to tk−1 in P . Therefore, it can be considered as the recovery

problem in a star graph with a single logical functional node at the center (See node s in

Figure 3.5.) and surrounding leaf nodes V (SG(αPk )).

Hence, it is easily provable, by the argument in Lemma 6, that the optimum plan does

not involve splitting assignments since the concentration of the split resources to a node can

always recover the node in an earlier time step and provide more network-wide utility.

Next, we claim that the progressive recovery problem with any network topology can be

converted into the progressive recovery problem in an interdependency-embedded graph.
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Definition 6. A pair of nodes v ∈ V0 and v′ ∈ V1 is called a support pair when (v, v′) ∈ A01

and (v′, v) ∈ A10. (See Figure 3.6.)

Lemma 8. When v and v′ are the first support pair recovered in a given graph N , the order

of saturation of these two nodes does not influence the total utility.

Proof. Let us assume that a recovery plan saturates v first and v′ later. Note that there may

be some nodes saturated before and between v and v′. Since v and v′ are the first supporting

pair to be recovered, there is no functional node in N before v′ is saturated. The total utility

generated until the step ti when v′ is saturated is u(v)+u(v′)+
∑

w∈Vr u(w), where Vr ⊆ K[ti]

is a set of saturated nodes that are reachable from v or v′. When we exchange the ordering

of v and v′, the total utility until the step ti when v is saturated remains the same because

the saturated nodes by ti are same. Therefore, the order of saturation of v and v′ does not

change the total utility.

Lemma 9. In any graph, the first two nodes saturated by the optimum recovery plan P ∗

are always the nodes in a support pair.

Proof. For contradiction, assume a node w was a node saturated at first by the optimum

recovery plan P ∗, and the two nodes v, v′ in a support pair will be recovered right after w.

Without loss of generality, it is assumed that v is saturated first from Lemma 8. Then, the

total utility until the step ti when v′ is saturated is u(v) + u(v′) + βu(w), where β = 1 iff w

is adjacent to v or v′; otherwise, 0.

However, another recovery plan P ′, which saturates v and v′ first and w later, provides

the total utility until ti of sw(u(v)+u(v′))+βu(w), where sw is the number of steps required

to saturate node w since v and v′ are already functional at ti−sw . This contradicts the fact

that P ∗ is the optimum.

Lemma 10. In the interdependency-embedded rooted tree where any node adjacent to the

node u ∈ V0 has utility of zero: d(v) = 0 (∀v s.t. (u, v) ∈ A01), the second node v2 recovered

by the optimum recovery plan P ∗ has utility strictly greater than zero: d(v2) > 0.
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Proof. All the nodes adjacent to u ∈ V0 have the utility of zero. Therefore, the first node v1

recovered by the P ∗ is one of these nodes. For contradiction, assume the second node v2 is

also one of these zero-utility nodes, and let vk (k-th node recovered in the plan) be the first

node recovered whose utility is greater than 0.

In order to recover vk, it is necessary to have a zero-utility node that is already recovered

for the reachability to u. There are two possible scenarios: (1) v1 is adjacent to vk, or (2)

vj (2 ≤ j < k) is adjacent to vk.

For the first scenario, we can exchange the recovery order of v2 and vk. This exchange has

no influence on the candidate nodes at each step after k-th recovery because the recovered

nodes until k-th recovery stay the same. However, it increases the utility and contradicts

the fact that P ∗ is optimum.

For the second scenario, we can exchange the recovery order of v1 and vj. Again, this

does not change any candidate sets for recovery after k-th recovery. Since vj is recovered

at the very beginning, we can use the same discussion with the first scenario. Therefore, it

provides a contradiction. Therefore, the second node recovered in the optimum plan should

have a nonzero utility.

Theorem 4. A progressive recovery problem with any general graph with u(v ∈ V0) = 0

has an equivalent progressive recovery problem with an interdependency-embedded graph.

Proof. The problem with a general graph is converted into the problem with an interdependency-

embedded graph as follows. We add a new node x to G′0 and put all the nodes and edges in

the original N into G′1. An edge is added between x ∈ V ′0 and each v ∈ V̂ ′1 , where V̂ ′1 consists

of nodes that are originally in V0 of N ; i.e. u(v ∈ V̂ ′1) = 0. Figure 3.7 illustrates an example

of constructing an interdependency-embedded graph from the graph shown in Figure 3.6.

Lemma 9 shows that the first two nodes to be saturated (recovered) are the ones in a

support pair. Also, according to Lemma 8, it can be assumed without loss of generality that

a node v in V0 in each support pair is the first node to be saturated.
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Algorithm 3 RATIO(G,Ft−1)

Input: A graph G = (V,E), A set of nonfunctional nodes Ft−1
1: W = neighbor(V \ Ft−1)
2: Sort W based on

u(vi)

d(vi)
in the decreasing order

3: Perform concentrating allocation from the head of W

O

A

B C

(utility, demand)
(1, x)

(1, x+1) (10, x)

Figure 3.8. An Adversarial Toy Example: The worse utility-demand ratio of node B hides,
from RATIO, node C that potentially produces higher overall utility even when compensating
for the loss by selecting node B.

The newly added edges confirm that the first node recovered is one of the nodes in V0

since x is the only saturated node in the initial step. The other correspondence between

the two problems to be checked is that the second node recovered in N ′ is v′ that forms a

support pair with v in the original graph N , which is guaranteed by Lemma 10.

Therefore, it is sufficient to consider cases of interdependency-embedded graphs. Also,

it is possible to aggregate multiple nodes in G0 into one logical node in G0 to decide the

resource assignment, as the proof of Theorem 3 suggests. Thus, without loss of generality,

the rest of this paper only deals with the interdependency-embedded graphs with one node

in G0.

3.6 Baseline Heuristic for Progressive Recovery

This section describes a simple heuristic algorithm named RATIO that demonstrates promis-

ing performance to solve the progressive recovery problem under most random failures. It
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orchestration node Adversarial: n2 (1,3)

(utility, demand)

Figure 3.9. The IBM Network with Node Attributes for Preliminary Simulations: The node
attributes inside of each node are used for the compliant scenario. In an adversarial scenario,
node n2 is intentionally attacked to make its demand 3.

is also shown that the performance of RATIO can be arbitrarily degraded by certain failure

settings that may be used in an adversarial way. Later, RATIO is incorporated as a base

algorithm into a more advanced algorithm that can deal with such adversarial cases.

3.6.1 RATIO Heuristic and its Limitation

RATIO is a greedy heuristic algorithm inspired by the approximation algorithm of the set

cover problem. This heuristic assigns resources to the most cost-effective nodes among the

nodes adjacent to functional nodes at each time step by calculating the effectiveness, u(v)
d(v)

.

Algorithm 3 shows the pseudo code of RATIO.

To understand the behavior of RATIO, we consider two failure scenarios: (1) compliant

failure scenarios into which most random failures fall, and (2) adversarial failure settings

that could be made by a small change to the compliant cases. The adversarial setting can
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Figure 3.10. Total Utility under Compliant Settings (the IBM Network): RATIO could
achieve the near-optimal solutions.

be defined as a structure where one node vB, which is closer to currently functional nodes

and with low effectiveness, hides other nodes with higher effectiveness beyond vB.

Figure 3.8 illustrates a toy example of such adversarial scenarios. Suppose that one unit

of resource is available at each time step (r = 1) and node O is a saturated function node.

All the other nodes are initially nonfunctional, and their demands are depicted in the figure.

Note that node B corresponds to the node vB described above that hides some more effective

node. At the first round of recovery, RATIO chooses node A between node A and B since

1
x
> 1

x+1
(x ≥ 1). It takes x

r
(= x) time steps to recover A. Then, RATIO recovers node B

and C in order, which takes x + 1 and x steps, respectively. Therefore, the total utility of

RATIO is always u(A) · (2x+ 1 + 1) + u(B) · (x+ 1) + u(C) · 1 = 3x+ 13. In contrast, the

optimum strategy is recovering nodes B and C first, and then node A. In this case, the total
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Figure 3.11. Total Utility under Adversarial Settings (the IBM Network): The performance
of RATIO is easily deteriorated with small changes of the attributes of some nodes.

utility is u(B) · (2x+ 1) + u(C) · (x+ 1) + u(A) · 1 = 12x+ 12. When x becomes larger, the

total utilities of RATIO and the optimum will diverge more drastically.

Revisiting the application scenario where a system consists of VNFs managed by MANO

and infrastructure servers, the change in the demand of a node should be understood as the

difference in the degree of physical damages that the node experienced. Since the minimal

adversarial example is quite simple, a random failure incident in a larger network could

contain it as an embedded substructure. Furthermore, it could be said that RATIO is

vulnerable to failure events by malicious attacks since an attacker can easily embed this

substructure in an attack and deteriorate the interim utility arbitrarily by setting x as large

as possible. This scenario can be interpreted as an intentional attack where an attacker tries

to hide a node with a high utility value v from RATIO by imposing more damages to the

neighbors of v.
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3.6.2 Preliminary Simulation Results

Figures 3.10 and 3.11 illustrate the total utility obtained by three methods in the IBM

network [71] with compliant and adversarial settings shown in Figure 3.9, respectively. The

adversarial setting is realized by a change in the demand of n2, as shown in the figure.

The three methods are OPT, which is the theoretical optimum, RATIO, and RANDOM,

which uniformly randomly chooses one node to allocate a unit of resource. For simplicity,

the amount of resources at each time step is set to 1. RATIO only achieves 79.0% of

the optimum with the adversarial setting although it approximately reaches 95.6% of the

optimum with the compliant scenario. It is noteworthy that a slight change in the demand

of one node (from 2 to 3) can worsen the performance of RATIO to this extent.

3.7 DeepPR: Reinforcement Learning for Progressive Recovery

We have focused on the following two properties of the progressive recovery problem to devise

a robust algorithm, i.e. an algorithm that is robust against adversarial attacks.

• It is straightforward to compute the utility of a given recovery plan with a problem

instance, which implies that we can generate a large data set consisting of recovery

plans and the corresponding utility obtained by the plans.

• Observing the fact that such a simple baseline algorithm (RATIO) performs well in

the case of random failures, it seems reasonable to complement RATIO with another

algorithm for its adversarial scenarios.

Note that the first property is guaranteed by the NP-completeness of the decision version of

the progressive recovery problem.

The first property suggests the use of a learning algorithm, which can fully receive benefits

of generated examples of recovery plans. Most classical optimization methodologies for
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static problems do not allow us to effectively utilize historical experiences. In particular,

reinforcement learning seems one of the most suitable methods since our goal is to decide a

particular action (recovery plan) given a current network state while considering the changes

in the total utility depending on the recovery plan. Furthermore, most reinforcement learning

algorithms have flexibility in how to explore a huge action space for learning. This flexibility

enables us to incorporate the benefits of RATIO. The following summarizes key elements of

our proposal, a Deep reinforcement learning algorithm for the Progressive Recovery problem

(DeepPR).

3.7.1 Q-Learning

Reinforcement Learning (RL) is a method to learn the best mapping of states S to actions

A. The key elements of RL include the agent, who learns the mapping of state action pairs

to numerical rewards for its trial actions, and the environment, which updates states and

returns the numerical reward depending on actions the agent takes.

In Q-learning, the mapping is learned using the action-value function Q : S×A → R that

represents the quality of each state-action pair. In theory, the Q-value of a state-action pair

converges toQ∗(s, a) after infinite trial actions (experiences): Q∗(s, a) = maxπ E[
∑∞

k=0 γ
krt+k |

st = s, at = a, π], which is the expected reward achievable by following the optimum action

sequence (policy) π from state s taking action a at time t. Note that γ is a discount factor

for future rewards that defines the learning horizon.

3.7.2 Deep Q-Network (DQN)

Mnih et al. [44] report a significant improvement in RL by introducing the Deep Q-Network

(DQN). Instead of explicitly calculating Q-values, a DQN uses neural networks (NNs)—

parametrized by a weight function θ—as a function approximator to estimate the optimum

Q-values: Q∗(s, a) ≈ Q(s, a; θ).
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The dramatic improvement by DQNs in learning performance is achieved mainly by

introducing experience replay and Target-Net [44]. The ε-greedy exploration method was

also employed to effectively explore the state-action space.

Experience Replay

It is known that the correlation among experiences, which each are represented by quadruples

et = (st, at, rt, st+1) of a state, action, reward at time t, as well as a resulting state at

time t + 1, causes fluctuations in the learning process. Experience Replay buffers all the

experiences B = {et} and takes random samples from B for the Q-value updates. This

random sampling prevents DQNs from undergoing fluctuation in training due to learning

from correlated sequential experiences.

Target-Net and Eval-Net

In order to stabilize the learning, it is proposed to use two separate DQNs; one named

Eval-Net for learning from each sampled experience, and the other, named Target-Net, for

calculating the target Q-values. The weight function θT of Target-Net is periodically updated

by copying the weight function θ of Eval-Net.

For each sampled experience et, the parameters of Eval-Net are updated by any gradient

method with respect to the loss function L(θ), which represents the difference between the

Q-values estimated by Eval-Net and Target-Net.

L(θ) = Eet∼U(B)

[(
rt + γmax

at+1

Q(st+1, at+1; θT )−Q(st, at; θ)
)2]

,

where et ∼ U(B) indicates the random sampling of et = (st, at, rt, st+1) from the buffer B

by the experience replay.
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Figure 3.12. Learning Curve of DeepPR: A GNP random graph is given a compliant attribute
setting.

ε-greedy Exploration

The tradeoff between exploration and exploitation is one of the crucial challenges in RL. The

ε-greedy exploration is a commonly used approach to address this challenge. In this greedy

approach, the agent follows the current best action known in a current state to reinforce

the previous learning (exploitation) with probability (1− ε). With probability ε, it tries an

exploration by taking an action that is not determined by the previous learning.

DeepPR integrates two simple algorithms to realize the exploration; namely, RATIO and

RANDOM. DeepPR chooses the best action following the RATIO heuristic with a predefined

probability ωRATIO and selects a random action from a legal action set with probability

(1 − ωRATIO). Therefore, the probability for DeepPR to take an action based on RATIO is

ε ωRATIO.
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Figure 3.13. Utility under Compliant Settings (GNP Random Graphs): Both DeepPR and
RATIO approach the theoretical optimum while DeepPR demonstrates slightly better re-
sults.

3.7.3 Applying DQN to PR

In our problem, the agent tries to learn the optimum resource allocations to nonfunctional

nodes. Therefore, the legal actions for our agent are selecting a subset of nonfunctional

nodes. Here, we assume a situation where at most one node is fully recovered at a time step

by setting d(vi) + d(vj) > 2C − 1 (∀(vi, vj 6=i) ∈ V × V ), where C is the amount of available

resources at a time step. Therefore, each action at time step tk is represented as an ordered

pair of nodes [vi, vj], where the first node vi is assigned min{r(tk), d(vi)} resources, and the

second node vj receives the remaining resources if they exist. Each state is represented as a

(|V |×1) vector in which the ith element indicates the remaining demand of the corresponding

node vi ∈ V . The reward of a state-action pair is the sum of utilities of the functional nodes.

A challenge in our problem is the size of the state-action space, which grows exponentially

in the number of nodes. For example, a graph consisting of 20 nodes with a minimal demand

setting, where d(v) = 1 (∀v ∈ V1), has over one million (≈ 220) possible states, assuming
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Figure 3.14. Utility under Compliant Settings (the BT North America Graph).

r(ti) = 1 (∀i ∈ [0, T ]). This is minimal since the size of the state space increases with the

range of d(v). The number of legal actions is at most the number of 2-permutations of V ,

P (|V |, 2). Therefore, the number of state-action pairs is approximately 220 × P (20, 2). In

order to improve the performance of exploration, the integrated exploration, which comprises

RANDOM and RATIO, is adopted in DeepPR with appropriate ε and ωRATIO.

Our theoretical results help us to reduce the number of actions to be considered at

each time step in practice since nodes that are not adjacent to currently functional nodes

are automatically excluded from the candidate nodes to allocate resources. Therefore, the

size of a set of nodes Wi that are potentially allocated resources at each time step ti is

|Wi| =
∑

v∈V \F [ti]
|neighbor(v)|, where neighbor(v) is the set of nodes adjacent to v.
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3.8 Evaluations

Simulations are conducted with different topologies and node attributes, as explained below.

DeepPR is also evaluated under both compliant and adversarial failures, and is compared

with the theoretical optimum (DP-OPT), RATIO, and RANDOM.

3.8.1 Simulation Settings

Network Topology

GNP random graphs [47], the BT North America graph [70], and the IBM graph [71] are used

as network topologies. Since our theoretical results indicate it is enough to test the algorithm

performance in interdependency-embedded graphs with a single node in G0, a node in G0 is

randomly selected in each graph. For GNP random graphs, the following ranges are used:

p = 0.2, and n ∈ {5, 6, ..., 20} for compliant scenarios and n ∈ {5, 6, ..., 34} for adversarial

settings. Note that only connected GNP random graphs are fed into our simulations. The

BT North America graph is based on an IP backbone network with 36 nodes and 76 edges.

The IBM graph is a backbone network consisting of 18 nodes and 16 edges.

Node Attributes and Available Resource

The utility, demand, and resource values are randomly selected among the integers within

given ranges for GNP random graphs and the BT North America graph. For GNP graphs,

we have conducted simulations with the following settings: (utility range, demand range, re-

source amount available at each time step) = ([1, 4], [1, 2], 1), ([1, 10], [2, 4], 3), ([1, 10], [2, 4], 1),

([1, 5], [1, 5], 3), ([1, 5], [1, 5], 1). As similar trends are observed in all the settings, this paper

only describes the results under ([1, 4], [1, 2], 1). The setting for the IBM graph follows the

node attributes shown in Figure 3.9. Note that all the nodes in both graphs are assumed to

be initially nonfunctional: F [t0] = V .
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DQN Settings

Our DQN consists of three fully connected layers: the input, middle, and output layers with

|V |, 200, and P (|V |, 2) neurons, respectively. The input layer receives the state vector, which

represents the remaining demands, and the output layer indicates the evaluation of possible

legal actions for a given state. The Rectified Linear Unit (ReLU) is used for the activation

function in both middle and output layers in the DQN, and the reward discount factor γ is

set to 0.6. The training of the DQN is conducted by the Adam algorithm (AdamOptimizer

in TensorFlow [69]) that minimizes the estimation loss L(θ).

For exploration, ε is initially set to 1.0, decreasing by 0.0001 after every episode until

0.1. This encourages DeepPR to visit more diverse state-action pairs at the beginning and

to reinforce its learning as it has experienced more. Additionally, ωRATIO is fixed to 0.5 to

incorporate RATIO in exploration.

The hyperparameters and settings are selected based on the cross validation performance.

In particular, we conducted experiments to empirically determine the best combination of

activation functions in the middle and output layer, considering functions typically used

for classification problems: ReLU, Leaky ReLU, tanh, and softmax. It is observed that all

combinations demonstrated similar performance, with the exception that the use of tanh or

softmax in the output layer has a slightly negative impact on performance.

3.8.2 Simulation Results

Figure 3.12 illustrates a sample of the learning curve of DeepPR over episodes, which are

alternating sequences of states and actions from the initial network state to the fully recovered

state. This sample is obtained in a GNP graph with 19 nodes, and similar curves are also

observed in other graphs. Since the NNs are randomly initialized, the initial Q-values do not

reflect the actual rewards. Through the update on Q-values and explorations, the NNs are

trained to select an action that maximizes the total utility. In the figure, the utility (total

80



0

200

400

600

800

1000

DeepPR OPT RATIO RANDOM

U
ti

li
ty

Figure 3.15. Utility under Adversarial Settings (the IBM Graph): DeepPR shows the per-
formance similar to what it demonstrated with compliant scenarios although RATIO suffers
from the adversarial attack.

reward) that DeepPR achieves stays at approximately 725 until around the 250th episode,

and after that, it continues increasing towards around 900. Because of the exploration by

random actions, utility values fluctuate during the entire training period. Note that each

episode takes 1.057 seconds on average on a computer with a 2.5 GHz Intel Core i5 CPU,

Intel HD Graphics 4000 (1536 MB), and 8 GB memory.

Figure 3.13 indicates a comparison among the four algorithms in terms of total utility

in GNP random graphs. In smaller graphs, the utility obtained by DeepPR always matches

with the theoretical optimum (DP-OPT). In theory, Q-learning is guaranteed to achieve the

optimum by visiting each state-action pair an infinite number of times. Since it is easier to

visit each state-action pair a greater number of times in graphs with fewer states and action

choices, the estimation of Q-values seems to converge to more accurate values, which leads
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Figure 3.16. Utility under Adversarial Settings (GNP Random Graphs): DeepPR obtains the
solutions closer to the optimum while the difference between DeepPR and RATIO increases
from the compliant cases.

to the optimum. In contrast, the difference between DP-OPT and DeepPR increases in some

larger graphs for the same reason. Compared to RATIO, DeepPR performs slightly better

in those larger graphs. DeepPR achieves 96.6% of the optimum on average in the graphs

of size 15 to 20 nodes while RATIO reaches 95.8% of the optimum in the same graphs.

Also, RANDOM is the worst heuristic among the four methods over all sizes of graphs and

continues getting worse along with the graph size because of the increase in legal actions.

Figure 3.14 shows the utility obtained by three algorithms in the BT North America

graph. Here, DP-OPT is not included since it is intractable due to the number of nodes. In

this practical topology, we also observed a trend similar to the results from GNP graphs. As

mentioned in Section 3.6, all simulation results indicate that RATIO could attain the utility

values close to the utility obtained by DeepPR and the optimum when input node attributes

do not contain an adversarial substructure.

82



500

550

600

650

700

750

800

850

900

0 100 200 300 400 500

U
ti

li
ty

Episode

Random Exploration
Integrated Exploration (50% RATIO)

Figure 3.17. Learning Curves with Different Exploration Methods (A GNP Random Graph):
The utilization of RATIO as one of the exploration methods (ωRATIO = 0.5) helps DeepPR
to reach a better solution in earlier episodes.

In contrast, the total utility obtained by RATIO is easily deteriorated by intentional

attacks with the adversarial settings as shown in Figure 3.15 and 3.16. However, DeepPR

demonstrates robustness in these scenarios; i.e., DeepPR continues to achieve solutions closer

to the optimum as it does in the previous compliant cases. For example, the total utility

obtained by DeepPR in the GNP graph with 23 nodes is 98.5% of the optimum though

RATIO obtains 91.4% of the optimum. This is because DeepPR still explores other possible

state-action pairs by random exploration with probability ε(1 − ωRATIO). The difference

in performance between DeepPR and RATIO diverges in GNP random graphs with the

adversarial settings, as shown in the figure.

3.9 Discussions

The total utility achieved by DeepPR surpasses that of the other methods since DeepPR inte-

grates random actions with a well-behaving heuristic, RATIO, to seek new experiences. This
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randomness prevents the proposed method from degrading under the adversarial scenarios

that cause RATIO to underperform.

Another benefit observed is the learning speed of Deep RL. In general, it is more diffi-

cult to train a NN as a Q-value estimator for discrete state-action spaces than to do so for

continuous spaces due to the sparser relation among neighboring points. Therefore, more

episodes could be required to obtain a more accurate estimator if we adopt a sample ran-

dom exploration. However, our result indicates that it is possible to speed up the learning

process by integrating a well-behaving heuristic that is specific to each problem. Figure 3.17

compares the utilities at each episode of DeepPR with the simple RANDOM exploration

and the integrated exploration (ωRATIO = 0.5). Clearly, the exploration is conducted more

effectively when a heuristic is incorporated, and higher utility values are achieved in earlier

episodes.

There is no silver bullet to determine the most effective rate for the integrated exploration

ωRATIO due to the tradeoff between learning speed-up and exploration. We observed that

the increase in ωRATIO continuously reduces the number of episodes required by DeepPR to

achieve a near-optimal solution. However, it also increased the probability for DeepPR to be

stuck at a suboptimal solution when ωRATIO approaches 1 because the action space during

learning becomes limited to the actions defined by RATIO.

Our results suggest the applicability of Deep RL to a wide range of optimization prob-

lems for which some heuristic algorithms are proposed. When a heuristic—which performs

well for compliant cases and suffers from some critical cases—is known for the problem, it

seems obvious that the addition of some degree of randomness in the action selection helps

the algorithm to receive important experiential feedback, especially from the critical cases.

Deep RL, in general, can extract the characteristics of such feedbacks and remembers them

for future actions. Therefore, our results imply that the integration of such a simple heuris-

tic algorithm and the Deep RL technique would provide a general methodology to design
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algorithms for such optimization problems, which may outperform the existing heuristic.

Additionally, from the previous discussion, the integrated exploration can be more effective

than general exploration methods due to problem-specific tuning.

3.10 Conclusion

This paper discusses the progressive recovery problem of interdependent networks to max-

imize the total available computation utility of the networks, where a limited amount

of resources arrives in a time sequence. It is proved that the recovery problem with a

general network topology always has an equivalent progressive recovery problem with an

interdependency-embedded graph, which is much simpler but still NP-hard. Through a

preliminary simulation result, it is also shown that a simple heuristic algorithm called RA-

TIO, which determines the resource allocation based on the ratio of utility and demand, can

perform well when the network does not contain a specific substructure. To cope with adver-

sarial scenarios, we introduce DeepPR, a deep reinforcement learning-based algorithm whose

exploration strategies are based on RATIO. The simulation results indicate that DeepPR

achieves the near-optimal solutions in smaller real and random networks and is robust against

the adversarial cases. Furthermore, it is empirically shown that the integration of RATIO

and reinforcement learning improves the effectiveness of exploration of the learning. Our

success in the integration suggests possible improvements of existing heuristic approaches

for general optimization problems using reinforcement learning.
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CHAPTER 4

ONLINE CONVEX OPTIMIZATION-BASED DYNAMIC BANDWIDTH

ALLOCATION FOR PON SLICING WITH

PROVABLE PERFORMANCE GUARANTEES

The emergence of diverse network applications demands more flexible and responsive re-

source allocation for networks. Network slicing is a key enabling technology that provides

each network service with a tailored set of network resources to satisfy specific service require-

ments. The focus of this work is the network slicing of access networks realized by Passive

Optical Networks (PONs). In this chapter, a learning-based Dynamic Bandwidth Alloca-

tion (DBA) algorithm is proposed for PON access networks, considering slice-awareness,

demand-responsiveness, and allocation fairness. Our online convex optimization-based al-

gorithm learns the implicit traffic trend over time and determines the most robust window

allocation that reduces the average latency. Our simulation results indicate that the pro-

posed algorithm reduces the average latency by prioritizing delay-sensitive and heavily-loaded

ONUs while guaranteeing fairness of the resource allocation.

4.1 Introduction

Emerging 5G networks are being designed to support a diverse array of network applications.

Enhanced Mobile Broadband (eMBB) targets up to 10 Gbit/s download speeds for mobile

devices, while massive Machine Type Communications (mMTC) handles dense connections

for IoT and M2M applications, and Ultra Reliable Low Latency Communications (URLLC)

involves strict latency constraints [81]. An approach for accommodating massive and diverse

connections in 5G access networks is to implement network slicing in Passive Optical Net-

works (PONs) [72]. Optical access networks have attracted many industrial attentions, as

they are expected to reduce operational expenditure (OPEX) [3]. In particular, the current
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development of C-RAN technology for mobile networks accelerates the benefit of such optical

access networks [11, 54].

A PON consists of an Optical Line Terminal (OLT) and multiple Optical Network Units

(ONUs) as depicted in Figure 4.1. The OLT and ONUs may be logically sliced so that one

physical network can host multiple network infrastructure slices that are tailored for various

types of applications. In this slicing scenario, additional consideration should be made

to prioritize delay-critical network slices. For example, if a network slice hosts a URLLC

network service, the ONUs on the slice should receive more bandwidth to meet the strict

delay requirement on the order of 1 ms for both upstream and downstream traffic [46].

Time Division Multiplexing (TDM) for the upstream traffic from ONUs to an OLT is

facilitated by a Dynamic Bandwidth Allocation (DBA) algorithm that adjusts time windows

for each ONU to minimize the latency of upstream traffic [62]. Most existing DBA algorithms

periodically solve a static optimization problem to minimize the traffic latency by choosing

an optimal bandwidth allocation given traffic information of the ONUs [27, 23, 77, 26]. The

traffic information can be an estimation of the future traffic amount at the time when the

ONU starts sending traffic to the OLT. The estimation is computed based on historical

data, the amount of remaining data in queues, and/or neural network-based traffic pre-

diction. Nevertheless, errors in such estimations may lead to suboptimal solutions for the

bandwidth allocation problem. The suboptimality ironically originates from the fact that

such estimation-based algorithms try to achieve the optimum window allocation in each static

optimization problem, which is defined based on the estimated traffic demand. Since the al-

location is optimum only for the estimated demand, the discrepancy between the estimation

and the real traffic patterns is directly reflected in the performance of the algorithms.

Therefore, we propose a performance-guaranteed online DBA algorithm based on Online

Convex Optimization (OCO), which does not involve static optimizations based on an un-

reliable estimation of traffic patterns. An OCO algorithm generates a sequence of decisions,
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Fig. 1. Network-slicing-based TDM-PON.

(a) (b)

Fig. 2. (a) Latency caused by guaranteed bandwidth and
(b) latency caused by the discovery window.

requirement. The bandwidth allocation scheme has to provide
low-latency transmission for the MFH slice. At the same time,
this low-latency transmission should be done while providing
guaranteed bandwidth to each network slice in order to isolate
each sub-network. This may increase the uplink latency on the
MFH slice, as the guaranteed bandwidth for the IoT slice may
overlap the mobile-data arrival period [Fig. 2(a)]. The other is
how to allocate the bandwidth for a discovery window in the
auto-discovery process without increasing the MFH uplink
latency. The discovery window may also increase uplink latency
on the MFH slice. The optical line terminal (OLT) periodi-
cally opens the discovery window to automatically detect and
register newly connected optical network units (ONUs). While
the discovery window is being opened, registered ONUs must
wait for the uplink data transmission, which causes increasing
uplink latency on the MFH slice [Fig. 2(b)].

To solve these issues, we propose a dynamic bandwidth
allocation (DBA) scheme for convergence TDM-PON. In
this scheme, both the bandwidth allocation for guaranteed
bandwidth and that for the discovery window are incorporated
into our previously proposed scheme [6], which cooperates
with mobile scheduling for low-latency transmission on the
MFH slice. In contrast to our presentation in [7], we added
operation parameter optimization to our DBA scheme in order
to minimize the uplink latency on the MFH slice through
numeral simulations. On the basis of the optimized results, we
demonstrate uplink latency and bandwidth performances on
a convergence TDM-PON with a 10-gigabit Ethernet PON
(10G-EPON [8]) prototype.

Fig. 3. SR-DBA scheme.

The remainder of the paper is organized as follows. In
Section 2, we describe related work on mobile systems and con-
ventional bandwidth allocation schemes. In Section 3, we give
details on the proposed DBA scheme. In Section 4, we present
simulation and experimental results. Section 5 concludes this
paper with a summary.

2. RELATED WORK

A. MFH Traffic Property

In a mobile system, the CU undertakes the scheduling that
controls the uplink transmission of each UE at every transmis-
sion time interval (TTI). The scheduling result (scheduling
information) is forwarded to each UE through the DU. Each
UE transmits the uplink data to the CU through the DU in
accordance with the scheduling information.

In the conventional functional split point between the CU
and the DU, the DU has only the radio frequency (RF) func-
tion, and the CU has the baseband processing function and
other upper-layer processing functions. Each DU transmits the
in-phase and quadrature-phase (IQ) samples of the baseband
signals on the MFH with a common public radio interface
[9], and the CU performs all baseband processing. In a 5G
network, the MFH bandwidth required for transmitting the
IQ samples exceeds 100 Gbit/s [10]. Therefore, to reduce the
required MFH bandwidth, a lower-layer split (LLS) has been
defined in a 3GPP specification as the new split point [2]. In
the LLS, baseband processing is partially or wholly executed in
the DU, and packetized data with variable length are transmit-
ted through an Ethernet interface over the MFH. The LLS has
a strict latency requirement on the MFH: 250 µs at one way
[2]. Since the DU once stores the data received from the UE
for baseband processing, the MFH uplink traffic property is
changed from continuous to bursty traffic.

B. Bandwidth Allocation Schemes

A status-report DBA (SR-DBA) scheme has been used in
conventional TDM-PON for fiber-to-the-home (FTTH)
applications [11,12]. In the SR-DBA scheme, the OLT gath-
ers transmission request information such as reports for the
mobile uplink data stored in each ONU. On the basis of the
gathered information, the OLT allocates the uplink bandwidth
to each ONU. Although it can achieve high bandwidth utiliza-
tion efficiency, this gathering takes more than the maximum
round-trip time, which causes large uplink latency (Fig. 3).
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Figure 4.1. PON Access Network Architecture: A physical network is sliced to support
different application requirements.

observing the actual past traffic information rather than an estimation of future states. The

decision sequence will be adjusted along its runs to minimize the regret, the loss incurred by

diverting from a decision that is robust over the entire time horizon. Note that such a robust

decision only becomes available in retrospect. In the PON context, the OCO-based DBA

algorithm decides a window allocation for the next time cycle based on the historical win-

dow sizes and actual traffic information observed in the previous cycles, so that the resulting

allocation becomes robust against the fluctuating traffic. In other words, the algorithm im-

plicitly learns a potential distribution of future traffic and provides a safe window allocation

that can accommodate any traffic dynamics that may happen under the distribution. Fur-

thermore, the performance of the algorithm can be theoretically bounded in terms of regret

[60]. Our algorithm is more promising than DBA algorithms based on traffic estimation,

since its allocation would realize lower latency within a potential traffic range, instead of

being optimal only at one estimated traffic amount. Our DBA problem is formulated in

such a way as to ensure fairness among ONUs, which guarantees that each ONU receives

a minimal size of time window even when it is not heavily loaded. This formulation could

88



Cycle t-2
OLT

ONU i

RE
PO

RT

GATE

Allocated  
Window

Cycle t-1 Cycle t
DBADBA

Delta 
(Traffic info  

unavailable to DBA)

<latexit sha1_base64="NVE+raufQnK1aN+7+0HcN013cN0=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCqyHTTtXuCm5cVrC1MB2GTJppQzMPkoxYh36JGxeKuPVT3Pk3ZtoKKnogcDjnXu7JCVLOpELowyitrK6tb5Q3K1vbO7tVc2+/J5NMENolCU9EP8CSchbTrmKK034qKI4CTm+CyUXh39xSIVkSX6tpSr0Ij2IWMoKVlnyzOoiwGgdhfjfzlcs836whq3naaNktiCzURHXUKIjjIAdB20Jz1MASHd98HwwTkkU0VoRjKV0bpcrLsVCMcDqrDDJJU0wmeERdTWMcUenl8+AzeKyVIQwToV+s4Fz9vpHjSMppFOjJIqb87RXiX56bqfDcy1mcZorGZHEozDhUCSxagEMmKFF8qgkmgumskIyxwETpriq6hK+fwv9Jr27ZTQtdObW2s6yjDA7BETgBNjgDbXAJOqALCMjAA3gCz8a98Wi8GK+L0ZKx3DkAP2C8fQKKhpOg</latexit>

xt[i]
<latexit sha1_base64="q6kKA223wJhwIhi9m5f8Iix5FAc=">AAAB/HicdVDLSgMxFM3UV62vapdugkVw45Bpp2p3BTcuK9gHtEPJpJk2NPMgyYjDMP6KGxeKuPVD3Pk3ZtoKKnogcDjnXu7JcSPOpELowyisrK6tbxQ3S1vbO7t75f2DrgxjQWiHhDwUfRdLyllAO4opTvuRoNh3Oe25s8vc791SIVkY3Kgkoo6PJwHzGMFKS6NyZehjNXW99C4bperUygbMGZWryGyc1ZtWEyITNVAN1XNi28hG0DLRHFWwRHtUfh+OQxL7NFCEYykHFoqUk2KhGOE0Kw1jSSNMZnhCB5oG2KfSSefhM3islTH0QqFfoOBc/b6RYl/KxHf1ZB5V/vZy8S9vECvvwklZEMWKBmRxyIs5VCHMm4BjJihRPNEEE8F0VkimWGCidF8lXcLXT+H/pFszrYaJru1qy17WUQSH4AicAAucgxa4Am3QAQQk4AE8gWfj3ng0XozXxWjBWO5UwA8Yb58/3JUe</latexit>

xt�1[i]

Cycle
OLT

ONU

RE
PO

RT
GATE

Allocated  
Window

Cycle Cycle
DBADBA

<latexit sha1_base64="NVE+raufQnK1aN+7+0HcN013cN0=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCqyHTTtXuCm5cVrC1MB2GTJppQzMPkoxYh36JGxeKuPVT3Pk3ZtoKKnogcDjnXu7JCVLOpELowyitrK6tb5Q3K1vbO7tVc2+/J5NMENolCU9EP8CSchbTrmKK034qKI4CTm+CyUXh39xSIVkSX6tpSr0Ij2IWMoKVlnyzOoiwGgdhfjfzlcs836whq3naaNktiCzURHXUKIjjIAdB20Jz1MASHd98HwwTkkU0VoRjKV0bpcrLsVCMcDqrDDJJU0wmeERdTWMcUenl8+AzeKyVIQwToV+s4Fz9vpHjSMppFOjJIqb87RXiX56bqfDcy1mcZorGZHEozDhUCSxagEMmKFF8qgkmgumskIyxwETpriq6hK+fwv9Jr27ZTQtdObW2s6yjDA7BETgBNjgDbXAJOqALCMjAA3gCz8a98Wi8GK+L0ZKx3DkAP2C8fQKKhpOg</latexit>

xt[i]
<latexit sha1_base64="q6kKA223wJhwIhi9m5f8Iix5FAc=">AAAB/HicdVDLSgMxFM3UV62vapdugkVw45Bpp2p3BTcuK9gHtEPJpJk2NPMgyYjDMP6KGxeKuPVD3Pk3ZtoKKnogcDjnXu7JcSPOpELowyisrK6tbxQ3S1vbO7t75f2DrgxjQWiHhDwUfRdLyllAO4opTvuRoNh3Oe25s8vc791SIVkY3Kgkoo6PJwHzGMFKS6NyZehjNXW99C4bperUygbMGZWryGyc1ZtWEyITNVAN1XNi28hG0DLRHFWwRHtUfh+OQxL7NFCEYykHFoqUk2KhGOE0Kw1jSSNMZnhCB5oG2KfSSefhM3islTH0QqFfoOBc/b6RYl/KxHf1ZB5V/vZy8S9vECvvwklZEMWKBmRxyIs5VCHMm4BjJihRPNEEE8F0VkimWGCidF8lXcLXT+H/pFszrYaJru1qy17WUQSH4AicAAucgxa4Am3QAQQk4AE8gWfj3ng0XozXxWjBWO5UwA8Yb58/3JUe</latexit>

xt�1[i]

<latexit sha1_base64="x/afdYRaZjn5Y88mcXjip+iwtNU=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB07JbKnos9OKxom2FdinZNG1Ds9klmRXK0p/gxYMiXv1F3vw3ZtsKfj4Iebw3w8y8MJHCoOe9O4WV1bX1jeJmaWt7Z3evvH/QNnGqGW+xWMb6NqSGS6F4CwVKfptoTqNQ8k44aeR+545rI2J1g9OEBxEdKTEUjKKVrht97Jcrnlv1cpDfxHfnv1eBJZr98ltvELM04gqZpMZ0fS/BIKMaBZN8VuqlhieUTeiIdy1VNOImyOarzsiJVQZkGGv7FJK5+rUjo5Ex0yi0lRHFsfnp5eJfXjfF4UWQCZWkyBVbDBqmkmBM8rvJQGjOUE4toUwLuythY6opQ5tOyYbweSn5n7Srrn/mele1Sr22jKMIR3AMp+DDOdThEprQAgYjuIdHeHKk8+A8Oy+L0oKz7DmEb3BePwAmWI2q</latexit>

Ct
<latexit sha1_base64="nHC0O2FuvMUBJoYYbP3TpysRCbc=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBC8uOyGiB4DuXiMYB6QLGF2MkmGzM4uM71CWPIRXjwo4tXv8ebfOJtE8FkwTFHVTXdXmEhh0PPenZXVtfWNzcJWcXtnd2+/dHDYMnGqGW+yWMa6E1LDpVC8iQIl7ySa0yiUvB1O6rnfvuPaiFjd4jThQURHSgwFo2ildr2f4bk/65fKnlvxcpDfxHfnv1eGJRr90ltvELM04gqZpMZ0fS/BIKMaBZN8VuylhieUTeiIdy1VNOImyObrzsipVQZkGGv7FJK5+rUjo5Ex0yi0lRHFsfnp5eJfXjfF4VWQCZWkyBVbDBqmkmBM8tvJQGjOUE4toUwLuythY6opQ5tQ0YbweSn5n7Qqrn/hejfVcq26jKMAx3ACZ+DDJdTgGhrQBAYTuIdHeHIS58F5dl4WpSvOsucIvsF5/QDG1Y8o</latexit>

Ct�1

<latexit sha1_base64="vnnr2I1IWKrL6CxmtSn0su4+W/c=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBC8uGxCRI+BXDxGMA9IljA7mU2GzM4uM71CWPIRXjwo4tXv8ebfOJtE8FkwTFHVTXdXkEhh0PPenZXVtfWNzcJWcXtnd2+/dHDYNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMGrnfuePaiFjd4jThfkRHSoSCUbRSpzHI8Lw6G5TKnlv1cpDfpOLOf68MSzQHpbf+MGZpxBUySY3pVbwE/YxqFEzyWbGfGp5QNqEj3rNU0YgbP5uvOyOnVhmSMNb2KSRz9WtHRiNjplFgKyOKY/PTy8W/vF6K4ZWfCZWkyBVbDApTSTAm+e1kKDRnKKeWUKaF3ZWwMdWUoU2oaEP4vJT8T9pVt3Lheje1cr22jKMAx3ACZ1CBS6jDNTShBQwmcA+P8OQkzoPz7LwsSlecZc8RfIPz+gHIWo8p</latexit>

Ct�2

         (Traffic info  
unavailable to DBA)

<latexit sha1_base64="/DhiyHCG0lHEYmWOHGZHeBnX0Ok=">AAAB73icdVDLSgNBEJz1GeMr6tHLYBA8LbMhqzkG9OAxgnlAsoTZyWwyZHZ2nekVwpKf8OJBEa/+jjf/xslDUNGChqKqm+6uMJXCACEfzsrq2vrGZmGruL2zu7dfOjhsmSTTjDdZIhPdCanhUijeBAGSd1LNaRxK3g7HlzO/fc+1EYm6hUnKg5gOlYgEo2ClTu+KS6AY+qUyccm5X/VqmLg+8Wqeb0nF9wipYM8lc5TREo1+6b03SFgWcwVMUmO6HkkhyKkGwSSfFnuZ4SllYzrkXUsVjbkJ8vm9U3xqlQGOEm1LAZ6r3ydyGhsziUPbGVMYmd/eTPzL62YQ1YJcqDQDrthiUZRJDAmePY8HQnMGcmIJZVrYWzEbUU0Z2IiKNoSvT/H/pFVxPd8lN9VyvbqMo4CO0Qk6Qx66QHV0jRqoiRiS6AE9oWfnznl0XpzXReuKs5w5Qj/gvH0C2y2P0A==</latexit>

�t

<latexit sha1_base64="KjCS9eT3oOQe5V9b7no1+Mqp9gI=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaCqMegF48RzQLJEHo6PUmTnp6hu0YIQz7BiwdFvPpF3vwbO4vg+qDpx3tVVNULUykMet67U1haXlldK66XNja3tnfKu3tNk2Sa8QZLZKLbITVcCsUbKFDydqo5jUPJW+Hocuq37rg2IlG3OE55ENOBEpFgFK10k/VEr1zx3Ko3BflNfHf2exVYoN4rv3X7CctirpBJakzH91IMcqpRMMknpW5meErZiA54x1JFY26CfLbqhBxZpU+iRNunkMzUrx05jY0Zx6GtjCkOzU9vKv7ldTKMzoNcqDRDrth8UJRJggmZ3k36QnOGcmwJZVrYXQkbUk0Z2nRKNoTPS8n/pFl1/VPXuz6p1C4WcRThAA7hGHw4gxpcQR0awGAA9/AIT450Hpxn52VeWnAWPfvwDc7rB2ZijeA=</latexit>ui

Figure 4.2. Interactions between OLT and ONUs: The OLT decides a bandwidth allocation
xt[i] to each ONU ui based on the demand request included in a REPORT message.

be seen as an extension of the work in [43] to a dynamic setting. The simulation results

show that our OCO-based DBA algorithm reduces the latency at all ONUs, demonstrating

slice-awareness, demand-responsiveness, and allocation fairness.

4.2 PON Access Network Model

A Passive Optical Network (PON) consists of an Optical Line Terminal (OLT) and Optical

Network Units (ONUs). Since all the ONUs share one optical cable connecting them to

the OLT, they need to be coordinated to share the bandwidth for upstream traffic. Time

Division Multiplexing (TDM) PON realizes the sharing by allocating a time window to each

ONU in each logical time cycle.

Figure 4.2 illustrates the interaction of an OLT and an ONU ui ∈ U . An OLT has a

Dynamic Bandwidth Allocation (DBA) algorithm that decides the allocation to ONUs. In

EPON or 10G EPON standards, an ONU sends a REPORT message that includes a demand

request for its next turn. The request is generated by a traffic estimation algorithm at ONUs,

which may consider the amount of currently buffered traffic and the future traffic pattern.
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Receiving the request, the OLT decides the actual bandwidth allocation for the ONU and

informs the ONU of the assigned time windows through a GATE message.

In this paper, we assume that an OLT divides the time horizon into multiple logical time

cycles {Ct} (t = 1, ..., T ) and solves the bandwidth allocation for each time cycle. Note that

each ONU receives its turn to send out upstream traffic within the time cycle. With the

notation, the amount of bandwidth allocated to an ONU ui ∈ U at a cycle Ct is denoted as

xt[i].

4.3 Problem Statement

Our DBA problem is formulated to provide slice-aware, demand-responsive, and fair band-

width allocation for ONUs. The slice awareness indicates the capability to satisfy additional

delay requirements imposed by some slices. The demand responsiveness is defined as the

ability to adjust window sizes based on the amount of traffic load at ONUs. Furthermore,

the bandwidth allocation is fair when some ONUs with huge traffic do not dominate a cycle;

i.e., each ONU receives an opportunity to send a minimal amount of its queued traffic within

each cycle.

The concept of proportional fairness is introduced to formulate the DBA problem in-

corporating the three properties. A vector x∗ is said to be (w, 1)-proportionally fair if the

proportions of value differences in any other allocations x ∈ X sum to negative:

∑
i

wi
x[i]− x∗[i]

x∗[i]
≤ 0 (∀x ∈ X). (4.1)

It is known that a maximizer x∗ for the objective function of the following form over a convex

space X = {x} satisfies the proportional fairness [43].

∑
i

wi log x[i]. (4.2)
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The intuition behind the relationship between the objective function in Eq. (4.2) and

the fairness concept comes from the decreasing increment of logarithmic functions. Let us

consider two points x1 and x2 such that x1 < x2. When evaluating the increment of a

logarithmic function h with the same increment δ from each point, h(x1 + δ) > h(x2 + δ)

always holds.

In our context, the increment of our objective function, which represents the utility

of a specific bandwidth allocation, becomes larger when providing more bandwidth to an

ONU that is assigned a smaller bandwidth window. This property enables us to avoid the

domination of a time cycle by a small number of ONUs.

The DBA problem is to determine a time partition xt = (xt[i])i=1,...,|U | of a cycle Ct, where

each element in the partition corresponds to a window size allocated to an ONU ui ∈ U . Let

C ∈ R+ denote the fixed cycle duration where every ONU receives a fraction of the cycle.

An ONU slice Sj ⊆ U is defined as a subset of ONUs that are running on a network slice j,

and the prioritization weight pj indicates the sensitivity of the slice Sj to delay.

Assuming the availability of accurate information regarding the amount bt = (bt[i])i=1,...,|U |

of data queued in every ONU ui at the starting time of its window in Ct, the optimization

problem, which maximizes the total weighted utility of allocated windows, is defined as

follows:

Maximize ft(xt) =
∑
i

bt[i]pj:ui∈Sj
min{log(xt[i] + 1), log(bt[i] + 1)} (4.3)

subject to x>t 1N ≤ C −
∑
i

d[i], (4.4)

where d is a vector of guard window sizes that prevent collisions when switching ONUs.

The min function prevents the utility function from increasing by overallocation. The

maximum utility that an ONU ui can experience at a cycle Ct must be bounded by the

allocation that empties its entire buffer (xt[i] = bt[i]). When the allocation is less than the

emptying allocation, the utility of the ONU should be represented as an increasing function
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over the allocation x. To represent this property, the objective cuts off the increase in the

utility by taking a minimum between two logarithm values.

Since the constraint in Eq. (4.4) defines a scaled simplex of xt, the decision space X is

a convex set. The objective function f has the exact same form as the proportionally fair

optimization discussed above, recognizing the pair of variables bt[i] and pj:ui∈Sj
as a weight

wi.

In addition, the fairness is defined with respect to two weights b and p that indicate the

load on ONUs and the prioritization weight of slices, respectively. Therefore, the maximiza-

tion with these weights realizes the slice awareness and demand responsiveness, since ONUs

with more traffic load and/or with more stringent delay requirements would receive more

bandwidth allocations.

4.4 Performance-Guaranteed Dynamic Bandwidth Allocation Based on OCO

4.4.1 OCO-based DBA Algorithm

With the assumption of an oracle to report the accurate amount of queued data bt, the

defined DBA problem is easy to solve, as it has a concave objective function and a convex

variable space. However, the practical difficulty of DBA problems arises from the fact that it

is impossible to obtain the actual data amount bt at the starting time of the window allocated

to each ONU. This is because the demand request in a REPORT message is computed based

on the data amount at the time when the message is issued. Furthermore, a prediction of

future traffic often differs from the actual amount.

The unavailability of the actual traffic amount hinders an optimal bandwidth allocation.

Most existing DBA algorithms try to solve the problem by estimating the future traffic

amount with statistical or machine learning methods. Nevertheless, the static optimiza-

tion relying on such estimates may demonstrate high variance in its performance, as the
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estimation is not an easy task in general even with recent machine learning techniques. Fur-

thermore, such estimation will be more complex when considering the high user mobility in

access networks. Hence, it seems desirable to use an allocation algorithm that gradually ad-

justs its allocation strategy based on the past traffic patterns to obtain an optimal allocation

robust against fluctuating traffic over time, instead of changing an allocation at every time

cycle to make it the exact optimum for an estimated traffic amount. In this sense, we want

to design an allocation algorithm that is numb to traffic changes over a short time span.

Our proposal is to compute the window size xt from the actual traffic from C0 to Ct−1 by

an Online Convex Optimization (OCO) algorithm, instead of solving the static optimization

problem with the estimated amount b̂t. Since the exact amount of queued data at the

previous cycle Ct−1 is observed after the window allocation xt−1, our algorithm can use the

actual data bt−1 to decide an allocation for the next cycle Ct.

By defining a convex version of the objective, gt(xt) , −ft(xt), the maximization prob-

lem of ft is converted to a minimization problem of a convex function gt over xt with the

same constraint in Eq. (4.4). We use Projected Gradient Descent (PGD) [60] to solve this

problem. At Ct−1, the accurate amounts of queued data are collected at the OLT via RE-

PORT messages (See Figure 4.2). Thus, the actual objective function at the previous cycle

gt−1 becomes available (Eq. (4.4) with bt−1). Note that this approach is different from the

traditional use of REPORT messages in that ONUs report the actual traffic amount after

the allocated window at Ct−1 starts. PGD computes the next window size xt by

xt ← ΠX (xt−1 − ηt−1∇gt−1(xt−1)) , (4.5)

where ΠX(x) is a projection bringing xt back to the space X, and ηt−1 is a diminishing

learning step size. Since the allocation for the next round is defined as a function of the

previous allocation, the recursive relation can be represented as xt ← PGD(x0, ...,xt−1),

which was initially desired.
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4.4.2 OCO Performance Bound

We are interested in bounding the average performance of a DBA algorithm over time rather

than obtaining the exact optimum allocations at each cycle, since the exact optimum solution

is not feasible without an oracle reporting the exact future traffic amount bt. The regret

of an algorithm A quantifies the discrepancy between a sequence of allocations by A and a

hindsight optimum allocation (the most robust allocation over all cycles till CT ):

regretT (A) = sup
{g1,...,gT }⊆G

{
T∑
t=1

gt (xt)−min
x∈X

T∑
t=1

gt(x)

}
.

Note that the supremum over all possible sequences of objective functions implies that the

regret bound considers adversarial scenarios, which is, in our case, a situation where the

actual traffic pattern is extremely irregular.

The gradient descent-based solution (PGD), which we use, is known to have O(log T )-

bound for the regret with the convergence rate of 1/
√
T for a convex objective function over

a convex variable range.

4.5 Experiment and Discussion

Simulations are conducted in a network with three slices: S0, S1, and S2. The network

hosts ten ONUs, and each slice has a different number of ONUs as follows: {u0, u1, ..., u4} ∈
S0, {u5, u6, u7} ∈ S1, and {u8, u9} ∈ S2. Among the ten ONUs, ONUs u0, u3, u6, and u9 are

heavily loaded with a traffic generation function based on the Poisson distribution Pois(λ =

10), while the traffic for the other ONUs is generated based on Pois(λ = 1). Unless otherwise

specified, the slice prioritization weight pj is set to 1.0 for all slices. It is only changed when

evaluating the slice-awareness.

4.5.1 Performance Comparison: Typical DBA Algorithms

The proposed method is compared with typical generic DBA algorithms: MAXWIN and

AVGPRED.
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Figure 4.3. Average Latency at ONUs with respect to the cycle size C = 1.

MAXWIN

allocates either the predefined maximum window size m or the traffic amount queued in

ONUs, which is reported in the previous REPORT message. Thus, this algorithm is quite

responsive to the demand from each ONU. While both m = 0.2 and 0.4 are tested in the

simulations, only the result with m = 0.2 is discussed below, since their performances are

similar.

AVGPRED

assigns the average of the actual traffic queued at each ONU in past cycles. When computing

the average at round Ct, the algorithm uses the past traffic amounts from Ct−1 to Ct−h, where

h is a given time horizon. The performance is shown with a horizon h that provided the best

result among different h’s (h ∈ {10, 100, 1000}). This algorithm stays optimum for every
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static problem defined with a predicated traffic amount. Note that an allocation vector can

be projected back to the solution space to make it a feasible solution, preserving the relative

allocation ratio among ONUs.

4.5.2 Experimental Results

We discuss our simulation results from the three aspects desired for a DBA algorithm;

namely, demand-responsiveness, slice-awareness, and allocation fairness. In addition, an

interpretation of the OCO performance guarantee in our problem is briefly summarized at

the end.

Demand-responsiveness

Figure 4.3 illustrates the average latency versus the delta value (∆t) depicted in Figure 4.2,

during which additional traffic unknown to a DBA arrives. This value implies the amount

of traffic that was not reported to the OLT and can be added to the queues of ONUs before

the next round. The y-axis is the average latency of each traffic unit from 50 simulation

runs. ∆t and the average latency are represented with respect to the cycle size C = 1.

The proposed OCO-based algorithm realizes the lowest queuing delay, on average, among

the three methods. This result indicates that our solution reduces the average latency even

though it does not provide the optimum for every single static optimization. This is because

the OCO-based approach gradually adjusts its solution to an allocation that is robust against

underlying fluctuations of traffic.

The general decreasing trend of MAXWIN and AVGPRED in the average latency could

be explained by excessive adjustment towards traffic amount in each time cycle. As ∆t

increases, the total amount of unreported traffic becomes more random. Therefore, the

negative impact of an unmatched bandwidth allocation will be smaller in scale on average.

In contrast, the impact stays notable when ∆t is smaller. It is worth mentioning that this
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Figure 4.4. Transition of the Allocation to ONU u0: The proposed DBA algorithm adjusts
its allocation over time to provide a robust bandwidth allocation, considering the past traffic
pattern.

behavior does not imply the usefulness of MAXWIN and AVGPRED with a larger ∆t. This

is because it is reasonable to assume the duration between a GATE message and the previous

REPORT message (∆t) is within one time cycle C, and our OCO approach performs better

in the range.

Figure 4.4 shows the learning process of the allocation to ONU u0 by the proposed

algorithm along with the observed actual traffic pattern (grey bars). The result indicates

that the OCO-based algorithm quickly adjusts its allocation to the traffic pattern at earlier

cycles and continues fine-tuning at later cycles. The result also indicates the convergence of

our OCO-based allocation over time.

97



Table 4.1. Allocated window sizes with different slice prioritization weights: The slice weight
pj allows delay-sensitive slices to be allocated larger window sizes. (Unit: cycle)

Latency-sensitive Slice Standard Slice

(pj = 1.2) (pj = 1.0)

Heavily-loaded ONU 0.2642 0.1657

Normally-loaded ONU 0.0569 0.0169

Table 4.2. Average Latency at Each ONU and Standard Deviation σU of the Delays in All
ONUs in U (Unit: cycle).

ONU 0 ONU 1 ONU 5 ONU 6 σU

OCO 0.0351 0.0172 0.0169 0.0352 0.0094

MAXWIN 0.0230 0.0304 0.0302 0.0231 0.0039

AVGPRED 0.0231 0.0306 0.0310 0.0230 0.0039

Slice-awareness

Table 4.1 indicates the difference in the allocated window sizes depending on the difference

among network slices with different delay-sensitivity. The slice prioritization weight pj was

adjusted to represent the specific delay requirements. In particular, assuming that slice

S3 hosts a delay-sensitive network service, the weight p3 of slice S3 was set to 1.2, while

the weights for the other slices are 1.0. It is observed that the ONUs on S3 receive more

bandwidth. For example, the heavily-loaded ONU u9 on S3 is allocated 0.2642 cycles at

round C10000, while the heavily-loaded ONUs on S1 and S2 receive 0.1657 cycles. This result

empirically verifies the possibility to accommodate different types of network slices with

diverse requirements through the tuning of the parameter pj.

Fairness

Figure 4.5, which illustrates the converged allocation to ONU u0 at C10000 by each method,

indicates that the heavily-loaded ONUs do not obtain exclusive possession of the bandwidth
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receives more bandwidth.

resource. This result confirms the theoretical discussion on the proportional fairness achieved

with a logarithmic objective function.

Table 4.2 summarizes the average latency in the sampled ONUs (u0, u1, u5, and u6) and

the standard deviation σU of the delays across all ONUs in U . The standard deviation of

the proposed OCO-based algorithm is relatively higher than the other methods. While this

implies the prioritization of some ONUs, the standard deviation stays in the same order

(10−3). This fact indirectly shows that the proposed algorithm maintains the fairness, even

though it allocates more resources to some specific ONUs, so that the latency levels are

maintained across all ONUs.

It also shows that the difference in the allocations is quite small (on a scale of 10−3), even

though the resulting difference in the average delay by the methods is notable. This fact
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implies that the convergence guarantee of OCO techniques provides an additional benefit of

a stable robust solution that is gradually updated over time.

4.6 Conclusion

This paper proposes an Online Convex Optimization (OCO) based solution to the Dynamic

Bandwidth Allocation (DBA) problem. Our algorithm is aimed at realizing a bandwidth

allocation that is slice-aware, demand-responsive, and fair among ONUs in PON access net-

works, formulating the DBA problem based on the concept of proportional fairness with

appropriate weight parameters. The use of the OCO scheme enables our allocation solution

to be robust against fluctuations of traffic, which eventually results in the reduction of the

average latency over time. The simulation results indicate that the proposed solution miti-

gates the latency compared to other typical allocation approaches. Furthermore, the results

infer the effectiveness of a robust allocation over time for access networks with dynamic traf-

fic patterns, in contrast to the optimum solutions at static optimizations formulated with an

estimated traffic pattern.
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CHAPTER 5

CLUSTER LEADER ELECTION PROBLEM FOR DISTRIBUTED

CONTROLLER PLACEMENT IN SDN

To improve the scalability of Software Defined Networking (SDN), a network can be clustered

into subnetworks and managed by multiple distributed SDN controllers, which collaborate

through message exchanges with each other. In this chapter1, we propose a heuristic algo-

rithm for the Cluster Leader Election Problem (CLEP) to decide an effective assignment of

distributed SDN controllers in a network consisting of multiple subnetworks (clusters). CLEP

deals with the placement problem, considering the metrics between the controllers, such as

the distance and connectivity among the controllers in different subnetworks. Moreover, it is

shown that some additional properties within each subnetwork, which are discussed in other

literature, can be guaranteed by selecting specific clustering methods before the placement.

5.1 Introduction

Software Defined Networking (SDN) has ameliorated the simplicity and programmability

of networks by dissociating control logic from forwarding functions. However, SDN is ap-

proaching the limitation of its centralized management strategy as the size of SDN networks

increases.

SDN with distributed controllers divides a managed network into multiple subnetworks

(clusters), and each controller is assigned to manage the switches in its cluster. Because

topology and control information of a cluster is encapsulated by each controller, this partially

1The content of this chapter is based on the following earlier work.
c© 2017 IEEE. Reprinted, with permission, from G. Ishigaki, R. Gour, A. Yousefpour, N. Shinomiya

and J. P. Jue, “Cluster Leader Election Problem for Distributed Controller Placement in SDN,” GLOBE-
COM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017, pp. 1-6, doi: 10.1109/GLO-
COM.2017.8254748.
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centralized architecture succeeds in reducing the global information and results in providing

scalability to SDN [33].

One of the most important open problems in SDN relates to the placement of a controller

in a given network [25]. The initial model of SDN assumed direct connections between all

the switches and their controller with southbound communication links that are dedicated

only to control messages. Nonetheless, current models suppose that the control messages

are sent by communication links of the data plane because of physical and financial reasons

(in-band control messages). In these models, a controller is piggybacked onto one of the

switches, and the connections between the controller and the dominated switches are realized

by paths on the data plane instead of a physical direct link between them. The controller

placement problem tries to optimize the metrics between the controller and the switches, such

as communication latency [25] and survivability of the logical connections [28], by selecting

an appropriate location for the controller.

When deploying multiple controllers, some metrics over clusters (over-cluster metrics)

could be considered for the placement in addition to the metrics within a cluster (intra-

cluster metrics). For example, the placement is conducted based on the number of disjoint

paths between switches and both their initial and backup controller in order to improve the

survivability in [45]. Also, the load of each controller, which is commonly defined by the

number of switches, is alleviated by balanced placements of controllers [78, 79].

However, these over-cluster metrics only consider the relationship between the switches

in a cluster and some controllers. Assuming cooperative operations among distributed SDN

controllers, which require state synchronizations, metrics between the controllers would be-

come another important aspect of the multiple controller placement problem.

Hence, this paper proposes a variant of the multiple controller placement problem as

the Cluster Leader Election Problem (CLEP). CLEP is defined as a graph optimization

problem of minimizing the distance between controllers over which in-band control messages
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travel. Additionally, the intractability of CLEP is proved based on reduction to the Set

Cover Problem (SCP). Some greedy algorithms for CLEP are also proposed, exploiting

an approximation algorithm for SCP. Our simulation compares the performance of these

algorithms under different types of graph topologies and clustering methods.

5.2 Assumptions and Our Model

This paper assumes that a communication network is divided into multiple connected sub-

networks called clusters. When dealing with the multiple controller placement problem, the

clustering method used to divide a whole network into subnetworks influences the result

of placement algorithms, and vice versa. When the placement determines the clusters, the

solution can achieve the global optimum solution. The placement algorithm based on K-

means in [75] indicates the effectiveness of clustering based on the placement of controllers.

However, this type of method cannot be applied to all types of metrics discussed in the

placement problem because of the non-convexity of some metrics other than distance.

In contrast, when a set of clusters are given as an input for the placement problem,

the topological characteristics of each cluster, such as distance and connectivity, can be

guaranteed, though it could be possible that a different clustering provides a better solution

for an objective function in terms of the global view. Therefore, in our work, a set of clusters

is given as input to simplify the dependency between clustering and placement. Section 5.4

shows that the placement problem becomes intractable even with fixed clusters.

The communication nodes in a cluster collaborate with each other through communica-

tions within the cluster. When information exchange among clusters is required, a leader

node of a cluster on which the controller is piggybacked gathers necessary information in

its cluster and broadcasts the information to the adjacent clusters, which are defined as

clusters sharing some node. Note that this information exchange is conducted using logical
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connections between leader nodes that are realized by in-band control messages on paths in

a data-plane network.

The key assumption is that a leader node cannot directly send its information to non-

adjacent clusters. The communications with such clusters are conducted by repeated in-

formation exchanges between adjacent clusters, although another work [? ] that considers

latency among controllers adopts the longest or average distance between all pairs of the

controllers. When the size of networks expands, this relay strategy helps leader nodes to

reduce the information that they need to maintain. Additionally, the update for a newly

joining cluster or leader node becomes simpler because it only requires local arrangements

with neighboring leaders.

In our model, some nodes are included in multiple clusters so that all the edges are

covered by clusters. However, each node selects one cluster from all the clusters containing

the node. When the node receives in-band control messages from clusters other than its

cluster, it relays the messages to appropriate neighbor nodes. For example, in Figure 5.1, v3

and v4 are included in both Cluster 1 and 2. These vertices can select to become a member

of either of these two clusters. Suppose v3 chooses Cluster 1. When receiving a message

labeled as Cluster 2, v3 simply relays the message to v4 or v5.

5.3 Problem Formulation

5.3.1 Placement Metric

The single controller placement problem is first discussed by Heller et al. in [25] as a problem

to minimize the distance between switches and a controller. This latency metric is the most

common objective function for the controller placement problem and appears in many other

works [82, 5]. In contrast, our CLEP problem is defined as the problem of minimizing

latency between controllers, while other works try to reduce the latency between switches

and a controller.
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Figure 5.1. In-band SDN model with multiple clusters.

5.3.2 Problem Statement

A communication network is represented as a graph G consisting of vertices V (communica-

tion nodes) and edges E that represent connections between vertices. Also, the node groups

are named vertex clusters C = {C ⊆ V }.

Then, the cluster leader election problem is finding a leader set H ⊆ V that minimizes

the distance-based delay metric satisfying the correctness of the leader election defined as

follows.

Definition 7. Correct Leader Set: When the following is satisfied, the elected leader set

H ⊆ V is said to be correct. For every vertex cluster C ⊆ V , at least one vertex η ∈ C that

is included in the leader set H exists:

∀C ∈ C,∃η ∈ H ⊆ V such that η ∈ C. (5.1)

This statement means that every cluster needs to have its leader; otherwise, the leader

election is not correctly completed. This correctness always holds when a mapping function

from a set of leaders to a set of clusters is surjective: ∀y ∈ Y, ∃x ∈ X such that f(x) = y.

105



Definition 8. Cluster Adjacency function: A cluster adjacency function α : C×C −→ {0, 1}

gives 0 iff a given pair of vertex clusters C ∈ C and C ′ ∈ C does not share any vertices between

them; otherwise, it returns 1.

α(C,C ′) =


0 if C ∩ C ′ = ∅

1 if C ∩ C ′ 6= ∅
. (5.2)

From the assumption in Section 5.2, the distance based delay for communications among

clusters is represented as the sum of distances between each leader η ∈ H and the leaders

of the clusters adjacent to the cluster whose leader is η. When η, η′ ∈ H are the leaders of

C,C ′ ∈ C respectively, the delay metric is represented as∑
C∈C

∑
C′∈C

d(η, η′)α(C,C ′), (5.3)

where d(v, v′) (v, v′ ∈ V ) is the distance between two vertices. When this metric is minimized

by selecting an appropriate set of leaders H∗, the set of leaders is said to be minimum.

Thus, the cluster leader election problem is finding the minimum correct leader set in a

given weighted graph.

Problem 5. Cluster Leader Election Problem (CLEP): Given a graph G = (V,E), a weight

function on edges w : E −→ R+, a set of vertex clusters C = {C ⊆ V } and a threshold

K ∈ R+, is there a subset of vertices H = {η} whose leader function l : V ⊇ H −→ C is

surjective and the cost defined as follows is less than K?

c(H) :=
∑
η∈H

∑
C∈l(η)

∑
η′∈H

∑
C′∈l(η′)

d(η, η′)α(C,C ′), (5.4)

where d(s, t) (s, t ∈ V ) is the distance between a pair of vertices s, t in terms of the given

edge weight w.

Eq. (5.4) is interpreted as the formal version of Eq. (5.3). The first two summations

indicate the sum over all clusters. The first summation provides the total distance metric
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for every leader vertex in the leader set H. Because some clusters may designate the same

vertex as their leader, the second summation collects the metric for all the clusters whose

leader is the given η ∈ H. The other two summations represent the sum for all adjacent

clusters. The third summation considers all possible destinations for the communication

from η, and the fourth summation takes the shared leader into account.

5.4 Intractability of CLEP

In this section, the intractability of CLEP is stated by demonstrating the equivalence of the

problem and a well-known NP-complete problem called the Weighted Minimum Set Cover

Problem.

Problem 6. Weighted Minimum Set Cover Problem (WMSCP): Given a set U , a finite

family of subsets of U , namely S = {S ⊆ U}, a weight function on the subsets w : S −→ R+

and a threshold K ∈ R+, is there a subfamily S∗ ⊆ S such that
⋃
S∈S∗ S = U and the cost

defined as follows is less than K?

c(S∗) :=
∑
S∈S∗

w(S) . (5.5)

Note that for any cost function w on subsets S ∈ S, WMSCP is known to be NP-complete

[34].

Theorem 5. The Cluster Leader Election Problem is NP-complete.

Proof. Let Ri be a set of clusters such that a cluster C in Ri contains vertex vi: Ri :=

{C ∈ C | vi ∈ C}. Also, R denotes the collection of all the sets: {Ri} (vi ∈ V ) since Ri is

defined for each vertex in V .

Then, with the definition of Ri, the Cluster Leader Election Problem is converted to the

following.
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Problem 7. CLEP’: Given a set of vertex clusters C = {C ⊆ V }, a finite family of subsets

of C, namely R = {Ri ⊆ C}, a weight function on the subsets w : R −→ R+ and a threshold

K ∈ R+, is there R∗ ⊆ R that satisfies
⋃
Ri∈R∗ Ri = C and the cost defined as follows is less

than K?

c(R∗) :=
∑
Ri∈R∗

w(Ri), (5.6)

where

w(Ri) :=
∑

C∈l(vi)

∑
vj :Rj∈R∗

∑
C′∈l(vj)

d(vi, vj)α(C,C ′). (5.7)

The equivalence of CLEP and WMSCP is straightforward from this representation. Because

WMSCP is known to be NP-complete for any weight function on the given subsets, CLEP

is also NP-complete.

In the proof of the converted CLEP (Problem 7), the vertex set derived by indices of

Ri ∈ R∗ forms the required leader set that is minimum and correct. The combination of

Eq. (5.6) and Eq. (5.7) corresponds to the cost function for the leader set H in Eq. (5.4).

Therefore, the threshold K for the cost function c(R∗) is equivalent to the minimization of

the cost of the leader set c(H). This realizes the minimum condition of the leader election.

On the other hand, the condition that
⋃
Ri∈R∗ Ri = C implies the correctness of a leader set.

When this condition is satisfied, at least one vertex exists in the leader set derived by R∗ for

each cluster in C.

5.5 Heuristic Algorithms

In this section, heuristics for CLEP are proposed based on the greedy approximation algo-

rithm for WMSCP [74]. The approximation algorithm for WMSCP selects a subset whose

cost efficiency, defined as w(Ri)
|Ri\T | , is minimal at each iteration until all the clusters are covered.
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Algorithm 4 WMSCP-based greedy algorithm for CLEP

Input: a set of vertex clusters: C = {C ⊆ V }, a finite family of subsets of C: R = {Ri ⊆ C},
a weight function on the subsets w : R −→ R+

1: T ← ∅, I ← ∅
2: while T 6= C do
3: Find Ri ⊆ C with minimal w(Ri)

|Ri\T |
4: T ← T ∪Ri

5: I ← I ∪ i
6: end while

Output: a set of leaders H = {vi ∈ V }I (i ∈ I)

5.5.1 WMSCP-based Greedy Algorithm for CLEP

Algorithm 4 describes the steps to elect leaders using the WMSCP algorithm. To obtain

the set of leaders, the indices of the selected subsets T are also stored in I during the set

covering execution. This greedy algorithm outputs a set of leaders indexed by I with the

input of a set of clusters C, a family R of the subsets of C, and a weight function w.

As will be understood, the cost efficiency is determined by the weight function w on the

subsets Ri of C and the number of uncovered elements in the subset. However, the weight

function w on Ri defined in Eq. (5.7) requires an exponential number of calculations for all

possible combinations of leaders when the number of clusters increases. In general, it is not

practical to calculate the exact weight values in an arbitrary network topology. Therefore,

our methods try to approximate the values by assuming the worst case scenario and obtaining

expected values of the distances between leaders. Note that the computation complexity of

the proposed greedy algorithm can be shown by a similar analysis on the complexity of the

WMSCP approximation algorithm in [74].
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Constant Weight wcon

The first type of weight function is a constant weight. This function returns a fixed constant

value c regardless of any subset.

wcon(Ri) = c. (5.8)

Worst Weight wwst

The worst weight function weights Ri with the maximum distance between the leader vi and

all other vertices in all clusters in Ri. This value shows the cost of choosing vi when one of

the clusters in Ri designates a vertex furthest from vi as its leader.

wwst(Ri) = max
C∈Ri

max
vj∈C

d(vi, vj). (5.9)

Average Weight wavg

Similarly, the average weight function determines a weight for a subset Ri as the average of

all the distances from the leader vi to all other vertices in Ri. This weight is the expected

cost to select vi as a leader vertex.

wavg(Ri) =
1∑

C∈Ri
|C|

∑
C∈Ri

∑
vj∈C

d(vi, vj). (5.10)

5.5.2 Mapping between Leaders and Clusters

Though the heuristics based on the WMSCP algorithm output a set of vertices H that

covers all the clusters with minimal cost, they do not decide which vertex becomes a leader

for which cluster when one cluster contains more than one vertex from the set H. Thus,

it is necessary to map a cluster to one of the vertices in H to complete the leader election

problem.

For simplicity in our mapping process, a leader vertex for a cluster C is decided by

uniform random selection from the list of all the possible leader vertices in H. As a result,
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each vertex becomes a member of one cluster whose leader gives control information for the

vertex and participates in other clusters as a relay vertex. Some improvements in results

could be realized by a mapping method that considers topology information.

5.6 Simulation

The proposed greedy algorithms and a centroid algorithm are compared in terms of their

performance with respect to the distance between leaders in three types of graph topologies

clustered by two clustering methods. The centroid algorithm determines a leader of each

cluster so that it can minimize the longest distance from the leader to any other vertices

in the cluster. Thus, the centroid algorithm is similar to the common approaches such as

K-means [75] for latency reduction except that the clustering is given as an input.

5.6.1 Network Models

The algorithms are compared in their performances in three kinds of graph topologies. For

the sake of cycle clustering, each graph is augmented so that it has at least 2-edge connectiv-

ity. The assurance of 2-edge connectivity is conducted exploiting Tarjan’s bridge detection

algorithm [67]. Suppose that the endpoints of a bridge found by the Tarjan’s algorithm are

v1 and v2, and L(vi) is the set of vertices adjacent to vi. A new edge is added between a

pair of randomly selected vertices from L(v1) ∪ {v1} \ {v2} and L(v2) ∪ {v2} \ {v1} for each

bridge. When the edge creates a self-loop or multi-edge in the graph, the random selection

is tried again.

The following types of graph topologies are considered:

Bi-bridged Barbell graph

A bi-bridged barbell graph consists of two complete graphs with n1 and n2 vertices and two

paths P1 and P2 of length l connecting the two complete graphs. It is guaranteed that a pair
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of vertices of v1j and v2j is adjacent with one edge of Knj
denoting a lead vertex of path Pi

connecting to complete graph Knj
by vij.

Newman Watts Strogatz (NWS) random graph

A Newman Watts Strogatz (NWS) random graph shows the scale-free property and high

clustering coefficient as well as the small-world property. The degree distribution of a scale-

free random graph follows the power law. Additionally, the high clustering coefficient means

that a connected triple of vertices tends to have three edges among them. This graph model

first composes a cycle covering all the n vertices and connects each vertex with k nearest

neighbors in the cycle. Furthermore, additional edges are spanned between two vertices with

the probability parameter p.

Real-world Network Topology

A real-world network topology, called UUNET, is used for original graphs in our simulation.

The UUNET is a network of the IP layer with 49 vertices in the United States. The topology

information is retrieved from Internet Topology Zoo [32].

5.6.2 Cluster Settings

Diam-k Tree (DkT) Clustering

Diam-k Tree (DkT) clustering is based on tree structures with diameter k. Each cluster is

induced by the vertices within k hops from a randomly selected root vertex.

Fundamental Cycle (FC) Clustering

Fundamental Cycle (FC) clustering divides a graph into multiple cycle structures using a

spanning tree on it. Our simulator first composes a spanning tree from a randomly selected

112



root vertex based on the Breadth First Search (BFS) algorithm. The addition of one non-

tree edge to the spanning tree formulates a cycle, and this cycle becomes a cluster in this

method.

5.6.3 Results

Figure 5.2 and 5.3 respectively indicate the average distance from a leader to its adjacent

leaders in bi-bridged barbell graphs clustered by D2T and FC clustering. In this simulation,

the size of two complete graphs (n1, n2) is equally set to 20, 30, 40, 50, 60, and the length of

the paths l between the two complete graphs is 6, 10, 14, 17, 20, respectively.

The average distances in the NWS random graphs with D1T and FC clustering are shown

in Figure 5.4 and 5.5, respectively. The number of vertices n increases from 20 to 100 with

the parameters k = 2, p = 0.1.

Regardless of the difference in diameters between the graph models, the average weight

wavg and constant weight wcon demonstrate better performance in reducing the average dis-

tance for all the graphs. Because of the paths connecting two complete graphs, the diameter

of bi-bridged barbell graphs is always equal to l + 2. In contrast, NWS graphs have shorter

diameters: E[diam(G)] ≈ 3.0, which is caused by the random addition of edges based on p.

Due to the high clustering coefficient of complete graphs and NWS graphs, the size

of fundamental cycles remains about the same (E[|C|] ≈ 4) for any graph models. This

topological characteristic induces the increase in the number of adjacent cycles along with

the growth of the graph size. As a result, the FC clustering tends to increase the average

distance to the adjacent leaders. Contrarily, the average size of DkT clusters increases along

with the increase in the graph size. Thus, the average distance is moderately augmented in

the case of DkT clustering.

Table 5.1 describes the results in the UUNET clustered with both D2T and FC clus-

terings. In terms of the optimization of the distance, a similar discussion holds for this
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Figure 5.2. Average distance from a leader to its adjacent leaders in bi-bridged barbell graph
clustered by D2T clustering.

real-world topology. Since the diameter of real-world communication networks tends to be

larger than NWS, the results are similar to the case of bi-bridged barbell graphs.

Figure 5.6 illustrates the comparison of the algorithms and the optimum solution ob-

tained by an exhaustive search in lesser bi-bridged barbell graphs with 16, 18, 20, and 22

vertices. This result implies that the proposed algorithms do not provide solutions that are

exceptionally divergent from the optimum solution.
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Figure 5.3. Average distance from a leader to its adjacent leaders in bi-bridged barbell graph
clustered by FC clustering.

Table 5.1. Average distance from a leader to its adjacent leaders in UUNET with clustered
by D2T and FC clustering.

Algorithm D2T FC

Constant 7.97 8.53

Worst 8.34 9.22

AVG 7.45 8.16

Centroid 13.33 20.85
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Figure 5.4. Average distance from a leader to its adjacent leaders in NWS random graph
clustered by D1T clustering.

5.7 Discussions

5.7.1 Guarantee on the Bound of Intra-metrics

Our greedy algorithms to decide a set of leaders do not consider the metrics within each

cluster. However, some metrics such as latency and survivability could be guaranteed based

on the property of clustering methods rather than their leader election process.

The latency, which is defined by the distance to a controller from switches, could be upper

bounded by analyzing the diameter of clusters. It is obvious that the Diam-k Tree clustering

always provides the upper bound for the latency between switches and their controller with

length 2k. When a network is partitioned by the fundamental cycle clustering with BFS,

the size of the largest cycle becomes 2× diam(G).
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Figure 5.5. Average distance from a leader to its adjacent leaders in NWS random graph
clustered by FC clustering.

In addition to latency, survivability is also determined by clustering methods. Because

the fundamental cycle clustering divides the entire network into 2-connected clusters, the

number of disjoint paths between a controller and switches is equal to 2. In contrast, the

Diam-k Tree clustering cannot provide any backup paths for single link failures in a cluster.

5.7.2 Combining Multiple Clusters

As discussed in Section 5.2, the clustering is predetermined as the input before the placement

occurs. When the number of clusters is required to be smaller than K in the input, like the

work in [75], combining some clusters makes our algorithms satisfy the requirement.

To avoid forming a giant cluster, it is better to select the smallest cluster and combine

it with the smallest adjacent cluster. After repeating this procedure until the number of
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Figure 5.6. Average distance from a leader to its adjacent leaders in bi-bridged barbell graph
clustered by D1T clustering.

clusters becomes less than and equal to K, the proposed algorithm can be used to decide

the placement. Even in this case, the discussion on the bound of intra-metrics above holds

because the sum of the upper bounds on intra-metrics of combined clusters gives the upper

bound for the new cluster at each combining step. It is obvious that the diameter of the new

cluster is the sum of diameters of two clusters in the worst case.

5.7.3 NP-completeness under Other Assumptions

Though the objective of our Cluster Leader Election problem is the minimization of the

distance between controllers, any CLEP aiming at optimizing different metrics between con-

trollers becomes NP-complete. In the proof discussed in Section 5.4, the only part depending

on the distance metric is the weight function on the leader set of Eq. (5.6). However, the NP-

completeness still holds with other functions because WMSCP is known to be NP-complete

for any weight functions.
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Furthermore, CLEP stays NP-complete even after relaxing the assumption on the multi-

ple memberships of a communication node to some clusters. In other works on the clustering

methodology, the membership of a node can be restricted to exactly one cluster to assure the

disjointness of clusters. Though the size of a set Ri remains equal to 1 under this assumption,

the completeness proof holds.

5.8 Conclusion

In this paper, we formulated the Cluster Leader Election Problem (CLEP), generalizing

the multiple controller placement problem of allocating a controller to each cluster while

minimizing the distance metric between the controllers. CLEP is proven to be NP-complete

by reducing it to Weighted Minimum Set Cover Problem (WMSCP). Exploiting the well-

known approximation algorithm for WMSCP, algorithms with three kinds of weights for

greedy choices have been proposed. The simulation results indicate the effectiveness of the

proposed greedy algorithms using the average distance weight and constant weight.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

This dissertation discusses how Machine Learning (ML) and combinatorial optimization tech-

niques can realize effective resource coordination for network slicing under complex interde-

pendency among network entities and uncertainty of future traffic and available resources.

In Chapter 2, we reveal the role of cycle dependency structures in the context of network sur-

vivability and propose a dependency adjustment algorithm that enhances the network-wide

reliability by restructuring the interdependency between the network function and infras-

tructure layers. In addition to the network protection method against the cascading failures,

a recovery resource allocation algorithm is devised based on Deep Reinforcement Learning

(Deep RL) in Chapter 3. The allocation algorithm learns the implicit importance of the

failed infrastructure nodes and determines an optimal resource allocation order to maximize

the interim network service functionality. Chapter 4 focuses on the uncertainty of future

traffic while deciding an optimal bandwidth allocation to network slices in optical access

networks. The proposed Online Convex Optimization (OCO)-based algorithm gradually up-

dates the bandwidth allocation to find an appropriate bandwidth that reduces the overall

latency of upstream traffic in access networks. In Chapter 5, we propose a placement algo-

rithm for distributed SDN controllers, which are key enablers of end-to-end network slicing.

The reduction of communication overheads by an optimal controller placement leads to the

improvement of controller responsiveness to resource coordination requests.
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6.2 Future Works

6.2.1 Dynamic Bandwidth Allocation for End-to-End Elastic Network Slices

Chapter 4 introduces a learning-based Dynamic Bandwidth Allocation algorithm for Passive

Optical Networks (PONs), which is the initial step towards effective resource coordination

of a whole network slice from the access to core networks. Our current approach employs an

OCO algorithm and the concept of fairness. The use of an OCO algorithm provides a general

framework that guarantees performance bounds in terms of regret. Integrating fair allocation

into such an algorithm, it is shown that the average delay on each network slice decreases

due to more efficient bandwidth utilization, satisfying the isolation among slices. This initial

result in the PON-based access networks needs to be extended to the network-wide level.

However, the extension would involve a complication of the objective function, which may

prevent us from simply adopting a convex optimization technique. In that case, we need to

propose an approximately boundable allocation method for combinatorial objectives based

on the OCO approach.

6.2.2 Pricing Mechanism for Elastic Network Slices

Another approach to deal with the uncertainty of the future demand of network resources

is to shape the future by indirectly guiding the behaviors of slice users through dynamic

pricing. Common cloud computing platforms such as Amazon Web Services (AWS) have

pricing mechanisms to solve similar problems for their computing resources. It will be

effective if network slice providers use their mechanisms to dynamically adjust the prices of

elastic network slices. This research task would involve two kinds of estimation problems:

estimation of the user-type distribution and estimation of the blocking probability of slice

scaling requests. To motivate slice tenants to change their request behaviors, it is important

to consider the users’ prior preferences over the price range. Assuming that the preferences
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are represented as their private utility functions, a slice provider needs to estimate the

distribution of the types of utility functions of all the potential tenants. Furthermore, it is

critical to maintaining the blocking rate of scale-up requests under a certain threshold to

guarantee the performance of elastic network slices.
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[54] Pérez, G. O., J. A. Hernández, and D. Larrabeiti (2018). Fronthaul network modeling
and dimensioning meeting ultra-low latency requirements for 5g. IEEE/OSA Journal
of Optical Communications and Networking 10 (6), 573–581.

[55] Qu, L., C. Assi, K. Shaban, and M. J. Khabbaz (2017, Sep.). A reliability-aware network
service chain provisioning with delay guarantees in NFV-enabled enterprise datacenter
networks. IEEE Transactions on Network and Service Management 14 (3), 554–568.

[56] Rahnamay-Naeini, M. (2016, Feb). Designing cascade-resilient interdependent networks
by optimum allocation of interdependencies. In 2016 International Conference on Com-
puting, Networking and Communications (ICNC), pp. 1–7.

[57] Rastegarfar, H., D. C. Kilper, M. Glick, and N. Peyghambarian (2015, Dec). Cyber-
physical interdependency in dynamic software-defined optical transmission networks.
IEEE/OSA Journal of Optical Communications and Networking 7 (12), 1126–1134.

127

https://networkx.github.io/


[58] Sen, A., A. Mazumder, J. Banerjee, A. Das, and R. Compton (2014, April). Iden-
tification of K most vulnerable nodes in multi-layered network using a new model of
interdependency. In 2014 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 831–836.

[59] Shafin, R., L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang (2020).
Artificial intelligence-enabled cellular networks: A critical path to beyond-5g and 6g.
IEEE Wireless Communications 27 (2), 212–217.

[60] Shalev-Shwartz, S. (2012). Online learning and online convex optimization.
DOI:10.1561/2200000018 .

[61] Shin, D. H., D. Qian, and J. Zhang (2014, July). Cascading effects in interdependent
networks. IEEE Network 28 (4), 82–87.

[62] Skubic, B., J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee (2009). A comparison
of dynamic bandwidth allocation for epon, gpon, and next-generation tdm pon. IEEE
Communications Magazine 47 (3), S40–S48.

[63] Stippinger, M. and J. Kertész (2014). Enhancing resilience of interdependent networks
by healing. Physica A: Statistical Mechanics and its Applications 416, 481 – 487.

[64] Sturaro, A., S. Silvestri, M. Conti, and S. K. Das (2016, Feb). Towards a realistic model
for failure propagation in interdependent networks. In 2016 International Conference
on Computing, Networking and Communications (ICNC), pp. 1–7.

[65] Su, R., D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang, and Z. Zhu (2019).
Resource allocation for network slicing in 5G telecommunication networks: A survey of
principles and models. IEEE Network 33 (6), 172–179.

[66] Taleb, T., A. Ksentini, and R. Jantti (2016, November). “anything as a service” for 5g
mobile systems. IEEE Network 30 (6), 84–91.

[67] Tarjan, R. E. (1974). A note on finding the bridges of a graph. Information Processing
Letters 2 (6), 160–161.

[68] Tauch, S., W. Liu, and R. Pears (2015, April). Measuring cascade effects in interde-
pendent networks by using effective graph resistance. In 2015 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp. 683–688.

[69] TensorFlow (Retrieved on March 27, 2019). tf.train.AdamOptimizer. https://www.

tensorflow.org/versions/r1.14/api_docs/python/tf/train/AdamOptimizer.

[70] The Internet Topology Zoo (Retrieved on March 27, 2019a). BT North America. http:
//www.topology-zoo.org/dataset.html.

128

https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/train/AdamOptimizer
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html


[71] The Internet Topology Zoo (Retrieved on September 23, 2019b). IBM. http://www.

topology-zoo.org/dataset.html.

[72] Uzawa, H., K. Honda, H. Nakamura, Y. Hirano, K. Nakura, S. Kozaki, and J. Ter-
ada (2020). Dynamic bandwidth allocation scheme for network-slicing-based tdm-pon
toward the beyond-5G era. IEEE/OSA Journal of Optical Communications and Net-
working 12 (2), A135–A143.

[73] Vassilaras, S., L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi, L. Shi, L. Liu,
M. Debbah, and G. S. Paschos (2017). The algorithmic aspects of network slicing. IEEE
Communications Magazine 55 (8), 112–119.

[74] Vazirani, V. V. (2013). Approximation algorithms. Springer Science & Business Media.

[75] Wang, G., Y. Zhao, J. Huang, Q. Duan, and J. Li (2016, May). A k-means-based
network partition algorithm for controller placement in software defined network. In
2016 IEEE International Conference on Communications (ICC), pp. 1–6.

[76] Wang, J., C. Qiao, and H. Yu (2011, April). On progressive network recovery after a
major disruption. In 2011 Proceedings IEEE INFOCOM, pp. 1925–1933.

[77] Xu, M., X. Liu, N. Chand, F. Effenberger, and G. Chang (2017). Flex-frame timing-
critical passive optical networks for delay sensitive mobile and fixed access services. In
2017 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3.

[78] Yao, G., J. Bi, Y. Li, and L. Guo (2014, Aug). On the capacitated controller placement
problem in software defined networks. Communications Letters, IEEE 18 (8), 1339–
1342.

[79] Yao, L., P. Hong, W. Zhang, J. Li, and D. Ni (2015, June). Controller placement and
flow based dynamic management problem towards sdn. In Communications (ICC), 2015
IEEE International Conference on, pp. 369–374.

[80] Yousaf, F. Z., V. Sciancalepore, M. Liebsch, and X. Costa-Perez (2019). Manoaas: A
multi-tenant nfv mano for 5g network slices. IEEE Communications Magazine 57 (5),
103–109.

[81] Zhang, S. (2019). An overview of network slicing for 5G. IEEE Wireless Communica-
tions 26 (3), 111–117.

[82] Zhang, Y., N. Beheshti, and M. Tatipamula (2011, Dec). On resilience of split-
architecture networks. In Global Telecommunications Conference (GLOBECOM 2011),
2011 IEEE, pp. 1–6.

129

http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html


[83] Zhao, Y., M. Pithapur, and C. Qiao (2016, Dec). On progressive recovery in inter-
dependent cyber physical systems. In 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6.

[84] Zhao, Y. and C. Qiao (2017, May). Enhancing the robustness of interdependent cyber-
physical systems by designing the interdependency relationship. In 2017 IEEE Inter-
national Conference on Communications (ICC), pp. 1–6.

130



BIOGRAPHICAL SKETCH

Genya Ishigaki received his BS in Engineering and MS in Engineering from Soka University,

Japan, and MS in Computer Science from The University of Texas at Dallas. His research

interests lie in next-generation telecommunication networks with an emphasis on developing

combinatorial optimization and machine learning techniques to address problems related

to resource allocation. He served the Department of Computer Science at UT Dallas as a

teaching assistant and research assistant. Genya also taught an undergraduate course on

discrete mathematics at UT Dallas for four semesters. During the last year of his PhD

program, he worked for TieSet, an early-stage startup company based in Santa Clara, CA,

as a research intern to develop an asynchronous Federated Learning system. He received

two scholarships during his PhD program from Shigeta Education Foundation and Japan

Student Services Organization.

131



CURRICULUM VITAE

Genya Ishigaki
April 30, 2021

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: gishigaki@utdallas.edu

Educational History:

PhD, Computer Science, The University of Texas at Dallas, 2021
MS, Computer Science, The University of Texas at Dallas, 2021
MS, Engineering, Soka University, Japan, 2016
BS, Engineering, Soka University, Japan, 2014

Dynamic Resource Coordination towards Reliable and Flexible Network Slicing
PhD Dissertation
Department of Computer Science, The University of Texas at Dallas
Advisors: Dr. Jason Jue

On composing a resilient tree in a communication network with intermittent connections
based on stress centrality
Master Thesis
Department of Information Systems Science, Soka University, Japan
Advisor: Dr. Norihiko Shinomiya

Distributed network flow optimization algorithm based on tie-set control with coloring
Bachelor Thesis
Department of Information Systems Science, Soka University, Japan
Advisor: Dr. Norihiko Shinomiya

Employment History:

Research Assistant, The University of Texas at Dallas, August 2019 – May 2021
Research Intern, TieSet, Inc., May 2020 – December 2020
Teaching Assistant, The University of Texas at Dallas, August 2018 – August 2019
Teaching Assistant, The University of Texas at Dallas, August 2017 – December 2017



Professional Recognitions and Honors:

Scholarship for PhD Study, Shigeta Education Foundation, 2019 – 2021
Outstanding Teaching Assistant Award, Department of Computer Science, UTD, 2019
NSF Student Travel Grant, IEEE Globecom, 2019
Scholarship for PhD Study, Japan Student Services Organization, 2016 – 2019
Travel Grant, NEC C&C Foundation, 2015
Top Graduate, Department of Information Systems Science, Soka University, Japan, 2014
Student Research Award, IEICE ES Society, 2014
Global Citizenship Program (Honors Program), Soka University, Japan, 2010 – 2014

Professional Memberships:

Institute of Electrical and Electronics Engineers (IEEE), 2014 – present
IEEE Tokyo Young Professionals (YP) Committee, 2015 – present


	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction 
	Next-Generation Networking: 5G and Beyond
	Key Enablers of Next-Generation Networking
	Software Defined Networking (SDN)
	Network Function Virtualization (NFV)
	Network Slicing

	Unique Challenges towards Reliable and Flexible Network Slicing
	Interdependency
	Uncertainty of Future Demand and Available Resources

	Research Statement
	Problem I: Reliable Network Design considering Interdependency 
	Problem II: Recovery Resource Allocation for Interdependent VNFs 
	Problem III: Dynamic Bandwidth Allocation for Optical Access Networks 
	Problem IV: Controller Placement towards Scalable SDN 


	Improving the Survivability of Clustered Interdependent Networks by Restructuring Dependencies 
	Introduction
	Related Works
	Modeling and Motivating Example
	Network Model
	Survivability of Interdependent Networks 
	Motivating Example 

	Problem Formulation
	Assumptions 
	Requirement Specification 
	Clustered H Problem
	Problem Analysis

	heuristic algorithm for H Problem
	Restructuring of Dependencies 
	Find-MAs Algorithm 
	H Algorithm 
	Application to Clustered Networks 
	Complexity Analysis
	Optimality in Special Graphs

	Simulation
	Network Topology
	Clustering Settings
	Metrics
	Results

	Discussion: Impact Alleviation vs Survivability
	Conclusion

	DeepPR: Progressive Recovery for Interdependent VNFs with Deep Reinforcement Learning 
	Introduction
	Related Works
	Model
	Network Model
	Network Failure and Progressive Recovery Plan

	Problem Formulation 
	The Problem and Special Cases
	Intractability

	Problem Reduction with Interdependency Embedding
	Baseline Heuristic for Progressive Recovery 
	RATIO Heuristic and its Limitation
	Preliminary Simulation Results

	DeepPR: Reinforcement Learning for Progressive Recovery 
	Q-Learning
	Deep Q-Network (DQN)
	Applying DQN to PR

	Evaluations 
	Simulation Settings
	Simulation Results

	Discussions 
	Conclusion

	Online Convex Optimization-Based Dynamic Bandwidth Allocation for PON Slicing with Provable Performance Guarantees 
	Introduction
	PON Access Network Model
	Problem Statement
	Performance-Guaranteed Dynamic Bandwidth Allocation Based on OCO
	OCO-based DBA Algorithm
	OCO Performance Bound

	Experiment and Discussion
	Performance Comparison: Typical DBA Algorithms
	Experimental Results

	Conclusion

	Cluster Leader Election Problem for Distributed Controller Placement in SDN 
	Introduction
	Assumptions and Our Model
	Problem Formulation
	Placement Metric
	Problem Statement

	Intractability of CLEP 
	Heuristic Algorithms 
	WMSCP-based Greedy Algorithm for CLEP
	Mapping between Leaders and Clusters

	Simulation
	Network Models
	Cluster Settings
	Results

	Discussions
	Guarantee on the Bound of Intra-metrics
	Combining Multiple Clusters
	NP-completeness under Other Assumptions

	Conclusion

	Conclusion and Future Works
	Conclusion
	Future Works
	Dynamic Bandwidth Allocation for End-to-End Elastic Network Slices
	Pricing Mechanism for Elastic Network Slices


	References
	Biographical Sketch
	Curriculum Vitae

