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STUDY IN BIG DATA HARNESSING AND RELATED PROBLEMS

Rong Jin, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Weili Wu, Chair

Social networks, such as Facebook and Twitter, have provided incredible opportunities for

social communication between web users around the world. Social network analysis is an

important problem in data harnessing. The analysis of social networks helps summarizing

the interests and opinions of users (nodes), discovering patterns from the interactions (edges)

between users, and mining the events that take place in online platforms. The information

obtained by analyzing social networks could be especially valuable for many applications.

Some typical examples include online advertisement targeting, viral marketing, personalized

recommendation, health social media, social influence analysis, and citation network analysis.

In this dissertation, we study two types of applications emerging from modern online social

platforms in the view of social influence. One is influence maximization(IM) problem from

a discount-based online viral marketing scenario, which aims at maximizing influence in the

adoption of target products, and the other is online rumor source detection problem, in which

the spread of misinformation is supposed to be minimized and the source is expected to be

detected. We formulate them as set function optimization problems and design solutions with

performance guarantees. In study of set function optimization, there is a challenge coming

from the submodularity of objective function. That is, some of the practical problems are

not submodular or supermodular, the existing greedy strategy cannot be directly applied

to problems to get a guaranteed approximate solution. To solve those non-submodular and
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non-supermodular problems, one method called DS decomposition has been considered, in

which given a set function, we decompose it to be representable as a difference between

submodular functions. Based on this method, we further study a problem about how to find

a DS decomposition efficiently and effectively. Then we propose a generalized framework

that is made up of our novel algorithms under deterministic version and random version

respectively to solve maximization of DS decomposition and show their performances under

various combinatorial settings. In addition, we discuss our findings on the role of black-box,

that has been an important component in study of computational complexity theory as well

as has been used for establishing the hardness of problems, about its implied power and

limitations in study of data-driven computation for proving solutions to some computational

problems.
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CHAPTER 1

INTRODUCTION

Social networks have become major dissemination platforms for interchanging information

and obviously promise to be fruitful data sources. With such big data being generated and

collected, the analysis of network data has gained extremely wide attentions over the last two

decades from researchers in computer science, social science, economics, and so on. The term

big in this case does not signify just Volume, but also the Velocity, Variety and Veracity of

data elements and sources, which is known as four V’s of big data. If harnessed effectively and

efficiently, these data can help to illuminate social problems and propel effective solutions.

Social network analysis is an important problem in data harnessing (or data mining). A

critical step for analyzing social networks is to investigate into the process of information

diffusion. Hence, various diffusion models have been studied to formulate how the infor-

mation propagates in a social network since Kempe et al., [48] firstly defined the influence

maximization (IM) problem on their proposed independent cascade (IC) model and linear

threshold (LT) model respectively. For present purposes, we assume a social network as

an interconnected set of individual people (i.e., nodes), and their interactions (i.e., edges)

on social media (e.g., Facebook and Twitter), while a real social network is heterogeneous,

where nodes are of different data types and can represent larger entities - communities of

people connected by shared interests, roles, etc. Therefore, in our assumption, information

diffusion can be treated as social influence diffusion in a social network. In general, there

are two types of optimization problems on social influence. One is to seek maximal influ-

ence of positive information that can be described as the IM problem in social networks

that has been found in many applications like product advertisement in viral marketing,

active friending and content maximization, and the other is to minimize influence maximiza-

tion of misinformation, which is also called misinformation countermeasures problem that

has been studied for many applications, such as misinformation detection, misinformation
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source detection and rumor blocking. In this dissertation, we present our studies on the

above-mentioned two kinds of influence optimization problems respectively in online social

networks. All problems adopted the IC model in our work.

Optimization problems in social networks are known as submodular set function optimiza-

tion whose objective functions have the “diminishing returns” property that the difference in

the incremental value of the function that a single element makes when added to an input set

decreases as the size of the input set increases. This property makes submodular functions

suitable for many applications, including approximzation algorithms and game thoery (as

function modeling user preferences), and so on. Submodularity of an objective function in the

problem is a property that can be exploited algorithmically to obtain a good approximation

to the problem. For example, the IM problem under the IC model can be solved approxi-

mately. However, many objective functions in practical problems are non-submodular, such

as group profit maximization problem and rumor source detection problem, the greedy strat-

egy cannot be directly applied to the problem to get a guaranteed approximate solution. To

solve this non-submodular problem, we can consider a method called DS decomposition,

because it has been proven true for that any non-submodular function could decompose as

a difference of two submodular functions, specially the two submodular functions are mono-

tone and non-decreasing [3]. However, how do we find the decomposition quickly? How do

we solve DS decomposition efficiently and effectively? We will discuss it in this dissertation.

Regarding computational complexity of optimiztion problems, it is known that any gen-

eralization of an NP -hard problem is also NP -hard. For instance, we know that the IM

problem under the IC model in a social network has been proven an NP -hard and computing

the objetive function is #P -hard, which is a special case of most formulated influence maxi-

mization problems such as profit maximization problems. Then, the formulated optimiation

problem can be proved in a computational complexity class. Instead of computing in this

way, can we obtain its solution by a data mining method, such as a machine learning method,
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in which the black box stores a large amount of data regarding solutions to problems through

data training? Based on this idea, some observations are discussed in this dissertaion.

In Chapter 3, we study the problem of influence maximization discount allocation to a

new online social network scenario where the nodes (i.e., users) and the edges (i.e., relation-

ships) between nodes are determined but the states of edges between nodes are unknown.

We can know the states of all the edges centered on a node only when it becomes active.

To be specific, we consider a discount-based online viral marketing scenario, and we aim to

minimize the discount cost that the marketer spends while ensuring the expected amount

of users who adopt the target product in the end of influence diffusion process. In other

words, the marketer needs to decide a set of initial users to offer their discounts through

an online social network under the limited budget for cost of discounts. Investigating the

details of this problem raises some questions. Which set of initial users should be selected to

offer discounts? Whether these seed users are willing to accept the discount and to be influ-

encers? How much should the discount be worth and be allocated by the marketer? These

questions have been addressed in many studies as optimal selection problem. Different from

previous work, we develop and model a new discount allocation for cost minimization prob-

lem through the classic IM problem. In this work, we adopt the IC model. We propose an

online discount allocation policy to select seed users to spread the product information. The

marketer initially selects one seed user to offer with a discount and observes whether the

user accepts the discount. If the user adopts the discount, the marketer needs to observe

how much discount has been accepted and how well this seed user contributes to the final

adoption of the target product. The remaining seed users are chosen based on the feedback

of diffusion results obtained by all previous selected seeds. We further propose two online dis-

count allocation greedy algorithms under two different situations: uniform and non-uniform

discounts allocation. In non-uniform discount allocation situation, we keep offering some

pre-selected users with the discount starting from the lowest to the highest within a set of

3



available options on discounts until the users accept the discount and become seed users, in

this way marketers can save more compared to the method that marketers give free products

to users. We present a theoretical analysis with bounded approximation ratios for the algo-

rithms. Extensive experiments are conducted to evaluate the performance of the proposed

online discount allocation algorithms on real-world online social networks datasets and the

results demonstrate the effectiveness and efficiency of our methods.

We investigated into the problem of identifying rumor source, which is another important

problem for rumor controlling in online social networks. In Chapter 4, we are first interested

in surveying the existing work regarding rumor source detection problem. The prior works

have seen various rumor diffusion models and rumor source estimator being assumed in detec-

tion of rumor source. We observe that very little previous review has been studied from these

two perspectives on the rumor source detection problem in online social networks. Therefore,

we firstly generalize currently three representative schemes of modeling the pattern of rumor

propagation: the IC-based model, Epidemic-based models, and Learning-based models since

their inception a decade ago. We further summarize three major existing schemes of rumor

source estimator that have been constructed from one type of rumor diffusion models. We

present a disscussion on the findings of three rumor spreading models. Next, in Chapter 5,

we study a station-based approach for online rumor source detection in theoretical literature.

We identify a single rumormonger based only on a set of observed infection stations under

the Independent Cascade (IC) model in a complete snapshot of the network obtained at some

time. We generate a k-station selection problem and develop a 2-approximation algorithm

for it. Also, we derive that an estimator of the rumor source is chosen to be the root node

associated with the infection path that most likely leads to the observed infection stations

for tree networks. These results are well studied in this chapter.

In Chapter 6, we study a heat problem about how to design efficient and effective algo-

rithms to solve maximization of DS decomposition in the set function optimizations. We
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propose a framework called Parameter Conditioned Greedy Algorithm which has a deter-

ministic version and two random versions. To discuss in more details, this framework uses

the difference with parameter decomposition function and combines non-negative condition.

Besides, if we set the different parameters, the framework can return solutions with different

approximation ratio. Also, we choose two special cases to show our deterministic algorithm

gets f(Sk) − (e−1 − cg)g(Sk) ≥ (1 − e−1)[f(OPT ) − g(OPT )] and f(Sk) − (1 − cg)g(Sk) ≥

(1−e−1)f(OPT )−g(OPT ) respectively for the cardinality constrained problem, where cg is

the curvature of monotone submodular set function. To speed up the deterministic algorithm,

we introduce a random sample set which can represent optimal solution set as soon as pos-

sible. More importantly, it can also get the same approximation ratio as deterministic algo-

rithm under expectation. Furthermore, for maximum DS decomposition without constraint,

our another random algorithm gets E[f(Sk)−(e−1−cg)g(Sk)] ≥ (1−e−1)[f(OPT )−g(OPT )]

and E[f(Sk) − (1 − cg)g(Sk)] ≥ (1 − e−1)f(OPT ) − g(OPT ) respectively. Because the Pa-

rameter Conditioned Algorithm is the general framework, different users can choose the

parameters that fit their problems to get a better approximation.

In Chapter 7, we present several observations regarding the role of black box in the data-

driven computation for solving computational complexity. Because black box has been an

important tool in studying computational complexity theory and has been used for estab-

lishing the hardness of problems, we then discuss a frame of data-driven computation that

has utilized black box as a tool for proving solutions to some computational problems.

The rest of the dissertation organization is as follows. Chapter 2 provides the preliminary

background required for the problems in the following chapters. Chapter 8 concludes this

dissertation and outlines a few open research themes in related fields.
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CHAPTER 2

LITERATURE REVIEW

2.1 Social Networks and Notations

In this section, we define social networks and summarize some of the terminology that will

be used in later chapters.

Formally, a social network is represented by a graph G = (V,E), where vertices v ∈ V

represent users and E is the set of edges where each edge (u, v) represents relationship

between users u and v. By convention, let n = |V | and m = |E|. In this dissertation, we

may use the term “node” and “user” interchangeably.

Neighbors. A vertex u is a neighbor of (or equivalently adjacent to) a vertex v in a

graph G = (V,E) if there is an edge (u, v) ∈ E. For a directed graph a vertex u is an

in-neighbor of a vertex v if (u, v) ∈ E and an out-neighbor if (v, u) ∈ E. We also say two

edges or arcs are neighbors if they share a vertex.

Neighborhood. For an undirected graph G = (V,E), the neighborhood NG(v) of a

vertex v ∈ V is its set of all neighbors of v, i.e., NG(v) = {u|(u, v) ∈ E}. For a directed

graph, let N+
G (v) indicate the set of out-neighbors and N−G (v) indicate the set of in-neighbors

of v. The neighborhood of a set of vertices U ⊆ V is the union of their neighborhoods, e.g.,

N+
G (v) = ∪u∈UN+

G (u). If we use NG(v) for a directed graph, we mean the out neighbors.

We will drop the subscript G when it is clear from the context which graph we are talking

about.

Degree. The degree dG(v) of a vertex v ∈ V in a graph G = (V,E) is the size of the

neighborhood |NG(v)|. For directed graphs we use in-degree d−G(v) = |N−G (v)| and out-degree

d+
G(v) = |N+

G (v)|. Similar to neighborhood, the subscription of G will be dropped when it is

clear from the context which graph it is reffered to.

Paths. A path in a graph is a sequence of adjacent vertices. More formally for a graph

G = (V,E), Paths(G) = {P ∈ V |1 ≤ i < |P |, (Pi, Pi+1) ∈ E} is the set of all paths in G,
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where V indicates all (positive) length sequences of vertices. The length of a path is one less

than the number of vertices in the path, i.e., it is the number of edges in the path. A simple

path is a path with no repeated vertices. See the remark below, however.

Remark 2.1. Some authors use the terms walk for path, and path for simple path. Even in

this dissertation when it is clear from the context we will sometimes drop the simple from

simple path.

Distance. The distance dG(u, v) from a vertex u to a vertex v in a graph G is the

shortest path, i.e., minimum number of edges, from u to v. It is also referred to as the

shortest path length from u to v.

Eccentricity. The eccentricity of a graph G is the maximum distance over all pairs of

vertices. That is, e(v) = max{dG(v, w) : w ∈ V }.

Diameter. The diameter of a graph G is the maximum eccentricity among the vertices

of G. Thus, diam(G) = max{e(v) : v ∈ V }.

Radius . The radius of a graph G is the minimum eccentricity among the vertices of G.

Therefore, radius(G) = min{e(v) : v ∈ V }.

Cycles. In a directed graph a cycle is a path that starts and ends at the same vertex.

A simple cycle is a cycle that has no repeated vertices other than the start and end vertices

being the same. In an undirected graph a (simple) cycle is a path that starts and ends at

the same vertex, has no repeated vertices other than the first and last, and has length at

least three. As with paths, we may use cycles when we are talking about simple cycles.

Directed acyclic graphs. A directed graph with no cycles is a directed acyclic graph

(DAG).

Trees and forests. An undirected graph with no cycles is a forest and if it is connected

it is called a tree. A directed graph is a forest (or tree) when all edges are converted to

undirected edges. A rooted tree is a tree with one vertex designated as the root. For a

directed graph the edges are typically all directed toward the root or away from the root.
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2.2 Influence Maximization under IC Model

This section will expose you the basic stochastic model of social infuence, i.e., the Inde-

pendent Cascade (IC) model, and show how it can be used to find an influential set of

nodes (also called seeds) to target in order to maximize the final adoption, i.e., the Influence

Maximization problem.

2.2.1 Independent Cascade (IC) Model

The IC model was firstly introduced by Kempe et al.,[48] to model the dynamics of viral

marketing and was inspired from the field of interacting particle systems. In this model, we

start with an initial set S of active users. Each active user u has a single chance to activate

each non-active neigbor v ∈ N(v). But, the process of activation is deemed stochastic

and succeeds with probability pu,v independently for each attempt. Hence, from an initial

population of active users the activation process spreads in a cascading manner as newly

activated users may activate new nodes that either previous attempts failed to activate or

were not accessible before. To enable mathematical treatment of the model, we adopt an

alternative view of the model utilizing the notion of reachability.

Definition 2.1 (Reachability). Given a graph G = (V,E) and a node u, define RE
G(u) the

set of reachable nodes (including u) of V from u through the edges in E.

In terms of the reachability of nodes via paths from the initial active set S, we can picture

the process of a node u activating one of its neighbors v with probability pu,v as flipping a

biased coin, and if it succeeds, that declares the edge live, otherwise declares the edge blocked

(or dead). Moreover, without loss of generality, we use the principle of deferred decision and

consider that all the coins are tossed before the process begins. Therefore, from the initial

graph G = (V,E), we get a graph G = (V,Elive) where we keep only live edges. Now, in

this setting, all nodes that are reachable via a live path from the initial set S would become
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active when the cascade process terminated. This view is very helpful and will be used to

solve our problem in Chapter 3.

Definition 2.2 (IC Model). Given a graph G = (V,E) and non-negative edge probabilities

{pe}e∈E, consider {Xe}e∈E independent uniform [0,1] random variables. Define the random

set of active edges as I = {e ∈ E : pe ≤ Xe}. The IC model for the graph G and probabilities

p defines for every initial set of active nodes S, the final set A of a function of the initial set

S as AI(S) = ∪u∈SRI
G(u).

We can think of RI
G(u) as the influence set of node u under random realization of edge

activations I, where I is a random variable. From here on the graph G and edge probabilities

are assumed implicitly given.

2.2.2 Influence Maximization (IM)

The end goal is to use the knowledge of the interactions to find a set of influential nodes.

Because of the stochastic nature of the IC model, we consider the use of expectations to

quantify the goodness of the initial set.

The problem, therefore, is given a social network, i.e., a set of nodes (users) and the

edges (interactions) between them, to select the optimal “seed” of users to influence in the

network, so that the expected number of active nodes is maximal for a “seed” set of size k

after the activation process terminates.

Definition 2.3 (IM Problem). Given a graph G = (V,E) and non-negative edge probabilities

{pe}e∈E and a positive integer k, the Influence Maximization problem asks for the initial set

S of size k such that the total influence function for the IC model σ(S) = E[|AI(S)|] is

maximized.

Theorem 2.1 (Kempe et al.,[48]). The influence maximization problem is NP -hard for the

IC model.
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2.2.3 Submodularity and IC Model

A key property of submodularity satisfied by the IC model will sidestep the hardness result

and enable the algorithmic treatment of influence maximization (IM) problems.

Definition 2.4 (Submodularity). A set function f : 2V → R is called submodular if for all

subsets S ⊆ T ⊆ V and u ∈ V \ T , the following inequality holds:

f(S ∩ {u})− f(S) ≥ f(T ∩ {u})− f(T ) (2.1)

A function is called submodular if it satisfies the “diminishing returns” property. That

is, the marginal gain by adding an element to a set S, it is at least as the marginal gain

by adding an element to the superset T . In other words, the higher the ground value is,

the smaller is the marginal gain of adding one element. Intuitively, submodularity is the

set-function analog of concavity.

Definition 2.5 (Monotonicity). A set function f is monotone nondecreasing if for any two

subsets S and T of V and S ⊆ T ⊆ V , we have:

f(T )− f(S) ≥ 0 (2.2)

According to the Theorem 2.2 in Kempe et al.,[48] and the monotonicity of AI(S) in the

Definition 2.2, we can have a consequence as follows.

Theorem 2.2. The total influence function σ(S) is monotone and submodular.

2.2.4 Approximation Guarantee in the IC Model

Submodularity of the total influence function is a property that can be exploited algorithmi-

cally to obtain a good approximation to the IM problem. In particular, there is a hope that

local optimal choices would result in good final spread. The following greedy hill-climbing al-

gorithm proposed by Nemhauser et al.,[67, 28] approximates the optimum to within a factor

of (1− 1/e), where e is the base of the natural logarithm.
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Algorithm 2.1 Hill Climbing (Greedy) Algorithm

Input: a graph G = (V,E), probabilities {pe}e∈E and a positive integer k
Output: Sk

1: Initialize S0 ← ∅
2: for i = 1 to k do
3: si ← arg maxu∈V \Si−1

{σ(Si−1 ∪ {u})− σ(Si−1)}
4: Si ← Si−1 ∪ {si}
5: end for
6: return Sk

Theorem 2.3 (Nemhauser et al.,[67, 28]). The hill-climbing algorithm finds a set S such

that σ(S) ≥ (1− 1/e) ·σ(S∗), where S∗ is the optimal set of cardinality k that maximizes the

value of total influence function σ.

2.3 DS Decomposition

In study of social networks, data mining, and machine learing, a lot of problems can be

formulated into set function optimizations. The method of DS decomposition plays an

important role in the set function optimization.

First, consider that Definition 2.6 is equivalent to Definition 2.4:

Definition 2.6. A set function f : 2V → R is submodular if for any subsets S, T ⊆ V , we

have:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) (2.3)

As with Definition 2.5, f is monotone nondecreasing.

Next, the following theorem first proved that any set function can be expressed as the

difference between two submodular set functions. Specially, the two submodular set function

are monotone and nondecreasing.

Theorem 2.4 (Bilmes et al., [66, 41]). Every set function f : 2V → R can be decomposed into

the difference of two monotone nondecreasing submodular functions g and h, i.e., f = g−h.
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Definition 2.7 (Supermodularity). A set function f : 2V → R is supermodular if for any

subsets S, T ⊆ V , we have:

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ) (2.4)

f is monotone nondecreasing.

Based on Definition 2.7, a variation of Theorem 2.4 was proved by [56] as follows.

Theorem 2.5. Every set function f : 2V → R can be decomposed into the difference of two

monotone nondecreasing supermodular functions g and h, i.e., f = g − h.

Although the proof of DS decomposition is constructive, in fact, it is still open whether

there exists an efficient method to find a DS decomposition. This gives researchers a lot

of chances to make their efforts on it, such as our related work in Chapter 6. Moreover,

for a given set function, different DS decompositions may induce algorithms with different

performances. Finding a DS decomposition for a given set function is very likely to be

NP -hard.

2.4 Black Box

The term “Black Box” oftern appears in a variety of contexts within theoretical computer

science, and happens to be extremely convenient to capture computations with restricted

knowledge about or access to certain information. In its most basic form, a black box

(known as an oracle) encodes a function f to which the computation may issue query x

and get the response f(x). We have no knowledge (or interest) on the implementation of

f in the black box while f itself may be computationally hard or even not computable.

From a programming perspective, this viewpoint is convenient when solving a problem using

a subroutine for f that someone else has implemented and we are given its input-output

specification only. From a theoretical perspective, the ability to efficiently solve a given
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computational problem g using an oracle to f may constitute a reduction from g to f ,

showing that computing g is not that harder than computing f . The most powerful example

for black box reductions is in NP -completeness proofs. Nowadays, these ideas has surged in

study of data-driven computation (see Chapter 7), machine learning, and other areas.
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CHAPTER 3

DISCOUNT ALLOCATION FOR COST MINIMIZATION

IN ONLINE SOCIAL NETWORKS
1

3.1 Introduction

In recent years, Online Social Networks (OSNs) have gained popularity at a rapid pace and

become an important part in our daily lives. People use OSN sites such as Twitter, Microblog,

Facebook, and LinkedIn not only to stay in touch with friends but also to generate, spread

and share various social contents. OSNs enable government agencies to post news and events

as well as ordinary people to post contents from their own perspectives and experience.

As an important application of OSNs, viral marketing has become a focus of attention by

many firms. It is an effective marketing strategy based on person-to-person recommendation

within an OSN [47]. More and more firms promote their products through OSNs. We

consider a problem that a firm has a new product they would like to advertise through OSNs.

They want to offer some discounts to a set of initial users who will potentially introduce the

new product to their friends. Only a limited number of users will get discounts because of the

limited budget. So which set of initial users should be selected to provide the discount and

whether they are willing to accept the discount to be active? How much discounts should

be provided by the firm?

The above questions have been addressed in many studies researches [23], [73]. They

formulate them as an optimal selection problem in which a good set of initial adopters,

called seed users, is selected. A classical problem, called influence maximization [48], is to

maximize the influence spread, i.e., the number (or expected number) of users who finally

adopt the target product under influence initiated by seed users. In this chapter, we study

1©2021. Reprinted, with permission, from Q. Ni, S. Ghosh, C. Huang, W. Wu, and R. Jin. Discount
allocation for cost minimization in online social networks. Journal of Combinatorial Optimization 41, 213-
233.
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a minimization problem, i.e., to use the minimal cost for seeds to reach a certain level of the

influence spread. For seed user selection, we propose an online discount allocation method,

i.e., choosing seed users based on the observation of the previous seeds propagation results

until a certain level of the influence spread is achieved.

Most of the existing research on influence maximization problem have strategies in three

categories: zero-feedback model [48], full-feedback model [31] and partial feedback model

[107]. The first one has to commit all the seed users at once in advance. The second one

selects one seed or more seeds at a time and waits until the diffusion completes, then selects

the next seed. The third one selects one seed or a batch of seeds and wait several slots

but not the end of the propagating, which can balance the delay and performance tradeoff.

Goyal et al., [32] show that most zero-feedback models may over-predict the actual spread.

This model has no delay but poorer performance. We focus on the full-feedback model in

discount allocation problem in online social networks. Instead of selecting all seeds at once

in the influence maximization problem, we use greedy discount allocation policy to select one

node at a time and offer him a discount, then we observe his state and how he propagates

through the social networks. Based on the historical observation, we adaptively select the

next seed user.

Currently, many influence diffusion models have been proposed, two most commonly used

classical models are Independent Cascade (IC) and Linear Threshold (LT) models, which are

proposed by Kempe et al., [48]. They prove that the expected number of influenced users,

called influence spread, is monotone and submodular. They also propose a greedy algorithm

to maximize the influence spread in the network. The maximization of the influence spread,

i.e., the influence maximization, is NP-hard under IC and LT models. Tong et al., [88]

and Wang et al., [96] showed that in some networks, the influence maximization is NP-hard

under IC model while polynomial-time solvable in LT model. In this work, we adopt the

Independent Cascade (IC) model.
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We summarize the main contributions in this chapter as follows:

� We explore a new discount allocation scenario and use the online full-feedback setting

to the discount allocation problem in the OSNs scenario. Then we divide the cascade

into two stages: seed selection and information diffusion. Each selected initial user

has to give feedback about whether he adopted the discount and the discount rate if

he accepted the discount to become a seed. Each current decision depends on all the

previous feedbacks and cascades.

� We introduce a new utility function which is to influence at least a certain number

Q of people who adopt the product with the minimal cost in expectation, instead of

maximizing the active users at the end of the diffusion process.

� We present two algorithms in uniform and non-uniform discount situations, respec-

tively. In non-uniform discount allocation situation, we offer discount to selected users

from lowest to highest in the discount rate set until the users become active, which

saves the cost of firms comparing with the previous method that provides product to

users for free.

� The performance guarantee is analyzed. An approximation ratio αln(Q
β

) in uniform

discount situation and an approximation ratio of the worst-case cost α(ln(Q
β

+ 1)) in

non-uniform discount are got.

� We numerically validate the effectiveness of the proposed algorithm on real-world online

social networks datasets.

The rest of this chapter is organized as follows. In Section 3.2 we begin by recalling

some existing work. We introduce the problem description and influence diffusion model

and process in Section 3.3. In Section 3.4, we propose the online full-feedback policy and

present the greedy algorithm under uniform discount and non-uniform discount conditions.
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We also give the theoretical proof of the algorithms in Section 3.5, and Section 3.6 presents

the simulation results. Finally, the conclusion is presented in Section 3.7.

3.2 Related Work

In this chapter, we focus on using online discount allocation policy to get a minimum cost

target with a certain number of market penetration of the product. Discount allocation of

viral marketing in OSNs has been studied in many scenarios. Below we discuss recent related

work on related topics.

Discount allocation in OSNs. Yang et al., [104] study the problem about what dis-

count should be offered to users so that the expected number of adopted users is maximized

within a predefined budget. They develop a coordinate descent algorithm and an engi-

neering technology in practice. They illustrate that compared to the traditional influence

maximization methods, continuous influence maximization can improve influence spread sig-

nificantly. Abebe et al., [1] study how to make use of social influence when there is a risk

of overexposure in viral marketing. They present a seeding cascade model that has benefits

when reaching positive inclined customers and cost when reaching negative inclined cus-

tomers. They show how it captures some qualitative phenomena related to overexposure.

They provide a polynomial-time algorithm to optimally find a marketing strategy. Tang et

al., [86] study the stochastic coupon probing problem in social networks. They adaptively

offer coupons to some users and those users who accept the coupons will become seed users

and then influence their friends. There are two constraints that have to be satisfied for a

coupon probing policy that achieve the influence maximization: the set of coupons redeemed

by users must meet inner constraints; the set of probed users must meet outer constraints.

The proposed constant approximation policy for the stochastic coupon probing problem is

suitable for any monotone submodular utility function. Yuan et al., [108] study the influence

maximization discount allocation problem under both non-adaptive and adaptive policies.
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They provide a limited budget of B to a set of initial users, and the target is to maximize

the active users who adopt the product. They propose a greedy algorithm with a constant

approximation ratio. Han et al., [35] study how to use influence propagation to optimize the

‘pure gravy’ of a marketing strategy. They consider that seed nodes only can be activated by

the offered discounts probabilistically, and try to find discount allocation strategy to max-

imize the expected difference of revenue. They formulate this problem as a non-monotone

and non-submodular optimization problem. A novel ‘surrogate optimization’ method and

two randomized algorithms are presented. They prove the constant performance ratio for

the proposed algorithms.

Feedback policy in OSNs. Salha et al.,[74] introduce a myopic partial observation policy in

the influence maximization problem. The proposed optimal algorithm guarantees to provide

a (1−1/e)-approximation ratio under a variant of the IC model. Yuan et al.,[107] also study

the influence maximization problem under partial feedback model. They propose an α-

greedy policy to capture the trade-off between delay and performance by adjusting the value

of α. The algorithm guarantees a constant approximation ratio. Tong et al.,[90] consider

the uncertainty of the diffusion process in real-world social networks because of high-speed

data transmission and a large population of participants. They introduce a seeding strategy

that seed nodes are only selected between spread rounds under the dynamic Independent

Cascade model, this solution has a provable performance guarantee. An efficient heuristic

algorithm is also provided for better scalability. Tang et al.,[85] study the optimal social

advertising problem from the platform’s perspective. Their goal is to maximize the expected

revenue by finding the best ad sequence for each user. They integrate viral marketing into

existing ad sequencing model and use zero-feedback and full-feedback ad sequencing policies

to maximize the efficiency of viral marketing. Choi et al.,[15] study the problem of detecting

the source of diffused information by the means of querying individuals. Two paid queries

are asked: whether the respondent is the source or not; if not, which neighbor spreads the
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information to the respondent. The assumption is that respondents may lie. They design

two kinds of algorithms: full-feedback and zero-feedback, which correspond to whether we

adaptively select the next respondents based on respondents’ previous answers. Their goal

is to evaluate the budget to achieve the detection probability 1 − δ, ∀ 0 < δ < 1. Dhamal

et al.,[22] focus on selecting seed users in multiple phases based on the observed historical

diffusion under the IC model. They present a negative result but do not guarantee a better

spread in more phases. They study the effect of diffusion in multiple phases on average

and the standard deviation of the extent of diffusion, and how to reduce the uncertainty in

diffusion with multiple phases. Singer et al., [84] survey the feedback based seeding methods

for influence maximization. They discuss the algorithmic approaches, the friend paradox

in random models and experiments on feedback based seeding. Han et al., [34] study the

adaptive Influence Maximization(IM) problem, which selects seed users in batches of size b.

They use full feedback strategy that the i-th batch can be selected after they observe the

influence results of the (i − 1)-th batch seed users. They propose two practical algorithms

for b = 1 with an approximation ratio 1− e(ξ−1) and b > 1 with 1− e(ξ−1+1/e) approximation

guarantee, where ξ ∈ (0, 1). Tong et al.,[89] present a time-constrained adaptive influence

maximization problem. They provide a e2−2
e−1

lower bound on the adaptive gap for the time-

constrained case. The adaptive gap measures the ratio between full feedback and the zero-

feedback.

3.3 Network Model and Problem Formulation

3.3.1 The Network Model

In this model, the online social network is a directed graph G(V,E), where each vertex in V

is a person, and E is the set of social ties. In this model, the nodes and edges in the graph

are deterministic, the states of edges between nodes are unknown. We can know the states of
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all the edges centered on that node through activating it. Assume that a marketer provides

m discount rates D = {d1, · · · , dm} to each user for a product and the marketer offers a

user only one discount at a time. We assume the discount as the amount taken off from

the original price which are integers in our problem. We denote cv = di as that we provide

discount di to user v. So in the graph, each user v ∈ V has m choices for the discount rates

but he only can accept one discount. We assume that each user v is independently associated

with a discount adoption probability function pvdi ∈ [0, 1], which models the probability that

v accepts different discounts. Whether users would accept these discounts is uncertain. We

assume that the adoption probability of any initial user is monotonically increasing with

respect to discounts. So if dj ≥ di, pvdj ≥ pvdi . The incoming neighbor set and the outgoing

neighbor set of a node v are denoted as N−(v) and N+(v), respectively. Each edge (u, v) ∈ E

in the graph is associated with a probability puv ∈ [0, 1] indicating the probability that node

u independently influences node v once u has been influenced. If u activates v, the edge is in

‘live’ state, if u does not activate v successfully, the edge is in ‘blocked’ state. Influence can

then spread from user u to his outgoing neighbors and so on according to the same process.

3.3.2 Diffusion Process

We compose the cascade into two phases: seeds selection phase and information diffusion

phase.

In the seeds selection phase, we select some initial seed users to provide some discounts

to each of them. After receiving these discounts, every user will decide whether to accept

the discount or not. It is affected by factors such as users’ preference for the products or

the discount rates and so on. A user can only accept one discount at a time. If a user has

accepted a discount di, it means that any larger discount is also acceptable for him. If a user

rejects the highest discount, he will reject all offered discounts. We use φ(v) to define the

active state of a user v. If a user v accepts the discount to become a seed, its state is active,

and φ(v) = 1, otherwise φ(v) = 0.
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In the information diffusion phase, every initial user who becomes the seed then has

to propagate the product information to her neighbors across the social network under the

Independent Cascade (IC) model. Independent Cascade (IC) model: each active seed user

has a single chance to influence his uninfluenced neighbors with given probabilities. Each

newly influenced user also has a single chance to influence his uninfluenced outgoing neighbors

in the next step. If a node v has multiple newly activated incoming neighbors, their influences

are sequenced in an arbitrary order. The diffusion completes until there is no new user who

is influenced. The expected cascade of U denoted as I(U), is the expected number of users

influenced by seed set U .

We select one seed at a time and wait until the diffusion completes before selecting the

next seed. We define the state ψ(uv) as the state of edge (u, v), if v is activated by one of

its incoming active neighbor u and edge(u, v) is ‘live’, ψ(uv) = 1, otherwise, edge (u, v) is

‘dead’, ψ(uv) = 0. So we can see that activating u will reveal the status of edge (u, v) (i.e.,

the value of ψ(uv)).

3.3.3 Problem Formulation

In the model, each user has two states: φ and ψ. We represent the user’s state 〈φ, ψ〉 as

an online realization. In the full feedback model, every initial user needs to give feedback

whether or not he adopted the discount. After activating u, we observe the set of out-edges

from node u that become active or ‘live’. These active nodes are those who are successfully

activated by node u. After each pick, our observations so far can be represented as an online

partial realization. We use the notation dom(φ, ψ) to refer to the domain of 〈φ, ψ〉 (i.e., the

set of states observed in 〈φ, ψ〉 ). In the online seed selection policy, we choose the current

user dynamically, it is up to the current state of observation dom(φ, ψ).

We define our online discount allocation strategy for picking users as a policy π(〈φ, ψ〉),

which is a function from a set of partial realization to current observation, specifying which
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user to probe in the next step under the known online partial realization and the resulting

cascade. So we choose the next user to probe based on what seeds we have detected so far,

whether they accept the discount or not, and their feedbacks about the network diffusions.

Let Φ and Ψ denote a random realization of φ and ψ. We assume that there is a known

prior probability distribution p(φ) := P [Φ = φ] (and p(ψ) := P [Ψ = ψ] resp.) over online

seeding realization (and online diffusion realization resp.). Given an online realization 〈φ, ψ〉,

let π(φ, ψ) denote all users picked by policy π under online realization 〈φ, ψ〉. c(π) denotes

the total amount of discounts that have been delivered by π under 〈φ, ψ〉. The policy π

terminates (stops probing users) upon online observation 〈φ, ψ〉 until the resulting expected

spread is above a given threshold.

We denote S(π, ψ) ⊆ V as the seed node set that has been selected by π under realization

ψ. The expected cascade of a policy π is defined as: f(π) = E[f(π; Φ,Ψ)]. Marketers want

to get as many people as possible to buy the products at as low cost as possible. We specify

a threshold Q of the expected cascade that we would like to obtain, and try to find the

cheapest policy to achieve that spread goal. The policy π is to minimize the expected cost

of the marketer under all possible online realization, and at least Q is achieved. We define

the expected total cost c(π) = E[c(π; Φ,Ψ)] we would like. The problem we want to solve

can be described as follows:

Online Minimal Cost Target Seed Selection Problem: Given a directed proba-

bilistic network G = (V,E), the spread threshold is Q > 0, which is a certain fraction of

the size of the OSNs. Find the optimal policy π∗ that leads to the minimum cost, i.e.,

π∗ = argmin{c(π∗)|f(π∗) ≥ Q}.

We use a toy social network in Fig. 3.1 to illustrate our online discount allocation policy

π. There are six users V = {a, b, c, d, e, f}. The propagation probabilities are on the edges.

The graph is unknown in advance, it can be partially revealed after some nodes become

active. Our expected spread Q is 5. Possible discount set is D = {1, 2}. Assume that we
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Figure 3.1: Illustration of a policy π.

select node a as the first seed node and set π(∅) = a, which means that we probe (a, 1)

firstly, i.e., offering discount 1 to user a, and we observe the realization 〈φ, ψ〉 of user a,

φ(a, 1)=1, i.e., a accepts the offer and become a seed; ψ(ab) = 0, ψ(ac) = 1, ψ(cf) = 1,

ψ(ad) = 1, i.e., node c, f , d are influenced by seed a, b has not been influenced by a and

e has not been influenced by d. In the graph, we use solid line (dotted line) to represent

that a node successfully (resp. unsuccessfully) influences its outgoing neighbor nodes, that

is to say, solid lines represent active edges and dotted lines represent inactive edges. After

observing the state of edges of the active nodes, we can decide our policy in the next step:

π(〈a, 1〉) = e. Because in this graph, only nodes e and b are inactive, we firstly offer discount

1 to e. We observe that φ(e, 1) = 0, which means that e does not accept the discount and

he is still inactive. As π(〈e, 0〉) = b, in the third step, we can probe user b with discount 1, b

accepts the offer, i.e., φ(b, 1) = 1. When b is active, he can not influence his neighbors since

he does not have any outgoing neighbors, then the number of influenced users is 5 which

achieved our threshold spread 5 and the cost is 2 eventually. But if we use the zero-feedback

setting, we may choose nodes a and d as seed users in advance since these two nodes have

the maximum outgoing neighbors, in which case we can only influence 4 nodes at most.
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3.4 The Online Discount Allocation Greedy Policy

Before presenting our algorithms, we introduce the definition of the conditional expected

marginal benefit of a seed.

Definition 3.1. Given an online partial realization ψ and a user v, the conditional expected

marginal benefit of v conditioned on having observed ψ is denoted by ∆(v|ψ) as

∆(v|ψ) := E[f(dom(ψ) ∪ v)− f(dom(ψ)]

where the expectation is computed with respect to p(ψ) := [Ψ = ψ].

In our seeds selection condition, ∆(v|ψ) quantifies the expected amount of additional

increment by adding a seed user to the seed set to propagate the product information, in

expectation over the posterior distribution p(Ψ) := P[Ψ] of how many users he will influence

if he becomes a seed.

Definition 3.2. Function f is online monotone with respect to distribution p(ψ) if condi-

tional expected marginal benefit of any seed is non-negative, i.e., for all ψ with P[Ψ ∼ ψ] > 0

and all v ∈ V we have

∆(v|ψ) ≥ 0

Definition 3.3. A function f is online submodular with respect to distribution p(ψ) if for

all ψ, and ψ′ such that ψ is a sub-realization of ψ′, and for all v ∈ V \dom(ψ′), we have

∆(v|ψ) ≥ ∆(v|ψ′)

Assume πag is the online greedy policy which selects the node v ∈ V \dom(ψ) with the

largest expected marginal gain ∆(v|ψ) under the given partial realization ψ, πopt is the online

optimal policy. Golovin et al., [31] proved that, the expected spread function f under edge

level full feedback is monotone and submodular w.r.t. p(ψ), and also prove that πag is an

(1− 1/e)- approximation of the adaptive optimal policy πopt, favg(πag) ≥ (1− 1/e)favg(πopt).
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3.4.1 Greedy Policy under Uniform Discount

First, we focus on the case with uniform discount cv ≡ d, ∀v ∈ V in Algorithm 3.1. When

the cost is uniform, we just need to select minimal number of seeds that can achieve the

minimal sum cost while ensuring that a sufficient value f ≥ Q is obtained.

Algorithm 3.1 Uniform Discount Greedy Policy

Input: threshold Q, objective function f , prior distribution p(φ), p(ψ), uniform discount d.
Output: S
1: S = ∅
2: select v∗ = arg maxv∈V \S∆(v|ψ);
3: offer discount d to v∗

4: if v∗ accept the discount then
5: S ← S ∪ v∗;
6: update the diffusion realization to ψt+1;
7: if f ≥ Q; then break;
8: else continue;
9: end if
10: else continue;
11: end if
12: return S

Given the observation of the current state dom(φ, ψ), we use ∆(v|ψ) to denote the ex-

pected marginal benefit of v in V \dom(ψ) where the condition is that v has been the seed.

The greedy policy π myopically probes the seed which can get the maximal expected marginal

gain (v∗ = arg maxv∈V \dom(ψ)∆(v|ψ)) at each iteration based on dom(φ, ψ). If there are mul-

tiple users in an iteration at the same time to obtain the maximal expected marginal gain,

we just need to randomly choose one. If v∗ accepts the discount, we remove v∗ from V in

the following round and add v∗ to set S which is the selected seed set. Otherwise, if v∗

rejects the discount, we put v∗ aside and don’t consider it any more. We have to update the

new diffusion realization when a new seed is selected and completes his spread. This process

iterates until reaching the spread threshold of Q. Our online greedy algorithm under the

uniform discount is as Algorithm 3.1.
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3.4.2 Greedy Policy under Non-uniform Discount

Algorithm 3.2 Non-uniform Discount Greedy Policy

Input: threshold Q, objective function f , prior distribution p(φ), p(ψ), the discount rates
D = {d1, · · · , dm}.

Output: S
1: S = ∅
2: i = 1;
3: while i ≤ |D| do
4: select v∗ = arg maxv∈V \S∆(v|ψ)/di;
5: offer discount di to v∗

6: if v∗ accept discount di then
7: S ← S ∪ v∗;
8: update the diffusion realization to ψt+1;
9: if f ≥ Q; then break;
10: else continue;
11: end if
12: else
13: if i = |D| then
14: remove v∗ from V ;
15: else i+ +;
16: end if
17: end if
18: end while
19: return S

In Algorithm 3.2, we consider the case when the cost is not uniform, and assume that the

discounts are sorted in ascending order: ∀0 < i < j < |D|: di < dj. First, we probe

user v∗ who has the largest ratio of conditional expected marginal benefit to cost (v∗ =

arg maxv∈V \S∆(v|ψ)/di) when offering him the lowest discount to each user. If there are

multiple users in an iteration at the same time to obtain the maximal ratio of conditional

expected marginal benefit to cost, we just randomly choose one. If he accepts this discount,

we add v∗ to selected seed set S, and then update the diffusion realization. If the influence

can reach Q, we can terminate the selection of the seed. If f < Q, we have to go on selecting

seeds. If v∗ rejects the discount d1, we can increase the discount rate. If the maximal discount
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can not be accepted by v∗, we simply don’t consider it any more. The entire procedure will

be repeated until function f obtains the value of Q.

3.5 Performance Analysis

Theorem 3.1. When the discount is uniform and cv ≡ d, let β > 0 be the spread shortfall for

the online greedy discount allocation policy over its optimal discount allocation spread. The

optimal discount allocation policy π∗ achieves a target spread Q. The online greedy discount

allocation policy π which is an α-approximate greedy policy and can achieve Q−β. Then we

have the following relation between the cost of online greedy discount allocation policy cavg(π)

and the cost of optimal discount allocation policy cavg(π
∗)

cavg(π) ≤ αcavg(π
∗)ln(

Q

β
)

Theorem 3.2. When the discount is non-uniform, let β > 0 be the spread shortfall for the

online discount allocation greedy policy over its optimal discount allocation spread. Let π∗wc

be the optimal policy minimizing the worst-case cost cwc while guaranteeing the maximum

possible expected spread f(π∗) = Q. Let π be an α-approximate greedy policy, run until it

achieves f(π) ≥ Q− β. Then

cwc(π) ≤ αcwc(π
∗
wc)(ln(

Q

β
) + 1)

Definition 3.4. A policy π is an α-approximate greedy policy if ∆(v|ψ) > 0, ∃v ∈ V under

online partial realization ψ,

π(ψ) ∈ {v :
∆(v|ψ)

c(v)
} ≥ 1

α
max
v′

(
∆(v′|ψ)

c(v′)
)

π will terminate when observing a ψ has a negative conditional expected marginal benefit, that

is ∆(v|ψ) ≤ 0 for all v ∈ V . An α-approximate greedy policy always obtains at least (1/α)

of the maximal possible ratio of conditional expected marginal benefit to cost. It terminates

when no more benefits can be obtained in expectation.
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Lemma 3.1. Suppose we have made online observations 〈φ, ψ〉. Let π∗ be any policy. Then

for online greedy monotone submodular f :

∆(π∗, ψ) ≤ c(π∗|ψ) max
v

(
∆(v|ψ)

c(v)
)

Proof. Consider policy π that attempts to select v ∈ dom(ψ), terminating if Ψ(v) 6= ψ(v),

and then executing policy π∗. pvdi is the probability that v accept discount di and become a

seed when running π, the online partial realization ψ′ contains ψ as an online subrealization.

By submodularity it implies ∆(v|ψ′) ≤ ∆(v|ψ). So the total contribution of v to ∆(π∗|ψ) is

upper bounded by pvdi∆(v|ψ). By summing all v ∈ V \dom(ψ), we can get bound that

∆(π∗|ψ) ≤
∑

v∈V \dom(ψ)

pvdi∆(v|ψ)

For each v ∈ V \dom(ψ) contributes pvdic(v) cost to c(π∗|ψ). So we have,∑
v∈V \dom(ψ)

pvdic(v) ≤ c(π∗|ψ)

Therefore,

∆(π∗|ψ) ≤
∑
v∈V

pvdi∆(v|ψ) ≤
∑
v∈V

pvdic(v) max
v∈V

∆(v|ψ)

c(v)

≤ c(π∗|ψ) max
v∈V

∆(v|ψ)

c(v)

Theorem 3.3. Fix any α ≥ 1 and the discount that v accepts. Let π∗ ∈ argmax
π

favg(π[k]),

where k is the number of selected seeds. If f is monotone and submodular with respect to

the distribution p(ψ), and π is an α-approximate greedy policy, then for all policy π∗, and

positive integers h and l, we have

favg(π[h]) > (1− e−h/αl)favg(π∗[l])
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Proof. The proof goes along the lines of the performance analysis and is an extension analysis

for the α- approximate greedy algorithm. We assume without loss of generality that π = π[h]

and π∗ = π∗[l]. Then for any 0 < i < l, we can derive that:

favg(π
∗) ≤ favg(π[i]) + αl(favg(π[i+1])− favg(π[i])) (3.1)

This inequation follows from the monotonicity of f and Lemma 3.1. From Lemma 3.1

we also can get that

E[∆(π∗|ψ)] ≤ E[c(π∗|ψ)] max
v

(
∆(v|ψ)

c(v)
),

since π∗ has the form π[k] and k is the number of selected seeds. We have E[c(π∗|ψ)] ≤ l

for all ψ. It follows that E[∆(π∗|ψ)] ≤ lmax
v

(∆(v|ψ)
c(v)

). By the definition of an α-approximate

greedy policy, π obtains at least 1
α

max
v

(∆(v|ψ)
c(v)

) ≥ E[∆(π∗|ψ)]/αl expected marginal benefit

per unit cost in a step immediately following its observation of ψ.

Based on the monotonicity equivalence property in [31], given two policies π1 and π2,

π1@π2 defined as the policy that after running π1 then running policy π2 ignoring the infor-

mation gathered during the running of π1. We can get that favg(π1) ≤ favg(π1@π2).

Then, for a random partial realization Ψ, we can get the following inequality:

favg(π[i+1])− favg(π[i]) ≥ E[
1

α
max
v

(
∆(v|Ψ)

c(v)
)]

≥ E[
E[∆(π∗|Ψ)]

αl
]

=
favg(π[i]@π

∗)− favg(π[i])

αl

Now define ∆i := favg(π
∗) − favg(π[i]), so that inequation 3.1 implies ∆i ≤ αl(∆i − ∆i+1),

we can infer that ∆i+1 ≤ (1− 1
αl

)∆i and hence ∆h ≤ (1− 1
αl

)h∆0 ≤ e−h/αl∆0, where for the

second inequality we used the fact that 1−x < e−x for all x > 0. Hence favg(π
∗)−favg(π[h]) <

e−h/αl(favg(π
∗)− favg(π[0])) ≤ e−h/αlfavg(π

∗) so favg(π) > (1− e−h/αl)favg(π∗).

Proof. of Theorem 3.2. Let β > 0. Assume that l is the least seeds number that adaptive

optimal policy π∗ selected to achieve influence spread favg(π
∗) ≥ Q. Then running adaptive
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greedy policy π for h seeds, as favg(π) ≥ Q−β, apply these two parameters to Theorem 3.3,

we can get h = αl(lnQ/β). Let l = cwc(π
∗
wc), and apply parameters h and l to Theorem 3.3

we can get the following inequation

favg(π[h]) ≥ (1− β

Q
)favg(π

∗
[wc]) (3.2)

As π∗wc can cover all the realization, favg(π
∗
wc) = E[f(V (π, ψ),Ψ)] = Q. The inequation 3.2

can denote as Q − favg(π[h]) ≤ β. Since f is monotonicity, favg(π[h]) ≤ favg(π[h→]), we can

get that Q − favg(π[h→]) ≤ β, this can infer that Q − favg(π[h→]) = 0, so π[h→] covers every

realization. It is known that π is an α-approximate greedy policy and π∗wc covers all the

online realizations at most l cost. From Lemma 3.1, we have:

max
v∈V

∆(v|ψ)

c(v)
≥ ∆(π∗wc|ψ)

c(π∗wc|ψ)
≥ ∆(π∗wc|ψ)

l
(3.3)

We suppose that ψ ∈ dom(π), we have maxv∆(v|ψ) ≤ ∆(π∗wc|ψ) as f is monotone submodu-

lar. Any user v with cost c(v) > αl also has maxv∆(v|ψ)/c(v) ≤ ∆(π∗wc|ψ)/αl, it can not be

selected by any α-approximate greedy policy after observing ψ by inequation 3.3. The final

user executed by π[h→] has cost at most αl for any realization. So that π[h→] has worst-case

cost at most h+ αl, where l = c∗wc. This completes the proof.

Proof. of Theorem 3.1. When the cost cv = d for all seeds, the the number of seeds multiplies

d equals the sum cost. So we conduct some algebraic manipulation in Theorem 3.3 to set

favg(π[h]) = Q− β, favg(π
∗
[l]) = Q, we can get the conclusion of Theorem 3.1.

3.6 Performance Evaluation

In this section, we will show the simulation of our proposed algorithms. The preparation of

the experiment will be discussed in Section 3.6.1 with the datasets and parameter settings.
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Table 3.1: Statistics of two datasets.

Dateset Nodes Edges Type
Forum network 899 142760 directed
Newmans scientific collaboration network 16726 95188 directed

3.6.1 Experimental Setup

Datasets: In this chapter, we have used two datasets from [70], [68]. One of the dataset is a

Forum Network which was collected from an online community very similar to the Facebook

online social network. This dataset contained records of users activities in the forum. It is

a collection of nodes and edges that depict the relationship among the 899 users. The other

dataset is the Newmans scientific collaboration network which represents the co-authorship

network based on preprints posted to Condensed Matter section of arXiv E-Print Archive

between 1995 and 1999. This data represents the relationship among the co-authors. The

details about the data is mentioned in the Table 3.1.

Propagation Probability: In both the datasets, the file containing the information

about the node relation is used to build the graphs. The influence probability is assigned

as 1/N where N is the number of in-degree of a given node. This method is widely used

in previous literatures [94, 87, 104]. We use random numbers between 0 and 1 as the

propagation probability threshold to find how many nodes are activated by each seed node.

The generated random number is compared with the influence probabilities on the edges to

count the number of nodes that can be activated in each iteration. If the probability on the

edge is greater than the random number it will influence its neighbor; otherwise, it can not

influence its neighbor.

Adoption Probability: We use x ∈ [0, 1] to denote the percentage of the offered

discount in the product price. The adoption probability pv,x of each node v for the discount

rate x is set as: for the graph G = (V,E), we randomly choose 85% of nodes to assign
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pv,x = 3
√
x, these users are sensitive to discount, and 10% nodes to assign pv,x = x, and 5%

nodes to assign pv,x = x2 as their seed probability function, which means that those users

are insensitive to discount. This setting is also used in some previous literatures [86].

Also, the random number between 0 and 1 is generated as the adoption probability

threshold each time to determine if a node accepts the discount. If the probability of the

node accepting the discount is greater than the random number it is assumed that it will

accept the discount; otherwise, it will reject the discount.

3.6.2 Comparison Method

Zero-feedback greedy method. It selects seed node set which has the largest expected

influence at once in advance, and probes these nodes with discounts in increasing order. We

should make sure that these selected seed users can spread a target influence value Q.

We use the Monte Carlo sampling to get the mean of the expected influence function f

for our problem and the Zero-feedback greedy method as well as the ±1 standard deviation

intervals over 100 runs of each node.

3.6.3 Result Analysis

Figure 3.2: Results with zero-feedback greedy method on dataset 1
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Figure 3.3: Results with online greedy method on dataset 1

Comparison with zero-feedback greedy method on dataset 1. This experiment

is done on dataset 1 and the discount is uniform. In Figure 3.2, we show the variation of the

number of seeds selected by changing the value of Q with the zero-feedback greedy method.

The five different curves are in different discounts changing from 100 to 500. We can see

that the smaller the discount is, the more the seeds are needed. But when the value of Q is

less than 200, the number of seed users required is the same, as we can find influential users

easily since just a small influence is needed. As the spread threshold of Q increases, we need

to find more influential seeds, so larger discount will be more attractive for these users to be

active. We can see in Figure 3.2, when the discount equals 100 and Q is over 200, it needs

the most seeds in the five different discounts situations. When the discount equals 400 and

500, we can see the curves increase more slowly when the Q exceeds 400. It is because the

larger discount can attract more high influential nodes, which can activate more nodes with

fewer seed nodes. Although providing larger discount is more attractive, it can activate more

influential seeds so that it just needs fewer seeds to reach the expected spread threshold Q,

but it also has an obvious drawback of being expensive. We can calculate that when D = 100

and Q = 600, we need choose 70 seed nodes, it costs 7000, while when D = 500 and Q = 600,

we need choose 25 seed nodes, it costs 12500, which is far greater than the uniform discount

100 situation, so bigger discount costs more.
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In Figure 3.3, we do the experiment in online greedy method, we also set the uniform

discount in five different values. We can see from the lines that the tendency of change is

similar to Figure 3.2, they are also monotone increasing and the larger discounts need a

smaller number of seeds. We can see that when the discount is 100, we need more seed users

but when we calculate the cost, we can find that it takes the least cost. The reason is the

same with zero-feedback greedy method above.

From Figure 3.2 and Figure 3.3, we can see that every curve is a gradient rise. And the

growth ratio is larger when the discount is smaller. Because when the discount is smaller,

many influential users would not accept the discounts to become seeds, we need to find

some less influential users to accept the discounts. It can also be noted that the lines of the

algorithms clearly illustrate the phenomenon of diminishing marginal returns, empirically

illustrating monotonicity and submodularity. Comparing Figure 3.2 with 3.3, for a certain

value of Q and the same discount offered, the online greedy method needs fewer seeds,

because the online greedy algorithm can choose the next seed wisely based on real spread

triggered by existing seeds. Although the larger discount can activate more influential users

to become the seeds, it also needs a larger cost. On the contrary, the smaller discount needs

to choose some less influential seeds but it saves the cost. So using a smaller discount, it can

achieve our expected spread threshold Q and save cost at the same time.

Varying the discount rate set with proposed method. We do the experiment with

the online greedy method in the non-uniform discount situation firstly, the results shows in

Figure 3.4. The number of discount changes from three kinds to seven kinds, and we can see

from the changes of lines that when the discounts are a combination of D = {100, 200, 300},

it needs the most seeds, and greater the discount combination is, the fewer the seeds we

will select. The reason is the same as the results in Figure 3.2 and 3.3, because a greater

discount is more attractive to the influential users. So for the combination D = {100 ∼ 700},

it selects the least number of seeds. But based on the experimental results, we know that it
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Figure 3.4: Results with online greedy method in non-uniform discount situation on
dataset 1

costs the least with the combination of D = {100, 200, 300}, but it costs the most as the high

influential seed would like to accept larger discount. So the smaller discount combination

can achieve larger spread with minimum cost.

Comparing Figure 3.4 with Figure 3.2 and Figure 3.3, we can see that for a certain value

Q, the non-uniform discount requires less seeds. Based on the experiment results in these

three situations, non-uniform discount needs less cost than the uniform discount with the

online greedy method as well as the uniform discount with the zero-feedback greedy method

for the same Q. As in non-uniform cost, we have more discount choices, we would choose

some high influential nodes who would accept low discounts.

In Figure 3.5, we use a dataset 2 to continue our experiments with the online greedy

method under the uniform discount situation. Because the dataset 2 is larger than dataset

1, and the indegree of every node is larger than dataset 1, too, the influence probabilities

are smaller than that in dataset 1. We can observe the change of the lines in Figure 3.5, for

the same discount and Q, it needs more seeds than that in Figure 3.3, as the influence of the

seed is smaller than that of dataset 1. But in the larger dataset 2, we can still get the result

which is got in the Figure 3.3 with dataset 1 that the smallest discount 100 can save the

most cost to get the spread threshold Q. So the results in 3.5 with dataset 2 are consistent
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Figure 3.5: Results with online greedy method in uniform discount situation on dataset 2

with the results with dataset 1, which further confirms the correctness of the previous results

.

Changes of running time with two proposed methods. The unit of the runtime is

in seconds. The y-axis in Figure 3.6 and Figure 3.7 is the total runtime when the expected

spread threshold Q increases from 100 to 800 in two different datasets with Online greedy

uniform discount and non-uniform discount methods, respectively. In Figure 3.6, we set the

uniform discount as 100, 200, 300 to do different simulations in dataset 1 and dataset 2

respectively, we can observe that the running time decreases with the increasing of uniform

discount when the spread threshold is the same, it is because that when the discount in-

creases, it is easier to find a seed user and more time saving. This result is verified in both

dataset 1 and dataset 2. In non-uniform discount situation, we set discount combination as

D = {100 ∼ 300}, D = {100 ∼ 500}, D = {100 ∼ 700}, the results in Figure 3.7 show

that when we increase the number of discount in the discount combination, the running time

decreases, which is because the larger discount in the combination is easier to accept by a

high influential seed node, this can save time to find a suitable seed node. This result is

also shown in two different datasets. From the above results in Figure 3.3 and Figure 3.4,

we know that it costs less when the uniform discount D = 100 than that in other larger

uniform discount and the non-uniform discount situation with the online greedy method.
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From Figure 3.6 and Figure 3.7, we can see that the uniform discount takes more running

time when the dataset and spread threshold are same. Although the uniform discount with

online greedy method saves more cost than the non-uniform discount with online greedy

method, the non-uniform discount method is more time saving. Because when we choose

a node with the maximal marginal gain, it may not accept the lower discount, and we can

increase the discount as it has several discount choices in non-uniform discount method. The

greater discount has a larger probability to be accepted by a user. It is more time saving

than the uniform discount method as we have to find another seed again in the uniform

situation once a node rejects a discount. And we also find that the dataset 2 needs more

time to reach the same expected spread threshold with the same method, which is easy to

understand since dataset 2 has much more nodes than dataset 1.

Figure 3.6: The runtime of different expected spread threshold Q with uniform discount
method in two datasets

Results on sampling graph from dataset 1. At last, we take samples from the

dataset 1. The graphs are sampled to give various subsets of the original graph. For building

the sample graph, a random number is generated and if the edge probability is less than the
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Figure 3.7: The runtime of different expected spread threshold Q with non-uniform method
in two datasets

generated number, that edge will be removed from the original graph to give a resulting

sample sub-graph. The Algorithm 3.1 is applied to each of the sample graphs to obtain the

average results. We generate 100 sample graphs and iterate over all these sample graphs to

obtain the results. Each time due to some random parameters in the algorithm, the solution

is approximately the same thus the simulation converges. We observe that the trend of the

lines in Figure 3.8 are also in accordance with previous experimental results. When the

uniform discount is 300, it needs to selects least seed users but cost the most to achieve the

spread threshold Q.

Figure 3.8: Results on sampling graph from dataset 1
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From the above experimental results, we can get that the online greedy method is superior

to the zero-feedback greedy method, and the lower uniform discount situation is more cost

saving than the non-uniform discount situation. But the non-uniform discount situation is

more time saving than the uniform discount situation.

3.7 Conclusion

We propose an online full-feedback setting model to solve the discount allocation problem

in OSNs and divide the cascade into seed selection and information diffusion stages. Our

goal is to minimize the cost that marketer spends while ensuring that the number of people

who adopted the target product should not be less than a spread threshold of Q. We

present two algorithms under uniform and non-uniform discount conditions and analyze the

approximation ratios in these two situations. Finally, we use experiments on real-world

OSNs to illustrate the empirical superiority of the proposed strategy. In future work, we

intend to study a problem which evaluates a suitable discount for each seed but without

using stochastic discount probing as used in this chapter. We also want to study another

problem that the marketer has multiple products to advertise at the same time and different

products have their specific features which are suitable for user group with different needs.

How should we allocate the budget to each product to achieve influence maximization or

profit maximization?
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CHAPTER 4

SCHEMES OF PROPAGATION MODELS AND SOURCE ESTIMATORS

FOR RUMOR SOURCE DETECTION IN ONLINE SOCIAL NETWORKS
1

4.1 Introduction

Source detection plays a vital role in any network like Network of power grid, Network of peo-

ples, and Online Social Networks, and so forth. Within these networks, source identification

has been performed to find the origin or source, such as detecting the source of epidemics

to control infection spreading [2], finding the source of a computer virus in a network [77],

locating gas leakage source in wireless sensor network [83], identifying propagation sources

in complex networks [16, 43], investigating the sources of misinformation in online social net-

works [69], and rumor source detection [78, 79] in online social media network. From existing

works, such as [43] reviews source identification methods in accordance with three categories

of network observation which is one of the major premises, [55] surveys various information

diffusion models based on two categories, and then a comprehensive study about factors to

be considered for source detection of rumor in social network by [82]. We observe that very

little review has been done from the perspectives of diffusion patterns and various estima-

tor for sources, on the rumor source detection problem in online social networks. Different

models refer to different application domains in seeking propagation origins. Therefore, the

objective of this chapter is to summarize and discuss existing approaches to rumor source

detection in views of these two aspects. The roadmap of this chapter is depicted in Figure

4.1. To the best of our knowledge, this is the first work that focuses on the schemes of mod-

eling rumor propagation and source estimation of seeking origins of rumor in online social

networks.

1©2021. Reprinted, with permission, from R. Jin and W. Wu. Schemes of propagation models and
sourceestimators for rumor source detection in online social networks:A short survey of a decade of research.
Discrete Mathematics, Algorithms and Applications 13 (04), 2130002.
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This chapter is structured as below. In Section 4.2, we summarize existing three ap-

proaches to model rumor propagation and we introduce underlying mechanisms behind them.

Section 4.3 shows three existing main schemes to estimate rumor sources. Evaluation met-

rics and datasets for rumor source detection problem are briefly presented in Section 4.4.

Research open issues and challenges in source detection of rumor are stated as a part of

conclusion in Section 4.5.

Figure 4.1: Roadmap of the chapter.

4.2 Rumor Propagation Model

Modeling how information spreads is utilized to help analyzing how misinformation spreads

as well as to help stopping the spread of misinformation such as rumors [33]. In this section,

we present fundamental knowledge of major rumor spreading models and we summarize how

these models have been employed by researchers to their rumor source(s) detection prob-

lems. We broadly classify contemporary models of rumor propagation into three categories:

the Independent Cascade-based model, the epidemic-based model and the state-of-the-art

learning-based model.
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4.2.1 Independent Cascade(IC) Model

The Independent Cascade (IC) Model is one of commonly used diffusion models [48]. In the

IC model, the information passes in the network through cascades. It describes the process

of information diffusion, from a set of initially activated nodes named sources, proceeding on

a directed graph where each node can be activated or not with a monotonicity assumption,

i.e., activated nodes are the one who believed the rumor and become infected, and activated

nodes cannot deactivate [20]. When a node v becomes active under the IC model, it has

a single chance of activating one of its currently inactive neighboring nodes, say a node

w, with a numerical diffusion probability pvw associated to the edge between nodes v and

w. Researchers have assumed their diffusion process based on the IC model to seek rumor

source(s).

Xu et al., [101] firstly studied the problem of identifying single rumor source detection

with respect to the Independent Cascade (IC) model in online social networks when inves-

tigators have no relevant textual or content information. As cascades in the IC model are

necessarily trees, the influence structure of a cascade is given by a directed tree T , which is

contained in the directed graph G. And, each cascade in the IC model is associated with the

propagation probability between any two neighboring nodes. Based on these two facts, Xu

et al., defined Maximum Influence Path and Maximum Propagation Tree as well as proposed

a polynomial time rumor source detection algorithm under partial observations.

Lim et al., [58] formulated and investigated a k-minimum distance rumor source detection

problem, specially to find a small set of rumor candidates which can be used as initial seeds

for further iterative query or investigation, by using the Independent Cascade (IC) model

to analyze the likelihood of rumor sources. Since the propagation of rumor from one node

to another usually incurs a certain amount of time delay, Lim et al., modified the classical

IC mdoel which has extra property that each edge (u, v) ∈ E has associated a time-varying

probability p(u, v, t), characterizing how much u can influence v at time t.
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4.2.2 Epidemic based Model

Epidemic Models are the ways that describe the spreading, infection and recovery processes

of diseases among the population. The basic epidemic models are used for finding the origin

of viral disease [55]. Similarly, they are employed by researchers for finding the source(s) of

rumors in the online social networks according to different scenarios. So far, four classical

types of epidemic models are mainly characterized in rumor diffusion as discussed below.

1. Susceptible-Infected (SI) Model : In the SI model [71], there are two probable states

of a node: susceptible (S) and infected (I). Nodes are initially susceptible and can

be infected with spreading rumors. Susceptible nodes are uninfected nodes but having

infected neighboring nodes. Once a susceptible node becomes infected due to contagion

from its neighborhood, it remains infected forever. SI model only describes the infection

process of S → I without taking into account that infected nodes can be recovered after

having been infected. In terms of rumor diffusion in online social networks, infected

nodes are those who have received or believed any rumor from their infected neighbors.

2. Susceptible-Infected-Susceptible (SIS) Model : in the SIS model, the two states of sus-

ceptible (S) and infected (I) are the same as that in the SI model. But in this model,

when susceptible nodes become infected, after some time they can yet again be suscep-

tible after being cured. This infection and recovery process of S → I → S addresses

impracticality in SI model.

3. Susceptible-Infected-Recovered (SIR) Model : The SIR model divides the total pop-

ulation into three categories: S, I, and R (recovered), where S and I represent the

susceptible and infected nodes as described in the previous two models. Different from

SI or SIS model, an infected node in SIR model may be recovered, it will not spread

the information and remains in the recovered state further [19]. The diffusion process
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can be characterized as S → I → R. When in an online social network, the recovered

node is the one who recognizes a rumor, therefore it will either delete/ignore the rumor

message or not pass that rumor to neighbors.

4. Susceptible-Infected-Recovered-Susceptible (SIRS) Model : In the SIRS model, it be-

lieves that a recovered node can become a susceptible node with probability α [46].

Thus, the diffusion process in this model is S → I → R→ S.

Shah and Zaman [78, 80] initially assumed that the rumor propagation follows the SI

model originating from a single source. Dong et al., [25] extended study based on the setting

of various suspect sources in the SI model. Luo et al., [64] later adopted the SI diffusion

model for estimating multiple infection sources and their infection regions. Wang et al., [97]

considered the value of diversity from multiple observations for single rumor source detection

in the SI spreading. Choi et al., [14] studied the impact of querying in a highly generalized

setup for a rumor source detection under consideration of the SI rumor spreading model.

Beside that, the SIS model has been considered on inferring a single rumor source detection

problem in Luo et al., [63] and Wang et al., [100]. Luo et al., derived an estimator based on

estimating the most likely rumor source associated with the most likely infection path. Wang

et al., proposed a rumor centrality based algorithm that leverages multiple observations to

first construct a diffusion tree graph, and then use their union rumor centrality to find the

rumor source. The SIR model was firstly integrated in detecting sources of computer viruses

in networks by Shah and Zaman [77]. After that, the spread of information in Zhu and Ying

[117] also follows the SIR model for studying single information source detection problem

in a network. Locating multiple sources in a network under the SIR model has also been

studied in Luo et al., [61], Zang et al., [109] and Jiang et al., [44]. So far, to best of my

knowledge, the SIRS model has not yet been applied in rumor source identification methods.

Future work may take it into consideration.
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In the information diffusion, there are also new models developed based on classical mod-

els such as SEIR (Suceptible Exposed Infected Recovered) model [95], SEIRS (Suceptible

Exposed Infected Recovered Susceptible) model [18], and MSEIR (Passive-immunity Sucep-

tible Exposed Infected Recovered) [39], and so forth. As far as we know, these models have

not been applied in rumor source(s) detection problems by researchers.

4.2.3 Learning based Model

Since it is usually difficult to acquire the actual underlying propagation model in practice,

many studies have been proposed on an assumption that the underlying propagation model is

known in advance and been given as input. For instance, the Independent Cascade(IC) model

or one kind of epidemic based models has been widely utilized in rumor source detection.

However, we know that this assumption may lead to impracticability on real data and it

may limit its application range. Therefore, several approaches in machine learning methods

[11] and deep learning methods [111] to graphs data have been studied and reviewed. In

this chapter, we are only presenting learning based models in the rumor source(s) detection

problem in online social networks.

Wang et al., [98] firstly studied on multiple sources detection without knowing the un-

derlying propagation model by proposing a Label Propagation based Source Identification

(LPSI) method, which is based on the idea of source prominence as well as inspired by a label

propagation based semi-supervised learning method [113]. By setting an original label to

the infection status of each node, positive labels (+1) to infected nodes and negative labels

(-1) to uninfected nodes, the LPSI lets these labels iteratively propagate in a snapshot of

a network, and finally predicts local peaks of the convergent node labels as source nodes.

Nonetheless, their approach still suffers from the shortcoming that the node label is simply

an integer which may restrict the prediction precision. To improve prediction precision on

the same problem, Dong et al., [24] then firstly attempted to apply the Graph Convolu-

tional Networks (GCN) technique on multiple rumor sources detection and then proposed a
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supervised learning based model named Graph Convolutional Networks based Source Iden-

tification (GCNSI). Basically, in the GCNSI, Dong et al., proposed an input generation

algorithm to extend the LPSI integer label into a multi-dimentional vector for each node

as training data, and applied GCN in capturing different features of a node based on two

assumptions, one is source prominence from the LPSI, and the other is rumor centrality. Due

to node representation utilizing its multi-order neighbors information by adopting spectral

domain convolution so that their prediction precision on the sources is improved. Although

these works are for multiple sources detection, they undoubtedly also fit into single source

detection for sure. More recently, one work [81] also explored GCN for detecting possible

suspicious users who are often involved in spreading the rumors on online social media. Ad-

ditionally, another very recent work [76] revisited problem about locating the source of an

epidemic, namely finding patient zero (P0) by using Graph Neural Networks (GNNs) to learn

P0. Similarly, we believe that this can be applied in the rumor source(s) detection problem

in online social networks.

To best of our knowledge, aforementioned works in this section are all existing studies of

learning-based models regarding rumor source(s) detection problem in online social networks.

4.2.4 Discussion

Over the past decade of research on the methods of rumor source(s) detection, information

propagation models and network structures have been taken into consideration. Works can be

classified into two types: (1) infection status based analysis [78, 109]; (2) partial observations

based analysis [62, 110, 112, 115]. In most of the methods on the former type, it is a given

input that the underlying propagation model is known in advance. Obviously, it is difficult to

obtain model information in practice. However, infection status based analysis has a broader

application prospect since we cannot deploy observing nodes or we cannot acquire related

information in some real-world situations. Those studies on the learning based models have
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been carried out for source identification without the requirement of knowing the underlying

rumor propagation model.

Most of machine learning tasks on graphs - node classification, link prediction, learn-

ing over the whole graph, and community detection are very different from normal super-

vised/unsupervised learning. This is because graphs are interconnected with each other and

data independence assumption fails. Researchers refer to it as semi-supervised learning.

Deep Learning techniques on graphs is about neural networks on data representation

learning on graphs, which iteratively updates node representations by exchanging informa-

tion between the neighbor nodes via relation paths and repeat the iteration until convergence

and lets convolution layer capture different features of a node. In most cases, deep learn-

ing based models outperform among all baselines, but it spends time to train and tune

parameters. Therefore, deep learning on graphs is non-trivial since several challenges exist

in practical graphs such as irregular structures of graphs, diversity of graphs or large scale

graphs, and so on [111].

4.3 Rumor Source Estimator

Rumor source estimator is the main challenge in rumor source detection problem. How to

construct the rumor source estimator? In this section, we provide an overview of source

estimators that have been used for existing rumor source detection problems in online social

networks. We classify schemes of estimators into three categories as shown in Figure 4.1.

4.3.1 Topology based Approach

In this subsection, we summarize rumor source estimator developed by the center of certain

type of graph. There are two main types of graphs: tree-like networks and generic networks.

1. Regular Tree : Shah and Zaman [77, 78] firstly proposed rumor centrality as an

estimator for a single source. They showed that the node with maximum rumor centrality
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(called rumor center) is the Maximum Likelihood Estimator of the rumor source if the

underlying graph is a regular tree in social networks. After this work, many other variants

of the problem have been studied. Dong et al., [25] utilized the same definition of rumor

center and proposed a notion of local rumor center as the node with the highest rumor

centrality in the priori set of suspects to identify a single source for regular trees. Luo et

al., [63] proposed the multi-rumor-center method to identify multiple rumor sources in tree-

structured networks. This method is too computationally expensive to be applied in large-

scale networks as computational complexity of this method is O(nk), where n is the number

of infected nodes and k is the number of sources. Zhu and Ying [117] proposed the Jordan

center method, which utilizes a sample path based approach, to detect diffusion sources in

tree networks with snapshot observations. Luo et al., [64] derived the Jordan center method

using a different approach. Chen et al., [13] extended the Jordan center method from single

source detection to the identification of multiple sources in tree networks. In addition, Shah

and Zaman [78] proved that, even in tree networks, the rumor source identification problem

is a #P -complete problem, which is at least as hard as the corresponding NP problem.

2. Random Tree : Shah and Zaman [80] also established the universality of rumor

centrality for source detection for generic random trees without two limited settings of regular

tree and the exponential spreading time setting in their previous work [77, 78]. Their results

subsequently inspired Fuchs and Yu [29] to extend their work by following the definition of

the rumor center for grown simple families of random trees, which contain binary search

trees, recursive trees and plane-oriented recursive trees.

3. Generic Network : Later Shah and Zaman [79] extended their approaches to random

graphs from tree-like networks. Additionally, Pinto et al., [72] employed BFS technique to

reconstruct generic networks into trees, and then the origin is sought in the BFS trees.
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4.3.2 Effector based Approach

An activation state in a social network with a certain influence diffusion shows the users

who have been influenced. The effectors are nodes that can best explain the observed ac-

tivation state, which indicates that identification of effectors is important in understanding

the dynamics of influence diffusion. Specially, we can interpret effectors as the critical nodes

that trigger or stop the spread of information, or we may consider effectors as the sources of

influence diffusion. Thus, effector detection problem [54] helps in identifying the source of

rumors or infections.

Tong et al., [91] tackled the effector detection problem from a novel perspective for social

networks. Their approach is based on the influence distance that measures the chance that

an active user can activate its neighbors. That is, for a certain pair of users, the shorter

the influence distance, the higher probability that one can activate the other. When we

are given an activation state, the effectors are expected to have short influence distance

to active users while long influence distance to inactive users. By this idea, Tong et al.,

proposed the influence-distance-based effector detection problem for the IC model that was

firstly studied in Lappas et al., [54]. Furthermore, Tong et al., provided a 3-approximation.

In the problem, effectors can be played as rumor source estimators. However, for some

activation states, it is challenging to find best effectors from active nodes. The criteria for

selecting effectors depends not only on the activation state but also on the diffusion model.

Thus, it is interesting to investigate whether a meaningful effector exists for a given activation

state.

4.3.3 Resolving Set based Approach

In this section, we would like to present two novel rumor source(s) estimation approaches by

Chen et al., [12] and Zhang et al., [112] in which they both study source detection problem

from a deterministic point of view.
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Chen et al., firstly discovered that the concept of doubly resolving set (DRS) can be em-

ployed to study the single source detection problem and presented an O(lnn)-approximation

algorithm for the minimum weight DRS problem.

After that, Zhang et al., found that the other concept of set resolving set (SRS) can be

applied for estimating multiple rumor sources independent of diffusion models in networks

with partial observations based analysis. They let G be a network of n nodes, a node subset

K is an SRS of G if all detectable node sets are distinguishable by K. Then, the problem

of multiple rumor sources detection in the network can be modeled as finding an SRS K

with the smallest cardinality. Zhang et al., also gave a polynomial-time greedy algorithm for

finding a minimum SRS in a general network with a performance ratio O(lnn). To the best

of our knowledge, there is currently no any other continued and expanded work to study

these approaches on different diffusion models or different applications.

4.4 Evaluation

4.4.1 Evaluation Metrics

An effective algorithm of finding the source of rumor spreading is a basic component of a

rumor source detection system. In order to measure the performance of the algorithm, the

choice of evaluation is usually measured by three different quality of localization metrics: the

accuracy, the rank and the distance error. The accuracy is the empirical probability that a

source found by the algorithm is the true source [64]. The rank is the true source position

on the nodes list, which is sorted in descending order by likelihood of being the source [101].

The distance error is the shortest path distance between the real source and the source found

by the algorithm [58].
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4.4.2 Datasets

Datasets used for rumor source detection in social networks have been widely classified into

synthetic datasets and real-world datasets [82].

Synthetic Datasets are primarily constructed in forms of tree and graph. The tree net-

works are usually represented by random d-regular trees. The graph networks are basically

illustrated by Small-World (SW) networks and scale free networks.

Real Datasets are commonly datasets from Facebook, Twitter, or Wiki-vote, and so

forth. They are freely accessible on Stanford Large Network Dataset Collection. There is

also a popular Chinese micro blogging network, namely Sina Weibo used for rumor source

detection. A comprehensive study of datasets used for rumor source detection problem in

social networks has been widely investigated in [82].

4.5 Conclusion

The proliferation of data generated by a social network generates a number of real-world

problems to be solved, and rumor source detection problem is one of them. This chapter

aims to summarize and analyze existing schemes for modeling rumor diffusion process as

well as schemes for estimating rumor source(s) in online social networks. In this chapter,

except for the widely reviewed influence diffusion model (i.e., the IC model) and epidemic

models, we additionally present all existing learning based models for rumor propagation in

the rumor source detection problem. It has been studied and seen that data representation

learning based approaches have shown promising results by modeling information diffusion

process on graphs that leverage both graph structure and node feature information. Al-

though this approach results in the best precision performance among all baselines, time

of training and tuning parameters still requires more investigations to be reduced. We no-

tice that this research direction is growing rapidly now for rumor or misinformation source
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detection problem in online social networks. Moreover, we notice that there is little work

for investigating more efficient and effective schemes for estimating source(s) in the rumor

source detection problem.

Overall, the objective of this literature study regarding schemes of rumor propagation

models and rumor source estimators is expected to guide our research work as well as to

provide a timely and worthwhile reference for similar work in other domain specific networks

such as wireless sensor network, network of virus spread, epidemic network, and financial

network, and so forth.
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CHAPTER 5

STATION-BASED APPROACH FOR

ONLINE RUMOR SOURCE DETECTION

5.1 Introduction

Information diffusion processes in online social networks refers to the spread of information

throughout the networks and have been widely used to model many real-world phenomena

such as the spreading of computer virus over the Internet, the outbreak of epidemics, and

the spreading of misinformation over online social networks and so on. Because of its wide

range of applications for many decades, the reverse of the information diffusion problem -

the information source detection problem has also gained a lot of attention over the last

decade since the seminal work regarding rumor source detection in online social network by

Shah and Zaman [78]. The information source detection problem is to identify the source of

information diffusion in networks based on some observations like the states of the nodes and

the timestamps at which nodes adopted (or infected by) the information as well as assumed on

different diffusion models such as the independent-cascade (IC) model, the epidemic models.

This problem has been studied in many applications after Shah and Zaman’s like detecting

the source of epidemics to control infection spreading [2], finding the source of a computer

virus in a network [77], locating gas leakage source in wireless sensor network [83], identifying

propagation sources in complex networks [16], investigating the sources of misinformation

in online social networks [69]. In this chapter, we are interested in one specific application

domain that is actively triggered off on purpose for various reasons in current online media

environment, which is rumor source detection problem. Existing research work about this

problem has been widely investigated by recent surveys [43, 82], and Chapter 4 [45].

To understand the rumor propagation in online social networks, we consider the inde-

pendent cascade (IC) model [48] for the spread of influence through online social networks.
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The network is assumed to be an undirected graph, and each node has only two possible

states: active (or called infected), and inactive (or called uninfected). Active nodes are users

who adopted the rumor and cannot deactivate. We assume that initially all nodes are in

the uninfected state except one infected node (called the rumor source). The rumor source

then infects its currently inactive neighbors with a numerical propagation probability, and

the rumor starts to spread in the network. Now given a complete snapshot of the network

at some time, in which we can identify infected nodes and uninfected nodes. We pre-select

a set of k infected nodes to be our observed stations among all infected nodes. Without

knowing the first rumor infection time of each observed station nor the neighbor from which

the rumor is adopted. The goal is to detect the rumor source based on the infection stations.

To overcome this problem, our main contributions of this chapter are summarized as

follows.

Consider a social network G = (V,E) with the IC diffusion model, we formally defined

influence distance metric for each edge associated with a propagation probability that u

can activate v after becoming active. This measurement allows the calculation of influence

propagation becoming the computation of distance in the tree graphs. With the distance,

we next propose the station-based source detection approach. We only consider the case

where there is a single rumor source. We derive an estimator for the source node associated

with the most likely infection path that yields a subset of infected nodes to be the Jordan

infection center as well as we provide an efficient algorithm to find the proposed estimator

in theory. Followed by the result, we propose a k-station selection problem to deal with

the distribution of stations, and then we develop a greedy based 2-factor approximation

algorithm to the problem. To the best of our knowledge, our station selection problem is

the first work that solves the source detection problem in social networks. Moreover, the

estimator using the eccentricity of a graph to identify rumor source is rarely discussed in the

IC model, because it has only been used in epidemic models [117, 63, 62] before.
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The chapter is organized as follows. We first discuss most relevant work in section 5.2.

Section 5.3 formally formulates the problem under the IC model. Section 5.4 introduces

the source estimator and stations deployment.

5.2 Related Work

There have been extensive studies on the rumor source detection problem in online social

networks based on two classical diffusion models - epidemic models like SI, SIR, SIS or SIRS

and the independent cascade (IC) model.

Shah and Zaman [78] firstly studied single rumor source detection problem, in which a

new graph centrality called rumor centrality was proposed and proved to be the maximum

likelihood estimator (MLE) on regular trees under the susceptible-infected (SI) model. Later,

[117] proposed the sample path based approach for the single source detection problem and

proved that the sample path based estimator on tree network is a Jordan infection center

under the homogeneous SIR model with a complete snapshot. This approach has been

extended to several directions under the same SIR model [116, 13] as well as under the other

epidemic SIS model [63] for tree networks, respectively.

Besides the epidemic models, [101] firstly studied the problem of identifying single rumor

source detection with respect to the IC model in online social networks where a monitor

based approach was proposed and a maximum influence path with respect to maximum

likelihood value as a rumor quantifier for ranking how likely nodes are the actual rumor

source for tree graphs in the directed graph under the IC model. [101] also studied that

various pairs of number of monitors and monitor selection methods affect the precision of

source detection. Three monitor selection methods: Random, Incoming Degree (ID) and

Betweenness Centrality (BC) were compared and experiments demonstrated that when the

monitor are randomly chosen, the precision of locating the rumor source averagely increases

with the monitor number increased from small number (e.g., 50) to large number (e.g., 2000).
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However, the selection of monitors [101] is restricted to representativeness that contributes

most to the rumor source detection problem. This recalls another problem, the propagation

sources can be detected by injecting monitors (or sensors). When the monitors (or sen-

sors) are injected into networks, they act as normal users while collecting the propagation

information including states, infection time and so forth.

Several other related work under the independent cascade (IC) model include: [58] for-

mulated and studied a k-minimum distance error rumor source detection problem with the

objective of finding the optimal set of rumor-infected candidates under the size constraint of

k for further minimizing their defined expected distance error with respect to the shortest

hop distance from the rumor source to the k infected vertices, and they investigated the

impact of the size of candidate set k on the average distance error. In addition, a similar

problem under the IC model to minimize the L1 distance between the expected states and

observed states of the nodes was studied and several heuristic algorithms based on a single

snapshot of the tree network was proposed in [54].

5.3 Problem Formulation

5.3.1 IC Model for Rumor Spreading

A social network is represented by an undirected graph G = (V,E), where vertices v ∈ V

represent users and E is the set of edges where each edge (u, v) represents interactions

between users u and v. Each node has two possible states: active (or called infected) and

inactive (or called uninfected). We assume that time is divided into discrete time slots.

Nodes change their states at the beginning of each time-slot, and the state of node v in a

time-slot t is denoted by Xv(t). Let X[0, t] = {Xv(τ) : 0 ≤ τ ≤ t, v ∈ V } to be a path of the

infection process, which contains the states of all the nodes of the path from 0 to t.

Initially, all nodes are inactive except one single rumor source that is in the active state.

At the beginning of each time slot t, an active node u attempts to activate it inactive neighbor
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v. If u succeeds, then v becomes active at next time slot t+ 1, otherwise v remains inactive.

The process of influence diffusion runs until no user can be further activated. Under the IC

model, there is the weight associated with each edge, representing the success probability of

the attempt, called the infection probability (or called propagation probability) of the edge

and each attempt is independent of others. Each active node has only one chance to activate

its inactive neighbors. Denote the infection probability of edge (u, v) by puv ∈ [0, 1]. Next,

an inactive node v is infected with probability 1−
∏

u∈Nactive(v)(1− puv), where N(v) denotes

the neighbors of v. Note that puv = pvu as we consider the undirected graph. In addition,

we assume an active node retains with the rumor forever once it is infected.

At a time-slot t, we observe a complete snapshot O = {Xv(t), v ∈ V } such that,

Xv(t) =


Oa, if v is active

Ob, if v is inactive

We say Oa is a set of active nodes and the set Ob of inactive nodes. Our station-based

rumor source detection problem is to detect the source s∗ based on a subset M ⊂ Oa of k

explicit nodes (called stations) instead of observing Oa. We assume the observation time t

is unknown.

5.3.2 Influence Distance from the IC Model

In a social network, there exists a concept of influence distance which measures the distance

between users with respect to information propagation probability. That is, for two users u

and v, the influence distance duv measures the chance that the influence can be propagated

to v from u. The smaller value of duv, the higher probability with which u can activate v.

Based on that, we start by discussing how to extract the influence distance for each edge

with propagation probability from the IC model in the graph G.

Suppose that at a time slot t, there is a weighted path

Xv1vk [0, t] = 〈p12, p23, ..., pi(i+1), ..., p(k−1)k〉
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from node v1 to vk, in which pi(i+1) is infection probability associated with each edge of the

path. Define the propagation probability of the path Xv1vk [0, t] to be,

Pr(Xv1vk [0, t]) =
k−1∏
i=1

pi(i+1) (5.1)

where the product is over a set of edges of the path. Intuitively, u can activate v via a

path Xuv[0, t] with the probability of Pr(Xuv[0, t]), because all nodes along the path need

to be activated. Let χGuv(t) denote the set of all paths from u to v in the graph G at an

observation time t, if there exists multiple paths connecting from u to v. Let P̄r(Xuv[0, t])

be the path that has maximum propagation probability from u to v. Hence, P̄r(Xuv[0, t]) is

called maximum propagation path from u to v, and P̄r(Xuv[0, t]) ∈ χGuv(t).

Since there are many alternative joint paths from u to v, P̄r(Xuv[0, t]) obviously cannot

completely capture the influence diffusion. To handle this hardness, we borrow the k-th

influence distance defined in [91].

Definition 5.1. Let χkuv(t) is the set of k independent paths that have maximum propagation

probability from u to v at an observation time t. Define the k-th influence distance dkuv of

the pair of users u and v to be,

dkuv = −ln

1−
∏

Xuv [0,t]∈χkuv(t)

(1− Pr(Xuv[0, t]))

 (5.2)

By the construction of χkuv(t), the paths are edge disjoint and thus u activates v inde-

pendently through these paths. Therefore, 1 −
∏

Xuv [0,t]∈χkuv(t)(1 − Pr(Xuv[0, t])) represents

the probability that u can activate v through the paths in χkuv(t). In this study, we assume

maximum propagation path is always unique. Thus, by (5.2), we have influence distance for

k = 1,

d1
uv = −ln

1−
∏

Xuv [0,t]∈χ1
uv(t)

(1− Pr(Xuv[0, t]))


= −ln(P̄r(Xuv[0, t]))

(5.3)
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Lemma 5.1. Given a graph G = (V,E) under the IC model, let the path Xuv[0, t] from node

u and v is a set of edges with influence probability at an observation time t. The influence

distance duv = −ln(Pr(Xuv[0, t])).

Lemma 5.2. Given a path Xuv[0, t] with edge probability between two nodes u and v under

the IC model in the graph. The influence distance duv is the sum over the influence distance

of edges of the path from u to v.

Proof. Take aforementioned weighted path Xv1vk [0, t] from node v1 to vk as an example, then

by (5.1) we have,

Pr(Xv1vk [0, t]) = p12 · p23 · ... · p(k−1)k

Next, by Lemma 5.1, it turns out that,

dv1vk = −ln(Pr(Xv1vk [0, t])

= −ln(p12 · p23 · ... · p(k−1)k)

= −ln(p12)− ln(p23) · · · − ln(p(k−1)k)

= d12 + d23 + · · ·+ d(k−1)k

One can see that the calculation of influence probability becomes to compute the influence

distance under the IC model in the graph. A short influence distance between two users

implies the rumor is more easily to spread between them. Note that duv = dvu as we

consider the undirected graph. We can think of influence distance as distance.

5.3.3 Infection Path Based Estimation

In the following, we use an infection path based approach to detect the path XM [0, t] that

most likely leads to observed infection stations M in tree networks.

XM [0, t] = argt max
X[0,t]∈χ(t)

Pr(X[0, t]) (5.4)
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where χ(t) = {X[0, t]|M ∩ Oa}, and Pr(X[0, t]) is the probability to obtain the most likely

infection path. The source node associated with XM [0, t] will be treated as the infection

source.

5.4 Single Rumor Source Estimation for Tree Networks

In this section, we assume that the underlying network G is on trees with only one single

source. We will derive that the source associated with the most likely infection path is a

node with the minimum infection eccentricity. We first introduce the following definitions.

Definition 5.2. Let dvu denote the distance between nodes v and u in graph, where the

distance is known as the shortest path between two nodes. Given a set M (—M—¿0) of

explicit observed infection stations, define the largest distance between node v and any infected

station node to be,

d̄(v,M) = max
u∈M

dvu (5.5)

where d̄(v,M) is called the infection eccentricity of node v, denote by ẽM(v). And the nodes

with minimum infection eccentricity are defined as the Jordan infection centers of a graph.

Definition 5.3. For each v ∈ V , let XM
v [0, t] ∈ χv(t) to be the most likely infection path

leading to M up to time t, given that v is the infection source,

XM
v [0, t] = argt max

X[0,t]∈χv(t)
Pr(X[0, t]|s∗ = v) (5.6)

where χv(t) is viewed as the set of all possible infection paths starting with v and resulting

in M at a time slot t and Pr(X[0, t]|s∗ = v) is the likelihood of obtaining the path XM
v [0, t]

given the source v.
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5.4.1 Infection Path Propagation Time

Lemma 5.3. Given a non-empty set M of explicit observed infection stations, suppose that

v is the rumor source under the IC model. Then, the rumor spreading time associated with

the most likely infection path conditioned on v is given by tMv = d̄(v,M).

Proof. We analyze the time duration of the most likely infection path such that,

tMv = argt max
Xv [0,t]∈χv(t)

Pr(Xv[0, t]|s∗ = v) (5.7)

Which means that we want the time tMv maximizing the likelihood of obtaining the path

covering the observed infection station set M .

As we assume time is divided into discrete time slots, the infection diffusion is at most

one hop further from the source v in one time slot. If observation time t < d̄(v,M), the

rumor infection can not reach the nodes in the M . Hence, it is not possible for every node

in M to get infected. Therefore, we have the observation time t ≥ d̄(v,M).

Next, intuitively, at an observation time t, a path with longer time duration involves

more probabilistic infected nodes which contributes a factor of (1 − p) in each time slot to

the overall probability to remain active. Thus, the influence probability associated with the

path XM
v [0, t] is monotonically decreasing with respect to t.

From above two results and according to Lemma 5.1, it can be proved that

tMv = d̄(v,M)

We will have unique tMv for each v ∈ V .

5.4.2 Infection Source Estimator

The infected nodes form a connected infection subgraph under the IC model in the graph G.

Since the source node must be an infected node, the detection of the rumor source can be

restricted to the infection subgraph. We then have the following lemma.
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Lemma 5.4. Suppose the rumor infection spreading follows an IC model. Let g be the

minimum infection subgraph of G that contains observed infection stations M , and let tMv =

d̄(v,M) for any v ∈ g. Then, for any pair of neighboring nodes u and v in g, if tMv < tMu ,

we have,

Pr(XM
v [0, tMv ]) > Pr(XM

u [0, tMu ]) (5.8)

Proof. If tMv < tMu , by Lemma 5.3, we can easily have d̄(v,M) < d̄(u,M). According to

Definition 5.2, we have ẽM(v) < ẽM(u) in the infection subgraph g. We further by Lemma

5.1, which finally indicates the path starting from a node with a smaller infection eccentricity

is with a larger likelihood over edges of the path, which means the path is more likely to

occur, we then can prove Lemma 5.4.

Lemma 5.5 ([117]). On a tree network with at least one infected node, there exists at

most two Jordan infection centers. Furthermore, when the network exactly has two Jordan

infection centers, these two centers must be adjacent.

Based on Lemma 5.3, Lemma 5.4 and Lemma 5.5, we have the following theorem 5.1.

Theorem 5.1. Suppose the rumor infection spreading follows an IC model. Consider an in-

finite tree network graph, and M is the observed infection stations. Then, the single infection

source associated with XM [0, t] in (5.4) is estimated by,

s∗ = arg min
v∈V

ẽM(v) (5.9)

Intuition: We will assume one Jordan infection center s∗. When there are two Jordan

infection centers, based on Lemma 5.5, we can treat them as one node. We will show that, for

any node a ∈ g \ {s∗}, there exists an infection path from a to s∗, along which the infection

eccentricity monotonically decreases, which implies that s∗ must be a Jordan infection center.
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Figure 5.1: Example picture illustrating the proof, and node w is an observed infection
station in M

Proof. First, on the infection path from a to s∗, assume u is the neighboring node of s∗. Let

T−s
∗

u (g) denote the subtree of g rooted at node u but without the branch from s∗, and the

nodes s∗, u ∈ g.

From Figure 5.1, it is obvious that there exists an observed infection node w such that

dwu = ẽM(s∗) − dus∗ , where ẽM(s∗) = dws∗ is assumed, and the node w ∈ T−s
∗

u (g) ∩ M .

Consider a node l ∈ T−s∗u (g) ∩M , we will hold that dlu ≤ dws∗ − dus∗ .

Now consider a ∈ g\{s∗}, and assume a ∈ g\T−s∗u (g), then, for any node l ∈ T−s∗u (g)∩M ,

we have

dal = das∗ + ds∗u + dul

≤ das∗ + ds∗u + dws∗ − dus∗

= das∗ + dws∗

Which denotes that ẽ(a) = das∗ + dws∗ . Next, since ẽ(s∗) = dws∗ , we can claim that the

infection eccentricity decreases along the infection path from nodes a to s∗. After that, by

repeatedly using Lemma 5.4, we can conclude that the infection path rooted at node s∗

is more likely to occur than that rooted at node a from a to s∗. Therefore, the theorem

holds.
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5.4.3 Strategy for Station Selection

Now let us discuss how to distribute stations in a complete snapshot of the network. Given

a finite set Oa of infected nodes, a subset M ⊂ Oa of observed infection stations, and an

integer k = |M |, we expect to the following formula to be smaller,

min
v∈V

ẽOa(v)−min
v∈V

ẽM(v) (5.10)

By Definition 5.2, where ẽOa(v) = max
u∈Oa

dvu, and ẽM(v) = max
u∈Oa∩M

dvu. And this consider-

ation may ask set M to be a solution to k-center problem.

Definition 5.4 (k-center problem). Given a set Oa of nodes and an integer k ≤ |Oa|, select

a set M ⊂ Oa of k nodes that minimize the maximum distance of any node of Oa to its

closest center in M , that is

min
M⊂Oa
|M |=k

(
max
i∈Oa

d(i,M)

)
(5.11)

where d(i,M) = min
j∈M

dij, and max
i∈Oa

d(i,M) is also called radius r of any node of Oa to its

closest center in M , denote by

r(M) = max
i∈Oa

d(i,M) (5.12)

Let us view the k-center problem as a covering problem by balls. Given a node x and

radius r, define the ball b(x, r) to be the closed ball of radius r cnetered at x. Given any

solution M to the k-center problem, if we now place balls of radius r(M) about each node in

M , it is easy to see that every node of Oa lies within the union of these balls. By definition of

radius in (5.12), one of nodes of Oa will lie on the boundary of one of these balls. Otherwise,

we could make r(M) smaller. The neighborhood of each cluster will lie within its associated

ball. See Figure 5.2(b).

Given this perspective, the k-center problem is equivalent to the following k-station

selection problem.
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Figure 5.2: Illustration of the k-center problem

Definition 5.5 (k-station selection problem). Given a set Oa of infected nodes and an integer

k ≤ |Oa|, find the minimum radius r and a set of balls of radius r centered at k infected

station nodes of M ⊂ Oa with |M | = k such that Oa lies within the union of these balls.

Hence, these pre-selected observed k infection stations can be treated as representatives

for all infected nodes in the network.

Theorem 5.2. The k-station selection problem is NP-hard.

Proof. Like many clustering problems, the k-center problem is known to be NP-hard. Iden-

tically, our proposed k-station selection problem is to be NP-hard.

Based on Theorem 5.2, we will not be able to solve the k-station selection problem

exactly. Therefore, we develop a greedy based algorithm that can find an approximation to

the optimum value of radius r in the problem efficiently in polynomial time in the worse case

for general graphs.

Our greedy algorithm begins by selecting any node of Oa to be the initial center m1. We

then repeat the following process until we have k stations. Let Mi = {m1, . . . ,mi} denote

the current set of stations. Recall that r(Mi) is the maximum distance of any infected node

of Oa from its nearest station in M . Let node u ∈ Oa be the node achieving this distance.

Intuitively, u is the farthest user that adopts rumor by its closest pre-selected infection
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station. The greediest way to satisfy u is to put the next station directly at u. In other

words, we set

mi+1 ← u

and

Mi+1 ←Mi ∪mi+1

The detailed description is presented in Algorithm 5.1. The value du denotes the distance

from u to its closest station. To simplify, we start with M being empty. When we select the

first station, all the nodes of Oa have infinite distances, so the initial choice is arbitrary.

Algorithm 5.1 Greedy k-station Selection

Input: Oa ⊂ V ; integer k
Output: M ⊂ Oa with |M | = k

1: Initialize M ← ∅
2: for u ∈ Oa do
3: Initialize du =∞
4: end for
5: for i← 1 to k do
6: Let u ∈ Oa be the node such that du is maximum
7: mi+1 ← u
8: Mi+1 ←Mi ∪mi+1

9: for v ∈ Oa do . //update distance to nearest station
10: dv = min(dv, dvu)
11: end for
12: r = max

v∈Oa
dv . //update the radius r of each station to its farthest neighboring node

in Oa

13: end for
14: return (M , r)

The line 5 to line 8 of the algorithm is illustrated in Figure 5.3. Assuming that we have

three stations M = {m1,m2,m3}, let m4 be the node that is farthest from it closest station,

say m1 in this case. In each step we create a station at m4, so now M = {m1,m2,m3,m4}.

In anticipation of the next step, we find the node, say m5 in this case, that maximizes the
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distance to its nearest station, and if the algorithm continues, it will be the location of next

station.

Figure 5.3: Illustration of greedy approximation to k-station selection

Theorem 5.3. Greedy k-station Selection algorithm runs in O(k · |Oa|).

Proof. According to the pseudocode in Algorithm 5.1, it is easy to see that its running time

is O(k · |Oa|). In general k ≤ |Oa|, so it is O(|Oa|2) in the worst case.

Theorem 5.4. Algorithm 5.1 is a 2-approximation solution for k-station selection problem.

Proof. Let M = {m1, . . . ,mk} denote the set of stations computed by the greedy algorithm,

and let r(M) denote the maximum radius over all the stations. Let O = {o1, . . . , ok} denote

the optimum set of k stations such that r(O) is the smallest possible. We will show that our

greedy result is at most twice as bad as optimal, that is

r(M) ≤ 2r(O)

Our approach is to determine a lower bound rmin on the optimum value that rmin ≤ r(O).

Then we show that our greedy algorithm 5.1 produces a value that satisfies r(M) ≤ 2rmin.

Thus, It will follow that r(M) ≤ 2r(O).

Define Mi to be the set of stations after the ith execution of the greedy algorithm, and let

ri = r(Mi) denote the overall radius that farthest neighboring node from its closest station

in Mi. Algorithm 5.1 stops with mk, but for the sake of analysis, we consider the next
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station to be added if we executed one more iteration. That is, define mk+1 to be the node

of Oa that maximizes the distance (i.e., r(Mk)) to its closest station in Mk. Also, we define

Mk+1 = {m1, . . . ,mk+1}.

Claim 5.4.1. For 1 ≤ i ≤ k+ 1, ri+1 ≤ ri. That is, the sequence of radius is monotonically

non-increasing.

Proof. Whenever a new station is added, the distance to each node from its closest station

will either be the same or will decrease. We also see the fact that the covering radius decrease

with each step in Figure 5.3.

Claim 5.4.2. For 1 ≤ i ≤ k + 1, every pair of stations in Mi using greedy algorithm 5.1 is

separated by a distance of at least ri−1.

Proof. Consider the ith step. By the induction hypothesis, the first i− 1 stations are sepa-

rated from each other by distance ri−2 ≥ ri−1. By definition, the ith station is at the location

with distance ri−1 from its closest station, hence it is at distance at least ri−1 from all the

other stations.

Claim 5.4.3. Let rmin = r(M)/2. For any set C of k cluster stations, r(C) ≥ rmin.

Proof. By definition of r(C) in Definition 5.4, we know that every node of Oa lies within

distance r(C) of some point of C, and since M ⊂ Oa, this is true for M as well. Because

|Mk+1| = k + 1, by the pigeonhole principle, there exists at least two stations m,m′ ∈Mk+1

that are in the same neighborhood of some station c ∈ C, that is, max(dmc, dm′c) ≤ r(c).

Since m,m′ ∈ Mk+1, by Claim 5.4.2, dmm′ ≥ rk = r(M). We assume that the distance

satisfies the typical properties of any natural distance function, then we apply them to the
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triple (m, c,m′), we have

r(M) ≤ dmm′

≤ dmc + dcm′(by triangle inequality)

≤ dmc + dm′c(by distance symmetry)

≤ r(c) + r(c)

≤ r(C) + r(C) = 2r(C)

Hence, as desired that, r(C) ≥ r(M)/2 = rmin.

Now, by applying Claim 5.4.3 to the optimum set O, we have r(O) ≥ rmin. Since

rmin = r(M)/2, we then have r(M) ≤ 2r(O). Based on above three claims, the proof is

complete.

5.4.4 Infection Path Based Source Detection

An efficient algorithm to find the Jordan infection center has been described in [117] under

the SIR model, which we will call infection path based source detection algorithm under the

IC model. The details are described in Algorithm 5.2.

Based on Theorem 5.1, we view the Jordan infection centers as possible candidates of

the rumor source based on the structure properties of the most likely paths on trees.

The procedure of algorithm is to find the Jordan infection centers. First, the algorithm

is to let every pre-selected observed infection station broadcast a rumor message containing

its station ID to it neighbors, each node of which checks whether its first time to receives

the station ID after receiving the rumor messages from its neighborhood. If the station ID

not received before, the node records the station ID, and the time at which the rumor is

received, say tsiu , and then broadcasts the rumor messages containing the station ID to its

neighbors. When a node receives all station IDs, we can claim it as the rumor source, and
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the algorithm terminates. If there are multiple nodes receive all station IDs at the same

time, we then break ties based on the infection closeness, which is defined as the inverse of

the sum of distances from a node to all infected nodes in [117] that measures the efficiency

of a node to spread information to infected nodes. The algorithm selects a Jordan infection

center with the largest infection closeness that breaks ties at random. In other words, the tie

is broken by selecting the node with smallest
∑
tsiu . The set R denotes the set of candidate

Jordan infection centers.

Algorithm 5.2 Infection Path Based Source Detection

Input: set M of k infection stations; g = (V,E)
Output: the estimated rumor source s∗

1: Set t = 1
2: for i ∈M do
3: i broadcasts rumor containing its station ID si to its neighbors
4: do
5: for u ∈ V do
6: if u receives si for the first time then
7: Set tsiu = t and continue broadcasting the rumor containing si to its neigh-

bors
8: end if
9: end for
10: t = t+ 1
11: while no node receives k distinct station IDs
12: end for
13: return (s∗ = arg min

u∈R

∑
i∈M tsiu ), where R is the set of nodes who receives k distinct

station IDs when the algorithm terminates. Ties are broken randomly.

Theorem 5.5. The worse-case complexity of Algorithm 5.2 is equal to O(k · |E|).

Proof. To implement Algorithm 5.2, we borrow some operations in [117]. We set an array of

integers of size k and an integer counter to each node, and an integer index to each infection

station. The values of that integer array are the distances from the node to the infection

stations. The integer counter records the number of distinct station indices received. A

rumor message only contains the index of a station. At each iteration, when a node not
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receiving the station index in the new message, it updates the value, which equals to the

distance from the node to the infection station associated with its received station index,

at the corresponding position of the array. Next, its integer counter increases by one and

checks whether the value equals to k. Assuming that each edge is used to transmit at most

k rumor messages in one direction, hence, there are at most 2k · |E| messages. Note that the

complexity of processing one message is O(1). Therefore, our algorithm runs in O(k · |E|) in

the worse case.
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CHAPTER 6

NOVEL ALGORITHMS FOR MAXIMUM DS DECOMPOSITION
1

6.1 Introduction

In discrete optimization, submodular maximization for set functions is a hot topic, which

attracts many scholars. In the past few decades, many important results for maximization

of submodular set function have been proposed. Based on monotonicity and f(∅) = 0, the

pioneering work was done in 1978. Nemhauser et al., [67] firstly proposed a greedy algorithm

which can get 1−e−1 approximation ratio under cardinality constraint by adding a maximal

marginal gains element to current solution in each iteration. In the same year, Fisher et

al., [28] proved that the greedy strategy can get (1 + p)−1 approximation with p matroid

constraint. But, for the application, the quality of solution returned by greedy strategy is

much better than the above approximation ratio. By constructing a metric called curvature

c ∈ [0, 1], Conforti et al., (1984) [17] proved that the greedy algorithm can get more tight

approximation ratio 1−e−c
c

and 1
1+c

. That is why greedy strategy is excellent for monotone

submodular maximization. These groundbreaking works have inspired a great deal of sub-

modular optimization.

Beyond the monotonicity, the above algorithms are not good for submodular maximiza-

tion. Until 2011, Feldman et al., [27] proposed a novel greedy algorithm which has e−1

approximation for non-monotone submodular maximization under matroids constraint. Fur-

ther, by using double greedy, Buchbinder et al., (2014) [10] proved that non-monotone sub-

modular maximization under cardinality constraint also has e−1 approximation polynomial

algorithm. Besides, for maximization without constraints, Buchbinder et.al (2012) [9] also

constructed an algorithm which can get 1/2 approximation.

1©2021. Reprinted, with permission, from S. Chen, W. Yang, S. Gao, and R. Jin. Novel algorithms for
maximum DS decomposition. Theoretical Computer Science 857, 87-96.
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Because these are some efficient algorithms, submodular optimization is widely utilized

in data mining, machine learning, economics and operation research such as influence maxi-

mization (Kempe et al., (2003) [48]), active learning (Golovin et al., (2011) [31]), document

summarization (Lin et al., (2011) [59]), and image segmentation (Jegelka et al., (2011) [42]).

In applications, unfortunately, a large number of objective functions are not submodular.

Thus, how to optimize a general set function is the most important problem and has puzzled

many researchers.

In this chapter, we study the non-submodular maximization problem based on DS de-

composition about set functions, which is the difference between two monotone submodular

functions. To solve this problem, we proposed Parameter Conditioned Greedy Algorithm by

using the difference with parameter decomposition function and combining non-negative con-

dition. There are general frameworks with a deterministic version and two random versions

and users can choose rational parameters according to the property of problem.

6.1.1 Related Work

In this section, we introduce some previous works about non-submodular maximization prob-

lem which are related to our work directly.

On the one hand, some researchers proposed lots of definition about approximation of

submodularity. Firstly, Krause et al., (2008) [53] constructed a metric called ε-Diminishing

returns to evaluate what is the level of violation of marginal gains decreasing. On this basis,

the authors proved that the standard greedy algorithm can get f(X) ≥ (1−e−1)(OPT −kε)

approximation under cardinality constraint. Das and Kempe (2011) [21] introduced sub-

modular ratio to measure violation about submodularity. Besides, they proved that the

standard greedy strategy can get f(X) ≥ (1 − e−γ)OPT approximation under cardinality

constraint. Horel and Singer (2016) [40] proposed ε-approximation submodularity to limit

non-submodular function. According to this metric, the authors proved that the standard
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greedy algorithm can return f(X) ≥ 1
1+ 4kε

(1−ε)2
(1 − e−1(1−ε

1+ε
)2k) · OPT approximation under

cardinality constraint. It is no surprise that computing these metrics is also a hard problem.

It makes these results only theoretical meaning, but lack of practical application.

On the other hand, Lu et al., (2015) [60] proposed Sandwich Approach which chooses

the best one solution of a submodular upper bound, a submodular lower bound and original

problem. Because this approach can get a well-calculating parametric approximation, some

researchers also applied Sandwich Approach to solve their application problems (Yang et al.,

(2020) [102], Yang et al., (2020) [103], Zhu et al., (2019) [114], Wang et al., (2017) [99]).

In addition, Iyer and Bilmes (2012) [41] proved that any set function can be expressed as

the difference between two submodular set functions called DS decomposition. Specially, the

two submodular set functions are monotone and non-decreasing. What’s more, the authors

proposed SubSup, SupSub, ModMod algorithms to solve the minimization of this problem.

Lemma 6.1 (Iyer and Bilmes (2012) [41]). Any set function h : 2Ω → R can decompose the

difference of two monotone non-decreasing submodular set functions f and g, i.e., h = f−g.

This excellent result has been applied in many scenarios (Han et al., (2018) [35], Mae-

hara et al., (2015) [65] and Yu et al., (2016) [106]). Because of the correspondence between

submodularity and supermodularity, Li et al., (2020) [56] proved a variation of DS decomposi-

tion, i.e., any set function can be expressed as the difference of two monotone non-decreasing

supermodular functions. Similarly, they also proposed greedy strategies like Iyer and Bilmes

called ModMod and SupMod.

From the perspective of application, Bai and Bilmes (2018) [4] found that some set

function can be expressed as the sum of a submodular and a supermodular function called

BP decomposition, both of which are non-negative monotone non-decreasing. Interestingly,

they proved that greedy strategy can get a 1
kf

[1 − e−(1−kg)kf ] and 1−kg
(1−kg)kf+p

approximation

under cardinality and matroid constrained, where kf , kg are curvature about submodular
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and supermodular functions. Harshaw et al., (2019) [37] focused on the difference between

a monotone non-negative submodular set function and a monotone non-negative modu-

lar set function. Besides, they proposed Distorted Greedy to solve this problem and get

f(S)− g(S) ≥ (1− e−γ)f(OPT )− g(OPT ) approximation.

6.1.2 Contribution

Although DS decomposition has a bright application prospect, about general set function,

there is a problem worth studying how to solve DS decomposition efficiently and effectively.

Also, The Distorted Greedy strategy inspires our idea to solve maximization of DS decom-

position. The major contribution of our work are as follows.

� Deterministic Parameter Conditioned Greedy is a deterministic framework under car-

dinality constrained problem. Under some rational assumption, the Deterministic Con-

ditioned Greedy can get a polynomial approximation for maximum DS decomposition.

� To speed the Deterministic Parameter Conditioned Greedy, we use sampling to cover

optimal solution set which can reduce ground set to a small set called Random Param-

eter Conditioned Greedy I. Besides, we prove it can get the same approximation ratio

as Deterministic Parameter Conditioned Greedy.

� For maximization of DS decomposition under no constraint, we propose Random Pa-

rameter Conditioned Greedy II to solve it. Under some rational assumption, the Ran-

dom Parameter Conditioned Greedy can get a polynomial approximation for maximum

DS decomposition.

� We choose two special parameters to show our algorithms can get two novel approxima-

tions f(Sk)−(e−1−cg)g(Sk) ≥ (1−e−1)[f(OPT )−g(OPT )] and f(Sk)−(1−cg)g(Sk) ≥

(1− e−1)f(OPT )− g(OPT ) respectively for cardinality constrained problem and also
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can get two novel approximations E[f(Sk) − (e−1 − cg)g(Sk)] ≥ (1 − e−1)[f(OPT ) −

g(OPT )] and E[f(Sk)− (1− cg)g(Sk)] ≥ (1− e−1)f(OPT )− g(OPT ) respectively for

unconstrained problem.

6.1.3 Organization

The rest of this chapter is organized as follow. In Section 6.2, we propose Deterministic

Parameter Conditioned Greedy Algorithm to solve maximization of DS decomposition under

cardinality constraint and use sample technique to speed our algorithm. As for without

constraint, we design a Random Parameter Conditioned Greedy Algorithm II in Section 6.3.

In Section 6.4, we choose some special parameters to analyze the efficiency of our framework.

Conclusion and future works are in Section 6.5.

6.2 Maximization of DS Decomposition under Cardinality Constraint

In this section, we study the following problem, where f , g are the monotone non-decreasing

submodular set functions, k is the cardinality constraint.

max
X⊆Ω

f(X)− g(X)

s.t. ‖X‖ ≤ k

(6.1)

6.2.1 Deterministic Parameter Conditioned Algorithm

Since Greedy Strategy is simple and efficient and gets some excellent constant approximation

ratios for submodular optimization problem, many researchers use greedy strategy to deal

with their problems. Therefore, we design a Deterministic Parameter Conditioned Greedy

Algorithm to solve maximization DS decomposition with cardinality constraint. The details

about Deterministic Parameter Conditioned Algorithm is in Algorithm 6.1.

From the Algorithm 6.1, Line 2-Line 8 is the main loop which needs to be executed
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k times. Line 3 finds the element with maximal parameter decomposition marginal gains.

Importantly, A(i) and B(i) are chosen by algorithm designers. In terms of practical appli-

cations, we assume f(∅) = g(∅) = 0, A(i) ≥ 0 and B(i) ≥ 0. Line 4 limits the maximal

marginal gain must be positive, if negative means algorithm cannot add any elements in

this loop because all elements may not have enough large marginal gain. It is dependent on

our parameter how to choose. For example, when A(i) is enough large and B(i) is enough

small, the condition of Line 4 is always satisfied. If designers choose well-defined parame-

ters that are related to iteration round, it can get a wonderful approximation ratio about

maximum DS decomposition. In this section, we assume (1 − 1
k
)A(i + 1) − A(i) ≥ 0 and

B(i+ 1)−B(i) ≥ 0 specially. And then, we’re going to go through the following process to

explain why we’re making this assumption.

Algorithm 6.1 Deterministic Parameter Conditioned Greedy

Input:Cardinality k, Parameters A(i),B(i)
Output: Sk

1: Initialize S0 ← ∅
2: for i = 0 to k − 1 do
3: ei ← arg maxe∈Ω {A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)}
4: if A(i+ 1)f(ei|Si)−B(i+ 1)g(ei|Ω \ ei) > 0 then
5: Si+1 ← Si ∪ {ei}
6: else
7: Si+1 ← Si
8: end if
9: end for
10: return Sk

To prove approximation ratio of Algorithm 6.1, firstly, we introduce a metric called

curvature and two auxiliary functions which are useful in process of approximation proof.

Definition 6.1 (Conforti (1984) [17]). Given a monotone submodular set function f : 2Ω →

R, the curvature of f is

cf = 1−mine∈Ω
f(e|Ω \ e)
f(e)
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Definition 6.2. Define two auxiliary functions:

φi(T ) = A(i)f(T )−B(i)
∑
e∈T

g(e|Ω \ e)

ψi(T, e) = max {0, A(i+ 1)f(e|T )−B(i+ 1)g(e|Ω \ e)}

From Definition 6.2, ψi(T, e) is the condition of the Line 4 in Algorithm 6.1. What’s more,

φi(T ) is the surrogate objective function. Clearly, if we take φi(T ) as our objective function,

Algorithm 6.1 is the classical greedy algorithm just combined non-negative condition. Next,

we prove an important property about surrogate objective function.

Property 6.1. In each iteration

φi+1(Si+1)− φi(Si) = ψi(Si, ei) + [A(i+ 1)− A(i)]f(Si)− [B(i+ 1)−B(i)]
∑
e∈Si

g(e|Ω \ e)

Proof.

φi+1(Si+1)− φi(Si)

= A(i+ 1)f(Si+1)−B(i+ 1)
∑
e∈Si+1

g(e|Ω \ e)− A(i)f(Si) +B(i)
∑
e∈Si

g(e|Ω \ e)

= A(i+ 1)[f(Si+1 − f(Si))]−B(i+ 1)g(ei|Ω \ ei) + [A(i+ 1)− A(i)]f(Si)

− [B(i+ 1)−B(i)]
∑
e∈Si

g(e|Ω \ e)

= ψi(Si, ei) + [A(i+ 1)− A(i)]f(Si)− [B(i+ 1)−B(i)]
∑
e∈Si

g(e|Ω \ e)

Using the Property 6.1, we construct the relationship from Deterministic Parameter Con-

ditioned Greedy to surrogate objective function. That is why we introduce the Definition 6.2.

Coming from the proof of the approximation ratio of greedy algorithm in the submodular

maximization, analyzing the marginal gain of surrogate objective function in each itera-

tion is essential for approximation ratio for Algorithm 6.1. Interestingly, the condition of

Algorithm 6.1 has a lower bound marginal gains and we prove it in Theorem 6.1.

78



Theorem 6.1. ψi(Si, ei) ≥ 1
k
A(i+ 1)[f(OPT )− f(Si)]− 1

k
B(i+ 1)g(OPT )

Proof.

k · ψi(Si, ei) = k ·max
e∈Ω
{0, A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)}

≥ |OPT | ·max
e∈Ω
{0, A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)}

≥ |OPT | · max
e∈OPT

{A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)}

≥
∑

e∈OPT

[A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)]

= A(i+ 1)
∑

e∈OPT

f(e|Si)−B(i+ 1)
∑

e∈OPT

g(e|Ω \ e)

≥ A(i+ 1)[f(OPT ∪ Si)− f(Si)]−B(i+ 1)g(OPT )

≥ A(i+ 1)[f(OPT )− f(Si)]−B(i+ 1)g(OPT )

The first inequality is k ≥ |OPT |. The second inequality is OPT ⊆ Ω. The third inequality

is the maximum. The fourth inequality is submodularity, i.e.,f(OPT ∪ Si) − f(Si) ≤∑
e∈OPT f(e|Si) and

∑
e∈OPT g(e|Ω \ e) ≤ g(OPT ). The last inequality is monotony.

Back to Deterministic Parameter Conditioned Algorithm, the following corollary is ob-

vious by combining Property 6.1 and Theorem 6.1.

Corollary 6.1.

φi+1(Si+1)− φi(Si) ≥
1

k
A(i+ 1)f(OPT )− 1

k
B(i+ 1)g(OPT )+

[(1− 1

k
)A(i+ 1)− A(i)]f(Si)− [B(i+ 1)−B(i)]

∑
e∈Si

g(e|Ω \ e)

According to Lemma 6.1, we have
∑

e∈Si g(e|Ω \ e) ≥ 0 and f(Si) ≥ 0. That is to say

the proper selection of A(i) and B(i) is the key to the final performance of the algorithm.

If [(1− 1
k
)A(i+ 1)−A(i)]f(Si)− [B(i+ 1)−B(i)]

∑
e∈Si g(e|Ω \ e) ≥ 0, the result is trivial

cause we can ignore them. As for other non-trivial parameter scenarios, it is an obstacle

to analyze approximation ratio. That is why we assume (1 − 1
k
)A(i + 1) − A(i) ≥ 0 and
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B(i + 1) − B(i) ≥ 0. Therefore, we can get an approximation guarantee about maximum

DS decomposition under cardinality constrained using Deterministic Parameter Conditioned

Greedy.

Theorem 6.2. Sk is the solution of Algorithm 6.1 after k iteration

A(k)f(Sk)− (B(0)− cg)g(Sk) ≥
1

k

k−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]

where cg is the curvature of function g.

Proof. φ0(S0) = A(0)f(∅)− B(0)g(∅) = 0 According the curvature cg = 1−ming(e|Ω\e)
g(e)

, we

have g(e|Ω\e)
g(e)

≥ 1− cg,

φk(Sk) = A(k)f(Sk)−B(k)
∑
e∈Sk

g(e|Ω \ e) ≤ A(k)f(Sk)−B(k)(1− cg)
∑
e∈Sk

g(e)

≤ A(k)f(Sk)−B(k)(1− cg)g(Sk)

Thus, we can rewrite an accumulation statement

A(k)f(Sk)−B(k)(1− cg)g(Sk) ≥ φk(Sk)− φ0(S0) =
k−1∑
i=0

[φi+1(Si+1)− φi(Si)]

≥
k−1∑
i=0

[
1

k
A(i+ 1)f(OPT )− 1

k
B(i+ 1)g(OPT ) + [(1− 1

k
)A(i+ 1)− A(i)]f(Si)]

−
k−1∑
i=0

[[B(i+ 1)−B(i)]
∑
e∈Si

g(e|Ω \ e)]

≥ 1

k

k−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]− [B(k)−B(0)]
∑
e∈Sk

g(e|Ω \ e)

≥ 1

k

k−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]− [B(k)−B(0)]g(Sk)

Therefore, we can conclude

A(k)f(Sk)− (B(0)− cg)g(Sk) ≥
1

k

k−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]
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6.2.2 Random Parameter Conditioned Algorithm

Although greedy is an efficient algorithm to solve discrete problem, its complexity of com-

putation is too high to accept in large scale problems such as social network influence max-

imization because it must consider all the elements in the ground set. To speed greedy,

sampling is the widely utilized technique. Also, we use a sample set to cover the optimal

solution for acceleration. Firstly, we prove an essential lemma for sample set.

Lemma 6.2. Pr[S ∩ OPT 6= ∅] ≥ (1 − ε) |OPT |
k

, if |S| ≥ −n ln ε
k

, where S is a sample set,

OPT is the optimal solution set and n is the size of ground set.

Proof. Pr[S ∩ OPT = ∅] ≤ (1 − |OPT |
n

)|S| ≤ e−|S|
|OPT |
n = e−

|S|k
n
|OPT |
k . The first inequality

is the Bernoulli Distribution with |S| times. The second inequality is 1 − x ≤ e−x. Thus,

Pr[S ∩ OPT 6= ∅] ≥ 1 − e−
|S|k
n
|OPT |
k ≥ (1 − e−

|S|k
n ) |OPT |

k
≥ (1 − ε) |OPT |

k
i.e ε ≥ e−

|S|k
n where

1− e−ax ≥ (1− e−a)x, if x ∈ [0, 1]. Therefore, the sample size is |S| ≥ −n ln ε
k

.

Algorithm 6.2 Random Parameter Conditioned Greedy I

Input:Cardinality k, Parameters A(i),B(i),ε
Output: Sk

1: Initialize S0 ← ∅
2: for i = 0 to k − 1 do
3: S ← choose |S| elements from ground set uniformly and randomly
4: ei ← arg maxe∈S {A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)}
5: if A(i+ 1)f(ei|Si)−B(i+ 1)g(ei|Ω \ ei) > 0 then
6: Si+1 ← Si ∪ {ei}
7: else
8: Si+1 ← Si
9: end if
10: end for
11: return Sk

Comparing Algorithm 6.1 and Algorithm 6.2, we speed algorithm just by reducing ground

set to sample set. Intuitively, sample set is must smaller than ground set. For the proof of
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approximation ratio, we only need to prove the lower bound of the marginal gain. Other

proofs are the same as the Algorithm 6.1.

Theorem 6.3. E[ψi(Si, ei)] ≥ { 1
k
A(i+ 1)[f(OPT )− f(Si)]− 1

k
B(i+ 1)g(OPT )} · (1− ε)

Proof.

E[ψi(Si, ei)] = E[ψi(Si, ei)|S ∩OPT 6= ∅]Pr[S ∩OPT 6= ∅]

+ E[ψi(Si, ei)|S ∩OPT = ∅]Pr[S ∩OPT = ∅]

≥ E[ψi(Si, ei)|S ∩OPT 6= ∅]Pr[S ∩OPT 6= ∅]

= max
e∈S
{0, A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)}(1− ε) |OPT |

k

≥ max
e∈S∩OPT

{0, A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)} · (1− ε) |OPT |
k

≥ 1

|S ∩OPT |
∑

e∈S∩OPT

[A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)] · (1− ε) |OPT |
k

=
1

|OPT |
∑

e∈OPT

[A(i+ 1)f(e|Si)−B(i+ 1)g(e|Ω \ e)] · (1− ε) |OPT |
k

= {1

k
A(i+ 1)

∑
e∈OPT

f(e|Si)−
1

k
B(i+ 1)

∑
e∈OPT

g(e|Ω \ e)} · (1− ε)

≥ {1

k
A(i+ 1)[f(OPT )− f(Si)]−

1

k
B(i+ 1)g(OPT )} · (1− ε)

The second inequality is S ∩ OPT ⊆ S. The third inequality is that the largest value is

greater than average value. And the following equality is that the sample set is chosen

from ground set uniformly and randomly i.e., unbiased estimation. The third inequality is

k ≥ |OPT |. The fourth inequality is submodularity and monotonicity.

Using the Theorem 6.3, we give the approximation ratio for Algorithm 6.2 without proof

because this proof is the same as Theorem 6.2.

Theorem 6.4. Sk is the solution of Algorithm 6.2 after k iteration

E{A(k)f(Sk)− (B(0)− cg)g(Sk)} ≥
1

k

k−1∑
i=0

[(A(i+ 1)− ε)f(OPT )− (B(i+ 1)− ε)g(OPT )]

where cg is the curvature of function g.
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6.3 Maximization of DS Decomposition without Constraint

Maximization for non-monotone problem without constraint is an important problem in

submodular optimization. The best approximation ratio for this problem is 1
2

which is firstly

proved by a random algorithm. Few years later, the deterministic algorithm also can get this

ratio. Since randomness can bring a lot of uncertain factors and information, in some cases,

random algorithms can get better approximation than deterministic algorithms. For non-

monotone non-submodular maximization problem, so far, no algorithm has been able to give

an acceptable approximation ratio. Therefore, we propose a Random Parameter Conditioned

Greedy Algorithm II in this section. The following statement is the unconstraint problem

for DS decomposition.

max
X⊆Ω

h(X) = f(X)− g(X)

According to Definition 6.1, the Property 6.1 is also true for Random Parameter Conditioned

Greedy II. We just have to modify the assumptions a little bit (1− 1
n
)A(i+ 1)−A(i) ≥ 0 to

get the following theorems and corollary directly.

Theorem 6.5. E[ψi(Si, e)] ≥ 1
n
A(i+ 1)[f(OPT )− f(Si)]− 1

n
B(i+ 1)g(OPT )

Proof.

E[ψi(Si, ei)] =
1

n
·
∑
ei∈Ω

ψi(Si, ei)

≥ 1

n
·
∑

ei∈OPT

[A(i+ 1)f(ei|Si)−B(i+ 1)g(ei|Ω \ ei)]

=
1

n
A(i+ 1)

∑
e∈OPT

f(ei|Si)−
1

n
B(i+ 1)

∑
e∈OPT

g(ei|Ω \ ei)

≥ 1

n
A(i+ 1)[f(OPT ∪ Si)− f(Si)]−

1

n
B(i+ 1)g(OPT )

≥ 1

n
A(i+ 1)[f(OPT )− f(Si)]−

1

n
B(i+ 1)g(OPT )
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Corollary 6.2. E[φi+1(Si+1)− φi(Si)] ≥ 1
n
A(i+ 1)f(OPT )− 1

n
B(i+ 1)g(OPT )

+ [(1− 1
n
)A(i+ 1)− A(i)]f(Si)− [B(i+ 1)−B(i)]

∑
e∈Si g(e|Ω \ e)

Algorithm 6.3 Random Parameter Conditioned Greedy II

Input:Parameters A(i),B(i)
Output: Sn

1: Initialize S0 ← ∅
2: for i = 0 to n− 1 do
3: ei ← choose an elements from ground set uniformly and randomly.
4: if A(i+ 1)f(ei|Si)−B(i+ 1)g(ei|Ω \ ei) > 0 then
5: Si+1 ← Si ∪ {ei}
6: else
7: Si+1 ← Si
8: end if
9: end for
10: return Sn

Combined with Theorem 6.5 and Corollary 6.2, using the same method as Section 6.2,

we can prove the Random Parameter Conditioned Greedy II can get the following approxi-

mation.

Theorem 6.6. Sn is the solution of Algorithm 6.3 after n iteration

E[A(n)f(Sn)− (B(0)− cg)g(Sn)] ≥ 1

n

n−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]

where cg is the curvature of function g.
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Proof.

E[A(n)f(Sn)−B(n)(1− cg)g(Sn)]

≥ E[φn(Sn)]− E[φ0(S0)] =
n−1∑
i=0

E[φi+1(Si+1)]− E[φi(Si)]

≥
n−1∑
i=0

[
1

n
A(i+ 1)f(OPT )− 1

n
B(i+ 1)g(OPT ) + [(1− 1

n
)A(i+ 1)− A(i)]f(Si)]

−
n−1∑
i=0

[B(i+ 1)−B(i)]
∑
e∈Si

g(e|Ω \ e)

≥ 1

n

n−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]− [B(n)−B(0)]
∑
e∈Sn

g(e|Ω \ e)

≥ 1

n

n−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]− [B(n)−B(0)]g(Sn)

Therefore, we can conclude

E[A(n)f(Sn)− (B(0)− cg)g(Sn)] ≥ 1

n

n−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]

From Theorem 6.5 and Theorem 6.6, we find an interesting phenomenon. If we decrease

the number of iterations to k , this Random Parameter Conditioned Greedy II can also be

used in problem with cardinality constrained. Since this proof is similar with Theorem 6.6,

we just give the statement without proof.

Theorem 6.7. Sk is the solution of Algorithm 6.3 after k iteration

E[A(k)f(Sk)− (B(0)− cg)g(Sk)] ≥
1

n

k−1∑
i=0

[A(i+ 1)f(OPT )−B(i+ 1)g(OPT )]

where cg is the curvature of function g.
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6.4 Parameter Analyzing

In this section, we choose two special case to show our Parameter Conditioned Greedy

framework. What’s more, we compare the marginal gains under the different assumption

about A(i) and B(i).

6.4.1 Case 1

In this case, we set A(i) = B(i) = (1 − 1
k
)(k−i). Therefore, the Definition 6.1 becomes the

following. Obviously, these settings satisfy all conditions and assumptions in Section 6.2

and Section 6.3. Hence, the following results are clearly. Because the proofs are similar to

Section 6.2 and Section 6.3, we omit them here.

φi(T ) = (1− 1

k
)k−i[f(T )−

∑
e∈T

g(e|Ω \ e)]

ψi(T, e) = max {0, (1− 1

k
)k−(i+1)[f(e|Si)− g(e|Ω \ e)]}

Property 6.2. In each iteration

φi+1(Si+1)− φi(Si) = ψi(Si, ei) +
1

k
(1− 1

k
)−1φi(Si)

Theorem 6.8. In Deterministic Parameter Conditioned Algorithm, ψi(Si, ei) ≥ 1
k
(1 −

1
k
)k−(i+1)[f(OPT ) − f(Si) − g(OPT )]. In Random Parameter Conditioned Algorithm I,

E[ψi(Si, ei)] ≥ { 1
k
(1− 1

k
)k−(i+1)[f(OPT )−f(Si)− g(OPT )]} · (1− ε). In Random Parameter

Conditioned Algorithm II, E[ψi(Si, ei)] ≥ 1
n
(1− 1

n
)n−(i+1)[f(OPT )− f(Si)− g(OPT )]

Theorem 6.9. The Deterministic Parameter Conditioned Algorithm can return f(Sk) −

(e−1− cg)g(Sk) ≥ (1− e−1)[f(OPT )− g(OPT )] approximation ratio solution for cardinality

constraint problem. The Random Parameter Conditioned Algorithm I can return E[f(Sk)−

(e−1−cg)g(Sk)] ≥ (1−e−1−ε)[f(OPT )−g(OPT )] approximation ratio solution for cardinality

constraint problem. The Random Parameter Conditioned Algorithm II can return E[f(Sn)−
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(e−1 − cg)g(Sn)] ≥ (1 − e−1)[f(OPT ) − g(OPT )] for without constraint problem. Where cg

is the curvature of function g.

From Theorem 6.9, we find an interesting result and get the following corollary, when

cg = 0, i.e., the submodular function g is a modular function.

Corollary 6.3. If cg = 0, i.e., g is modular. For non-monotone submodular maximiza-

tion with cardinality constraint, Algorithm 6.1 has f(Sk)− e−1g(Sk) ≥ (1− e−1)[f(OPT )−

g(OPT )] approximation ratio, Algorithm 6.2 has E[f(Sk)−e−1g(Sk)] ≥ (1−e−1−ε)[f(OPT )−

g(OPT )] approximation ratio. For non-monotonicity submodular maximization without con-

straint, Algorithm 6.3 has E[f(Sn)−e−1g(Sn)] ≥ (1−e−1)[f(OPT )−g(OPT )] approxiamtion

ratio.

6.4.2 Case 2

In this case, we set A(i) = (1 − 1
k
)(k−i), B(i) = 1. Similarly, the Definition 6.1 become the

following and these settings satisfy all condition in Section 2 and Section 3. Because the

proofs are similar with Section 6.2 and Section 6.3, in this subsection, we have omitted all

proofs.

φi(T ) = (1− 1

k
)k−if(T )−

∑
e∈T

g(e|Ω \ e)

ψi(T, e) = max {0, (1− 1

k
)k−(i+1)f(e|Si)− g(e|Ω \ e)}

Property 6.3. In each iteration

φi+1(Si+1)− φi(Si) = ψi(Si, ei) +
1

k
(1− 1

k
)k−(i+1)f(Si)

Theorem 6.10. In Deterministic Parameter Conditioned Algorithm, ψi(Si, ei) ≥ 1
k
(1 −

1
k
)k−(i+1)[f(OPT ) − f(Si)] − 1

k
g(OPT ). In Random Parameter Conditioned Algorithm I,

E[ψi(Si, ei)] ≥ { 1
k
(1− 1

k
)k−(i+1)[f(OPT )−f(Si)]− 1

k
g(OPT )}·(1−ε). In Random Parameter

Conditioned II, E[ψi(Si, ei)] ≥ 1
n
(1− 1

n
)n−(i+1)[f(OPT )− f(Si)]− 1

n
g(OPT ).
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Theorem 6.11. The Deterministic Parameter Conditioned Algorithm can return f(Sk) −

(1 − cg)g(Sk) ≥ (1 − e−1)f(OPT ) − g(OPT ) approximation ratio solution for cardinality

constraint. The Random Parameter Conditioned Algorithm I can return E[f(Sk) − (1 −

cg)g(Sk)] ≥ (1−e−1−ε)f(OPT )−(1−ε)g(OPT ) approxiamtion solution ratio for cardinality

constraint. The Random Parameter Conditioned Algorithm II can return E[f(Sn) − (1 −

cg)g(Sn)] ≥ (1−e−1)f(OPT )−g(OPT ) approximation ration for without constraint. Where

cg is the curvature of function g.

Corollary 6.4. If cg = 0, i.e., g is modular. For non-monotone submodular maximization

with cardinality constraint, Algorithm 6.1 has f(Sk)− g(Sk) ≥ (1− e−1)f(OPT )− g(OPT )

approximation ratio, Algorithm 6.2 has E[f(Sk) − g(Sk)] ≥ (1 − e−1 − ε)f(OPT ) − (1 −

ε)g(OPT ) approximation ratio. For non-monotone submodular maximization without con-

straint, Algorithm 6.3 has E[f(Sn) − g(Sn)] ≥ (1 − e−1)f(OPT ) − g(OPT ) approxiamtion

ratio.

Remark 6.1. Clearly, if g is modular, then h = f − g is submodular. The above approx-

imations are different with submodular maximization under cardinality constrained problem

(1 − e−1). And also, the different parameters can also cause different approximations. We

think first gap is caused by non-monotony, because h is not always monotonous. The second

gap give us a clue that we can choose the appropriate parameters A(i) and B(i) according to

the characteristics of the problem to get a better approximate ratio. The above approximations

are different with non-monotone submodular maximization under unconstrained problem 1/2.

But we cannot measure which one is better than others. In some cases, our approximations

may be better than 1/2.

Remark 6.2. The conditions in Line 4 of Algorithm 6.1, 6.3 and Line 5 in Algorithm 6.2

are necessary. Firstly, if we don’t add non-negative condition, we may add some bad elements

which has the lower marginal gains to the solution. Combined the positive condition, it makes
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the large marginal gains element will be added into solution, because the conditions in Line

4 of Algorithm 6.1, 6.3 and Line 5 in Algorithm 6.2 are a lower bound of marginal gains.

Also, we assume (1− 1
k
)A(i + 1)− A(i) ≥ 0 and B(i + 1)− B(i) ≥ 0 i.e., the parameter of

A(i) and B(i) is increasing with index i increase. If an element e is added into solution in

loop i, the true marginal gains will be enough large because A(k) = B(k) = 1.

6.5 Conclusions

In this chapter, we propose Parameter Conditioned Greedy strategy with deterministic and

random which are general frameworks for maximum DS decomposition under cardinality

constrained and unconstrained respectively. Users can choose some rational parameters to

fit special practical problems and get a wonderful approximation about the problem. Also,

we choose two special cases to show that our strategy can get some novel approximation. In

some situations, these novel approximations are better than the best approximation at the

state of art.

In the future works, how to remove the curvature parameter in approximation ratio is

important, because it can make the approximation much tight. Whats more, how to select

A(i) and B(i) so that the algorithm can achieve the optimal approximation ratio is also an

urgent problem to be solved.

89



CHAPTER 7

BLACK BOX AND DATA-DRIVEN COMPUTATION
1

7.1 Introduction

Recently, data-driven is a trendy terminology in computational study. In data-driven com-

putation, there exists a black box that contains a big amount of data, e.g., solutions for

a certain problem. When the computation needs to solve a problem, its solution can be

obtained from the black box by a data mining method, such as a machine learning method,

instead of computing from the scratch. Today, this frame of computation is available due

to the study of big data such that the technology for big data management and mining is

already successfully established. The current data-driven computation is an application of

such technologies.

It is not the first time that the black box appears in studying computation. However,

previously, the black box plays a different role; it usually represents something unable to

compute or hard to compute. Now, it represents something already known. What makes

this change of its role? In machine learning, it is made by data training, that is, when the

black box accumulates a large enough amount of data through preprocessing, the black box

can be used for solving a problem with a machine learning method. In this short chapter,

we would like to present some observations based on this idea.

There are many concepts and notations in computational complexity theory, which will

be used in this chapter. Readers can find these concepts and notations in [26].

1©2021. Reprinted, with permission, from R. Jin, W. Wu, M.T. Thai, DZ. Du. Black-Box and Data-
Driven Computation. In: Pardalos P.M., Rasskazova V., Vrahatis M.N. (eds) Black Box Optimization,
Machine Learning, and No-Free Lunch Theorems. Springer Optimization and Its Applications, vol 170, pp
163-168. Springer, Cham.
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7.2 Black Box and Oracle

An oracle in a Turing machine is a black box, which is like a subroutine in a computer

program. Usually, the oracle is represented by a language or a function. If it is represented

by a language A, then the oracle would be able to give a solution of the membership problem

about A, that is, given an input string x, the oracle can tell whether x does belong to A or

not. If an oracle is represented by a function f , then it can compute the function f , that is,

given an input string x, the oracle returns a string f(x). The oracle is considered as a black

box because we do not care how the oracle obtains the output from the input and, hence,

computational process inside of the oracle is black.

When analyzing the running time complexity and the space usage of an oracle Turing

machine, only the computation outside the oracle is considered. In this way, fixed a language

oracle A, a sequence of computational complexity classes PA, NPA, PSPACEA, ..., called

relativized classes, can be defined similarly to the well-known classes P , NP , PSPACE, ....

The first interesting result on relativized classes came from Baker et al., [5] as follows.

Theorem 7.1. There exists a language oracle A such that PA = NPA. There also exists a

language oracle B such that PB 6= NPB.

What is the significance of this result? To explain it, let us consider the following hier-

archy theorem [26].

Theorem 7.2 (Time Hierarchy Theorem). If t2 is a fully time-constructible function, t2(n) ≥

t1(n) ≥ n, and

lim
n→∞

t1(n) log(t1(n))

t2(n)
= 0

then DTIME(t2(n)) \DTIME(t1(n)) 6= ∅.

This theorem is proven using the diagonalization argument and is an important tool

for separating complexity classes. However, Theorem 7.1 indicates that the time hierarchy
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theorem cannot succeed to separate classes P and NP . The reason is as follows: With the

same argument, the time hierarchy theorem for relativized complexity classes can also be

established.

Theorem 7.3. If t2 is a fully time-constructible function, t2(n) ≥ t1(n) ≥ n, and

lim
n→∞

t1(n) log(t1(n))

t2(n)
= 0

then DTIMEC(t2(n)) \DTIMEC(t1(n)) 6= ∅ where C is any language oracle.

If the time hierarchy theorem can solve the P − NP problem, then following the same

logic pattern, Theorem 7.3 would be able to derive either PC = NPC or PC 6= NPC .

However, by Theorem 7.1, in case C = A, PC = NPC , and in case C = B, PC 6= NPC , a

contradiction.

Actually, there exists many variations of diagonalization argument in the recursive func-

tion theory. Theorem 7.1 indicates that they are all not powerful enough to solve the P−NP

problem.

There exists many efforts made following the work of Baker et al., [5]. Among them, it

is worth mentioning those about relativized polynomial-time hierarchy class HPA. Is there

a language oracle A such that PHA 6= PSPACEA? This problem was identified as a hard

problem and was solved in two steps.

In the first step, [30] established a relationship between this problem and the circuit

complexity of parity function

p(x1, x2, ..., xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn

where ⊕ is the exclusive-or operation, i.e.,

x⊕ y =

 1 if there is exactly one 1 in {x, y};

0 otherwise.
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The language defined by the parity function is

P = {x1x2 · · ·xn | p(x1, x2, ..., xn) = 1}.

They showed that if the language P does not belong to class AC0, then there exists a

language oracle A such that PHA 6= PSPACEA.

In the second step, Yao [105] showed that the language P does not belong to AC0. This

result was one of the two big results appearing in 1985 about circuit complexity. Yao also

claimed that he proved an existence of a language oracle A such that Σp,A
k 6= Σp,A

k+1 for any

natural number k. However, his proof did not get a chance to be published due to Hastads

work. Hastad [38] simplified Yao’s proof in [105] and, meanwile, published his simplified

proof for Yao’s claim.

Later, Ko [50, 49, 51, 52] showed a sequence of results about relativized classes about

polynomial-time hierarchy, e.g., for any integer k ≥ 1, there exists a language oracle A such

that PSPACEA 6= PHA = Σp,A
k 6= Σp,A

k−1 [50].

7.3 Reduction

An important part of computational complexity theory is to study the complete problem in

each complexity class, and the completeness is usually established through certain reduction.

The reduction can be seen as an application of black box. For example, initially, the NP -

complete problem was established through the polynomial-time Turing reduction, also called

Cook-reduction today. For two languages A and B, A is said to be Cook-reducible to B if the

membership problem of A can be solved in polynomial-time with a black box B. A problem

in NP is called an NP -complete problem B if every problem A in NP is Cook-reducible to

B.

The complete problem in each complexity class is the hardest problem in the class,

related to certain type of computational problems. For example, the NP -complete problem
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is hardest with respect to nondeterministic polynomial-time computation. The P -complete

problem is hardest with respect to efficient parallel computation. Therefore, the reduction

is used for establishing the hardness of problems in the past.

Data-driven computation brings a new role for reduction, which is used not only for

establishing the hardness of a problem, but also for providing solutions to some problems.

For example, if a black box collects a large amount of data about solutions of an NP -

complete problem, then all problems in NP would get “efficient” (in certain sense) solutions

through the polynomial-time reduction. What new issues would this new role of reduction

be introduced? Let us present some of our observations in the next section.

7.4 Data-Driven Computation

When the black box is opened by data-driven computation, the following new issues may

need to be considered.

Choice of Black Box. First, note that due to current technology on data management,

a black box may accumulate a very large amount of data; however, the quantity is still finite

and cannot be infinitely large. Therefore, it cannot contain solutions of a problem for all

inputs. This means that the data-driven algorithm aims mainly at practical solutions, not

at theoretical. In a practical point of view, “polynomial-time” is not enough to describe

the efficiency. For example, nobody would like to implement an algorithm with a running

time O(n100) to solve a practical problem. Possibly, an algorithm with running time at most

O(n3) may be more practical. A question is motivated from this consideration: Is there an

NP -complete problem A such that for any problem B in class NP , B can be reduced to

A via a reduction with the running time at most O(nk) for a fixed number k? Following

theorem gives us a negative answer.
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Theorem 7.4. For any integer k ≥ 1, there is no NP -complete problem A such that for

every problem B in NP , there exists a reduction, running in time at most O(nk), from B to

A.

Proof. Consider an NP -complete problem A. Note that

lim
n→∞

nk log nk

n2k
= 0.

By Theorem 7.3, there exists a language B ∈ DTIMEA(n2k) \DTIMEA(nk). This means

that B can be Cook-reducible to A. However, the reduction cannot be running in time

O(nk). Therefore, A cannot be the NP -complete problem satisfying the condition in the

theorem.

This theorem indicates that there does not exist an NP -complete problem that can be

used for solving all problems in NP practically through reduction and using data-driven

method. Therefore, we have to make a proper choice of black box for each small class of the

real-world problems.

Speed Up Reduction. There already exists many reductions in the literature for the

proof of NP -completeness. In the past, these reductions only need to have the polynomial

running time. Under the new setting of its new roles, we may want to speed up the reduction

methods. Is it always possible to speed them up? Following negative answer is a corollary

of Theorem 7.4.

Corollary 7.1. For any integer k ≥ 1 and any NP -complete problem A, there exists a

problem in NP such that any reduction from B to A cannot run within time O(nk).

Multiple Black Boxes. A computer program may contain more than one subroutine.

When data-driven technique is used, it is possible to use more than one black box. In the

study of computational complexity theory for discrete problems, no effort has been made

on more than one oracle. However, with the similar way, a time hierarchy theorem may be
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established regarding to more than one language oracle, by which the following result can

be proven with a similar argument to the proof of Theorem 7.4.

Theorem 7.5. For any integer k ≥ 1, there do not exist a finite number of NP -complete

languages A1, A2, ..., Ah such that the membership problem of every language B in NP can

be solved by a O(nk)-algorithm with language oracles A1, A2, ..., Ah.

It is worth mentioning that more than one black boxes may be found in the information-

based complexity theory for continuous problems [92]. Therefore, we may get some research

ideas from there.

Complexity Issues. To build a model for the data-driven computation, we have to

face a computation with mixed of uniform and nonuniform computations, that is, carry out

uniform computation outside the black box while implementing nonuniform computation

inside the black box. This may bring to new issues in the study of computational complexity

theory.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In the dissertation, we have studied social network analysis in big data harnessing (known

as data mining) and related optimization problems in the following aspects.

1. We have studied two types of practical optimization problems on social influence in

homogeneous online social networks respectively as follows.

� For the influence maximization discount allocation problem in a practical online viral

marketing scenario, we proposed an online full-feedback setting model to solve the

discount allocation problem. To be specific, we divided the cascade into seed selection

and information diffusion stages. We then proposed an online discount allocation policy

for seed selection and introduced a monotone and submodular utility function which

aims to influence at least a certain number of people who adopt the target product

with the minimal cost in expectation for marketers. We further proposed two online

discount allocation greedy algorithms and analyzed performance gaurantee with an

approximation ratio under uniform and non-uniform discount situations, respectively.

The effectiveness of the proposed algorithms has been evaluated on real-world online

social networks datasets in Section 3.6.

� For the influence minimization on rumor controlling problem, we focused mainly on

the rumor source detection problem in online social networks. We firstly analyzed

existing main schemes for modeling rumor diffusion process as well as schemes for

estimating rumor source based on the specific diffusion model and network graphs in

the problems. We then theoretically studied a station-based approach for online rumor

source detection under the influence cascade (IC) model. We derived a rumor source
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estimator based on the concept of eccentricity in graph theory [36] and employed the

concept of k-center problem to establish the k-station selection problem. We also

developed two algorithms to find the estimator and k stations respectively for regular

tree networks.

2. We have developed novel algorithms for maximization of DS decomposition in the

study of set function optimization. These algorithms can be general frameworks and users

can choose rational parameters according the property of problems. More specifically, we

proposed a Deterministic Conditioned Greedy Algorithm 6.1 to solve maximization of DS

decomposition under cardinality constraint in Section 6.2, and we also proposed a Random

Conditioned Greedy Algorithm 6.3 to solve maximization of DS decomposition without con-

straint, in which we used the difference with parameter decomposition function. Under each

algorithm, we carried out special cases that can get novel approximation ratios.

3. We have discussed a frame of data-driven computation that has utilized black box

as a tool for proving solutions to some computational problems, because black box has

been an important tool in studying computational complexity theory and has been used

for establishing the hardness of problems. Through our findings, we believe that some new

reserach ideas can be raised from here and they are worth to study.

8.2 Future Work

There are many challenging research fields within the study of data harnessing (or called

data mining) in social networks. Here we illustrate a few of them.

Submodularity of Objective Function. Related to optimiztion problems in social

networks, most of the objective functions of the problems are shown as non-submodular.

Although there are existing literature to solve it such as [3] proved that any non-submodular

function could decompose as a difference of two submodular functions. Another strategy
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named “sandwich approximation” was introduced by [60], which approximates the objective

function by formulating its lower bound and upper bound. Later, [75] presented strong

inapproximability results for the problem objective function that was non-submodular, which

is called the 2-quasi-submodular. In fact, the modularity of objective function is defined

with respect to various practical problems. How do we deal with non-submodularity of the

problems upon or beyond the existing methods? This is a challenge research work for future.

Diffusion Analysis in Heterogeneous Social Networks. Regarding diffusion anal-

ysis in social networks, a majority of existing network models have been assumed as homo-

geneous social networks, where nodes are objects of the same entity type (e.g., person) and

links are relationships from the same relation type (e.g., friendship or interaction). Inter-

esting results have been generated from such studies with numerous influential applications,

such as the well-known Google PageRank algorithm [8]. However, most real-world networks

are heterogeneous, where nodes and edges are of different types of data. For example, the

network of Facebook consists of persons as well as other types of data, like posts, schools,

movies, photos, and so on. In addition to interactions between persons, there are other

types of links, such as the person-school relationship, the person-post relationship, and so

on. Therefore, harnessing diffusion on homogeneous networks may miss important seman-

tic information of data. In the future, it is highly required to model diffusion based on

heterogeneous networks that can better represent the real-world networks.

Representation Learning for Social Network Analysis. Another central problem

in social network data mining is how to extract useful features from non-Euclidean structured

networks, then in turn to enable the setting of downstream models for specific analysis. For

example, in the case of viral marketing in an online social network, the main challenge

might be how to embed network nodes into a low-dimensional space so that the closeness

between nodes could be easily measured with distance metrics. To deal with it, earlier efforts

primarily rely on labeled features, such as graph kernels [93], node classification in graph
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[7], or link prediction on node proximity [57]. However, such feature processing has turned

out to be very time-consuming and ineffective for many real-world applications. Fortunately,

representation learning has been proposed to avoid this limitation as it can automatically

learn feature representations that capture various information data in networks (Bengio et

al., [6]). The key component in the representation learning is a transformation function

that maps nodes, or subgraphs as vectors to a low-dimensional feature space, where the

spatial relations between the vectors reflect the structures or contents in the original network.

Subsequently, some machine learning models like clustering models and detection models

could be directly used to target network applications by given projected low-dimensional

feature vectors from high-dimensional space. In recent years, although there has seen a surge

in leveraging representation learning techniques for information network analysis, existing

embedding methods mainly deal with homogeneous networks. It is because, as mentioned,

that heterogeneous networks extracted from real-life applications have multiple types of

nodes or edges. In this case, it is hard to evaluate semantic proximity between different

network elements in the low-dimensional space. There still remains many tasks on learning

embeddings for heterogeneous networks, such as techniques that are required to fully capture

the relations between different types of network objects to comprehensively model practical

applications. This direction is worth further exploring.

Data-driven Computational Social Networks. With the surge of big Web-data

currently available, this allows us to study social interactions and investigate about social

behavior on a scale thorough this wealth of data. The goals are to generate a greater under-

standing of social interactions and social behaviors in online networks through data analysis,

to develop reliable and scalable data-driven framework that can model social processes, and

ultimately to address the target optimization problem in this data-driven framework. How

to create such data-driven models for social network analysis is an interesting work for future

research.
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