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The high-level goal of this PhD dissertation is to develop novel controller formulations and

analysis techniques to provide provable closed-loop system behaviors for complex systems.

Specifically, this dissertation focuses on the use of novel set-based mechanisms in the de-

velopment of hierarchical Model Predictive Control (MPC) formulations for multi-timescale

energy management systems. Many complex systems such as hybrid-electric vehicle energy

systems, smart power grids, water distribution networks, and Heating Ventilation and Air-

Conditioned (HVAC) systems are multi-timescaled and have long operation times. A single

centralized MPC controller with fast update rates and a long prediction horizon might not be

able to solve the control optimization problem within the allocated time and thus, real-time

control actuation is not possible.

Alternatively, a hierarchical control architecture can be used to distribute control decisions

among various controllers connected in a hierarchy where the upper-level controller plans

coarse state and input trajectories at slow time steps while the lower-level controllers utilizes

this information to plan state and input trajectories at fast time steps. However, existing hi-

erarchical formulations are not well suited to maximize system transient performance subject
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to state, input, and terminal constraints. The open research challenge is how to provide the

flexibility to the lower-level controllers through novel coordination mechanisms to maximize

control performance while guaranteeing state, input, and terminal constraint satisfaction.

To achieve a computationally efficient hierarchical MPC algorithm for multi-timescale energy

management, the following research problems are addressed in this dissertation.

1. Development of a multi-level vertical hierarchical MPC framework for systems with ad-

ditive known and unknown bounded disturbances. The proposed hierarchical control

algorithm is proven to be recursively feasible and is scalable with increase in prediction

horizon and number of states. The sub-optimality index of the hierarchical controller

is enhanced through a wayset and terminal cost-based coordination. To facilitate a

computationally efficient hierarchical control algorithm, set computations have been

developed for zonotopes and constrained zonotopes with a focus on application to sys-

tems and control.

2. Development of a tube-based robust MPC with simultaneous optimization of uncer-

tainty sets using zonotopes. The proposed control formulation guarantees recursive

feasibility and constraint satisfaction to bounded additive disturbances from an un-

certainty set optimized in real-time. The control formulation is extended to a full

hierarchical MPC where the uncertainty is quantified based on difference in control

decisions between hierarchical levels and between controllers in the same level. The

hierarchical control framework is shown to be recursively feasible and guarantees state

and input constraint satisfaction.

3. Development of a wayset-based Stochastic MPC framework that guarantees Mission-

Wide Probability of Safety (MWPS) for systems with long duration. To enable longer

missions under greater uncertainty, the wayset-based stochastic MPC allows for the
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prediction horizon of the MPC to be significantly shorter than the length of the mission.

A scenario-based approach is used to approximate the stochastic MPC formulation and

recursive feasibility is proven.
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5.6 Comparison of Ẽ(Φε) and mRPI set E for λ ∈ {2× 105, 106}. . . . . . . . . . . . 122

xvi



6.1 Two-level hierarchical MPC where C0 is formulated based on (6.11) and Ci,
i ∈ N , based on (6.14). The C0-optimal trajectories ŷ∗i (j) and ŵ∗
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

For the control of many complex systems, the ability to satisfy both input and state con-

straints is critical to maintaining safe and reliable system operation. Model Predictive Con-

trol(MPC) is very well suited to achieve desired performance and control of such systems

where constraints can be explicitly enforced in the control optimization problem. Exam-

ples include the control of aircraft power systems [80, 20], on- and off-road hybrid vehicles

[72, 41, 88], smart grids [42, 33, 93], and water distribution networks [63, 64].

However, for these systems, operation time is normally long and the time and compu-

tational resources needed to solve the MPC control optimization problem with such a large

prediction horizon can make it difficult to achieve real-time control actuation. Moreover,

these systems are multi-timescaled with each subsystem operating at different timescales.

For example in an aircraft power system, the dynamics of the electrical system can evolve

over milliseconds while the dynamics of a thermal system can evolve over hundreds of sec-

onds. To overcome these challenges, a hierarchical controller can be used to decompose con-

trol decisions across multiple levels of controllers [74]. Upper-level controllers update at large

time steps to achieve long prediction horizons with fewer discrete time steps. Lower-level

controllers with small time steps use short prediction horizons to minimize computational

cost and thus, enabling real-time implementation. Moreover, each controller level can be

tailored for each subsystem and can be operated at the required timescale. To handle the

timescale separation, several two-level hierarchical MPC formulations have been developed

[25, 26, 75, 74, 8, 9, 86].

However, existing hierarchical formulations are not well suited to maximize system per-

formance subject to state, input, and terminal constraints for a finite system operation. Most
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formulations are formulated with the goal of driving the system to an equilibrium within the

interior of state and input constraints. However, for systems operating under a finite dura-

tion, such equilibrium might not exist as in the case of systems whose operation is based on

the consumption of a finite energy resource (e.g. fuel in an aircraft [80, 20] or battery state of

charge in an electric vehicle [72, 41, 88]). Additionally, existing hierarchical approaches are

formulated with the upper-level controllers robust to the decisions of lower-level controllers

and overall control authority is divided among each hierarchical level. While existing coordi-

nation mechanisms based on reference tracking achieve desired control performance, it does

not incentivize the lower-level controllers to deviate from the upper-level control plan and

utilizing the fast system dynamics to further maximize system performance. Finally, while

most hierarchical MPC formulations are tailored for two levels of controllers, many complex

systems are multi-timescaled with more than two timescales and a M-level hierarchical MPC

would be more effective for each timescale.

While vertical hierarchical controller with one controller in each level significantly reduces

computational cost, a full hierarchical architecture can be employed to further reduce com-

putational cost with one controller at lower-levels tailored for each subsystem. The works

in [24, 26] developed a full two-level hierarchical controller with one upper-level controller

and multiple controllers at the lower-level, one for each subsystem operating at the same

timescale in [24] and different timescales in [26], and guarantees closed-loop stability and

input constraint satisfaction while driving the system to a desired steady state. While [24]

drives the system to a desired set around a steady-state equilibrium, the works in [26, 9, 86]

guarantee convergence to the exact steady-state equilibrium. As previously mentioned, a

steady-state equilibrium might not exist for systems such as aircrafts and electric vehicles

and whose operation is based on the utilization of a finite energy resource.

Future hierarchical control design must adopt a generic hierarchical architecture with

more than two levels that can handle multi-timescale nature of complex systems. Addi-

tionally, novel coordination mechanisms that overcomes the limitations of existing reference
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tracking coordination by providing additional flexibility to the lower-level controllers is also

needed. While these developments will help reduce computational cost and achieve real-time

control actuation for a wide range of systems, further research is needed to develop a full

hierarchical architecture for systems with complex interconnection between subsystems that

provides similar control flexibility to the lower-level controllers. While this is more challeng-

ing, this development could tremendously help achieve improved control performance for

complex systems with dynamically coupled subsystems.

1.2 Research Objectives

1.2.1 Problem Statement

Due to a large number of systems having long prediction horizons and multiple timescales,

hierarchical control architectures have wide applicability. However, achieving closed-loop

constraint satisfaction and control performance close to a centralized controller requires

novel coordination mechanisms.

The primary objective of this dissertation is the development and evaluation of a MPC

based hierarchical control algorithm specifically designed to optimize control performance

throughout the systems and subsystems over multiple timescales and operating for long du-

ration. This work focuses on the theoretical development and analysis of novel set-based

hierarchical MPC formulations and simplified numerical examples are used to highlight the

key features and capabilities of these controllers. The proposed hierarchical control frame-

work is developed to be

• widely applicable to complex multi-timescale systems such as aircraft energy systems,

HVAC systems, water distribution networks, and smart power grids,

• scalable to large systems with many actuators, states, measurements, control objec-

tives, and long prediction horizons,
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• robust to model and signal uncertainty,

• computationally efficient to achieve real-time implementation.

1.3 Dissertation Scope

In order to meet the primary objective, multiple secondary objectives define the scope of the

dissertation and, when achieved, provide a generic hierarchical control framework that can

be adopted to improve the control performance of a wide range of complex systems. These

secondary objectives are:

1. the development of set-based methods using zonotopes and constrained zonotopes to

achieve computational performance applicable to a hierarchical controller,

2. the formulation of a generic wayset-based vertical hierarchical MPC framework for

computationally efficient control of complex systems across different timescales,

3. tube-based full hierarchical MPC framework for systems with dynamically coupled

subsystems,

4. closed-loop analysis of the vertical and full hierarchical controller with respect to re-

cursive feasibility and closed-loop constraint satisfaction, and

5. simulation-based evaluation of hierarchical control performance on simple examples

such as vehicle and thermal systems.

1.4 Organization of Dissertation

Fig. 1.1 shows an outline of the chapters including the methods developed in each and the

relation between them used to achieve the goal of this dissertation. Chapter 2 introduces the

zonotope-based set computation including methods such as halfspace intersection, Robust
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Figure 1.1. Schematic showing the individual chapters and relation to each other.

Positively Invariant (RPI) sets, Pontryagin difference, and reachable sets, which will be used

throughout the following chapters.

Chapter 3 presents the development of a robust multi-level vertical hierarchical model

predictive controller for linear systems and the associated control feasibility, while Chapter

4 modifies this hierarchical MPC formulation with coordinating terminal costs to achieve

guaranteed control performance bounds. Chapter 5 proposes a tube-based robust MPC with

simultaneous uncertainty set optimization and online RPI set computation and constraint

tightening. Chapter 6 discusses the full hierarchical MPC formulation for systems with

coupled subsystems, where control coordination is achieved using adjustable tubes. Ad-

ditionally, recursive control feasibility of the full hierarchical controller is shown. Finally,

Chapter 7 discusses long duration stochastic MPC with mission-wide probability of safety

using waysets, where scenario optimization is used to approximate the underlying stochastic

MPC optimization problem.
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CHAPTER 2

ZONOTOPE-BASED SET COMPUTATION 1

2.1 Introduction

Sets are widely used in a variety of control theory and applications including reachability

analysis for system verification [7, 28, 29, 53], robust Model Predictive Control (MPC) [60, 54,

15], and state estimation [19, 2, 55]. However, the sets used in control theory are not always

practical to compute in application. For example, the minimal Robust Positively Invariant

(mRPI) set [68] is widely used in robust MPC [61, 69, 56]. However, in general, mRPI sets

are not finitely represented and must be approximated. Furthermore, existing techniques for

determining finite approximations of the mRPI set do not scale well with the dimension of

the state space. Such scalability issues are found in many set computations [83], motivating

the need for alternative set representations and efficient approximation algorithms.

A zonotope is the Minkowski sum of a finite set of line segments or, equivalently, the image

of a hypercube under an affine transformation [27, 59]. Due to their computational efficiency,

zonotopes have been widely used in reach set calculations for hybrid system verification,

estimation, and MPC [59, 6, 79, 15]. As with the iterative algorithm in [78], computing these

reach sets utilizes linear transformation and Minkowski sum operations. Zonotopes are closed

under these operations (i.e. the Minkowski sum of two zonotopes is a zonotope) and the

number of generators grows linearly with the number of Minkowski sum operations, compared

to the potential exponential growth of the number of halfspaces in H-Rep. Unfortunately,

zonotopes in general are not closed under intersection and the conversion from G-Rep to

H-Rep for intersection operations is inefficient.

1This chapter is based on work supported by the National Science Foundation under grant 1849500.
Chapter 2 in part is a reprint of material published in: © Automatica. Reprinted, with permission, from
Raghuraman, V. and Koeln, J.P., 2022. Set operations and order reductions for constrained zonotopes.
Automatica, 139, p.110204.
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Constrained zonotopes were developed in [79] to overcome the limitations caused by the

inherent symmetry of zonotopes. Constrained zonotopes are closed under linear transforma-

tion, Minkowski sum, and generalized intersection and can be used to represent any convex

polytope. Constrained zonotopes provide the computational advantages of zonotopes while

enabling exact computations of a much wider class of sets. In [48], reach set computations

using constrained zonotopes were shown to be several orders-of-magnitude faster than the

same set computations using H-Rep, enabling the on-line computation of these reach sets

for use in a hierarchical MPC formulation.

2.2 Notation and Preliminaries

For sets Z,W ⊂ Rn, Y ⊂ Rm, and matrix R ∈ Rm×n, the linear transformation of Z under R

is RZ = {Rz | z ∈ Z}, the Minkowski sum of Z and W is Z⊕W = {z+w | z ∈ Z,w ∈ W},

and the generalized intersection of Z and Y under R is Z ∩R Y = {z ∈ Z | Rz ∈ Y }. The

standard intersection, corresponding to the identity matrix R = In, is simply denoted as

Z ∩ Y .

The convex polytope H ⊂ Rn in H-Rep is defined as H = {x ∈ Rn | Hx ≤ f} where

H ∈ Rnh×n, f ∈ Rnh , and nh is the number of halfspaces. A centrally symmetric set

Z ⊂ Rn can be represented as a zonotope in G-Rep where Z = {Gξ + c | ∥ξ∥∞ ≤ 1}. The

vector c ∈ Rn is the center and the ng generators, denoted gi, form the columns of the

generator matrix G ∈ Rn×ng . A constrained zonotope Zc ⊂ Rn is defined in CG-Rep as

Z = {Gξ + c | ∥ξ∥∞ ≤ 1,Aξ = b}. With A ∈ Rnc×ng and b ∈ Rnc , constrained zonotopes

include nc equality constraints that break the symmetry of zonotopes and allow any convex

polytope to be written in CG-Rep. The complexity of a zonotope is captured by its order,

o = ng

n
while the complexity of a constrained zonotope is captured by the degrees-of-freedom

order, od = ng−nc

n
. Zonotopes and constrained zonotopes are denoted as Z = {G, c} and

Zc = {G, c,A,b}, respectively.
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As shown in [79], constrained zonotopes are closed under linear transformation,

Minkowski sum, and generalized intersection where

RZ = {RGz,Rcz,Az,bz} , (2.1)

Z ⊕W =

[Gz Gw] , cz + cw,

Az 0

0 Aw

 ,

bz

bw


 , (2.2)

Z ∩R Y =

[Gz 0] , cz,


Az 0

0 Ay

RGz −Gy

 ,


bz

by

cy −Rcz


 . (2.3)

Additional notation is defined as follows. The set of non-negative real numbers is denoted

as R+. The matrix T ∈ Rn×m with values ti,j in the ith row and jth column is denoted as

T = [ti,j]. A n×m matrix of zeros is denoted as 0n×m or simply 0 if the dimension can be

readily determined from context. Similarly, a vector of ones is denoted as 1. For a matrix

A, the null space is denoted N (A) and the pseudoinverse is denoted A†. Parallel vectors v1

and v2 are denoted as v1 ∥ v2. The unit hypercube in Rn is defined as B∞ = {ξ | ∥ξ∥∞ ≤ 1}

while B∞(A,b) = {ξ ∈ B∞ | Aξ = b}. With the volume of a set X denoted as V (X), the

volume ratio for sets X, Y ∈ Rn is defined as Vr =
(

V (X)
V (Y )

)1/n

. All numerical examples were

generated using MATLAB on a desktop computer with a 3.6 GHz i7 processor and 16 GB of

RAM. All optimization problems were formulated and solved with YALMIP [57] and Gurobi

[34].

2.3 Zonotope-Halfspace Intersection

This section presents methods for determining if a zonotope intersects a given halfspace

along with the exact representation of this intersection in CG-Rep. The need for computing

this intersection arises in reachability analysis [5] and in MPC when determining the set
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of feasible initial conditions [78]. The use of CG-Rep enables exact representations unlike

existing techniques that rely on zonotopic approximations of the intersection [30].

For a zonotope in Rn with ng generators, the intersection between a zonotope and a

hyperplane can be tested algebraically with complexity O(nng).

Lemma 1. (Section 5.1 of [28]) The zonotope Z = {G, c} ⊂ Rn intersects the hyperplane

H = {x ∈ Rn | hTx = f} if and only if

|f − hTc| ≤
ng∑
i=1

|hTgi|. (2.4)

If a zonotope intersects a hyperplane, the intersection between the zonotope and the cor-

responding halfspace can be represented in CG-Rep by the addition of exactly one generator

and one equality constraint.

Theorem 1. If the zonotope Z = {G, c} ⊂ Rn intersects the hyperplane H = {x ∈ Rn |

hTx = f} corresponding to the halfspace H− = {x ∈ Rn | hTx ≤ f}, then the intersection

Zh = Z ∩H− is a constrained zonotope where

Zh = {[G 0], c, [hTG dm
2
], f − hTc− dm

2
}, (2.5)

and dm = f − hTc+
∑ng

i=1 |hTgi|.

Proof. Considering any element x ∈ Zh, it is to be proven that x ∈ Z ∩ H−. From the

definition of Zh in (2.5), ∃ ξ ∈ Rng and ξng+1 ∈ R such that

x = Gξ + 0ξng+1 + c, ||ξ||∞ ≤ 1, |ξng+1| ≤ 1,

hTGξ +
dm
2
ξng+1 = f − hTc− dm

2
. (2.6)

By the assumption that Z ∩ H ̸= ∅, the definition of dm and (2.4) ensure dm ≥ 0. If

dm = 0, then (2.6) results in hTGξ = f − hTc, which can be rewritten as hT (Gξ + c) = f .

Therefore, x ∈ Zh ⊂ Z and x ∈ H ⊂ H−. If dm > 0, (2.6) can be solved for ξng+1 as

ξng+1 =
2

dm
(f − hTc− dm

2
− hTGξ). (2.7)
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Combining (2.7) and the inequality constraint −1 ≤ ξng+1 results in

−1 ≤ ξng+1 =
2

dm
(f − hTc− dm

2
− hTGξ),

−dm
2
≤ f − hTc− dm

2
− hTGξ,

hT (c+Gξ) ≤ f.

Therefore, x ∈ Z and x ∈ H−. Next, considering any x ∈ Z ∩H−, it is to be proven that

x ∈ Zh. For x ∈ Z ∩H−, ∃ ξ ∈ Rng such that

x = Gξ + c, ||ξ||∞ ≤ 1, hTx ≤ f. (2.8)

To show that x ∈ Zh requires proving the existence of ξng+1 ∈ R such that

x = Gξ + 0ξng+1 + c, |ξng+1| ≤ 1,

and (2.6) holds. If dm = 0, then by definition of dm, f − hTc = −
∑ng

i=1 |hTgi| is satisfied.

Rearranging (2.8) results in hTGξ ≤ f − hTc and thus,

hTGξ ≤ −
ng∑
i=1

|hTgi|. (2.9)

Combining (2.9) with the fact that

−
ng∑
i=1

|hTgi| ≤ hTGξ ≤
ng∑
i=1

|hTgi|, ∀ξ s.t. ||ξ||∞ ≤ 1,

results in hTGξ = −
∑ng

i=1 |hTgi| = f − hTc, which satisfies (2.6) independently of ξng+1

for dm = 0, and thus ξng+1 can be chosen arbitrarily such that |ξng+1| ≤ 1. If dm > 0, let

ξng+1 be chosen as in (2.7), which satisfies (2.6). To prove |ξng+1| ≤ 1, consider x as in (2.8).

Since, f − hTx ≥ 0, ξng+1 satisfies

ξng+1 =
2

dm
(f − hTx− dm

2
) ≥ −1. (2.10)
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Finally, using (2.7), the fact that −hTGξ ≤
ng∑
i=1

|hTgi|, and the definition of dm results in

ξng+1 ≤
2

dm
(f − hTc+

ng∑
i=1

|hTgi| −
dm
2
),

ξng+1 ≤
2

dm
(dm −

dm
2
) = 1.

Thus, ∀ x ∈ Z ∩H−, x ∈ Zh.

Example 1. The left subplot in Fig. 2.1 shows the zonotope Z and halfspace H− where

Z =


1 1

0 2

 ,

0
0


 , H− = {x ∈ R2 | [3 1]x ≤ 3}.

From Lemma 1, Z intersects the associated hyperplane H since (2.4) evaluates to 3 ≤ 8.

From Theorem 1, the intersection Z ∩H− is a constrained zonotope and (2.5) evaluates to

Zh =


1 1 0

0 2 0

 ,

0
0

 ,

[
3 5 5.5

]
,−2.5

 .

The left subplot in Fig. 2.1 also shows the physical interpretation of dm where dm = d1 + d2.

With d1 = f −hTc, d1 captures the orthogonal distance from the hyperplane H to the center,

c, of the zonotope. With d2 =
∑ng

i=1 |hTgi|, d2 captures the orthogonal distance from center

of the zonotope to the point in Z farthest from H.

2.4 Constrained Zonotope-Halfspace Intersection

For the intersection Zh = Zc ∩ H− of a constrained zonotope Zc = {G, c,A,b} and a

halfspace H−, Theorem 1 is readily modified where

Zh =

[G 0], c,

 A 0

hTG dm
2

 ,

 b

f − hTc− dm
2


 . (2.11)
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Figure 2.1. Left: The intersection of the zonotope Z and the halfspace H− corresponding
to the hyperplane H results in the constrained zonotope Zh. The distances d1 and d2,
measured orthogonally to H, are shown to provide a geometric interpretation of the equality
constraints in (2.5). Right: An example where the constrained zonotope Zc = {G, c,A,b},
with corresponding unconstrained zonotope Z = {G, c}, where Z intersects the hyperplane
H but Zc does not.

However, if the constrained zonotope is completely contained in the halfspace, Zc ⊂ H−,

and does not intersect the corresponding hyperplane H, then Zh = Zc and the addition

of the ng + 1 generator and nc + 1 constraint is redundant and increases the order of Zh

unnecessarily.

However, when determining if a constrained zonotope Zc intersects a hyperplane H, the

inequality (2.4) is necessary but not sufficient. The equality constraints Aξ = b impose

restrictions such that Zc ⊂ Z = {G, c}. Thus, the parent zonotope Z may intersect H

while Zc does not (as shown in right subplot of Fig. 2.1). The intersection of a constrained

zonotope with a hyperplane can be checked by solving two Linear Programs (LPs), each

with ng decision variables.

Lemma 2. The constrained zonotope Zc = {G, c,A,b} ⊂ Rn intersects the hyperplane

H = {x ∈ Rn | hTx = f} if fmin ≤ f ≤ fmax, where

fmin ≜ min{hT (c+Gξ) | ∥ξ∥∞ ≤ 1,Aξ = b},
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fmax ≜ max{hT (c+Gξ) | ∥ξ∥∞ ≤ 1,Aξ = b}.

Proof. From the definition of fmin and fmax, if fmin ≤ f ≤ fmax, then there exists xmin,

xmax ∈ Zc satisfying hTxmin = fmin and hTxmax = fmax, respectively. By the convexity of

constrained zonotopes [79], ∀λ ∈ [0, 1], ∃ xλ = λxmin + (1− λ)xmax such that xλ ∈ Zc. For

the case where fmin = fmax = f , any choice of λ ∈ [0, 1] results in hTxλ = f . Otherwise, if

fmin ̸= fmax, choosing λ = f−fmax

fmin−fmax
∈ [0, 1] results in hTxλ = f . Thus xλ ∈ H and xλ ∈ Zc,

proving Zc ∩H ̸= ∅.

Note that fmin and fmax obtained using Lemma 2 represent the largest orthogonal

distance between a point in Zc and either side of the hyperplane providing additional insight

to the location of constrained zonotope with respect to the hyperplane.

Remark 1. While the knowledge of fmin and fmax can be useful, checking for the non-empty

intersection of a constrained zonotope and a hyperplane can be achieved by assessing the

feasibility of a single LP with constraints

hT (c+Gξ) ≤ f, Aξ = b, ||ξ||∞ ≤ 1.

When solving these LPs is undesirable, an iterative method based on interval arithmetic

from [79] provides an approach for checking constrained zonotope-halfspace intersection with

complexity O(ncn
2
g). Reproduced from [79], Algorithm 1 computes the interval set E =

[ξL, ξU ] such that B∞(A,b) ⊂ E ⊂ [−1,1] and R = [ρL,ρU ] ⊂ Rng where

Rj ⊃ {ξj | Aξ = b, |ξi| ≤ 1,∀i ̸= j}, ∀j ∈ [1, ng].

As discussed in [79], this iterative method has the potential to detect empty constrained

zonotopes without solving a LP. Specifically, if E ∩ R = ∅, then Zc = ∅. Since E,R are

intervals, E ∩R = ∅ if ξUj < ρLj or ξLj > ρUj for any j ∈ [0, ng].
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Algorithm 1: [79] Constrained zonotope intervals.

Input : Zc = {G, c,A,b}
Output: Ej, Rj,∀j ∈ [1, ng]

1 Initialize Ej ← [−1, 1], Rj ← [−∞,∞], i, j ← 1
2 while i ≤ nc do
3 while j ≤ ng do
4 if aij ̸= 0 then
5 Rj ← Rj ∩ (a−1

ij bi −
∑

k ̸=j a
−1
ij aikEk);

6 Ej ← Ej ∩Rj;

7 end
8 j ← j + 1;

9 end
10 i← i+ 1, j ← 1;

11 end

The goal is to detect if Zc ⊂ H−, resulting in Zh = Zc and thus avoiding the unnecessary

addition of generators and constraints from the application of (2.11). The proposed approach

uses the fact that Zc ⊂ H− if and only if Zc ∩H+ = ∅, where H+ = {x ∈ Rn | hTx ≥ f} is

the complement of H−. By modifying (2.11) such that Zh+ = Zc ∩H+, Algorithm 1 can

then be applied to Zh+ to check if Zh+ = ∅. Specifically, if E ∩ R = ∅, then Zh+ = ∅ and

Zc ⊂ H−. Note that applying Algorithm 1 does not guarantee the detection of Zh+ = ∅.

As discussed in [79], Algorithm 1 can be applied iteratively to refine the interval set E. In

fact, two iterations of Algorithm 1 were required to detect that Zc ⊂ H− for the example

shown on the right subplot of Fig. 2.1.

Remark 2. To provide an unbiased evaluation of constrained-zonotope hyperplane inter-

section using Algorithm 1, the intersection of Zh (from Example 1) with 100 randomly

chosen hyperplanes is checked. Note that for all instances, the parent zonotope Z satisfying

Z ⊃ Zh intersected the random hyperplanes. The constrained zonotope Zh intersected these

random hyperplanes 61 times and did not intersect for the remaining 39 times. In all cases,

Algorithm 1 accurately detected the intersection/non-intersection of the constrained zono-
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tope and randomly generated hyperplanes. Iteration of Algorithm 1 to further refine E

was only required in 13 of these 100 cases.

2.5 Redundancy Removal

It is important to recognize that certain set operations can create redundancy in the set

representation. For example, the Minkowski sum can create redundancy in the resultant

zonotope if the two operands have parallel generators. Additionally, the generalized in-

tersection can create redundancy within the generators and constraints of a constrained

zonotope. Detecting and removing this redundancy can provide order reduction without

reducing the volume of the set. As proposed in [3], if a zonotope Z = {G, c} has parallel

generators, gi ∥ gj, then the same set can be represented using one less generator by simply

combining parallel generators through addition gi + gj. For a zonotope in Rn with ng gen-

erators, parallel generators can be detected and combined using a typical sorting algorithm

with complexity O(nn2
g). To set a desired numerical precision, two generators are considered

parallel if
|gT

i gj |
∥gi∥2∥gj∥2 ≥ 1−ϵ, where ϵ > 0 is a small number. The same is true for a constrained

zonotope Zc = {G, c,A,b} if the lifted zonotope [79]

Z+ =


G
A

 ,

 c

−b


 = {G+, c+},

has parallel generators, g+
i ∥ g+

j . In this case, the parallel generators can be similarly reduced

but with higher complexity O(n+ nc)n
2
g due to the nc constraints added to the rows of the

lifted zonotope structure. Once the reduced lifted zonotope is obtained, it is transformed

back to a reduced constrained zonotope with fewer generators.

For constrained zonotopes, redundancy can also come from the combination of constraints

Aξ = b and ∥ξ∥∞ ≤ 1. By representing these constraints as

Aξ = b⇐⇒
∑

j∈{1,··· ,ng}

ai,jξj = bi,∀i ∈ {1, · · · , nc}, (2.12)
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and ∥ξ∥∞ ≤ 1 ⇔ |ξj| ≤ 1,∀j ∈ {1, · · · , ng}, the following theorem provides a condition

for detecting redundancy and a method for removing one generator and one constraint with

complexity O(ncn
2
g) based on an approach originally presented in [79].

Theorem 2. For Zc = {G, c,A,b} ⊂ Rn with ng generators and nc constraints, if there

exists indices r ∈ {1, · · · , nc} and c ∈ {1, · · · , ng} such that ar,c ̸= 0 and

Rr,c ≜ a−1
r,c br − a−1

r,c

∑
k ̸=c

ar,kEk ⊆ [−1, 1], (2.13)

with Ek computed using Algorithm 1, then Zc can be exactly represented by a constrained

zonotope Zr with ng − 1 generators and nc − 1 constraints.

Proof. Following the procedure in [79], let

Zr = {G−ΛGA, c+ΛGb,A−ΛAA,b−ΛAb},

where ΛG = GEc,ra
−1
r,c ∈ Rn×nc , ΛA = AEc,ra

−1
r,c ∈ Rnc×nc , and Ec,r ∈ Rng×nc is zero except

for a one in the (c, r) position. With Zr = {Gr, cr,Ar,br}, this transformation uses the rth

of row of (2.12) to solve for ξc in terms of ξk, k ̸= c. This results in the cth column of Gr

and Ar and the rth row of Ar to equal zero. Removing these columns and rows of zeros

results in a constrained zonotope with ng − 1 generators and nc − 1 constraints. Through

this transformation, the rth constraint is still imposed in Zr but the ability to constraint

|ξc| ≤ 1 is lost. However, since Rr,c ⊆ [−1, 1], this constraint is imposed by the remaining

equality and norm constraints, and thus Zr = Zc.

Note that this is the same approach presented in [79] used to achieve constraint reduction

in the context of obtaining an outer-approximating constrained zonotope Z̃c satisfying Z̃c ⊃

Zc with one less generator and one less constraint. However, as the following example

demonstrates, it is important to realize that this approach can also be used to identify and
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remove redundancy in the set representation while retaining the exact set. As in [79], Gauss-

Jordan elimination with full pivoting should be applied to Zc prior to applying Algorithm

1 to determine the intervals Ek required to compute (2.13). The procedure discussed in the

proof of Theorem 2 can be applied iteratively until Rr,c ⊈ [−1, 1] for any indices. However,

there is no guarantee that the resulting constrained zonotope will be without redundancy

since Theorem 2 only provides a sufficient condition.

Example 2. Consider the two zonotopes shown in Fig. 2.2

Z1 =


1 1

1 −1

 ,

0
0


 , Z2 =


1 0

0 1

 ,

0
0


 ,

and the constrained zonotope Zc = Z1 ∩ Z2. Applying (2.3) results in

Zc =


1 1 0 0

1 −1 0 0

 ,

0
0

 ,

1 1 −1 0

1 −1 0 −1

 ,

0
0


 , (2.14)

with ng = 4 generators and nc = 2 constraints. However, since Z2 ⊂ Z1, the intersection

is also represented exactly by Z2. By applying Gauss-Jordan elimination with full pivoting

and two iterations of the procedure from Theorem 2, two constraints and two generators

are removed to reduce Zc from (2.14) to Zc = Z2 with ng = 2 and nc = 0. To provide an

unbiased evaluation of Theorem 2, the axis-aligned generators of Z2 above were replaced

by randomly chosen generators. In each of the 45 out of 100 cases where Z2 ⊆ Z1, Zc was

successfully reduced to Zc = Z2 with ng = 2 and nc = 0.

Remark 3. For a constrained zonotope Zc with nc constraints and ng generators and a set H

in H-Rep with with nh halfspaces, Algorithm 1 can be applied in two different ways to either

prevent or remove redundancy in the set representation of Zc∩H. The approach from Section

2.4 based on preventing the addition of unnecessary generators and constraints has a best-case

complexity of O(nhncn
2
g) if Zc ⊂ H and a worst-case complexity of O(nh(nc+nh)(ng +nh)

2)
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Figure 2.2. Zonotopes Z1 and Z2, where Z1 ∩ Z2 = Z2, used to demonstrate the ability
to remove redundancy from constrained zonotopes that can arise from operations like the
generalized intersection.

if Zc intersects each of the nh halfspaces. Alternatively, nh constraints and nh generators

can be directly added to Zc using (2.11) and then Theorem 2 can be applied to reduce set

complexity. This approach has a best-case complexity of O((nc + nh)(ng + nh)
2) when no

generators/constraints can be removed and a worst-case complexity O(nh(nc+nh)(ng+nh)
2)

when all of the added nh constraints and nh generators can be removed. Thus, both approaches

have the same worst-case complexity but the preventative approach has the potential to require

fewer computations in practice.

2.6 Inner Approximations

2.6.1 Motivation

Outer-approximations are widely used in the field of reachability analysis for system veri-

fication to determine if a system will always operate in a desired region of the state space

[28, 29]. However, in many applications there is a need for computing reduced-order inner-
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approximations. In general computing inner-approximations of sets is considered a more

difficult problem [52]. Inner-approximations are particularly important when computing

backward reachable sets that define a set of initial states for which a system will enter a

specified target region after some allotted time [92]. While there are existing techniques for

zonotopes [29, 35], inner-approximation techniques for constrained zonotopes are lacking.

This section establishes inner-approximation order reduction for zonotopes and constrained

zonotopes.

2.6.2 Zonotopes

The proposed reduced-order inner-approximation of a zonotope requires the following zono-

tope containment conditions.

Lemma 3. (Theorem 3 of [71]) Given two zonotopes X = {Gx, cx} ⊂ Rn and Y =

{Gy, cy} ⊂ Rn, X ⊆ Y if there exists Γ ∈ Rny×nx and β ∈ Rny such that

Gx = GyΓ, cy − cx = Gyβ, |Γ|1+ |β| ≤ 1. (2.15)

Theorem 3. The zonotope Zr = {Gr, c} ⊂ Rn is a reduced-order inner-approximation of

Z = {G, c} ⊂ Rn such that Zr ⊆ Z with Gr ∈ Rn×nr , G ∈ Rn×ng , and nr < ng if Gr = GT

where T = [ti,j] ∈ Rng×nr , ti,j ∈ {−1, 0, 1}, and
∑nr

j=1 |ti,j| = 1, ∀i ∈ {1, · · · , ng}.

Proof. From Lemma 3, Zr ⊆ Z if there exist Γ ∈ Rng×nr and β ∈ Rng such that

GT = GΓ, c− c = Gβ, |Γ|1+ |β| ≤ 1.

The first two equations hold by setting Γ = T and β = 0. The third equation holds since∑nr

j=1 |ti,j| = 1, ∀i ∈ {1, · · · , ng}, if and only if |T|1 = 1.

The specific definition of T in Theorem 3 produces an inner-approximation of Z by

forming the generators of Zr through the addition of the generators in Z. Typically, the
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largest inner-approximation of Z is desired. The proposed method for determining T is

inspired by the methods for determining outer-approximations of zonotopes presented in [51].

First, let the generators gi of Z be arranged such that ∥gi∥2 ≥ ∥gi+1∥2, ∀i ∈ {1, · · · , ng −

1}. Then partition the generator matrix such that G = [G1 G2] where G1 ∈ Rn×nr and

G2 ∈ Rn×(ng−nr). For each generator g2,j in G2, compute the magnitude of the dot product

αi,j = |gT
1,ig2,j| with all generators g1,i in G1. The goal is to add the generators g2,j to the

most aligned generator g1,i. Thus, let T = [ti,j] where

ti,j =


1 if i = j ≤ nr

1
αi,j

gT
1,ig2,j if αi,j > αi,k, ∀k ̸= j

0 otherwise

 . (2.16)

Note that computing Zr using Theorem 3 and (2.16) has an overall complexity of O(nn2
g +

nngnr), where the first term is associated with sorting the generators based on the 2-norm

and the second term is associated with computing the product Gr = GT in Theorem 3.

Example 3. Consider the zonotope

Z =


4 3 −2 0.2 0.5

0 2 3 0.6 −0.3

 ,0

 ⊂ R2.

Note that the generators are already arranged in order of decreasing 2-norm. With ng = 5,

the goal is to determine Zr ⊆ Z such that nr = 3. From Theorem 3 and (2.16), the matrix

T and the reduced-order zonotope Zr are

T =



1 0 0

0 1 0

0 0 1

0 1 0

1 0 0


, Zr =


 4.5 3.2 −2

−0.3 2.6 3

 ,0

 .
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Figure 2.3. The inner-approximation of Z with ng = 5 by the reduced-order zonotope Zr

with nr = 3.

Fig. 2.3 confirms Zr ⊆ Z with volume ratio Vr = 0.97. While this numerical example

resulted in relatively large volume ratio, the reduction in volume is highly dependent on the

distribution of generator lengths and the number of generators removed. For 100 randomly

generated zonotopes in R2 with ng = 5, applying Theorem 3 and (2.16), resulted in all

reduced zonotopes satisfying Zr ⊆ Z with nr = 3 and mean volume ratio Vr = 0.84.

2.6.3 Constrained Zonotopes

For constrained zonotopes, a reduced-order inner-approximation Zr of Zc can be computed

based on the set containment criteria for the affine transformation of polytopes in H-Rep

(AH-polytopes) developed in [71] since AH-polytopes and constrained zonotopes are equiv-

alent.

Definition 1. [71] An AH-polytope X ⊂ Rn is an affine transformation of a H-Rep polytope

P ⊂ Rm where

X = x̄+XP, X ∈ Rn×m, x̄ ∈ Rn. (2.17)
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The following theorem proves the equivalency between constrained zonotopes and AH-

polytopes in addition to providing a method to convert constrained zonotopes to AH-

polytopes with complexity O(nn2
g+n2

cng), where the first term is associated with computing

an affine transformation and the second term is associated with computing the basis of N (A)

for Zc = {G, c,A,b}.

Theorem 4. A non-empty set Zc ⊂ Rn is a constrained zonotope if and only if it is an

AH-polytope.

Proof. To prove that every AH-polytope is a constrained zonotope, let P = {z ∈ Rm | Hz ≤

k}. Per Theorem 1 in [79], the set P can always be represented as a constrained zonotope

P = {Gp, cp,Ap,bp}. Thus, from (2.17) and the properties of constrained zonotopes (2.1)

and (2.2), X is a constrained zonotope where X = {XGp, x̄ +Xcp,Ap,bp}. To prove that

every constrained zonotope is an AH-polytope, consider Zc = {G, c,A,b} with ng generators

and nc constraints. If nc = 0, Zc = Z = {G, c} is a zonotope and can be represented in

AH-polytope form of (2.17) with x̄ = c, X = G, and P = B∞. For nc > 0, assume that

any rank deficiency in A has been detected as a row of zeros in the reduced row echelon

form achieved through Gauss-Jordan elimination with full pivoting (see [79] for details).

Thus, the rank of A is nc and there exists s = A†b ∈ Rng and the matrix T ∈ Rng×(ng−nc)

with columns that form a basis for N (A). Using the change of variables ξ = Tξ̄ + s, the

equality constraint Aξ = b is satisfied for all ξ̄ ∈ Rng−nc . Moreover, since T has linearly

independent columns, any solution ξ of Aξ = b can be achieved by a corresponding value

of ξ̄. Specifically, ξ̄ = T†(ξ − s), where T† is the left pseudoinverse of T. Hence, Zc can be

expressed exactly as

Zc =
{
c+Gs+GTξ̄ | ∥Tξ̄ + s∥∞ ≤ 1

}
.
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Furthermore, the norm constraints ∥Tξ̄+ s∥∞ ≤ 1 can be represented in H-Rep as P = {ξ̄ |

Hξ̄ ≤ k}, where

H =

 T

−T

 , k =

1− s

1+ s

 .

Thus, with x̄ = c+Gs and X = GT, Zc is an AH-polytope of the form (2.17).

Remark 4. The convexity of the constrained zonotope Zc = (G, c,A,b) also facilitates

representation as a polynomial zonotope Zp = (c,G,E) in Z-Rep [45]. However, for the

reverse direction, an algorithm is yet to be found.

Lemma 4. (Theorem 1 of [71]) Given AH-polytopes X, Y ⊂ Rn where X = x̄ + XPx,

Y = ȳ+YPy, Px = {x ∈ Rnx | Hxx ≤ fx}, and Py = {y ∈ Rny | Hyy ≤ fy}, X ⊆ Y if there

exists Γ ∈ Rny×nx ,β ∈ Rny and Λ ∈ Rnhy×nhx

+ such that

X = YΓ, ȳ − x̄ = Yβ, (2.18a)

ΛHx = HyΓ, Λfx ≤ fy +Hyβ. (2.18b)

To achieve a reduced-order inner-approximation Zr of constrained zonotope Zc, Theo-

rem 4 can be used to convert both Zr and Zc in to AH-polytopes while Lemma 4 can

be used to ensure Zr ⊆ Zc. Assuming Zc is known, consider Zr = {GrΦ, cr,Ar,br} where

Φ = diag(ϕ) is a scaling matrix with ϕi > 0,∀i ∈ {1, · · · , ngr}. Assuming Gr, Ar, and br

are known, the following optimization problem can be formulated with 4n2
gr + ngr + (ng −

nc)(1 + ngr − ncr) + n decision variables that maximizes the p = 1, 2, or ∞ norm of the

diagonal elements ϕ of the scaling matrix Φ by solving

max
Φ,Γ,β,Λ,cr

||ϕ||p, (2.19a)

s.t.

(c+Gs)− (cr +GrΦsr) = GTβ, (2.19b)
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GrΦTr = GTΓ, Λ

 Tr

−Tr

 =

 T

−T

Γ, (2.19c)

Λ

1− sr

1+ sr

 ≤
1− s

1+ s

+

 T

−T

β, (2.19d)

with parameters s = A†b ∈ Rng , sr = A†
rbr ∈ Rngr , and matrices T ∈ Rng×(ng−nc),Tr ∈

Rngr×(ngr−ncr) with columns that form bases for N (A) and N (Ar), respectively. Note that

the majority of the decision variables in (2.19) come from the matrices Γ ∈ R(ng−nc)×(ngr−ncr)

and Λ ∈ R2ngr×2ngr

+ . While this procedure applies to any Zr, the process discussed in Sec-

tion 2.5 can be used to compute Zr by removing exactly one constraint and one generator

from Zc. For the case where Zc satisfies the conditions in Theorem 2, the rth constraint

and the cth generators were chosen such that Rr,c ⊆ [−1, 1] and thus an exact reduced-

order representation was achieved with Zr = Zc. To achieve further reduction through the

inner-approximation of Zc, the same procedure from Section 2.5 can be applied by choosing

appropriate indices and scaling Zr via optimization while enforcing Zr ⊆ Zc using the con-

straints from (2.19). Since Rj = [ρLj , ρ
U
j ] represents the range of ξj if the constraints |ξj| ≤ 1

were omitted [79], the cth generator should be removed that minimizes max(|ρLj |, |ρUj |). Once

c is chosen, r should be chosen such that the entry in the (r, c) position of Ar has the largest

absolute value of all entries in the cth column.

Example 4. Consider the constrained zonotope Zc shown in Fig. 2.4 where

Zc =


−1 3 4 0 0

4 −2 −5 0 0

 ,

0
0

 ,

−1 3 4 6.5 0

4 −2 −5 0 8

 ,

−1.5
−3


 .

First, Gauss-Jordan elimination with full pivoting was applied to Zc, followed by the trans-

formation in Theorem 2 by picking the cth generator that minimizes max(|ρLj |, |ρUj |) and

the rth row with the largest entry in cth column of A. Then an LP was formulated and solved
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using the constraints from (2.18) and a cost function that maximized ∥ϕ∥∞. The resulting

reduced-order zonotope Zr is shown in Fig. 2.4 where

Zr =

{0 3.17 2.38 −0.79

0 −3.97 −1.59 3.17

 ,

−1.34
1.03

 ,

[
1 −0.63 −0.25 0.50

]
,

[
−0.38

]}
.

Using a similar approach, Fig. 2.4 also shows the inner-approximations of Zc by zonotope

Z and interval set B where

Z =


 2.31 1.93 −0.27

−2.84 −0.94 2.57

 ,

 0.49

−1.35


 ,

B =


2 0

0 2

 ,

 2.55

−3.18


 .

To compute Z, the equality constraints from Zc were removed via the same change of vari-

ables used in the proof of Theorem 4.Typically this would result in an outer-approximation

of Zc, however the scaling matrix Φ is used to reduce the length of each generator such that

Z ⊆ Zc. For the interval set B, the generator matrix is initialized as the identity matrix and

then scaled by Φ. The resulting volume ratios with respect to Zc are Vr = 0.86, Vr = 0.83,

Vr = 0.46 for Zr, Z, and B, respectively. Repeating this process for 100 randomly generated

constrained zonotopes with 4 ≤ ng ≤ 20 and 1 ≤ nc ≤ 1
2
ng, Fig. 2.5 shows the volume

ratios for constrained zonotope, zonotope, and interval set inner-approximations. Both con-

strained zonotopes and zonotopes provide better approximations compared to interval sets

while constrained zonotopes provide only a slightly higher mean volume ratio.

2.7 Convex Hulls

This section computes the CG-Rep of the convex hull of two constrained zonotopes Z1, Z2 ⊂

Rn with complexity O(n+ nc1 + nc2) where nc1 and nc2 are the number of constraints in Z1
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Figure 2.4. Left: The inner-approximation of Zc by a constrained zonotope Zr with one less
generator and constraint. Right: The inner-approximation of Zc by a zonotope Z and an
interval set B.

Figure 2.5. The volume ratios for the inner-approximation of 100 randomly generated con-
strained zonotopes by a constrained zonotope Zr with one less generator and constraint, a
zonotope Z, and an interval set B. The red crosses denote outliers that do not fit the box
plot distribution.
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and Z2, respectively. Since zonotopes are a subset of constrained zonotopes with nc = 0, the

following result also applies to zonotopes.

Definition 2. [83] The convex hull of the union of two polytopes P1, P2 ⊂ Rn is defined as

CH(P1 ∪ P2) ≜

x1λ+ x2(1− λ) |

x1 ∈ P1,

x2 ∈ P2,

0 ≤ λ ≤ 1

 .

Theorem 5. The convex hull of the union of two constrained zonotopes Z1 = {G1, c1,A1,

b1} ⊂ Rn and Z2 = {G2, c2,A2,b2} ⊂ Rn is a constrained zonotope Zh = {Gh, ch,Ah,bh}

where

Gh =

[
G1 G2

c1−c2
2

0

]
, ch = c1+c2

2
,

Ah =


A1 0 −b1

2
0

0 A2
b2

2
0

A3,1 A3,2 A3,0 I

 , bh =


1
2
b1

1
2
b2

−1
2
1

 ,

A3,1 =



I

−I

0

0


,A3,2 =



0

0

I

−I


, A3,0 =



−1
2
1

−1
2
1

1
2
1

1
2
1


.

Proof. Considering any element x ∈ Zh, it is to be proven that x ∈ CH(Z1 ∪ Z2). By the

definition of Zh, ∃ ξ1 ∈ Rng1 , ξ2 ∈ Rng2 , ξ0 ∈ R, and ξs ∈ R2(ng1+ng2) such that

x = G1ξ1 +G2ξ2 +
c1 − c2

2
ξ0 + 0ξs +

c1 + c2
2

, (2.20a)

||ξ1||∞ ≤ 1, ||ξ2||∞ ≤ 1, |ξ0| ≤ 1, ||ξs||∞ ≤ 1, (2.20b)

Ah[ξ
T
1 ξT2 ξ0 ξ

T
s ]

T = bh. (2.20c)

To prove x ∈ CH(Z1 ∪ Z2) requires the existence of elements z1, z2 ∈ Rn, λ ∈ R, ξ′
1 ∈ Rng1 ,

and ξ
′
2 ∈ Rng2 such that

x = z1λ+ z2(1− λ), 0 ≤ λ ≤ 1, (2.21a)
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z1 = c1 +G1ξ
′

1, ||ξ′

1||∞ ≤ 1, A1ξ
′

1 = b1, (2.21b)

z2 = c2 +G2ξ
′

2, ||ξ′

2||∞ ≤ 1, A2ξ
′

2 = b2. (2.21c)

Note that if λ = 0, x = z2, and only (2.21c) needs to hold to prove x ∈ Z2 ⊂ CH(Z1 ∪ Z2).

Similarly, if λ = 1, then x = z1, and only (2.21b) needs to hold to prove x ∈ Z1 ⊂

CH(Z1 ∪ Z2). Finally, if 0 < λ < 1, then both (2.21b) and (2.21c) must hold to show

x ∈ CH(Z1 ∪ Z2). Consider the following definitions of variables λ, ξ
′
1, and ξ

′
2 with

λ =
1

2
(1 + ξ0), ξ1 = ξ

′

1λ, ξ2 = ξ
′

2(1− λ). (2.22)

By rearranging (2.20a), substituting using the variable definitions in (2.22), and then rear-

ranging to simplify using the definitions for z1 and z2 from (2.21b) and (2.21c), the expression

for x from (2.20a) can be established as

x =
c1
2
(1 + ξ0) +G1ξ1 +

c2
2
(1− ξ0) +G2ξ2, (2.23a)

= c1λ+G1ξ
′

1λ+ c2(1− λ) +G2ξ
′

2(1− λ), (2.23b)

= z1λ+ z2(1− λ). (2.23c)

Since |ξ0| ≤ 1, the definition for λ in (2.22) results in 0 ≤ λ ≤ 1. From the definition of Ah

and bh, the first two sets of equality constraints are

A1ξ1 −
b1

2
ξ0 =

1

2
b1, A2ξ2 +

b2

2
ξ0 =

1

2
b2. (2.24)

For λ = 0, (2.22) results in ξ0 = −1 and ξ2 = ξ
′
2. Since ||ξ2||∞ ≤ 1, ||ξ′

2||∞ ≤ 1 is satisfied.

Substituting ξ0 = −1 in (2.24) results in A2ξ2 = b2, and since ξ2 = ξ
′
2, the equality

constraint A2ξ
′
2 = b2 is satisfied. Similar arguments can be used to show the existence of ξ

′
1

for λ = 1 that satisfy the equality and infinity norm constraints from (2.21b). For 0 < λ < 1,

(2.24) simplifies to A1ξ
′
1 = b1 and A2ξ

′
2 = b2 using the definitions in (2.22).
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To show that norm constraints ||ξ′
1||∞ ≤ 1 and ||ξ′

2||∞ ≤ 1 are satisfied, consider the third

set of equality constraints from (2.20c) based on the definitions of Ah and bh. Specifically,

the first and second rows of A3,1, A3,2, A3,0, and I result in I

−I

 ξ1 −
1

2
1ξ0 + ξs,1 = −

1

2
1, (2.25)

where ξs,1 corresponds to the first 2ng1 elements of ξs. By substituting the variable definitions

from (2.22) and rearranging, (2.25) reduces to I

−I

 ξ
′

1 − 1 =
1

λ
(−1− ξs,1). (2.26)

Since ||ξs,1||∞ ≤ 1, (2.26) is upper-bounded by I

−I

 ξ
′

1 − 1 ≤ 1

λ
(−1+ 1) = 0, (2.27)

and thus, ξ
′
1 ≤ 1 and ξ

′
1 ≥ −1 which implies ||ξ′

1||∞ ≤ 1. Next, by considering the third and

fourth rows of A3,1, A3,2, A3,0, and I, and using similar arguments, it can be shown that

||ξ′
2||∞ ≤ 1. Thus, x ∈ CH(Z1 ∪ Z2).

Next, considering any x ∈ CH(Z1 ∪ Z2), it is to be proven that x ∈ Zh. By Definition

2, there exists elements z1, z2 ∈ Rn, λ ∈ R, ξ′
1 ∈ Rng1 , and ξ

′
2 ∈ Rng2 such that (2.21a)-

(2.21c) hold. To prove x ∈ Zh requires the existence of variables ξ1 ∈ Rng1 , ξ2 ∈ Rng2 ,

ξ0 ∈ R, ξs ∈ R2(ng1+ng2) such that (2.20a)-(2.20c) hold. Consider the following definitions for

variables ξ1, ξ2, ξ0, and ξs with

ξ1 = ξ
′

1λ, ξ2 = ξ2
′(1− λ), ξ0 = 2λ− 1, (2.28a)

ξs = −
1

2
1− (A3,1ξ1 +A3,2ξ2 +A3,0ξ0). (2.28b)
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Using (2.28a) and (2.28b), it can be readily shown that the equality constraints in (2.21a)-

(2.21c) can be rewritten to achieve (2.20a) and (2.20c). Thus, all that remains is to show∣∣∣∣ [ξT1 ξT2 ξ0 ξ
T
s ]

T
∣∣∣∣

∞ ≤ 1. Since 0 ≤ λ ≤ 1 holds,

||ξ′

1||∞ ≥ ||ξ
′

1λ||∞ = ||ξ1||∞,

is satisfied. By (2.21b), ||ξ′
1||∞ ≤ 1 implies ||ξ1||∞ ≤ 1. Similarly, it can be shown that

||ξ2||∞ ≤ 1. Using the definition of ξ0 from (2.28a) and 0 ≤ λ ≤ 1 proves that |ξ0| ≤ 1.

Next, to show that ||ξs||∞ ≤ 1, consider rearranging (2.26) as,

ξs,1 = −1+

1−

 I

−I

 ξ
′

1

λ. (2.29)

Since, 0 ≤ λ ≤ 1 and ||ξ′
1||∞ ≤ 1, (2.29) results in ||ξs,1||∞ ≤ 1. Finally, using the last

two rows of A3,1, A3,2, A3,0, and I from the definitions of Ah and bh, and following similar

arguments, it can be shown that ||ξs,2||∞ ≤ 1. Thus, ∀ x ∈ CH(Z1 ∪ Z2), x ∈ Zh.

The resulting constrained zonotope Zh obtained using Theorem 5 has ngh = 3(ng1 +

ng2) + 1 generators and nch = nc1 + nc2 + 2(ng1 + ng2) constraints.

Example 5. For the zonotopes

Z1 =


0 1 0

1 1 2

 ,0

 , Z2 =


−0.5 1 −2

0.5 0.5 1.5

 ,

−5
0


 ,

Fig. 2.6 shows the convex hull Zh = CH(Z1 ∪ Z2) with ng = 19 generators and nc = 12

constraints, as computed using Theorem 5. Fig. 2.6 also shows the convex hull Zch =

CH(Zc1 ∪ Zc2) with ng = 25 generators and nc = 18 constraints, where Zc1 = Z1 ∩ H1−,

Zc2 = Z2 ∩H2−, H1− = {z | [1 1]z ≤ 0}, and H2− = {z | [−2.5 1]z ≤ 9.5}.

30



-10 -5 0

-5

0

5

-10 -5 0

-5

0

5

Figure 2.6. Left: The convex hull Zh of zonotopes Z1 and Z2. Right: The convex hull Zch of
constrained zonotopes Zc1 and Zc2, where each constrained zonotope is a zonotope-halfspace
intersection corresponding to the shown hyperplanes.

2.8 Robust Positively Invariant (RPI) sets

This section provides both iterative and one-step optimization based methods for computing

approximations of the minimal robust positively invariant set using zonotopes. Consider the

autonomous discrete-time linear time-invariant system

xk+1 = Axk +wk, (2.30)

where xk ∈ Rn, A ∈ Rn×n is a strictly stable matrix, and wk ∈ W ⊂ Rn, where W is a

convex and compact set containing the origin.

Definition 3. [13] The set Ω ⊂ Rn is a robust positively invariant (RPI) set of (2.30) if

and only if AΩ⊕W ⊆ Ω.

Definition 4. [68] The minimal RPI (mRPI) set F∞ of (2.30) is the RPI set that is con-

tained in every closed RPI set of (2.30) and is given by

F∞ =
∞⊕
i=0

AiW. (2.31)
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2.8.1 Iterative Method

Unless specific conditions are met, such as A being nilpotent, the infinite sequence of

Minkowski sums in (2.31) makes it impossible to compute F∞ exactly. Thus, outer- ap-

proximations of the mRPI set are typically used. An iterative approach is developed in

[68] that computes the RPI set F (α, s) such that F∞ ⊆ F (α, s) ⊆ F∞ ⊕ ϵB∞, where ϵ is

a user defined bound on the error of the approximation with s ∈ N+, α ∈ [0, 1) such that

AsW ⊆ αW . Starting at s = 0, the approach increments s until the approximation error is

less than ϵ, at which point Fs is computed as

Fs =
s⊕

i=0

AiW, (2.32)

and F (α, s) = (1− α)−1Fs. The iterative algorithm in [68] requires use of multiple support

functions at each iteration. When W is expressed in H-Rep, an LP must be solved for each

support function calculation. As discussed in [84], computing F (α, s) using this method may

require the solution of thousands of LPs, even for a system with only two states. As briefly

mentioned in Remark 3 in [68], if W is expressed in G-Rep, then the support function can be

evaluated algebraically without the use of an LP, significantly reducing the computational

cost. Thus, the use of zonotopes for RPI set calculations provides both improved scalability

and reduced computational cost for the Minkowski sums in (2.32) and by removing the need

to solve LPs.

2.8.2 One-step Optimization Method

As an alternative for the iterative method in [68], a one-step method for computing an outer-

approximation of the mRPI set is presented in [84]. By expressing the RPI set in H-Rep,

this method requires solving a single LP, assuming both the number and normal vectors of

the hyperplanes associated with each halfspace inequality are provided a priori. Inspired

by this approach, the following presents a similar one-step method for computing an outer-

approximation of the mRPI set using G-Rep, where the generator vectors are predetermined.
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Theorem 6. The zonotope Z = {GΦ, c} ⊂ Rn, with Φ = diag(ϕ), ϕi > 0,∀i ∈ {1, · · · , ng},

is an RPI set of (2.30) if W = {Gw, cw} and there exists Γ1 ∈ Rng×ng , Γ2 ∈ Rng×nw , and

β ∈ Rng such that

AGΦ = GΓ1, (2.33a)

Gw = GΓ2, (2.33b)

(I−A)c− cw = Gβ, (2.33c)

|Γ1|1+ |Γ2|1+ |β| ≤ Φ1. (2.33d)

Proof. The proof requires showing that (2.33) enforces the zonotope containment conditions

from Lemma 3 such that X ⊆ Y , where X = AZ ⊕W and Y = Z. Consider the change

of variables Γ1 = ΦΓ̃1, Γ2 = ΦΓ̃2, β = Φβ̃ and define Γ̃ = [Γ̃1 Γ̃2]. Then the zonotope

containment conditions from (2.15) are satisfied by 1) rearranging and combining (2.33a)

and (2.33b) to get [AGΦ Gw] = GΦΓ̃, 2) rearranging (2.33c) to get c− (Ac+cw) = GΦβ̃,

and 3) multiplying (2.33d) by Φ−1, since ϕi > 0, to get |Γ̃|1+ |β̃| ≤ 1.

When using Theorem 6 to determine the RPI set Z in G-Rep, the generator matrix

G is assumed to be known a priori in the same way that the normal vectors are chosen

a priori in [84] for the one-step RPI set computation in H-Rep. Given a desired order of

Z, G can be computed using (2.32) where G = [Gw AGw ... AsGw], for some s ∈ N+

that provides the desired order. Once G is determined, the diagonal matrix Φ provides the

ability to scale the size of Z such that Z is an RPI set. Since the minimal RPI set is typically

desired, an optimization problem can be formulated with the constraints from (2.33) and

a objective function that minimizes the scaling variables in Φ. With c, Φ, Γ1, Γ2, and β

as decision variables in this optimization problem, (2.33) consists of only linear constraints

and thus an LP or QP can be formulated based on the norm used to minimize the vector

ϕ, where Φ = diag(ϕ). In the following example, an LP is formulated by minimizing ∥ϕ∥∞
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subject to (2.33). Computing RPI set Z using Theorem 6 requires solving an LP with

n2
g + ng(nw + 2) + n decision variables.

Example 6. Consider the system from [84]

xk+1 =

1 1

0 1

xk +

0.5
1

uk +wk, (2.34)

with wk ∈ W = {w ∈ R2 | ∥w∥∞ ≤ 0.1}. As in [84], the state feedback control law

uk = Kxk, where K corresponds to the LQR solution with Q = I and R = 1, converts (2.34)

to an autonomous system of the form (2.30). For this system, four methods for computing

outer-approximations of the mRPI set are compared in Fig. 2.7 with respect to volume

ratio Vr and computation time ∆tcalc as a function of set complexity (ng for zonotopes in

G-Rep, 1
2
nh for polytopes in H-Rep). The seminal work from [68], denoted as ϵ-mRPI (H-

Rep), is the most computationally expensive since evaluating support functions for polytopes

in H-Rep requires the solution of an LP. Using zonotopes in G-Rep, computational cost

of this ϵ-mRPI approach can be reduced by an order-of-magnitude since evaluating support

functions for zonotopes is algebraic, as mentioned in Remark 3 of [68]. Alternatively, the

1-step approaches from [84] and Theorem 6, provide similar computational advantages.

However, the 1-step approach from [84] is sensitive to the choice of hyperplanes. Using the

same choice of hyperplanes from [84], Fig. 2.7 shows that the volume ratio does not decrease

with increasing set complexity as quickly as the zonotope-based approach. Note that volume

ratio is defined with respect to an approximation of the true mRPI set volume computed using

the ϵ-mRPI method with ϵ = 10−9.

To assess the scalability of these methods with respect to system order, Fig. 2.8 shows

a comparison of these methods based on set complexity and computation time as a function

of system order n. Note that the ϵ-mRPI (H-Rep) method became impractical for higher

system orders and is not included in Fig. 2.8. Similarly, the 1-step (H-Rep) method became
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Figure 2.7. Comparison of volume ratio and computation time as a function of set complexity
for outer-approximations of the mRPI set using iterative and 1-step approaches based on
H-Rep or G-Rep.

impractical for n > 6. These results are generated using a nth-order integrator system similar

to that of (2.34). While the ϵ-mRPI method in G-Rep provides the lowest computational cost,

the complexity of the resulting set is roughly ten times larger than the set used for the 1-step

approach. While scaling better than the 1-step H-Rep approach, the 1-step G-Rep approach

requires solving a linear program with the constraints from (2.33) which includes the large

decision variable Γ1 ∈ Rng×ng . To manage this computational cost for higher order systems,

the number of steps s ∈ N+ in (2.32) can be chosen to balance set complexity and accuracy.
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Figure 2.8. Comparison of set complexity and computation time as a function of system
order for outer-approximations of the mRPI set using iterative and 1-step approaches based
on H-Rep or G-Rep.

2.9 Pontryagin Difference

This subsection provides an iterative method for computing the constrained zonotope repre-

sentation of the Pontryagin difference of two zonotopes and a one-step optimization method

for computing the zonotopic inner-approximation of the Pontryagin difference.

Definition 5. [3] Given two sets Z1, Z2 ⊂ Rn, the Pontryagin difference Zd = Z1 ⊖ Z2 is

defined as

Zd = {z ∈ Rn | z ⊕ Z2 ⊆ Z1}. (2.35)

The Pontryagin difference is also referred to as the Minkowski difference or the erosion

of set Z1 by Z2.
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2.9.1 Iterative Method

If Z1 and Z2 are zonotopes, then [3] provides the following iterative method for computing

Zd.

Lemma 5. (Theorem 1 of [3]) If Z1 = {G1, c1} and Z2 = {G2, c2}, then the Pontryagin

difference Zd = Z1 ⊖ Z2 is computed using the ng2 generators g2,i of Z2 by applying the

following recursion:

Z
(0)
int = Z1 − c2, (2.36a)

Z
(i)
int = (Z

(i−1)
int + g2,i) ∩ (Z

(i−1)
int − g2,i), (2.36b)

Zd = Z
(ng2)
int . (2.36c)

As shown in [3], zonotopes are not closed under the Pontryagin difference. Thus, the

methods in [3] require the use of a combination of G-Rep and H-Rep to compute approxi-

mations of Zd in G-Rep. While this combination results in faster calculations than methods

that solely use H-Rep, the majority of computation time comes from the conversion from

G-Rep to H-Rep, which scales exponentially with the number of generators.

However, since Zd is computed via the intersection of zonotopes, Zd can be exactly

represented as a constrained zonotope. Thus, (2.36b) can be directly computed using the

generalized intersection from (2.3) without the need for H-Rep. Note that iterative method

from Lemma 5 is also applicable if Z1 = {G1, c1,A1,b1} is a constrained zonotope, since

(2.36) only requires Z2 to be the Minkowski sum of generators g2,i. For a constrained

zonotope Z1 in Rn with nc1 constraints and ng1 generators and a zonotope Z2 in Rn with

ng2 generators, Zd = Z1 ⊖ Z2 is a constrained zonotope with ngd = 2ng2ng1 generators and

ncd = 2ng2nc1 + n(2ng2 − 1) constraints.
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2.9.2 One-step Optimization Inner-Approximation Method

As an alternative to the iterative method from Lemma 5, the following theorem presents a

one-step method for computing an zonotopic inner-approximation of the Pontryagin differ-

ence Z̃d ⊆ Zd = Z1 ⊖ Z2 using a single LP.

Theorem 7. Given Z1 = {G1, c1} and Z2 = {G2, c2}, then Z̃d = {[G1 G2]Φ, cd}, with

Φ = diag(ϕ), ϕi > 0,∀i ∈ {1, · · · , ng1 + ng2}, is an inner-approximation of the Pontryagin

difference such that Z̃d ⊆ Z1⊖Z2 if there exists Γ ∈ Rng1×(ng1+2ng2) and β ∈ Rng1, such that

[
[G1 G2]Φ G2

]
= G1Γ, (2.37a)

c1 − (cd + c2) = G1β, (2.37b)

|Γ|1+ |β| ≤ 1. (2.37c)

Proof. By viewing (2.37) in the context of the zonotope containment conditions from

Lemma 3, it is clear that (2.37) enforces the Pontryagin difference condition Z̃d ⊕ Z2 ⊂ Z1

from (2.35).

When using Theorem 7 to compute Z̃d ⊂ Zd in G-Rep, the generator matrix [G1 G2]Φ

is assumed to be comprised of the generators from both Z1 and Z2 scaled by the diagonal

matrix Φ. Since maximizing the size of Z̃d is typically desired, an optimization problem can

be formulated with the constraints from (2.37) and an objective function that maximizes

the scaling variables in Φ. With cd, Φ, Γ, and β as decision variables in this optimization

problem, (2.37) consists of only linear constraints and thus an LP or QP can be formulated

based on the norm used to maximize the vector ϕ, where Φ = diag(ϕ). Computing Z̃d using

Theorem 7 requires solving a LP with n2
g1 + 2ng1ng2 + 2ng1 + ng2 + n decision variables.
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Figure 2.9. Left: The Pontryagin difference Zd = Z1 ⊖ Z2 where Z1 and Z2 are zonotopes
but Zd is not [3]. Right: The inner-approximation of Zd by a zonotope Z̃d ⊆ Zd.

Example 7. Consider the zonotopes from [3]

Z1 =




1 1 0 0

1 0 1 0

1 0 0 1

 ,0

 , Z2 =


1

3


−1 1 0 0

1 0 1 0

1 0 0 1

 ,0

 .

Fig. 2.9 shows the Pontryagin difference Zd = Z1 ⊖ Z2 with ng = 64 and nc = 45 computed

using Lemma 5. As discussed in [3], zonotopes are not closed under the Pontryagin dif-

ference, which can be seen in Fig. 2.9 by the asymmetric facets of Zd. Using Theorem 7,

the inner-approximation of the Pontryagin difference Z̃d is also shown in Fig. 2.9. Choos-

ing to maximize ∥[G1 G2]Φ∥∞ subject to (2.37) produced Z̃d ⊂ Zd with a volume ratio of

Vr = 0.924.

Example 8. Similar to [3], the scalability of exact constrained zonotope representations

of the Pontryagin difference via Lemma 5 and zonotopic inner-approximations via The-

orem 7 is compared with the standard H-Rep approach provided in the Multi-Parametric

Toolbox [37]. Table 2.1 shows the complexity and computational time for computing the

Pontryagin difference Zd = Z1 ⊖ Z2 using each of the three methods for zonotopes in R2,
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Table 2.1. Pontryagin difference set complexity and computation time (seconds)

Z1 ⊖ Z2

Z1 Z2 H-Rep CG-Rep 1-Step (G-Rep)

n ng nh th nc × ng th/tcg ng Vr th/tg
2 4 4 16 0.01 30 × 64 33.2 2.5 0.64 3.3

2 8 4 32 0.01 30 × 128 48.2 3.0 0.54 3.5

2 4 8 16 0.01 510 × 1024 17.6 2.6 0.67 3.3

2 8 8 32 0.02 510 × 2048 20.9 3.2 0.53 3.1

3 6 6 60 0.03 189 × 384 68.8 3.7 0.55 7.5

3 12 6 264 0.16 189 × 768 261 4.8 0.46 16.0

3 6 12 60 0.13 12,285 × 24,576 18.6 3.8 0.54 21.5

3 12 12 264 0.40 12,285 × 49,152 27.2 4.9 0.43 28.2

4 8 8 224 0.38 1,020 × 2,048 359 4.9 0.50 46.2

4 16 8 2,240 41.0 1,020 × 4,096 2,370 6.2 0.45 1,890

4 8 16 224 59.0 262,140 × 524,288 271 4.7 0.43 4,078

4 16 16 2,240 243 262,140 × 1,048,576 556 6.2 0.48 6,510

R3, and R4. Each entry in Table 2.1 represents an average of 100 computations using ran-

domly generated zonotopes Z1 and Z2. These random zonotopes are generated using the

procedure provided in [3] and the CORA toolbox [4]. Cases where Zd = ∅ were disregarded

and not considered in the set of 100 computations. For CG-Rep and G-Rep, the ratio of

computation times relative to that of H-Rep is presented. Since the G-Rep approach is an

inner-approximation, the average volume ratio is also provided. From these results, it is clear

that both the set complexity nh and the computation time th for the H-Rep approach increase

by approximately an order-of-magnitude as the set dimension n increases. While the CG-Rep

approach increases the computation speed by approximately two orders-of-magnitude, the set

complexity increases exponentially. Sparse matrices were used to reduce the memory require-

ments for these computations. The redundancy removal approach presented in Section was

not able to detect the high-degree of redundancy in these set representations. Alternatively,

the one-step G-Rep approximation approach also provided significant reductions in compu-

tational cost while maintaining a small number of generators. However, for these randomly
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generated zonotopes, the inner-approximation only captures approximately 50% of the vol-

ume of Zd. While these methods will likely work well for many practical applications, future

work is needed to improve redundancy detection and removal for the CG-Rep approach and

improved optimization formulations are needed for the G-Rep approach to further maximize

volume ratio.

2.10 Application to Reachability Analysis

To demonstrate the applicability of algorithms developed in this chapter, this section con-

siders the exact and approximate computations of backwards reachable sets of a constrained

linear system in the context of the two-level hierarchical MPC framework developed in

[48, 49]. The high-level goal is to compute a wayset Zc(k) at discrete time step k that

captures all of the initial states x(k) ∈ Zc(k) ⊂ Rn for which there are state and input

trajectories x(k + j) and u(k + j) that satisfy, for all j ∈ {0, · · · , N − 1}, i) the dynamics

x(k+ j +1) = Ax(k+ j) +Bu(k+ j), ii) the state and input constraints x(k+ j) ∈ X and

u(k+ j) ∈ U , and iii) the terminal constraint x(k+N) = x∗ for some predetermined target

x∗ ∈ Rn. In the context of the hierarchical MPC framework from [48, 49], x∗ is a future state

on the optimal trajectory determined by an upper-level controller and Zc(k) is a terminal

constraint imposed on a lower-level controller. Since x∗ is updated at every evaluation of

the upper-level controller, Zc(k) must be recomputed in real-time, which is enabled through

the use of constrained zonotopes.

Algorithm 2 shows a simplified version of the backward reachable wayset algorithms

presented in [48, 49]. Fig. 2.10 shows the results of this algorithm when applied to the

simplified vehicle system model from [48, 49] with discretization time step size ∆t = 1 second.

The state and input constraints defining X and U are [−1 − 20 0]T ≤ x(k) ≤ [105 20 100]T

and [0 0 0]T ≤ u(k) ≤ [1 1 1]T .
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To demonstrate the halfspace intersection results from Section 2.3 and 2.4, Table 2.2

compares the set representation complexity and computation time of four different CG-Rep

methods with those using H-Rep via the Multi-Parametric Toolbox [37]. All computation

times are averaged over 100 runs. Overall, the CG-Rep methods result in significantly less

set complexity and computation time. The CG-Rep methods differ in the computation

of Ẑc(k + j − 1) ∩ X in Algorithm 2. Specifically, this intersection is computed using

1) the zonotope-hyperplane (ZH) method from Lemma 1 based on the parent zonotope

Ẑ(k + j − 1) ⊃ Ẑc(k + j − 1) and the H-Rep of X , 2) the generalized intersection (GI)

(from (2.3)) of the constrained zonotope wayset and the G-Rep of X , 3) the linear program

(LP) method from Lemma 2 for checking the intersection of a constrained zonotope and

a hyperplane, and 4) the interval arithmetic (IA) approach using Algorithm 1 to detect

empty sets when Ẑc(k+ j−1) ⊂ X . In the ZH, LP, and IA methods, if the wayset intersects

the hyperplanes associated with the halfspaces of X , generators and constraints are added

using (2.11) to exactly compute Ẑc(k + j − 1) ∩ X in CG-Rep.

As expected, the GI approach resulted in the highest set complexity since generators and

constraints are added even if Ẑc(k + j − 1) ⊂ X . The LP approach results in the lowest

complexity by only adding generators and constraints when needed to exactly define the

intersection. In this application, the ZH method also achieves this low set complexity and

requires significantly less computation time. However, achieving this low complexity is not

expected in general. Finally, the IA approach did not perform as well in this application,

resulting in unnecessary generators and constraints and a large computation time. However,

in practice, the zonotope-halfspace check from Theorem 1 would be applied first so that

Algorithm 1 is only used in cases where the parent zonotope intersects the hyperplane.

To demonstrate redundancy removal results from Section 2.5, Algorithm 2 and The-

orem 2 were applied to successfully remove all unnecessary generators and constraints re-

sulting in the irredundant constrained zonotope wayset Z̃c in Table 2.2. Overall, when
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Algorithm 2: Wayset Zc(k) for target x
∗.

Input : x∗

Output: Zc(k)

1 initialize j ← N
2 Zc(k + j) = x∗;
3 while j ≥ 1 do

4 Ẑc(k + j − 1) = A−1Zc(k + j)⊕ (−A−1B)U ;
5 Zc(k + j − 1) = Ẑc(k + j − 1) ∩ X ;
6 j ← j − 1;

7 end
8 Zc(k) = Zc(k + j)

Figure 2.10. The evolution of backward reachable wayset Zc(k) for k = 40 and N = 10 time
steps starting from x∗ projected on the position and energy states. The sets Zc(k+ j), ∀ j ∈
{7, 8, 9} are zonotopes (evident from symmetry) while the sets Zc(k + j),∀ j ∈ {0, · · · , 6},
are constrained zonotopes. The constrained zonotope wayset Zc(k) contains x

∗
− ensuring the

control feasibility from [48, 49].

compared to H-Rep, any of the four CG-Rep approaches are computationally efficient with

less set complexity and the preferred CG-Rep approach is likely to be application dependent.

When computing these waysets for complex systems, it is likely that inner-approximations

are needed to restrict the complexity of the set to satisfy a predetermined upper bound on

the number of generators and constraints. Demonstrating the inner-approximations from
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Table 2.2. Complexity and Computation Time of Waysets

Zc tcalc Z̃c tcalc

Method nc × ng sec ñc × ñg sec

ZH 7× 37 1e−3 7× 37 4e−3

GI 30× 60 2e−3 7× 37 2e−1

LP 7× 37 1e−1 7× 37 2e−3

IA 15× 45 1e−1 7× 37 4e−2

H-Rep nh = 5047 161 nh = 153 333

Section 2.6.3 and the convex hull operation from Section 2.7, the top row of plots in Fig. 2.11

shows the inner-approximating interval set B ⊂ Zc computed using the method described

in Example 4 with ng = 3 and nc = 0. However, in the hierarchical MPC framework from

[48, 49] the wayset must also include a key element denoted here as x∗
−. Since x∗

− /∈ B, the

wayset can be computed as CH(B∪x∗
−) resulting in ng = 10 and nc = 6. If this increase in set

complexity is undesirable for a particular application, the point containment x∗
− ∈ B ⊆ Zc

can be readily added to the LP defined in (2.19). The resulting inner-approximating interval

set with this point containment is shown in the bottom row of plots in Fig. 2.11. The

computation time for these inner-approximating interval sets are approximately 0.18 and

0.25 seconds for the top and bottom rows, respectively.

2.11 Conclusions

The use of zonotopes and constrained zonotopes for set operations provides significant com-

putational advantages that improve the practicality of set-based techniques commonly used

in systems and control theory. Operations such as halfspace intersections, convex hulls,

invariant sets, and Pontryagin differences have been shown to benefit from zonotope and

constrained zonotope set representations. Complexity reduction techniques were developed

based on redundancy removal and inner-approximations to further improve the practical-
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Figure 2.11. Top: The wayset Zc, inner-approximating interval set B with Vr = 0.35, and
CH(B ∪ x∗

−) with Vr = 0.39 are shown on the left and the projections on to the position
and velocity states are shown on the right. Bottom: The wayset Zc, inner-approximating
interval set B containing x∗

− with Vr = 0.30 shown on the left with the projection shown on
the right.

ity of these set representations. Future work will focus on improved redundancy detection

algorithms and optimization formulations that more accurately capture the volume of the

approximated set. The following chapter will discuss about the development of a vertical

hierarchical model predictive control algorithm for systems with additive disturbances.

Supplementary Material

The source code for all the zonotope and constrained zonotope operations and numerical

examples is provided at https://github.com/ESCL-at-UTD/ConZono.
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CHAPTER 3

VERTICAL HIERARCHICAL MODEL PREDICTIVE CONTROL WITH

ADDITIVE DISTURBANCES1

3.1 Introduction

For the control of many complex systems, the ability to satisfy both input and state con-

straints is critical to maintaining safe and reliable system operation. Additionally, with

increasing demand for performance and efficiency, optimal system operation is characterized

by both transient and steady-state input and state trajectories that approach these con-

straints. Examples include the control of aircraft power systems [80, 20], on- and off-road

hybrid vehicles [72, 41, 88], smart grids [42, 33, 93], and water distribution networks [63, 64].

For the control of input and state constrained systems, system operation is not always

indefinite and the desired behavior is not always characterized by driving the system to

steady-state or from one equilibrium to another. This idea is discussed in [70] for vehicle

maneuvering problems where the notion of stability is replaced by the notion of completion.

Similarly, this work focuses on the control of systems under finite operation, with the goal

of guaranteeing state and input constraints during operation and terminal state constraints

at the end of operation.

Model Predictive Control (MPC) is well-suited for the control of constrained systems since

input and state constraints are directly imposed in the underlying optimization problem.

Feasibility of these constraints and stability of the closed-loop system are well understood

for the case of a single centralized controller [62]. However, for systems that require fast

control update rates and long prediction horizons, the time required to solve the resulting

large optimization problem may prevent real-time implementation.

1This chapter is based on work supported by the United States Air Force Research Laboratory.
Chapter 3 in part is a reprint of material published in: © Automatica. Reprinted, with permission, from

Koeln, J., Raghuraman, V. and Hencey, B., 2020. Vertical hierarchical MPC for constrained linear systems.
Automatica, 113, p.108817.
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Alternatively, hierarchical MPC can be used to decompose control decisions across mul-

tiple levels of controllers [73]. Upper-level controllers use large time steps to achieve long

prediction horizons with fewer discrete steps. Lower-level controllers with small time steps

use short prediction horizons to minimize computational cost and enable real-time imple-

mentation. To handle the timescale separation between the system and actuator dynamics,

several two-level hierarchical MPC formulations have been developed [25, 26, 75, 74, 8, 9, 86].

However, existing hierarchical formulations are not well suited to maximize the perfor-

mance of a system subject to input, state, and terminal constraints under finite operation.

Most hierarchical MPC approaches are formulated with the goal of stabilizing the system

to an equilibrium in the interior of state and input constraint sets. However, for systems

with finite operation, such equilibrium might not exist as in the case of systems whose op-

eration is based on the consumption of a finite resource (e.g. fuel in an aircraft [80, 20] or

battery state of charge in an electric vehicle [72, 41, 88]). Moreover, existing approaches

[25, 26, 75, 74, 9, 8, 86] are typically formulated where upper-level controllers are robust to

the control decisions of lower-level controllers and overall control authority is divided among

each control level. Existing reference tracking based coordination mechanisms require lower-

level controllers to track state and input trajectories determined by upper-level controllers,

preventing the hierarchical controller from utilizing the fast system dynamics to maximize

system performance. Finally, while most hierarchical MPC formulations are designed to two

controller levels, many systems have more than two timescales and an M -level hierarchical

MPC would be more effective in controlling each timescale. To date, there does not exist

a M -level hierarchical MPC framework that provides guaranteed state and input constraint

satisfaction, even for linear systems.

To develop a constructive hierarchical MPC framework that guarantees input and state

constraint satisfaction, this chapter focuses on a vertical hierarchy, with one controller per

level, for discrete-time linear systems. This work replaces the conventional reference tracking
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based coordination between controllers of the hierarchy with a novel coordination mecha-

nism using waysets. A wayset defines a subset of states at a future point in time from which

there exist feasible state and input trajectories for the remainder of system operation. Thus,

driving the system states to a wayset provides a short-term control objective that guarantees

long-term constraint satisfaction. Within the proposed hierarchical MPC framework, way-

sets are computed based on optimal state trajectories determined by upper-level controllers

and imposed as terminal constraints for lower-level controllers. Wayset-based coordination

overcomes the limitations of existing hierarchical MPC frameworks by removing the need for

constraint-feasible equilibrium, removing the conservatism that stems from requiring upper-

level controllers to be robust to the lower-level control decisions, and allowing lower-level

controllers to utilize the fast system dynamics to further improve system performance.

Similar coordination mechanisms have been used in the literature. For wastewater treat-

ment systems, the hierarchical controller in [16] uses “interlayer targets” to achieve coordi-

nation between controllers at different levels. These interlayer targets inspired the use of

waypoints as the coordination mechanism for a two-level hierarchy in [47]. These waypoints

are imposed as terminal constraints on lower-level controllers within the hierarchy. For ve-

hicle path-planning, waypoint tracking control is used in [1] to split long planning horizons

into multiple shorter horizons by creating intermediate goals. This idea was extended to

wayset tracking in [81], where waysets represent a region of the state space instead of a

single point. However, in both cases the waypoint/wayset generation is performed off-line in

a feed-forward fashion.

To enable on-line calculation of waysets, computational efficiency is vastly improved by

representing the waysets as constrained zonotopes [79]. Zonotopes are widely used due

to their computational efficiency in reach set calculations for hybrid system verification,

estimation, and MPC [59, 6, 79, 15]. As will be shown, the proposed wayset calculations are

similar to the computation of reach sets and utilize linear transformation, Minkowski sum,

and intersection operations.
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Contributions: To achieve guaranteed input and state constraint satisfaction, this chapter

develops a vertical hierarchical MPC framework with a novel wayset coordination mechanism.

The specific contributions of this chapter are 1) the development of an M -level hierarchical

MPC framework that incorporates known disturbances and is robust to bounded unknown

disturbances, 2) the definition and use of waysets to prove robust closed-loop constraint

satisfaction, 3) the representation and calculation of waysets as constrained zonotopes to

achieve efficient on-line calculation, and 4) the numerical demonstration of performance and

scalability of the hierarchical approach. Note that the nominal version of this hierarchical

MPC formulation without accounting for disturbances was initially presented in [48].

The remainder of the section is organized as follows. Sections 3.3 and 3.4 present the

class of constrained discrete-time linear systems and the proposed M -level hierarchical MPC

formulation. Section 3.5 defines a robust output constraint tightening procedure and the

wayset properties. Robust state and input constraint satisfaction is proved in Section 3.6.

Section 3.7 details the calculation of waysets and the use of constrained zonotopes to achieve

computational efficiency. Two numerical examples are provided in Section 3.8 to demon-

strate the key features, performance, and scalability of the approach. Finally, Section 3.9

summarizes the conclusions of the chapter.

3.2 Notation and Preliminaries

For a discrete time system, the notation x(k) denotes the state x at time step k. For

MPC, the double index notation x(k + j|k) denotes the predicted state at future time k + j

determined at time step k. The bracket notation k ∈ [0, kF ] denotes all integer values of k

from 0 to kF . The state trajectory over these time indices is denoted {x(k)}kFk=0. The set of

positive integers is Z+. The weighted norm is defined as ∥x∥2Λ = xTΛx, where Λ is a positive

definite diagonal matrix. The subscript i is used to denote the ith controller in the hierarchy,

Ci, and i− = i − 1 is shorthand used to reference the controller directly above, Ci− . For
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sets Z,W ⊂ Rn, Y ⊂ Rm, and matrix R ∈ Rm×n, the linear transformation of Z under R is

RZ = {Rz | z ∈ Z}, the Minkowski sum of Z and W is Z ⊕W = {z + w | z ∈ Z, w ∈ W},

and the generalized intersection of Z and Y under R is Z ∩R Y = {z ∈ Z | Rz ∈ Y}. The

standard intersection, corresponding to the identity matrix R = In, is simply denoted as

Z ∩W . The Pontryagin difference is defined as Z ⊖W = {z ∈ Rn | z + w ∈ Z , ∀w ∈ W}.

The Cartesian product is defined as Z × Y =
{
[zT yT ]T | z ∈ Z, y ∈ Y

}
. The projection of

the set Y on the first n dimensions is denoted πn (Y). The empty set is denoted as ∅.

3.3 Problem Formulation

Consider the discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + d(k), (3.1)

with states x ∈ Rn, inputs u ∈ Rm, disturbances d ∈ Rn, and where A ∈ Rn×n is invertible,

B ∈ Rn×m, and the pair (A,B) is stabilizable.

Assumption 1. With a fixed time step size ∆t, the system operates for a finite length of

time starting from t = 0 and ending at t = tF = kF∆t with discrete time steps indexed by

k ∈ [0, kF ].

Assumption 2. The disturbance is d(k) = d̂(k) + ∆d(k), where d̂(k) is known a priori for

all k ∈ [0, kF ] and ∆d(k) is unknown but bounded to a convex and compact set such that

∆d(k) ∈ D ⊂ Rn.

Starting from an initial condition x(0), the goal is to develop a vertical hierarchical MPC

approach that plans and executes an input trajectory {u(k)}kF−1
k=0 and corresponding state

trajectory {x(k)}kFk=0 which i) satisfies the system dynamics from (3.1); ii) satisfies the state

and input constraints

x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm,∀k ∈ [0, kF − 1] ; (3.2)
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System

C3

C2

C1

t = 0

k = 0

t = tF = 27

k = kF = tF
∆t

= 27

∆t = 1

∆t3 = ∆t = 1

N3 = 3

N2 = 3

N1 =
tF
∆t1

= 3

∆t2 = N3∆t3 = 3

∆t1 = N2∆t2 = 9

Figure 3.1. The relationship between prediction horizonsNi and time step sizes ∆ti, i ∈ [1, 3],
for a three-level, M = 3, hierarchical controller operating a system for t ∈ [0, 27].

iii) satisfies the terminal constraint

x(kF ) ∈ T ⊆ X ; (3.3)

and iv) minimizes the generic cost function

J∗ (x(0)) = min
{u(k)}kF−1

k=0

kF∑
j=0

ℓ (x(j), u(j), r(j)) , (3.4)

where a pre-determined reference trajectory {r(k)}kFk=0 defines the desired system operation.

Assumption 3. Sets X ,U , T are compact and convex.

For notational simplicity, the state and input constraints from (3.2) are represented as

the output constraints

y(k) ≜

x(k)
u(k)

 = Cx(k) +Du(k) ∈ Y ≜ X × U . (3.5)

3.4 Robust Vertical Hierarchical Control

The proposed hierarchical control formulation has M levels of controllers Ci, i ∈ [1,M ], each

with a prediction horizon and time step size that satisfy the following assumptions.
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Assumption 4. For each controller Ci, i ∈ [1,M ], the prediction horizon Ni ∈ Z+ and time

step size ∆ti > 0 satisfy

i) ∆tM = ∆t;

ii) ∆ti− = Ni∆ti;

iii) ∆t1 =
tF
N1

.

These assumptions indicate i) the lowest-level controller CM and the system (3.1) have

the same time step size, ii) each controller Ci predicts state and input trajectories between

consecutive updates of the controller Ci− directly above in the hierarchical controller, and

iii) the highest-level controller C1 predicts to the end of system operation. Additionally, let

νi ≜
∆ti
∆t
∈ Z+, be defined as a time scaling factor for each controller. The time steps for Ci

are indexed by ki, where ki ≜ k
νi

and kM = k. Let ki,F ≜ kF
νi

such that ki ∈ [0, ki,F ]. Fig. 3.1

shows how the conditions of Assumption 4 determine the relationships between time step

sizes and prediction horizons for a three-level hierarchical controller.

Each controller Ci updates only when k = νiki (i.e. when k mod νi = 0), by solving the

constrained optimization problem Pi (x(k)) defined as

J∗
i (x(k)) =min

x̂i(ki|ki)

Ûi(ki)

ki+Ni(ki)∑
j=ki

ℓ (x̂i(j|ki), ûi(j|ki), ri(j)) , (3.6a)

s.t.∀j ∈ [ki, ki +Ni(ki)]

x̂i(j + 1|ki) = Aix̂i(j|ki) +Biûi(j|ki) + d̂i(j), (3.6b)

ŷi(j|ki) = Cx̂i(j|ki) +Dûi(j|ki) ∈ Ŷi(j), (3.6c)

x̂i(ki +Ni(ki)|ki) ∈ Ŝi(ki +Ni(ki)), (3.6d)

x(k)− x̂i(ki|ki) ∈ E ∨ x̂i(ki|ki) = x̂∗
i (ki|ki − 1). (3.6e)

First, note that Pi (x(k)) has a shrinking horizon, based on the summation limits in (3.6a),

with horizon length Ni(ki) ≜ Ni − (ki mod Ni) where Ni satisfies Assumption 4ii. Thus,

52



Ci predicts between the current time step and the time step of the next update of Ci− ,

at which point (ki mod Ni) = 0 and prediction horizon resets back to Ni(ki) = Ni. The

nominal input sequence over this horizon is defined as Ûi(ki) = {ûi(j|ki)}ki+Ni(ki)−1
j=ki

, with

the optimal nominal sequence denoted as Û∗
i (ki). In (3.6b), the model used by Ci assumes

a piecewise constant nominal control input over the time step size ∆ti and thus Ai = Aνi

and Bi =
∑νi−1

j=0 AjB (as in [74]). Since the known disturbance is time varying over the time

step size ∆ti, the known disturbance used in (3.6b) is

d̂i(ki) =

νi−1∑
j=0

Aνi−1−j d̂(νiki + j), (3.7)

which ensures that d̂i(ki) captures the accumulated effect of the known time-varying dis-

turbances, d̂(k), k ∈ [νiki, νiki + νi − 1], during this slow time step. The nominal outputs

ŷi(j|ki) in (3.6c) are constrained to the time-varying tightened output constraint set Ŷi(j),

with details provided in Sections 3.5.1 and 3.5.2. The time-varying terminal state constraint

in (3.6d) corresponds to the waysets Ŝi(ki+Ni(ki)) used as the only coordination mechanism

between controllers Ci and Ci− . The properties of these waysets are defined in Section 3.5.3

and the calculation of the waysets is provided in Section 3.7.2. Finally, (3.6e) provides Ci

the choice of nominal initial condition, x̂i(ki|ki), which is a decision variable following the

tube-based MPC formulation in [60]. The reasoning for this specific treatment of the initial

condition is detailed in Section 3.5.4.

As shown in Fig. 3.2, coordination is achieved among the controllers through the use of

waysets imposed as terminal constraints (3.6d). Within this hierarchical control framework,

only the lowest level controller CM directly affects the system. Once CM has solved for

the optimal nominal control input trajectory Û∗
M(kM) and optimal nominal initial condition

x̂∗
M(kM |kM), the input to the system u(k) is calculated based on the control law

u(k) = û∗
M(kM |kM) +K[x(k)− x̂∗

M(kM |kM)], (3.8)
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Figure 3.2. The hierarchical MPC structure with M levels, where controllers Ci, i ∈ [1,M ]
are formulated based on (3.6), the known disturbances d̂i(ki) are computed based on (3.7),
the waysets Ŝi(ki+Ni(ki)), i ∈ [2,M ], are used to coordinate controllers Ci and Ci− , and the
static feedback control law (3.8) bounds the effect of the unknown disturbance ∆d(k) ∈ D.

whereK ∈ Rm×n is a static feedback control gain. This control law is used to bound the error

between the nominal and true system state trajectories created by the unknown disturbances

∆d(k). Section 3.5.1 details the design of K and the resulting set E that bounds this error.

In summary, the M -level hierarchical controller is implemented based on Algorithm

3. The constrained optimization problem Pi (x(k)) for each controller Ci, i ∈ [1,M ] is

specifically designed with the nominal model of (3.6b), the time-varying tightened output

constraints of (3.6c), the wayset terminal constraints of (3.6d), and the initial state condition

of (3.6e) to establish guaranteed robust satisfaction of output and terminal constraints as

proven in Section 3.6.

Remark 5. As discussed in [48], neither the references nor the exact formulation of cost

function in (3.6a) affect the feasibility of any Pi (x(k)) in the hierarchical controller.
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Algorithm 3: M -level hierarchical MPC

1 initialize k, ki ← 0, ∀i ∈ [1,M ]
2 while k < kF do
3 for i = 1 to M − 1 do
4 if k mod νi = 0 then
5 solve Pi (x(k));

6 calculate Ŝi(ki +Ni(ki)) and communicate to Pi+1 (x(k));
7 ki ← ki + 1;

8 end
9 solve PM (x(k)) and apply the input u(k) to the system based on (3.8);

10 kM ← kM + 1;
11 k ← k + 1;

12 end

13 end

Remark 6. While the focus of this chapter is on hierarchical control for systems with finite

operation per Assumption 1, indefinite system operation can be achieved by replacing the

shrinking prediction horizon, N1, of C1 with a receding horizon of fixed length. To guarantee

recursive feasibility, the terminal set T must be a Robust Positive Invariant (RPI) set based

on pre-determined bounds of d(k), as done in centralized MPC formulations [68].

3.5 Set Definitions

3.5.1 Output Constraint Tightening for CM

The proposed hierarchical MPC framework is robust to unknown bounded disturbances using

the tube-based MPC formulation developed in [60]. For the lowest level controller CM , the

only difference between the true system (3.1) and the model used for control (3.6b) is the

unknown bounded disturbance ∆d(k) ∈ D. Using the control law (3.8), and comparing (3.1)

and (3.6b) for i = M , the error e(k) = x(k)− x̂∗
M(kM |kM) satisfies

e(k + 1) = (A+BK)e(k) + ∆d(k). (3.9)
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Assuming K is designed to stabilize A + BK and E ∈ Rn is a disturbance invariant set for

(3.9), then

(A+BK)E ⊕ D ⊆ E . (3.10)

Thus, if e(k) ∈ E , then e(k + 1) ∈ E for all ∆d(k) ∈ D. As in [60], the constraint (3.6e)

on the initial condition allows CM to choose x̂M(kM |kM) such that e(k) ∈ E . The minimal

disturbance invariant set [50] is

E =
∞⊕
i=0

(A+BK)iD, (3.11)

and should be as small as possible to reduce conservatism of the controller. However, due to

the infinite sum, computing E is difficult and a outer approximation Ẽ is typically used where

E ⊆ Ẽ , Ẽ satisfies (3.10), and Ẽ can be represented as a polytope [68]. For the remainder of

the paper E and Ẽ are used interchangeably.

From [60], when designing a robust MPC controller for CM with the nominal system

model (3.6b), tightened state, input, and terminal constraint sets are used where

X̂ ≜ X ⊖ E , Û ≜ U ⊖KE , T̂ ≜ T ⊖ E . (3.12)

It is assumed that D, and thus E , are small relative to the state and input constraint sets

such that X̂ , Û , T̂ ̸= ∅. Based on (3.5), the tightened output constraint set is

Ŷ ≜ Y ⊖ (E ×KE). (3.13)

Since CM has the same time step size as the system, i.e. νM = 1, ŶM(kM) = Ŷ for all kM .

However, for Ci, i ∈ [1,M − 1], additional time-varying constraint tightening is required to

account for inter-sample behavior between the slow updates of these upper-level controllers.

3.5.2 Output Constraint Tightening for Ci, i ∈ [1,M − 1]

As shown in Fig. 3.3(a), constraining the slow nominal output trajectory ŷi(ki) ∈ Ŷ planned

by Ci, i ∈ [1,M − 1] does not guarantee that ŷ(k) ∈ Ŷ during the inter-sample updates
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k = νi(ki − 1)

ki − 1

νiki

ki ki + 1

νi(ki + 1)

ŷ

t

Ŷ

ŷ

t

Ŷi(ki)

(a)

(b)

k = νi(ki − 1)

ki − 1

νiki

ki ki + 1

νi(ki + 1)

ŷ(k) /∈ Ŷ

ŷ(k) ∈ Ŷ ∀k

Figure 3.3. (a) Controller Ci plans a feasible state trajectory (large blue dots) at the
slow time step ki but the resulting trajectory (small black dots) violates output constraints
(dashed black line) at the inter-sample system time steps. (b) Tightening the output con-
straint set (dashed blue line) for Ci ensures that any trajectory at the slow time index is
also feasible at the faster time indices.

when k = [νiki + 1, νi(ki + 1)− 1]. Thus, it is important to further tighten the constraint

set Ŷ to account for transient state trajectories between the slow updates, as shown in Fig.

3.3(b).

Definition 6. The time-varying tightened nominal output constraint set Ŷi(ki) is the set of

all initial nominal state and nominal input combinations that results in an output trajectory

satisfying (3.13) if the input is held constant for νi steps, i.e.

Ŷi(ki) ≜
{
ŷi(ki) =

x̂i(ki)

ûi(ki)

 ∣∣∣ ∀k ∈ [νiki, νi(ki + 1)− 1] ,
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ŷ(k) =

x̂(k)
û(k)

 ∈ Ŷ , û(k) = ûi(ki),

x̂(k + 1) = Ax̂(k) +Bû(k) + d̂(k),

x̂(νiki) = x̂i(ki)
}
.

Similar to the procedure presented in [48], Ŷi(ki) is calculated based on the tightened

output constraint set Ŷ represented in H-Rep as

Ŷ =

(x̂(k), û(k))
∣∣∣P̂ [C D]

x̂(k)
û(k)

 ≤ q̂

 . (3.14)

For i ∈ [1,M − 1], Ŷi(ki) is time-varying due to the dependence on d̂i(ki) and may be

computed as

Ŷi(ki) = Ŷ ∩ Ŷ(νiki + 1) ∩ · · · ∩ Ŷ(νiki + νi − 1), (3.15)

where, for all j ∈ [1, νi − 1],

Ŷ(νiki + j) =

(x̂(k), û(k))
∣∣∣P̂ [Cj Dj]

x̂(k)
û(k)

 ≤ q̂(νiki + j)

 , (3.16)

with Cj = CAj, Dj = D + C
∑j−1

l=0 A
lB, and

q̂(νiki + j) = q̂ − P̂C

j−1∑
l=0

Aj−1−ld̂(νiki + l). (3.17)

Lemma 6. For all i < j, i, j ∈ [1,M ], at time step k = νiki = νjkj, Ŷi(ki) ⊆ Ŷj(kj) ⊆ Ŷ.

Proof. See [48].

3.5.3 Waysets

Definition 7. The wayset S(k) ⊂ X denotes a set of states at time step k such that for

any x(k) ∈ S(k) there exists a future input trajectory {u(k)}kF−1
k=k and corresponding state

trajectory {x(k)}kFk=k satisfying (3.1-3.3).
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In this work, the waysets imposed as terminal constraints in (3.6d) are the sole co-

ordination mechanism between levels of the hierarchical controller. Since (3.6d) imposes a

constraint on the nominal predicted state, nominal waysets are used and denoted as Ŝ. Since

the waysets are used to guarantee feasibility of constraints beyond the prediction horizon of

lower-level controllers, each controller Ci has a different wayset denoted as Ŝi. Finally, the

waysets are time-varying, denoted as Ŝi(ki+Ni(ki)), where the time step always corresponds

to the time step of the next update of Ci− . Within the context of Definition 7, there are

many possible ways to formulate Ŝi(ki + Ni(ki)). In this paper, waysets are formulated to

satisfy the following assumptions in order to prove feasibility of the M -level hierarchical

controller.

Assumption 5. The waysets Ŝi(ki +Ni(ki)) in (3.6d) satisfy the following:

1. for C1, Ŝ1(k1 +N1(k1)) = T̂ ,

2. for Ci, i ∈ [2,M ],

(a) Ŝi(ki +Ni(ki)) is only recomputed at updates of Ci− per Algorithm 3 ,

(b) x̂∗
i−(ki− + 1|ki−) ∈ Ŝi(ki +Ni(ki)),

(c) if x̂∗
i−(ki− +2|ki−) exists, for each state in Ŝi(ki +Ni(ki)) there exists a trajectory

satisfying (3.6b) and (3.6c) that drives the system to x̂∗
i−(ki− + 2|ki−),

(d) if x̂∗
i−(ki− + 2|ki−) does not exist, Ŝi(ki +Ni(ki)) = Ŝi−(ki− +Ni−(ki−)),

(e) if ki +Ni(ki) = ki,F , Ŝi(ki +Ni(ki)) = T̂ .

Conceptually, these assumptions state: 1) for the highest level controller, the wayset

equals the terminal constraint set, since C1 always predicts to the final time step per As-

sumption 4iii; 2a) since the wayset for Ci depends on the state trajectory determined

by Ci− , waysets for Ci are only recomputed when Ci− updates; 2b) noting that the time
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index of the wayset for Ci corresponds to the time index for the second optimal nominal

state in the trajectory determined by Ci− , this optimal state exists in the wayset; 2c) since

the prediction horizon for each controller shrinks over time, if the third optimal nominal

state in the trajectory determined by Ci− exists, then the wayset for Ci is defined as all the

nominal states such that there exists feasible nominal input and state trajectories that drive

the nominal system to this state; 2d) if the third optimal nominal state in the trajectory

determined by Ci− does not exist, then the wayset for Ci is set equal to the wayset for Ci− ;

and 2e) if Ci predicts to the final time step, the wayset is set equal to the tightened terminal

constraint set.

3.5.4 Initial Conditions

In the formulation of Pi (x(k)), (3.6e) provides Ci with two options for the choice of nominal

initial condition, x̂i(ki|ki). The first option, x(k)− x̂i(ki|ki) ∈ E , comes from the tube-based

MPC formulation presented in [60]. The second option, x̂i(ki|ki) = x̂∗
i (ki|ki − 1), similar to

[38] allows the nominal initial condition to equal the optimal nominal state for this time step

determined by Ci at the previous time step. To understand the role of this initial condition

option, consider the following definition and assumption.

Definition 8. [78] The feasible set X(N1)
T ⊂ X denotes the set of states such that P1 (x(k))

admits a solution, with prediction horizon N1 and terminal set T .

Assumption 6. The initial condition satisfies x(0) ∈ X(N1)
T and thus there exists a feasible

solution to P1 (x(0)) at time step k = k1 = 0.

For clarity of exposition, Fig. 3.4 demonstrates the need for the initial condition option

in (3.6e) for the case where M = 2 and ∆d(k) = 0. With a prediction horizon of N1 = 3, Fig.

3.4 shows how x(0) ∈ X(3)
T by Assumption 6. Therefore, C1 has a feasible state trajectory

{x̂∗
1(j|0)}3j=0. The feasibility of this trajectory implies x̂∗

1(1|0) ∈ X(2)
T and x̂∗

1(2|0) ∈ X(1)
T . Per
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k, k2 = 0

k1 = 0 1 2 k1,F = 3

3 6 kF = 9

x(0) = x̂∗
1(0|0)

X(3)
T

X(2)
T

X(1)
T

T

x̂∗
1(1|0)

x̂∗
1(3|0)

x̂∗
1(2|0)

x(3)

Ŝ2(3)

Figure 3.4. Schematic showing the need for the initial condition option in (3.6e) where x(3)

satisfies the wayset constraint x(3) ∈ Ŝ2(3) but x(3) /∈ X(2)
T .

Assumption 5, Ŝ2(3) denotes the set of states such that there exists a trajectory satisfying

(3.6b) and (3.6c) which drives the system to x̂∗
1(2|0). As proven in the following section,

the lower-level controller(s) will drive the system from x(0) to x(3) ∈ Ŝ2(3), however there

is no guarantee that x(3) ∈ X(2)
T . If x(3) /∈ X(2)

T , then the second initial condition option in

(3.6e) is required to maintain feasibility of P1(x(3)). The following section details how the

initial condition option and properties of the waysets defined in Assumption 5 establish

feasibility of all controllers.

3.6 Hierarchical Control Feasibility

The following lemmas establish feasibility of individual controllers within the hierarchy start-

ing with the highest-level controller C1.

Lemma 7. If P1 (x(k)) is feasible at k = ν1k1, then P1 (x(k)) is feasible at k = ν1(k1 +1).

Proof. As discussed in [48], the optimal solution at k = ν1(k1 + 1) is the tail of trajectories

determined at the previous time step k = ν1k1. To show that this candidate solution satisfies

the constraints in (3.6), first note that the nominal system model is time-invariant and that

while d̂1(k1) is time-varying, the trajectory of d̂1(k1) is known per Assumption 2 and does
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not change during system operation. Thus, the candidate solution satisfies (3.6b). Similarly,

while Ŷ1(k1) varies with k1, Ŷ1(k1) at a particular k1 remains constant since the time step

dependency only comes from the dependence of Ŷ1(k1) on d̂(k) per (3.15)-(3.17). Thus, the

candidate solution satisfies (3.6c). Since Ŝ1(k1+N1(k1)) = T̂ is time-invariant, the candidate

solution satisfies (3.6d). Finally, (3.6e) provides the option to let x̂1(k1|k1) = x̂∗
1(k1|k1 − 1).

Note, this candidate solution at k = ν1(k1+1) is optimal if x(k)− x̂1(k1+1|k1+1) ∈ E does

not admit a feasible solution.

Next, if Ci is feasible at the time step of the upper-level controller Ci− update, then Ci

remains feasible for all time steps until the next update of Ci− .

Lemma 8. If Pi (x(k)) is feasible at k = νiki, where k mod νi− = 0 (i.e at the time of a Ci−

update), then Pi (x(k)) is feasible at each time step k = νi(ki+1) through k = νi(ki+Ni−1).

Proof. See [48].

Finally, at the time step of the upper-level controller Ci− update, feasibility of Ci−

guarantees feasibility of Ci.

Lemma 9. If Pi− (x(k)) has a feasible solution at k = νi−ki− and PM (x(k − 1)) had a

feasible solution at the previous time step k− 1, then Pi (x(k)) has a feasible solution at this

time step.

Proof. The proof for the robust case presented in this paper is similar to the nominal case

presented in [48] where two cases must be considered based on

1. x(k)− x̂∗
i−(ki−|ki−) ∈ E or,

2. x∗
i−(ki−|ki−) = x∗

i−(ki−|ki− − 1).
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For (1), the feasible solutions to Pi (x(k)), comes directly from the feasible solutions deter-

mined by Pi− (x(k)) as shown in [48].

For (2), a feasible solution to Pi (x(k)) exists with a nominal state trajectory satisfying

x(k)− x̂i(ki|ki) ∈ E . If PM (x(k − 1)) had a feasible solution at the previous time step k−1,

then x(k − 1)− x̂∗
M(kM − 1|kM − 1) ∈ E due to (3.6e) and x(k)− x̂∗

M(kM |kM − 1) ∈ E due

to the invariance of E under control law (3.8). Thus, x̂∗
M is a feasible initial condition for

Pi (x(k)) that satisfies constraints (3.6b)-(3.6e) as shown in [48].

The main results of this work guarantees constraint satisfaction for the M -level hierar-

chical controller.

Theorem 8. Following Algorithm 3 for an M-level hierarchical controller, all control

problems Pi (x(k)) , i ∈ [1,M ] are feasible when solved at k mod νi = 0, resulting in system

state and input trajectories satisfying constraints (3.2) and (3.3).

Proof. Using Assumption 6 and Lemmas 7-9, Fig. 3.5 shows how feasibility is established

for eachCi, i ∈ [1,M ]. Due to the constraint tightening presented in Section 3.5.1, feasibility

of PM (x(k)) and the use of control law (3.8) guarantees the satisfaction of (3.2). By the

wayset properties defined in Assumption 5.2e, Ŝi(ki +Ni(ki)) = T̂ once ki +Ni(ki) = ki,F

and thus feasibility of PM (x(k)) also guarantees the satisfaction of (3.3).

Remark 7. With all states and inputs constrained in (3.2), the constraint satisfaction es-

tablished in Theorem 8 also provides bounded input bounded output (BIBO) stability. For

many applications, BIBO stability is preferred over asymptotic stability so that the dynamics

of the system can be used to maximize performance as in the case of completion-based MPC

[70].
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Figure 3.5. Schematic showing how Assumption 6 and Lemmas 7-9 are used to establish
feasibility of each controller at every time step for a three-level hierarchical controller.

3.7 Set Computations

3.7.1 Tightened Output Constraints

The tightened output constraints are calculated as in (3.15) and can be computed off-line

prior to system operation. Thus, computational cost is not a primary concern. However,

redundant constraints should be removed to minimize the number of constraints, nh.

3.7.2 Waysets

Inspired by the iterative approach to feasible set calculation in [78], Algorithm 4 generates

waysets that satisfy Assumption 5. First, the if statement handles the case when x∗
i−(ki− +

2|ki−) does not exist, due to the shrinking horizon, by setting the wayset for Ci equal to

wayset forCi− , satisfyingAssumption 5.2d. If x∗
i−(ki−+2|ki−) does exist, then the iterative

approach computes the wayset by starting at this optimal nominal state x∗
i−(ki− + 2|ki−) at

time step ki + 2Ni and working backwards to compute sets of states and inputs at previous

time steps that drive the nominal system to this optimal state. The iterations end once

the wayset is calculated for the time step ki + Ni. The intersection operation is used to

ensure that these state and input trajectories also satisfy the tightened output constraints
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from (3.6c). Finally, since waysets define a set of states, the projection operation is used to

project the calculated output wayset into the first n dimensions.

Algorithm 4: Wayset Ŝi(ki + Ni(ki)) computation for i ∈ [2,M ] at time step
k = νi−ki− .

1 initialize j ← Ni

2 if Ni−(ki−) < 2 then

3 Ŝi(ki +Ni(ki)) = Ŝi−(ki− +Ni−(ki−));
4 else

5 Ŝi(j) = x̂∗
i−(ki− + 2|ki−);

6 while j ≥ 1 do

7 Ỹ Ŝi(j)
i =

{
(x̂i, ûi) | x̂+

i ∈ Ŝi(j), x̂+
i = Aix̂i +Biûi + d̂i(ki +Ni + j − 1)

}
;

8 Ŝi(j − 1) = πn(Ỹ Ŝi(j)
i ∩I Ŷi(ki +Ni + j − 1));

9 j ← j − 1;

10 end

11 Ŝi(ki +Ni(ki)) = Ŝi(j)
12 end

While the steps in Algorithm 4 conceptually define the wayset calculations, these steps

can be simplified using the notion of generalized intersection. Note that line 7 is equivalent

to

[Ai Bi] ŷi ∈ Ŝi(j)⊖ d̂i(ki +Ni + j − 1), (3.18)

where the Pontryagin difference simply shifts the center of Ŝi(j) since d̂i(ki +Ni + j − 1) is

a vector and not a set. This condition and the tightened output constraint condition from

(3.6c), ŷi ∈ Ŷi(ki +Ni + j − 1)) must be satisfied. The generalized intersection can be used

to enforce both conditions as

ŷi ∈ Ŷi(ki +Ni + j − 1)) ∩[Ai Bi]

(
Ŝi(j)⊖ d̂i(ki +Ni + j − 1)

)
. (3.19)

Projection can then be used to transform this output constraint set to a state constraint set.

As discussed in [78], the iterative approach provides improved computational efficiency

compared to projection-based methods. However, when polytopic constraint sets and waysets
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are represented in H-Rep or as a convex hull of vertices (V-Rep), on-line wayset calculation

may still be limited by computational cost. As discussed in [79] and the references therein, the

worst-case complexity of linear transformation, Minkowski sum, and generalized intersection

scales exponentially in the set dimension. Therefore, Algorithm 4 is likely to be very

computationally expensive and potentially numerically unstable for n,m greater than about

five (potentially less than 5 if the number of halfspaces or vertices defining the polytopes is

large). In fact, the numerical examples in [78] are restricted to n ≤ 4, m ≤ 2, and less than

ten iteration steps.

Under Algorithm 3, Ŝi(ki+Ni(ki)) is recomputed on-line at every update of Ci− . Thus,

efficient set computations are critical to the wayset-based hierarchical control. The following

section demonstrates how zonotopes can be used to significantly reduce the cost of computing

waysets, enabling the proposed approach.

3.7.3 Zonotope-based Set Calculation (See Chapter 2 for more details)

To perform the wayset calculations using zonotopes, it is necessary to convert sets from

H-Rep to CG-Rep (See Section 2.4 for additional details). Note the following details when

executing Algorithm 4 using constrained zonotopes. Line 5 initializes the wayset as a

point from the optimal nominal state trajectory determined by Ci− as Ŝi(j) = {[ ] , x̂∗
i−(ki− +

2|ki−), [ ] , [ ]}. As discussed in Section 3.7.2, Line 7 and the intersection operation in Line 8

are expressed as the generalized intersection in (3.19). The projection operation in Line 8 is

equivalent to a linear transformation in CG-Rep where R from (2.1) is R = [In 0n×m].

Based on Algorithm 4, the number of generators ng and number of constraints nc

required to represent Ŝi(ki+Ni(ki)) grows linearly with the prediction horizon Ni. Assuming

n states and that the CG-Rep of Ŷi(ki+Ni+j−1)) has ng,Ŷi
generators and nc,Ŷi

constraints,

the generalized intersection in (3.19) adds ng,Ŷi
generators and n + nc,Ŷi

constraints to the

CG-Rep of Ŝi(j). Thus, for a prediction horizon of Ni, the wayset Ŝi(ki+Ni(ki)) has ng,Ŷi
Ni

generators and (n+ nc,Ŷi
)Ni constraints.

66



As shown in the following numerical examples, CG-Rep reduces the time required to

compute waysets by several orders-of-magnitude compared to H-Rep.

3.8 Numerical Examples

To demonstrate the formulation and use of waysets in hierarchical MPC, this section presents

two numerical examples. The first example is the same vehicle system from [47, 48] and

highlights the wayset and tightened output constraint set calculations, the resulting robust

constraint satisfaction, and the overall closed-loop performance and computational cost of the

two-level hierarchy compared to centralized MPC. The second example presents a three-level

hierarchy for a linearized thermal system to demonstrate the scalability of the approach. All

results were generated using MATLAB on a desktop computer with a 3.6 GHz i7 processor

and 16 GB of RAM and all MPC optimization problems were formulated and solved with

YALMIP [57] and Gurobi [34].

3.8.1 Vehicle Example

Consider the simplified vehicle system model

x(k + 1) =


1 1 0

0 1 0

0 0 1

x(k) +


0 0 0

1 −1 0

−1 −1 −1

u(k) + d(k),

where the states x(k) ∈ R3 represent position, velocity, and on-board stored energy, and

the inputs u(k) ∈ R3 represent acceleration, deceleration, and power to an on-board load,

all of which deplete the stored energy. Per Assumption 2, the disturbances d(k) ∈ R3 with

d(k) = d̂(k) + ∆d(k).

The system and lowest level controller have time step sizes of ∆t = ∆tM = 1 second.

Finite operation is defined for 100 seconds, thus kF = 100. Choosing ∆t1 = 10 seconds
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results in ν1 = 10 and maximum prediction horizons of N1 = N2 = 10 steps. The output

constraints defining Y and T are
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Given an initial state of x(0) = [0 0 100]T , the desired operation, defined by {r(k)}kFk=0, is

shown in Fig. 3.6 for the first state (position), and third input (load power). References for

the first and second inputs (acceleration and deceleration) are 0 for the entire operation, and

thus are not shown in Fig. 3.6. These references are used to define (3.4) as the weighted

quadratic cost function

ℓ (x(j), u(j), r(j)) = ∥r(j)− yr(j)∥2Λ, (3.20)

where yr(j) =

[1 0 0]x(j)

u(j)

, Λ = diag ([102 100 100 102]).

The disturbances d(k) are shown in Fig. 3.7, which consist of a known pulse to the

second state of magnitude 1.5 from 45 to 55 seconds. Note that the known disturbances

are permitted to change between updates of the upper level controller. This unique feature

of the proposed approach is enabled by calculating the equivalent known disturbances in

(3.7) and the time-varying constraint tightening in (3.15). The unknown disturbances are

independently generated from a uniformly distributed random signal bounded such that

∥∆d(k)∥∞ ≤ 0.01. The static feedback control gain K ∈ Rm×n from (3.8) compensates for

these unknown disturbances and was designed as a discrete-time linear-quadratic regulator

with weighting matrices Q = In, R = Im.
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Figure 3.6. References for state and load power.
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Figure 3.7. Disturbance profile consisting of a large known pulse and small unknown devia-
tions.

Figure 3.8. Example of constraint tightening with projections of various output constraint
sets on the position and velocity states to the left and the acceleration and deceleration
inputs to the right. Black denotes the original output constraints Y while gray denotes the
robust output constraints Ŷ = Ŷ2(k2), ∀k2. Blue denotes the time-varying tightened output
constraint set Ŷ1(k1),∀k1 ̸= 5, while semi-transparent red denotes Ŷ1(k1), k1 = 5.
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Fig. 3.8 provides an example of the constraint tightening used by the two controllers

of the hierarchy. Given the output constraint set Y , the time-invariant tightened output

constraint set Ŷ = Ŷ2(k2), ∀k2, used by the lower-level controller C2, is calculated based on

(3.13), where an outer approximation of E is calculated using the results from [68]. Two

examples of Ŷ1(k1) are shown to demonstrate Lemma 6 and the dependency of Ŷ1(k1) on

the time-varying known disturbance.

Fig. 3.9 shows simulation results using the proposed wayset-based hierarchical controller

compared to a shrinking horizon centralized controller that predicts to the end of system

operation and a receding horizon centralized controller (Cent Short) with a short prediction

horizon of 10 time steps. Since tracking a desired position of 100 meters from 10 to 90

seconds is a major objective for the operation of the system, the first subplot in Fig. 3.9

highlights this part of operation. Both the centralized and hierarchical controllers track the

desired reference while compensating for the known and unknown disturbances and satisfy

the output constraints, shown here by keeping position below 105 meters. Alternatively, the

optimization problem for the 10-step receding horizon centralized controller becomes infea-

sible at t = 11 seconds when the velocity of the vehicle is too high to avoid violating the

position constraint. The second and third subplots show that the wayset-based hierarchy

satisfies the terminal constraint while maintaining a positive amount of stored energy. Fi-

nally, the fourth subplot shows the trajectory for input 3, from 30 to 70 seconds. Due to the

limited amount of on-board energy, neither controller is able to track the desired load power

and must shed some of the load to satisfy the terminal constraint. Centralized MPC evenly

distributes this load shedding while C2 of the hierarchy is more greedy and only load sheds

once it is required to satisfy the wayset constraint determined by C1.

Table 3.1 shows the maximum, mean, and minimum complexity of the waysets for this

example simulation using CG-Rep and H-Rep along with the computation time. Both H-Rep

and min H-Rep calculations were performed using the Multi-Parametric Toolbox (MPT) [37].
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Figure 3.9. Simulation results comparing the shrinking horizon centralized controller, reced-
ing horizon centralized controller with a short prediction horizon, and a two-level hierarchical
controller.

For CG-Rep and H-Rep, no attempt was made to remove redundant constraints. Overall, the

CG-Rep achieves three to five orders-of-magnitude reduction in computation time, enabling

on-line calculation of waysets. Note that 60 generators and 30 equality constraints were used

to represent each wayset in CG-Rep regardless of the shape of each wayset. For scalability of

the CG-Rep wayset calculations, it will be important to maintain a desired degree-of-freedom

order, od ≤ odesd .
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Table 3.1. Complexity and Computation Time of Waysets

Complexity

Wayset CG-Rep H-Rep min H-Rep

nc × ng nh nh

Maximum 30× 60 6913 197

Mean 30× 60 3120 108

Minimum 30× 60 38 21

Approximate Computation Time (seconds)

CG-Rep H-Rep min H-Rep

Maximum 0.006 393 353

Mean 0.002 120 114

Minimum 0.0006 0.51 0.38

3.8.2 Thermal Example

To evaluate the scalability of the hierarchical approach, consider the thermal system shown

in Fig. 3.10, where Ti, i ∈ [1, n] are the temperatures of n thermal elements arranged in a

chain, each with a thermal capacitance Ci. Heat transfer, Qi between thermal elements Ti

and Ti+1 is controlled by the coolant mass flow rate ṁi resulting in Qi = ṁicp(Ti − Ti+1),

where cp is the specific heat of the coolant. Disturbances consist of the heat input Q0 and

the ambient temperature T∞. From conservation of energy, the nonlinear, continuous-time

dynamics are CiṪi = Qi−1 − Qi,∀i ∈ [1, n]. For the following results, Ci = 104 J/K and

cp = 4181 J/(kg K) are assumed.

To represent this system in the form of (3.1), these dynamics are linearized about a

nominal mass flow rate ṁi = ṁo = 0.25 kg/sec and temperature difference Ti−Ti+1 = ∆T o =

50K and discretized with a time step size of 1 second. The corresponding steady-state heat

input is Qo
0 = ṁocp∆T o. From this linearization, the states x(k) ∈ Rn represent temperature

deviations from nominal and the inputs u(k) ∈ Rn represent mass flow rate deviations from

nominal. The disturbances d(k) = d̂(k)+∆d(k) ∈ R2 represent deviations from the nominal

heat input and nominal ambient temperature, satisfying Assumption 2. Finite operation
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Figure 3.10. Thermal system comprised of a disturbance heat input Q0 and controllable
heat transfer Qi, i ∈ [1, n], between n thermal elements of temperature Ti and ambient
surroundings of temperature T∞.
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Figure 3.11. Known disturbance profile for the heat input Q0.

is defined for 1000 seconds (kF = 1000) with the known ambient temperature remaining at

nominal and the known heat input consisting of four pulses as shown in Fig. 3.11. The

unknown disturbances are independently generated from a uniformly distributed random

signal bounded such that |∆d(k)| ≤ [0.1Qo
0 5]T . As with the previous vehicle example, the

static feedback control gain K from (3.8) was designed as a discrete-time linear-quadratic

regulator with weighting matrices Q = R = In.

For a three-level hierarchical controller, the system and lowest level controller have time

step sizes of ∆t = ∆tM = 1 second while the middle and upper level controllers have time

step sizes of ∆t2 = 5 and ∆t1 = 40 seconds, respectively. As a result, ν1 = 40, ν2 = 5,

and the maximum prediction horizons are N1 = 25, N2 = 8, and N3 = 5 steps. The output

constraints Y are defined such that ∥x(k)∥∞ ≤ 100 and ∥u(k)∥∞ ≤ 0.25 ,∀k ∈ [0, kF − 1].

The terminal constraint simply enforces ∥x(kF )∥∞ ≤ 100. Given an initial state of x(0) = 0,

the desired operation is to satisfy the output and terminal constraints while minimizing the
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Figure 3.12. Simulation results comparing the shrinking horizon centralized controller (top),
receding horizon centralized controller with a short prediction horizon (middle) and a three-
level hierarchical controller (bottom).

control inputs to their lower bounds (u(k) = −0.25). A quadratic cost function is used as in

(3.20) with Λ = In.

Fig. 3.12 shows the state trajectories for a three element system (n = 3) under the

proposed wayset-based hierarchical controller compared to a shrinking horizon centralized

controller that predicts to the end of system operation and a receding horizon centralized

controller with a short prediction horizon of 5 time steps. For the disturbances shown in Fig.

3.11, the heat pulses are so large that there does not exist a steady state under these heat

loads that satisfies the specified output constraints. Thus, the controller needs to pre-cool

each thermal element to take advantage of the thermal capacitance in the system. Both
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the shrinking horizon controller and the hierarchical controller achieve this pre-cooling ef-

fectively, demonstrating that waysets can effectively constrain short-term system operation

to guarantee long-term output constraint satisfaction beyond the prediction horizon of the

lower-level controllers. Alternatively, the receding horizon centralized controller becomes

infeasible at t = 157 seconds where, given the short prediction horizon, the controller can-

not pre-cool the system enough prior to the heat load to avoid violating the temperature

constraint.

The value of the proposed hierarchical control approach is the scalability with respect

to prediction horizon and system order. For the results shown in Fig. 3.12 with n = 3

states and kF = 1000 steps, the average computation time is 5.96 seconds for the centralized

controller while the average computation times, including wayset calculations, for the hierar-

chical controller C1, C2 and C3 are 0.12, 0.03, and 0.02 seconds, respectively. To demonstrate

scalability with respect to prediction horizon, Fig. 3.13 shows average computation times

for the centralized and hierarchical controllers for prediction horizons ranging from kF = 200

to kF = 1000 steps for a three element system (n = 3). As indicated by the dashed line,

the centralized controller is able to maintain real-time calculation speed, tcalc ≤ ∆t, for pre-

diction horizons of kF ≤ 360 steps. In these cases, a centralized approach is practical and

preferable to the hierarchical controller. However, for longer prediction horizons, kF > 360,

a centralized approach is no longer viable under the available computational resources, war-

ranting the proposed hierarchical approach with two orders-of-magnitude faster computation

times. For these results, only the prediction horizon N1 of the upper level controller was

varied to accommodate the change in kF . For the hierarchical MPC formulation, real-time

execution only requires tcalc,i ≤ ∆ti for each controller, and thus the upper-level controllers

are allotted more time to solve their optimization problems. Extending the proposed theo-

retical hierarchical MPC formulation to directly account for computational delay, as in [82],

is the focus of future work.
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Figure 3.13. Average computation time for the centralized and hierarchical controller as a
function of operating duration.

To demonstrate scalability with respect to system order, Fig. 3.14 shows average com-

putation times for the centralized and hierarchical controller for system orders ranging from

n = 3 to n = 10 with kF = 360 steps. While the complexity of the waysets grows linearly

with system order, the computation times of the controllers within the hierarchy remain sig-

nificantly faster than that of the centralized controller. However, for the tenth order system,

the waysets used by C2 in CG-Rep had 800 generators and 720 constraints, thus motivating

future research in lower-complexity inner approximations of waysets for improved scalability

of the proposed hierarchical approach.

3.9 Conclusions

A multi-level vertical hierarchical MPC formulation was presented for constrained linear sys-

tems. A robust MPC formulation was used for each controller to guarantee state and input

constraint satisfaction in the presence of known and unknown disturbances. Waysets were

developed as a novel coordination mechanism between controllers at different levels of the

hierarchy. These waysets served as terminal constraints for lower-level controllers, providing
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Figure 3.14. Average computation time for the centralized and hierarchical controller as a
function of system order.

flexibility in short-term operation of the system while guaranteeing long-term ability to sat-

isfy output and terminal constraints. Using a constrained zonotope representation, waysets

were efficiently computed on-line based on the state trajectories determined by upper-level

controllers. Numerical examples demonstrated the performance and scalability of the wayset-

based hierarchy compared to centralized MPC approaches. Future work will focus on the

efficient calculation of lower complexity inner-approximations of the waysets for improved

scalability and the extension of this work to hybrid and nonlinear systems. The following

chapter will discuss about the development of a hierarchical MPC with coordinating terminal

costs for reduced control suboptimality which will be discussed in the following chapter.
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CHAPTER 4

HIERARCHICAL MPC WITH COORDINATING

TERMINAL COSTS 1

4.1 Introduction

Model Predictive Control (MPC) is well-suited for the control of constrained systems since

input and state constraints are directly imposed in the underlying optimization problem [62,

60]. However, for systems that require fast control update rates and long prediction horizons,

real-time implementation of centralized MPC is hindered by the time required to solve large

optimization problems. In such situations, hierarchical MPC reduces computational costs

by decomposing control decisions across multiple levels of controllers operating in different

timescales [73].

Coordination between controllers at different levels of the hierarchical controller is typ-

ically achieved via reference tracking, where state and input trajectories determined by

upper-level controllers are communicated down the hierarchy to be tracked by lower-level

controllers. Since the closed-loop system behavior is heavily dependent on the weightings

used to add reference tracking to the cost function of each controller, guaranteeing constraint

satisfaction and control performance is very difficult.

To guarantee input and state constraint satisfaction, coordination mechanisms based on

terminal constraints were introduced in [48, 49]. Specifically, waysets were defined based on

reachability analysis that represent a subset of states at a future point in time from which

there exist feasible state and input trajectories for the remainder of system operation. Thus,

driving the system states to a wayset provides a short-term control objective that guarantees

1This chapter is based on work supported by the National Science Foundation under grant 1849500.
Chapter 4 in part is a reprint of material published in: © 2020 IEEE. Reprinted, with permission, from
Raghuraman, V., Renganathan, V., Summers, T.H., and Koeln, J.P., 2020. Hierarchical MPC with coordi-
nating terminal costs. In 2020 American Control Conference (ACC) (pp. 4126-4133).
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long-term constraint satisfaction. While similar wayset-based coordination strategies have

been used in [81], those waysets are computed off-line in a feed-forward fashion.

To provide improved control performance in the presence of disturbances, [49] computes

waysets on-line based on the optimal state trajectories determined by upper-level controllers.

To achieve the computational efficiency required for on-line computation, constrained zono-

topes [79] were shown in [48, 49] to provide several orders-of-magnitude reduction in wayset

computation time compared to conventional set representations.

While using waysets to achieve guaranteed constraint satisfaction, this research focuses

on improving the coordination between controllers within a hierarchy using specifically de-

signed terminal costs to provide closed-loop control performance guarantees. Terminal costs

are widely used to guarantee MPC stability by quantifying system operation cost beyond

the finite prediction horizon [62]. Within the proposed hierarchical MPC formulation, ter-

minal costs are imposed on the lower-level controller to quantify a specific state transition

cost subject to constraints. For a controller with quadratic stage costs, capturing this state

transition cost as a function of a terminal state would result in a time-varying piece-wise

quadratic cost [11]. However, the present research shows that it is possible to efficiently

compute the desired terminal costs on-line in terms of the same constrained zonotope vari-

ables used to define the wayset terminal constraint. Thus, the proposed addition of terminal

costs to a wayset-based hierarchical MPC controller provides provable control performance

guarantees without any additional complexity.

Contributions: The contributions of this research are 1) the development of a two-level hi-

erarchical MPC framework with guaranteed constraint satisfaction and control performance,

2) the formulation of terminal costs that allow the lower-level controller to balance both

short- and long-term control performance, and 3) the novel representation of the terminal

cost using the same variables that define the wayset terminal constraints as constrained

zonotopes to achieve computational efficiency.
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4.2 Notation and Preliminaries

For a discrete time system, the notation x(k) denotes the state x at time step k. For

MPC, the double index notation x(k + j|k) denotes the predicted state at future time k + j

determined at time step k. The bracket notation k ∈ [0, kF ] denotes all integer values of k

from 0 to kF . The state trajectory over these time indices is denoted {x(k)}kFk=0. The set

of positive integers is Z+. The weighted norm is defined as ∥x∥2Λ = xTΛx, where Λ is a

positive definite diagonal matrix. For sets Z,W ⊂ Rn, Y ⊂ Rm, and matrix R ∈ Rm×n, the

linear transformation of Z under R is RZ = {Rz | z ∈ Z}, the Minkowski sum of Z and

W is Z ⊕W = {z + w | z ∈ Z, w ∈ W}, and the generalized intersection of Z and Y under

R is Z ∩R Y = {z ∈ Z | Rz ∈ Y}. The standard intersection, corresponding to the identity

matrix R = In, is simply denoted as Z ∩W .

4.3 Problem Formulation

As in [48], consider the discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), (4.1)

where x ∈ Rn are the states, u ∈ Rm are the inputs, A ∈ Rn×n is invertible, B ∈ Rn×m, and

the pair (A,B) is stabilizable.

Assumption 7. With a fixed time step ∆t, the system operates for a finite length of time

starting from t = 0 and ending at t = tF = kF∆t with time steps indexed by k ∈ [0, kF ].

Starting from an initial condition x(0), the goal is to plan and execute an input trajectory

{u(k)}kF−1
k=0 and corresponding state trajectory {x(k)}kFk=0 satisfying the system dynamics

from (4.1), the state and input constraints

x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm, ∀k ∈ [0, kF − 1] , (4.2)
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and the terminal constraint

x(kF ) ∈ T ⊆ X . (4.3)

Assumption 8. The sets X ,U , T are compact and convex.

For notational simplicity, the state and input constraints from (4.2) are represented as

the output constraints

y(k) ≜

x(k)
u(k)

 = Cx(k) +Du(k) ∈ Y ≜ X × U , (4.4)

where [C D] = In+m.

A generic cost function defines the desired system operation using a pre-determined

reference trajectory {r(k)}kFk=0 where

J∗ (x(0)) = min
{u(k)}kF−1

k=0

kF−1∑
j=0

ℓ (j) + ℓT (kF ) , (4.5)

with stage costs ℓ(j) = ℓ (x(j), u(j), r(j)) and terminal cost ℓT (kF ) = ℓT (x(kF )).

Considering the system (4.1), terminal constraint (4.3), output constraints (4.4), and cost

function (4.5), this research extends the wayset-based vertical hierarchical MPC approach

developed in [48] to include terminal costs for guaranteed control performance in addition

to guaranteed constraint satisfaction.

4.3.1 Vertical Hierarchical Control

While [48, 49] provide vertical hierarchical MPC formulations with M levels of controllers

Ci, i ∈ [1,M ], this research will focus on the two-level case, M = 2, for clarity of exposition.

The prediction horizons and time steps for the upper-level controller, C1, and the lower-level

controller, C2, satisfy the following assumptions.

Assumption 9. For each controller Ci, i ∈ [1, 2], the prediction horizon Ni ∈ Z+ and time

step ∆ti > 0 satisfy
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i) ∆t2 = ∆t;

ii) ∆t1 = N2∆t2;

iii) ∆t1 =
tF
N1

.

These assumptions indicate i) the lower-level controller C2 and the system (4.1) have the

same time step, ii) C2 predicts state and input trajectories between consecutive updates of

the upper-level controller C1, and iii) C1 predicts to the end of system operation. Addition-

ally, let νi ≜
∆ti
∆t
∈ Z+, be the time scaling factor where ν1 = N2 and ν2 = 1. The time steps

for C1 are indexed by k1, where k1 ≜ k
ν1

and the time steps for C2 are the same as those for

the system, k2 = k. Let k1,F ≜ kF
ν1

such that k1 ∈ [0, k1,F ].

While similar, the optimization problems for each of the two controllers are presented

separately to highlight the key differences. Details of these controller formulations are further

explained and used to make constraint satisfaction and performance guarantees in Sections

4.3.2 and 4.4.

The upper-level controller C1 updates when k = ν1k1 (i.e. when k mod ν1 = 0), by

solving the constrained optimization problem P1 (x(k)) defined as

J∗
1 (x(k)) = min

x1(k1|k1)

U1(k1)

k1,F−1∑
j=k1

ℓ(j|k1) + ℓT (k1,F ) + ℓp(k1), (4.6a)

s.t. ∀j ∈ [k1, k1,F − 1]

x1(j + 1|k1) = A1x1(j|k1) +B1u1(j|k1), (4.6b)

y1(j|k1) = Cx1(j|k1) +Du1(j|k1) ∈ Y1, (4.6c)

x1(k1,F |k1) ∈ T , (4.6d)

x1(k1|k1) = x(k) ∨ x∗
1(k1|k1 − 1). (4.6e)
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First, note that C1 has a shrinking horizon, based on the summation limits in (4.6a), since

C1 predicts to the end of system operation. The input sequence is defined as U1(k1) =

{u1(j|k1)}
k1,F−1
j=k1

, with the optimal sequence denoted as U∗
1 (k1). In (4.6a), the stage cost is a

function of states, inputs, and references such that ℓ(j|k1) = ℓ (x1(j|k1), u1(j|k1), r1(j)). The

penalty cost ℓp(k1) is described in Section 4.5.1 and is used to guarantee the performance of

the hierarchical controller. In (4.6b), the model used by C1 assumes a piecewise constant

control input over the time step ∆t1 and thus A1 = Aν1 and B1 =
∑ν1−1

j=0 AjB. In (4.6c), the

outputs are constrained to the tightened output constraint set Y1, as discussed in Section

4.3.2. In (4.6d), the terminal state x1(k1,F |k1) is constrained to the terminal set T from

(4.3). Finally, (4.6e) provides C1 the choice of initial condition, x1(k1|k1), as either the

current state of the system, x(k), or the optimal state at this time step determined by C1

at the previous time step, x∗
1(k1|k1 − 1). This choice of initial condition is important to

guaranteeing recursive feasibility, as discussed in Section 4.3.2.

The lower-level controller C2 updates at every time step of the system, by solving the

constrained optimization problem P2 (x(k)) defined as

J∗
2 (x(k)) = min

U2(k2)

k2+N2(k2)−1∑
j=k2

ℓ(j|k2) + ℓT (k2 +N2(k2)), (4.7a)

s.t.∀j ∈ [k2, k2 +N2(k2)− 1]

x2(j + 1|k2) = Ax2(j|k2) +Bu2(j|k2), (4.7b)

y2(j|k2) = Cx2(j|k2) +Du2(j|k2) ∈ Y , (4.7c)

x2(k2 +N2(k2)|k2) ∈ S2(k2 +N2(k2)), (4.7d)

x2(k2|k2) = x(k). (4.7e)

Note that C2 has a shrinking and resetting horizon. The prediction horizon length is

defined as N2(k2) ≜ N2 − (k2 mod N2) where N2 satisfies Assumption 9ii. This allows

C2 to predict between the current time step and the time step of the next update of C1,
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at which point (k2 mod N2) = 0 and prediction horizon resets back to N2(k2) = N2. The

input sequence U2(k2) is defined similarly to U1(k1). In (4.7a), the stage cost is a function of

states, inputs, and references such that ℓ(j|k2) = ℓ (x2(j|k2), u2(j|k2), r2(j)). The terminal

cost ℓT (k2 + N2(k2)) is described in Section 4.5.2 and represents operational costs beyond

the prediction horizon of C2 to improve the performance of the hierarchical controller. In

(4.7b), the lower-level controller has an exact model of the system. In (4.7c), the outputs are

constrained to the output constraint set Y from (4.4). In (4.7d), the time-varying terminal

constraint corresponds to the waysets used to coordinate between controllers C2 and C1.

Finally, (4.7e) defines the initial condition as the current state of the system.

The two-level hierarchical controller is implemented throughout system operation based

on Algorithm 5.

Algorithm 5: Two-level hierarchical MPC.

1 initialize k, k1, k2 ← 0
2 while k < kF do
3 if k mod ν1 = 0 then
4 calculate ℓp(k1);
5 solve P1 (x(k));
6 calculate ℓT (k2 +N2(k2)), S2(k2 +N2(k2)) and communicate to P2 (x(k));
7 k1 ← k1 + 1;

8 end
9 solve P2 (x(k)) for U

∗
2 (k2) and apply the first input in the sequence, u∗

2(k2|k2), to
the system;

10 k2 ← k2 + 1;
11 k ← k + 1;

12 end

4.3.2 Constraint Satisfaction

As discussed in detail in [48], the controller formulations (4.6) and (4.7) are specifically

designed to guarantee recursive feasibility for P1 (x(k)) and P2 (x(k)) when implementing

the hierarchical controller using Algorithm 5. Furthermore, recursive feasibility guarantees
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Figure 4.1. Notional example of the combined use of waysets and terminal costs for coordi-
nation between controllers at different levels of the hierarchy.

the satisfaction of output constraints (4.4) and terminal constraints (4.3). This constraint

satisfaction guarantee relies on i) output constraint tightening, ii) wayset formulation, and

iii) initial condition options. With additional details provided in [48], these three features

are summarized as follows.

While the lower-level controller C2 is formulated with the original output constraint

set Y , the upper-level controller C1 requires the tightened output constraint set Y1 ⊆ Y .

This constraint tightening prevents C1 from computing state trajectories that violate state

constraints during the inter-sample time steps between the slow updates of C1. As a result,

any optimal state and input trajectory determined by C1 is a feasible solution for C2.

As shown in Fig. 4.1, the wayset S2(k2 + N2(k2)), used as a terminal constraint in the

formulation of C2, represents a backward reach set starting from the point x∗
1(k1 + 2|k1)

along the optimal state trajectory determined by C1. Thus, for any state within this wayset,

there exists feasible state and input trajectories that steer the system back to the trajectory

determined by C1. The wayset provides C2 the flexibility to deviate from the trajectories

determined by C1. This flexibility allows C2 to further minimize short-term operational

cost, by using its faster update rate, while guaranteeing long-term constraint satisfaction.

Algorithm 6 outlines the backward reach set computation used to define the wayset.
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Algorithm 6: Wayset S2(k2 +N2(k2)) computation at time step k = ν1k1.

1 initialize j ← N2

2 if k1 ≥ k1,F − 1 then
3 S2(k2 +N2(k2)) = T ;
4 else
5 S2(j) = x∗

1(k1 + 2|k1);
6 while j ≥ 1 do

7 S̃2(j − 1) = A−1S2(j)⊕ (−A−1B)U ;

8 S2(j − 1) = S̃2(j − 1) ∩ X ;
9 j ← j − 1;

10 end
11 S2(k2 +N2(k2)) = S2(j)
12 end

Since the wayset S2(k2 +N2(k2)) is time-varying and depends on the state x∗
1(k1 +2|k1),

each wayset needs to be computed on-line immediately following each update of C1. Con-

strained zonotopes [79] are used to provide the computational efficiency necessary to perform

these set computations on-line. Assuming zonotopic input and state sets,

X = {Gxξx + cx | ∥ξx∥∞ ≤ 1} ,

U = {Guξu + cu | ∥ξu∥∞ ≤ 1} ,

where Gx ∈ Rn×n, Gu ∈ Rm×m, cx ∈ Rn, and cu ∈ Rm. By applying Algorithm 6

with Minkowski sum and intersection operations defined in [79], the wayset is a constrained

zonotope such that

S2(k2 +N2(k2)) = {Gξ + c | ∥ξ∥∞ ≤ 1, Aξ = b} , (4.8)

where G ∈ Rn×(n+m)N2 , c ∈ Rn, A ∈ RnN2×(n+m)N2 and b ∈ RnN2 .

Finally, the initial condition option (4.6e) is used to ensure recursive feasibility of C1.

This initial condition option is similar to that used in robust MPC [38]. Due to the use

of waysets, C2 may drive the system to a point in the wayset that is not a feasible initial

condition for C1. Thus C1 is given the option to start its state trajectory from the current
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state of the system, if a feasible solution exists, or from the state along the optimal trajectory

determined by C1 at the previous time step. While this first option in not guaranteed to be

feasible, the second option always provides a feasible solution to both C1 and C2 [48].

Using output constraint tightening, waysets, and the initial condition option, the fol-

lowing theorem from [48] establishes guaranteed constraint satisfaction for the hierarchical

controller.

Theorem 9. [48] Following Algorithm 5 for a two-level hierarchy, both the upper- and

lower-level controller problems, P1 (x(k)) and P2 (x(k)), are feasible when solved at k

mod νi = 0, resulting in system state and input trajectories satisfying constraints (4.2)

and (4.3).

Proof. See Appendix.

4.4 Control Performance

With constraint satisfaction established, this section presents the main results of this research

by focusing on the control performance of the hierarchical controller.

In this research, control performance is quantified by the cost function (4.5), which cap-

tures the sum of system operation costs at each discrete time step starting from t = 0 and

ending at t = tF = kF∆t. With a time step of ∆t and an initial prediction horizon of

N = kF , a centralized MPC approach produces the optimal (minimal) cost J∗ (x(0)), as

defined in (4.5). Since this research assumes an exact model of the system (4.1) without

disturbances and finite operation, the optimal solution determined by the centralized MPC

controller any time k ∈ [0, kF − 1] is simply the tail of the optimal solution determined at

time k = 0 [47].

With the optimal system operation cost denoted J∗ (x(0)), any other control formulation

results in a cost J (x(0)) ≥ J∗ (x(0)). First, consider the case where only the upper-level
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controller of the hierarchy is applied to the system. In this case, the inputs determined by

C1 are applied directly to the system with a slow update period of ∆t1 = N2∆t. With an

initial prediction horizon of N1 = k1,F , the minimal operational cost for this controller is

denoted as Jup (x(0)), which is the sum of the N1 − 1 coarse stage costs where

Jup (x(0)) =

N1−1∑
k1=0

Jup(k1|k1).

The double index notation Jup(k1|k1) is used to denote the optimal operation cost at coarse

time step k1 determined by C1 at time k1. As with the centralized MPC controller, if only

the upper-level controller is applied directly to the system, then the optimal solution for C1

at any time step k1 ∈ [0, N1− 1] is the tail of the optimal solution determined at time k = 0.

Therefore, Jup(k1|k1) = Jup(k1|0), ∀k1.

For a hierarchical controller with multiple levels, it is natural to expect the lower-level

controllers to further reduce the total operation cost. Thus, denoting the minimal operating

cost for the hierarchical controller as Jh (x(0)), it is expected that

J∗ (x(0)) ≤ Jh (x(0)) ≤ Jup (x(0)) . (4.9)

However guaranteeing (4.9) requires effective coordination between the controller at different

levels of the hierarchy.

An initial coordination strategy introduced in [47] utilized the notion of waypoints. A

waypoint corresponds to a point along the optimal state trajectory determined by C1. This

waypoint is treated as a terminal constraint in the formulation of the optimization problem

for C2. Therefore, the lower-level controller has the flexibility to further improve system

performance over the fast time steps between slow updates of the upper-level controller.

Due to the waypoint constraint, operating costs for the waypoint-based hierarchy and the

upper-level only controller can be directly compared at each coarse time step, where

Jh(k1|k1) ≤ Jup(k1|k1), ∀k1 ∈ [0, N1 − 1].
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Therefore, Jh (x(0)) ≤ Jup (x(0)), which guarantees that the lower-level controller can only

help to improve the control performance of the hierarchy.

An improved coordination strategy introduced in [48] expanded the idea of coordination

via terminal constraints through the use of waysets. As shown in Fig. 4.1, a wayset represents

a backward-reachable set from a point along the optimal state trajectory determined by C1.

Waysets provide even greater flexibility to the lower-level controller while still guaranteeing

controller feasibility and system constraint satisfaction. However, this additional flexibility

introduces the potential for greedy behavior, where the C2 minimizes its own cost function

over its short horizon while unknowingly increasing the long-term operational cost beyond

its prediction horizon. This greedy behavior could lead to an increase in total operation

cost where Jh (x(0)) ≥ Jup (x(0)). In this case, the lower-level controller actually degrades

the control performance. In Section 4.6, a numerical example shows how a wayset-based

hierarchy can greedily utilize a finite resource too quickly, leading to significant performance

degradation during later system operation.

By imposing terminal costs, denoted as ℓT (k2+N2(k2)) for the formulation of C2 in (4.7),

the lower-level controller can only improve control performance, resulting in Jh (x(0)) ≤

Jup (x(0)). As shown in Fig. 4.1, this terminal cost represents the constrained state transition

cost from the terminal state x2(k2+N2(k2)|k2) to the optimal state x∗
1(k1+2|k1) determined

by the upper-level controller. Note that this optimal state is exactly the state used to define

the wayset in Algorithm 5. Therefore, while the wayset constraint (4.7d) guarantees that

there is a feasible trajectory from x2(k2 +N2(k2)|k2) to x∗
1(k1 + 2|k1), the terminal cost now

represents the exact operational cost for this state transition. Using this terminal cost at

coarse time step k1, C2 now minimizes the cost function Jh(k1|k1)+Jh(k1+1|k1), effectively

doubling the prediction horizon of the lower-level controller.

While Section 4.5 demonstrates how to compute the terminal cost ℓT (k2 + N2(k2)), the

following theorem states that using terminal costs results in a lower-level controller that can

only improve the performance of the system.
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Theorem 10. Following Algorithm 5 for a two-level hierarchy with penalty cost ℓp(k1) and

terminal cost ℓT (k2 +N2(k2)) as computed in Section 4.5, the hierarchical controller results

in a reduced operational cost compared to only applying the upper-level controller such that

Jh (x(0)) ≤ Jup (x(0)).

Proof. See Appendix.

4.5 Terminal Cost Computation

4.5.1 Upper-level Controller

From (4.6a), the cost function for the upper-level controller consists of stage costs, a terminal

cost, and a penalty cost. Since C1 predicts to the end of system operation, the terminal cost

is the same as that used in (4.5). The penalty cost is used to ensure that the hierarchical

controller provides improved control performance as stated in Theorem 10. Specifically,

ℓp(k1) =


0 if x1(k1|k1) = x∗1(k1|k1 − 1),

∆J(k1 − 1|k1 − 1) if x1(k1|k1) = x(k),

where ∆J(j|j) ≜ max(0, Jh(j|j)−Jup(j|j)). Therefore, ℓp(k1) penalizes C1 only when using

the current state as its initial condition and this penalty is based on the difference between

operational costs determined by C2 and C1. If C2 chose a higher operating cost at the

previous coarse time step k1−1, then ∆J(k1−1|k1−1) ≥ 0. This formulation of the penalty

cost ensures that if C1 chooses to start at x(k) then the corresponding optimal trajectory

has an operating cost at least ∆J(k1− 1|k1− 1) less than the optimal trajectory starting at

x∗
1(k1|k1 − 1). This property is used in the proof of Theorem 10 in the Appendix.

4.5.2 Lower-level Controller

From (4.7a), the cost function for the lower-level controller consists of stage costs and a time-

varying terminal cost. Traditionally, terminal costs in MPC are formulated as a function
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of the terminal state x2(k2 + N2(k2)|k2). However, the proposed terminal cost represents

the state transition cost from x2(k2 + N2(k2)|k2) to x∗
1(k1 + 2|k1) subject to linear output

constraints (4.4). If the cost function in (4.5) is quadratic, the resulting terminal cost would

be piecewise-quadratic, a known result from the field of explicit MPC [11]. However, this

cost is dependent on x∗
1(k1 + 2|k1) as well as references r(j). Therefore, the terminal cost is

time-varying and would be very difficult to parameterize with respect to both x∗
1(k1 + 2|k1)

and references r(j). For these reasons, formulating the terminal cost as a function of the

terminal state is impractical.

Alternatively, the terminal cost can be formulated in terms of ξ, the variables used to

define the wayset as a constrained zonotope in (4.8). First note, if k2 + N2(k2) = kF , C2

predicts to the end of system operation and therefore ℓT (k2 +N2(k2)) = ℓT (kF ). Otherwise,

for all k2 +N2(k2) < kF ,

ℓT (k2 +N2(k2)) =

k2+2N2(k2)−1∑
j=k2+N2(k2)

ℓ(j|k2). (4.10)

If the stage costs are in the form of a weighted quadratic function, then let

ℓ(j|k2) = ∥r(j)− z(j|k2)∥2Λ, (4.11)

where z(j|k2) = Ex(j|k2) + Fu(j|k2).

Theorem 11. The terminal cost (4.10) with the quadratic stage costs (4.11) is the con-

strained state transition cost from x2(k2 + N2(k2)|k2) to x∗
1(k1 + 2|k1) and can be exactly

represented as a quadratic function of ξ from (4.8) where

ℓT (k2 +N2(k2)) = ξTPT ξ + 2qT ξ + rT , (4.12)

and PT is time-invariant while qT and rT are time-varying due to dependence on references

r(j) and state x∗
1(k1 + 2|k1).

Proof. See Appendix.
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4.6 Numerical Example

To demonstrate the benefits of using terminal costs for hierarchical MPC coordination, this

section develops a two-level hierarchy with terminal costs for the simplified vehicle system

from [48]. The system model is

x(k + 1) =


1 1 0

0 1 0

0 0 1

x(k) +


0 0 0

1 −1 0

−1 −1 −1

u(k),

where the three states represent position, velocity, and on-board stored energy, the three

inputs represent acceleration, deceleration, and power to an on-board load, all of which

deplete the stored energy. The system and lower-level controller have time step sizes of

∆t = ∆t2 = 1 second. Finite operation is defined for kF = 200 seconds. Choosing ∆t1 = 10

seconds results in ν1 = 10 and prediction horizons of N1 = 20 and N2 = 10 steps.

The desired operation, defined by {r(k)}kFk=0, is shown in Fig. 4.2 for the first state (posi-

tion), and third input (load power). References for the first and second inputs (acceleration

and deceleration) are 0 for the entire mission, and are not shown in Fig. 4.2. These ref-

erences are used to define (4.5) as the weighted quadratic cost function from (4.11) where

z(j) =

[
1 0 0

]
x(j)

u(j)

 and Λ = diag
([

10−2 100 100 102
])

.

Given an initial on-board stored energy, E(0), the output and terminal constraints defin-

ing Y and T are 

−1

−20

0

0

0

0


≤ y(k) ≤



105

20

E(0)

1

1

1


,


−1

−1

0

 ≤ x(kF ) ≤


1

1

E(0)

 .

92



0 50 100 150 200

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

Figure 4.2. References for position and load power.

For two different initial conditions, x(0) = [0 0 150]T and x(0) = [0 0 100]T , Figs. 4.3

and 4.4 show simulation results using the proposed hierarchical MPC with terminal costs

(Hier-T) compared to centralized MPC (Cent), hierarchical MPC without terminal costs

(Hier-NT), and hierarchical MPC with only the upper-level controller (Hier-Up). The three

subplots show the position reference tracking, the depletion of on-board energy, and the load

power reference tracking.

First, note that all controllers satisfy the output and terminal constraints constraints.

For the hierarchical controllers, this is achieved using constraint tightening and wayset ter-

minal constraints as discussed in Section 4.3.2. While Figs. 4.3 and 4.4 show that the four

controllers result in qualitatively similar performance, the quantitative differences in control

performance are clearly shown in Fig. 4.5. For both initial conditions, the centralized con-

troller provides the lowest cost (best performance), as expected. Guaranteed by Theorem

10, the hierarchy with terminal costs results in an operating cost less than the upper-level

only controller. The performance of the wayset-based hierarchical controller without termi-

nal costs is significantly different for the two different initial conditions. When viewed as a

resource distribution problem, an initial on-board stored energy of E(0) = 150kJ represents

a case where there is enough energy to operate the system as desired. In this case, there is

enough energy to support the short-sighted, greedy behavior of a hierarchy without terminal
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Figure 4.3. Simulation results for initial condition x(0) = [0 0 150]T comparing the proposed
hierarchical MPC with terminal costs (Hier-T) to centralized MPC (Cent), hierarchical MPC
without terminal costs (Hier-NT), and hierarchical MPC with only the upper-level controller
(Hier-Up).

costs. However, if the initial on-board stored energy is reduced to E(0) = 100kJ, there is in-

sufficient energy to operate as desired and an intelligent controller must ration this resource

throughout operation. Now, the greedy behavior of the lower-level controller results in an

operating cost greater than if only the upper-level controller was used. Figs. 4.3 and 4.4

show that the majority of this increase in operating costs comes from the inability to closely

track the load power reference trajectory (input 3).

Using a desktop computer with a 3.2 Ghz i7 processor and 16 GB of RAM, all controllers

were formulated and solved with YALMIP [57] and Gurobi [34]. While the addition of ter-
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Figure 4.4. Simulation results for initial condition x(0) = [0 0 100]T comparing the proposed
hierarchical MPC with terminal costs (Hier-T) to centralized MPC (Cent), hierarchical MPC
without terminal costs (Hier-NT), and hierarchical MPC with only the upper-level controller
(Hier-Up).

minal costs does not increase the number of decision variables for wayset-based hierarchical

MPC, the simulation results shows a modest increase in average computation time for the

lower-level controller from ∆tcalc = 0.066 seconds without terminal costs to ∆tcalc = 0.106

seconds. This is likely due to how the time-varying qT and rT terms from (4.12) are imple-

mented in YALMIP. For systems with long prediction horizons and a large number of states

and inputs, the number of ξ variables required to represent the waysets and terminal costs

might pose challenges to real-time control execution. Therefore, future work will explore the
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Figure 4.5. Comparison of system operation cost for both initial conditions and each of the
four controllers.

use of reduced-order inner-approximations of waysets and the corresponding approximations

of terminal costs to provide greater scalability of the proposed approach.

4.7 Conclusions

A two-level hierarchical MPC formulation was presented with coordination between con-

trollers through the use of both terminal constraints and terminal costs. Wayset-based

terminal constraints guaranteed constraint satisfaction while terminal costs guaranteed hi-

erarchical control performance. The terminal costs were specifically formulated to balance

both short- and long-term control performance without the need for controller tuning. As a

result, the hierarchical controller was proven to provide better control performance compared

to only applying the upper-level controller. A numerical example demonstrated the merits of

including of terminal costs as a coordination mechanism for hierarchical MPC. Future work

will focus on the efficient calculation of lower complexity inner-approximations of the way-

sets and corresponding terminal cost approximations for improved scalability. The following
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chapter will discuss about the development of a tube-based robust MPC with adjustable

uncertainty set optimization using zonotopes.

4.8 Appendix

Proof of Theorem 10. Achieving the desired reduction in operational cost is equivalent to

N1−1∑
k1=0

Jh(k1|k1) ≤
N1−1∑
k1=0

Jup(k1|0), (4.13)

where the left-hand side represent the operational cost of the two-level hierarchy as the sum

of operational costs over every coarse time step.

As shown in Fig. 4.6a, at time step k1 = 0, C2 plans a trajectory such that the total

operational cost satisfies

Jh(0|0) + Jh(1|0) +
N1−1∑
j=2

Jup(j|0) ≤
N1−1∑
j=0

Jup(j|0), (4.14)

where Jh(0|0) and Jh(1|0) are the stage and terminal costs for C2. Note that (4.14) holds

since the trajectory determined by C1 is always a feasible trajectory for C2.

At each time step k1 ∈ [1, N1 − 2], the upper-level controller has a choice of initial

condition from (4.6e) such that x1(k1|k1) = x(k) ∨ x∗
1(k1|k1 − 1). As shown in Fig. 4.6b, if

C1 chooses x1(k1|k1) = x∗
1(k1|k1− 1), then there exists a feasible trajectory for C2 such that

Jh(k1|k1) + Jh(k1 + 1|k1) +
N1−1∑

j=k1+2

Jup(j|k1) ≤ Jh(k1|k1 − 1) +

N1−1∑
j=k1+1

Jup(j|k1 − 1). (4.15)

Due to the penalty cost imposed on C1 from Section 4.5.1, if C1 chooses x1(k1|k1) = x(k),

then there exists a feasible trajectory for C2, as shown in Fig. 4.6c, such that

Jh(k1|k1)+Jh(k1+1|k1)+
N1−1∑

j=k1+2

Jup(j|k1) ≤
N1−1∑
j=k1

Jup(j|k1− 1)−∆J(k1− 1|k1− 1). (4.16)

At the time step k1 = N1 − 1, there exists a feasible trajectory C2, as shown in Fig. 4.6d,

such that

Jh(N1 − 1|N1 − 1) ≤ Jh(N1 − 1|N1 − 2). (4.17)
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Figure 4.6. Notional state trajectories used to demonstrate the operating cost relationships
among feasible trajectories.

From the definition of ∆J(j|j) and combination of (4.14)-(4.16), it can be shown that

there exists feasible trajectories at each time step k1 ∈ [1, N1 − 2] such that

k1∑
j=0

Jh(j|j) + Jh(k1 + 1|k1) +
N1−1∑

j=k1+2

Jup(j|k1) ≤
N1−1∑
j=0

Jup(j|0). (4.18)
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Adding (4.18) for k1 = N1− 2 and (4.17) results in the desired operational cost relationship

from (4.13), proving the theorem.

Proof of Theorem 11. Let R, Z, and U denote trajectories such that, for k = k2 +N2,

R =
[
rT (k +N2 − 1) rT (k +N2 − 2) . . . rT (k)

]T
,

Z =
[
zT (k +N2 − 1) zT (k +N2 − 2) . . . zT (k)

]T
,

U =
[
uT (k +N2 − 1) uT (k +N2 − 2) . . . uT (k)

]T
.

Given (4.11), (4.10) can now be re-written as

ℓT (k2 +N2(k2)) = (R− Z)T Λ̂ (R− Z) ,

where Λ̂ is block diagonal with Λ repeated N2 times. There exist matrices Â, B̂ where

Z = Âx∗
1(k1 + 2|k1) + B̂U . Furthermore, with ξ from (4.8), U = ĉu + ĜuT̂ ξ where

ĉu =


cu

cu
...

cu

, Ĝu =


Gu 0 . . . 0

0 Gu
. . .

...

...
. . .

. . . 0

0 . . . 0 Gu

,

and

T̂ =


[I 0] 0 . . . 0

0 [I 0]
. . .

...

...
. . .

. . . 0

0 . . . 0 [I 0]

.

Now, as in (4.12), the terminal cost is quadratic in ξ where

PT = (B̂ĜuT̂ )
T Λ̂(B̂ĜuT̂ ),

qT = (Âx∗
1(k1 + 2|k1) + B̂ĉu −R)T Λ̂(B̂ĜuT̂ ),

rt = ∥Âx∗
1(k1 + 2|k1) + B̂ĉu −R∥2

Λ̂
.

Note that both qT and rT are time-varying due to their dependence on references R and

state x∗
1(k1 + 2|k1) while PT is time-invariant.
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CHAPTER 5

TUBE-BASED ROBUST MPC WITH ADJUSTABLE

UNCERTAINTY SETS USING ZONOTOPES 1

5.1 Introduction

Model Predictive Control (MPC) is widely used for the control of constrained systems where

state and input constraints are explicitly embedded in the optimization problem. For the

control of systems with unknown but bounded additive disturbances, there exists many

different robust MPC formulations designed to guarantee robust state and input constraint

satisfaction in the presence of these uncertainties [62, 10]. In these formulations, the bounded

disturbances are typically restricted to a uncertainty set of predetermined shape and size.

A specific form of robust MPC known as tube-based robust MPC is widely used to provide

robustness with only a slight increase in computational complexity [54, 60]. Tubes bound

the true system trajectories within a neighborhood centered around nominal state and input

trajectories optimized by the robust MPC controller. The sizes of these tubes depend on the

size of the bounded uncertainty set and are typically computed using a Robust Positively

Invariant (RPI) set. This RPI set is then used to tighten the state and input constraint

sets such that if nominal trajectories satisfy the tightened constraints, then the true system

trajectories are guaranteed to satisfy the original constraints. Typically, the size of the

uncertainty set is known a priori and both the RPI set and the constraint tightening are

computed offline.

Recently, there has been a growing interest to compute the uncertainty set as a part of

the robust MPC optimization problem and these problems are referred to as robust MPC

1This chapter is based on work supported by the National Science Foundation under grant 1849500.
Chapter 5 in part is a reprint of material published in: © 2021 IEEE. Reprinted, with permission, from
Raghuraman, V. and Koeln, J.P., 2021. Tube-based robust MPC with adjustable uncertainty sets using
zonotopes. In 2021 American Control Conference (ACC) (pp. 462-469).
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with adjustable uncertainty sets (RMPC-AU) [94, 44]. Applications that can benefit from

RMPC-AU formulation include economic reserve capacity optimization [95], robust input

tracking [87, 31], distributed MPC [85], and hierarchical MPC [49]. In the reserve capacity

problem, the adjustable uncertainty set is characterized as a reserve capacity which can be

provided by an operator to third-parties for some monetary benefits without violating it’s

own operational constraints [95]. While in robust input tracking from [87] and [31], the

adjustable uncertainty set is quantified as the largest input set that can be tracked without

violating the system constraints. In these applications, maximization of uncertainty sets is

desired.

However, in distributed MPC, where the coupling between neighboring subsystems is

treated as a bounded disturbance, minimizing the size of disturbance sets provides reduced

conservatism and improved performance [85]. Finally, in hierarchical MPC, differences be-

tween control decisions by controllers at different levels of the hierarchy can be viewed as

bounded disturbances [49]. In this case, the optimal size of bounding sets is to be deter-

mined while solving the upper-level optimization problem to provide a time-varying optimal

balance between performance at the upper-level and flexibility at the lower-level.

In the RMPC-AU design from [94] and [44], the adjustable uncertainty sets are defined

as the affine transformation of an a priori chosen convex primitive set in the form of ellip-

soids, hyper-rectangles, or polytopes. Thus, the shape and size of these uncertainty sets are

optimized by determining these affine transformation variables from the feasible domain set.

Specifically in [94], control policies are optimized from a chosen class of piece-wise affine

policy functions to achieve computational tractability and feasibility for a finite horizon op-

eration. This work is extended to an infinite horizon operation in [44] by enforcing a terminal

constraint set, which is an inner-approximation of the positive invariant terminal set com-

puted based on the chosen primitive set. Moreover, when norm-balls are used to represent

these uncertainty sets, as in [94], the underlying optimization requires solving a semi-definite
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program which could pose computational challenges with increase in system dimension and

complexity of the primitive set. Similarly in [44], the construction of robust precursor set

through repetitive intersections particularly for a long prediction horizon is likely to result

in large number of inequalities using H-Rep which adds complexity to the underlying opti-

mization problem. Additionally, both [94] and [44] use a min-max optimization approach for

dealing with uncertainty which is generally more computationally complex than tube-based

robust MPC [60].

Specifically with regards to tube-based robust MPC, RPI sets are traditionally computed

offline using the iterative procedure from [68] in H-Rep which is an outer-approximation of

the minimal RPI (mRPI) set [50]. To improve computational performance and scalability,

one-step optimization-based techniques have been developed in [84]. To further improve com-

putational performance, similar one-step approaches using zonotopes with a corresponding

Generator-Representation (G-Rep) have been developed in [66] for computing both outer-

approximations of the mRPI set and inner-approximations of the Pontryagin (Minkowski)

difference used for constraint tightening. In both cases, set computations are based on set

containment conditions which can be reformulated as linear constraints using the techniques

in [71].

This research leverages the recent developments in one-step RPI and Pontryagin differ-

ence set computations to embed the computation of these sets within a robust tube-based

MPC formulation that simultaneously optimizes nominal state and input trajectories along

with the size of the uncertainty set. In addition to presenting this novel tube-based MPC

formulation, this research shows how all of the set containment constraints of robust MPC

can be imposed as linear constraints and how the formulation of the cost function plays a

critical role in minimizing conservatism introduced through inner- and outer-approximations

of these sets.
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5.2 Notation and Preliminaries

For a discrete time system, the notation x(k) denotes the state x at time step k. The brace

notation j ∈ {k, · · · , k +N − 1} denotes all integers from k to until k +N − 1. For MPC,

the double-index notation x̂(k+ j|k) denotes the predicted state x̂ at future time step k+ j

determined at k. For notational convenience, vectors and matrices are bolded and sets are

shown in caligraphic font. The weighted norm is defined as ||x||2Q = x⊤Qx where Q is a

positive definite diagonal weighting matrix. A vector of ones of appropriate dimension is

given by 1. For a matrix A, |A| denotes the element-wise absolute value. The notation || · ||p

denotes the p−norm of a vector. The sets N+ and R+ denote the set of natural numbers and

positive real numbers, respectively. For sets X ,Y ⊂ Rn, X ⊕Y denotes the Minkowski sum

and X ⊖Y denotes the Pontryagin/Minkowski difference of Y from X . The volume ratio of

X with respect to Y is given by Vr =
(

V (X )
V (Y)

) 1
n
where V (·) denotes the volume of a set. The

convex polytope S ⊂ Rn in H-Rep is defined as S = {s ∈ Rn | Fs ≤ h} such that F ∈ Rnh×n

and h ∈ Rnh where nh denotes the number of halfspaces. A zonotope Z = {G, c} ⊂ Rn

defined by Z = {Gξ+ c | ||ξ||∞ ≤ 1}, where ng denotes the number of generators such that

G ∈ Rn×ng and c ∈ Rn. For zonotopes X = {Gx, cx} ⊂ Rn,Y = {Gy, cy} ⊂ Rn, the linear

transformation by a matrix R ∈ Rm×n is defined as RX = {RGx,Rcx} and the Minkowski

sum X ⊕Y =

{[
Gx Gy

]
, cx + cy

}
. A hypercube with edge length d is denoted dB, where

B is the unit hypercube defined by B = {b | ||b||∞ ≤ 1}.

5.3 Robust MPC Background

Consider the discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) +w(k), (5.1)

where x ∈ Rn are the states, u ∈ Rm are the inputs, and w ∈ Rn are the additive distur-

bances. It is assumed that the pair (A,B) is stabilizable. The states, inputs, and distur-
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bances are subject to the constraints

x(k) ∈ X , u(k) ∈ U , w(k) ∈ W , (5.2)

assuming X , U , and W are compact and convex polytopes containing the origin in their

interiors.

The widely-used tube-based robust MPC from [60] solves the following constrained opti-

mization problem at every time step k ≥ 0,

J∗(x(k)) = min
x̂(k|k), Û(k)

k+N−1∑
j=k

ℓ(j|k) + ℓf (k +N |k), (5.3a)

s.t. ∀j ∈ [k, k +N − 1] ,

x̂(j + 1|k) = Ax̂(j|k) +Bû(j|k), (5.3b)

x̂(j|k) ∈ X̂ ≜ X ⊖ E , (5.3c)

û(j|k) ∈ Û ≜ U ⊖KE , (5.3d)

x(k)− x̂(k|k) ∈ E , (5.3e)

x̂(k +N |k) ∈ T̂ . (5.3f)

This MPC formulation has a prediction horizon of N steps and optimizes Û(k) ≜

{û(j|k)}k+N−1
j=k to minimize the cost function (5.3a) which is typically formulated with stage

costs ℓ(j|k) = ∥x̂(j|k)∥2Q + ∥û(j|k)∥2R and terminal cost ℓf (k + N |k) = ∥x̂(k + N |k)∥2P,

where Q and R are design parameters and P satisfies the discrete-time algebraic Riccati

equation. First introduced in [60], this tube-based robust MPC formulation also allows the

initial nominal state x̂(k|k) to be a decision variable.

Based on the solution to (5.3), the control input applied to (5.1) is

u(k) = û∗(k|k) +K (x(k)− x̂∗(k|k)) , (5.4)

where x̂∗(k|k) and û∗(k|k) denote the optimal state and input at time step k and K is

a stabilizing feedback control law, often chosen as the infinite-horizon, discrete-time LQR
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controller. This stabilizing control law ensures that the difference, x(k) − x̂(k|k), between

the true and nominal state trajectories satisfying (5.1) and (5.3b) respectively, always stays

within a bounded set, E , given the bounded disturbances, w(k) ∈ W .

This bounding set, E , is typically computed as an outer-approximation of the mRPI set

satisfying

AKE ⊕W ⊆ E , (5.5)

where AK = A+BK. Thus, if the nominal state starts off close to the true state, as enforced

by (5.3e), then the difference between the two state trajectories will always remain within

E . This enables the constraint tightening approach used in (5.3c) and (5.3d), where if the

nominal trajectories satisfy the tightened constraints, the true trajectories will satisfy the

original state and input constraints from (5.2).

The terminal set T̂ in (5.3f) is typically included to guarantee robust stability by choosing

T̂ such that

AKT̂ ⊆ T̂ , T̂ ⊆ X̂ , KT̂ ⊆ Û . (5.6)

Traditionally, tube-based robust MPC development starts with the offline processes of:

1) determining the uncertainty bounding set, W ; 2) computing an outer-approximation of

the mRPI set, E ; and 3) computing the tightened constraint sets X̂ , Û , and T̂ . The online

process then consists of solving (5.3) and applying the input defined in (5.4).

However, there is growing interest in developing MPC-based control strategies [94, 44]

where the size of the uncertainty set, W , is included in the optimization. This prohibits

the offline computation of the mRPI sets and constraint tightening which are usually time-

consuming calculations that scale poorly with the number of states and inputs.

Therefore, this research presents a scalable robust MPC approach where the size of W ,

and the corresponding sizes of E , X̂ , Û , and T̂ , are all computed online as part of the overall

optimization problem.
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5.4 Robust MPC with Integrated RPI Set Computation and Constraint Tight-

ening

This research assumes that the shape of the uncertainty set is predetermined but the size is

variable such that

w(k) ∈ W(Φw), (5.7)

where Φw is a scaling variable with positive entries. Similar scaling variables have been

used in [85] and [77]. In [85], a scaling variable Φf is used to scale the offset vector of the

uncertainty set represented in H-Rep as

W(Φf ) = {w | Hw ≤ Φf}, Φf ∈ Rnh . (5.8)

Alternatively, in [77], the scaling variable Φm scales the magnitude of a nominal uncertainty

set W∗ where

W(Φm) = ΦmW∗, Φm ∈ R+. (5.9)

Since the scaling variable Φw in (7) is a decision variable, the sets E , X̂ , Û , and T̂ cannot

be precomputed. Instead, each of these sets will have a nominal shape and a corresponding

scaling variable such that

E ⊆ Ẽ(Φε), X̃ (Φx) ⊆ X̂ , Ũ(Φu) ⊆ Û , T̃ (Φt) ⊆ T̂ . (5.10)

With the inclusion of these scalable sets, (5.3) is reformulated as

J∗(x(k)) = min
Φ, x̂(k|k),

Û(k)

k+N−1∑
j=k

ℓ(j|k) + ℓf (k +N |k) + ℓΦ, (5.11a)

s.t. ∀j ∈ [k, k +N − 1] ,

x̂(j + 1|k) = Ax̂(j|k) +Bû(j|k), (5.11b)

x̂(j|k) ∈ X̃ (Φx), X̃ (Φx)⊕ Ẽ(Φε) ⊆ X , (5.11c)
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û(j|k) ∈ Ũ(Φu), Ũ(Φu)⊕KẼ(Φε) ⊆ U , (5.11d)

x(k)− x̂(k|k) ∈ Ẽ(Φε), (5.11e)

AKẼ(Φε)⊕W(Φw) ⊆ Ẽ(Φε), (5.11f)

x̂(k +N |k) ∈ T̃ (Φt), AKT̃ (Φt) ⊆ T̃ (Φt), (5.11g)

T̃ (Φt) ⊆ X̃ (Φx), KT̃ (Φt) ⊆ Ũ(Φu). (5.11h)

By allowing the RPI and tightened constraint sets to vary in size, the scaling matrices

Φ = {Φw,Φε,Φx,Φu,Φt} are included as decision variables in (5.11). The sizes of these

corresponding sets are prioritized in (5.11a) using a generic cost function ℓΦ = ℓΦ(Φw,Φε,

Φx,Φu,Φt) as discussed in more detail in Section VIB. The set containment condition in

(5.11c) has been added to ensure that

X̃ (Φx) ⊆ X ⊖ Ẽ(Φε) ⊆ X̂ ≜ X ⊖ E , (5.12)

is satisfied based on the extensive property of the closing of X̃ (Φx) by Ẽ(Φε). A similar set

containment condition has been added for the input set in (5.11d) to ensure satisfaction of

Ũ(Φu) ⊆ U ⊖KẼ(Φε) ⊆ Û ≜ U ⊖KE . (5.13)

The set containment condition in (5.11f) has been added to ensure that Ẽ(Φε) satisfies the

definition of an RPI set from (5.5). Finally, the set containment conditions in (5.11g) and

(5.11h) have been added to ensure that T̃ (Φt) satisfies the properties of a terminal set

from (5.6). Note that the size of the uncertainty set, determined by the scaling matrix Φw,

only appears in (5.11f) but directly affects the size of the RPI set and the state, input,

and terminal set constraint tightening. The following theorem mathematically proves the

recursive feasibility of the proposed tube-based robust MPC framework.

Theorem 12. If the MPC optimization problem in (5.11) is feasible at time step k, then it

is feasible at time step k + 1.
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Proof. The proof is the same as that of tube-based robust MPC from Proposition 3 in [60]

with the addition that the candidate solution for the scaling variables at time step k + 1 is

equal to the optimal solution from time step k such that Φ(k + 1) = Φ∗(k).

Usually, in constrained robust MPC, desired performance is achieved by letting the state

and input trajectories operate close to the bounds of the tightened state and input con-

straints. A typical example is the thermal management of aircraft electro-thermal systems

where the temperatures of the system components are allowed to approach the respective

upper-bounds to minimize coolant flow and achieve energy-efficient operation [46]. Usually,

the larger the uncertainty set, the smaller the tightened state, input, and terminal sets,

which results in loss of desired system performance. Thus, there exists a trade-off between

the size of the uncertainty set and system performance, which must be optimized.

The main contribution of this chapter lies in showing that despite the introduction of

scaling variables, Φ, as decision variables, all of the point and set containment conditions

in (5.11c)-(5.11h) can be represented as linear constraints. Therefore, if (5.3) is formulated

as a Quadratic Program (QP), then (5.11) is also a QP. This key feature of the proposed

approach is enabled through the use of zonotopes (See Chapter 2 for details).

5.5 Zonotopic Set Operations

The results in this research heavily rely on the following zonotope containment condition

from [71].

Lemma 10. (Corollary 4 of [71]) Given two zonotopes F = {Gf , cf} ⊂ Rn and H =

{Gh, ch} ⊂ Rn, F ⊆ H if there exists Γ ∈ Rnh×nf and β ∈ Rnh such that

Gf = GhΓ, ch − cf = Ghβ, |Γ|1+ |β| ≤ 1. (5.14)
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Using this zonotope containment condition, the main idea is to scale a zonotope such

that set containment conditions from (5.11c) and (5.11d) and RPI set condition from (5.11f)

holds.

Definition 9. The zonotope Z(Φ) = {GΦ, c} ⊂ Rn is a scaled version of the nominal zono-

tope Z = {G, c} with the generator matrix G scaled by a diagonal matrix Φ ∈ Rng×ng ,Φ =

diag(ϕi), ϕi > 0,∀i ∈ {1, · · · , ng}.

Assumption 10. For the chosen G and the system (AK,W), there exists a Φ ∈ Rng×ng

that scales the RPI set E such that (5) holds.

While Assumption 10 is needed to exclude certain systems that do not admit RPI sets

[84], this assumption is typically mild in practice through the proper choice ofG, as discussed

below.

Theorem 13. (Theorem 6 of [66]) The zonotope Z(Φ) = {GΦ, c} ⊂ Rn is an RPI set

of x(k + 1) = AKx(k) + w(k) if w(k) ∈ W = {Gw, cw}, and there exists Γ1 ∈ Rng×ng ,

Γ2 ∈ Rng×nw , and β ∈ Rng such that

AKGΦ = GΓ1, (5.15a)

Gw = GΓ2, (5.15b)

(I−AK)c− cw = Gβ, (5.15c)

|Γ1|1+ |Γ2|1+ |β| ≤ Φ1. (5.15d)

Theorem 13 can be applied to determine the RPI set Z(Φ) for a predetermined gen-

erator matrix G. For a desired order of Z, G can be determined using Gw and AK as

G = [Gw AKGw ... As
KGw], for some s ∈ N+ that provides the desired order. Thus G is

a truncated version of the infinite sum used to compute the mRPI set in [68]. However, for
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an improper choice of G or with an inadequate number of generators in G, there might not

exist a Φ that scales Z(Φ) to satisfy (5.15), resulting in an infeasible optimization problem.

Assuming a properly chosen G, the size of Z can be scaled by the diagonal matrix Φ such

that Z(Φ) is an approximation of the mRPI set, where Φ is determined by solving an opti-

mization problem with the constraints from (5.15) and an objective function that minimizes

the scaling variables in Φ. This approach is an indirect attempt to minimize the volume of

Z(Φ), since directly optimizing the volume of a zonotope is a nonconvex problem [39]. With

c, Φ, Γ1, Γ2, and β as decision variables, (5.15) consists of only linear constraints and thus

a LP or QP can be formulated based on the p-norm used to minimize the vector ϕ, where

Φ = diag(ϕ).

Theorem 14. (Theorem 7 of [66]) Given Z1 = {G1, c1} and Z2 = {G2, c2}, then Z̃d =

{GdΦ, cd}, with Φ = diag(ϕ), ϕi > 0,∀i ∈ {1, · · · , ngd}, is an inner-approximation of the

Pontryagin difference Zd = Z1⊖Z2 such that Z̃d ⊆ Zd if there exists Γ ∈ Rng1×(ngd
+ng2 ) and

β ∈ Rng1 such that [
GdΦ G2

]
= G1Γ, (5.16a)

c1 − (cd + c2) = G1β, (5.16b)

|Γ|1+ |β| ≤ 1. (5.16c)

Theorem 14 can be applied to compute Z̃d ⊆ Zd and it is practical to assume the

generator matrix Gd is comprised of the generators from both Z1 and Z2 such that Gd =[
G1 G2

]
. The set Z̃d with maximal volume is typically desired and can be computed

by solving an optimization problem formulated with the constraints from (5.16) and an

objective function that maximizes the scaling variables in Φ. With cd, Φ, Γ, and β as

decision variables in this optimization problem, (5.16) consists of only linear constraints and
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thus a LP or QP can be formulated based on the p-norm used to maximize the vector ϕ,

where Φ = diag(ϕ).

5.6 One-step RPI Set Computation and Constraint Tightening

When analyzing (5.11), the addition of scalable sets introduces the need to 1) enforce point

containment within a scaled tightened constraint set (e.g. x̂(j|k) ∈ X̃ (Φx)) and 2) set

containment for inner-approximations of the tightened constraint set (e.g. X̃ (Φx)⊕Ẽ(Φε) ⊆

X ) and the outer-approximation of the mRPI set (e.g. AKẼ(Φε) ⊕ W(Φw) ⊆ Ẽ(Φε)).

To reduce unnecessary complexity and highlight the ability to simultaneously formulate

these containment conditions as linear constraints, the following optimization problem is

introduced for some predefined point x̂(j|k) and sets X , X̃ , Ẽ , and W .

min

Φx,Φε,Φw

ℓΦ, (5.17a)

s.t.

x̂(j|k) ∈ X̃ (Φx), (5.17b)

X̃ (Φx)⊕ Ẽ(Φε) ⊆ X , (5.17c)

AKẼ(Φε)⊕W(Φw) ⊆ Ẽ(Φε). (5.17d)

The following subsections useTheorems 13 and 14 to convert the point and set containment

conditions from (5.17b)-(5.17d) to linear constraints and discuss how to formulate the cost

function in (5.17a) to optimize the size of these sets. Note that similar linear constraints

and cost functions designs can be formulated for the input and terminal constraint sets

conditions from (5.11d), (5.11g), and (5.11h) to recast all of the constraints in (5.11) as

linear constraints.
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5.6.1 Containment Constraints

Theorem 15. Given X = {Gx, cx}, let X̃ = {G̃xΦx, c̃x} and Ẽ = {GεΦε, cε}. Then

(5.17b)-(5.17d) are satisfied if there exists ξx ∈ Rnx ,Γ1 ∈ Rnx×(nx̃+nε), β1 ∈ Rnx ,Γ2 ∈

Rnε×nε ,Γ3 ∈ Rnε×nw , and β2 ∈ Rnε such that

x̂(j|k) = G̃xξx + c̃x, −Φx ≤ ξx ≤ Φx, (5.18a)[
G̃xΦx GεΦε

]
= GxΓ1, (5.18b)

cx − (c̃x + cε) = Gxβ1, (5.18c)

|Γ1|1+ |β1| ≤ 1, (5.18d)

AKGεΦε = GεΓ2, (5.18e)

Gw = GεΓ3, (5.18f)

(I−AK)cε − cw = Gεβ2, (5.18g)

|Γ2|1+ |Γ3|1+ |β2| ≤ Φε1. (5.18h)

Proof. The proof requires showing that (5.18a) enforces the point containment condition

from (5.17b), (5.18b)-(5.18d) enforce the Pontryagin difference definition (5.17c), and (5.18e)-

(5.18h) enforce the definition of an RPI set from (5.5). Consider the change of variables

ξx = Φxξ̂x, Γ2 = ΦεΓ̃2, Γ3 = ΦεΓ̃3, β2 = Φεβ̃2 and define Γ̃23 =

[
Γ̃2 Γ̃3

]
. Then,

(5.18a) readily satisfies the definition of a zonotope with ξ̂x ∈ [−1,1]. The Pontryagin

difference containment conditions from Theorem 14 are satisfied by (5.18b)-(5.18d). Then

the zonotope containment conditions from Lemma 10 are satisfied by 1) rearranging and

combining (5.18e) and (5.18f) to get

[
AKGεΦε Gw

]
= GεΦεΓ̃23, 2) rearranging (5.18g)

to get cε − (AKcε + cw) = GεΦεβ̃2, and 3) multiplying (5.18h) by Φ−1
ε , since ϕi > 0, to get

|Γ̃23|1 + |β̃2| ≤ 1.
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5.6.2 Cost Function

In determining the cost function ℓΦ, it is typically desired to let ℓΦ be a linear or a quadratic

function of Φx,Φε,Φw so that (5.17), and therefore (5.11), remains a linear or quadratic

program. Conceptually, ℓΦ should be defined to maximize the size of the uncertainty set

W(Φw) while minimizing the outer-approximation of the mRPI set Ẽ(Φε) and maximizing

the inner-approximation of the tightened constraint set X̃ (Φx). Interestingly, maximizing

X̃ (Φx) automatically incentivizes minimizing Ẽ(Φε). Thus, ℓΦ should be designed to max-

imize Φw while also maximizing Φx. However, maximizing Φx alone would minimize Φw,

and vice-versa, and thus there is a trade-off.

With Φw = diag(ϕw) and Φx = diag(ϕx), one approach to formulating ℓΦ is based on

the norms of the scaling variables such that

ℓΦ = −∥ϕx∥p − λ∥ϕw∥p, λ ≥ 0, (5.19)

where the p-norms, ∥ · ∥p, can be used to express the 1-norm, 2-norm, or ∞-norm. The

weighting term λ can be used to tune the priority between maximizing the uncertainty

and tightened constraint sets. Similar scaling variables have been used in [39] to outer-

approximate asymmetric polytopes by scaled zonotopes obtained by maximizing the 1- and

∞-norm of the generators. However, maximizing the p-norm of the scaling variables may not

effectively maximize the volume of these approximating sets, as will be shown in Example 9.

Alternatively, the Hausdorff distance can be used to effectively maximize the size of the

tightened constraint set such that X̃ (Φx) inner-approximates X̂ . As defined in [71], the

Hausdorff distance d for two sets P and Q is

d = min
0≤d∈R

{Q ⊆ P ⊕ dB, P ⊆ Q⊕ dB} . (5.20)
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Using this Hausdorff distance metric, the optimization problem from (5.17) is modified

as

min

dx

ℓd, (5.21a)

s.t.

X ⊆ X̃ (Φx)⊕ dxB, (5.21b)

x̂(j|k) ∈ X̃ (Φx), (5.21c)

X̃ (Φx)⊕ Ẽ(Φε) ⊆ X , (5.21d)

AKẼ(Φε)⊕W(Φw) ⊆ Ẽ(Φε). (5.21e)

Theorem 16. Given X = {Gx, cx} and X̃ = {G̃xΦx, c̃x}, the containment property in

(5.21b) is satisfied if there exists Γ4 ∈ Rnx̃×nx ,Γ5 ∈ Rn×nx, β3 ∈ Rnx̃ ,β4 ∈ Rn such that

Gx = G̃xΓ4 + Γ5, (5.22a)

c̃x − cx = G̃xβ3 + β4, (5.22b)

|Γ4|1+ |β3| ≤ Φx1, (5.22c)

|Γ5|1+ |β4| ≤ dx1. (5.22d)

Proof. The proof requires using Lemma 10 to show that (5.22a)-(5.22d) enforce the zono-

tope containment condition from (5.21b). Consider the change of variables Γ4 = ΦxΓ̃4,

β3 = Φxβ̃3, Γ5 = dxΓ̃5, β4 = dxβ̃4, and let Γ45 =

[
Γ⊤

4 Γ⊤
5

]⊤
and β34 =

[
β⊤
3 β⊤

4

]⊤
.

Then the zonotope containment conditions from Lemma 10 are readily satisfied by ex-

pressing (5.22a) in terms of Γ45 to get Gx =

[
G̃x I

]
Γ45 and expressing (5.22b) in terms

of β34 to get c̃x − cx =

[
G̃x I

]
β34. Then, (5.22c) is written in terms of Γ̃4 and β̃3

to get |ΦxΓ̃4|1 + |Φxβ̃3| ≤ Φx1, while (5.22d) is written in terms of Γ̃5 and β̃4 to get

|dxΓ̃5|1+ |dxβ̃4| ≤ dx1. Cancelling Φx and dx in these equations results in |Γ̃4|1+ |β̃3| ≤ 1
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and |Γ̃5|1 + |β̃4| ≤ 1. Finally, letting Γ̃45 =

[
Γ̃⊤

4 Γ̃⊤
5

]⊤
and β̃34 =

[
β̃⊤
3 β̃⊤

4

]⊤
, these

equations are concatenated vertically to obtain the final result |Γ̃45|1+ |β̃34| ≤ 1.

The cost function in (5.21a) minimizes the Hausdorff distance between the state con-

straint set X and the inner-approximating tightened state constraint set X̃ (Φx). Similar to

(5.17a), minimizing the Hausdorff distance maximizes X̃ (Φx) which incentivizes minimizing

Ẽ(Φε). The cost ℓd is formulated based on the Hausdorff distance dx such that

ℓd = dx − λ||ϕw||p. (5.23)

Similar to (5.19), the weighting term λ provides the desired tradeoff between maximizing

the uncertainty and tightened constraint sets where increasing λ should increase the size of

the uncertainty set. The following example demonstrates the performance of minimizing the

Hausdorff distance metric over maximizing the norm of the scaling variables.

Example 9. Consider the zonotopes

Z1 =


5 2 1

3 −1 2

 ,

0
0


 , Z2 =


 1 0.2 0.5

−0.3 −0.1 0.3

 ,

0
0


 ,

shown in the left subplot of Fig. 5.1. First, the Pontryagin difference Zd = Z1 ⊖ Z2 is

computed in H-Rep using the Multi-Parametric Toolbox [37] as a benchmark for volume

ratio comparison, as shown in green in the right subplot. The inner-approximations of the

Pontryagin difference Z̃d ⊆ Zd computed using Theorem 14 are shown in the right subplot

for p = 1, 2, and ∞. The best approximation is obtained with p = 2 by solving a QP instead

of a LP with Vr = 0.80. For p = 1 and ∞, the volume ratios are 0.29 and 0.38.

However, choosing to compute Z̃d by minimizing the Hausdorff distance based cost func-

tion in (5.23) results in the exact set Zd with Vr = 1 while still solving a LP.
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Figure 5.1. Left: Given zonotopes Z1,Z2. Right: The Pontryagin difference Zd is shown in
green and the inner-approximating Pontryagin differences computed using Theorem 14 for
p = 1, 2, and ∞ are shown in yellow, cyan, and brown.

Using Theorems 15 and 16 along with the Hausdorff distance based cost function from

(5.23), the tightened input and terminal state constraint set conditions in (5.11d), (5.11g)

and (5.11h) can also be formulated as linear constraints. Thus, the sizes of the uncertainty

set, state, input, and terminal constraint sets can all be simultaneously optimized online

along with the nominal state and input trajectories enabling the proposed tube-based robust

MPC framework. By optimizing Φw at every update of the controller, the proposed approach

provides the desired time-varying balance between flexibility and performance.

The following numerical example demonstrates the key features of the proposed approach.
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5.7 Numerical Example

A simplified vehicle system model is considered with

x(k + 1) =

1 1

0 1

x(k) +

0
1

u(k) +

0
1

w(k), (5.24)

where the states x(k) ∈ R2 represent position and velocity, input u(k) ∈ R1 represents

acceleration/deceleration, and the uncertainty w(k) ∈ W(Φw) = {||w(k)||∞ ≤ Φw} ,Φw ∈

R affects only the velocity state. Note that the scaling matrix Φw of the uncertainty set

W(Φw) = {GwΦw, cw} is computed as part of the robust MPC optimization problem in

(5.11) with cw = 0, and Gw = 1. The system and controller have time step size ∆t = 1

second. The prediction horizon is N = 100 steps.

Starting from an initial condition x(0) = [0 0]⊤, the desired operation is defined by

tracking references {r(k)}Nk=0 for the position state and the acceleration/deceleration input

(as shown in Fig. 5.2) using the weighted quadratic cost function

ℓ(x(j),u(j), r(j)) = ||r(j)− z(j)||2I , (5.25)

where z(j) =

[1 0]x(j)

u(j)

. The state constraint set X and input constraint set U are defined

as −1
−5

 ≤ x(k) ≤

60
5

 , −0.5 ≤ u(k) ≤ 0.5.

The position reference was intentionally designed to be on the boundary of X to clearly

demonstrate the tradeoff between cost performance and uncertainty set optimization. The

terminal set for the robust MPC is T̂ = T̃ (Φt) = [0 0]⊤.

Different values of uncertainty weighting λ from (5.23) ranging from 101 to 5 × 107

are considered to analyze the relationship between the uncertainty scaling variable Φw,

the corresponding RPI and tightened constraint sets, and the vehicle performance. Fig.
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5.3 shows the trend between λ and Φw which determines the size of W . Note that the

uncertainty set size increases with λ. Similarly, Fig. 5.4 shows that the total operational

cost based on (5.25) also increases with λ. For clarity of exposition, three key data points,

corresponding to λ ∈ {101, 2×105, 106} were identified to more closely study the relationship

between uncertainty set size and system operation.

Fig. 5.2 shows the simulation results using the proposed robust MPC for the chosen

values of λ. The first subplot shows the reduction in position reference tracking performance

corresponding to increasing values of λ. This reduced performance is a result of the reduced

vehicle velocities shown in the second subplot and the reduced acceleration and deceleration

shown in the third subplot. Specifically, the magnitude of the inputs decreases to compensate

for the growing uncertainty set size. Intuitively, with increasing uncertainty set size, more of

the control input is allocated to disturbance rejection, leaving less of the control input to be

used for nominal acceleration and deceleration of the vehicle. Note that position reference

tracking performance is also reduced under increasing uncertainty set size since the reference

position of 60 m is no longer in the tightened state constraint set X̃ .

Fig. 5.5 shows the tightened state constraint set X̃ (Φx) and tightened input constraint

set Ũ(Φu) from (5.10) for different uncertainty set sizes realized for the chosen values of

λ. Clearly, the volume of the tightened state and input constraint sets decrease as the

uncertainty set size increases.

An important limitation of the proposed approach is the conservatism introduced by

the one-step approximation of the RPI set and corresponding constraint tightening. As

shown in Fig. 5.6, Ẽ(Φε) computed by solving (5.11) is an outer-approximation of the mRPI

set E computed using the iterative approach from [68]. For both λ ∈ {2 × 105, 106}, the

volume ratio of Ẽ(Φε) compared to E is Vr = 1.26. Additionally, the tightened state and

input constraint sets are inner-approximations of X̂ and Û from (5.3c) and (5.3d) computed

directly using the Pontryagin difference. For λ ∈ {2× 105, 106}, the volume ratios of X̃ (Φx)
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Figure 5.2. Simulation results for uncertainty weightings λ ∈ {101, 2 × 105, 106} with the
dashed lines denoting the reference trajectories for the position state and the accelera-
tion/deceleration input.

compared to X̂ are Vr = 0.99 and Vr = 0.987 while the volume ratios of Ũ(Φu) compared to

Û are Vr = 0.94 and Vr = 0.78.

Using YALMIP [57] and Gurobi [34] to formulate and solve (5.11), the mean and maxi-

mum computation times are 0.26 and 0.42 seconds over 100 runs on a laptop with a 2.2 GHz

i5 processor with 8 GB of RAM. By comparison, solving (5.3) has a mean and maximum

computation times of 0.09 and 0.34 seconds with an additional 1.19 seconds required for the

offline computation of RPI sets and corresponding constraint tightening. While including

the uncertainty set size as a decision variable clearly increases the computation time, the pro-

posed approach is expected to remain computationally viable for systems with significantly

more states and inputs.
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Figure 5.3. Relationship between the chosen value of λ and the resulting uncertainty set size
captured by Φw.
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Figure 5.4. Relationship between the chosen value of λ and the resulting operational cost
computed using (5.25).

5.8 Conclusions

A tube-based robust MPC formulation with integrated set computation is presented for con-

strained linear systems. The size of the uncertainty set is computed online in the underlying

control optimization problem. One-step RPI set and Pontryagin difference methods formu-

120



Figure 5.5. Tightened state and input constraint sets implicitly showing the effect of the
increasing uncertainty set size for λ ∈ {101, 2× 105, 106}.

lated based on zonotopes and Hausdorff distance enabled online computation of RPI sets

and tightened state and input constraint sets. A numerical example demonstrated the per-

formance of the proposed tube-based robust MPC formulation and highlighted the benefits

and limitations of embedding set calculations in the optimization problem. Future work will

focus on the extension of the proposed tube-based robust MPC formulation to hierarchi-

cal MPC for online computation of disturbances between subsystems and between control

decision at each level of the hierarchy which will be discussed in the following chapter.
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Figure 5.6. Comparison of Ẽ(Φε) and mRPI set E for λ ∈ {2× 105, 106}.
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CHAPTER 6

HIERARCHICAL MPC FOR COUPLED SUBSYSTEMS

USING ADJUSTABLE TUBES 1

6.1 Introduction

Model Predictive Control (MPC) of constrained dynamic systems provides the ability to

satisfy both input and state constraints to guarantee safe and reliable system operation. This

is particularly important for systems where the desired operation requires both transient and

steady-state input and state trajectories to approach these constraints. Examples include

the control of water distribution networks [90], aircraft power systems [80], smart power

grids [43, 40], and hybrid electric vehicles [21, 91].

However, centralized MPC approaches are not well-suited for the control of these com-

plex multi-timescale systems, where the system is comprised of many dynamically coupled

subsystems and achieving the desired operation requires both fast control update rates and

long prediction horizons.

For these complex systems, hierarchical MPC can be used to decompose control decision

across multiple levels of controllers [73]. Typically, upper-level controllers are designed with

large time step sizes to optimize system operation over long prediction horizons while lower-

level controllers use small time step sizes to resolve the fast dynamics of the system over

short prediction horizons. With a single controller per level, vertical hierarchical MPC is a

computationally efficient approach for controlling multi-timescale systems with a relatively

low number of states and inputs [49]. For more complex systems, comprised of multiple

dynamically-coupled subsystems, full hierarchical MPC utilizes multiple controllers at each

of the lower-levels to reduce the number of control decisions per controller [9, 24, 26].

1This chapter is based on work supported by the National Science Foundation under grant 1849500.
Chapter 6 in part is a reprint of material published in: © 2022 Automatica. Reprinted, with permission,
from Raghuraman, V. and Koeln, J.P., 2021. Hierarchical MPC for coupled subsystems using adjustable
tubes. Automatica, 143, p.110435.
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Many hierarchical MPC formulations [26, 24, 9, 86] have been developed to provide

theoretical guarantees for the closed-loop system. Specifically, the two-level hierarchical

controller in [9] with an upper-level MPC and a lower-level linear controller achieves state

and input constraint satisfaction through communication of optimal references and reference

rate changes between controller levels and also guarantees closed-loop stability. The con-

troller developed in [86] provides guaranteed persistent controller feasibility and closed-loop

stability for a cascaded system with actuator dynamics subject to input constraints. In this

case, coordination is achieved through the appropriate choice of contractive terminal con-

straint sets and terminal control laws, which overall guarantee stability of the error between

inner-loop and outer-loop reference models to the origin. The works in [24, 26] extend the

vertical hierarchical architecture to a full two-level hierarchical controller with one upper-

level controller and multiple controllers at the lower-level, one for each subsystem operating

at the same timescale in [24] and different timescales in [26], and guarantees closed-loop

stability and input constraint satisfaction while driving the system to a desired steady state.

While [24] drives the system to a desired set around a steady-state equilibrium, the works in

[26, 9, 86] guarantee convergence to the exact steady-state equilibrium. However, for systems

with finite operation, such steady-state equilibrium might not exist, as in the case of systems

whose operation is based on the utilization of a finite resource (e.g. battery state of charge

in an electric vehicle [91, 72] or fuel in an aircraft [20]).

Similar to [70, 49], this work focuses on the notion of completion, with the goal of max-

imizing transient performance by satisfying state, input, and terminal constraints during

system operation. While the multi-rate hierarchical MPC proposed in [26] achieves real-time

computational performance using a full hierarchical MPC architecture with a reduced-order

model at the upper-level, guarantees on closed-loop state constraint satisfaction are not

shown explicitly. Additionally, the amount of control flexibility provided to the upper- and

lower-level controllers along with the resulting uncertainty sets, Robust Positive Invariant
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(RPI) sets, and tightened constraint sets are determined offline and might not be the op-

timal choice for systems that need a time-varying control flexibility. Moreover, guaranteed

convergence might not be possible for a wide range of systems due to underlying assumptions

on the slow timescale of the upper-level controller. To address these challenges, this work

focuses on development of a set-based hierarchical MPC architecture for linear systems of

dynamically-coupled subsystems that guarantees state and input constraint satisfaction.

One of the fundamental considerations for coordination in hierarchical MPC is how to

provide lower-level controllers the flexibility to use their fast update rates and the fast dy-

namics of the system to improve upon the control decisions made by upper-level controllers

without introducing unnecessary conservatism to account for this flexibility. In the authors’

prior work [49], set-based vertical hierarchical MPC was proposed, where waysets were used

as the primary coordination mechanism to provide both control performance and guaranteed

constraint satisfaction. Strategically designed terminal costs were added to complement the

waysets to guarantee that the lower-level controllers can only improve control performance

compared to the upper-level controller trajectories [67].

For full hierarchical MPC of systems of dynamically-coupled subsystems, providing lower-

level controllers the flexibility to deviate from the trajectories planned by upper-level con-

trollers introduces uncertainty between subsystems. Therefore, the desired degree of flexi-

bility balances the benefits of allowing lower-level controller to improve control performance

within their own subsystem with the cost of creating unknown disturbances for neighboring

subsystems. This trade off can be time-varying, where certain system operations might re-

quire a high level of coordination between subsystems, resulting in very little flexibility for

lower-level subsystem controllers to deviate from the upper-level system-wide control plan.

Alternatively, other system operations might not require much coordination between sub-

systems and lower-level controllers should be permitted a high degree of flexibility to further

improve control performance.
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The proposed two-level hierarchical MPC framework provides this time-varying subsys-

tem coordination flexibility using an adjustable tube set-based coordination mechanism.

Specifically, while planning system state and input trajectories, the upper-level controller

simultaneously optimizes the permissible deviations from these trajectories provided to the

lower-level subsystem controllers and the corresponding constraint tightening needed to be

robust to these deviations. These time-varying permissible deviations are communicated

to the lower-level controllers that use this flexibility to further optimize subsystem opera-

tion. The ability to embed the optimization of these permissible deviation bounds within

the upper-level MPC optimization problem is enabled by zonotopes and the recent work on

computing RPI sets and Pontryagin difference set operations using linear constraints [66, 65].

Contributions: The specific contributions of this research are: (1) the development a

two-level hierarchical framework with M lower-level controllers, one for each of the M

dynamically-coupled subsystems; (2) the definition and the use of adjustable tubes to provide

time-varying bounds on permissible deviations between upper-level and lower-level planned

trajectories; (3) the closed-loop analysis of the hierarchical controller to prove controller

feasibility and guarantee constraint satisfaction; and (4) a numerical demonstration of the

capabilities of the proposed approach. Note that the proposed work extends the tube-based

robust MPC with uncertainty set optimization from [65] to a hierarchical MPC framework

with optimal allocation of uncertainty quantified as the differences in control decisions be-

tween controller levels and between subsystems. Similar to [65], RPI, tightened output,

and tightened terminal sets corresponding to the optimized uncertainty are computed online

while solving the control optimization problem.

6.2 Notation and Preliminaries

For a system comprised of multiple subsystems, system-level vectors are denoted in bold,

e.g. state x and input u, while vectors of the ith subsystem have the subscript i, e.g. state
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xi and input ui. The system state vector is formed by the concatenation of subsystem state

vectors as x = [xi]. Alternatively, the states of subsystem i can be extracted from the system

state vector as xi = Πix. For a discrete-time system, x(k) denotes the state x at time step k.

With [k, k+N−1] denoting the integers from k to k+N−1, the input trajectory over these

time steps is denoted {u(j)}k+N−1
j=k . For MPC, the double index notation x(k + l|k) denotes

the predicted state at future time k+l determined at time step k. The block-diagonal matrix

K with blocks Ki is denoted K = diag(Ki). The p-norm of a vector is denoted || · ||p and

the weighted norm is ||x||2Λ = xTΛx, where Λ is a positive-definite diagonal matrix. All sets

are shown in caligraphic font. For sets X , Y ∈ Rn, X ⊕ Y denotes the Minkowski sum and

X ⊖ Y denotes the Minkowski/Pontryagin difference of Y from X . The Cartesian product

of sets is denoted as X × Y . The projection of X on the ni dimensions of subsystem i is

denoted as Xi = Πi X .

6.3 Problem Formulation

Consider a linear discrete time-invariant system composed of M dynamically-coupled sub-

systems, Si, where i ∈ N ≜ [1,M ]. The dynamics of subsystem Si are

xi(k + 1) = Aiixi(k) +Biiui(k) + wi(k), (6.1a)

yi(k) = Cixi(k) +Diui(k), (6.1b)

where xi ∈ Rni are the states, ui ∈ Rmi are the inputs, and yi ∈ Rni+mi are the outputs.

The coupling between subsystems is captured by the disturbance vector

wi(k) =
∑
j∈Ni

(Aijxj(k) +Bijuj(k)), (6.2)

where Ni is the set of neighboring subsystems such that

Ni ≜ {j ∈ N \ {i} : [Aij Bij] ̸= 0}. (6.3)
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The outputs are defined to include all states and inputs such that yi(k) ≜ [xi(k)
⊤ ui(k)

⊤]⊤

and [Ci Di] ≜ Ini+mi
. The subsystem states, inputs, and outputs are constrained such that

xi(k) ∈ Xi, ui(k) ∈ Ui, yi(k) ∈ Yi ≜ Xi × Ui. (6.4)

Based on (6.1) and (6.2), the full system dynamics are

x(k + 1) = Ax(k) +Bu(k), (6.5a)

y(k) = Cx(k) +Du(k), (6.5b)

where x = [xi] ∈ Rn, u = [ui] ∈ Rm, and y = [yi] ∈ Rn+m, such that n =
∑M

i=1 ni and

m =
∑M

i=1mi. The system constraints are

x(k) ∈ X ≜ X1 × · · · × XM , (6.6a)

u(k) ∈ U ≜ U1 × · · · × UM , (6.6b)

y(k) ∈ Y ≜ Y1 × · · · × YM . (6.6c)

Let AD ≜ diag(Aii) and BD ≜ diag(Bii) be block diagonal matrices while AC ≜ A−AD and

BC ≜ B −BD are off-diagonal matrices that capture the coupling between subsystems.

Assumption 11. There exists a static feedback control gain Ki ∈ Rmi×ni for each subsystem

Si, i ∈ N , such that Aii + BiiKi is Schur stable and A + BK is Schur stable, where K =

diag(Ki) is a block-diagonal matrix.

Remark 8. For systems with weak dynamic subsystem coupling, the control gain Ki, ∀i ∈ N ,

satisfying Assumption 11 can often be obtained using decentralized control design methods

such as LQR or pole placement. For systems comprised of more strongly coupled subsystems,

control gains satisfying Assumption 11 may potentially be found by solving a set of Linear

Matrix Inequalities (LMIs) based on [12]. However, for highly-coupled systems, it may not be

possible to satisfy Assumption 11 and a control approach that requires the decomposition

of the system into subsystems may not be practical.
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Assumption 12. With a fixed time step ∆t, the system operates for a finite length of time

starting from t = 0 and ending at t = tF = kF∆t with time steps indexed by k ∈ [0, kF ].

Starting from an initial condition x(0), the goal is to plan and execute an input trajectory

and corresponding state and output trajectories satisfying the system dynamics from (6.5),

the constraints from (6.6) for all k ∈ [0, kF − 1], and the terminal constraint

x(kF ) ∈ T ≜ T1 × · · · × TM ⊆ X . (6.7)

Assumption 13. The sets Xi, Ui, and Ti, i ∈ N , are zonotopes.

The generic cost function

J(x(0)) =

kF−1∑
j=0

ℓ(j) + ℓF (kF ), (6.8)

defines the cost of system operation using a pre-determined reference trajectory {r(k)}kFk=0

with stage costs ℓ(j) = ℓ(x(j),u(j), r(j)) and terminal cost ℓF (kF ) = ℓF (x(kF ), r(kF )).

Considering the full system (6.5), operational constraints (6.6), terminal constraint (6.7),

and cost function (6.8), this research develops a two-level hierarchical control approach

with M controllers at the lower-level that guarantees constraint satisfaction and provides

computational efficiency in the case of a large number of subsystems M , small time step size

∆t, and large operating duration tF .

6.4 Hierarchical Control

The proposed hierarchical control formulation consists of a single controller C0 in the upper-

level and M controllers Ci, i ∈ N , in the lower-level, where Ci controls subsystem Si.

Assumption 14. The controller C0 has a time step size ∆t0 and maximum prediction

horizon N̄0 such that ∆t0N̄0 = tF . Each controller Ci, i ∈ N , has a time step size ∆t and

maximum prediction horizon N̄ such that ∆tN̄ = ∆t0.
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Let ν0 ≜ ∆t0
∆t

= N̄ ∈ Z+ be defined as a time scaling factor for C0. The time steps for

C0 are indexed by k0, with k0 ≜ k
ν0
, and let k0,F ≜ kF

ν0
= N̄0 denote the terminal step of

C0 such that k0 ∈ [0, k0,F ]. Thus, the upper-level controller C0 has a shrinking horizon,

with time-varying horizon length N0(k0) ≜ N̄0 − k0. Each lower-level controller Ci has a

shrinking and resetting horizon, with horizon length N(k) ≜ N̄ − (k mod N̄). This allows

Ci to predict between updates of C0, at which point (k mod N̄ = 0) and the prediction

horizon resets back to N(k) = N̄ .

Similar to [48, 49], C0 predicts coarse state and input trajectories at time indices k0 with

a large time step size ∆t0. Lower-level controllers Ci are permitted bounded deviations from

the trajectories planned by C0 to further improve control performance using a smaller time

step size ∆t. Unlike [48, 49], this work addresses the coupling between subsystems. If the

lower-level controller Ci chooses to deviate from the state and input trajectories planned by

C0, these deviations create unknown disturbances that could lead to constraint violations

in neighboring subsystems. Therefore, instead of using waysets as in [48, 49], a tube-based

coordination mechanism is used to bound the permissible deviations between the trajectories

planned by C0 and those planned by Ci. Moreover, the size of these permissible deviations

is optimized online by C0 to balance the flexibility given to lower-level controllers with the

potentially time-varying need for close coordination among subsystems.

Specifically, for each subsystem, the sets ∆Zi(δ
z
i (k0)) and ∆Vi(δvi (k0)) denote scaled

zonotopes that bound the permissible state and input deviations between the trajectories

planned by C0 and those planned by Ci. The scaling vectors can be collected to form the

output deviation vector δi(k0) = [δzi (k0)
⊤ δvi (k0)

⊤]⊤ and the permissible output deviation set

∆Yi(δi(k0)) = ∆Zi(δ
z
i (k0))×∆Vi(δvi (k0)). (6.9)

To reduce notational complexity, the shorthand ∆Yi(k0) = ∆Yi(δi(k0)) is used when explic-

itly stating the dependency on δi(k0) is unnecessary. The system state, input, and output
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deviation vectors are δz(k0) = [δzi (k0)], δ
v(k0) = [δvi (k0)], and δ(k0) = [δz(k0)

⊤ δv(k0)
⊤]⊤

and the scaled subsystem deviation sets combine to form the scaled system deviation sets

∆Z(δ(k0)) = ∆Z1(k0)× · · · ×∆ZM(k0), (6.10a)

∆V(δ(k0)) = ∆V1(k0)× · · · ×∆VM(k0), (6.10b)

∆Y(δ(k0)) = ∆Z(δ(k0))×∆V(δ(k0)). (6.10c)

The controller C0 updates only when k = ν0k0 (i.e. when k mod ν0 = 0), by solving the

constrained optimization problem P0(x(k)) defined as

J∗
0 (x(k)) = min

x̂(k0|k0), Û(k0),

δ(k0)

k0,F−1∑
j=k0

ℓ (j|k0) + ℓF (k0,F ), (6.11a)

s.t.∀j ∈ [k0, k0,F − 1] ,

x̂(j + 1|k0) = A0x̂(j|k0) +B0û(j|k0), (6.11b)

ŷ(j|k0) = Cx̂(j|k0) +Dû(j|k0) ∈ Ŷ0(δ(k0)), (6.11c)

x̂(k0,F |k0) ∈ T̂0(δ(k0)), (6.11d)

x(k)− x̂(k0|k0) ∈ ∆Z(δ(k0))⊕ E0(δ(k0)), (6.11e)

∆Z(δ(k0)) ⊆ Pre(∆Z(δ(k0))). (6.11f)

The shrinking horizon of P0(x(k)) is reflected in the summation limits in (6.11a). The stage

costs are defined as ℓ(j|k0) = ℓ(x(k), x̂(j|k0), û(j|k0), δ(k0), r0(j)) to be a function of the

measured state, nominal state, nominal input, permissible deviations for lower-level con-

trollers, and the reference trajectory. The reference trajectory r0(j) can be obtained by

downsampling the predetermined reference trajectory r(j) either using averaging or zero

order hold [48]. The terminal cost ℓF (k0,F ) is the same as in (6.8). Note that the system

performance can be balanced with the maximization of δ through an additional cost function

term Λ||δ̄−δ||p, where Λ is a scalar weighting term and δ̄ is a user-specified upper-bound on
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δ. The nominal input trajectory is defined as Û(k0) = {û(j|k0)}
k0,F−1
j=k0

. The permissible de-

viation scaling vector δ(k0) affects the sizes of the tightened output constraint set Ŷ0(δ(k0)),

the tightened terminal constraint set T̂0(δ(k0)), the state deviation constraint set ∆Z(δ(k0)),

and the RPI set E0(δ(k0)), as discussed in Section 6.5. In (6.11b), the model used by C0

assumes a piecewise constant control input over the time step size ∆t0 and thus A0 = Aν0

and B0 =
∑ν0−1

j=0 AjB (as in [74]). In (6.11c) and (6.11d), the outputs and terminal state are

constrained to the time-varying tightened output and terminal constraint sets. Similar to

tube-based MPC [60], (6.11e) allows C0 flexibility in the choice of initial condition x̂(k0|k0),

which is used to prove recursive feasibility of P0(x(k)) in Section 6.6. Finally, (6.11f) con-

strains the time-varying permissible state deviation set to be a subset of its own precursor

set. Based on the definition from [14], the precursor set is defined specifically as

Pre(∆Z(k0)) = {z | ∃v ∈ ∆V(k0) s.t. ADz+BDv ∈ ∆Z(k0)} , (6.12)

and is used to establish feasibility of the lower-level controllers in Section 6.6. Note that the

RPI set E0(δ(k0)) is assumed to be a structured RPI set such that

E0(δ(k0)) = E1(δ1(k0))× · · · × EM(δM(k0)), (6.13)

and is formulated in more detail in Section 6.5. This structure has been used in distributed

robust MPC [85] and imposes an inherent limit on the coupling between subsystems.

The lower-level controllers Ci, i ∈ N , update at each time index k by each solving, in

parallel, the constrained optimization problems Pi(xi(k)), defined as

J∗
i (xi(k)) = min

zi(k|k),
Vi(k)

k+N(k)−1∑
j=k

ℓi(j|k) + ℓi,F (k +N(k)), (6.14a)

s.t. ∀j ∈ [k, k +N(k)− 1] ,

zi(j + 1|k) = Aiizi(j|k) +Biivi(j|k) + ŵ∗
i (j), (6.14b)

yi(j|k) = Cizi(j|k) +Divi(j|k), (6.14c)
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yi(j|k)− ŷ∗i (j) ∈ ∆Yi(δ
∗
i (k0)), (6.14d)

zi(k +N(k)|k)− x̂∗
i (k +N(k)) ∈ ∆Zi(δ

∗
i (k0)), (6.14e)

xi(k)− zi(k|k) ∈ Ei(δ∗i (k0)). (6.14f)

The shrinking and resetting horizon of Pi(xi(k)) is reflected in the summation limits in

(6.14a). The stage costs are defined as ℓi(j|k) = ℓi (xi(k), zi(j|k), vi(j|k), ri(j)) to be a

function of the measured subsystem state, nominal subsystem state, nominal subsystem in-

put, and subsystem reference trajectory. The terminal cost is defined as ℓi,F (k + N(k)) =

ℓi,F (zi(k + N(k)|k), ri(k + N(k))). The nominal input trajectory is defined as Vi(k) =

{vi(j|k)}k+N(k)−1
j=k . In (6.14b), the subsystem dynamics from (6.1a) are used with a time-

varying C0-optimal disturbance ŵ∗
i (j) that is communicated from C0 (details in Section

6.5). Nominal subsystem outputs are defined in (6.14c) and the differences between these

outputs and the C0-optimal outputs ŷ∗i (j) are constrained in (6.14d) to the time-varying

permissible output deviation set ∆Yi(δ
∗
i (k0)) (details in Section 6.5). Similarly, the differ-

ence between the nominal terminal state and the C0-optimal terminal state is constrained

to the time-varying permissible state deviation set ∆Zi(δ
∗
i (k0)) in (6.14e). Finally, (6.14f)

provides flexibility in initial condition zi(k|k) based on the RPI set from (6.13).

As shown in Fig. 6.1, coordination between the upper-level controller C0 and lower-level

controllers Ci, i ∈ N , is achieved through the communication of the C0-optimal trajectories

ŷ∗i (j) and ŵ∗
i (j), j ∈ [k, k + N(k) − 1], terminal state x̂∗

i (k + N(k)), and the time-varying

permissible deviation vectors δ∗i (k0). In this hierarchical control architecture, only the lower-

level controllers Ci directly affect the system through inputs to the subsystems Si. Once

each Ci has solved for the optimal nominal input trajectories V ∗
i (k) and optimal nominal

initial condition z∗i (k|k), the input to the system is u(k) = [ui(k)] where

ui(k) = v∗i (k|k) +Ki(xi(k)− z∗i (k|k)). (6.15)
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The two-level hierarchical controller is implemented based on Algorithm 7. The specific

formulation of the sets in (6.11) and (6.14) are presented in Section 6.5 and the corresponding

constraints are used to guarantee satisfaction of the state, input, and terminal constraints

from (6.6) and (6.7) in Section 6.6.

Algorithm 7: Two-level Hierarchical MPC with subsystem coupling.

1 Initialize k, k0 ← 0
2 if k mod ν0 = 0 then
3 solve P0(x(k));

4 communicate {ŷ∗i (j)}
k+N(k)−1
j=k , {ŵ∗

i (j)}
k+N(k)−1
j=k , x̂∗

i (k +N(k)), and δ∗i (k0) to

Pi(xi(k)),∀i ∈ N ;
5 k0 ← k0 + 1;

6 end
7 solve Pi(xi(k)),∀i ∈ N , and apply the input u(k) = [ui(k)] to the system based

on (6.15);
8 k ← k + 1;

6.5 Nominal Trajectories and Error Propagation

Following the tube-based MPC framework in [60], the goal of this section is to explicitly

bound the differences between the nominal trajectories planned by the controllers C0 and

Ci, i ∈ N , and true system trajectories.

First, since C0 has a larger time step size than Ci and system dynamics (i.e. ∆t0 > ∆t),

the input and state trajectories determined by C0 must be upsampled. Let û∗(k) and x̂∗(k)

be the upsampled input and state trajectories corresponding to the optimal trajectories de-

termined by C0. Since the model (6.11b) assumed a piecewise constant input, the upsampled

trajectories are computed as the forward simulation of (6.5a) such that

û∗(k) = û∗(k0|k0), (6.16a)

x̂∗(k) = Ak−ν0k0x̂∗(k0|k0) +
k−ν0k0−1∑

j=0

AjBû∗(k0|k0), (6.16b)
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for k ∈ [ν0k0, ν0(k0+1)−1]. These trajectories create the C0-optimal output and disturbance

trajectories ŷ∗i (k) and ŵ∗
i (k) used in (6.14d) and (6.14b), where û∗

i (k) = Πi û
∗(k), x̂∗

i (k) =

Πi x̂
∗(k), and

ŷ∗i (k) = [x̂∗
i (k)

⊤ û∗
i (k)

⊤]⊤, (6.17a)

ŵ∗
i (k) =

∑
j∈Ni

(Aijx̂
∗
j(k) +Bijû

∗
j(k)). (6.17b)

Let ∆x(k) = [∆xi(k)], ∆u(k) = [∆ui(k)], and ∆y(k) = [∆yi(k)] denote the state, input,

and output prediction errors for C0, where

∆xi(k) ≜ xi(k)− x̂∗
i (k), ∆ui(k) ≜ ui(k)− û∗

i (k),

∆yi(k) ≜ yi(k)− ŷ∗i (k) = [∆xi(k)
⊤∆ui(k)

⊤]⊤.

These upper-level prediction errors consist of two parts, corresponding to the planned de-

viations by lower-level controllers Ci and the resulting lower-level prediction errors due to

coupling between subsystems. Specifically,

∆xi(k) = ∆zi(k) + ei(k), (6.19a)

∆ui(k) = ∆vi(k) +Kiei(k), (6.19b)

where

∆zi(k) ≜ zi(k)− x̂∗
i (k), ∆vi(k) ≜ vi(k)− û∗

i (k), (6.20)

are the planned deviations and ei(k) ≜ xi(k)− zi(k), are lower-level prediction errors due to

the coupling between subsystems. Note that Kiei(k) = ui(k) − vi(k) based on the control

law from (6.15).

Lemma 11. Let the disturbance error set be defined as

∆W = AC∆Z ⊕BC∆V . (6.21)
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v∗1(k|k)
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v∗M (k|k)
z∗M (k|k)

u1(k) uM (k)

{ŷ∗i (j)}
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{ŵ∗
i (j)}
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i (k +N(k)), δ∗i (k0)

x1(k) xM (k)
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· · ·
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· · ·

x(k)
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Figure 6.1. Two-level hierarchical MPC where C0 is formulated based on (6.11) and Ci,
i ∈ N , based on (6.14). The C0-optimal trajectories ŷ∗i (j) and ŵ∗

i (j) are computed using
(6.16) and (6.17). The optimal output deviations δ∗i (k0) are used to coordinate controllers
C0 and Ci, i ∈ N , and the static feedback control law (6.15) computes the inputs to each
subsystem Si.

Then the lower-level prediction errors e(k) = [ei(k)] are bounded to the RPI set E0 ⊂ Rn,

where E0 satisfies

(A+BK)E0 ⊕∆W ⊆ E0. (6.22)

Proof. Using the true subsystem dynamics from (6.1a) and the nominal subsystem model

from (6.14b), the lower-level prediction error dynamics for each subsystem are

ei(k + 1) = (Aii +BiiKi)ei(k) + ∆wi(k), (6.23)

where ∆wi(k) = wi(k) − ŵ∗
i (k). Using the definitions of wi(k) and ŵ∗

i (k) from (6.2) and

(6.17b), this disturbance error is

∆wi(k) =
∑
j∈Ni

(Aij(xj(k)− x̂∗
j(k)) +Bij(uj(k)− û∗

j(k))).

Based on (6.18) and (6.19), this disturbance error can be rewritten as

∆wi(k) =
∑
j∈Ni

(Aij +BijKj)ej(k) + Aij∆zj(k) +Bij∆vj(k). (6.24)
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Combining (6.23) and (6.24) for all subsystems i ∈ N results in the system error dynamics

e(k + 1) = (A+BK)e(k) + AC∆z(k) +BC∆v(k).

Since ∆zi(k) ∈ ∆Zi and ∆vi(k) ∈ ∆Vi, ∀i ∈ N , AC∆z(k) + BC∆v(k) ∈ ∆W , as defined in

(6.21). Thus, if e(k) ∈ E0 and E0 satisfies (6.22), then e(k + 1) ∈ E0.

Lemma 12. The upper-level prediction errors ∆x(k) = [∆xi(k)] and ∆u(k) = [∆ui(k)] are

bounded such that

∆x(k) ∈ ∆Z ⊕ E0, ∆u(k) ∈ ∆V ⊕KE0. (6.25)

Proof. The proof follows directly from the definitions of ∆xi(k) and ∆ui(k) from (6.19) and

the result of Lemma 11.

Based on the results of Lemmas 11 and 12, the nominal outputs determined by the

upper-level controller in (6.11c) are constrained to the time-varying tightened output con-

straint set Ŷ0(δ(k0)). Then the time-varying tightened output constraint set is defined as

Ŷ0(δ(k0)) ≜ Ỹ0 ⊖ [(∆Z ⊕ E0)× (∆V ⊕KE0)], (6.26)

where Ỹ0 ⊆ Y is a tightened output constraint set used to prevent inter-sample constraint

violations (see Appendix 6.9.1 for details on computing Ỹ0). Similarly, in (6.11d), the nominal

terminal state is constrained to the time-varying tightened terminal constraint set T̂0(δ(k0))

defined as

T̂0(δ(k0)) ≜ T ⊖ (∆Z ⊕ E0) . (6.27)

Remark 9. While the inter-sample constraint tightening for C0 could be significant for

underdamped higher-order systems, the resulting reduction in control performance can be

alleviated through carefully choosing the time step size ∆t0 of C0, while balancing the overall

computational cost associated with a smaller time step size and the maximum prediction

horizon N̄0.
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6.6 Hierarchical Control Feasibility

The following establishes recursive feasibility of each controller in the hierarchy and guaran-

tees constraint satisfaction for the closed-loop system.

Assumption 15. There exists a feasible solution to P0(x(0)) at time step k = k0 = 0 for

the initial condition x(0).

Lemma 13. If P0(x(k)) is feasible time step k = ν0k0, then Pi(xi(k)), i ∈ N , is feasible at

this time step.

Proof. Let {x̂∗(j)}k+N(k)
j=k , {û∗(j)}k+N(k)−1

j=k , and δ∗(k0) denote upsampled C0-optimal state

and input trajectories and the optimal output deviation determined by C0 at time step

k = ν0k0. First, for all i ∈ N , it is to be shown that there exists an initial condition

z(k|k) = [zi(k|k)] that simultaneously satisfies the output deviation constraints from (6.14d)

and the initial condition constraint from (6.14f). Specifically, the initial condition constraint

(6.11e) ensures that x(k)− x̂∗(k0|k0) ∈ ∆Z(δ∗(k0))⊕ E0(δ∗(k0)). Based on the structure of

these sets from (6.10a) and (6.13), xi(k)− x̂∗
i (k0|k0) ∈ ∆Zi(δ

∗
i (k0))⊕Ei(δ∗i (k0)) for all i ∈ N .

Since these sets are all zonotopes, let ∆Zi(δ
∗
i (k0)) = {Gz

i , 0} and Ei(δ∗i (k0)) = {Gε
i , 0}.

Therefore, xi(k)− x̂∗
i (k0|k0) ∈ ∆Zi(δ

∗
i (k0))⊕Ei(δ∗i (k0)) guarantees the existence of ξzi and ξεi

such that ||ξzi ||∞ ≤ 1, ||ξεi ||∞ ≤ 1, and

xi(k)− x̂∗
i (k0|k0) = Gz

i ξ
z
i +Gε

iξ
ε
i . (6.28)

Choosing zi(k|k) = x̂∗
i (k0|k0) + Gz

i ξ
z
i , ensures that this initial condition satisfies the output

deviation constraint from (6.14d). Solving for x̂∗
i (k0|k0) and plugging into (6.28) results

in xi(k) − zi(k|k) = Gε
iξ

ε
i and thus this choice of initial condition also satisfies the initial

condition constraint from (6.14f).

It remains to show the existence of a candidate solution starting from this initial condition

zi(k|k), denoted by the nominal input sequence {vi(j|k)}k+N(k)−1
j=k and corresponding nominal
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state sequence {zi(j|k)}k+N(k)
j=k , that satisfies the model (6.14b) and the constraints (6.14c)-

(6.14e). Comparing the candidate solution satisfying the nominal subsystem dynamics from

(6.14b) and the upsampled C0-optimal trajectories satisfying the the true subsystem dynam-

ics from (6.1a) results in zi(j + 1|k)− x̂∗
i (j + 1) = Aii(zi(j|k)− x̂∗

i (j)) +Bii(vi(j|k)− û∗
i (j))

for all j ∈ [k, k + N(k) − 1]. Since zi(k|k) has already been shown to satisfy the output

deviation constraint from (6.14d), zi(k|k)− x̂∗
i (k) ∈ ∆Zi(δ

∗
i (k0)). From (6.11f) and the def-

inition of the precursor set from (6.12), this guarantees the existence of vi(k|k) such that

vi(k|k) − û∗
i (k) ∈ ∆Vi(δ∗i (k0)) and zi(k + 1|k) − x̂∗

i (k + 1) ∈ ∆Zi(δ
∗
i (k0)). This process is

repeated to show that the output deviation constraints from (6.14d) can be satisfied for all

time steps and that the terminal constraint from (6.14e) is satisfied at the final time step.

Lemma 14. For all i ∈ N , if Pi(xi(k)) is feasible at time step k, where k mod ν0 = 0 (i.e at

the time of C0 update), then Pi(xi(k)) is feasible at each time step k+1 through k+N(k)−1.

Proof. Let the feasible solution for Pi(xi(k)) at time step k be defined by the optimal nom-

inal input sequence {v∗i (j|k)}
k+N(k)−1
j=k and corresponding optimal nominal state sequence

{z∗i (j|k)}
k+N(k)
j=k satisfying (6.14b). While (6.14f) guarantees xi(k)− z∗i (k|k) ∈ Ei(δ∗i (k0)), the

feasibility of Pj(xj(k)), j ∈ N \ {i}, ensures that the disturbances ∆wi from (6.24) due

to subsystem coupling are bounded to ∆W used to define E0 = E1 × · · · × EM in Lemma

11. Thus xi(k + 1) − z∗i (k + 1|k) ∈ Ei(δ∗i (k0)), and {z∗i (j|k)}
k+N(k)
j=k+1 and {v∗i (j|k)}

k+N(k)−1
j=k+1

are feasible nominal state and input sequences, which are the tails of sequences deter-

mined at previous time step k. Thus, Pi(xi(k + 1)) is feasible and by induction, Pi(xi(j)),

∀j ∈ [k + 1, k +N(k)− 1] is recursively feasible.

Lemma 15. If Pi(xi(k − 1)) ∀i ∈ N had feasible solutions at the previous time step k − 1,

then P0(x(k)) has a feasible solution at current time step k = ν0k0.

Proof. Let the candidate solution to P0(x(k)) be the optimal nominal state and input se-

quences {x̂∗(j|k0 − 1)}k0+N0(k0)
j=k0

, {û∗(j|k0 − 1)}k0+N0(k0)−1
j=k0

, corresponding to the tails of the
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Figure 6.2. Schematic showing how Assumption 15 and Lemmas 13-15 are used to
establish feasibility of two-level hierarchical controller with coupling between subsystems in
the lower-level.

optimal solution determined at previous time step k0 − 1, and the previously planned de-

viation bound δ∗(k0 − 1). Since (6.11b), (6.11c), (6.11d), and (6.11f) are time-invariant,

the candidate solution satisfies these constraints. To show that x̂∗(k0|k0 − 1) is a feasible

initial condition, consider the following. Since, Pi(xi(k − 1)) is feasible at time step k − 1,

the terminal state z∗i (k|k − 1) = z∗i (k0) satisfies z∗i (k0) − x̂∗
i (k0|k0 − 1) ∈ ∆Zi(δ

∗
i (k0 − 1))

for every Si. Additionally, using the invariance of Ei(δ∗i (k0 − 1)) under control law (6.15),

xi(k) − z∗i (k0) ∈ Ei(δ∗i (k0 − 1)). Thus, by combining these statements for all subsystems,

x̂∗(k0|k0 − 1) satisfies (6.11e).

Theorem 17. Following Algorithm 7 for a two-level hierarchical controller with M con-

trollers in the lower-level, all control problems, P0(x(k)) and Pi(xi(k)), ∀i ∈ N , are feasible,

resulting in system state and input trajectories satisfying state, input, and output constraints

from (6.6) and terminal constraint from (6.7).

Proof. Using Assumption 15 and Lemmas 13-15, Fig. 6.2 shows how feasibility is estab-

lished for C0 and Ci, ∀i ∈ N . For notational convenience, let

Ω ≜ ∆Y(δ∗(k0))⊕
(
E0(δ∗(k0))×KE0(δ∗(k0))

)
.
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Figure 6.3. Thermal system with two subsystems S1 and S2 that are dynamically coupled
by active power flows Q2 and Q4.

Since, P0(x(k)) is feasible, the output trajectory ŷ∗(j) satisfies

ŷ∗(j) ∈ Ŷ∗
0 (k0) ≜ Ỹ0 ⊖ Ω ⊆ Y ⊖ Ω,

based on (6.11c), (6.26), and the fact that Ỹ0 ⊆ Y . Similarly, the feasibility of Pi(xi(k))

guarantees that the output trajectory y∗i (k|k) generated by Ci satisfies

y∗i (k|k)− ŷ∗i (k) ∈ ∆Yi(δ
∗
i (k0)), (6.29a)

yi(k)− y∗i (k|k) ∈ E∗i (δ∗i (k0))×KiEi(δ∗i (k0)), (6.29b)

based on (6.14d) and (6.14f). Thus, adding (6.29a) and (6.29b) for each system results in

y(k) ∈ ŷ∗(k)⊕Ω. Since ŷ∗(k) ∈ Y⊖Ω, y(k) ∈ (Y⊖Ω)⊕Ω. Finally, using the anti-extensive

property of the set opening operation, y(k) ∈ Y . Note that satisfaction of the terminal

constraint from (6.7) can be proven similarly.

6.7 Numerical Example

Consider the four component thermal system shown in Fig. 6.3 where Ti, ∀i ∈ [1, 4], are the

temperatures of thermal components, each with thermal capacitance Ci. The power flows
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(heat) into the system Q1 and Q3 are controlled directly. Two active power flows Q2 and Q4

are controlled by coolant mass flow rates ṁ2 and ṁ4 and satisfy

Q2 = ṁ2cp(T1 − T4), Q4 = ṁ4cp(T3 − T2), (6.30)

where cp is the specific heat of the coolant. Additionally, four passive power flows Q̄5, Q̄6,

Q̄7, and Q̄8 have constant coolant mass flow rates ṁp1 and ṁp2 and satisfy

Q̄5 = ṁp1cp(T1 − T2), Q̄6 = ṁp1cp(T3 − T4), (6.31a)

Q̄7 = ṁp2cp(T2 − T∞), Q̄8 = ṁp2cp(T4 − T∞). (6.31b)

From conservation of energy, the nonlinear, continuous-time dynamics are

C1Ṫ1 = Q1 −Q2 − Q̄5, C2Ṫ2 = Q̄5 +Q4 − Q̄7, (6.32a)

C3Ṫ3 = Q3 −Q4 − Q̄6, C4Ṫ4 = Q̄6 +Q2 − Q̄8. (6.32b)

For the following results, C1 = C2 = C3 = C4 = 15 × 104 J/K, cp = 4181 J/(kgK), and

T∞ = 300 K.

To represent (6.32a)-(6.32b) as a linear discrete-time invariant system in the form of

(6.5a), these dynamics are first linearized about nominal mass flow rates ṁo
2 = ṁo

4 = 0.036

kg/s and ṁo
p1 = ṁo

p2 = 0.108 kg/s, nominal power flow rates Qo
1 = Qo

3 = 30 kW, and nominal

temperature differences between adjacent components ∆T o = 50 K and then discretized

with a time step size of ∆t = 1 s. As shown in Fig. 6.3, the system is partitioned into

M = 2 subsystems S1 and S2 with state-input pairs [(x1, x2), (u1, u2)] and [(x3, x4), (u3, u4)],

respectively. The resulting discrete-time subsystem state and input matrices from (6.1a) and

coupling matrices from (6.2) are

A11 = A22 =

0.996 0.003

0.003 0.993

 , B11 = B22 =

7e−6 −1.39

1e−8 −0.002

 ,
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A12 = A21 =

 0 0.001

0.001 0

 , B12 = B21 =

6e−12 0.002

3e−9 1.39

 .

The static feedback control gains K1 and K2 are designed as discrete-time linear-quadratic

regulators with weighting matrices Qi = Ini
and Ri = 105Imi

. The poles of each of the

resulting closed-loop subsystems S1 and S2 are {0.27, 0.99}, while the closed-loop poles of

the overall system are {0.12, 0.42, 0.99, 0.99}, and thus, Assumption 11 is satisfied.

For a two-level hierarchical controller with two subsystems, the system and lower-level

controllers C1 and C2 have time step sizes of ∆t = ∆t1 = ∆t2 = 1 s while the upper-level

controller C0 has time step size of ∆t0 = 10 s, which results in ν0 = 10. Thus, the maximum

prediction horizons are N̄0 = 200 and N̄ = 10. The output constraint set Y is defined such

that ||x(k)||∞ ≤ 50 and u(k) satisfies[
−Qo

1 −ṁo
2 −Qo

3 −ṁo
4

]T
≤ u(k) ≤

[
200 0.14 200 0.14

]T
. (6.34)

The terminal constraint set T enforces ||x(kF )||∞ ≤ 50. Using the procedure from

Appendix 6.9.1, inter-sample constraint satisfaction for trajectories planned byC0 is achieved

using the tightened output constraint set Ỹ0 = X̃0×U where only the state constraints need

to be tightened. Minimal tightening is required where X̃0 = {x ∈ Rn | x ≤ x ≤ x} is

computed such that

x =

[
−49.93 −49.86 −49.93 −49.86

]⊤
,

x =

[
49.88 49.91 49.88 49.91]

]⊤
.

Given an initial state of x(0) = 0, the desired operation defined by {r(k)}kFk=0, is shown in

Fig. 6.4 for the first input (power flow u1) and third input (power flow u3). References for

the second and fourth inputs (mass flow rates u2 and u4) are the corresponding lower bounds

from (6.34) for the entire operation. The primary objective is to track the desired power flows
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Figure 6.4. The desired reference trajectories for Q1 and Q3.

(u1, u3) into the system while minimizing mass flow rates (u2, u4) and satisfying state and

input constraints from (6.6a) and (6.6b). For this example, the references for C0 are obtained

by downsampling the references using averaging. Note that the small high-frequency pulse

references for power flows u1 and u3 vary in-between the updates of C0.

The weighted quadratic cost function in (6.8) is defined based on these references and

rate of input change as

ℓ(x(j),u(j), r(j)) = ||r(j)− u(j)||2Γ1
+ ||u(j)− u(j − 1)||2Γ2

, (6.36)

Fig. 6.5 shows closed-loop simulation results using the linearized system model and

the proposed two-level hierarchical controller (Hier (Λ = 10)), where Λ is a cost function

weighting term used to incentivize maximizing the permissible deviation scaling vector δ(k0),

compared to a two-level hierarchical controller with no subsystem deviations (Hier (Λ = 0)),

a shrinking horizon centralized controller (Cent) that predicts to the end of system operation,

a receding horizon centralized controller with a control invariant terminal set and a prediction

horizon of N = 100 time steps (Cent T), and a receding horizon centralized controller (Cent

Short) with a short prediction horizon of N = 10 time steps. As expected, all the controllers

except the Cent Short controller satisfy the state constraints. Since there does not exist a

steady-state operating condition that satisfies the state and input constraints while tracking

the desired large pulsed power flows Q1 and Q3 shown in the third row of subplots in
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Figure 6.5. Simulation results comparing the shrinking horizon centralized controller, reced-
ing horizon centralized controller with a short prediction horizon, receding horizon centralized
controller with a terminal constraint, two-level hierarchical controller with no subsystem de-
viations, and a two-level hierarchical controller with subsystem deviations.
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Table 6.1. Controller computation times

Controller Computation time (s)
Minimum Mean Maximum

Cent 13.569 23.144 1092.3
Cent Short 0.009 0.01 0.05
Cent T 0.08 0.09 0.137

Hier (C0) 0.757 2.262 4.105
Hier (C1, C2) 0.011 0.014 0.08

Fig. 6.5, the controllers strategically precool the system temperatures to utilize the thermal

capacitance of the system. Note that due to a short prediction horizon, the Cent T controller

is unable to achieve the necessary level of precooling and thus, significantly reduces the power

flow into the system to avoid temperature constraint violations. While the Cent controller

tracks all pulses of the reference power flows, Hier (Λ = 0) tracks only the large pulse

references. The smaller, high-frequency, pulse references are not tracked perfectly by Hier

(Λ = 0) due to step changes occurring between updates of C0. Alternatively, Hier (Λ = 10)

achieves perfect tracking of the large pulsed power flows and nearly perfect tracking of the

small, high-frequency, pulse references by allowing the lower-level controllers to deviate from

the upper-level prediction, as shown in bottom row of subplots in Fig. 6.5 during the time

intervals [55, 254] s and [1055, 1254] s, respectively.

Fig. 6.6 shows the total operating costs computed using (6.36) when using the proposed

hierarchical controller for Λ = {10, 105, 5× 105, 106} normalized by the cost when using Hier

(Λ = 0). Initially, the normalized costs decreases due to the additional flexibility provided

to C1 and C2 by the increasing size of output deviation sets. However, as shown by Hier

(Λ = 5× 105), there is a point where further increasing the size of the output deviation sets

leads to significant constraint tightening that degrades overall control performance.

Using YALMIP [57] and Gurobi optimizer 8.5 [34] to formulate and solve the controller

optimization problems, Table 6.1 shows the mean, minimum, and maximum computation
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Figure 6.6. Relation between the chosen value of Λ and normalized cost relative to Hier
(Λ = 0) computed using (6.36).

times for each controller. Note that despite the additional complexity of simultaneous un-

certainty set optimization and constraint tightening at C0, the computation time is smaller

than that of the Cent controller. Furthermore, the average computation time of C1 and C2

is similar to Cent Short and less than Cent T. Overall, the proposed hierarchical approach

is expected to remain computationally efficient for systems with significantly more states,

inputs, and subsystems.

6.8 Conclusions

A two-level hierarchical MPC formulation was presented for linear systems of dynamically-

coupled subsystems. Adjustable tubes are used to bound permissible deviations between the

system trajectories planned by the upper- and lower-level controllers. A tube-based robust

MPC formulation with simultaneous uncertainty set optimization and constraint tightening

guaranteed constraint satisfaction to bounded disturbances between subsystem controllers.

A numerical example demonstrated the performance of the proposed two-level hierarchical
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MPC. Future work will focus on the extension of the proposed set-based hierarchical MPC

formulation to nonlinear systems and include more than two levels of controllers with ap-

plication to systems of greater complexity. The following chapter will discuss about the

development of a wayset-based stochastic MPC framework with guaranteed Mission-Wide

Probability of Safety (MWPS) for systems with long duration.

6.9 Appendix

This appendix provides the details necessary to implement the proposed hierarchical MPC

controller.

6.9.1 Inter-sample tightened output constraint set computation for C0

The tightened output constraint set Ỹ0 ⊆ Y0 introduced in (6.26) is used to ensure that

the coarse trajectories planned by C0 produce upsampled trajectories in (6.16) and (6.17a)

that satisfy the original output constraints. While there are many ways to achieve this, the

approach used in this research is based on bounding the difference between the upsampled

trajectories and the linear interpolations of the coarse trajectories planned by C0. Specifi-

cally, let x̂(k0) and x̂(k0+1) denote the first two states predicted by C0 corresponding to the

first input û(k0), where x̂(k0 + 1) = Aν0x̂(k0) +
∑ν0−1

j=0 AjBû(k0). The linearly interpolated

trajectories xl(k + i), ∀i ∈ [1, ν0 − 1], can be computed between x̂(k0) and x̂(k0 + 1) as

xl(k + i) = x̂(k0) +
i

ν0
(x̂(k0 + 1)− x̂(k0)).

By the convexity of X , x̂(k0), x̂(k0 + 1) ∈ X implies xl(k + i) ∈ X . However, it is not

guaranteed that the upsampled trajectory satisfies x̂(k+ i) ∈ X , ∀i ∈ [1, ν0 − 1]. Defined as

e(k+ i) = x̂(k+ i)− xl(k+ i), the difference between these trajectories can be computed as

e(k + i) = Ae(i)x̂(k) +Be(i)û(k), (6.37)
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where Ae(i) = Ai− i
ν0
Aν0−(1− i

ν0
)In and Be(i) =

∑i−1
j=0 A

jB− i
ν0

∑ν0−1
j=0 AjB. Since x̂(k) ∈ X

and û(k) ∈ U , these differences are bounded such that e(k + i) ∈ Fi = Ae(i)X ⊕ Be(i)U .

Thus, defining F = F1∪· · ·∪Fν0−1 ensures e(k+ i) ∈ F , ∀i ∈ [1, ν0−1]. Finally, computing

Ỹ = X̃ × U where X̃ = X ⊖ F guarantees that the upsampled trajectories satisfy the

original constraints. For ease of implementation, outer-approximating bounding boxes of Fi

are computed and thus, F is also a bounding box.

6.9.2 RPI set computation

This section presents how the RPI set E0(δ(k0)), used in (6.11e), is computed through the

addition of linear constraints and cost function terms in the formulation of P0(x(k)) using

the approach from [65]. Before proceeding with the computation of E0(δ(k0)), consider the

following definition.

Definition 10. [65] The zonotope Z(Φ) = {GΦ, c} ⊂ Rn is a scaled version of the nominal

zonotope Z = {G, c} with the generator matrix G scaled by a diagonal matrix Φ ∈ Rng×ng ,

Φ = diag(ϕi), ϕi ≥ 0, ∀i ∈ [1, ng].

Let the RPI set be a scaled zonotope such that E0(δ) = {GεΦε,0} with an a priori chosen

nominal generator matrix Gε ∈ Rn×nε . The permissible state and input deviation sets are

defined as scaled zonotopes with centers at the origin such that ∆Z = {Gzdiag(δ
z),0} and

∆V = {Gvdiag(δ
v),0}, where Gz ∈ Rn×nz and Gv ∈ Rm×nv . From (6.21), the resulting

disturbance error set is a scaled zonotope such that ∆W = {Gwdiag(δ),0}, where Gw =

[ACGz BCGv] ∈ Rn×nw and nw = nz + nv. In the numerical results from Section 6.7, Gz = I

and Gv = I such that nz = n and nv = m.

Following the approach from [65], based on the one-step RPI computation from [66]

and the zonotope containment conditions from [71], the decision variables Φε ∈ Rnε×nε ,

Γε,1 ∈ Rnε×nε , and Γε,2 ∈ Rnε×nw are added to P0(x(k)) with linear constraints

(A+BK)GεΦε = GεΓε,1, (6.38a)
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Gwdiag(δ) = GεΓε,2, (6.38b)

|Γε,1|1+ |Γε,2|1 ≤ Φε1. (6.38c)

The cost function for P0(x(k)) is modified to balance system performance with the maxi-

mization of δ through the addition of the term Λ||δ̄ − δ||p, where Λ is a scalar weighting

term and δ̄ is a user-specified upper-bound on δ. In the numerical results from Section 6.7

showing the effects of Λ, δ̄ is chosen to equal the upper bounds on the states and inputs and

the 1-norm is used (p = 1).

For the linear constraints (6.38) to admit a feasible solution, the generator matrix Gε

needs to be chosen carefully. As in [66, 65], an intuitive choice of generators is based on Gw

and ĀK = diag(Aii +BiiKi) such that

Gε = [Gw ĀKGw · · · Āns
KGw], (6.39)

where ns ∈ Z+ is a parameter that can be increased to promote the feasibility of (6.38) at

the cost of set complexity and the number of decision variables. In the numerical results

from Section 6.7, Gε = [Gw ĀKGw] is chosen with ns = 1.

Note that the block-diagonal structure of ĀK and structure of Gw ensures that Gε from

(6.39) is separable and thus, E0 is a structured RPI set satisfying (6.13). Once E0(δ∗(k0)) =

{GεΦε, cε} is computed, the subsystem-level RPI sets Ei = {Gi
ε, c

i
ε}, i ∈ N , satisfying (6.13)

can be obtained by projection.

6.9.3 Output Constraint Tightening for C0

This section presents how the output constraint tightening used to compute Ŷ0(δ(k0)), based

on (6.26) and used in (6.11c), is integrated into the formulation of P0(x(k)) through the

addition of linear constraints and cost function terms.

In (6.26), let the inter-sample tightened output constraint set be a zonotope such that

Ỹ0 = {G̃y, c̃y} with known generator matrix G̃y ∈ R(n+m)×nỹ and center c̃y ∈ Rn+m. Let
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the tightened output constraint set be a scaled zonotope such that Ŷ0(δ(k0)) = {ĜyΦy, ĉy},

where Ĝy ∈ R(n+m)×nŷ is an a priori chosen nominal generator matrix and Φy is a diagonal

scaling matrix satisfying Φy = diag(ϕy) with ϕy,i ≥ 0, ∀i ∈ [1, nŷ].

Following the approach from [65], based on the one-step Pontryagin difference compu-

tation from [66] and the zonotope containment conditions from [71], the decision variables

ĉy ∈ Rn+m, Φy ∈ Rnŷ×nŷ , Γy ∈ Rnỹ×(nŷ+nw+2nε), and βy ∈ Rnỹ are added to P0(x(k)) with

linear constraintsĜyΦy

[Gzdiag(δ
z) GεΦε] 0

0 [Gvdiag(δ
v) KGεΦε]


 = G̃yΓy, (6.40a)

c̃y − ĉy = G̃yβy, (6.40b)

|Γy|1+ |βy| ≤ 1. (6.40c)

The cost function for P0(x(k)) is modified to balance system performance with maximizing

the size of Ŷ0(δ(k0)) through the addition of the term −||ϕy||p, where ϕy is the vector of

scaling variables along the diagonal of Φy. In the numerical results from Section 6.7, the

1-norm is used (p = 1).

Note that the choice of Ĝy affects the quality of the inner-approximation of the Pontryagin

difference from (6.26). While the addition of generators could improve the approximation,

for the numerical results from Section 6.7, Ĝy was simply chosen as Ĝy = G̃y.

6.9.4 Terminal Constraint Tightening for C0

The terminal constraint tightening used to compute T̂0(δ∗(k0)), based on (6.27) and used

in (6.11d), is integrated into the formulation of P0(x(k)) through the addition of linear

constraints and cost function terms following the same approach used in the previous section

for output constraint tightening, and thus is not repeated here for brevity.
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6.9.5 Set containment condition (∆Z ⊆ Pre(∆Z))

This section presents how the set containment ∆Z ⊆ Pre(∆Z) in (6.11f) can be enforced

using linear constraints. Assuming the invertibility of AD, the precursor set is a zonotope

defined as Pre(∆Z) = {Gpdiag(δ),0}, with Gp = [A−1
D Gz − A−1

D BDGv].

Using the zonotope containment conditions from [71], the decision variable Γp ∈ Rnw×nz

is added to P0(x(k)) with linear constraints

Gzdiag(δ
z) = GpΓp, (6.41a)

|Γp|1 ≤ diag(δ)1. (6.41b)
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CHAPTER 7

LONG DURATION STOCHASTIC MPC WITH MISSION-WIDE

PROBABILISTIC CONSTRAINTS USING WAYSETS1

7.1 Introduction

Model Predictive Control (MPC) is well-suited for applications where the goal is to plan and

execute closed-loop state and input trajectories that satisfy state and input constraints while

driving the terminal state to a terminal constraint set. In applications such as spacecraft

rendezvous, aircraft missions, entering the terminal constraint set in a finite time is required

and several shrinking horizon MPC formulations have been developed [36, 22]. In the pres-

ence of disturbances bounded to a known set, robust MPC formulations based on constraint

tightening have been proposed that guarantee recursive feasibility of the MPC optimization

problem and constraint satisfaction of the closed-loop trajectories [60, 65].

If the disturbances are unbounded or if these bounds are relatively large, guaranteeing

recursive feasibility and closed-loop constraint satisfaction can be challenging in the sense

of being overly conservative at best and impossible at worst. Therefore, a Stochastic MPC

(SMPC) approach can be adapted to guarantee a desired probability of constraint satisfac-

tion. The majority of SMPC formulations focus on individual chance constraints on the

probability of constraint violations at any particular point in time [23, 76]. Even if a joint

probability constraint is imposed across multiple time steps, this joint probability is typically

decomposed into individual chance constraints using Booles’s inequality [32, 58]. Referring

to these approaches as constraining the Stage-Wise Probability of Safety (SWPS), the au-

thors in [89] show that a SWPS approach becomes very conservative for systems operating

over a long duration.

1This chapter is based on work supported by the National Science Foundation under grant 1849500.
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Alternatively, this chapter aims to constrain the Mission-Wide Probability of Safety

(MWPS), first introduced in [89]. Specifically, the operation of the system from an ini-

tial condition to a terminal set in a specific amount of time, subject to state and input

constraints, is referred to as a mission. A mission is successful if all state and input con-

straints are satisfied and the terminal state lies in the terminal set. Constraining the MWPS

to exceed some probability p means that when running a large number of missions, the

percentage of successful missions will converge to at least p.

The novel approach to achieving a desired MWPS proposed in [89] leverages a Markov

chain perspective to show that SMPC formulations with open-loop MWPS constraints are

recursively feasible and result in the closed-loop system achieving a designed MWPS. A

scenario-based approach is used to convert the SMPC problem into a deterministic robust

MPC formulation that is easily solved. The authors of [89] show that a MWPS is funda-

mentally less conservative than a SWPS approach.

While the efficacy of this approach is demonstrated in [89] for a discrete-time linear system

operating for eleven time steps, a number of limitations exist. First, only state constraints

are considered in [89] and the terminal set is assumed to equal the state constraint set. To

increase the applicability of this approach, input constraints need to be considered along

with terminal sets that are significantly smaller than the state constraint set. The latter

poses a challenge for the approach in [89] where constraint tightening based on the forward

propagation of uncertainty due to the disturbances could lead to an empty tightened terminal

set.

To overcome these limitations, a wayset-based approach to SMPC with MWPS con-

straints is proposed for systems with state, input, and terminal state constraints. While

the fundamental approaches from [89] are adopted, the proposed use of waysets allows for

the prediction horizon to be significantly shorter than the mission length and significantly

reduces the degree of constraint tightening required for long missions. Thus, the main contri-

butions of this chapter are: (1) the formulation of waysets that preserve the desired MWPS
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constraint, (2) the proof of recursive feasibility of the proposed wayset-based MPC formu-

lation, and (3) the demonstration that the use of wayset increases the feasibility of SMPC

with MWPS constraint to longer missions and/or larger disturbances.

The remainder of the section is organized as follows. Section II introduces the problem

formulation, while Section III provides the background on Stochastic MPC with MWPS.

Section IV discusses the wayset-based stochastic MPC with MWPS and Section V proves

recursive feasibility of the corresponding scenario-based optimization problem. Section VI

highlights the applicability to a numerical example and finally, Section VII provides conclu-

sive remarks.

7.2 Notation and Preliminaries

Probabilities and conditional probabilities are denoted as P[a] and P[a|b]. The expected

value of x over random variable w is denoted Ew[x]. The set of integers in the interval

[j1, j2] ∈ R is denoted I[j1,j2]. Vectors are denoted in lowercase (e.g. x ∈ Rn), sets are

denoted in calligraphic uppercase (e.g. X ⊂ Rn), and matrices are denoted in uppercase

(e.g. A ∈ R(n×n)). Additionally, uppercase is used to denote trajectories of vectors where,

for example, U[j1,j2] = {u(j)}
j2
j=j1

denotes the trajectory of the vector u(j) over time steps

j ∈ I[j1,j2]. The notation U[j1,j2] ∈ U denotes that each vector u(j) in the trajectory U[j1,j2]

is constrained as u(j) ∈ U . For a discrete-time system, x(k) denotes the state x at time

step k. For MPC, the double-index notation x(j|k) denotes the predicted state x at future

time step j determined at k. Given the sets Z,W ⊂ Rn, Y ⊂ Rm, and matrix R ∈ Rm×n

the linear mapping of Z by R is RZ = {Rz | z ∈ Z}, the Minkowski sum of Z and

W is Z ⊕ W = {z + w | z ∈ Z ∧ w ∈ W}, the generalized intersection of Z and Y

under R is Z ∩R Y = {z ∈ Z | Rz ∈ Y}, and the Pontryagin difference of W from Z is

Z ⊖W = {z|z ⊕W ⊆ Z}.
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7.3 Problem Formulation

Consider the discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + w(k), (7.1)

with states x ∈ Rn, inputs u ∈ Rm, disturbances w ∈ Rn, and the stabilizable pair (A,B),

A ∈ Rn×n, B ∈ Rn×m .

Assumption 16. With a fixed time step size ∆t, the system operates over a mission with

a finite length of time starting from t = 0 and ending at t = tF = kF∆t, with discrete time

steps indexed by k ∈ I[0,kF ].

Assumption 17. The disturbance trajectory W[0,kF−1] = {w(j)}kF−1
j=0 is a random variable

with known probability distribution such that Ns independent random disturbance trajectories

W
(i)
[0,kF−1] = {w(i)(j)}kF−1

j=0 , i = I[1,Ns] can be generated from this probability distribution.

Starting from an initial condition x(0), the goal is to formulate a SMPC such that the

resulting closed-loop input trajectory U[0,kF−1] = {u(j)}kF−1
j=0 , and corresponding state tra-

jectory X[1,kF ] = {x(k)}kFk=1 achieve a desired closed-loop MWPS p such that

P[X[1,kF−1] ∈ X ∧ U[0,kF−1] ∈ U ∧ x(kF ) ∈ T |x(0)] ≥ p, (7.2)

while minimizing the generic cost function

min
U[0,kF−1]

Ew

[
kF−1∑
j=0

ℓ (x(j), u(j)) + ℓF (x(kF ))

]
, (7.3)

where ℓ and ℓF are given stage and terminal costs.

Assumption 18. The state, input, and terminal constraint sets X , U , and T are compact

and convex.
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7.4 SMPC with MWPS Background

7.4.1 Open-loop and Closed-loop MWPS

The approach provided in [89] establishes the theoretical foundation relating the MWPS of

the closed-loop system to the MWPS constraints imposed in the open-loop planning of the

SMPC controller. Specifically, let the MWPS of the open-loop trajectories planned at time

step k be

P[X[k,kF ] ∈ X |x(k), Uk
[k,kF−1]], (7.4)

where Uk
[k,kF−1] denotes the input trajectory from time steps k to kF −1 planned at time step

k. Note that the input constraints are omitted and the terminal constraint is set as T = X

for this subsection for brevity and to be consistent with the formulation in [89]. The main

results of [89] (Proposition 1 and Corollary 1) show that constraining the initial open-loop

MWPS at k = 0 such that

P[X[0,kF ] ∈ X |x(0), U0
[0,kF−1]] ≥ p0, (7.5)

where
kF−1∏
k=1

γkp0 = p, (7.6)

with γk ∈ (0, 1] ∀k, achieves the desired closed-loop MWPS

P[X[1,kF ] ∈ X |x(0)] ≥ p, (7.7)

as long as the open-loop MWPS is constrained to exceed the discounted MWPS from the

previous time step

P[X[k+1,kF ] ∈ X |x(k), Uk
[k,kF−1]] ≥ γkP[X[k+1,kF ] ∈ X |x(k), Uk−1

[k,kF−1]]. (7.8)

This result is based on viewing the state trajectory as a Markov chain and leads to the

conclusion that the probability of successful missions under SMPC with these MWPS con-

straints will asymptotically converge to at least the desired probability p. In [89], only state
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constraints are considered while state, input, and terminal state constraints are included in

the MWPS in this work. Since these additional constraints do not affect the results sum-

marized above, the approach from [89] is adopted in this work. With a primary focus on

long missions, the constraint from (7.6) requires γk to be close to one for all k, and therefore

this discounting factor is not considered in this work (γk = 1). This allows for a simplified

implementation where p0 = p. In summary, based on the results from [89], the goal of this

work is to solve the following SMPC problem at each time k with an open-loop MWPS

constraint

min
Uk
[k,kF−1]

Ew

[
kF−1∑
j=k

ℓ (x(j), u(j)) + ℓF (x(kF ))

]
, (7.9a)

s.t. ∀j ∈ I[k,kF−1],

x(j + 1|k) = Ax(j|k) +Bu(j|k) + w(j), (7.9b)

x(k|k) = x(k), (7.9c)

P[Xk
[k+1,kF−1] ∈ X ∧ Uk

[k,kF−1] ∈ U ∧ x(kF |k) ∈ T |x(k), Uk
[k,kF−1]] ≥ p, (7.9d)

to achieve a desired closed-loop MWPS of p. Note that this SMPC formulation has a

shrinking horizon of length N̄(k) = kF − k.

7.4.2 Scenario-based SMPC

A scenario-based approach to SMPC allows probabilistic constraints, such as (7.9d), to be

replaced with a sufficiently large finite number of deterministic constraints based on sampled

disturbance trajectories. Specifically, let a generic SMPC optimization problem be defined

as

min
u∈Rd

ℓ(u), (7.10a)

s.t. P[u ∈ Sw] ≥ p, (7.10b)
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where u ∈ Rd is a vector of d decision variables (with notation chosen to reflect that the

inputs are the decision variables in MPC problems), ℓ is a generic cost function, and Sw is

a closed and convex set based on the realization of the random variable w. By sampling Ns

values of the random variable w, denoted as w(i), i ∈ I[1,Ns], the corresponding deterministic

optimization problem is

min
u ∈ Rd

ℓ(u), (7.11a)

s.t. u ∈
Ns⋂
i=1

Sw(i) . (7.11b)

IfNs is chosen to be sufficiently large, then the solution of (7.11) is a feasible solution of (7.10)

with a probability level 1 − β, where β is typically chosen to be very small, e.g., β = 10−6.

While there are several explicit bounds on Ns with varying levels of conservatism [17, 18],

this work uses the bound

Ns ≥
2

1− p

(
ln
1

β
+ d

)
. (7.12)

When using a scenario-based approach to solve the SMPC with MWPS constraint in

[89], the Ns sampled disturbance realizations are used to tighten the state constraints. A

polytopic Halfspace-representation (H-rep) of these state constraints makes the constraint

tightening computationally efficient, i.e. the MPC optimization problem complexity does

not depend on the number of samples Ns.

7.4.3 Drawbacks

While [89] only considers state constraints, this work intends to include state, input, and

terminal state constraints. The extension to include input constraints is relatively minor

but the adaptation of the approach from [89] to include terminal state constraints presents a

significant challenge. Specifically, the terminal constraint set T is often significantly smaller

than the state constraint set X . As such, when including terminal constraints in the generic
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constraint sets Sw(i) from (7.11b), the intersection of these sets may be empty. Conceptually,

this results from the case when there is not a single control sequence that can drive the

terminal state to the terminal constraint set for all of theNs sampled disturbance trajectories.

To limit the effects of the unknown disturbances on the state trajectory, it is common in

robust MPC formulations to augment the nominal inputs determined by the MPC with a

static feedback control law, with stabilizing feedback matrix K, which is also done in [89].

However, this may not prevent the intersection in (7.11b) from being empty, particularly

for long missions (kF is large). Therefore, the following section proposes a wayset-based

approach to overcome this issue.

7.5 Wayset-based SMPC with MWPS

The underlying idea of using waysets to overcome the infeasibility issue associated with long

missions and small terminal constraint sets is to use a shorter prediction horizon N(k) <

N̄(k) and a wayset, denoted Sp,T ,w(k+N(k)), as a terminal constraint instead of x(kF |k) ∈ T .

The notation for the wayset highlights the fact that the set S depends on the probability

level p, the terminal set T , the disturbance trajectory {w(j)}kF−1
j=k+N(k), and is imposed as

a terminal constraint at time step k + N(k). When these dependencies do not need to be

explicitly stated, the short-hand S(k + N(k)) is used. The primary goal for the remainder

of the chapter is to construct S(k +N(k)) and prove that by solving

min
Uk
[k,k+N(k)−1]

Ew

k+N(k)−1∑
j=k

ℓ (x(j), u(j)) + ℓF (x(kF ))

 , (7.13a)

s.t. ∀j ∈ I[k,k+N(k)−1],

x(j + 1|k) = Ax(j|k) +Bu(j|k) + w(j), (7.13b)

x(k|k) = x(k), (7.13c)

160



P[Xk
[k+1,k+N(k)−1] ∈ X ∧ Uk

[k,k+N(k)−1] ∈ U∧

x(k +N(k)|k) ∈ S(k +N(k))|x(k), Uk
[k,k+N(k)−1]] ≥ p, (7.13d)

there exists an input trajectory Uk
[k+N(k),kF−1] such that the resulting input trajectory Uk

[k,kF−1]

satisfies (7.9d).

7.5.1 Error Dynamics

Given that a scenario-based approach will be used to approximate the solution of (7.13), a

scenario-based approach is used to bound the effects of the unknown disturbance trajectory.

Given the Ns randomly generated disturbance trajectories W
(i)
[0,kF−1], i = I[1,Ns], let each set

W(k), k = I[0,kF−1], be the convex hull of the Ns disturbances at time step k such that

W(k) = CH(w(i)(k), i = I[1,Ns]). (7.14)

Let the true state at time step j based on the MPC solution at time step k be x(j|k) =

x̂(j|k) + e(j|k), where x̂ is the nominal state planned by the controller and e is the error

induced by the disturbances. To control this error, the planned input to the system u(j|k)

is a combination of the nominal part û(j|k) and stochastic error part Ke(j|k) such that

u(j|k) = û(j|k) +Ke(j|k), (7.15)

where K is a static feedback controller for the nominal system dynamics x̂(j + 1|k) =

Ax̂(j|k) + Bû(j|k) such that (A + BK) is stable. Based on (7.15), the predicted error

evolves ∀j ∈ I[k,kF ] as

e(j + 1|k) = (A+BK)e(j|k) + w(j), (7.16)

with e(k|k) = 0. Since w(j) ∈ W(j), e(j|k) ∈ E(j|k), where E(k|k) = 0 and

E(j + 1|k) = (A+BK)E(j|k) +W(j), ∀j ∈ I[k,kF ]. (7.17)
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Following the standard tube-based robust MPC formulation [60], constraining the nomi-

nal state and input trajectories to tightened constraint sets can ensure that the true state and

input trajectories for each of the Ns disturbance trajectory realizations satisfy the original

constraints. Specifically, the scenario-based approximation of (7.9) is

min
Ûk
[k,kF−1]

kF−1∑
j=k

ℓ (x̂(j), û(j)) + ℓF (x̂(kF )) , (7.18a)

s.t. ∀j ∈ I[k,kF−1],

x̂(j + 1|k) = Ax̂(j|k) +Bû(j|k), (7.18b)

x̂(k|k) = x(k), (7.18c)

x̂(j|k) ∈ X ⊖ E(j|k), (7.18d)

û(j|k) ∈ U ⊖KE(j|k), (7.18e)

x̂(kF |k) ∈ T ⊖ E(kF |k). (7.18f)

To ensure that the minimization of (18a) minimizes the expected cost in (13a), it is

assumed that the disturbances w(k) have zero-mean for all k ∈ I[0,kF−1].

7.5.2 Wayset Computation

As discussed in Section 7.4.3, this chapter proposes the use of waysets to overcome the fact

that T ⊖E(kF |k) may be an empty set if T is relatively small and/or if E(kF |k) is large due to

a large kF or large disturbances. Fundamentally, the goal is to define S(k+N(k)) such that

x(k +N(k)|k) ∈ S(k +N(k)) guarantees the existence of an input trajectory Uk
[k+N(k),kF−1]

where the resulting state and input trajectories and terminal state satisfy their constraints

for all Ns disturbance trajectory realizations. By definition, this corresponds to S(k+N(k))

being a (kF − k−N(k))-step robust controllable set [14], and is computed by Algorithm 8

through iterative calculations of robust precursor sets starting from the terminal set T .
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Algorithm 8: Calc. waysets S(k),∀k ∈ I[1,kF−1].

1 Initialize k ← kF , S(k) = T ;
2 while k ≥ 1 do
3 S(k − 1) = X ∩A [(S(k)⊖W (k − 1))⊕ (−BU)];
4 k ← k − 1;

5 end

7.5.3 Scenario-based SMPC with Wayset

The resulting sub-optimal approximation of (7.18) using waysets is

min
Ûk
[k,k+N(k)−1]

k+N(k)−1∑
j=k

ℓ (x̂(j), û(j)) + ℓF (x̂(k +N(k))) , (7.19a)

s.t. ∀j ∈ I[k,k+N(k)−1],

x̂(j + 1|k) = Ax̂(j|k) +Bû(j|k), (7.19b)

x̂(k|k) = x(k), (7.19c)

x̂(j|k) ∈ X ⊖ E(j|k), (7.19d)

û(j|k) ∈ U ⊖KE(j|k), (7.19e)

x̂(k +N(k)|k) ∈ S(k +N(k))⊖ E(k +N(k)|k). (7.19f)

The prediction horizon N(k) can be varied to ensure the feasibility of (7.19) for all time

steps k ∈ I[0,kF−1]. Specifically, it is assumed that N(0) can be chosen to maximize control

performance while satisfying the constraint S(N(0))⊖E(N(0)|0) ̸= ∅. If k+N(k) = kF , then

a shrinking prediction horizon is used such that N(k+1) = N(k)−1. If k+N(k) ̸= kF , then

a receding or shrinking horizon can be used. As discussed in detail when formally proving

recursive feasibility in Section 7.6, a sufficient condition is used to guarantee the feasibility of

(7.19) at time step k+1 based on the feasibility at time step k using a receding horizon, N(k+

1) = N(k). Specifically, a receding horizon is feasible if there exists a candidate nominal

input ū(k+N(k)|k+1) that satisfies the tightened input constraints U⊖KE(k+N(k)|k+1)
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and drives the candidate state to the tightened wayset S(k+N(k)+1)⊖E(k+N(k)+1|k+1).

This is equivalent to the set

Ū(k +N(k)) = [U ⊖KE(k +N(k)|k + 1)]
⋂
B

[S(k +N(k) + 1)⊖ E(k +N(k) + 1|k + 1)− Ax̃(k +N(k)|k + 1)],

(7.20)

being non-empty, where x̃(k + N(k)|k + 1) = x̂∗(k + N(k)|k) + (A + BK)(N(k)−1)w(k) is

a candidate terminal state for time step k + 1 and x̂∗(k + N(k)|k) is the optimal nominal

terminal state determined at time step k. Note that w(k) = x(k+1)− x̂∗(k+1|k) is known

when computing Ū(k+N(k)) prior to solving (7.19) at time step k+1. If Ū(k+N(k)) = ∅,

then a shrinking horizon is used where N(k+1) = max(N(k)−1, 1). The prediction horizon

update is summarized as

N(k + 1) =


N(k), if k +N(k) < kF ∧ Ū(k +N(k)) ̸= ∅,

max(N(k)− 1, 1), if k +N(k) = kF ∨ Ū(k +N(k)) = ∅.
(7.21)

7.5.4 Implementation and Set Computations

Algorithm 9 shows the implementation of the proposed scenario-based SMPC with MWPS.

The majority of set computations can be performed offline. In Line 1, the Multi-Parametric

Toolbox [37] is used to compute minimal representations of W(k) in Vertex-representation

(V-rep) and identify the corresponding minimal H-rep. To compute the error sets in (7.17)

efficiently, theW(k) are first converted from H-rep to constrained zonotopes in CG-rep based

on the method proposed in [79]. Denoted as Box(W(k)), interval hull outer-approximations

of W(k) are also computed by solving 2n linear programs to make the Pontryagin difference

operations more computationally efficient. With W(k) in CG-rep, Line 2 computes the

error sets E(j|k) in CG-rep using linear transformations and Minkowski sums based on

(7.17). Once computed, these error sets are also outer-approximated with the interval hull as

Box(E(j|k)). In Line 3, inner-approximations of the waysets are computed usingAlgorithm
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8, where Box(W(k)) is used instead of W(k) to make the iterative method from [66] for

computing the Pontryagin difference more computationally efficient. When computing Line

3 of Algorithm 8, a zonotopic inner-approximation of S(k − 1) is computed using the

method from [66] to increase computational efficiency. In Lines 3 and 4 of Algorithm 9,

Box(E(j|k)) is used instead of E(j|k). The tightened wayset constraint (7.19f) is implemented

using a hypercube inner-approximation, computed using the method from [66], to simplify

the MPC formulation and implementation.

In the online portion of Algorithm 9, similar approximations are used to compute

Ū(k + N(k)) from (7.20) to determine the length of the prediction horizon N(k) based on

(7.21). Using zonotopes and constrained zonotopes and the strategic dependence on inner-

and outer-approximations, the online constraint tightening for (7.19d)-(7.19f) in Line 11

can be computed extremely quickly.

Algorithm 9: Wayset-based SMPC with MWPS

Offline:
1 Generate Ns dist. traj. W

(i)
[0,kF−1], i = I[1,Ns], and bounding sets

W(k), ∀k = I[0,kF−1];
2 Compute error sets per (7.17), ∀k ∈ I[0,kF ];
3 Compute waysets S(k),∀k ∈ I[1,kF−1] per Algorithm 8;
4 Choose N(0) s.t. S(N(0))⊖ E(N(0)|0) ̸= ∅;
5 Compute tightened constraints (7.19d)-(7.19f) ;
6 Initialize k ← 0;
Online:

7 while k ≤ kF − 1 do
8 if k ̸= 0 then
9 Compute N(k) using (7.21);

10 end
11 Compute tightened constraints (7.19d)-(7.19f);
12 Solve optimization problem (7.19);
13 Apply u(k) = û∗(k|k) to the system;
14 k ← k + 1;

15 end
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7.6 Recursive Feasibility

Assumption 19. The optimization problem (7.19) is feasible at time step k = 0.

Lemma 16. If (7.19) is feasible at time step k ∈ I[0,kF−2] and w(k) ∈ W(k), then (7.19) is

feasible at time step k + 1 when using the prediction horizon update law from (7.21).

Proof. Let {x̂∗(j|k)}k+N(k)
j=k and {û∗(j|k)}k+N(k)−1

j=k be the optimal nominal state and input

trajectories determined by solving (7.19) at time step k such that constraints (7.19b)-(7.19f)

are satisfied. First, consider the shrinking horizon case where N(k + 1) = N(k) − 1 ≥ 1

based on the conditions from (7.21). The candidate solution at time step k+ 1 is initialized

as x̃(k + 1|k + 1) = x(k + 1) = x̂∗(k + 1|k) + e(k + 1|k), satisfying (7.19c). Note that

e(k + 1|k) = w(k) based on (7.16). The candidate input trajectory is defined as ũ(j|k +

1) = û∗(j|k) + Ke(j|k), ∀j ∈ I[k+1,k+N(k)−1], where e(j|k) = x̃(j|k + 1) − x̂∗(j|k) and

x̃(j + 1|k + 1) = Ax̃(j|k + 1) + Bũ(j|k + 1), satisfying (7.19b). From these definitions and

system dynamics, the error evolves as e(j + 1|k) = (A + BK)e(j|k), ∀j ∈ I[k+1,k+N(k)−1],

initialized with e(k + 1|k) = w(k). Therefore, e(j|k) = (A + BK)(j−k−1)w(k). Note that

E(j|k) = E(j|k+1)⊕(A+BK)(j−k−1)W(k), ∀j ∈ I[k+1,k+N(k)], based on (7.17). From (7.19d)

at time step k, x̂∗(j|k) ∈ X ⊖ E(j|k),∀j ∈ I[k,k+N(k)−1]. Therefore,

x̃(j|k + 1) = x̂∗(j|k) + e(j|k),

∈ X ⊖ E(j|k) + e(j|k),

∈ X ⊖ E(j|k) + (A+BK)(j−k−1)w(k),

∈ X ⊖ (E(j|k + 1)⊕ (A+BK)(j−k−1)W(k))

+ (A+BK)(j−k−1)w(k),

∈ X ⊖ E(j|k + 1),
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which shows that the candidate solution satisfies (7.19d). Very similar steps can be used to

prove that

ũ(j|k + 1) ∈ U ⊖KE(j|k + 1),

x̃(k +N(k)|k + 1) ∈ S(k +N(k))⊖ E(k +N(k)|k + 1),

satisfying (7.19e) and (7.19f).

Next, consider the receding horizon case where N(k + 1) = N(k). The same candidate

solution as the shrinking horizon case is used for time steps j ∈ I[k+1,k+N(k)−1]. The same

procedure can also be used to show that this solution satisfies (7.19b)-(7.19e) for time steps

j ∈ I[k+1,k+N(k)−1]. To handle the receding horizon, it must be shown that 1) x̃(k+N(k)|k+

1) ∈ X⊖E(k+N(k)|k+1) and that 2) there exists ũ(k+N(k)|k+1) ∈ U⊖KE(k+N(k)|k+1)

such that x̃(k +N(k) + 1|k + 1) ∈ S(k +N(k) + 1)⊖ E(k +N(k) + 1|k + 1). To show 1),

x̃(k+N(k)|k + 1) = x̂∗(k +N(k)|k) + e(k +N(k)|k),

∈ S(k +N(k))⊖ E(k +N(k)|k) + e(k +N(k)|k),

∈ X ⊖ E(k +N(k)|k) + e(k +N(k)|k),

∈ X ⊖ E(k +N(k)|k + 1),

using similar arguments from before and the fact that S(k + N(k)) ⊆ X by definition. To

show 2), note that x̃(k+N(k)|k+1) = x̂∗(k+N(k)|k)+(A+BK)(N(k)−1)w(k). The existence

of ũ(k+N(k)|k+1) with the desired properties is guaranteed if Ū(k+N(k)) ̸= ∅, based on

the definition in (7.20). Note that Ū(k + N(k)) ̸= ∅ is a necessary condition for a receding

horizon in (7.21). Thus the candidate solution satisfies all the constraints in (7.19) at time

step k + 1.

Finally, if N(k) = 1, a receding horizon must be used such that N(k + 1) = 1 even if

Ū(k +N(k)) = ∅. Let x̂∗(k|k), x̂∗(k + 1|k), and û∗(k|k) be the optimal solutions from time

step k. As before, the candidate solution at time step k+1 is initialized as x̃(k+1|k+1) =
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x(k + 1), which satisfies (7.19c) and (7.19d) following the same arguments presented in the

shrinking horizon case. Note that x̃(k + 1|k + 1) = x̂∗(k + 1|k) + w(k). Since x̂∗(k + 1|k) ∈

S(k + 1) ⊖ E(k + 1|k) and w(k) ∈ E(k + 1|k) = W(k), x̃(k + 1|k + 1) ∈ S(k + 1). By the

wayset definition, x̃(k + 1|k + 1) ∈ S(k + 1) guarantees there exists ũ(k + 1|k + 1) ∈ U such

that x̃(k + 2|k + 1) = Ax̃(k + 1|k + 1) + Bũ(k + 1|k + 1) ∈ S(k + 1) ⊖ W(k + 1). Since

W(k + 1) = E(k + 2|k + 1), (7.19f) is satisfied at time step k + 1. Additionally, (7.19e) is

satisfied since E(k + 1|k + 1) = ∅ and thus ũ(k + 1|k + 1) ∈ U ⊖KE(k + 1|k + 1) = U .

While the condition w(k) ∈ W(k) in the statement of Lemma 16 may seem restrictive

and may not be satisfied in practice due to the potential infinite support for the random

variable w(k), it is important to show that the proposed constraint tightening, wayset for-

mulation, and prediction horizon update law lead to recursive feasibility when w(k) ∈ W(k).

As a result, if (7.19) was feasible at time step k but is not feasible at time step k + 1, then

w(k) /∈ W(k). In this case, based on the scenario-based approach to satisfying the prob-

abilistic constraint (7.13d) at time step k, the probability of the control policy planned at

time step k failing to satisfy all of the mission constraints is at most 1− p.

7.7 Numerical Example

Consider the discrete-time system with n = 2 states, m = 1 input, and matrices

A =

1 1

0 1

 , B =

0.5
1

 .

The state, input, and terminal constraint sets are

X =

x |

−10
−1

 ≤ x ≤

1
1


 , U = {u | ||u||∞ ≤ 2},

T =

x |

−0.5
−0.5

 ≤ x ≤

0.5
0.5


 .
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It is assumed that the system operates for 20 steps and thus, kF = 20. The disturbance

d is assumed to be Gaussian such that d ∈ N (µd,Σd) with µd = 0n, Σd = 0.001In. For

β = 10−6, od = kFm = 20, probability levels p = 0.85 and p = 0.95, the number of samples

Ns from (7.12) needed to achieve desired level of MWPS are Ns = 451 and Ns = 1353,

respectively.

For p = 0.95, the terminal error set Box(E(kF |0)), corresponding to the Ns = 1353

randomly generated disturbance trajectories, and terminal set T are shown in the top subplot

of Fig. 7.1. Since Box(E(kF |0)) ⊈ T , the tightened terminal set T ⊖ E(kF |0) is empty and

thus, the existing mission-wide shrinking horizon stochastic MPC from [89] may be infeasible.

However, the proposed scenario-based SMPC with waysets in (7.19) can be employed with

a short prediction horizon N(0) = 10. The tightened terminal wayset S(N(0))⊖E(N(0)|0),

imposed as the terminal constraint in (7.19f), is shown in the bottom subplot of Fig. 7.1.

Fig. 7.2 shows the state trajectories for 900 missions starting from x(0) = [−10 0]T for

probability level p = 0.95. Note that 889 of the 900 missions (98.8%) are successful and thus,

the desired probability of MWPS is achieved as expected. The constraint violations are due

to the state trajectory crossing the upper-bound of x2 and the terminal state violating the

upper-bound of x1. The input constraints are satisfied for all missions and thus, are not

shown in Fig. 7.2.

Fig. 7.3 shows the trend between MWPS and mission index for both probability levels

p = 0.85 and p = 0.95. While the MWPS decreases initially due to mission failures, the

achievd MWPS appears to converge to steady states of about 0.98 and 0.97, respectively.

The observed conservatism is likely due to the conservative bound on Ns used in (7.12)

and the approximations used in the computation of disturbance sets, waysets, and tightened

state, input, and terminal constraint sets.
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Figure 7.1. Top subplot shows the error set E(kF |k) computed using scenario optimization
from [89] and terminal set T . Bottom subplot shows the stochastic wayset S(N(0)) computed
perAlgorithm 8, error set E(N(0)|0) determined per (7.17) and tightened stochastic wayset
S(N(0))⊖ E(N(0)|0).
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Figure 7.2. Figure showing the state trajectories for 900 missions starting from x(0) =
[−10 0]T for p = 0.95. Note that crosses denote mission failures.
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Figure 7.3. Figure showing the trend between MWPS and mission index for p = 0.85 (solid
blue) and p = 0.95 (solid green). Note that MWPS thresholds are shown in dashed green
and dashed blue, respectively.
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7.8 Conclusions

A stochastic MPC formulation is presented for linear systems with additive stochastic dis-

turbances under finite operation subject to constraints on the Mission-Wide Probability of

Safety (MWPS). A wayset-based approach is proposed to enable missions with long dura-

tion while achieving a desired MWPS. A scenario-based approach is used to approximate

the stochastic MPC optimization problem and constrained zonotopes are used to achieve

efficient computation of the waysets. A numerical example demonstrates the benefits and

key features of using this approach. Future work will focus on reducing the conservatism

of the proposed wayset-based stochastic MPC framework and the extension to hierarchical

stochastic MPC.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation presented the theoretical development, analysis, and demonstration of set-

based hierarchical control frameworks for multi-timescale systems. Optimizing the energy

management is very important to extract maximum performance of these complex systems

with increasing demands for performance, efficiency, and reliability. With multiple systems

and subsystems of various domains interacting over a wide range of timescales, and operating

over long prediction horizons, these systems require modeling and control frameworks that

are scalable, robust, computationally efficient, and are widely applicable.

This is addressed through developments in the following areas.

• Chapter 2 developed set-based methods using zonotopes and constrained zonotopes to

compute sets resulting from halfspace intersections, convex hulls, robust positively in-

variant sets, and Pontryagin differences. Order reduction techniques are also presented

that provide lower-complexity inner-approximations of zonotopes and constrained zono-

topes. Numerical examples are used to demonstrate the efficacy and computational

advantages of using zonotope-based set representations for dynamic system analysis

and control.

• Chapter 3 utilized methods developed for constrained zonotopes to compute reachable

sets within the context of a hierarchical control framework. Constraint satisfaction

to disturbances is guaranteed using a tube-based robust MPC controller at every level

of the hierarchy. Coordination is achieved using waysets and a numerical example

demonstrated the key features, performance, and scalability of the proposed approach.

• Chapter 4 developed a two-level hierarchical MPC formulation with coordinating ter-

minal cost using constrained zonotopes. In addition to waysets, significant improvement
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in hierarchical control performance is achieved by using terminal costs in the control

formulation. The proposed terminal costs are time-varying and are computed online

using constrained zonotopes. A numerical example demonstrated the performance

benefits of using the proposed terminal cost coordination mechanism.

• A tube-based robust MPC formulation with adjustable uncertainty set optimization

using zonotopes was presented in Chapter 5. Constraint satisfaction to these uncer-

tainties bounded to this set is achieved by using robust positive invariant sets and

constraint tightening. These set computations are embedded online in the underlying

control optimization problem. A Hausdorff distance metric is used to reduce con-

servatism when optimizing the size of these tightened constraint sets. A numerical

example demonstrated the key features and limitations of this approach.

• Chapter 6 presented a full hierarchical MPC formulation for coupled discrete-time

linear systems. Hierarchical control coordination is achieved using adjustable tubes,

which are optimized online by the upper-level controller. The size of these adjustable

tubes represent the degree of uncertainty between subsystems, which are computed

efficiently using zonotopes. Recursive control feasibility is proven and a numerical

example demonstrated the key features and performance of the approach.

• Chapter 7 discussed a stochastic MPC formulation for systems with finite operation

subject to constraints on the Mission-Wide Probability of Safety. A wayset-based

approach is proposed for systems with long missions and scenario optimization is used

to approximate the stochastic MPC optimization problem. Recursive feasibility is

guaranteed and the numerical example demonstrated the benefits and limitations of

using the proposed stochastic MPC formulation.

In conclusion, this dissertation demonstrated that vertical hierarchical MPC control for-

mulations using waysets and full hierarchical control formulations using adjustable tubes are
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promising approaches to multi-timescale energy management of complex systems, and are

worthy for future research and development both in theory and application.

8.1 Future Research Directions: Theory

Within the class of hierarchical control systems, there could be numerous extensions.

• Merging the vertical hierarchical MPC from Chapter 3 and full tube-based hierarchical

controller to a hierarchical controller with multiple controllers in each level for each

subsystem would be really useful. This would further the applicability to a wide-range

of complex real-world systems. Showing recursive feasibility would help guarantee

desired control performance and constraint satisfaction.

• The extension of the proposed mission-based hierarchical control to nonlinear system

dynamics will achieve better performance for systems operating over a wide range of

operating conditions and thereby reducing suboptimality introduced by linearization.

Recursive feasibility of the nonlinear hierarchical controller will guarantee constraint

satisfaction over the entire system mission.

• Extending the stochastic MPC from Chapter 7 to a hierarchical framework will widen

applicability to complex systems with multiple subsystems and long prediction hori-

zons. Furthermore, analyzing the scalability of the hierarchical controller with increase

in system complexity and prediction horizon will be very useful to achieving real-time

control actuation.

• With the ongoing data revolution, it would be useful to develop a data-driven hierar-

chical controller for linear systems. Using a strong theoretical foundation in control

systems, showing similar guarantees and recursive feasibility for the data-driven hier-

archical controller will help guarantee safe system operation.
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8.2 Future Research Directions: Application

To further analyze the practical applicability of the proposed model-based vertical and full

hierarchical controllers, it is important to perform experimental testing and validate the

performance benefits achieved in simulations in Chapters 3 and 6.

• Testing the mission-based hierarchical controller on a multi-timescale vapor compres-

sion system would validate the benefits of using hierarchical controller for these com-

plex systems with long prediction horizons. The computational performance of solving

MPC optimization problems in real-time would provide more insight to bridging the

gap between theory and practice.

• Implementing the full tube-based hierarchical controller developed in Chapter 6 on

a more complex system, such as power grids and water distribution networks, would

help demonstrate the practical benefits of optimizing uncertainty online while solving

the control optimization problem. Analyzing the computational performance achieved

using the full hierarchical controller would widen its applicability to other complex

systems.
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