
VARIANT INFLUENCE MAXIMIZATION: APPROXIMATION

ALGORITHM AND DEEP SOLUTION

by

Tiantian Chen

APPROVED BY SUPERVISORY COMMITTEE:

Weili Wu, Chair

Ding-Zhu Du, Co-Chair

Feng Chen

Latifur Khan

Copyright © 2023

Tiantian Chen

All rights reserved

This thesis is dedicated to my parents, supervisors, and friends.

VARIANT INFLUENCE MAXIMIZATION: APPROXIMATION

ALGORITHM AND DEEP SOLUTION

by

TIANTIAN CHEN, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2023

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisors, Dr. Weili Wu and Dr. Ding-Zhu Du, for their

invaluable and professional support and suggestions throughout my PhD journey. I first met

Dr. Ding-Zhu Du at a research talk when I was still an undergraduate. I was deeply attracted

by his talk and the problems considered in his works are very interesting and closely related

to our daily life. After that, we met again at a graduate summer school, and I learned more

about social networks and optimization theory and expressed my great interest in pursuing

my PhD degree under Dr. Du’s supervision. Dr. Du provided continuous expert support

and belief in my abilities, which helped me finish this work.

It is also my great honor to have Dr. Wu as my co-advisor. Every time I encountered

difficulties, I would go to Dr. Wu, and she always provided helpful suggestions and encour-

agement, which gave me the confidence to persevere through the challenges and obstacles I

faced during this process. Her willingness to share her expertise, insights, and experiences

with me has been instrumental in enabling me to pursue my academic goals and achieve my

dreams. I am deeply grateful for her mentorship and the positive impact she has had on my

academic and personal growth.

Secondly, I really appreciate Dr. Latifur Khan and Dr. Feng Chen for being part of my

dissertation committee. Their valuable and helpful feedback and suggestions have greatly

improved the quality of this work.

Thirdly, I would like to express my heartfelt appreciation to my master advisor, Dr. Qizhi

Fang, who has led me to the research road. Without her, I would never have stepped foot

on this field. Her dedication to my success has been unwavering, and I am truly grateful for

the knowledge, skills, and guidance she has provided me throughout my academic journey.

Also, I want to thank my colleagues, especially Jianxiong Guo, for his continuous support

v

during my PhD period, my collaborators, Siwen Yan, Xiao Li, Wenting Wang, and Smita

Ghosh, and other labmates.

Finally, I want to thank my whole family for their unwavering support, love, and belief in

me, which have been the constant source of my strength and inspiration.

April 2023

vi

VARIANT INFLUENCE MAXIMIZATION: APPROXIMATION

ALGORITHM AND DEEP SOLUTION

Tiantian Chen, PhD
The University of Texas at Dallas, 2023

Supervising Professors: Weili Wu, Chair

Ding-Zhu Du, Co-Chair

In recent two decades, online social platforms have become more and more popular, and the

dissemination of information on social networks has attracted wide attention of the industries

and academia. The users of these social media platforms and the relationships between them

can be characterized as a social network. A large number of works have been focused on

the diffusion phenomenon on social networks, including diffusion of ideas, news, adoptions of

new products, etc. Influence maximization problem is one of the well-studied topics, which

seeks for a small subset of nodes as seeds to maximize the expected number of influenced

users under some diffusion model. However, there are some impractical assumptions of this

problem, such as the uniform cost of activating nodes as seeds and profit obtained from

influenced users. In this dissertation, we propose several practical and novel variants of

influence maximization problem: continuous activity maximization problem, budget profit

maximization with coupon advertisement problem, adaptive multi-feature budgeted profit

maximization problem, and learning-based influence maximization problem. Due to their

NP-hardness, we focused on designing approximation algorithms and the deep reinforcement

learning model. Reverse influence sampling and deep Q-networks techniques are utilized to

vii

overcome the #P-hardness of computing the objective functions and to solve the problems

more efficiently.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF FIGURES . xii

LIST OF TABLES . xiv

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 PRELIMINARIES . 6

2.1 Social Network . 6

2.2 Basic Diffusion Models . 6

2.3 Realization . 7

2.4 Influence Maximization . 8

CHAPTER 3 CONTINUOUS ACTIVITY MAXIMIZATION 9

3.1 Related Work . 13

3.2 Problem Formulation . 14

3.3 Properties of CAM . 16

3.3.1 Hardness . 17

3.3.2 Modularity of Objective Functions 19

3.4 Upper and Lower Bound . 21

3.4.1 Bounds Definition . 21

3.4.2 Properties of the Bounds . 22

3.5 Algorithms . 24

3.5.1 Sampling techniques . 25

3.5.2 Modified IMM on Lattice . 28

3.5.3 Sandwich Approximation Framework 32

3.6 Experiment . 34

3.6.1 Experimental Settings . 34

3.6.2 Experimental Results . 37

CHAPTER 4 BUDGET PROFIT MAXIMIZATION WITH COUPON ADVERTISE-
MENT . 40

4.1 Related Work . 43

ix

4.2 Problem Formulation . 45

4.3 Algorithm for BPMCA . 46

4.3.1 Preliminaries . 46

4.3.2 Discretization of CDG Algorithm . 49

4.3.3 Time Complexity . 51

4.3.4 Solution for BPMCA . 53

4.4 Robust Analysis . 54

4.4.1 Solution for Robust-BPMCA . 56

4.4.2 Solution with Uniform Sampling . 58

4.5 Experiment . 63

4.5.1 Experimental Settings . 63

4.5.2 Experimental Results . 64

CHAPTER 5 ADAPTIVE MULTI-FEATURE BUDGETED PROFIT MAXIMIZA-
TION . 68

5.1 Introduction . 69

5.2 Related Works . 71

5.3 Influence Maximization Problem under the MF-model 73

5.3.1 Multi-Feature Diffusion Model . 73

5.3.2 Equivalent Diffusion Process . 75

5.3.3 Property of σ(S) . 77

5.4 Multi-feature Budgeted Profit Maximization Problem 78

5.4.1 Problem Definition . 79

5.4.2 Algorithm . 79

5.5 Adaptive Multi-feature Budgeted Profit Maximization Problem 82

5.5.1 Problem Definition . 82

5.6 Algorithm and Theoretical Analysis . 86

5.6.1 Adaptive Greedy Algorithm under the Oracle Model 87

5.6.2 Adaptive Greedy Algorithm under the Noise Model 88

5.7 Experiments . 93

x

5.7.1 Experimental Setup . 94

5.7.2 Experimental Results . 96

CHAPTER 6 LEARNING-BASED INFLUENCE MAXIMIZATION 100

6.1 Introduction . 101

6.2 Related Works . 103

6.3 Preliminaries and Framework . 106

6.3.1 Background . 106

6.3.2 General Framework of GNN . 107

6.3.3 Framework of ToupleGDD . 107

6.4 Representation: Node Embedding . 108

6.4.1 Initial Embedding Learning . 109

6.4.2 ToupleGNN . 111

6.4.3 Putting It Together . 115

6.5 Reinforcement Learning . 116

6.5.1 RL Formulation . 116

6.5.2 Training via DDQN . 117

6.6 Experiments . 119

6.6.1 Experimental Setup . 119

6.6.2 Experimental Results . 121

6.6.3 Intuition of Applying DDQN . 128

CHAPTER 7 CONCLUSION AND FUTURE WORK 132

REFERENCES . 135

BIOGRAPHICAL SKETCH . 145

CURRICULUM VITAE

xi

LIST OF FIGURES

3.1 Under the IC model: left column is the performance comparison of different
algorithms changes over budget k; right column is the result of sandwich approx-
imation framework. 35

3.2 Under the LT model: left column is the performance comparison of different
algorithms changes over budget k; right column is the result of sandwich approx-
imation framework. 36

3.3 The running time comparisons among different algorithms under the IC model
and the LT model. 38

4.1 The approximation performance of RandomGreedy and Continuous-DGreedy al-
gorithm with the different k/n. 54

4.2 The performance of B-Framework changes over budget k under the IC model.
Left column is the comparison between RG and Discretized-CDG; Right column
is achieved by different algorithms. 65

4.3 The performance of B-Framework changes over budget k under the LT model.
Left column is the comparison between RG and Discretized-CDG; Right column
is achieved by different algorithms. 66

4.4 The results of robust analysis with different budget k under the IC model and
dataset-1. Left column is the gap ratio obtained by given parameter space (LU-
B-Framework); Right column is the gap ratio obtained by uniform sampling (B-
UniSamling). 67

5.1 An example of G = (V,E) with its multi-level graph Ĝ. 76

5.2 Profit VS budget on Twitter. 96

5.3 Profit VS budget on Wiki. 97

5.4 Profit VS budget on Twitter and Wiki. 98

5.5 Profit VS budget on Hamsterster and DBLP. 99

5.6 Profit VS budget on HepPh and Epinions. 99

6.1 The framework of ToupleGDD: (a) Apply PDW to obtain initial embedding; (b)
Utilize ToupleGNN to capture network topology structures and influence cas-
cading effects to get node embedding; (c) Construct the parameterized function
Q̂(v, S; Θ) based on node embedding input from ToupleGNN; (d) Use ε-greedy
to select the next seed and DDQN to learn the parameters. 108

6.2 Mechanism of DDQN incorporated ToupleGNN as function approximator. . . . 112

6.3 Performance and running time comparisons among different methods on Wiki-2,
Epinions and caGr datasets. 125

xii

6.4 Performance and running time comparisons among different methods on Buzznet
and Youtube datasets. 126

6.5 Performance comparisons among different methods under 0.1-setting. 128

6.6 Performance comparisons among different methods under 0.5-setting. 128

6.7 Training and testing results for different models. (a) (b) and (c): learning curve
with budget 5, 7 and 9, respectively; Solid line is average, and shadow is one
standard deviation. (d) Testing result: dot is average, and bar shows one standard
deviation. 129

6.8 Running time: dot is average, and bar shows one standard deviation. 131

xiii

LIST OF TABLES

3.1 The frequently used notation summarization . 15

3.2 The statistics of three datasets . 34

5.1 Dataset characteristics . 94

5.2 Running time VS budget on Twitter and Wiki 98

6.1 Dataset characteristics . 120

6.2 Performance of ToupleGDD under different setting 122

6.3 p-value under different budgets (S2V is saved in methods’ name for space) . . . 130

xiv

CHAPTER 1

INTRODUCTION

The rise of online social platforms, such as Facebook, Twitter, LinkedIn, has dramatically

impacted the way we consume and disseminate information. Because of ”word of mouth”

effects, information usually can spread rapidly on these social media platforms. Therefore, it

is vital to understand the potential diffusion dynamics kinetics and quantify the consequences

of information spread. One of the problems that has been extensively studied is the influence

maximization problem, seeking to select a small group of users as the initial information

spreader to maximize the number of users influenced. Kempe et al. (Kempe et al., 2003) first

formulated the influence maximization problem as a combinatorial optimization problem and

proved that it is NP-hard under two proposed diffusion models: Independent Cascade (IC)

model and Linear Threshold (LT) model. They designed the greedy algorithm for influence

maximization, which can achieve (1− 1/e)-approximation ratio. The formal definitions and

more details will be introduced in Chapter 2 (see p. 6).

However, it is #P-hard to compute the objective function of influence maximization prob-

lem under the IC model (Chen et al., 2010a) and LT model (Chen et al., 2010b). Kempe et

al. utilized the Monte Carlo method to make the estimation of the objective function, which

is too time-consuming. Later, a large number of works have been focused on solving influ-

ence maximization problem and its variations more efficiently, such as profit maximization

and rumor blocking. In this dissertation, we consider several variants of influence maximiza-

tion problem: continuous activity maximization problem, budget profit maximization with

coupon advertisement problem, adaptive multi-Feature budgeted profit maximization prob-

lem, and learning-based influence maximization problem, and propose efficient and effective

algorithms to solve them.

Continuous Activity Maximization. Activity maximization is a task of seeking a

small subset of users in a given social network that makes the expected total activity benefit

1

maximized. This is a generalization of many real applications. In this paper, we extend

activity maximization problem to that under the general marketing strategy x⃗, which is a

d-dimensional vector from a lattice space and has probability hu(x⃗) to activate a node u as

a seed. Based on that, we propose the continuous activity maximization problem, where the

domain is continuous and the seed set we select conforms to a certain probability distribu-

tion. It is a new topic to study the problem about information diffusion under the lattice

constraint. Therefore, we address the problem systematically here. First, we analyze the

hardness of continuous activity maximization and how to compute the objective function of

continuous activity maximization accurately and effectively. We prove this objective func-

tion is monotone, but not DR-submodular and not DR-supermodular. Then, we develop a

monotone and DR-submodular lower bound and upper bound of continuous activity maxi-

mization, and apply sampling techniques to design three unbiased estimators for continuous

activity maximization, its lower bound and upper bound. Next, adapted from the IMM algo-

rithm and sandwich approximation framework, we obtain a data-dependent approximation

ratio. This process can be considered as a general method to solve those maximization prob-

lems on lattice but not DR-submodular. Last, we conduct experiments on three real-world

datasets to evaluate the correctness and effectiveness of our proposed algorithms. Details

will be introduced in Chapter 3 (see p. 9).

Budget Profit Maximization with Coupon Advertisement. Coupon advertise-

ment is everywhere in people’s daily lives, and it is a common marketing strategy adopted

by merchants. A problem, Budget Profit Maximization with Coupon Advertisement, is

formulated in this paper, which is a branch of classical profit maximization problem in

social networks. Profit maximization has been researched intensively before, but its the-

oretical bound is not satisfactory usually because of NP-hardness, budget constraint and

non-monotonicity. Learned from the latest results, we proposed the B-Framework, which

combines the ideas of Random Greedy and Continuous Double Greedy to obtain a more

2

acceptable approximation ratio for this problem. For Continuous Double Greedy, it can be

implemented by multilinear extension and discretized techniques. In addition, most existing

researches only consider maximizing total profit. However, in real scenarios, the diffusion

probability is hard to determine due to the uncertainty. Then, we study the robustness for

budgeted profit maximization, which can be used as a general strategy to analyze the robust-

ness of non-monotone submodular function. It aims to obtain the best solution maximizing

the ratio between the profit of any feasible seed set and the optimal seed set. We design

LU-B-Framework first, and then we apply the method of uniform sampling to improve the

robustness by reducing the uncertainty. The effectiveness and correctness of our algorithms

are evaluated by heavy simulation on real-world social networks eventually. Details will be

introduced in Chapter 4 (see p. 40).

Adaptive Multi-Feature Budgeted Profit Maximization. Online social networks

have been one of the most important platforms for viral marketing. Most existing researches

about diffusion of adoptions of new products on networks are about one diffusion. That

is, only one piece of information about the product is spread on the network. However, in

fact, one product may have multiple features and the information about different features

may spread independently in social networks. When a user would like to purchase the prod-

uct, he would consider all of the features of the product comprehensively, not just consider

one. Based on this, we propose a novel problem, multi-feature budgeted profit maximiza-

tion problem, which first considers budgeted profit maximization under multiple features

propagation of one product. Given a social network with each node having an activation

cost and a profit, multi-feature budgeted profit maximization problem seeks for a seed set

with expected cost no more than the budget to make the total expected profit as large as

possible. We mainly consider the multi-feature budgeted profit maximization problem un-

der the adaptive setting, where seeds are chosen iteratively and the next seed is selected

according to current diffusion results. We study the adaptivemulti-feature budgeted profit

3

maximization problem under two models, oracle model and noise model. The oracle model

assumes conditional expected marginal profit of any node could be obtained in O(1) time

and a (1 − 1/e) expected approximation policy is proposed. Under the noise model, we

estimate conditional expected marginal profit of a node by modifying the EPIC algorithm

and propose an efficient policy, which could achieve a (1− e−(1−ϵ)) expected approximation

ratio. Several experiments are conducted on six realistic datasets to compare our proposed

policies with their corresponding non-adaptive algorithms and some heuristic adaptive poli-

cies. Experimental results show efficiencies and superiorities of our policies. Details will be

demonstrated in Chapter 5 (see p. 68).

Learning-based Influence Maximization. Aiming at selecting a small subset of

nodes with maximum influence on networks, the influence maximization problem has been

extensively studied. Since it is #P-hard to compute the influence spread given a seed set,

the state-of-the-art methods, including heuristic and approximation algorithms, faced great

difficulties such as theoretical guarantee, time efficiency, generalization, etc. This makes it

unable to adapt to large-scale networks and more complex applications. On the other hand,

with the latest achievements of deep reinforcement learning in artificial intelligence and other

fields, lots of works have been focused on exploiting deep reinforcement learning to solve

combinatorial optimization problems. Inspired by this, we propose a novel end-to-end deep

reinforcement learning framework, ToupleGDD, to address the IM problem in this paper,

which incorporates three coupled graph neural networks for network embedding and double

deep Q-networks for parameters learning. Previous efforts to solve the IM problem with deep

reinforcement learning trained their models on subgraphs of the whole network, and then

tested on the whole graph, which makes the performance of their models unstable among

different networks. However, our model is trained on several small randomly generated

graphs with a small budget, and tested on completely different networks under various

large budgets, which can obtain results very close to IMM and better results than OPIM-C

4

on several datasets, and shows strong generalization ability. Finally, we conduct a large

number of experiments on synthetic and realistic datasets, and experimental results prove

the effectiveness and superiority of our model. Details will be shown in Chapter 6 (see

p. 100).

The rest of this dissertation proceeds as follows: Chapter 2 provides the background

knowledge for the rest of the chapters. Continuous activity maximization problem, bud-

get profit maximization with coupon advertisement problem, and adaptive multi-Feature

budgeted profit maximization problem, are introduced in through Chapter 3 to Chapter 5,

respectively. Chapter 6 discusses the learning-based influence maximization problem and

Chapter 7 concludes this dissertation.

5

CHAPTER 2

PRELIMINARIES

In this chapter, some background knowledge is introduced, including social networks, diffu-

sion models, submodular set function and notations.

2.1 Social Network

A social network is represented by a directed graph G = (V,E) where V denotes the set

of (nodes) users, and E denotes the set of directed edges which describe the relationship

between users. Assume |V | = n and |E| = m. For each edge (u, v) ∈ E, we say u (resp. v)

is an incoming neighbor (resp. an outgoing neighbor) of v (resp. u). For each node v ∈ V ,

N−(v) (resp. N+(v)) denotes the set of incoming neighbors (resp. outgoing neighbors)

of node v, and N(v) = N−(v) ∪ N+(v). We adopt the IC model and LT model (Kempe

et al., 2003), to model the influence diffusion. Each node has two possible states: active

and inactive. Initially, all nodes in the seed set S are activated and all other nodes are set

inactive. Then the diffusion process repeats, and terminates until no new node is activated.

Once a node is activated, it remains active in the following timestamps.

2.2 Basic Diffusion Models

Definition 2.2.1 (IC model). It assumes that when a node u is activated in this round, in

the next round, which has only one chance to activate those nodes v in its outgoing neigh-

bors N+(u) with a predefined probability. Each edge (u, v) is associated with an activation

probability puv ∈ [0, 1], and the activation process of different edges or different rounds is

independent. Then, the diffusion process terminates when no node becomes active in this

round.

6

Definition 2.2.2 (LT model). Each edge (u, v) ∈ E has a weight buv, and each node v ∈ V

has a threshold θv sampled uniformly in [0, 1] and
∑

u∈N−(v) buv ≤ 1. For each inactive node

v at time step t − 1, it can be activated at time step t if satisfying
∑

u∈At−1∪N−(v) buv ≥ θv,

where At−1 is the set of active nodes at time step t− 1.

The diffusion process will continue until there is no more node activated. Given a seed set

S, denote by I(S) the number of activated nodes when the diffusion process terminates. Let

σ(S) be the expected number of nodes that can be activated by S. That is, σ(S) = E[I(S)]

and σ(S) is called the influence spread of S.

2.3 Realization

A (full) realization g = (V,E(g)) is a subgraph of G with E(g) ⊆ E. Each edge in E(g) is

a live edge, or else it is a blocked edge. Under the IC model, we can decide whether edge

(u, v) is live or blocked with probability puv. Let Pr[g] be the probability of g sampled from

G based on IC model. That is,

Pr[g] =
∏

e∈E(g)

pe
∏

e∈E\E(g)

(1− pe) . (2.1)

There are 2m possible realization altogether under the IC model. Under the LT model, node

v chooses at most one of incoming neighbors u from N−(v) such that edge (u, v) appears in

E(g). Thus, for each node u ∈ N−(v), (u, v) appears in E(g) with probability buv exclusively,

and there is no incoming edge of v in E(g) with probability 1 −
∑

u∈N−(v) buv. We define

V ′(g) = {v : ∄(u, v) ∈ E(g)} as the node set which has no incoming edge in realization g.

Let Pr[g] be the probability of g sampled from G based on LT model. That is,

Pr[g] =
∏

e∈E(g)

buv
∏
v∈V ′

(
1−

∑
u∈N−(v)

buv

)
. (2.2)

Given a seed set S, the influence diffusion can be considered as a stochastic diffusion pro-

cess on graph G under the IC/LT model, or a deterministic diffusion process on a realization

7

g generated from G with probability Pr[g]. Therefore, for the IC/LT model, we have

σ(S) =
∑
g∈G

Pr[g] · σg(S), (2.3)

where G is the set of all realizations generated from G, and σg(·) is the number of nodes that

can be reached from some node in S in the realization g.

2.4 Influence Maximization

Definition 2.4.1 (Influence Maximization (IM)). Given a social network G = (V,E), a

positive integer b and a diffusion model, IM aims to find a small set S of nodes as seeds with

|S| ≤ b, which has the maximum influence spread.

Definition 2.4.2. A set function f : 2V → R is said to be monotone non-decreasing if

f(S) ≤ f(T) for any S ⊆ T ⊆ V .

Definition 2.4.3. A set function f is said to be submodular when satisfying f(S ∪ {u}) −

f(S) ≥ f(T ∪ {u})− f(T) for any S ⊆ T ⊆ V and u ∈ V \ T .

Monotonicity and submodularity are important properties to analyze set function, be-

cause it can be optimized easily supported by existing theory, such as a (1−1/e)-approximation

obtained by classical hill-climbing algorithm (Nemhauser et al., 1978).

Theorem 2.4.4. (Kempe et al., 2003) The expected influence σ(·) is monotone non-decreasing

and submodular under the IC/LT model.

8

CHAPTER 3

CONTINUOUS ACTIVITY MAXIMIZATION 1

Authors – Jianxiong Guo, Tiantian Chen, and Weili Wu

The Computer Science Department, EC 31

The University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

1© 2020 IEEE. Reprinted, with permission, from Jianxiong Guo, Tiantian Chen and Weili Wu, “Con-
tinuous Activity Maximization in Online Social Networks”, IEEE Transactions on Network Science and
Engineering, May, 2020. DOI: 10.1109/TNSE.2020.2993042

9

The online social platforms, such as Twitter, WeChat, Facebook and LinkedIn, were

developing quickly in recent years, and gradually become a mainstream way to communicate

and make friends. More and more people share what one sees and hears, and discuss some hot

issues in these social platforms. The relationships among the users in these social platforms

can be represented by social networks, and information can be spread rapidly through the

edges in social networks. Based on that, Influence Maximization (IM) considers the problem:

selects a subset of users for an information cascade to maximize the expected follow-up

adoptions (influence spread). It is a mathematical generalization of plenty of real scenarios,

such as viral marketing, rumor blocking and profit maximization. In the Kempe et al.’s

seminal work (Kempe et al., 2003), two widely accepted diffusion models were proposed, IC

model and LT model, where IC model is relied on peer-to-peer communication but LT model

considers the total influence from user’s neighbors. Then, they showed the IM problem is

NP-hard, and its objective function is monotone and submodular under the IC/LT model,

and simple greedy algorithm can achieve (1− 1/e)-approximation (Nemhauser et al., 1978).

In order to solve its efficiency problem, there were lots of scalable IM algorithms proposed,

heuristic algorithms (Chen et al., 2009) (Chen et al., 2010a) (Chen et al., 2010b) (Goyal

et al., 2011b) (Jung et al., 2012) and approximate algorithms that improve the Monte-Carlo

simulations (Leskovec et al., 2007) (Borgs et al., 2014) (Tang et al., 2014) (Tang et al., 2015)

(Guo and Wu, 2019) (Guo et al., 2019) (Guo et al., 2020a).

Motivated by IM, more interested and real problems emerged and were studied. Wang et

al. (Wang et al., 2017) considered to maximize the expected total activity strength about the

target issue in online social networks and proposed activity maximization problem. The ac-

tivity maximization aims to maximize the total activity strength (activity benefit) associated

with those edges between influenced users given a seed set. Different from IM, maximized

expected influenced users does not mean that total activity strength is maximized because

different edges are associated with different activity strength. In addition, they have proved

10

the objective function of activity maximization is NP-hard, monotone, but not submodular

and not supermodular (Wang et al., 2017), and gave us a sandwich approximation framework

(Lu et al., 2015) to get an approximate solution by approximating its upper bound and lower

bound. However, it seems unrealistic to select a deterministic seed set, because we do not

know who is willing to be a seed in advance, which is stochastic.

Kempe et al. (Kempe et al., 2015) considered a more general case that uses a marketing

strategy instead of the seed set. This marketing strategy is denoted by x⃗ = (x1, x2, · · · , xd)

where each strategy j takes value xj, and for each node u, it will be activated as a seed with

probability hu(x⃗). Thus, the seed set is not deterministic, but activated probabilistically

according to a marketing strategy. In this paper, we consider the activity maximization

problem under such general marketing strategy. We propose the continuous activity maxi-

mization (CAM), which is to find the optimal marketing strategy x⃗∗ such that the expected

activity benefit can be maximized subject to the budget constraint |x⃗| ≤ k.

Example 1. In the real world, the companies often adopt some non-deterministic marketing

strategies, such as discounts, coupons, rewards, cashback, and propagandas, each of which

corresponds to a component in marketing vector x⃗ = (x1, x2, x3, x4, x5). Here x2 = b implies

we give b units of investment to marketing strategy “coupons”. The promotion results on

different individuals are random and distinct according to strategy function hu(x⃗). Therefore,

CAM is more realistic and generalized than before.

In this paper, we consider the marketing strategy x⃗ taken from discretized lattice X

with granularity t, and the hardness of CAM is discussed. We show that CAM is NP-hard

under the IC/LT model. Given a marketing strategy x⃗, computing the expected activity

benefit is #P-hard. Since it is not easy to compute the expected activity benefit with

respect to a given marketing strategy x⃗, we provide an equivalent method to compute it

by creating a constructed graph, and running Monte-Carlo simulations on this constructed

11

graph. Then, we show that the objective function of CAM problem is monotone, but not

DR-submodular and not DR-supermodular. DR-submodularity (Soma and Yoshida, 2015)

is the diminishing return property extended from set to lattice. If a function defined on

lattice is DR-submodular, a (1− 1/e)-approximation can be obtained by the simple greedy

algorithm. In order to find a valid approximate solution, we construct a lower bound and

upper bound that are monotone and DR-submodular. Similarly, we show that maximizing

this lower bound and upper bound is NP-hard as well and computing their exact value is #P-

hard under the IC/LT model. For IM problem, the computational cost of greedy algorithm

with Monte-Carlo simulations is not acceptable, to our CAM problem, the scalability could

be worse than IM because the strategy space is larger and the greedy iterative times should

be k/t given a budget k and granularity t. Thus, based on reverse influence sampling (RIS)

(Borgs et al., 2014) (Tang et al., 2014) (Tang et al., 2015) (Guo et al., 2020c), we obtain

unbiased estimators for the CAM problem and its lower bound based on RE-sampling, for its

upper bound based on RN-sampling. The adaptation of RIS to CAM is determined by the

partial coverage of the collection of RE-sampling. From this, we design a general scalable

algorithm to solve CAM problem, its upper bound and lower bound adapted from IMM

algorithm (Tang et al., 2015) for IM problem. We obtain a data-dependent approximation

ratio by combining them with the sandwich approximation framework finally. Summarizing

our contributions as follows: (1) This is the first to study activity maximization problem

under the general marketing strategy (lattice constraint). In this paper, a new problem,

named CAM, is proposed and its objective function is proved to be monotone, but not

DR-submodular and DR-supermodular; (2) To estimate the expected activity benefit with

respect to marketing strategy x⃗, it could be done on a constructed graph by Monte-Carlo

simulations; (3) We obtain a lower bound and upper bound of CAM, which are monotone

and DR-submodular; (4) We design unbiased estimators for CAM and its lower/upper bound

based on RE/RN-sampling. Adapted from IMM algorithm and sandwich approximation

12

framework, a data-dependent approximation ratio can be obtained. It is the first time to

consider such problems on lattice constraint; (5) The effectiveness and correctness of our

proposed algorithms are tested and verified by several datasets of real-word social networks.

3.1 Related Work

Viral marketing was first studied systematically by Domingos Richardson (Domingos and

Richardson, 2001) (Richardson and Domingos, 2002), and they proposed the concept of

customers’ the value and used markov random fields to model the process of viral marketing.

Kempe et al. (Kempe et al., 2003) formulated IM to a combinatorial optimization problem

and gave us a greedy algorithm with (1−1/e)-approximation. Chen et al. followed Kempe’s

work, and proved it is #P-hard to compute the exact influence spread for a given seed

set under the IC model (Chen et al., 2010a) and the LT model (Chen et al., 2010b). To

tackle this problem, Monte-Carlo simulations were adopted as a general method, but the

running time was too slow to apply to larger real networks. Subsequently, to attempt to

improve the low efficiency of Monte-Carlo simulations, plenty of researchers made effort, for

instance, Leskovec et al. proposed a CELF algorithm (Leskovec et al., 2007) implemented by

a lazy forward evaluation, avoiding redundant computation by exploiting its submodularity.

Adapted from CELF, CELF++ reduced its time complexity further. Until the emergence

of RIS, it opened a new door for us. Brogs et al. (Borgs et al., 2014) proposed the concept

of reverse influence sampling (RIS) firstly, which is scalable in practice and guaranteed

theoretically at the same time. Then, a series of efficient randomized algorithms were arisen,

such as TIM/TIM+ (Tang et al., 2014), IMM (Tang et al., 2015). They were scalable

algorithms to solve the IM problem with (1 − 1/e − ε)-approximation and can be adapted

to other relative problems. Other variants derived from IM in social networks are shown in

(He et al., 2016) (Cai et al., 2016) (Lin et al., 2019) (Wang et al., 2019) (Chen et al., 2019).

13

DR-submodular maximization problem on lattice attracted more and more researchers’

attention recently. Soma et al. (Soma and Yoshida, 2015) generalized the diminishing re-

turn property on the integer lattice firstly and solved the submodular cover problem with

a bicriteria approximation algorithm. Relied on gradient methods, Hassani et al. (Hassani

et al., 2017) addressed monotone continuous DR-submodular maximization effectively, but

assumed that the function is continuous and differentiable. On integer lattice, Soma et al.

(Soma and Yoshida, 2018) studied the problem of maximizing monotone DR-submodular

exhaustively, where they designed algorithms with (1 − 1/e − ε)-approximation under the

cardinality, polymatroid and knapsack constraint. Simultaneously, they (Soma, 2017) con-

sidered non-monotone DR-submodular maximization over the integer lattice, and presented

a 1/(2 + ε)-approximate algorithm within polynomial time. Optimal budget allocation was

a typical application of the DR-submodular maximization, and was studied systematically

(Soma et al., 2014) (Maehara et al., 2015) (Miyauchi et al., 2015) (Hatano et al., 2016). For

social networks, Chen et al. (Chen et al., 2018) investigated IM problem over the lattice,

whose objective function is monotone and DR-submodular. Following that, we study the

activity maximization over lattice, different from IM, our objective function is monotone but

not DR-submodular, which is the main contribution of this paper.

3.2 Problem Formulation

In this section, we formulate the CAM problem. Table 3.1 summarizes the frequently used

notations. Given a social network G = (V,E), in the activity maximization problem, there

is an activity strength Auv ∈ R+ associated with each edge (u, v) ∈ E. Auv means that

the benefit or profit between user u and user v if they are both active (Wang et al., 2017).

Given a social graph G = (V,E), an influence model, and seed set S, let I(S) be a random

variable that denotes the set of activated nodes after the diffusion terminates. Let G[I(S)] =

(I(S), E[I(S)]) be the induced subgraph by activated node set I(S), where we have E[I(S)] =

14

Table 3.1. The frequently used notation summarization

Notation Description

G = (V,E) a graph G with node set V and edge set E

m,n the number of nodes and edges in G

fd(·) objective function of DAM

fc(·) objective function of CAM

I(S) set of activated nodes after diffusion

G[I(S)] subgraph induced by nodes in I(S)

x⃗ marketing strategy (marketing vector)

hu(x⃗) activation probability to node u give x⃗

µ, ν a random RE(RN)-sampling

θ # RE(RN)-sampling in a collection

f, f upper and lower bound of the function f

{(u, v) ∈ E : u ∈ I(S)∧v ∈ I(S)}. Given the seed set S, the activity function of the activity

maximization problem (Wang et al., 2017) is

fd(S) = E

 ∑
(u,v)∈E[I(S)]

Auv

 , (3.1)

where fd(S) is the expected activity benefit of final active nodes for the diffusion starting

from S. The task of activity maximization is to select at most k seed nodes to maximize the

expected activity benefit, i.e., to find S∗ = argmaxS⊆V,|S|≤k fd(S).

In this paper, we extend the activity maximization problem with general marketing

strategy (Kempe et al., 2015), which is a d-dimensional vector x⃗ = (x1, x2, ..., xd) ∈ Rd
+.

Each component xi, i ∈ [d] = {1, 2, ..., d}, corresponds to the investment to marketing action

Mi. Given a marketing strategy x⃗, the probability that node u ∈ V is selected as a seed

is denoted by strategy function hu(x⃗), where hu(x⃗) ∈ [0, 1]. Thus, different from previous

definition, the seed set under the general marketing strategy is stochastic, not deterministic.

Given a marketing strategy x⃗, the probability we select S ⊆ V according to x⃗ as the seed

15

set is

Pr[S|x⃗] =
∏
u∈S

hu(x⃗) ·
∏

v∈V \S

(1− hv(x⃗)), (3.2)

where Pr[S|x⃗] is the probability that exactly nodes in S are selected as seeds but not in S

are not selected as seeds under the marketing strategy x⃗, which is because each node is select

as a seed independently. Then, the activity function now is

fc(x⃗) =
∑
S⊆V

Pr[S|x⃗] · fd(S) (3.3)

=
∑
S⊆V

fd(S) ·
∏
u∈S

hu(x⃗) ·
∏

v∈V \S

(1− hv(x⃗)). (3.4)

Remark 1. We can address marketing vector x⃗ in a discretized manner with granularity t,

where each component xi takes discretized value {0, t, 2t, · · · }. These set of vectors is called

lattice X , where X = {0, t, 2t, · · · }d.

Now, we define the continuous activity maximization (CAM) problem as follows:

Problem 1 (Continuous Activity Maximization). Given a social network G = (V,E) with

a influence model, a budget k, a marketing strategy functions hu(·) for each user u, CAM

aims to find an optimal marketing strategy x⃗ such that the expected activity benefit can be

maximized. That is,

x⃗∗ = arg max
x⃗∈X ,|x⃗|≤k

fc(x⃗), (3.5)

where consider the marketing strategy x⃗ under the budget constraint: |x⃗| =
∑

i∈[d] xi ≤ k.

Here, each configuration satisfying x⃗ ∈ X and |x⃗| ≤ k is called a feasible solution.

To make the context clear, we refer to the problem finding S∗ = argmaxS⊆V,|S|≤k fd(S) as

discrete activity maximization (DAM).

3.3 Properties of CAM

In this section, we discuss the hardness, dr-submodularity and computability of our CAM

problem.

16

3.3.1 Hardness

In order to show the hardness, we can start from a classical NP-hard problem, Set Cover

problem, and reduce MC to our CAM problem in polynomial time.

Theorem 3.3.1. The CAM problem is NP-hard under the IC model and the LT model.

Proof. We assume that X = {0, 1}n and hv(x⃗) = xv, that is, v is selected as a seed if and

only if xv = 1. Now, marketing strategy x⃗ is the characteristic vector of the seed set, and

CAM problem can be reduced to DAM problem trivially. It has been proved in (Wang et al.,

2017) that DAM is NP-hard under the IC model and LT model by reducing from the set

cover problem. Thus, CAM is more general, and it is NP-hard by inheriting the NP-hardness

of DAM.

It is known that under the IC model and LT model, computing influence spread is #P-

hard (Chen et al., 2010b) (Chen et al., 2010a). Given a marketing strategy x⃗, the hardness

of computing fc(x⃗), that is

Lemma 3.3.2. Given a marketing strategy x⃗, computing fc(x⃗) by Equation (5) is #P-hard.

Proof. Similar to the proof of Theorem 1, CAM can be reduced to DAM problem by set-

ting X = {0, 1}n and hv(x⃗) = xv. Based on Equation (3), computing fd(S) is equivalent

to compute E[I(S)], thus, computing fd(S) is #P-hard. Except for this special case, the

computation of fc(S) is harder than fd(S), we hare computing fc(S) is #P-hard.

Monte-Carlo simulation can be used to estimate fc(x⃗) because it is the expectation of

fd(x⃗) over the random variable S. We need to sample S according to distribution x⃗.

Lemma 3.3.3. Provided that we have value oracle that returns the activity benefit fd(S)

given a seed set S, we can obtain a (γ, δ)-Estimation of fc(x⃗) by sampling S according to x⃗

at least α2 ln(2/δ)
2γ2β2 times, where α =

∑
(u,v)∈E[Auv] and β =

∑
e∈E[hu(x⃗)hv(x⃗) · Auv].

17

Proof. According to Equation (5), we can estimate fc(x⃗) with the help of Monte-Carlo

simulations, denoted by ḟc(x⃗) and based on Hoeffding’s inequality, we have

Pr
[∣∣∣ḟc(x⃗)− fc(x⃗)∣∣∣ ≥ γfc(x⃗)

]
≤ 2e−

2rγ2(fc(x⃗))
2

α2 ,

where r is the number of Monte-Carlo simulations and fd(S) ∈ [0, α]. Then, we consider the

lower bound of fc(x⃗). For each edge (u, v) ∈ E, the probability of both u and v are active

is at least hu(x⃗)hv(x⃗), thus, we have fc(x⃗) ≥
∑

e∈E[hu(x⃗)hv(x⃗) · Auv]. Therefore, we can set

r ≥ α2 ln(2/δ)
2γ2β2 that establishing Pr[|ḟc(x⃗)− fc(x⃗)| ≥ γfc(x⃗)] ≤ δ.

Unfortunately, it is not easy to compute the activity benefit fd(S) given a seed set S.

Thus, we need to address this problem by other techniques. First, we establish an equivalent

relationship between fd(·) and fc(·). Given a social graph G = (V,E) and a marketing

strategy x⃗, we create a constructed graph G̃ = (Ṽ , Ẽ) by adding a new node ũ and a new

directed edge (ũ, u) for each node u in V to G. For example, under the IC model, we set the

activation probability alone edge (ũ, u) is pũu = hu(x⃗). Then, we are able to estimate our

objective function directly. That is,

fc(x⃗|G) = fd(Ṽ − V |G̃)−
∑
u∈V

[hu(x⃗) · Aũu], (3.6)

where fc(x⃗|G) means computing fc(x⃗) under the graph G. We set the activity strength

Aũu = 0 for each node u in V , then we have fc(x⃗|G) = fd(Ṽ − V |G̃). Now, we can compute

fd(Ṽ − V |G̃) instead of fc(x⃗|G) when we are required to get the value of fc(x⃗|G).

Theorem 3.3.4. Given a social graph G = (V,E) and a marketing strategy x⃗, the total run-

ning time to get a (γ, δ)-Estimation of fc(x⃗) is O
(

(m+n)α2 ln(2/δ)
2ε2β2

)
, where α =

∑
(u,v)∈E[Auv]

and β =
∑

e∈E[hu(x⃗)hv(x⃗) · Auv].

Proof. From the Equation (8), we have fc(x⃗|G) = fd(Ṽ − V |G̃). According to Equation (3),

we can estimate fd(Ṽ − V |G̃) by Monte-Carlo simulations. Denoted by S ′ = Ṽ − V , and

18

based on Hoeffding’s inequality, we have

Pr
[∣∣∣ḟd(S ′)− fd(S ′)

∣∣∣ ≥ γfd(S
′)
]
≤ 2e−

2rγ2(fd(S
′))2

α2 ,

where r is the number of Monte-Carlo simulations and
∑

(u,v)∈Ẽ[I(S′)]Auv ∈ [0, α]. Then, we

consider the lower bound of fd(S
′). Similar to Lemma 2, we have fd(S

′) ≥
∑

e∈E[hu(x⃗)hv(x⃗) ·

Auv] as well. To achieve a (γ, δ)-Estimation of fd(S
′), the number of Monte-Carlo simulations

is at least α2 ln(2/δ)
2γ2β2 . Each Monte-Carlo simulation takes O(m+n) running time in constructed

graph G̃. Thus, we have a (γ, δ)-Estimation of fc(x⃗|G) in O
(

(m+n)α2 ln(2/δ)
2γ2β2

)
running time.

Remark 2. From the Lemma 2 and Theorem 2, we can know that computing fc(x⃗) on G is

equivalent to compute fd(Ṽ −V) on constructed graph G̃, which give us an efficient technique

to estimate the value fc(x⃗) by use of Monte-Carlo simulations.

3.3.2 Modularity of Objective Functions

In order to address CAM problem, a intuitive method is to use the greedy algorithm that

can obtain a constant approximation ratio depended on the diminishing return property. We

say that A set function f : 2V → R is monotone if f(S) ≤ f(T) for all S ⊆ T ⊆ V , and

submodular if f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T) for all S ⊆ T ⊆ V and u ∈ V \T .

Conversely, if f(S ∪ {u})− f(S) ≤ f(T ∪ {u})− f(T) for all S ⊆ T ⊆ V and u ∈ V \T , we

say f is supermodular. Soma et al. (Soma and Yoshida, 2015) extended the submodularity

and the diminishing return property to functions defined on the lattice, that is referred to

as the DR-submodular property. To our CAM problem, for two vectors x, y ∈ X , a function

g : X → R is monotone if g(x⃗) ≤ g(y⃗) for all x⃗ ≤ y⃗, and DR-submodular if g(x⃗+te⃗i)−g(x⃗) ≥

g(y⃗+ te⃗i)− g(y⃗) for all x⃗ ≤ y⃗ and i ∈ [d]. Conversely, if g(x⃗+ te⃗i)− g(x⃗) ≤ g(y⃗+ te⃗i)− g(y⃗)

for all x⃗ ≤ y⃗ and i ∈ [d], we say g is DR-supermodular. Unfortunately, the objective function

of CAM problem is not DR-submodular and DR-supermodular.

19

Remark 3. Here, we assume that the strategy functions hu(x⃗) for each u ∈ V are monotone

and DR-submodular. It is obvious that the probability of a user agreeing to be a seed increases

with more investment. However, Endless additional investment does not mean that the acti-

vation probability will increase endlessly as well, namely its marginal gain is non-increasing.

Therefore, it is valid to consider hu(·) is a DR-submodular function.

Theorem 3.3.5. fc(·) is monotone but not DR-submodular under the IC model and the LT

model.

Proof. We prove by a counterexample, consider graph G = (V,E), V = {v1, v2, v3, v4} and

E = {(v1, v2), (v2, v3), (v4, v3)}. By setting X = {0, 1}4 and hv(x⃗) = xv, we have hv(x⃗) is

monotone and DR-submodular. The activation probabilities in IC model and weights in LT

model of {(v1, v2), (v4, v3)} are set to be 1, but {(v2, v3)} is 0. The activity strengths are

all set to be 1. Let x⃗ = (0, 0, 0, 0) and y⃗ = (0, 0, 0, 1), we have fc(x⃗) = 0, fc(x⃗ + e1) = 1,

fc(y⃗) = 1 and fc(y⃗ + e1) = 3. That is fc(x⃗ + e1) − fc(x⃗) < fc(y⃗ + e1) − fc(y⃗) where x⃗ ≤ y⃗.

Therefore, fc(·) is not DR-submodular.

In (Wang et al., 2017), they explained the reason why fd(·) is not submodular as the

”combination effect” between the new activated node with existing activated node. It can

be extended to fc(·) naturally.

Theorem 3.3.6. fc(·) is monotone but not DR-supermodular under the IC model and the

LT model.

Proof. We prove by a counterexample, consider graph G = (V,E), V = {v1, v2, v3, v4} and

E = {(v2, v1), (v2, v3), (v3, v4)}. By setting X = {0, 1}4 and hv(x⃗) = xv, we have hv(x⃗) is

monotone and DR-submodular. The activation probabilities in IC model, weights in LT

model and activity strengths are all set to be 1. Let x⃗ = (0, 0, 0, 0) and y⃗ = (0, 0, 1, 0), we

have fc(x⃗) = 0, fc(x⃗ + e2) = 3, fc(y⃗) = 1 and fc(y⃗ + e2) = 3. That is fc(x⃗ + e2) − fc(x⃗) >

fc(y⃗ + e2)− fc(y⃗) where x⃗ ≤ y⃗. Therefore, fc(·) is not DR-supermodular.

20

3.4 Upper and Lower Bound

In this section, we design an upper bound and a lower bound for our objective function fc(·),

and discuss their DR-submodularity and computability.

3.4.1 Bounds Definition

According to the activity function of CAM problem, Equation (5), in order to get an upper

bound and a lower bound of fc(·), we firstly need to get both bounds of the objective function

fd(·) for DAM. Wang et al. (Wang et al., 2017) pointed out that the non-submodularity of

fd(·) is derived from the “combination effect”. Thus, for a lower bound, we only consider

those edges whose two endpoints can be influenced by the cascade from the same seed node.

For an edge (u, v) ∈ E, in a realization, we count it only if there is at least one node in S

can reach u and v simultaneously. We denote by fd the lower bound of fd. That is,

fd(S) = E

 ∑
(u,v)∈

⋃
x∈S E[I(x)]

Auv

 , (3.7)

where E[I(x)] is the edges of induced subgraph by activated node set I(x). Given a seed

set S, we have fd(S) ≤ fd(S) because it neglects those edges whose endpoints can not be

activated by the different seed nodes. Then, we denote by fd the upper bound of fd. That

is,

fd(S) = E

 ∑
u∈V [I(S)]

∑
v∈N(u)

Auv

2

 , (3.8)

where V [I(S)] is the nodes of induced subgraph by activated node set I(S). Given a seed

set S, we have fd(S) ≥ fd(S) because we consider each active node contributes to half of

activity strength associated to those edges connected to it. Thus, for each edge, it is not

mandatory to require both of its endpoints are activated.

According to the above bounds of fd, we can obtain the upper bound and lower bound

of the activity function of CAM problem by the same way. From Equation (6), we denote

21

by fc the lower bound of fc, that is,

fc(x⃗) =
∑
S⊆V

fd(S) ·
∏
u∈S

hu(x⃗) ·
∏

v∈V \S

(1− hv(x⃗)) (3.9)

denote by fc the upper bound of fc, that is,

fc(x⃗) =
∑
S⊆V

fd(S) ·
∏
u∈S

hu(x⃗) ·
∏

v∈V \S

(1− hv(x⃗)). (3.10)

Given a marketing strategy x⃗, we have fc(x⃗) ≤ fc(x⃗) ≤ fc(x⃗) because fc(x⃗) (resp. fc(x⃗)) is

the linear combination of fd(S) (resp. fd(S)). Thus, we can conclude that fd(S) ≤ fd(S) ≤

fd(S) means fc(S) ≤ fc(S) ≤ fc(S).

3.4.2 Properties of the Bounds

Lu et al. (Lu et al., 2015) provided us with an idea where we can obtain an approximate

solution of CAM problem by maximizing its the upper bound and lower bound. As we know,

by setting X = {0, 1}n and hv(x⃗) = xv, the CAM problem can be reduced to DAM problem.

Similarly, maximizing the fc(x⃗) (resp. fc(x⃗)) can also be reduced maximixing the fd(S)

(resp. fd(S)) under this special case, which inherits its NP-hardness. Because of maximizing

the fd(·) and fd(·) is NP-hard (Wang et al., 2017), it is natural to have

Theorem 3.4.1. Maximizing the lower bound fc(·) is NP-hard under the IC model and the

LT model.

Theorem 3.4.2. Maximizing the upper bound fc(·) is NP-hard under the IC model and the

LT model.

Even though that, the lower bound fd(·) and the upper bound fd(·) of DAM are sub-

modular.

Lemma 3.4.3 ((Wang et al., 2017)). The lower bound fd(·) is monotone and submodular,

but computing it given a seed set S is #P-hard under the IC model and the LT model.

22

Lemma 3.4.4 ((Wang et al., 2017)). The upper bound fd(·) is monotone and submodular,

but computing it given a seed set S is #P-hard under the IC model and the LT model.

Then, the submodularity of fd(·) (resp, fd(·)) can be correlated to the DR-submodularity of

fc(·) (resp, fc(·)). Let us look at the following Lemma:

Lemma 3.4.5. Given a set function f : 2V → R and a function g : X → R, they satisfies

that

g(x⃗) =
∑
S⊆V

f(S) ·
∏
u∈S

hu(x⃗) ·
∏

v∈V \S

(1− hv(x⃗)). (3.11)

When hu(x⃗) for each u ∈ V are monotone and DR-submodular, if f(·) is monotone and

submodular, then g(·) is monotone and DR-submodular.

Proof. This lemma is an indirect corollary from the section 7 of (Kempe et al., 2015), but

there is a typo over there, and we fix and rearrange here. We denote α(u) = hu(x⃗+te⃗j)−hu(x⃗)

and β(u, S) =
∏

i<u,i∈S hi(x⃗+te⃗j)·
∏

i<u,i/∈S(1−hi(x⃗+te⃗j))·
∏

i<u,i∈S hi(x⃗)·
∏

i<u,i/∈S(1−hi(x⃗)).

Thus, we have g(x⃗ + te⃗i) − g(x⃗) =
∑

S⊆V f(S) · (
∏

u∈S hu(x⃗ + te⃗j) ·
∏

u∈V \S(1 − hu(x⃗ +

te⃗j))−
∏

u∈S hu(x⃗) ·
∏

u∈V \S(1−hu(x⃗))) =
∑

S⊆V f(S) · (
∑

u∈S α(u) ·β(u, S)−
∑

u∈V \S α(u) ·

β(u, S)) =
∑

u∈V (α(u)·
∑

S:u∈V \S(f(S∪{u})−f(S))·β(u, S)). Then, we study the difference

(g(x⃗+te⃗i)−g(x⃗))−(g(y⃗+te⃗i)−g(y⃗)) for x⃗ ≤ y⃗, and show it is non-negative, whose techniques

are similar to the section 7 of (Kempe et al., 2015).

Based on Lemma 3, Lemma 4 and Lemma 5, the following theorems can be introduced

directly, that is

Theorem 3.4.6. The lower bound fc(·) is monotone and DR-submdoualr, but computing it

given a marketing strategy x⃗ is #P-hard under the IC model and the LT model.

Theorem 3.4.7. The upper bound fc(·) is monotone and DR-submdoualr, but computing it

given a marketing strategy x⃗ is #P-hard under the IC model and the LT model.

23

Algorithm 1: lattice-Greedy (g,X , k)
1 Initialize: x⃗ = 0 and c = 0;
2 while c < k do
3 i∗ ← argmaxi∈[d](g(x⃗+ te⃗i)− g(x⃗));
4 x⃗← x⃗+ te⃗i∗ ;
5 c← c+ t;

6 return x⃗;

Given a marketing strategy x⃗, how can we compute the value of fc(x⃗) and fc(x⃗) effectively.

The same as before, Equation (8), we create a constructed graph G̃ = (Ṽ , Ẽ). According

to Remark 2, computing fc(x⃗) (resp, fc(x⃗)) is equivalent to compute fd(Ṽ − V |G̃) (resp,

fd(Ṽ − V |G̃)). They can be done by user of Monte-Carlo simulations.

3.5 Algorithms

Given a function g on lattice X = {0, t, 2t, · · · }d and a budget k, the lattice-Greedy algorithm

is shown in Algorithm 1. If this function g is monotone and DR-submodular, Algorithm 1

returns a solution that achieves a (1 − 1/e)-approximation (Nemhauser et al., 1978). The

idea of lattice-Greedy algorithm is to find the component that has the largest marginal

gain, and then allocate one unit t (lattice granularity) to this coordinate until the budget

is exhausted. In our CAM problem, it is #P-hard to compute the lower bound fc(x⃗) and

the upper bound fc(x⃗) in IC model and LT model. Thus, Algorithm 1 can give us a (1 −

1/e − ε)-approximate solution by use of Monte Carlo simulations. However, the efficiency

of Monte-Carlo simulations is very low, so it is not scalable. In this section, we propose

a sampling technique for these objective functions such that our CAM problem is scalable

based on reverse influence sampling (RIS) (Borgs et al., 2014). Then, we adapt Influence

Maximization with Martingale (IMM) (Tang et al., 2015) algorithm and combine it with

sandwich approximation framework to solve our lattice-based problem.

24

3.5.1 Sampling techniques

Given a social network G = (V,E), an diffusion model (IC/LT model), and a seed set S,

let g = (V,Eg) be a realization sampled from a distribution, Equation (1) or Equation (2),

denoted by g ∼ G. We denote by Rg(S) the set of nodes that are reachable from at least one

node in S through Eg and RgT (v) the reverse reachable set (RR-Set) (Tang et al., 2014) for

node v in g, which is a set composed of all nodes that can reach v through Eg. Let (u, v) be

a edge sampled from the probability distribution Auv/T where T =
∑

(u,v)∈E Auv, denoted

by (u, v) ∼ E. Then, a random edge sampling (RE-sampling) µ can be defined as follows:

1. Initialize µ = (∅, ∅)

2. Select an edge (u, v) ∈ E with probability Auv/T

3. Generate a realization g from G according to the IC/LT model

4. Let N1 = RgT (u) and N2 = RgT (u)

5. Let µ = (N1, N2)

6. Return µ

Given a marketing strategy x⃗, to estimate fc(x⃗), we have the following results, that is,

Theorem 3.5.1. Given G = (V,E) and a marketing strategy x⃗ ∈ X , we have

fc(x⃗) = T · Eµ=(N1,N2) [H(N1) · H(N2)] , (3.12)

where µ is a RE sampling, T =
∑

(u,v)∈E Auv and H(N1) = 1−
∏

s∈N1
(1− hs(x⃗)).

Proof. Given a marketing strategy x⃗ ∈ X , according to Equation (5), we can write fc(x⃗) as:

fc(x⃗) = ES∼x⃗[fd(S)]

= T · ES∼x⃗,µ=(N1,N2)[I(S ∩N1 ̸= ∅ ∧ S ∩N2 ̸= ∅)]

= T · Eµ=(N1,N2)

[
Pr
S∼x⃗

[S ∩N1 ̸= ∅ ∧ S ∩N2 ̸= ∅)]
]
.

25

Here, the domain N1 ∪N2 can be considered as (N1 ∩N2) ∪ (N1\N2) ∪ (N2\N1). Thus, we

have

fc(x⃗) = T · ES∼x⃗,µ=(N1,N2)

[
Pr
S∼x⃗

[S ∩ (N1 ∩N2) ̸= ∅]

+ Pr
S∼x⃗

[S ∩ (N1 ∩N2) = ∅] · Pr
S∼x⃗

[S ∩ (N1\N2) ̸= ∅]

· Pr
S∼x⃗

[S ∩ (N1\N2) ̸= ∅]
]

= T · ES∼x⃗,µ=(N1,N2) [H(N1 ∩N2)

+(1−H(N1 ∩N2)) · H(N1\N2) · H(N2\N1)] ,

where I(·) is the indicator function which is equal to 1 if (·) is true. Then, PrS∼x⃗[S ∩N1 ̸=

∅] is the probability there is at least one node in N1 activated as a seed, thus, we have

PrS∼x⃗[S ∩N1 ̸= ∅] = 1−
∏

s∈N1
(1− hs(x⃗)) = H(N1).

Let M = {µ1, µ2, · · · , µθ} be a collection of θ independent RE-sampling, by Equation (14),

we have

f̂c(x⃗) =
T

θ

∑
µ=(N1,N2),µ∈M

(H(N1 ∩N2)

+(1−H(N1 ∩N2)) · H(N1\N2) · H(N2\N1)) . (3.13)

According to Theorem 9, f̂c(x⃗) is an unbiased estimator of fc(x⃗) for any fixed θ and it is not

DR-submodular as well. Similarly, for the lower bound fc(x⃗), we have the following results,

that is,

Theorem 3.5.2. Given G = (V,E) and a marketing strategy x⃗ ∈ X , we have

fc(x⃗) = T · Eµ=(N1,N2) [H(N1 ∩N2)] , (3.14)

where µ is a RE sampling, T =
∑

(u,v)∈E Auv and H(N1 ∩N2) = 1−
∏

s∈N1∩N2
(1− hs(x⃗)).

26

Proof. Given a marketing strategy x⃗ ∈ X , according to Equation (11), we can write fc(x⃗) as

fc(x⃗) = ES∼x⃗[fd(S)]

= T · ES∼x⃗,µ=(N1,N2)[I(S ∩ (N1 ∩N2) ̸= ∅)]

= T · Eµ=(N1,N2)

[
Pr
S∼x⃗

[(S ∩ (N1 ∩N2) ̸= ∅)]
]

= T · Eµ=(N1,N2) [H(N1 ∩N2)] ,

where I(·) is the indicator function which is equal to 1 if (·) is true. Then, PrS∼x⃗[S ∩ (N1 ∩

N2) ̸= ∅] is the probability there is at least one node in N1 ∩N2 activated as a seed because

it requires that the endpoints of an edge can be activated by the same seed node, thus, we

have PrS∼x⃗[S ∩ (N1 ∩N2) ̸= ∅] = 1−
∏

s∈(N1∩N2)
(1− hs(x⃗)) = H(N1 ∩N2).

By Equation (16), we have

f̂c(x⃗) =
T

θ

∑
µ=(N1,N2),µ∈M

(H(N1 ∩N2)) . (3.15)

For the upper bound fc(x⃗), the sampling technique is a little different. Shown as Equation

(10), the upper bound is a weighted influence maximization on lattice. Let u be a node

sampled from the probability distribution w(u)/W where w(u) =
∑

v∈N(u)Auv/2 and W =∑
u∈V w(u), denoted by u ∼ V . Then, a random node sampling (RN-sampling) ν can be

defined as follows:

1. Initialize ν = (∅, ∅)

2. Select an node u ∈ V with probability w(u)/W

3. Generate a realization g from G according to the IC/LT model

4. Let ν = RgT (u)

5. Return ν

27

Given a marketing strategy x⃗, to estimate fc(x⃗), we have the following results, that is,

Theorem 3.5.3. Given G = (V,E) and a marketing strategy x⃗ ∈ X , we have

fc(x⃗) = W · Eν [H(ν)] , (3.16)

where ν is a RN sampling, W =
∑

u∈V w(u) and H(ν) = 1−
∏

s∈ν(1− hs(x⃗)).

Proof. Given a marketing strategy x⃗ ∈ X , according to Equation (18), we can write fc(x⃗) as

fc(x⃗) = ES∼x⃗[fd(S)] = W ·ES∼x⃗,ν [I(S∩ν ̸= ∅)] = W ·Eν [PrS∼x⃗[(S∩ν ̸= ∅)]] = W ·Eν [H(ν)].

Then, W · ES∼x⃗,ν [I(S ∩ ν ̸= ∅)] can be inferred from the proof proposed in (Nguyen et al.,

2016a) and PrS∼x⃗[S ∩ ν ̸= ∅] is the probabilty there is at least one node in ν activated as a

seed, thus, we have PrS∼x⃗[S ∩ ν ̸= ∅] = 1−
∏

s∈ν(1− hs(x⃗)) = H(ν).

Let N = {ν1, ν2, · · · , νθ} be a collection of θ independent RN-sampling, by Equation (18),

we have

f̂c(x⃗) =
W

θ

∑
ν∈N

(H(ν)) . (3.17)

According to Theorem 10 and Theorem 11, f̂c(x⃗) and f̂c(x⃗) is an unbiased estimator of fc(x⃗)

and fc(x⃗) for any fixed θ and they are monotone and DR-submodular. Based on that, we

can design our algorithms with a valid approximation ratio.

3.5.2 Modified IMM on Lattice

The unbiased estimators of our objective functions have been obtained in last subsection,

here, we extend the IMM algorithm (Tang et al., 2015), the state-of-the-art method for the IM

problem, to design the solutions of lower bound and upper bound of our CAM problem. The

core idea of IMM on IM problem: produce enough random reverse reachable set (Random

RR-Set), where the node is selected uniformly and randomly, and then find the maximum

coverage under the cardinality constraint by use of greedy algorithm. The IMM process can

be divided into two stages as follows:

28

Algorithm 2: lattice-Greedy (f̂c(f̂c),M(N),X , k)
1 Initialize: x⃗◦ = 0 and c = 0;
2 while c < k do

3 i◦ ← argmaxi∈[d]

(
f̂c(f̂c)(x⃗

◦ + te⃗i)− f̂c(f̂c)(x⃗◦)
)
;

4 x⃗◦ ← x⃗◦ + te⃗i◦ ;
5 c← c+ t;

6 return x⃗◦;

1. Sampling Random RR-Sets: This stage generates enough random RR-set iteratively

and independently and put them into R until satisfying a certain stopping condition.

2. Node selection: This stage adopts standard greedy method to drive a size-k seed set

that covers sub-maximum number of RR-Sets in R.

Extended to our problem, we generate enough RE-sampling for lower bound or RN-

sampling for upper bound first, then the lattice-greedy algorithm on these RE-sampling or

RN-sampling is adopted to get the sub-optimal strategy marketing x⃗. Let us introduce the

node selection first. Let M = {µ1, µ2, · · · , µθ} be a collection of θ independent RE-sampling

and N = {ν1, ν2, · · · , νθ} be a collection of θ independent RN-sampling. The node selection

is shown in Algorithm 2, which is a (1−1/e)-approximate solution to the estimator of upper

and lower bound.

In the first stage, we can use the sampling procedure similar to IMM, but need some

modifications. For the lower bound, these modifications are: (1) we replace the number of

node n with T , where T =
∑

(u,v)∈E Auv; (2) we use lattice-greedy algorithm, Algorithm

2, on RE-sampling instead of greedy algorithm on RR-set; and (3) we replace log
(
n
k

)
with

min(kt−1 log d, d log(kt−1)) in the two parameters λ′ and λ∗ (Chen et al., 2018). We have

α =
√
ℓ log T + log 2 (3.18)

β =
√

(1− 1/e)(min(kt−1 log d, d log(kt−1)) + α2) (3.19)

29

Algorithm 3: sampling-LB (G, f̂c,X , k, ε, ℓ)
1 Initialize: M = ∅, LB = 0, ε′ =

√
2ε;

2 Initialize: M ′ = ∅;
3 Let λ′ = (2 + 2

3
ε′)(min(Bt−1 log d, d log(Bt−1)) + ℓ log T + log log2 T) · T/ε′2;

4 Let λ∗ = 2T · ((1− 1
e
) · α + β)2/ε2;

5 for i = 1 to log2 T − 1 do
6 Let yi = T/2i;
7 Let θi = λ′/yi, where λ

′ is defined above;
8 while |M | ≤ θi do
9 µ← RE-sampling (G);

10 M ←M ∪ {µ};
11 x⃗◦ ← lattice-Greedy (f̂c,M,X , k);
12 if f̂c(x⃗

◦) ≥ (1 + ε′) · yi then
13 LB ← f̂c(x⃗

◦)/(1 + ε′);

14 break;

15 θ ← λ∗/LB;
16 while |M ′| ≤ θ do
17 µ← RE-sampling (G);
18 M ′ ←M ′ ∪ {µ};
19 return M ′;

Algorithm 4: IMM-LB (G, f̂c,X , k, ε, ℓ)

1 M ′ ← sampling-LB (G, f̂c,X , k, ε, ℓ);
2 x⃗L ← lattice-Greedy (f̂c,M

′,X , B);

3 return x⃗L;

Then, the sampling procedure for lower bound, sampling-LB, can be shown in Algorithm 10,

where ε is accuracy and ℓ is confidence. Chen has told us that there is an issue (Chen, 2018)

in original IMM algorithm (Tang et al., 2015) and gave us two workarounds (Chen et al.,

2018). We adopt the first workaround, line 19 to 22 in Algorithm 3, that is more simple and

straightforward. The IMM-LB algorithm is shown in Algorithm 4.

Theorem 3.5.4. The solution x⃗L returned by Algorithm 4 is a (1− 1/e− ε)-approximation

of the upper bound of CAM problem with at least 1− 1/T ℓ probability.

30

Algorithm 5: sampling-UB (G, f̂c,X , k, ε, ℓ)
1 Initialize: N = ∅, LB = 0, ε′ =

√
2ε;

2 Initialize: N ′ = ∅;
3 Let λ′ = (2 + 2

3
ε′)(min(Bt−1 log d, d log(Bt−1) + ℓ logW + log log2W) ·W/ε′2;

4 Let λ∗ = 2W · ((1− 1
e
) · α + β)2/ε2;

5 for i = 1 to log2W − 1 do
6 Let yi = T/2i;
7 Let θi = λ′/yi, where λ

′ is defined above;
8 while |N | ≤ θi do
9 ν ← RN-sampling (G);

10 N ← N ∪ {ν};

11 x⃗◦ ← lattice-Greedy (f̂c, N,X , k);
12 if f̂c(x⃗

◦) ≥ (1 + ε′) · yi then
13 LB ← f̂c(x⃗

◦)/(1 + ε′);
14 break;

15 θ ← λ∗/LB;
16 while |N ′| ≤ θ do
17 ν ← RN-sampling (G);
18 N ′ ← N ′ ∪ {ν};
19 return N ′;

Algorithm 6: IMM-UB (G, f̂c,X , k, ε, ℓ)

1 N ′ ← sampling-UB (G, f̂c,X , k, ε, ℓ);
2 x⃗U ← lattice-Greedy (f̂c, N

′,X , k);
3 return x⃗U ;

To the original problem, we have known that f̂c(x⃗) is an unbiased estimator of fc(x⃗).

Based on the collection M ′ generated in Algorithm 4, we can use it to get solution x⃗A by

calling lattice-Greedy (f̂c,M
′,X , k), because they always rely on RE-sampling. Here, x⃗A is

a heuristic solution, no any theoretical guarantee, to the CAM problem.

For the upper bound, the modifications are similar to that of lower bound, but (1) we

replace the number of node n withW , whereW =
∑

u∈V w(u); and (2) we use lattice-greedy

31

algorithm, Algorithm 2, on RN-sampling. That is,

α′ =
√
ℓ logW + log 2 (3.20)

β′ =
√
(1− 1/e)(min(kt−1 log d, d log(kt−1)) + α′2) (3.21)

Then, the sampling procedure for upper bound, sampling-UB, can be shown in Algorithm

5, where ε is accuracy and ℓ is confidence. The IMM-UB algorithm is shown in Algorithm 6

similarly.

Theorem 3.5.5. The solution x⃗U returned by Algorithm 6 is a (1− 1/e− ε)-approximation

of the upper bound of CAM problem with at least 1− 1/W ℓ probability.

3.5.3 Sandwich Approximation Framework

To optimize non-submodular function, there is no universal technique to approximate it

within constant approximation ratio. Lu et al. (Lu et al., 2015) provided a sandwich ap-

proximation framework to us, where a data-dependent approximation ratio can be obtained

by approximating the upper bound and lower bound that are monotone and submodular. It

can be extended to solve our monotone but not DR-submodular objective function. First,

we get a (1− 1/e− ε)-approximate solution to the lower bound by calling IMM-LB, during

that, we record the immediate collection of RE-sampling M ′. Then, we use this M ′ as the

input of lattice-greedy to find a heuristic solution to the original problem. Finally, we get

a (1 − 1/e − ε)-approximate solution to the upper bound by calling IMM-UB and return

the best one to the original problem. It is shown in Algorithm 7. The result returned by

Algorithm 7 can be guaranteed to have following approximation:

Theorem 3.5.6. Let x⃗sand be the marketing strategy returned by Algorithm 7, then we have

fc(x⃗sand) ≥ max

{
fc(x⃗U)

fc(x⃗U)
,
fc(x⃗

∗
L)

fc(x⃗∗A)

}
1− γ
1 + γ

(
1− 1

e
− ε
)
fc(x⃗

∗
A), (3.22)

where x⃗∗L is the optimal solution to maximize the lower bound and x⃗∗A is the optimal solution

of the CAM problem.

32

Algorithm 7: Sandwich Approximation Framework

1 x⃗L ← IMM-LB (G, f̂c,X , k, ε, ℓ) // Record the M ′ returned by sampling-LB here;

2 x⃗A ← lattice-Greedy (f̂c,M
′,X , k);

3 x⃗U ← IMM-UB (G, f̂c,X , k, ε, ℓ);
4 x⃗sand ← argmaxx⃗∈{x⃗L,x⃗A,x⃗U} ḟc(x⃗), where ḟc(x⃗) can be computed by ḟd(Ṽ − V |G̃) on

constructed graph G̃ equivalently, shown as Remark 2.;
5 return x⃗sand;

Proof. Let x⃗∗U be the optimal solution to maximize the upper bound. For the upper bound,

we have

fc(x⃗U) =
fc(x⃗U)

fc(x⃗U)
fc(x⃗U) ≥

fc(x⃗U)

fc(x⃗U)

(
1− 1

e
− ε
)
fc(x⃗

∗
U)

≥ fc(x⃗U)

fc(x⃗U)

(
1− 1

e
− ε
)
fc(x⃗

∗
A)

≥ fc(x⃗U)

fc(x⃗U)

(
1− 1

e
− ε
)
fc(x⃗

∗
A).

For the lower bound, we have

fc(x⃗L) ≥ fc(x⃗L) ≥
(
1− 1

e
− ε
)
fc(x⃗

∗
L)

≥
fc(x⃗

∗
L)

fc(x⃗∗A)

(
1− 1

e
− ε
)
fc(x⃗

∗
A).

Let x⃗max = argmaxx⃗∈{x⃗L,x⃗A,x⃗U} fc(x⃗). That is,

fc(x⃗max) ≥ max

{
fc(x⃗U)

fc(x⃗U)
,
fc(x⃗

∗
L)

fc(x⃗∗A)

}(
1− 1

e
− ε
)
fc(x⃗

∗
A).

According to Theorem 2, ḟc(x⃗) is a (γ, δ)-Estimation of fc(x⃗) given a marketing strategy

x⃗. Then, x⃗sand = argmaxx⃗∈{x⃗L,x⃗A,x⃗U} ḟc(x⃗), if x⃗sand ̸= x⃗max, we have (1 + γ)fc(x⃗sand) ≥

(1− γ)fc(x⃗max). Thus, the Inequality (24) is established.

33

3.6 Experiment

In this section, we carry out several experiments on different datasets to validate the correct-

ness and efficiency of our proposed algorithms. There are three datasets (Rossi and Ahmed,

2015) used in our experiments: (1) Dataset-1: a co-authorship network, co-authorship among

scientists to publish papers about network science; (2) Dataset-2: a Wiki network, who-

voteson-whom network which come from the collection Wikipedia voting; (3) Dataset-3: A

collaboration netwook extracted from Arxiv General Relativity. We consider thes three real

networks as directed graph, and the statistics information of the three datasets is represented

in Table 3.2.

Table 3.2. The statistics of three datasets

Dataset n m Type Average degree

Dataset-1 0.4K 1.01K directed 4

Dataset-2 1.0K 3.15K directed 6

Dataset-3 5.2K 14.5K directed 5

3.6.1 Experimental Settings

The diffusion model of our proposed experiments relies on IC model and LT model. Under

the IC model, for each edge (u, v) ∈ E, the diffusion probability is set as puv = 1/|N−(v)|.

Under the the LT model, for each edge e = (u, v), the weight is set as buv = 1/|N−(v)|.

This setting is widely used by prior works about influence maximization. Given a marketing

strategy x⃗, for each node u ∈ V , we have a strategy function hu(x⃗). Here, we consider the

case: independent strategy activation (Chen et al., 2018), where each component xj ∈ x⃗

attempts to activate u as seed independently. Then, we have

hu(x⃗) = 1−
∏
j∈[d]

(1− quj(xj)), (3.23)

34

(a) Dataset-1, Performance (b) Dataset-1, Sandwich

(c) Dataset-2, Performance (d) Dataset-2, Sandwich

(e) Dataset-3, Performance (f) Dataset-3, Sandwich

Figure 3.1. Under the IC model: left column is the performance comparison of different
algorithms changes over budget k; right column is the result of sandwich approximation
framework.

35

(a) Dataset-1, Performance (b) Dataset-1, Sandwich

(c) Dataset-2, Performance (d) Dataset-2, Sandwich

(e) Dataset-3, Performance (f) Dataset-3, Sandwich

Figure 3.2. Under the LT model: left column is the performance comparison of different
algorithms changes over budget k; right column is the result of sandwich approximation
framework.

36

where strategy j ∈ [d] activates u as seed with probability quj(xj). Chen et al. (Chen et al.,

2018) pointed out hu(x⃗) is monotone and DR-submodular if quj(xj) is monotone and concave

for each j ∈ [d] and each node u ∈ V . In this experiment, we test personalized marketing

scenario (Yang et al., 2016), where strategy function is defined as hu(x⃗) = 2xu − x2u and

x⃗ = (x1, x2, · · · , xn). It means that the probability that activates node u as seed only

depends on component xu.

For our sandwich approximation framework, we set parameters of accuracy ε = 0.1,

confidence ℓ = 1 and granularity t = 0.2. Besides, we set activity strength Auv = 1 for each

edge (u, v) ∈ E. Then, we compare it with some commonly used baseline algorithms, which

is summarized as follows: (1) IM: It returns the active nodes by lattice greedy algorithm to

maximize the influence spread, and then computes the activity benefit. (2) MaxDegree: It

selects the node with the highest outdegree under the budget k. (3) Random: It selects a node

u randomly and increases its xu by t until using up the budget k. Sandwich algorithm have

been shown in Algorithm 7, and we implement IM algorithm by Monte-Carlo simulations,

where the number of Monte-Carlo simulations is set as 200 for dataset-1, 400 for dataset-2,

and 100 for dataset-3. Here, in order to test the running time of different algorithms, we do

not use parallel acceleration in our implementations.

3.6.2 Experimental Results

Fig. 3.1 and Fig. 3.2 draw the performance achieved by our Sandwich method under the

IC model and LT model, Algorithm 7, and other heuristic algorithms. Theoretically, our

sandwich method can guarantee an approximate bound, but the others can not. From the left

column of Fig. 3.1 and Fig. 3.2, the total activity benefit returned by our Sandwich method

is always the best among all results returned by other algorithms. With the increasing size

of dataset, the advantage of sandwich is more apparent. For IM and MaxDegree, which one

is better? The answer is uncertain. For the dataset-1, IM is better than MaxDegree under

37

(a) Dataset-1 (b) Dataset-2

Figure 3.3. The running time comparisons among different algorithms under the IC model
and the LT model.

the IC model and LT model. But for the dataset-2 and dataset-3, MaxDegree is better than

IM. From the right column of Fig. 3.1 and Fig. 3.2, it is observed that the expected activity

benefit returned by sandwich approximation framework lies in between its upper bound and

lower bound. Until now, the correctness and effectiveness of our algorithms have been tested

and validated.

As for its efficiency, let us look at Fig. 3.3. It draws the running time comparisons

among different algorithms. From Fig. 3.3, the running time of Sandwich is lower than IM

algorithm, which implies that our algorithm combined with sampling techniques improve

time efficiency significantly. If they all adopt Monte-Carlo simulations to estimate objective

value, Sandwich should be slower than IM because of its higher time complexity under the

value oracle. Besides, the expected activity benefit and running time under the LT model

is larger than that under the IC model, which is related to their different model features.

For example, given a graph G = (V,E), V = {v1, v2, v3} and E = {(v2, v1), (v3, v1)}, we

assume {v2, v3} are active, which attempt to activate node v1 now. Under the IC model,

the probability that activates node v1 successfully is 1− (1− pv2v1)(1− pv3v1), which is less

38

than pv2v1 + pv3v1 , this probability under the LT model. Then, consider the running time,

Sandwich under the LT model is slower because its process of sampling RE(RN)-sampling

is more time-consuming.

39

CHAPTER 4

BUDGET PROFIT MAXIMIZATION WITH COUPON ADVERTISEMENT 1

Authors – Jianxiong Guo, Tiantian Chen and Weili Wu

The Computer Science Department, EC 31

The University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

1© 2020 IEEE. Reprinted, with permission, from Jianxiong Guo, Tiantian Chen and Weili Wu, “Bud-
geted Coupon Advertisement Problem: Algorithm and Robust Analysis”, IEEE Transactions on Network
Science and Engineering, January, 2020. DOI: 110.1109/TNSE.2020.2964882

40

The online social platforms were developing quickly in the last decades and derived a se-

ries of technology giants, such as Facebook, Twitter, LinkedIn and Tencent. There are billion

of people sharing their emotions and discussing current affairs in these platforms. There are

more than 1.52 billion users active daily on Facebook and 321 million users active monthly

on Twitter. The logic of social platforms can be represented as online social network (OSNs),

which is a directed graph, including individuals and their relationship. The theory of Viral

marketing was formulated by Domingos and Richardson (Domingos and Richardson, 2001)

(Richardson and Domingos, 2002). By giving the most influential users free or coupon sam-

ples in social networks, it aims to make the follow-up adoptions maximized. Inspired by that,

the concept of Influence Maximization (IM) was used as the spread of trust, advertisements

or innovations (Kempe et al., 2003) (Chen et al., 2011) (Zhang et al., 2014). It was stated

formulated formally by Kempe et al. (Kempe et al., 2003) as a discrete optimization prob-

lem: selects a subset of nodes with size constraint to make the expected number of follow-up

adoptions (influence) maximized. Then, they proposed two classical diffusion models called

IC model and LT model, and proved the IM problem is NP-hard and monotone submodular

under both IC model and LT model. Since this seminal work, a large number of follow-up

researches have been done on IM, which mainly concentrate on improve the running time of

the greedy algorithm in IC/LT model and their variant model, such as (Chen et al., 2009)

(Chen et al., 2010a) (Guo and Wu, 2019) (Guo et al., 2019) (Borgs et al., 2014) (Tang et al.,

2014) (Tang et al., 2015). Besides, another branch of follow-up researches focuses on the

variant problem of IM. Profit maximization (PM) (Lu and Lakshmanan, 2012) (Tang et al.,

2016) is a kind of variant problem. Here, we need to consider some more complex factors,

such as product price, cost, discount, coupon and their impact on diffusion.

Obviously, maximized influence does not mean the highest profit in a real scene when

there are some marketing tools being adopted, such as coupons, rewards, free samples and

so on. They are effective promotional tools to stimulate consumption and change the cus-

tomers’ purchase behavior. For example, in online social platforms, eBay and Amazon, those

41

sellers can prompt some influential customers to spread their products by giving coupons.

In this paper, we think over such a marketing strategy that the initial clients are provided

with coupons. We propose the problem of Budget Profit Maximization with Coupon Adver-

tisement (BPMCA), which is based on three parameters: market price, cost and the value

of coupon. From the perspective of merchant, coupon is not free since it lowers the price

of product actually, thereby reducing the profit. Therefore, it does not bring higher profit

by giving more initial clients coupons, which leads to the non-monotonicity of the objective

function of BPMCA problem.

Most of existing researches about PM mainly consider the unconstrained situations. In

other words, the number of initial adopters is unlimited (Lu and Lakshmanan, 2012) (Tang

et al., 2016). It can be classified as the problem: Unconstrained Submodular Maximization

(USM), where the best approximation ratio we can obtain is 1/2 by randomized double

greedy algorithm proposed by Buchbinder et al. (Buchbinder et al., 2015). However, this is

not completely in line with the real scene by two following reasons: (1) It is impossible to give

every potential user a coupon, because for seller, they may not be able to get complete net-

work topology information and the interconnections between users, who will be a potential

client; (2) For advertisement, giving too many coupons is sometimes counterproductive, be-

cause this will make your company’s products very cheap and lack competitiveness. In order

to overcome above defect, we add the budget constraint to our problem, where the number

of coupons is limited. Then, it can be classified as the problem: Submodular Maximization

with Cardinality Constraint (SMCC), whose best approximation is an open question. With

the latest research progress, the state-of-the-art algorithm to solve SMCC is Random Greedy

(RG) and Continuous Double Greedy (CDG) (Buchbinder et al., 2014) Algorithm. But even

with such algorithms, BPMCA problem is still not easy to be solved because the objective

function of CDG is continuous and there are some details that are difficult to handle. In

this paper, we give the discretization process and its implementation details of CDG. We

42

propose BPMCA-Framework combining the idea of RG and CGD. Besides, the ground-truth

diffusion probabilities on edges cannot be determined accurately, even though there are some

learning methods (Saito et al., 2008) (Goyal et al., 2010) existing to solve it. Because of the

uncertainty, He et al. (He and Kempe, 2015) assumed for each edge, there exists an interval

that the ground-truth probability lies in. Hence, we propose Robust Budget Profit Maxi-

mization with Coupon Advertisement (Robust-BPMCA) problem, which aims to maximize

the worst ratio between the profit of any feasible seed set and the optimal seed set, and design

LU-B-Framework to solve it. It first solves BPMCA problem on the maximum and minimum

parameter vectors respectively, and selects the better one on the minimum parameter vec-

tors as the result. Besides, the robustness of our algorithm can be improved further, we use

uniform sampling to sample the edge probability. It shortens the parameter space, meaning

that the uncertainty is reduced, and the robustness is improved. Our contribution in this

paper are summarized as follows: (1) This is the first time to study PM under coupon and

limited budget. We propose BPMCA problem and prove the objective function is negative,

non-monotone and submodular; (2) We design the BPMCA-Framework, give the discretiza-

tion process and implementation details, and achieve a dependent h(G, k)-approximation.

(3) For Robust-BPMCA problem, we propose LU-B-Framework using BPMCA-Framework

as subroutine, and prove get a dependent approximation ratio h(G, k) · α(Θ). To improve

the robust ratio of BPMCA, we combine uniform sampling into LU-B-Framework and get a

dependent h(G, k) · (1− ϵ) theoretical bound; (4) Our proposed algorithms are evaluated on

real-world social networks, which verify the effectiveness and correctness of them.

4.1 Related Work

Domingos and Richardson (Domingos and Richardson, 2001) (Richardson and Domingos,

2002) was the first to study viral marketing and the value of customers in social networks.

Kempe et al. (Kempe et al., 2003) studied IM as a discrete optimization problem and

43

generalized IC model and LT model to triggering model, who provided us with a greedy

algorithm implemented by Monte Carlo simulation. A series of follow-up researches about

IM mainly aimed to improve the efficiency of greedy algorithm (Chen et al., 2011) (Zhang

et al., 2014) (Leskovec et al., 2007) (Goyal et al., 2011a), especially based on reverse influence

sampling (Borgs et al., 2014) (Tang et al., 2014) (Tang et al., 2015). PM is an important

variant problem of IM, whose related researches can be divided into two categories roughly.

One branch focused on pricing strategies of the product. Arthur et al. (Arthur et al., 2009),

Zhou et al. (Zhou et al., 2015) and Lu et al. (Lu et al., 2016) stated price setting from

the perspective of game theory. Yang et al. (Yang et al., 2016) considered the optimal

discount setting such that the subsequent adoptions can be maximized. Another branch,

more related to us, is the problem of selecting high quality seed users (Lu and Lakshmanan,

2012) (Tang et al., 2016) such that maximizing profit. Lu et al. (Lu and Lakshmanan, 2012)

extended the LT model to include prices and valuation, who used a heuristic unbudgeted

greedy framework to solve this problem. Tang et al. (Tang et al., 2016) provided a strong

approximation guarantee by use of the techniques of USM.

The robustness problem of IM has attracted researchers’ attention recently. He et al. (He

and Kempe, 2015) was the first one trying to consider that the uncertainty of diffusion prob-

ability affects the objective value of IM. Influence difference maximization was formulated,

whose purpose was to find a seed set maximizing the difference of two influence under the

different parameter value and see how large the difference is because of the uncertainty of

parameter space. Jung et al. (Jung et al., 2012) proposed the IRIE algorithm that combines

influence ranking and estimation for IM under the IC model, and showed it is more robust

than others. Later, the robust IM problem was constructed by Chen et al. (Chen et al.,

2016), which aims to maximize the worst ratio between influence function of given seeds and

optimal solution. The main idea is similar to our robust analysis, but our objective function

is total profit, and it is not monotone non-decreasing.

44

4.2 Problem Formulation

In this section, we formulate the BPMCA problem. From the aforementioned insights, we

consider the simplest coupon scenario as follows: There are three parameters for each product

the merchant wants to advertise, market price p, product cost c and coupon value b. Here,

we need to require 0 ≤ b ≤ p− c, which ensures the merchant does not lose money. Given a

seed set S, we define f(S|p, c, b) as the expected profit when diffusion terminates under the

IC/LT model according to parameters p, c and b shown as above. When the context is clear,

we would use f(S) instead of f(S|p, c, b). As we know, profit is equal to market price minus

product cost. Thus, f(S) can be expressed as

f(S) = (p− c) · σ(S)− b · |S| (4.1)

= (p− c) · (σ(S)− |S|) + (p− c− b) · |S|. (4.2)

After obtaining profit function, the problem of Budget Profit Maximization with Coupon

Advertisement (BPMCA) is formulated as follows:

Problem 2 (BPMCA). Given a social network G = (V,E), product parameter p, c and b,

we aim to find a seed set S ⊆ V and |S| ≤ k such that the expected profit f(S|p, c, b) can be

maximized under the IC/LT model.

From Problem 1, BPMCA problem aims to find a optimal solution S∗ such that

S∗ = arg max
S⊆V,|S|≤k

f(S). (4.3)

When setting p = c + 1 and b = 0, we have f(S) = σ(S), therefore, BPMCA problem is

NP-hard.

Theorem 4.2.1. The objective function f(·) is non-negative submodular, but not monotone

non-decreasing.

45

Proof. Under the IC/LT model, σ(S) is submodular from Theorem 1. According to Equation

(4), the first term (p−c) ·σ(S) is submodular and second term b · |S| is modular with respect

to S, thus, f(S) is submodular. Then, let us look at Equation (5), (p− c) · (σ(S)− |S|) ≥ 0

because of σ(S) ≥ |S| and b · |S| ≥ 0 because we require 0 ≤ b ≤ p− c. Therefore, we have

f(S) ≥ 0 for S ⊆ V .

To show monotonicity, let us consider a simple example under IC model. Given G =

(V,E), we suppose V = {u, v}, E = (u, v) and puv = 1. Here, f({u}) = 2 · (p − c) − b and

f({u, v}) = 2·(p−c)−2b, so f({u}) ≥ f({u, v}) and f(·) is not monotone non-decreasing.

4.3 Algorithm for BPMCA

From the last section, BPMCA problem is stated, and in this section, we try to give some

effective solutions to it.

4.3.1 Preliminaries

We have known that the objective function of BPMCA is non-negative submodular, but not

monotone non-decreasing. It can be classified to a classical problem: Submodular Maximiza-

tion with Cardinality Constraint (SMCC). Given a non-negative submodular function f(·),

SMCC aims to find a subset |S| ≤ k such that f(·) is maximized. With the latest works,

there are many effective methods to solve SMCC problem, and the famous one, proposed

by (Buchbinder et al., 2014), is Random Greedy (RG) Algorithm. This simple algorithm

is a natural replacement for the classical hill-climbing algorithm proposed by Nemhauser et

al. (Nemhauser et al., 1978), because it can obtain the same tight (1− 1/e)-approximation

for monotone non-decreasing objective function and same time complexity of O(nk), pro-

vided that f is value oracle, but giving (1/e)-approximation for general submodular function

(not necessarily monotone). However, given a seed set S, computing the exact value of f is

#P-hard under the IC model and LT model (Chen et al., 2010a) (Chen et al., 2010b). To

46

Algorithm 8: RandomGreedy (G, f, k)

1 Initialize: S0 ← ∅;
2 for i = 1 to k do
3 Let Mi ⊂ V \Si−1 be a subset of size k maximizing

∑
u∈Mi

f(u|Si−1);

4 Let ui be a uniformly random element from Mi;
5 if f(ui|Si−1) ≥ 0 then
6 Si ← Si−1 ∪ {ui};

7 return Sk;

estimate the value of f by Monte Carlo simulations, the time complexity of RG is O(kmnr)

under the IC model and LT model, where r is the number of Monte Carlo simulations.

The RG Algorithm is shown as algorithm 8, where the marginal gain is f(u|S) = f(S ∪

{u}) − f(S) above. It is a little different from the statement in (Buchbinder et al., 2014),

here, we use the judgment statement in line 4 of Algorithm 8 to take the place of dummy

assumption in (Buchbinder et al., 2014), dummy element whose marginal gain to any set

is 0. In (Buchbinder et al., 2014), they assume there are 2k ≤ n dummy elements in the

ground set.

Lemma 4.3.1. Given non-negative submodular function f(·) and cardinality k, the set pro-

duced by RandomGreedy algorithm is a (1/e)-approximate solution with O(kmnr) time com-

plexity.

Even though RandomGreedy algorithm is simple and easy to be implemented, there is a

fatal flaw because in extremely bad cases, it can only reach 1/e of the optimal value. Buch-

binder et al. (Buchbinder et al., 2014) extended the double greedy method of (Buchbinder

et al., 2012) to continuous setting, which can obtain a solution-dependent approximation ra-

tio. It is better than RandomGreedy algorithm in the most cases. Let x⃗ = (x1, x2, ..., xn) and

y⃗ = (y1, y2, ..., yn) be two n-dimensional vector and x⃗, y⃗ ∈ [0, 1]V . In our BPMCA problem,

for each variable xu, yu ∈ [0, 1], it means that we choose node u as the seed node with the

47

Algorithm 9: Continuous-DGreedy (G,F, k)

1 Initialize: x⃗0 ← 0⃗, y⃗0 ← 1⃗;
2 for any time t ∈ [0, 1] do
3 for each u ∈ V do

4 au ← ∂F (x⃗t)
∂xu

, bu ← −∂F (y⃗t)
∂yu

;

5 a′u(ℓ)← max{au − ℓ, 0}, b′u(ℓ)← max{bu + ℓ, 0};
6

∂xu

∂t
(ℓ)← a′u

a′u+b′u
, ∂yu

∂t
(ℓ)← − b′u

a′u+b′u
;

7 Let ℓ′ be a value such that
∑

u∈V
∂xu

∂t
(ℓ) = k;

8 Let ℓ∗ ← max{ℓ′, 0};
9 for each u ∈ V do

10
∂xu

∂t
← ∂xu

∂t
(ℓ∗), ∂yu

∂t
← ∂yu

∂t
(ℓ∗);

11 return x⃗1 = y⃗1;

probability xu, yu. The Continuous Double Greedy (CDG) Algorithm is shown as Algorithm

9.

Definition 4.3.2 (Multilinear Extension). For x⃗ ∈ [0, 1]V , we can get a random vector

ˆ⃗x ∈ {0, 1}V by rounding each component of x⃗ to 1 with probability xi or 0 otherwise. Let

S ⊆ V corresponding to the indicator vector x̂, we have

F (x⃗) = E[f(⃗̂x)] =
∑
S⊆V

f(S)
∏
i∈S

xi
∏

j∈V \S

(1− xj). (4.4)

In Algorithm 9, we consider an oracle access to the multilinear extension F . The

Continuous-DGreedy algorithm begins to run from time t = 0 to time t = 1 as a continuous

manner. For any time t ∈ [0, 1], the two vector satisfies x⃗t ≤ y⃗t ∈ [0, 1]V , besides, x⃗t increases

and y⃗t decreases gradually. The algorithm meets the following invariants (Buchbinder et al.,

2014) for each u at any time t:

1.
∑

u∈V
∂xu

∂t
(ℓ′) = k

2. ∂xu

∂t
,−∂yu

∂t
> 0 and ∂xu

∂t
− ∂yu

∂t
= 1

Thus, at the end of the execution, at time t = 1, we have x⃗1 = y⃗1 as the output of Algorithm

9.

48

4.3.2 Discretization of CDG Algorithm

Although we have obtained CDG Algorithm, it is not enough to solve our BPMCA problem.

An implementation of the algorithm should be done further by discretization. Here, we

need to discretize the time scale and balance the granularity of discretization and the error

incurred. At the time t, we denote current vector x⃗ and y⃗ as x⃗(t) and y⃗(t). Thus, to compute

∇F (x⃗(t)), we have

∂F

∂xi
= E[f(⃗̂x)|x̂i = 1]− E[f(⃗̂x)|x̂i = 0]. (4.5)

Let X(t), Y (t) be the set that contains each element i independently with probability ai(t)

and yi(t), respectively. According to Equation (8), each element i from ∇F (x⃗(t)) can be

estimated as ai(t) = E[f(X(t) ∪ {i}) − f(X(t)\{i})] and a⃗(t) = {a1(t), a2(t), ..., an(t)}. So

far, the discretized process is formulated, called Discretized-CDG. Given time step ∆t and

sampling number λ, we have

1. Start with t = 0, x⃗(0) = 0⃗, y⃗(0) = 1⃗.

2. Let X(t) contains each element i independently with probability xi(t), Y (t) contains

each element i independently with probability yi(t). For each element i ∈ V , we define

ai(t) = E[f(X(t) ∪ {i}) − f(X(t)\{i})] and bi(t) = E[f(Y (t)\{i}) − f(Y (t) ∪ {i})],

which can be obtained by taking the average of λ independent sampling of X(t) and

Y (t).

3. For each element i ∈ V , we set a′i(t, ℓ) = max{wi(t)− ℓ, 0} and b′i(t, ℓ) = max{zi(t) +

ℓ, 0}.

49

4. For each element i ∈ V , we set wi(t, ℓ) = a′i(t, ℓ)/(a
′
i(t, ℓ) + b′i(t, ℓ)) and zi(t, ℓ) =

−b′i(t, ℓ)/(a′i(t, ℓ) + b′i(t, ℓ)). Actually, we can compute wi(t, ℓ) and zi(t, ℓ) directly as

wi(t, ℓ) =

1 ℓ < −bi(t)

ai(t)−ℓ
ai(t)+bi(t)

−bi(t) ≤ ℓ ≤ ai(t)

0 ℓ > ai(t)

and

zi(t, ℓ) =

0 ℓ < −bi(t)

− bi(t)+ℓ
ai(t)+bi(t)

−bi(t) ≤ ℓ ≤ ai(t)

−1 ℓ > ai(t)

5. Let ℓ′ be a value such that
∑

i∈V wi(t, ℓ) = k.

6. Let ℓ∗ ← max{ℓ′, 0}.

7. Update vector x⃗ and y⃗, let x⃗(t + ∆t) = x⃗(t) + w⃗(t, ℓ∗) · ∆t and y⃗(t + ∆t) = y⃗(t) +

z⃗(t, ℓ∗) ·∆t.

8. Increment t = t+∆t; If t < 1, go back to step (2) Otherwise, return x⃗(1) or y⃗(1).

At the time t, let g(ℓ) =
∑

i∈V wi(t, ℓ), in step (5), the solution of g(ℓ) = k cannot be

computed directly. Fortunately, we observe that min g(ℓ) =
∑

i∈V 0 = 0 and max g(ℓ) =∑
i∈V 1 = n, thus, for any 0 ≤ k ≤ n, there exists a value ℓ′ such that g(ℓ′) = k if g(ℓ)

is continuous, in other words, ai(t) + bi(t) ̸= 0 for every i ∈ V . Then, we denote ℓmin =

mini∈V {−bi(t)} and ℓmax = maxi∈V {ai(t)}, and the solution ℓ′ satisfies ℓ′ ∈ [ℓmin, ℓmax]

definitely. Obviously, the g(ℓ) is monotone non-increasing in the interval [ℓmin, ℓmax]. Given a

predefined threshold (precision) β, we can use binary search to find a approximately accurate

ℓ′ in the interval [ℓmin, ℓmax] as follows:

1. Initialize: low = ℓmin and high = ℓmax first.

50

2. Compute mid = (low + high)/2.

3. Check whether the solution mid satisfies the predefined precision β. If we have

|g(mid)− k| ≤ β, then terminate this searching and output ℓ′ = mid.

4. If g(mid) > k, we set low = mid; Otherwise, we set high = mid.

5. Go back to step (2)

If there is no such ℓ′ that g(ℓ′) = k, it means that the g(ℓ) is not a continuous function,

in other words, there exists element i ∈ V such that ai(t) + bi(t) = 0. If there is a non-

continuous point ℓ′ following this condition: Given any ε > 0, g(ℓ′−ε) > k and g(ℓ′−ε) < k,

we define such ℓ′ that g(ℓ′) = k. Therefore, we can find ℓ′ satisfying g(ℓ′) = k at any time

and any cases.

Then, let us consider step (6), ℓ∗ = max{ℓ′, 0}, which indicates that ℓ∗ ≥ ℓ′. We have

g(ℓ∗) ≤ g(ℓ′) due to the fact that g(ℓ) is monotone non-increasing. Thus, g(ℓ∗) ≤ k, it

results in
∑

i∈V xi(1) ≤ k eventually. In order to transform the resulting fractional vector to

an integral solution without losing budget, we may get help from some rounding techniques,

such as pipage rounding (Calinescu et al., 2011) (Vondrák, 2013), or select the nodes with

the highest component in vector x⃗(1) heuristicly. When g(ℓ∗) = k, we select top k nodes with

the highest component as our result. However, when g(ℓ∗) < k, we compare the objective

value of top
⌈∑

i∈V xi(1)
⌉
and

⌊∑
i∈V xi(1)

⌋
nodes with the highest component, then choose

the better one as our result.

4.3.3 Time Complexity

Considering the step (2), we need to compute ai(t) and bi(t) by taking the average of λ

independent sampling. For each element i ∈ V , the running time is bounded by O(4λmr)

where r is the number of Monte Carlo simulations. Thus, the total running time of step

51

(2) is O(4λmnr). The running time of Discretized-CDG is determined by its step (2), so

we have its time complexity O(4λmnr/∆t). We have mentioned that we need to balance

the granularity of discretization and the error incurred. Here, the granularity refers to the

value of time step ∆t. The smaller the granularity, the smaller the incurred error, so the

result x⃗ returned by Discretized-CDG can show the effect of CDG algorithm more accurately.

Generally, this result will also be more satisfying. However, the smaller granularity will lead

to longer running time, thus, if the accuracy requirements are not so strict, we can choose a

larger granularity to improve the efficiency of this algorithm.

In addition, another constraint on the efficiency of Discretized-CDG is to estimate the

value of f(·) by Monte Carlo simulations. Here, we give some idea to address the intractabil-

ity in computing influence spread. A direct technique is based on the reverse influence sam-

pling (Borgs et al., 2014) for IM problem. There is an important concept, called Random

RR-Set (Reverse Reachable Set). Let v is a node sampled randomly from V and g is a real-

ization sampled from the probability distribution of IC/LT model, Random RR-Set is the set

of nodes in g that can reach v. Give a Random RR-Set R, we have σ(S) = n ·Pr[S covers R].

Given a seed set S, we can obtain a (µ, η)-Estimation of f(S), Pr |f̂(S)−f(S)| ≥ µf(S)] ≤ η,

by sampling Random RR-Set π times, and get a collection of Random RR-Set, denoted by

R, where R = {R1, R2, · · · , Rπ}. We denote this estimated value by f̂(S),

f̂(S) =
(p− c)n

π
·

π∑
i=1

z(S,Ri)− b · |S|, (4.6)

where z(S,Ri) = 1 if S ∩ Ri ̸= ∅, otherwise z(S,Ri) = 0. Then, we replace the f(·) in

step (2) with f̂(·). The error can be controlled by the two adjustable parameters µ and η.

Since the sampling of the collection of Random RR-Set can be done at once, the running

time of step (2) is reduced greatly, and the approximation performance is hardly affected.

Besides, there are some existing heuristic algorithms can be used to estimate the influence

spread. For example, PMIA (Wang et al., 2012) is a classical algorithm for IC model, whose

52

Algorithm 10: B-Framework (G, f, k)

1 S1 ← RandomGreedy (G, f, k);
2 x⃗← Discretized-CDG (G, f, k);
3 S2 ← Pipage rounding or heuristic rounding of fractional vector x⃗;
4 S∗ ← argmax{f(S1), f(S2)};
5 return S∗;

main idea is to transform the diffusion of the influence of a node on a general graph into a

representative maximum influence propagation subtree in the area near the node. The IRIE

algorithm (Jung et al., 2012) uses the overall iterative method on the graph to improve the

algorithm speed and save memory usage at the same time. There are also LDAG algorithm

(Chen et al., 2010b) and SIMPATH algorithm (Goyal et al., 2011b) for the LT model. The

advantage of these heuristic algorithms is that they are fast and usually have good results,

but they lack theoretical guarantees unfortunately.

4.3.4 Solution for BPMCA

The discretization of CDG algorithm reduces its approximation ratio by a low order term.

Time step ∆t and sampling number λ are adjustable parameters, which balances the running

time and performance. Thus, combining with the conclusion from (Buchbinder et al., 2014),

we have

Lemma 4.3.3. Given non-negative submodular function f(·) and cardinality k, the approxi-

mation ratio of set produced by Discretized-CDG can be considered the same as CDG roughly

when ∆t is small enough and λ is large enough. CDG achieves an approximation (Buch-

binder et al., 2014) of (1 + (n/(2
√

(n− k)k))−1).

From Fig. 4.1, we can see that the theoretical approximation performance of CDG is

better than RG when the ratio of k/n is greater than 10. Therefore, the algorithm to solve

BPMCA problem is formulated by combining RG and Discretized-CDG algorithm, called

53

Figure 4.1. The approximation performance of RandomGreedy and Continuous-DGreedy
algorithm with the different k/n.

B-Framework. It is shown as Algorithm 10. Let S∗ be the final solution from B-Framework,

its theoretical bound can be guaranteed:

Theorem 4.3.4. Given non-negative submodular function f(·) and cardinality k, we can

achieve an approximate solution S∗ such that |S∗| ≤ k and

f(S∗) ≥ max

1

e
,

(
1 +

n

2
√

(n− k)k

)−1
 · f(Sopt), (4.7)

where S∗ is the solution returned by B-Framework and Sopt is the optimal solution.

Proof. Combining Lemma 1 and Lemma 2, the approximation ratio of B-Framework holds

naturally.

4.4 Robust Analysis

However, in a real business scenario, it is not an easy task to get the strength of the associa-

tion (diffusion probability) among users. In general, this is based on an estimate of the user

54

log (Netrapalli and Sanghavi, 2012) (Tang et al., 2009), which is usually not accurate. The

probability for each edge we learn from user log exists a certain range of errors compared to

its ground-truth value. Supposed there is an confidence interval [le, re] (0 ≤ le ≤ re ≤ 1) cor-

responding to each edge e ∈ E, the true probability pe of the edge e belongs to this interval

definitely. It can be applied to the IC model naturally. Similarly, in LT model, the weight

buv for each edge (u, v) lies in interval [luv, ruv], but we need to make sure Σu∈N−(v)ruv ≤ 1

for each node v. This idea can be extended to any other model easily as long as the influence

is spread in probability.

Given G = (V,E), we denote Θ = ×e∈E[le, re] as the parameter space of G, and θ =

(pe)e∈E ∈ Θ as a parameter vector. In this section, the objective function of BPMCA and

influence function in Equation (4) and (5) can be represented by fθ(·) and σθ(·) instead

of f(·) and σ(·), which means that the expected profit and expected influence under the

parameter vector θ given IC/LT model. Thus, given the seed set S, we have

fθ(S) = (p− c) · σθ(S)− b · |S| (4.8)

= (p− c) · (σθ(S)− |S|) + (p− c− b) · |S|. (4.9)

Particularly, we denote θ+(Θ) = (re)e∈E and θ−(Θ) = (le)e∈E as the maximum and minimum

parameter vectors, respectively, and we would only use θ+ and θ− if the context is clear. For

different parameter settings, θ ∈ Θ, the optimal solution and function value of any seed set

is different. Given S ∈ V , the robust ratio under parameter space Θ can be defined as

g(Θ, S) = min
θ∈Θ

fθ(S)

fθ(S∗
θ)
, (4.10)

where S∗
θ ∈ V is the optimal solution when the parameter vector is given by θ. Given Θ

and solution S, the robust ratio g(Θ, S) shows us with the worst ratio of profit under θ

and its corresponding optimal solution S∗
θ , when the true θ is not sure but knowing that

θ ∈ Θ. Then the Robust Budget Profit Maximization with Coupon Advertisement (Robust-

BPMCA) problem can be defined as follows:

55

Problem 3 (Robust-BPMCA). Given a social network G = (V,E), product parameter p, c

and b and parameter space Θ, we aim to find a seed set S ⊆ V and |S| ≤ k such that the

robust ratio g(Θ, S) can be maximized under the IC/LT model.

From Problem 2, Robust-BPMCA problem aims to find a optimal solution S∗
Θ with the

largest robust ratio under parameter space Θ. Thus, we have

S∗
Θ = argmax

|S|≤k
g(Θ, S) = argmax

|S|≤k

(
min
θ∈Θ

fθ(S)

fθ(S∗
θ)

)
. (4.11)

Here, the ground-truth parameter vector θ we do not know in advanced, and S∗
Θ should make

the worst ratio of its profit and the largest profit maximized. The Robust-BPMCA can be

reduced back to BPMCA problem when there is no uncertainty for edges, at this time, the

parameter space Θ can be down to a vector θ.

4.4.1 Solution for Robust-BPMCA

Given parameter space Θ, we design a Lower-Upper B-Framework to solve Robust-BPMCA

problem. Its main thought is to use B-Framework to solve BPMCA problem under the

maximum and minimum parameter vector θ+(Θ) and θ−(Θ), respectively. It is shown as

Algorithm 11, called LU-B-Framework. In Algorithm 11, B-Framework can be acted as a

subroutine to solve BPMCA problem under the setting of parameter vector θ+ and θ−, then

return the better one under the minimum parameter vector θ−. Thus, we have

SLU
Θ = arg max

S∈{SB
θ+

,SB
θ−

}
fθ−(S). (4.12)

As we said before, the parameter space Θ is down to vector θ when there is no uncertainty,

in this way, Robust-BPMCA is reduced to BPMCA problem naturally. Robust-BPMCA is

NP-hard because of the NP-hardness of BPMCA.

56

Algorithm 11: LU-B-Framework (G, f, k,Θ)

1 θ+ ← θ+(Θ), θ− ← θ−(Θ);
2 SBF

θ+ ← B-Framework (G, fθ+ , k);
3 SBF

θ− ← B-Framework (G, fθ− , k);
4 SLU

Θ ← argmaxS∈{SB
θ+

,SB
θ−

} fθ−(S);

5 return SLU
Θ ;

Obviously, the theoretical guarantee of LU-B-Framework is impossible to be better than

the approximation of B-Framework, shown as Theorem 3. Even though that, for Robust-

BPMCA problem, we can achieve a dependent bound by use of B-Framework. The depen-

dence comes from two parts: (1) The number of nodes in graph G and budget k; (2) The

solution SLU
Θ and SBF

θ+ from B-Framework. In order to assess the approximate performance

of solution SLU
Θ , we introduce the concept of gap ratio α(Θ) ∈ [0, 1] as

α(Θ) =
fθ−(S

LU
Θ)

fθ+(S
BF
θ+)

(4.13)

for any input parameter space Θ. For LU-B-Framework, we have following theorem:

Theorem 4.4.1. Given a social network G = (V,E), budget k and parameter space Θ, the

seed seed SLU
Θ returned by LU-B-Framework satisfies

g(Θ, SLU
Θ) ≥ h(G, k) · α(Θ), (4.14)

where

h(G, k) = max

1

e
,

(
1 +

|V (G)|
2
√
(|V (G)| − k)k

)−1
 . (4.15)

Proof. First, we need to show that fixing seed set S, fθ(S) is monotone non-decreasing with

respect to θ. In the IC/LT model, σθ(S) is monotone non-decreasing with the increase of θ

under fixed S. From Equation (10), (p− c) · σθ(S) is monotone non-decreasing on θ as well,

and b · ·|S| is a constant. Thus, fθ(S) is monotone non-decreasing with respect to θ. Then,

57

we have fθ(S
∗
θ) ≤ fθ+(S

∗
θ) ≤ fθ+(S

∗
θ+) according to the monotonicity of f about θ. On the

report of Theorem 3, we have

fθ+(S
BF
θ+) ≥ h(G, k) · fθ+(S∗

θ+). (4.16)

Moreover, it can be implied that

g(Θ, S) = min
θ∈Θ

fθ(S)

fθ(S∗
θ)

≥ min
θ∈Θ

fθ(S)

fθ+(S
∗
θ+)
≥ min

θ∈Θ

fθ(S)

fθ+(S
BF
θ+)
· h(G, k)

≥ fθ−(S)

fθ+(S
BF
θ+)
· h(G, k).

Substituting SLU
Θ from LU-B-Framework into the above inequality, we have

g(Θ, SLU
Θ) ≥ fθ−(S

LU
Θ)

fθ+(S
BF
θ+)
· h(G, k)

= α(Θ) · h(G, k).

Therefore, the theorem is proved.

We notice that the value of α(Θ) · h(G, k) not only depends on input variables G and k,

but also on the solution SLU
Θ and SBF

θ+ of LU-B-Framework. Thus, this approximation value

is dependent.

4.4.2 Solution with Uniform Sampling

Before, we propose the solution for Robust-BPMCA problem, B-Framework, which has a

dependent theoretical bound shown as Theorem 4, and indicate the reason why it is depen-

dent is that approximation performance relies on the value of α(Θ). The width of confidence

interval for each edge will impact the value of α(Θ) because uncertainty will be exacerbated

if and only if the confidence interval becomes wider. Thus, the wider confidence interval is,

58

Algorithm 12: B-UniSampling (G, f, k,Θ, (ϵ, γ))

1 t← 2
(

mn(p−c)
ϵh(G,k)(p−c−b)k

)2
· ln
(

2m
γ

)
;

2 for each e ∈ E do
3 Sample e for t times, and observe x1e, x

2
e, ..., x

t
e;

4 pe ← 1
t

∑t
i=1 x

i
e;

5 δ ← ϵh(G,k)(p−c−b)k
mn(p−c)

;

6 re ← min{1, pe + δ/2};
7 le ← max{0, pe − δ/2};
8 Θout ← ×e∈E[le, re];
9 Sout ← LU-B-Framework (G, f, k,Θout);

10 return (Θout, Sout);

the worse the corresponding robust ratio we have. At this time, the satisfactory approxima-

tion ratio cannot be obtained. A natural question is how can we improve our robust ratio

further? Sampling method works here. We sample the diffusion probability of each edge as

much as possible, which enhances the accuracy of estimation by use of shortening the width

of the confidence interval. It can be shortened from Θ to Θ′. In light of Chernoff’s bound,

the more samples we collect, the shorter the confidence interval becomes where ground-truth

diffusion probability lies in.

The next question is how to correspond our profit function by influence spread with

the width of confidence interval. Chen et al. (Chen et al., 2016) proposed two properties,

additive and multiplicative confidence interval, to solve this question. Here, we use addi-

tive property, combining it with LU-B-Framework and getting a theoretical bound. Relied

on this idea, we design a sampling-based LU-B-Framework by incorporating into uniform

sampling. It is shown as Algorithm 12, called B-UniSampling. Here, we aim to generate a

narrower parameter space Θout instead of Θ, which can obtain a new seed set Sout such that

g(Θout, Sout) is larger than before with high probability. First, in Algorithm 12, we sample

the diffusion probability t times for each edge in line 3, and then, new parameter space Θout

can be generated according to this results under the adjustable parameter ϵ and γ. Then,

59

we take Θout as the input of LU-B-Framework to get Sout. Based on this idea, we need to

establish the connection between the width of confidence interval and the profit of BPMCA

problem in the additive form. Let us look at the following Lemma:

Lemma 4.4.2. Given a social network G = (V,E), parameter space Θ and B = (p−c)·n, let

S be any seed set such that S ⊆ V and ||θ+ − θ−||∞ = maxe∈E |re − le|. Then, the difference

of fθ+(S) and fθ−(S) can be bounded as

fθ+(S)− fθ−(S) ≤ mB · ||θ+ − θ−||∞. (4.17)

Proof. The proof can be extended from Lemma 4 in (Chen et al., 2016).

The bound of the difference between fθ+(·) and fθ−(·) for any seed set S ⊆ V can be

determined by Equation (19) theoretically. It shows that this difference will be reduced

certainly if the value of ||θ+ − θ−||∞ is smaller. This means the narrower the parameter

space Θout is, the better the robust ratio becomes. Then, the performance of B-UniSampling

algorithm can be concluded as:

Theorem 4.4.3. Given a social network G = (V,E), budget k, parameter space Θ and

adjustable parameters (ϵ, γ), let a = h(G, k) · (p − c − b) · k, δ = ϵa/mB and t = 2m2B2 ·

ln(2m/γ)/(ϵ2a2). The solution pair (Θout, Sout) returned by B-UniSampling algorithm satis-

fies

g(Θout, Sout) ≥ h(G, k) · (1− ϵ), (4.18)

with probability Pr[θ ∈ Θout] ≥ 1− γ.

60

Proof. From Algorithm 12, we get a pair (Θout, Sout) and according to Theorem 4, we have

g(Θout, Sout) ≥ h(G, k) · α(Θ)

= h(G, k) ·
fθ−out(S

LU
Θout

)

fθ+out(S
BF
θ+out

)

≥ h(G, k) ·
fθ−out(S

BF
θ+out

)

fθ+out(S
BF
θ+out

)

= h(G, k) ·

(
1−

fθ+out(S
BF
θ+out

)− fθ−out(S
BF
θ+out

)

fθ+out(S
BF
θ+out

)

)
.

The second inequality holds definitely since fθ−out(S
LU
Θout

) ≥ fθ−out(S
BF
θ+out

) according to the line

4 of Algorithm 11. Based on the definition of parameter space, Θout = ×e∈E[le, re], we have,

for any e ∈ E and δ > 0, the lower bound and upper bound of ground-truth probability pe

can be denoted as le =
1
t

∑t
i=1 x

i
e − δ/2 and re =

1
t

∑t
i=1 x

i
e + δ/2. It is shown as line 6 and

7 of Algorithm 12. Then, let ||θ+out − θ−out||∞ = δ. Because of Lemma 3, we have

fθ+out(S
BF
θ+out

)− fθ−out(S
BF
θ+out

) ≤ δmB.

Keeping up with the above step, we have

g(Θout, Sout)

≥ h(G, k) ·

(
1−

fθ+out(S
BF
θ+out

)− fθ−out(S
BF
θ+out

)

fθ+out(S
BF
θ+out

)

)

≥ h(G, k) ·

(
1− δmB

fθ+out(S
BF
θ+out

)

)

≥ h(G, k) ·
(
1− δmB

a

)
(4.19)

= h(G, k) ·
(
1− ϵa

mB
· mB
a

)
(4.20)

= h(G, k) · (1− ϵ),

where the Inequality (22) and Equation (23) can be established by setting a = h(G, k) · (p−

c − b) · k and δ = ϵa/mB. Here, we can prove fθ+out(S
BF
θ+out

) ≥ a. According to Theorem 2,

61

we understand that fθ+out(·) is non-negative and let |S∗
θ+out
| ≤ k be the optimal solution under

the parameter vector θ+out, we have fθ+out(S
∗
θ+out

) ≥ (p − c − b) · k. The profit is impossible to

be less than (p− c− b) · k if we select k seeds, since σθ(S)− |S| ≥ 0. Based on Theorem 3,

we have

fθ+out(S
BF
θ+out

) ≥ h(G, k) · fθ+out(S
∗
θ+out

)

≥ a = h(G, k) · (p− c− b) · k.

Therefore, a is a lower bound of that. For each edge e ∈ E, we need to generate t random

variables {x1e, x2e, ..., xte}, where xie ∈ [le, re] and i ∈ {1, 2, ..., t}. How can we determine t

such that g(Θout, Sout) ≥ h(G, k) · (1 − ϵ) holds with probability Pr[θ ∈ Θout] ≥ 1 − γ. Let

us denote the estimation p̂e = 1
t

∑t
i=1 x

i
e and by the additive form of Chernoff-Hoeffding

Inequality, we have

Pr

[
|p̂e − pe| >

δ

2

]
≤ 2 exp

(
−2(δt/2)2∑t
i=1(re − le)2

)
≤ 2 exp

(
−δ

2t

2

)
(4.21)

= 2 exp

(
−δ

2

2
· 2 ln(2m/γ)

δ2

)
=

γ

m
,

where we set t = 2 ln(2m/γ)/δ2. Since δ = ϵa/mB, we have t = 2m2B2 ·ln(2m/γ)/(ϵ2a2) and

the Equation (24) holds becasue of re − le ≤ 1. Therefore, Pr[θ ∈ Θout] = Pr[∀e : |p̂e − pe| ≤

δ2/2] ≥ 1−
∑m

i=1 Pr[|p̂e − pe| > δ2/2] = 1−m ·Pr[|p̂e − pe| > δ2/2] ≥ 1− γ. The theorem is

proved.

Finally, the value of δ will be smaller and smaller with the increase of samples. At

this time, we can obtain better and better approximation ratio of B-UniSampling until

approaching to h(G, k), whose parameter space degenerates to parameter vector with no

uncertainty. It can be solved by B-Framework.

62

4.5 Experiment

In this section, we show the effectiveness and efficiency of our proposed algorithms on several

real social networks. Our experiments are based on the dataset from networkrepository.com

(Rossi and Ahmed, 2015), an online network repository. There are two datasets in our

experiment. The dataset-1 is a co-authorship network, where each edge is a co-authorship

among scientists in network theory and experiments. The dataset-2 is a Wiki network, which

is a who-votes-on-whom collected from Wikipedia. The number of nodes of dataset-1 and

dataset-2 are 0.4K and 1K, respectively.

4.5.1 Experimental Settings

As mentioned earlier, our proposed algorithms are based on IC model and LT model for

experiments. Under the IC model, the diffusion probability for each edge is set as pe =

1/|N−(v)|, and for the LT model, the weight for each edge e = (u, v) is set as buv = 1/|N−(v)|.

These settings are widely used by previous researchers. There are two experiments we

perform for each dataset: Algorithm performance and Robust analysis.

Algorithm performance: In this experiment, we test our B-Framework (Algorithm 10)

with some common heuristic algorithms and compare the result of RG and discretized-CDG

algorithm. It aims to evaluate the effectiveness and efficiency of our discretization process

and heuristic rounding technique proposed before. The profit function can be defined as

f(·|15, 10, 5) in this experiment, where p = 15, c = 10 and b = 5. The time step ∆t = 0.1,

sampling number λ = 10 and the precision β = 0.01. The budget k is from 0 to n/2 and the

number of Monte Carlo simulation is set to r = 500. Our proposed algorithms are compared

with some baseline algorithms:

1. B-Framework: Shown as Algorithm 10, select the better seed set from the result of RG

and Discretized-CDG algorithms.

63

2. B-Framework (RIS): Shown as Algorithm 10, but we use RIS technique, Equation (9),

to estimate objective function f(·) in step (2) of Discretized-CDG. Thu number of

Random RR-Set we sample is 20,000.

3. Random: Select the node randomly from V under the budget k.

4. MaxDegree: Select the node with the highest outdegree under the budget k.

Robust analysis: In this experiment, we assess our LU-B-Framework (Algorithm 11)

under any given parameter space and verify the sampling-based B-UniSampling (Algorithm

12). Here, the objective function is g(Θ, S), shown as Equation (13). We cannot obtain the

exact value of g(Θ, S) due to the unknown optimal solution S∗
θ . However, we can know its

the upper bound instead of g(Θ, S). The profit function can be defined as f(·|15, 10, 3) in

this experiment, where p = 15, c = 10 and b = 3. According to Equation (17), Theorem 4,

we have the lower bound as

gLB(Θ, S
LU
Θ) = h(G, k) · α(Θ). (4.22)

Under the IC model, for Algorithm 11, we can set le = max{pe−w/2, 0} and re = min{pe +

w/2, 1} for any e ∈ E given the width of interval w. Then, the lower bound of g(Θ, SLU
Θ)

can be computed. For Algorithm 12, we assume there is a probability sample subject to

a normal distribution whose expected value is equal to ground-truth diffusion probability

defined above for each e ∈ E. We set γ = 0.1, which means that Pr[θ ∈ Θout] ≥ 0.9, and t

as a variable.

4.5.2 Experimental Results

Fig. 4.2 and Fig. 4.3 draw the performance achieved by B-Framework under the IC/LT

model and the comparison between the RG and Discretized-CDG algorithm. Theoretically,

the approximate performance will be better and better with the increase of budget k. From

64

(a) Dataset-1

(b) Dataset-2

Figure 4.2. The performance of B-Framework changes over budget k under the IC model.
Left column is the comparison between RG and Discretized-CDG; Right column is achieved
by different algorithms.

the left column of Fig. 4.2 and Fig. 4.3, the total profit obtained by Discretized-CDG

is larger than that obtained by RG, and with the increase of budget k, the superiority of

Discretized-CDG is more manifest, which is in line with our expectations. From the right

column of Fig. 4.2 and Fig. 4.3, the total profit returned by B-Framework is the largest

among these three algorithms, so its performance is the best. With the help of Discretized-

CDG, we can overcome the bad approximation ratio of SMCC before. Maybe, it can be

improved further by setting a smaller time step ∆t at the expense of time, and we are not

to expand here due to space limitation. Besides, the performance of B-Framework and B-

65

(a) Dataset-1

(b) Dataset-2

Figure 4.3. The performance of B-Framework changes over budget k under the LT model.
Left column is the comparison between RG and Discretized-CDG; Right column is achieved
by different algorithms.

Framework (RIS) is very close, but the running time is reduced significantly by the technique

of RIS sampling. Thus, it is an efficient estimation to our objective function.

Fig. 4.4 draws the results of robust analysis with different budget k under the IC model

and dataset-1. From the left one of Fig. 4.4, given a parameter space, the width of parameter

space Θ can be determined by w, shown as Section 6.1, and with the increase of the value

of w, the gap ratio becomes smaller and smaller. Robustness will worsen with increasing

in uncertainty, which is consistent with the definition of robust ratio. The downward trend

of these curves is more apparent when w is small. Besides, for a given budget k, k ∈

66

Figure 4.4. The results of robust analysis with different budget k under the IC model
and dataset-1. Left column is the gap ratio obtained by given parameter space (LU-B-
Framework); Right column is the gap ratio obtained by uniform sampling (B-UniSamling).

{0, 1, 2, ..., n/2}, the larger the k is, the better gap ratio we can get. According to Theorem

4, robust ratio is larger than h(G, k) ·α(Θ), and h(G, k) increases along with budget k. Thus,

comparing to gap ratio, robust ratio will be better and more obvious along with increasing

k. From the right one of Fig. 4.4, the gap ratio becomes larger and larger with the increase

of sampling number t. According to Theorem 5, the value of ϵ decreases when sampling

number t increasing, and it results in a smaller confidence interval δ. Thus, our observation

is reasonable. The upward trend of there curves is more notable when t is small, then this

trend weakens gradually. Besides, same as before, the larger the k is, the better gap ratio

we can get. The results indicate that uniform sampling is an effective way to reduce the

uncertainty and achieve better robustness.

67

CHAPTER 5

ADAPTIVE MULTI-FEATURE BUDGETED PROFIT MAXIMIZATION 1

Authors – Tiantian Chen, Jianxiong Guo, and Weili Wu

The Computer Science Department, EC 31

The University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

1Reproduced with permission from Springer Nature: Tiantian Chen, Jianxiong Guo, and Weili Wu,
“Adaptive multi-feature budgeted profit maximization in social networks”, Social Network Analysis and
Mining, 12, 164, 2022, Springer Nature. DOI: 10.1007/s13278-022-00989-3

68

5.1 Introduction

Online social network, like Facebook, Twitter, LinkedIn, etc., has been one of the most

important platforms for marketing and communication. Many companies have taken so-

cial network as main method to promote products by word-of-mouth effects. To maximize

the product influence and obtained profit, companies may apply many methods, such as dis-

tributing coupons, free samples or offering some discounts when purchasing. Many researches

have been focused on the diffusion phenomenon on social networks, including diffusion of

ideas, news, adoptions of new products, etc. One topic extensively studied is the Influence

Maximization (IM) problem (Borodin et al., 2010; Chen et al., 2009, 2010a; Kempe et al.,

2003), which asks for k seeds to maximize the expected number of influenced users under

some diffusion model. There are two classical diffusion models: Independent Cascade (IC)

model and Linear Threshold (LT) model.

However, it has been proved IM problem is NP-hard and computing the expected spread

from a node set is #P-hard in general under IC model (Chen et al., 2010a) and LT model

(Chen et al., 2010b). (Kempe et al., 2003) presented a (1 − 1/e)-approximation scheme,

classical greedy algorithm, for IM problem and they used Monte Carlo method to estimate

expected spread of a seed set, but it is time-consuming. Many recent works (Tang et al.,

2014, 2015; Nguyen et al., 2016b; Huang et al., 2017, 2020; Han et al., 2018; Tang et al.,

2018) have been focused on solving this problem, which not only could obtain a (1−1/e−ϵ)-

approximation solution with high probability but are efficient even for large-scale datasets.

Most of existing papers related to IM problem only consider a single diffusion. That is,

only one piece of information about the product is spread on social networks. Some papers

(Chen et al., 2020a; Guo and Wu, 2019; Zhang et al., 2016, 2019) indeed consider multiple

diffusions of products. But the diffusions are for multiple products and each diffusion is for

one product. However, in reality, one product may have multiple features and the information

about all these features can spread on the social network. For instance, when a customer

69

wants to buy a phone, he may consider many features, such as price, brand, camera, display,

speed, etc. He has his own preference for each feature, which can be regarded as weight for

the feature, and has a threshold to purchase the phone. He heard the information about

features of the phone on networks, and he will purchase the phone only when the sum of

weights of features satisfying his requests is larger than or equal to the threshold.

(Guo et al., 2020c) first proposed a multi-feature diffusion model (MF-model) to describe

multiple features about one product spreading on the social network, where different feature

information spreads independently according to different successful probabilities and whether

to accept a product is determined by overall evaluation on all these features. They considered

the rumor blocking problem under this model, but they assume the weights of each feature

for each node are equal when solving the problem.

Based on the MF-model (Guo et al., 2020c), we propose a novel budgeted profit maxi-

mization problem, MBPM problem. Given a social network, MBPM problem assumes that

multiple information about multiple features of a product are spread on it. Each feature

has its own propagation probability when spreading from one user to another, and each user

has its own weights for each feature. A user will purchase the product only when the sum

of weights of features he accepts is larger than or equal to his threshold. Each node has

an activation cost and a profit. MBPM problem seeks for a seed set with expected cost no

more than the budget to make the obtained profit as large as possible. We consider MBPM

problem under the adaptive setting, in which the next seed is selected based on the diffusion

result of current seeds. That is, we first select a seed and then observe which nodes would

be activated by the seed. According to diffusion results, we would select the next seed to

maximize the profit as much as possible.

Main contributions of this work are as follows: (1) We propose a novel practical problem,

MBPM problem, consider it under both the non-adaptive and adaptive settings and propose

efficient strategies to solve them, respectively; (2) For the non-adaptive MBPM problem,

70

we show its objective is monotone submodular and give a randomized algorithm which

could achieve (1 − 1/e) expected approximation guarantee; (3) For the adaptive MBPM

problem, we prove its objective function is adaptive monotone and adaptive submodular.

We consider adaptive MBPM problem under two models, oracle model and noise model.

A policy with (1 − 1/e) expected approximation ratio is given in oracle model. Under

noise model, we estimate the conditional expected marginal profit of any node by modifying

the EPIC algorithm and propose a sampled adaptive greedy policy which could achieve a

(1 − e−(1−ϵ)) expected approximation guarantee, where 0 < ϵ < 1; (4) Experimental results

on realistic datasets confirm effectiveness and superiority of our algorithm.

5.2 Related Works

(Kempe et al., 2003) first formulated IM problem as a combinatorial optimization problem,

which aims to choose k seeds to make the expected influence as large as possible. They

presented a (1− 1/e)-approximation algorithm, classical greedy scheme, to solve IM. Later,

many variants of IM problem appeared, such as coupon based profit maximization (Liu

et al., 2020; Tong et al., 2018; Guo et al., 2020a), multiple products profit maximization

(Chen et al., 2020a; Zhang et al., 2016, 2019), etc. The one related to our work is cost-

aware targeted viral marketing (CTVM) problem (Nguyen et al., 2017), which maximizes

the expected total benefit by choosing a seed set under the budget. The difference between

CVTM and our MBPM problem is CVTM only considered one information diffusion on

networks under the classical IC and LT model. And they studied CVTM problem under

non-adaptive setting and designed a (1 − 1/
√
e − ϵ)-approximation algorithm. (Banerjee

et al., 2020) considered targeted CVTM problem where only nodes in target set have an

activation profit, and they proposed a (1 − 1/
√
e)-approximation algorithm. However, we

consider multiple diffusions of a product’s features and studied the MBPM problem under

the adaptive setting. (Shan et al., 2019) considered a diffusion model of multiple diffusions

71

of a product’s features, which is similar to ours, but the activation threshold for each node

in their model is fixed. They measured the amount of information that a user received as the

probability that the user is activated in an information cascade. However, in our MF-model,

each node has a weight for each feature which measures how the user cares about the feature,

and the activation threshold for each node is distributed uniformly in [0, 1].

For adaptive problem related research, (Golovin and Krause, 2011) proved the objective

of adaptive IM problem is adaptive monotone and submodular under full-adoption model

and IC model. They proposed an adaptive greedy scheme, which is a (1−1/e)-approximation

scheme for adaptive IM problem. They also proved this algorithm can be used when a set

function with adaptive monotonicity and submodularity subjects to the knapsack constraint.

(Han et al., 2018) considered an variant of the adaptive IM problem, where k seeds are se-

lected in batches of equal size b. They designed an AdaptGreedy framework instantiated

by scalable IM algorithms, which could achieve a (1− e−(1−1/e)+ϵ) approximation guarantee

with high probability. (Sun et al., 2018) studied a Multi-Round Influence Maximization

problem under the adaptive setting where information spreads in multiple rounds indepen-

dently from probably different seed sets. They proposed an adaptive algorithm instantiated

by the IMM (Tang et al., 2015), which could guarantee (1 − e−(1−1/e) − ϵ) approximation.

Recently, (Huang et al., 2020) pointed out there are some gaps in analysis of approximation

guarantee for adaptive policies in (Han et al., 2018) and (Sun et al., 2018). They fixed the

previous AdaptGreedy framework in (Han et al., 2018) by instantiating with their improved

EPIC algorithm and showed it could provide a (1 − eρb(ϵ−1)) expected approximation guar-

antee. (Guo and Wu, 2020a) considered the adaptive influence maximization with multiple

activations problem, where a selected node in each iteration can be unwilling to be the seed

and a node not being the seed in previous iteration can be activated again later but with

higher activation cost. The goal is to find a randomized policy subject to expected knapsack

constraint to maximize the expected influence spread. They designed an adaptive greedy

72

policies by modifying EPIC algorithm in (Huang et al., 2020). (Peng and Chen, 2019) showed

that the adaptivity gap of the IM problem under the IC model with myopic feedback is at

least e/(e−1) and at most 4, and that both the non-adaptive and adaptive greedy algorithms

achieve a 1
4
(1−1/e)-approximation to the adaptive optimum. (Chen and Peng, 2019) showed

the adaptivity gap of the IM problem under the IC model with the full-adoption feedback on

several families of well-studied influence graphs. (Chen et al., 2020b) proposed the concept

of greedy adaptivity gap, comparing the performance of adaptive greedy algorithm to its

non-adaptive counterpart.

5.3 Influence Maximization Problem under the MF-model

A social network is generally denoted by a directed graph G = (V,E), where |V | = n

and |E| = m. For each (v, w) ∈ E, v is named the in-neighbor of w and w is called the

out-neighbor of v. Here, each node u ∈ V represents a user (customer) in this paper.

5.3.1 Multi-Feature Diffusion Model

Consider a product with multiple features and the information about each feature may spread

from one customer to another. To characterize it, we consider the multi-feature diffusion

model (MF-model) (Guo et al., 2020c) in this paper.

1. Given a social network G = (V,E), q pieces of information about q features of

a product are spread on it, respectively. For each (u, v) ∈ E, there is a q-dimensional

propagation probability vector p̄u,v = (p1u,v, . . . , p
q
u,v) associated with it, where piu,v ∈ (0, 1] is

the successful probability when u tries to motivate v to accept the information about feature

i of the product.

2. Each u ∈ V has a threshold θu distributed in [0,1] uniformly and a weight vector

w̄u = (w1
u, . . . , w

q
u), where w

i
u denotes the weight of feature i for user u and

∑q
i=1w

i
u = 1.

73

3. When user u accepts feature i at timestamp t (called i-accepted, otherwise called

i-unaccepted), it will attempt to motivate its i-unaccepted out-neighbor v with successful

probability piu,v at timestamp t + 1. The information about different features is diffused

independently on the social network, and user v will purchase the product if and only if the

sum of corresponding weights of features that have already been accepted by v is no less

than θv (called purchase condition).

4. Initially, a set of seeds is activated to spread all of the q features. At every step,

each node that hasn’t purchased the product would check whether the purchase condition is

satisfied. The diffusion process will continue until there is no more node activated.

To further illustrate the model by the phone example, say, the five features of a phone

corresponding to price, brand, camera, display, and speed are 1, 2, 3, 4, and 5, respectively.

Each node can either accept or not accept each feature. For example, a potential customer

may either be convinced that the display is good or not. Each node v ∈ V also has a

weight for each of the five features: w1
v, w

2
v, w

3
v, w

4
v, and w5

v, which measures how much he

cares about each feature. Before the diffusion, each node also has to sample a threshold

θv ∈ [0, 1]. Initially, all features for each seed are accepted. Then, we have five different

cascade processes corresponding to the five features. Each of them follows the IC model,

and the five cascade processes are independent. Now, at the end of the cascade process, each

node is infected by some of the five features. A node will eventually buy the product if the

sum of the weights of the accepted features exceeds its threshold. For example, if v accepts

features 2 and 4 but not 1, 3, 5, then v will be considered activated if the weighted sum

w2
v + w4

v exceeds his threshold θv.

Even though (Guo et al., 2020c) first proposed this MF-model, they assume the weight

of each feature for each node is the same, namely wi
u = wi

v for any user u, v ∈ V , in their

submodularity proof and algorithm analysis. This is only a special case and not that realistic.

In this paper, we consider the general case where the weight vector w̄u = (w1
u, . . . , w

q
u) for each

74

node u is arbitrary. Denote by σ(S) the expected number of nodes (users) purchasing the

product when S is the seed. Actually, we could prove that σ(S) is monotone non-decreasing

and submodular with respect to S under the general MF-model. Our following analysis is

based on the general MF-model, which is an important improvement and extension. Before

showing properties of σ(S), let’s first see the equivalent diffusion process of the MF-model.

Remark 4. For convenience, we still use G = (V,E) to represent the social network G =

(V,E) with propagation probability p : E → (0, 1]q, threshold θ : V → [0, 1], and weight

w : V → [0, 1]q.

5.3.2 Equivalent Diffusion Process

Since information of different features is spread independently on the social network in MF-

model, that is, the diffusion of one piece of information about one feature has no interference

on information of other features, we can view the propagation process of MF-model as follows.

Definition 5.3.1 (Multi-level Graph). Given a social network G = (V,E), define its multi-

level graph as Ĝ = (V̂ , Ê) = G1 ∪G2 ∪ · · ·Gq, where Gi = (V i, Ei) and each node vi ∈ V i is

a copy node of v ∈ V , called feature node of v. For each (u, v) ∈ E, there is a corresponding

edge (ui, vi) ∈ Ei, i = 1, · · · , q, and the propagation probability on (ui, vi) is p
i
u,v, that is, the

successful probability when u attempts to motivate v to accept feature i.

An example of the multi-level graph can be seen in Fig. 5.1. For each node set S ⊆ V ,

denote by Ŝ = S1 ∪ . . . ∪ Sq the corresponding feature node set in Ĝ of nodes in S, where

Si = {ui ∈ V i : ui is the corresponding feature node of u ∈ S for feature i}. For each u ∈ V ,

denote the corresponding feature node set of u as û = {u1, . . . , uq}. Then we could give the

equivalent diffusion process of the general MF-model.

1. Given a social network G = (V,E) and its multi-level graph Ĝ = G1∪ . . .∪Gq, q pieces

of information about q different features are spread on Ĝ, but the information about feature

75

Figure 5.1. An example of G = (V,E) with its multi-level graph Ĝ.

i is only spread on Gi. Each node v ∈ V samples a threshold θv independently uniformly at

random from [0,1].

2. Initially, we choose the seed set S ⊆ V for the product. Then nodes in Ŝ are seeds of

the corresponding features.

3. The information about different features is diffused independently from their own

seeds according to the classic IC model. A node in Gi can only have two states: i-accepted

or i-unaccepted. A node in Gi accepting the information of feature i is called i-accepted.

Otherwise, it is called i-unaccepted.

4. After the propagation process of all features terminates, we could determine whether

each node v ∈ V would purchase the product. That is, we would check whether the sum of

weights of i-accepted nodes vi, i = 1, · · · , q, is larger than or equal to θv. If it satisfies the

purchase condition, then node v would purchase the product and we call v active. Otherwise,

v is called inactive.

Remark 5. To avoid confusion, we will use ”infect” when we say a feature node ui tries to

activate its out-neighbor vi to accept feature i, and use ”activate” for user node.

76

5.3.3 Property of σ(S)

Definition 5.3.2 (Realization). Given a social network G = (V,E) with probability p : E →

(0, 1], a (full) realization ϕ of G is defined as ϕ : E → {0, 1}. For e ∈ E, ϕ(e) = 0 (resp. 1)

means edge e is blocked (resp. live) under ϕ.

Let Φ be a random variable denoting a random realization. Then we have

Pr [ϕ] := Pr[Φ = ϕ] =
∏
e∈E:
ϕ(e)=1

pe
∏
e∈E:
ϕ(e)=0

(1− pe). (5.1)

Denote by Ω the set of all possible realizations of multi-level graph Ĝ. Let S be the seed

set of the product and Ŝ = S1 ∪ . . . ∪ Sq be its corresponding feature node set. Then Si is

the seed set of feature i in Gi. Given a realization ϕ ∈ Ω, for each node ui in Ĝ, define

xϕ(S
i, ui) =

1, ui accepts feature i in ϕ under Si

0, otherwise

. (5.2)

Therefore, node u ∈ V will purchase the product under ϕ if and only if
∑q

i=1 xϕ(S
i, ui) ·

wi
u ≥ θu. Denote Iϕ(S

i) as the node set in Gi containing the i-accepted nodes in ϕ under

Si.That is, Iϕ(S
i) = {ui ∈ V i|xϕ(Si, ui) = 1}. Let Iϕ(S) be the set of active nodes in V

when diffusion process of nodes in Ŝ on ϕ terminates. Then for any u ∈ V , we have

Pr[u ∈ Iϕ(S)] =
∑

1≤i≤q:
ui∈Iϕ(Si)

wi
u. (5.3)

Remark 6. Iϕ(S
i), i = 1, . . . , q are deterministic sets while Iϕ(S) is a random set.

Theorem 5.3.3. σ(S) is monotone non-decreasing and submodular with respect to S.

Proof. For any node set S ⊆ T ⊆ V , denote by Ŝ = S1 ∪ . . . ∪ Sq and T̂ = T 1 ∪ . . . ∪ T q

their corresponding copy node set in Ĝ, respectively. Then σ(S) under the MF-model can

77

be represented as:

σ(S) =
∑
ϕ∈Ω

Pr[ϕ] ·
∑
v∈V

Pr[v ∈ Iϕ(S)] =
∑
ϕ∈Ω

Pr[ϕ] ·
∑
v∈V

∑
1≤i≤q:

vi∈Iϕ(Si)

wi
v.

Since S ⊆ T , then Si ⊆ T i, i = 1, . . . , q. Clearly, Iϕ(S
i) ⊆ Iϕ(T

i) since any node in Iϕ(S
i)

can also be i-accepted under T i in ϕ. Therefore,
∑

vi∈Iϕ(Si)w
i
v ≤

∑
vi∈Iϕ(T i)w

i
v and σ(S) is

monotone with respect to S. For any u ∈ V \ T , we have

σ(S ∪ {u})− σ(S) =
∑
ϕ∈Ω

Pr[ϕ] ·
∑
v∈V

∑
1≤i≤q:

vi∈(Iϕ(Si∪{ui})\Iϕ(Si))

wi
v,

and Iϕ(S
i∪{ui})\Iϕ(Si) contains the nodes inGi that can only be infected by ui but cannot by

Si under ϕ. Clearly, (Iϕ(S
i ∪ {ui}) \ Iϕ(Si)) ⊇ (Iϕ(T

i ∪ {ui}) \ Iϕ(T i)), since ui could infect

more feature nodes when adding to Si than T i under ϕ. Therefore, σ(S ∪ {u}) − σ(S) ≥

σ(T ∪ {u})− σ(T) and the proof of Theorem 5.3.3 is completed.

5.4 Multi-feature Budgeted Profit Maximization Problem

A company wants to promote a new product by distributing coupons on social networks

to maximize its profit as much as possible. However, the advertisement budget is usually

limited. Thus, it is important to wisely select customers to allocate coupons. The product

has multiple features and the information about each feature spreads from one customer

to another. Given the social network G = (V,E), for each u ∈ V , assume the cost of

picking u as the seed of product and profit obtained when u purchases the product are c(u)

and b(u), respectively. For any S ⊆ V , the activation cost and profit of S are defined as

c(S) =
∑

u∈S c(u) and
∑

u∈S b(u), respectively. Since we will consider randomized algorithm

in the adaptive case later, in this section we will also consider the randomized algorithm for

comparison. Given a budget B, we want to find a seed set S with expected cost at most B

to maximize the obtained profit.

78

5.4.1 Problem Definition

Definition 5.4.1 (Multi-feature Budgeted Profit Maximization (MBPM) Problem). Given

G = (V,E), q pieces of information about q features of a product are spread on the social

network according to the MF-model. The MBPM problem seeks for a seed set S ⊆ V with

expected activation cost at most B, i.e., E[c(S)] ≤ B, to maximize the total expected profit

P (S).

Given the equivalent diffusion process of the MF-model, we could solve the MBPM prob-

lem by solving the profit maximization problem on the multi-level graph.

Then the MBPM problem can be formulated as:

max P (S) =
∑
ϕ∈Ω

Pr[ϕ] ·
∑
u∈V

Pr[u ∈ Iϕ(S)] · b(u)

s.t. E[c(S)] ≤ B

(5.4)

Based on the proof of Theorem 5.3.3, we have the following result.

Theorem 5.4.2. The objective function of MBPM Problem is monotone submodular with

respect to the seed set of the product.

5.4.2 Algorithm

Before presenting the algorithm of MBPM problem, we first introduce another problem,

maximization of a monotone submodular function under the cardinality constraint. Let

g : 2V → R≥0 be a monotone submodular function. For u ∈ V and S ⊆ V , the marginal gain

by adding v to S is denoted as gv(S) = g(S∪{v})−g(S). For the problem maxS⊆V,|S|≤k g(S),

classical greedy scheme could return (1− 1/e)-approximation solutions ((Nemhauser et al.,

1978)). The algorithm always selects the element with largest marginal gain to current

selected set until k nodes are chosen. That is, for current selected set S0, the algorithm

will select v∗ = argmaxv∈V \S0 gv(S0) and add it into S0. Under cardinality constraint, each

79

Algorithm 13: Modified Greedy Algorithm

1 S ← ∅;
2 while c(S) < B do

3 v∗ = argmaxv∈V \S
P (S∪{v})−P (S)

c(v)
;

4 if c(S) + c(v∗) > B then

5 break with 1− B−c(S)
c(v∗)

probability;

6 S ← S ∪ {v∗};
7 return S;

node actually has a cost of 1 and greedy scheme always selects the element with the largest

marginal gain per unit cost.

Since the objective of MBPM problem is monotone submodular, inspired by ideas of

classical greedy scheme, we could utilize Algorithm 13 to solve it. Assume current selected

set is S. Alg. 13 always selects the node v∗ with largest ratio of marginal gain to S to cost

among remaining nodes. If c(S) + c(v∗) ≤ B, v∗ will be added into S. Otherwise, add v∗ to

S with B−c(S)
c(v∗)

probability or break with probability 1− B−c(S)
c(v∗)

. It could guarantee that the

output S satisfies E[c(S)] ≤ B. For the node found in the last iteration of our Algorithm, it

will be selected with a very low probability if it is far more than the remaining budget.

Let v1, . . . , vn be the result sorted by increasing order of activation cost of nodes in

V . That is, c(v1) ≤ c(v2) ≤ . . . ≤ c(vn). Denote p as the minimum number satisfying∑p
i=1 c(vi) ≥ B. Assume p < n. Otherwise, we could select all nodes as the seeds. Then we

know Algorithm 13 would execute at most p iterations.

Theorem 5.4.3. Algorithm 13 could achieve a (1− 1/e) expected approximation guarantee

of MBPM problem. The algorithm requires O(n2) function value computation.

Proof. Since the expected knapsack constraint is somewhat different from the classical knap-

sack constraint, we think it’s necessary to provide the proof for this theorem here. Our proof

is inspired by (Nemhauser et al., 1978). Assume S∗ = {u1, . . . , ut} is an optimal solution to

80

MBPM problem. Let Sr = {v1, . . . , vr} be the node set obtained by Algorithm 13 after r

iterations and S0 = ∅. Assume vr+1 = argmaxv∈(V \Sr){
P (Sr∪{v})−P (Sr)

c(v)
}. Assume c(Sr) ≤ B

and c(Sr) + c(vr+1) > B. Let SG be the node set returned by Algorithm 13. Denote

Pv(Si) = P (Si ∪ {v})− P (Si). Since P (·) is monotone submodular, for 1 ≤ i ≤ r, we have

P (S∗) = P (Si) + Pu1(Si) + Pu2(Si ∪ {u1}) + . . .+ Put(Si ∪ {u1, . . . , ut−1})

≤ P (Si) + c(u1) ·
Pvi+1

(Si)

c(vi+1)
+ . . .+ c(ut) ·

Pvi+1
(Si)

c(vi+1)

≤ P (Si) +B · P (Si+1)− P (Si)

c(vi+1)
.

Denote ai = P (S∗) − P (Si). Then we know ai ≤ B
c(vi+1)

(ai − ai+1). Thus, ai+1 ≤ (1 −
c(vi+1)

B
)ai ≤ Πi+1

j=1

(
1− c(vj)

B

)
a0. Therefore,

P (Si+1) ≥
(
1− Πi+1

j=1

(
1− c(vj)

B

))
P (S∗).

Then we have

E[P (SG)] =
B − c(Sr)

c(vr+1)
P (Sr+1) +

(
1− B − c(Sr)

c(vr+1)

)
P (Sr)

≥ P (Sr) + (B − c(Sr)) ·
P (S∗)− P (Sr)

B
=

(
1− c(Sr)

B

)
P (S∗) +

c(Sr)

B
P (Sr)

≥
(
1− c(Sr)

B

)
P (S∗) +

c(Sr)

B

(
1−

r∏
j=1

(
1− c(vj)

B

))
P (S∗)

=

(
1−

r∏
j=1

(
1− c(vj)

B

)
· c(Sr)

B

)
P (S∗)

=

(
1−

r∏
j=1

(
1− c(vj)

B

)(
1−

(
1− c(Sr)

B

)))
P (S∗)

≥ 1− exp

(
−

r∑
j=1

c(vj)

B

)
· exp

(
−
(
1− c(Sr)

B

))
P (S∗)

= (1− 1/e)P (S∗).

81

5.5 Adaptive Multi-feature Budgeted Profit Maximization Problem

In practice, the decision maker may select one seed at a time and then observe the propa-

gation result. He could make a choice to select the next seed based on currently observed

results. And this strategy is usually called adaptive seed selection strategy. This strategy

may bring more advantages and profits since the decision maker could adaptively revise the

strategy according to the current situation rather than select all seeds once before the actual

propagation process starts. Therefore, it is worth considering whether adaptive selection

strategy helps a lot or not. In this section, we will introduce the adaptive MBPM problem

and some related definitions.

5.5.1 Problem Definition

In the adaptive MBPM problem, we also choose seeds S from G = (V,E) and observe the

propagation process of corresponding seeds Ŝ in its multi-level graph Ĝ like in the non-

adaptive MBPM problem. But under the adaptive setting, seeds are selected one by one and

we need observe the diffusion result once a seed u is chosen. Specifically, thresholds for each

node v ∈ V are sampled independently uniformly at random from [0, 1] at first. Then we

select one seed at each step. When node u is selected as the next seed, equivalently we infect

all of its feature nodes u1, . . . , uq. Then we need to observe states of edges in Ĝ: observe the

propagation result of ui on G
i (related edges are live or blocked), i = 1, . . . , q. After all q

diffusions on Ĝ stop, we could determine whether nodes in G not buying the product before

selecting u would purchase the product or not now, according to the current propagation

results on Ĝ. Then we select next seed and repeat this process until there is no seed budget.

In this adaptive seeding process, after selecting a node u ∈ V and all feature nodes

u1, . . . , uq of u are infected, we could observe all edges exiting vi, i = 1, . . . , q, which can

be reached from ui by currently live edges in Gi. That is, the full-adoption feedback model

(Golovin and Krause, 2011) is considered in this paper. Our observation so far could be

82

described by the partial realization φ, a function mapping from currently observed items

to their states. For (ui, vi) ∈ Ê, φ((ui, vi)) ∈ {0, 1, ?} and φ((ui, vi)) = 1 (resp. 0) if edge

(ui, vi) has been observed live (resp. blocked). φ((ui, vi)) =? if the status of (ui, vi) is not

known yet.

For any partial realization φ, define the domain dom(φ) of φ as the seed set for the

product that has already been picked from V . Denote dx(φ) as the set of edges in Ê whose

states have been known under φ. Let ϕ : Ê → {0, 1} be a full realization of Ĝ. We say a

partial realization φ is consistent with ϕ if they are equal everywhere in the domain of φ,

denoted by ϕ ∼ φ. If φ and φ′ are both consistent with some full realization ϕ, satisfying

dom(φ) ⊆ dom(φ′), we say φ is a subrealization of φ′, denoted as φ ⊆ φ′.

Let π(τ) be a randomized policy where τ represents all random sources of the randomized

policy. Specifically, π(τ) is a function mapping from an already chosen seed set S ⊆ V and

a set of partial realizations to V , specifying which node to select as the next seed of the

product within the budget. Let S(π(τ), ϕ) be the set of nodes in V chosen by π(τ) under

realization ϕ. Let I iϕ(S(π(τ), ϕ)) be the set of nodes in V
i accepting feature i when diffusion

process of feature nodes of S(π(τ), ϕ) on ϕ terminates. The profit obtained by policy π(τ)

under realization ϕ is defined as:

f (S(π(τ), ϕ), ϕ) =
∑
u∈V

b(u) · [
∑

1≤i≤q:
ui∈Iiϕ(S(π(τ),ϕ))

wi
u]. (5.5)

Thus, the expected profit obtained by policy π(τ) can be formulated as:

favg(π(τ)) = EΦ [f (S(π(τ),Φ),Φ)] . (5.6)

Definition 5.5.1 (Adaptive Multi-feature Budgeted Profit Maximization (AMBPM) Prob-

lem). Given G = (V,E), assume q pieces of information about q features of a product are

spread on G according to the MF-model. The AMBPM problem seeks for a randomized policy

83

to maximize the total expected profit obtained:

max
π

Eτ [favg(π(τ))]

s.t. Eτ [c(S(π(τ), ϕ))] ≤ B, for any realization ϕ

Definition 5.5.2 (Conditional Expected Marginal Profit). Given a partial realization φ and

a node u, the conditional expected marginal profit of u conditioned on having observed φ is

defined as:

∆(u|φ) = E [f(dom(φ) ∪ {u},Φ)− f(dom(φ),Φ)|Φ ∼ φ] , (5.7)

where the expectation is taken over p(ϕ|φ) = P(Φ = ϕ|Φ ∼ φ).

Definition 5.5.3 (Adaptive Monotonicity). A function f(·, ϕ) is adaptive monotone with

respect to distribution p(ϕ), if for all partial realization φ with Pr[Φ ∼ φ] > 0 and all

u /∈ dom(φ), we have ∆(u|φ) ≥ 0.

Definition 5.5.4 (Adaptive Submodularity). A function f(·, ϕ) is adaptive submodular with

respect to distribution p(ϕ), if for all partial realizations φ and φ′ satisfying φ ⊆ φ′ and for

all u /∈ dom(φ′), we have ∆(u|φ) ≥ ∆(u|φ′).

Theorem 5.5.5. The objective function f(·, ϕ) is adaptive monotone and adaptive submod-

ular.

Proof. We first show adaptive monotonicity of f . Consider a fixed partial realization φ. For

a node u /∈ dom(φ), when selecting u as the seed under φ, if all feature nodes u1, . . . , uq of

u have been infected before u is selected under φ, then for any realization ϕ ∼ φ, we have

f(dom(φ) ∪ {u}, ϕ) = f(dom(φ), ϕ). Otherwise, there exists at least one of u1, . . . , uq not

infected before u is selected, and assume u1 is one of the feature node satisfying the condition.

Then for any realization ϕ ∼ φ, we have f(dom(φ)∪{u}, ϕ)− f(dom(φ), ϕ) ≥ b(u) ·w1
u ≥ 0.

Thus, no matter which case happens, for any realization ϕ ∼ φ, f(dom(φ) ∪ {u}, ϕ) ≥

84

f(dom(φ), ϕ) always holds. Since ∆(u|φ) is a linear combination of each realization ϕ ∼ φ,

we know that ∆(u|φ) ≥ 0.

Next we prove the adaptive submodularity of f . For any pairs of partial realizations φ, φ′

satisfying φ ⊆ φ′ and any u /∈ dom(φ′), we have to show ∆(u|φ) ≥ ∆(u|φ′). Our proof is

inspired by the proof technique in (Golovin and Krause, 2011) and (Guo and Wu, 2020b).

Consider two fixed partial realizations φ, φ′ satisfying φ ⊆ φ′. Assume there are two

realizations ϕ and ϕ′ with ϕ ∼ φ, ϕ′ ∼ φ′, satisfying ϕ((ui, vi)) = ϕ′((ui, vi)) for all (ui, vi) /∈

dx(φ′). Thus, ϕ and ϕ′ have the same area β = φ ∪ (ϕ′ \ φ′).

Let σ(dom(φ) ∪ {u}, ϕ) = ∪qi=1I
i
ϕ(dom(φ) ∪ {u}, ϕ)) be the set of infected feature nodes

in Ĝ when feature nodes of dom(φ) ∪ {u} are seeds under the realization ϕ. Denote T =

σ(dom(φ) ∪ {u}, ϕ) and M = σ(dom(φ), ϕ). Let N = T \ M . Similarly, denote T ′ =

σ(dom(φ′) ∪ {u}, ϕ′) and M ′ = σ(dom(φ′), ϕ′), and let N ′ = T ′ \M ′.

We first show that M ⊆ M ′. Fix wi ∈ M . Then there must exist a path Pi from some

feature node vi of v ∈ dom(φ) to wi. Therefore, edges on path Pi are observed to be live by

φ. Since ϕ ∼ φ, ϕ′ ∼ φ′ and φ ⊆ φ′, edges observed by φ have same states in ϕ and ϕ′. That

is, each edge on Pi is also live under ϕ′. Since φ ⊆ φ′, it is clear that v ∈ dom(φ′). Therefore,

wi will be i-accepted when feature nodes of dom(φ′) are seeds in Ĝ under realization ϕ′, i.e.,

wi ∈M ′.

We next show N ′ ⊆ N . We prove this by contradiction. Fix vj ∈ N ′. Assume vj /∈ N .

Since vj ∈ N ′ and M ′ ∩ N ′ = ∅, we have that vj /∈ M ′. Since we have proven M ⊆ M ′, it

is obvious that vj /∈ M . As vj ∈ N ′, there must exist some path Pj from uj to vj in ϕ′ but

at least one edge on path Pj is blocked in ϕ. Assume one such edge is (sj, tj). Since the

status of edge (sj, tj) is different in realization ϕ and ϕ′, and ϕ and ϕ′ have the same area β,

thus (sj, tj) must be observed by φ′ but not by φ. Since (sj, tj) is observed by φ′, sj must

be infected after selecting dom(φ′) according to the full-adoption feedback model. That is,

sj and the nodes that can be reachable from sj must be infected after we select dom(φ′).

85

Therefore, sj and the nodes that can be reachable from sj, including vj, will belong to M ′,

a contradiction.

Define

δ(u|ϕ, ϕ ∼ φ) = f(dom(φ) ∪ {u}, ϕ)− f(dom(φ), ϕ)

=
∑
v∈V

b(v)
∑

1≤i≤q:
vi∈T

wi
v −

∑
v∈V

b(v)
∑

1≤i≤q:
vi∈M

wi
v

=
∑
v∈V

b(v)
∑

1≤i≤q:
vi∈(T\M)

wi
v =

∑
v∈V

b(v)
∑

1≤i≤q:
vi∈N

wi
v.

Since we have shown that N ′ ⊆ N , we could obtain that δ(u|ϕ, ϕ ∼ φ) ≥ δ(u|ϕ′, ϕ′ ∼ φ′).

Since
∑

ϕ∼β Pr[ϕ|ϕ ∼ β] = 1, we know

∆(u|φ) =
∑
ϕ∼φ

Pr[ϕ|ϕ ∼ φ] · δ(u|ϕ, ϕ ∼ φ)

=
∑
ϕ′∼φ′

Pr[ϕ′|ϕ′ ∼ φ′]
∑
ϕ∼β

Pr[ϕ|ϕ ∼ β] · δ(u|ϕ, ϕ ∼ φ)

≥
∑
ϕ′∼φ′

Pr[ϕ′|ϕ′ ∼ φ′]
∑
ϕ∼β

Pr[ϕ|ϕ ∼ β] · δ(u|ϕ′, ϕ′ ∼ φ′)

=
∑
ϕ′∼φ′

Pr[ϕ′|ϕ′ ∼ φ′] · δ(u|ϕ′, ϕ′ ∼ φ′) = ∆(u|φ′),

which completes the proof.

5.6 Algorithm and Theoretical Analysis

Since the objective f(·, ϕ) of AMBPM problem is adaptive monotone and adaptive submod-

ular, we could utilize adaptive greedy policy proposed in (Golovin and Krause, 2011) to solve

it. The seed selection rule of adaptive greedy policy is straightforward, i.e., always selecting

the node with the largest ratio of conditional expected marginal profit to cost. However,

given a partial realization φ and a node u /∈ dom(φ), it is difficult to compute the conditional

expected marginal profit ∆(u|φ) since there are almost exponential possible realizations ϕ

86

Algorithm 14: Adaptive-Greedy

1 S ← ∅;
2 φ = {?}Ê;
3 while c(S) < B do
4 vmax = argmaxv∈V \S ∆(v|φ)/c(v);
5 if c(S) + c(vmax) > B then

6 break with 1− B−c(S)
c(vmax)

probability;

7 S ← S ∪ {vmax};
8 Observe the node set A(vmax) infected by feature nodes of vmax, 1 ≤ i ≤ q;
9 Update φ by updating states of edges related to nodes in A(vmax) ∪ v̂max;

10 return S, f(S, φ);

with ϕ ∼ φ. This section would consider algorithms of AMBPM problem under both the

oracle model and noise model.

5.6.1 Adaptive Greedy Algorithm under the Oracle Model

Under the oracle model, assume conditional expected marginal profit of any node under

any partial realization can be obtained in constant time. Define a randomized adaptive

greedy policy πag(τ). The main idea of adaptive greedy policy to solve this problem can be

seen in Algorithm 14, which is based on the adaptive greedy policy proposed in (Golovin and

Krause, 2011). Under the current partial realization φ and seed set S, the πag(τ) would select

a node vmax satisfying vmax := argmaxv∈V \S{∆(v|φ)
c(v)
}. If c(S) + c(vmax) ≤ B, then vmax is

the next seed. Otherwise, πag(τ) would select vmax as the next seed with probability B−c(S)
c(vmax)

.

After selecting vmax, we observe the nodes infected by feature nodes of vmax, denoted by

A(vmax) and update the partial realization φ by changing states of edges related to nodes in

A(vmax)∪v̂max from ? to 0 or 1. The algorithm repeats the above process, and terminates until

c(S) ≥ B, or terminates with a probability. In this way, we could guarantee E[c(S)] ≤ B.

The random source τ in this adaptive greedy policy indicates whether to contain the node

found in the last iteration.

87

Since the objective f(S, ϕ) of AMBPM problem is adaptive monotone and adaptive sub-

modular, according to the result in (Golovin and Krause, 2011), we have the following

conclusion.

Theorem 5.6.1. The adaptive greedy policy shown in Algorithm 14 could obtain a (1−1/e)

expected approximation solution of the AMBPM problem. It requires O(n2) function value

computations.

5.6.2 Adaptive Greedy Algorithm under the Noise Model

This section will present algorithms of AMBPM problem under the noise model. The basic

seed selection strategy is similar to that in oracle model, but the difference is we will esti-

mate the conditional expected marginal profit of any node under a fixed partial realization,

∆(u|φ), by the reverse influence sampling technique. However, maximizing the estimation

of ∆(u|φ) by sampling technique is likely to obtain an extremely worse node with some

probability, although the probability is very small. That is, the node u∗ maximizing the esti-

mation may not be the optimal solution to maxv∈V \S ∆(u|φ)/c(u). In this case, the expected

approximation ratio in Theorem 5.6.1 is not guaranteed.

5.6.2.1 Technique

Definition 5.6.2 (Reverse Reachable (RR) set (Tang et al., 2014)). For any graph realization

ϕ ∈ Ω and vi ∈ V̂ , the RR set for vi is denoted by Rϕ(vi), which contains all nodes that could

reach vi in ϕ. vi is called the target node of Rϕ(vi).

Intuitively, RR set Rϕ(vi) of vi contains feature nodes that are likely to infect vi during the

propagation. A random RR set is an RR set whose target node vi is selected randomly from

V̂ . Given a random RR set Rϕ(vi) and Ŝ ⊆ V̂ , we say Ŝ covers Rϕ(vi) if Ŝ ∩ Rϕ(vi) ̸= ∅.

A set with larger expected influence has a higher probability to cover a random RR set.

88

Specifically, given a graph G = (V,E) and a random RR set R, the expected influence

E[I(S)] of a set S in G is E[I(S)] = |V | · Pr[S ∩ R ̸= ∅] (Tang et al., 2014). Therefore, if

we could generate a large number of random RR sets, a set with large expected influence

would cover a large amount of the generated random RR sets. We will use this idea in our

estimation of the conditional expected marginal profit of a node.

Given a partial realization φ, let Gφ = (Vφ, Eφ) be the subgraph induced by the i-

unaccepted nodes under φ, i = 1, . . . , q. That is, Gφ is obtained by deleting all of the

i-accepted feature nodes and their related edges in Ĝ, i = 1, . . . , q. Let Ωφ be the set

containing all realizations of Gφ. Denote W =
∑

vi∈Vφ
b(v) · wi

v. Assume each node vi ∈ Vφ

is selected randomly from Vφ with probability b(v)·wi
v

W
as the target node of an RR set.

Given a partial realization φ and u ∈ V , let Rφ be a random RR set generated from a

realization ϕ ∈ Ωφ. Define

h(u,Rφ) =

1, if û ∩Rφ ̸= ∅

0, otherwise

. (5.8)

By the reverse Breadth First Search algorithm (Moore, 1959), we could produce a large num-

ber of random RR sets R(φ) = {R1, R2, . . . , Rα} of Gφ. Define FR(φ)(u) =
1
α

∑α
j=1 h(u,Rj).

Denote ρ(u|φ) = W · FR(φ)(u) = W · 1
α

∑α
j=1 h(u,Rj). Then the following result holds.

Theorem 5.6.3. Given a node u ∈ V and a partial realization φ, we have E [ρ(u|φ)] =

∆(u|φ).

89

Proof. Given a realization ϕ ∈ Ωφ and a user node u ∈ V , let I iϕ(u) be the feature nodes

infected by feature node ui under ϕ. Then we have

E [ρ(u|φ)] = W · E[1
α

α∑
j=1

h(u,Rj)] = W ·
∑
ϕ∼Ωφ

Pr[ϕ]
∑
vi∈Vφ

Pr[vi] · h(u,Rφ(vi))

=
∑
ϕ∼Ωφ

Pr[ϕ]
∑
vi∈Vφ

b(v) · wi
v · h(u,Rφ(vi))

=
∑
ϕ∼Ωφ

Pr[ϕ]
∑
v∈V

b(v) ·
∑

1≤i≤q:
vi∈Iiϕ(u)

wi
v

=
∑
ϕ∼Ω

Pr[ϕ|ϕ ∼ φ] ·
∑
v∈V

b(v)
∑

1≤i≤q:

vi∈(Iiϕ(dom(φ)∪{u})\Iiϕ(dom(φ))

wi
v

=
∑
ϕ∼Ω

Pr[ϕ|ϕ ∼ φ] · [f(dom(φ) ∪ {u}, ϕ)− f(dom(φ), ϕ)] = ∆(v|φ).

Given a partial realization φ and a set of random RR sets R(φ) generated from sub-

graph Gφ, define QR(φ)(u) = FR(φ)(u)/c(u). According to Theorem 5.6.3, we know E[W ·

QR(φ)(u)] = W · E[QR(φ)(u)] = ∆(u|φ)/c(u). Thus, W · QR(φ)(u) is an unbiased estima-

tion of ∆(u|φ)/c(u). When |R(φ)| is sufficiently large, W ·QR(φ)(u) could be convergent to

∆(u|φ)/c(u). Thus, we could use W ·QR(φ)(u) as an estimation for ∆(u|φ)/c(u).

Algorithm 15 show the adaptive greedy policy with the above sampling technique, named

Sampled-AdapGreedy. It is denoted by πsag(τ, ω) where ω usually represents the random

source of sampling. At each iteration, instead of finding a node maximizing ∆(u|φ)/c(u)

from currently unselected user nodes, we select a node v∗ which could maximize QR(φ)(u),

which is obtained by Algorithm 16 (Huang et al., 2020). If c(v∗) is larger than the current

remaining budget, then we add v∗ into the current seed set with (B−c(v∗))/c(v∗) probability.

Otherwise, we add v∗ to the current seed set, observe the corresponding propagation result

on Gφ, and update partial realization φ and subgraph Gφ.

90

Algorithm 15: Sampled-AdapGreedy (SAG)

1 S = ∅;
2 φ = {?}Ê;
3 Gφ = G;
4 W =

∑
u∈V b(u);

5 W ∗ = minvi∈V̂ b(v) · w
i
v;

6 while c(S) < B do
7 T = V \ S;
8 nφ = |T |;
9 v∗ ← Modified-EPIC(Gφ, T,W,W

∗, nφ, ϵ);
10 if c(S) + c(v∗) > B then

11 break with 1− B−c(S)
c(v∗)

probability;

12 S ← S ∪ {v∗};
13 Observe the node set A(v∗) infected by the feature nodes of v∗, 1 ≤ i ≤ q;

14 Update φ by updating states of edges related to nodes in A(v∗) ∪ v̂∗;
15 W = W −

∑
ui∈A(v∗) b(u)w

i
u −

∑
vi∈v̂∗∩Gφ

b(v∗)wi
v;

16 Update Gφ by removing nodes in A(v∗) ∪ v̂∗ and their corresponding edges;

17 return S and f(S, φ);

5.6.2.2 Theoretical Analysis

At each iteration of Algorithm 15, it needs use Algorithm 16 (line 9 of Alg. 15) to obtain

a node which could achieve the maximum of function QR(φ)(u). Alg. 16 is obtained by

modifying the EPIC algorithm proposed in (Huang et al., 2020). However, there are some

difference between EPIC and Modified-EPIC (MEPIC) algorithm: (1) The seed selected at

each iteration is one in MEPIC. (2) The target estimation function in MEPIC is QR(φ)(u)

instead of FR(φ)(u).

At each iteration of Algorithm 15, denote the current partial realization as φ. We could

obtain its corresponding induced subgraph Gφ. Alg. 16 first initializes some parameters and

then generates two same size sets of random RR sets of Gφ, R1(φ) and R2(φ). At each

iteration, it chooses a node v∗ maximizing QR1(φ)(·), which can be achieved in polynomial

time. Assume vmax = argmaxv∈T ∆(v|φ)/c(v).Then Qu(vmax) = QR1(φ)(v
∗) ≥ QR1(φ)(vmax).

That is, Qu(vmax) is an upper bound of QR1(φ)(vmax). And W · Ql(v∗) is an accurate lower

91

Algorithm 16: Modified-EPIC (MEPIC) ((Huang et al., 2020))

1 δ = 0.01 · ϵ/W ;
2 ϵ′ = (ϵ− δ ·W)/(1− δ ·W);
3 ϵ̄ = ϵ′/(1− ϵ′);
4 imax = ⌈log2

(2+2ϵ̄/3)·W
ϵ̄2

⌉+ 1 and a = ln(2·imax

δ
);

5 θ0 =
1

W ∗

(
ln 2

δ
+ ln (nφ)

)
;

6 Generate two sets of random RR sets R1(φ) and R2(φ) of Gφ with
|R1(φ)| = |R2(φ)| = θ0;

7 for i = 1 to imax do
8 v∗ = argmaxv∈T QR1(φ)(v);
9 Qu(vmax)← QR1(φ)(v

∗);

10 Ql(v∗)←
(√

QR2(φ)(v
∗) + 2a

9|R2(φ)| −
√

a
2|R2(φ)|

)2

− a
18·|R2(φ)| ;

11 if Ql(v∗)
Qu(vmax)

≥ 1− ϵ′ or i = imax then

12 return v∗;

13 Double the sizes of R1(φ) and R2(φ) with new random RR sets;

bound of ∆(v∗|φ)/c(v∗) with high probability. Then MEPIC checks whether the stopping

condition (line 11) is satisfied. If satisfied, it returns v∗ as output. Otherwise, it doubles the

size of R1(φ) and R2(φ), and repeats the above process.

Lemma 5.6.4. Given a partial realization φ and its corresponding induced subgraph Gφ =

(Vφ, Eφ), denote by T the set of current unselected nodes in V . Then MEPIC algorithm

could return a user node v∗ satisfying that

Eτ

[
∆(v∗|φ)
c(v∗)

]
≥ (1− ϵ) ·max

v∈T

{
∆(v|φ)
c(v)

}
, (5.9)

within O((|Vφ|+ |Eφ|)(log(|T |) + log 1
ϵ
)/ϵ2) expected time.

Proof. Given a partial realization φ and its corresponding induced subgraph Gφ = (Vφ, Eφ),

the target function QR1(φ)(v) = FR1(φ)(u)/c(u) is a weighted coverage function on R1(φ),

where the weight for each u ∈ (V \ dom(φ)) is 1/c(u). Since QR1(φ)(v) is a monotone

submodular function and maximizing a monotone submodular weighted coverage function

92

can be solved in polynomial time, thus the node v∗ = argmaxv∈T QR1(φ)(v) can be obtained

in polynomial time. Also, the expected approximation guarantee can be obtained accordingly

from results of EPIC algorithm in (Huang et al., 2020).

Recall that p is the minimum number satisfying
∑p

i=1 c(vi) ≥ B. Then we know Al-

gorithm 15 would execute at most p iterations. Now, we could give the approximation

guarantee of our AG algorithm.

Theorem 5.6.5. Given ϵ ∈ (0, 1), the sampled adaptive greedy policy πsag(τ, ω) (Algo-

rithm 15) could achieve a (1 − e−(1−ϵ)) expected approximation ratio within O(pq · (n +

m)(log(n + log 1
ϵ
)/ϵ2) expected time. That is, for any realization ϕ and any policy π(τ)

satisfying Eτ [c(S(π(τ), ϕ))] ≤ B, we have

Eτ [Eω[favg(πsag(τ, ω))]] ≥ (1− e−(1−ϵ)) · Eτ [favg(π(τ))]. (5.10)

Proof. According to Lemma 5.6.4, the node selected in each iteration of Algorithm 15 satisfies

(1−ϵ) expected approximation. Since Algorithm 15 would execute no more than p iterations,

thus the total expected error of all iterations is (1/p) ·
∑p

i=1 ϵ = ϵ. According to the Theorem

5.4.3 and Lemma 5.6.4, Theorem 5.6.5 holds by inferring from Theorem 6 in (Huang et al.,

2020).

5.7 Experiments

We verify efficiencies of our proposed policy by comparing the running time and its ob-

tained profit with other algorithms. We run experiments on a Linux machine with an Intel

Xeon 3.5GHz CPU and 32GB RAM. For each dataset, 30 possible realizations are produced

randomly and the average performance of each algorithm is reported.

93

5.7.1 Experimental Setup

Datasets. Five real-world social network datasets are used in this paper and detailed

statistics are shown in Table 5.1. Epinions dataset could be found in (Leskovec and Krevl,

2014) and all other datasets are from (Rossi and Ahmed, 2015). According to the structure of

MF-model, the number of nodes in multi-level graph is different from these basic information,

which is also determined by the number of features. For the undirected graph, we replace

each edge with two reversed directed edges.

Table 5.1. Dataset characteristics

Dataset n m Type Average degree
Twitter 0.8k 1k directed 2
Wiki 0.9k 3k directed 6

Hamsterster 2.4k 16.6k undirected 13
DBLP 12.6k 49.7k undirected 7.9
HepPh 12k 118k undirected 19
Epinions 75.9k 508.8k directed 13

Propagation Model and Parameters. We use the MF-model as diffusion model in

experiments and for each edge e = (u, v) ∈ E, set piu,v = 1/|N in(v)|, i = 1, . . . , q, where

N in(v) is the set of in-neighbors of v. This setting is widely used in prior works (Tang et al.,

2014; Goyal et al., 2011a; Jung et al., 2011). For u ∈ V , the weight vector of u is generated

randomly from (0, 1]q such that the sum of weights of all features for u is 1. Also, we generate

random numbers from (0, 1] as the cost and profit of each node. For each dataset, we vary

budget B such that B ∈ {0, 10, 20, 30, 40, 50}.

We conduct two groups of experiments to test the time efficiency and performance of

our proposed policy, respectively. The first group of experiments is performed to verify the

time efficiency of adaptive greedy policy (Algorithm 14) and sampled adaptive greedy policy

(Algorithm 15). We compare the running time and obtained profit of adaptive greedy policy

94

and sampled adaptive greedy policy with their non-adaptive corresponding algorithms, with

different implementations.

(1) Modified greedy algorithm sampled by Monte Carlo (MGMC): Shown as Algorithm 13

and the profit P (S) of any node set S is estimated by Monte Carlo method.

(2) Modified greedy algorithm sampled by reverse influence sampling (MGRIS): Shown as

Algorithm 13 and the profit P (S) of any node set S is estimated by reverse influence sam-

pling method. Let Q =
∑

u∈V b(u). Each feature node vi in multi-level graph Ĝ is selected

as a target node of a RR set with b(v) · wi
v/Q probability. Let R = {R1, . . . , Rλ} be a

set of random RR sets generated from Ĝ. Then it can be proved KR(S) = Q · FR(S) is

an unbiased estimation of P (S). According to Chernoff Bounds (Motwani and Raghavan,

1995), if λ ≥ (2+η)Q
η2P (S)

· ln 1
δ′
, then for any node set S with c(S) ≤ B, we have Pr[|P (S) −

KR(S)| > η · P (S)] < δ′. Let p∗ be the minimum number such that
∑n

j=p∗ c(vj) ≤ B and

Q∗ =
∑n

j=p∗ b(vj). By setting λ = (2+η)Q
η2Q∗ · ln 1

δ′
, we could guarantee λ ≥ (2+η)Q

η2P (S)
· ln 1

δ′
. Here

we set η = δ′ = 0.1.

(3) Adaptive greedy policy (AG): Shown as Algorithm 14 and the conditional expected

marginal profit of a node u under any partial realization, ∆(u|φ), is estimated by Monte

Carlo method.

(4) Sampled adaptive greedy policy (ASG): Shown as Algorithm 15 and set the error pa-

rameter ϵ = 0.5.

The second group of experiments is to compare the performance of our SAG policy with

three heuristic adaptive policies: Adaptive Random (AR), Adaptive Max-degree (AMD) and

Adaptive Max-profit (AMP).

(1) AR is the adaptive version of the simple random algorithm. It uniformly selects currently

unselected nodes in V as the next seed.

(2) AMD picks the node with maximum out-degree from currently unselected nodes in V as

the next seed.

95

(3) Given the partial realization φ and currently selected seed set S, AMP selects the node

u∗ satisfying u∗ ∈ argmaxu∈(V \S) ∆(u|φ) and estimates ∆(u|φ) by reverse influence sampling

technique. According to Theorem 5.6.3, we know ρ(u|φ) is an unbiased estimation of ∆(u|φ).

According to Chernoff Bounds (Motwani and Raghavan, 1995), if α ≥ (2+ϵ̂)W
ϵ̂2∆(u|φ) · ln

1
δ′
, then

we have Pr[|ρ(u|φ) − ∆(u|φ)| > ϵ̂ · ∆(u|φ)] < δ′. Let W ∗ = minvi∈V̂ b(v) · w
i
v. By setting

α = (2+ϵ̂)W
ϵ̂2W ∗ · ln 1

δ′
, we could guarantee α ≥ (2+ϵ̂)W

ϵ̂2∆(u|φ) · ln
1
δ′
. Here we set ϵ̂ = δ′ = 0.1.

Figure 5.2. Profit VS budget on Twitter.

5.7.2 Experimental Results

5.7.2.1 Results of first group of experiment

Fig. 5.2 and Fig. 5.3 present results of the first group of experiments on Twitter and Wiki

datasets. Fig. 5.2 and Fig. 5.3 present profits obtained by our proposed adaptive greedy

policy (AG and SAG) with their non-adaptive versions (MGMC and MGRIS). We implement

the experiments under two values of q, 3 and 5. Since AG policy and MGMC algorithm are

implemented by Monte Carlo method and they are time-consuming, thus we only conduct

96

Figure 5.3. Profit VS budget on Wiki.

the first group of experiments on two small datasets. Here the number of Monte Carlo

simulations is set to 500. The results show that AG and SAG policies are always evidently

superior to MGMC and MGRIS algorithms with respect to the obtained profit, which shows

the benefits of adaptive policies. The profits obtained by AG and SAG policies are very close,

which indicates effectiveness of our sampling technique. The profits obtained by MGRIS and

MGMC algorithms are close at most times, but in some cases, profits of MGMC are smaller

than those of MGRIS. This may be because the number of Monte Carlo simulations is not

enough.

Table 5.2 presents the running time of our proposed AG and SAG policies with MGMC

and MGRIS on Twitter and Wiki datasets under budget 10, 30 and 50, respectively. To

compare running time of different strategies fairly, parallel computing is not used here. We

can see that MGRIS is fastest among all of the four algorithms since it only needs to generate

a set of random RR sets once and choose seeds once. Our SAG policy is the second fastest

strategy and faster than AG and MGMC. AG is much faster than MGMC and this may be

because the induced subgraph of partial realization becomes smaller and smaller.

97

Table 5.2. Running time VS budget on Twitter and Wiki

Twitter

1 q = 3 q = 5

Algorithm 10 30 50 10 30 50

MGRIS(s) 5.36 20.64 39.57 9.1 31.54 61.3

MGMC(h) 0.7 3.01 5.46 0.97 4.35 7.57

AG(s) 175.23 419.59 667.5 271.48 677.69 1012.19

SAG(s) 42.64 137.58 231.2 59.84 186.75 313.62

Wiki

1 q = 3 q = 5

Algorithm 10 30 50 10 30 50

MGRIS(s) 7.31 25.82 46.75 10.37 39.03 68.52

MGMC(h) 3.56 11.41 19.01 6.67 22.2 36.92

AG(s) 186.81 445.79 690.42 268.85 639.21 970.45

SAG(s) 39.29 143.84 239.65 67.55 190.42 323.28

5.7.2.2 Results of second group of experiment

Figure 5.4. Profit VS budget on Twitter and Wiki.

Fig. 5.4 to Fig. 5.6 present the performance of our SAG policy and other three heuristic

adaptive policies on all of the six listed datasets. In this group of experiments, the value of

q is set to 3. We can see that the profits obtained by any policies increase with the value of

the budget. And profits obtained by our SAG policy are always higher than those obtained

98

by other three heuristic adaptive policies no matter on which one of the six datasets. Among

the three heuristic adaptive policies, adaptive max-profit (AMP) policy performs better than

AR and AMD policies at most times. This is intuitive since AMP considers the profit not

just the degree and a node with a large degree may not bring many profits. And our SAG

policy usually can obtain about 10% higher profits than AMP policy, which also indicates

the effectiveness of our SAG policy. But the results are not so stable and this may be due

to the different graph structures and other features of different datasets.

Figure 5.5. Profit VS budget on Hamsterster and DBLP.

Figure 5.6. Profit VS budget on HepPh and Epinions.

99

CHAPTER 6

LEARNING-BASED INFLUENCE MAXIMIZATION

Authors – Tiantian Chen, Jianxiong Guo, Siwen Yan, and Weili Wu

The Computer Science Department, EC 31

The University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

100

6.1 Introduction

Online social platforms, such as Twitter, LinkedIn and WeChat, have shown to be one of

the most effective ways for people to communicate and share information with each other.

Many companies have turned to the social network as a primary way of promoting products,

and use “word of mouth” effects to maximize the product influence. To maximize earned

profits, companies may apply a variety of methods, such as distributing free samples or

coupons. Many works have focused on the diffusion phenomenon on social networks. Kempe

et al. (Kempe et al., 2003) first formally defined Influence Maximization (IM) problem as a

combinatorial optimization (CO) problem, and presented Independent Cascade (IC) model

and Linear Threshold (LT) model to depict the information diffusion process.

It has been proved IM problem is NP-hard, and the objective (influence spread) is mono-

tone and submodular under IC and LT models (Kempe et al., 2003). Kempe et al. (Kempe

et al., 2003) used Greedy algorithm, which selects the node with maximum marginal gain of

influence spread, to solve IM. Greedy scheme can achieve (1− 1/e)-approximation ratio for

the maximization of monotone submodular function under budget constraint. However, it is

#P-hard to compute the influence spread of a seed set under both IC (Chen et al., 2010a)

and LT models (Chen et al., 2010b). The hardness of estimating the influence spread lies

in the randomness of the probabilistic diffusion models, i.e., random choices and diffusion

paths. The key to approximate the influence spread is to effectively and efficiently sample

diffusion paths. Kempe et al. (Kempe et al., 2003) used Monte Carlo method to simulate

diffusion paths, which can obtain good estimations when simulation times are large enough.

But it is too time-consuming. Borgs et al. (Borgs et al., 2014) first proposed a novel Re-

verse Influence Sampling (RIS) technique to reduce the running time. However, RIS still

incurs significant computational overheads in practice in order to obtain a good solution.

Subsequently, a series of algorithms based on RIS were proposed, such as TIM/TIM+ (Tang

et al., 2014), IMM (Tang et al., 2015), SSA/D-SSA (Nguyen et al., 2016b) and OPIM-C

101

(Tang et al., 2018), which can achieve (1− 1/e− ϵ)-approximation solution with high prob-

ability when the number of generated random reachable reverse (RR) sets are large enough,

and were recognized as the state-of-the-art methods to solve IM. However, these algorithms,

such as IMM, still have scalability issues in large influence networks.

On the other hand, the development of deep learning and reinforcement learning (RL)

has blossomed in the last few years, resulting in an increasing number of works addressing

CO problem by learning-based methods. A natural question is: can we estimate the influ-

ence spread by learnable parametric function and avoid costly sampling random RR sets?

The answer is Yes. Khalil et al. (Khalil et al., 2017) first designed an end-to-end deep rein-

forcement learning (DRL) framework, S2V-DQN, to solve the common CO problem. Then,

Manchanda et al. (Manchanda et al., 2020) proposed a supervised deep learning based

model for the CO problem, called GCOMB, where IM was used as an example to test the

performance. However, the exact value of influence spread is not available, and therefore, no

accurate target value can be used for supervised learning. On the contrary, Li et al. (Li et al.,

2022) presented an end-to-end DRL model, called PIANO, which is revised from S2V-DQN

(Khalil et al., 2017). PIANO is trained on subgraphs of the entire network and then tested

on the entire network, which makes it not able to generalize on non-homogeneous networks

with different topological characteristics. To address the above drawbacks, we integrate the

latest strategies and design a new solution framework for the IM problem.

In this paper, we model the IM problem as a RL problem, which aims to find the optimal

policy of selecting b seeds (b action sequences) to maximize the influence spread (cumu-

lative rewards) of these b seeds. However, the exact Q-value in this RL is not available,

and therefore deep Q-network (Mnih et al., 2015) (DQN) is a natural solution to solve this

issue. Instead of using DQN, we use its improvement double DQN (DDQN) (Van Hasselt

et al., 2016), which can avoid the over-optimistic issue of a simple DQN and achieve better

performance. On the other hand, except for the network topology structure, the function

102

approximator in DDQN also needs to well capture the crucial influence cascading effects in

IM, which makes it more challenging. The cascading effect represents that the activation

of a node will trigger its neighbors in a successive manner, forming a diffusion cascade on

social networks. This is consistent with the message passing effect in graph neural networks

(GNNs) (Zhou et al., 2020). Therefore, based on these two techniques, in this paper, we pro-

pose a novel end-to-end DRL framework, called ToupleGDD (Three Coupled Graph Neural

Networks with Double Deep Q-networks), to solve the IM problem, which incorporates three

coupled GNNs for network embedding and DDQN technique for parameter learning. The

main contributions can be summarized as follows: (1) To the best of our knowledge, we

are the first to present such an end-to-end framework, ToupleGDD, which combines coupled

GNNs and DRL method to effectively solve the IM problem; (2) We propose a personalized

DeepWalk method to learn initial node embedding as input features for the following cus-

tomized GNN layer, which considers both local and global influence contexts of nodes; (3)

To capture the crucial cascading effects of information diffusion and network topology, we

design three coupled GNNs to learn node embeddings; (4) We show that ToupleGDD can be

applied on large-scale networks without compromising on solution quality. Extensive exper-

iments are conducted on synthetic graphs and real-world datasets. Empirical results show

that our model can achieve performance very close to IMM, and even outperform OPIM-C

on several datasets, which demonstrate the superiority and effectiveness of our proposed

model.

6.2 Related Works

IM. Kempe et al. (Kempe et al., 2003) first formulated IM as a CO problem, and proposed

two classical diffusion models: IC and LT model. They proved that IM problem is NP-hard,

and presented a (1 − 1/e − ϵ)-approximation algorithm, Greedy, by applying Monte Carlo

method to estimate expected spread of a seed set. But it is too time-consuming. Borgs et

103

al. (Borgs et al., 2014) made a breakthrough for this issue with the RIS technique, which

guaranteed (1 − 1/e − ϵ)-approximation solutions and significantly reduced the expected

running time. Subsequently, a series of more efficient randomized approximation algorithms

were proposed, such as TIM/TIM+ (Tang et al., 2014), IMM (Tang et al., 2015), SSA/D-

SSA (Nguyen et al., 2016b), OPIM-C (Tang et al., 2018), and HIST (Guo et al., 2020d).

They can not only provide (1− 1/e− ϵ)-approximation solution but also very efficient even

on networks with millions of nodes, which were state-of-the-art approximation algorithms

for IM.

ML/RL for CO. Recent advancements of deep learning and RL has resulted in an

increasing number of works addressing IM by learning-based methods. Since IM can be

formulated as a CO problem, many works aiming for CO problems have used IM as an

example to test the performance of their models. Khalil et al. (Khalil et al., 2017) first

proposed a DRL model for CO problems, called S2V-DQN, which utilized the graph embed-

ding method, structure2vec (Dai et al., 2016), to encode nodes states to formulate the value

approximator, and the fitted Q-learning to select the node to add to the current seed set. Li

et al. (Li et al., 2018) approximated the solution quality by graph convolutional networks,

and applied a learning framework based on guided tree search. Manchanda et al. (Man-

chanda et al., 2020) proposed a supervised deep learning based model, GCOMB, for CO

problems over large graphs. The key contribution of GCOMB is its hybrid learning model,

i.e., combining supervised learning and RL. By introducing a supervised learning step into

Q-learning framework, GCOMB can predict the quality of nodes and filter out ”bad nodes”

at an early step. Instead of solving CO problems on the entire graph, (Kamarthi et al.,

2020) and (Ireland and Montana, 2022) are focused on how to prune graph and discover

a subgraph which can act as a surrogate to the entire graph. Ireland et al. (Ireland and

Montana, 2022) introduced a novel graph pruning algorithm, LeNSE, based on supervised

learning and RL. LeNSE learns how to identify a subgraph by removing vertices and edges

104

to significantly reduce the size of the problem, so that heuristics can find a nearly optimal

solution of a CO problem with a high likelihood. The first phase of GCOMB can be viewed

as the graph pruning, which filters out the ”bad nodes” and only considers the ”good” nodes

as the candidate. For readers interested in more works of CO, please refer to (Bengio et al.,

2021) (Mazyavkina et al., 2021) (Yang and Whinston, 2020) for detailed reviews.

ML/RL for IM. Fan et al. (Fan et al., 2020) proposed the DRL model for network

dismantling problem, FINDER, which aimed to find key players in complex networks, and

applied GraphSAGE as the function approximator for DQN. Kamarthi et al. (Kamarthi

et al., 2020) utilized deep Q-learning for discovering subgraph and solved the IM problem on

the subgrah and utilized the selected influential node set as the seeds on the complete graph.

There were some researches (Lin et al., 2015) (Ali et al., 2018) (Ali et al., 2020) focusing

on using DRL to solve the competitive IM problem, which aims to find an optimal strategy

against competitor to maximize the commutative reward under the competition against other

agents. Besides, (Yadav et al., 2018) (Chen et al., 2021) considered the contingency-aware

IM problem, where there is a probability of a node willing to be seed when selected as

seed node. Tian et al. (Tian et al., 2019) proposed DIEM model for the topic-aware IM

problem, which aims to maximize the activated number of nodes under the specific query

topics. DIEM modified the structure2vec method (Dai et al., 2016) for network embeddings,

and utilized DDQN with prioritized experience replay to learn parameters. The work most

related to ours is (Li et al., 2022), which proposed a DRL model, called PIANO, for the IM

problem, and presented with small modification from S2V-DQN (Khalil et al., 2017).

Comparisons of related models to our model. FINDER model (Fan et al., 2020)

was proposed for network dismantling problem, and cannot work on directed graphs and

weighted graphs. However, our model can work on undirected graphs and different edge

weight settings. GCOMB framework (Manchanda et al., 2020) was based on supervised

learning which introduced large extra computational overhead and efforts of hand-crafting

105

the learning pipeline, while our model can learn parameters end-to-end. PIANO method

(Li et al., 2022) applied structure2vec to learn node embeddings, while we designed three

coupled GNNs to learn the network representation. Additionally, both GCOMB and PIANO

are trained on subgraphs of the entire graph, and tested on the rest or the entire network,

which makes them graph-specific. However, our ToupleGDD model does not have this

limitation and performs well on different training and testing datasets, which shows more

generalization ability.

6.3 Preliminaries and Framework

6.3.1 Background

Social network is usually represented by a directed graph G = (V,E), where V denotes the

node (user) set and E is a set of relationships between nodes. For an edge (u, v) ∈ E, u is

called the in-neighbor of v, and v is called the out-neighbor of u. For a node v, denote by

Nin(v) and Nout(v) the in-neighbor set and out-neighbor set of v, respectively.

Denote by σ(v;S) = σ(S ∪ {v}) − σ(S) the marginal gain obtained by adding v into a

seed set S. Let St be the currently selected seed set. The greedy algorithm will select the

node which can achieve the maximum of σ(v;St) as the next seed. However, computing the

influence spread of a seed set is #P-hard under the IC (Chen et al., 2010a) and LT model

(Chen et al., 2010b), which results in the difficulty of calculating the marginal gain. Instead

of generating a large number of RR sets like in the state-of-art approximation algorithms, in

this paper, we regard IM as an RL problem, which aims to find an optimal policy to select

k nodes or k action sequence with the maximum influence spread. In this case, the marginal

gain can be considered as the value function in RL, whose value is difficult to be obtained in

our problem. To address this issue, we approximate the value function (marginal gain) by a

parameterized function through DRL method.

106

Definition 6.3.1 (Learning-based IM Problem). It can be divided into two phases: (1)

Learning Phase: Given a set of training graphs G = {G1, G2, · · · , Gc}, diffusion model ψ

and influence spread function σ : S → R+, train a group of parameters Θ such that σ̂(v, S; Θ)

could approximate σ(v;S) as accurately as possible. (2) Testing Phase: Given a target

social network G, the learned parameters Θ and an integer b, solve the IM problem with

respect to budget b under some diffusion model ψ.

As a special type of RL, DRL applies deep neural networks for state representation

and function approximation for value function, policy, transition model, or reward function.

In this paper, we use GNNs to obtain node embeddings and formulate the parameterized

function using node embeddings, where all parameters are learned by DDQN.

6.3.2 General Framework of GNN

As an effective framework of nodes embedding learning, GNN usually follows a neighbor-

aggregation strategy, where the embedding of a node is updated by recursively aggregating

embedding from its neighborhood. Formally, u’s embedding at k + 1-th layer F
(k+1)
u is

updated by:

m
(k)
N (u) = AGGREGATE(k)(F (k)

v : v ∈ N (u)), (6.1)

F (k+1)
u = UPDATE(F (k)

u ,m
(k)
N (u)), (6.2)

where AGGREGATE and UPDATE are neural networks and N (u) is u’s neighborhood.

6.3.3 Framework of ToupleGDD

In this subsection, we present the proposed framework ToupleGDD, which solves the IM

problem by incorporating three coupled GNNs and DDQN. The framework of ToupleGDD

is illustrated in Fig. 6.1. Given a set of training graphs G = {G1, G2, · · · , Gc}, we first

apply the personalized DeepWalk (PDW) method to get the initial node embedding, since

107

it has been found that DeepWalk embedding rather than randomly initialized embedding

is vital for stable training of Geometric-DQN, which also works well in our model and will

be shown in experiments. Then GNN and attention mechanism are combined to learn node

embeddings. Specifically, three coupled GNN (ToupleGNN) are designed to capture the

cascading effect of information diffusion. After K iterations of ToupleGNN, we use the

obtained node embedding to construct the parameterized function Q̂(v, S; Θ) and use RL

technique to learn the parameters. Instead of using DQN, we apply the DDQN to learn the

parameters Θ for Q̂(v, S; Θ) to approximate the marginal gain σ(v;S), and adopt ε-greedy

policy to select the next seed. The reason why we use DDQN will also be explained through

experiments.

Figure 6.1. The framework of ToupleGDD: (a) Apply PDW to obtain initial embedding; (b)
Utilize ToupleGNN to capture network topology structures and influence cascading effects
to get node embedding; (c) Construct the parameterized function Q̂(v, S; Θ) based on node
embedding input from ToupleGNN; (d) Use ε-greedy to select the next seed and DDQN to
learn the parameters.

6.4 Representation: Node Embedding

As a way of representing the node as a vector, node embeddings can capture the network

topology. For our IM problem, more importantly, node embeddings need to capture the

influence cascading effects, which represents that the activation of a node will trigger its

out-neighbors in a successive manner, forming a diffusion cascade on networks. For a target

108

node, whether it will be activated is intrinsically governed by three components: the states

of in-neighbors, the influence capacity of in-neighbors and its tendency to be influenced

by in-neighbors. In this sense, the cascading effect is intrinsically the iterative interplay

between node states, nodes’ influence capacity and nodes’ tendency to be influenced by

others. Therefore, for each node u, we include three parts in u’s embedding: Xu, Su and

Tu, where Xu ∈ R indicates the activation state of node u, Su ∈ Rl is the capacity of u to

influence other users and Tu ∈ Rl is the tendency of being activated by other users.

6.4.1 Initial Embedding Learning

Instead of randomly generating initial embeddings, we proposed the personalized DeepWalk

(PDW) method to learn embeddings as input features for the following GNN layer. The

main part of PDW is to generate node contexts, and then utilize skip-gram technique to

predict contexts for a given node. Inspired by Inf2vec model (Feng et al., 2018), for node

u ∈ V , our method includes two parts as u’s influence context Cu: local and global influence

context, where local context is a sampled set of nodes that can be activated by u and global

contexts are sampled from the r-hop out-neighbors of u. To limit the size of node contexts,

assume length threshold of the node context is L and α ∈ [0, 1]. For a node u, we use

random walk with restart (RWR) strategy (restart probability is set as 0.15 in this paper)

to obtain the local influence context Lu of node u, and the walk will stop when threshold

α ·L is reached. After generating local contexts, we randomly sample (1−α) ·L nodes from

the r-hop out-neighbor set N r
out of u as global influence context Gu.

Given a user u, the probability of user v being influenced by user u, is formulated

as a softmax function by their node embeddings: Pr(v|u) = eXu·Su·Tv+Xv/Z(u), where

Z(u) =
∑

w∈V e
Xu·Su·Tw+Xw is the normalization term. Assume users in Cu are indepen-

dent with each other, then the probability of observing context Cu conditioned on u’s em-

bedding is Pr(Cu|u) = Πv∈Cu Pr(v|u). We will sample a set of influence contexts, D =

109

{(u1, Cu1), . . . , (uq, Cuq)} from social network G. We consider all the observed influence

contexts, and attempt to maximize the log probability of them:

max
∑

(u,Cu)∈D

∑
v∈Cu

log Pr(v|u). (6.3)

However, it is time-consuming to compute Z(u) directly since we need to enumerate each

w ∈ V . In this paper, we utilize the negative sampling technique, which is popularly used

to compute softmax functions. Instead of enumerating all nodes, negative sampling method

only considers a small set of sampled nodes. For each node u ∈ V , we randomly generate a

small set of nodes N as negative instances to approximate the softmax function:

log Pr(v|u) ≈ log σ(zv) +
∑

w∈N
log σ(−zw), (6.4)

where zv = Xu · Su · Tv + Xv, zw = Xu · Su · Tw + Xw and σ(x) = 1/(1 + exp(−x)) is the

sigmoid function.

Stochastic Gradient Descent (SGD) method is applied to learn all the parameters. In

each step, we update the parameters Φ by calculating the gradient:

Φ← Φ + η
∂

∂Φ
(log Pr(v|u)), (6.5)

where η is the learning rate and ∂
∂Φ

represents the gradient of parameters Φ. Based on (6.4),

the gradient for corresponding parameters can be computed as follows:

∂

∂Su

= (1− σ(zv)) ·Xu · Tv +
∑

w∈N
(−σ(zw)) ·Xu · Tw

∂

∂Tv
= (1− σ(zv)) ·Xu · Su,

∂

∂Tw
= (−σ(zw)) ·Xu · Su

∂

∂Xu

= (1− σ(zv)) · Su · Tv +
∑

w∈N
(−σ(zw)) · Su · Tw

∂

∂Xv

= 1− σ(zv),
∂

∂Xw

= −σ(zw)

(6.6)

The proposed PDW method is summarized in Algorithm 17. It contains two parts:

influence context generation (lines 3-8) and parameters learning (lines 9-14), which have

110

Algorithm 17: PDW

1 Initialize Xu, Su, Tu by Gaussian distribution N (0, 0.01);
2 Initialize W ← ∅;
3 foreach u ∈ V do
4 Lu ← ∅, Gu ← ∅, Cu ← ∅;
5 Lu ← Sample αL nodes by RWR starting from u;
6 Gu ← Uniformly sample (1− α)L nodes from N r

out(u);
7 Cu ← Lu ∪Gu;
8 Insert (u,Cu) into W ;

9 foreach (u,Cu) ∈ W do
10 foreach v ∈ Cu do
11 Update Xu, Su, Xv, Tv;
12 Sample a set of negative samples N ;
13 foreach w ∈ N do
14 Update Xu, Su, Xw, Tw;

15 return Xu, Su, Tu for each node u;

been illustrated in the above. In the influence context generation part, for each node u,

local influence context is sampled by RWR strategy, and we use breath first search method

to obtain u’s r-hop out-neighbor set N r
out(u) for generating global influence context (upper

bounder by |E|). Therefore, the time complexity of influence context generation part is

O(|V |(α·L+|E|)) = O(|V ||E|). For the parameters learning part, for each tuple (u,Cu) ∈ W

(where |W | = |V |), L iterations are performed for nodes in Cu. At each iteration, we first

update node embeddings of u and v, and then update node embeddings for each node in

the negative samples set N . Therefore, the running time of the parameters learning part is

O(|V | · L · |N |) = O(|V |). Here we consider L and |N | are fixed constants. Thus, the total

time complexity of Algorithm 17 is O(|V |+ |V ||E|) = O(|V ||E|).

6.4.2 ToupleGNN

Inspired by (Cao et al., 2020), we design three coupled GNNs (ToupleGNN) to naturally

capture the iterative interplay between node states, nodes’ influence capacity and nodes’

111

tendency to be influenced by others. Taking initial node embeddings as input, ToupleGNN

includes three coupled GNNs: (1) state GNN: model the activation states of nodes; (2) source

GNN: model the influence capacity of nodes; (3) target GNN: model the tendency of nodes

to be influenced by others. The framework of these three GNNs is illustrated in the middle

part of Fig. 6.2, and we will introduce the detailed structures of them in the following part.

Given the currently selected seed set St, we need update node representations accordingly

by ToupleGNN.

Figure 6.2. Mechanism of DDQN incorporated ToupleGNN as function approximator.

6.4.2.1 State GNN

The state GNN is used to model the activation state of each node during the cascading

effect. For a target user v, it will be activated by its active in-neighbors. Therefore, its

activation stateXv is determined by the activation states of its in-neighbors and the influence

weight/probability of these in-neighbors to it. Since the interaction strength between users

will change with nodes’ states, only using the given static edge weight is not enough to capture

the importance and influence weight between users. Therefore, except for the given edge

weights, we also consider applying v’s in-neighbors’ capacity embedding and v’s tendency

embedding by an influence attention mechanism to dynamically capture the diffusion weight

between them. Specifically, define e
(k)
uv = η(k)[W (k)S

(k)
u ,W (k)T

(k)
v] to measure the dynamic

importance of node u to v, where η(k) ∈ R2h(k+1)
is a weight vector, W (k) ∈ Rh(k+1)×h(k)

112

is a weight matrix to transform the source and target representation from dimension h(k)

to h(k+1), and [·, ·] denotes the concatenation of vectors. To make coefficients comparable

among nodes, a softmax function incorporated with the LeakyReLU (Maas et al., 2013) is

adopted to normalize the attention coefficients:

InfluGate(S(k)
u , T (k)

v) =
exp(LeakyReLU(e

(k)
uv))∑

u∈Nin(v)
exp(LeakyReLU(e

(k)
uv))

, (6.7)

where LeakyReLU has negative slope 0.2.

The expected influence that node v aggregates from its in-neighbors is:

a(k)v =
∑

u∈Nin(v)

(δ
(k)
1 puv + δ

(k)
2 InfluGate(S(k)

u , T (k)
v)) ·X(k)

u . (6.8)

Since we expect that the activation state should indicate the possibility of a node being

activated, the activation state of node v is set to 1 when it is selected into the current

seed set St. Otherwise, v’s activation state is updated by aggregating influence from its

in-neighbors. That is, node v’s activation state at (k + 1)-th layer is updated by:

X(k+1)
v =

1, if v ∈ St

σ(ξ
(k)
X X

(k)
v + ξ

(k)
a a

(k)
v), otherwise

(6.9)

where ξ
(k)
X , ξ

(k)
a ∈ R are weight parameters and σ(·) is the sigmoid function.

6.4.2.2 Source GNN

The source GNN is used to model the capacity of nodes to influence others. Intuitively,

the capacity of a node v to activate others can be measured by both its activation state

and how much influence its out-neighbors can get when the information is spread from v

to out-neighbors, which can be modeled by v’s out-neighbors’ tendency to be activated.

Similar to the dynamic influence weight defined in state GNN, for edge (v, w) ∈ E, we also

113

define the dynamic attention weight f
(k)
vw = β(k)[W (k)S

(k)
v ,W (k)T

(k)
w] and its corresponding

normalization for the weighted aggregation:

α(k)
vw =

exp(LeakyReLU(f
(k)
vw))∑

w∈Nout(v)
exp(LeakyReLU(f

(k)
vw))

, (6.10)

where β(k) ∈ R2h(k+1)
is a weight vector. Then the neighborhood aggregation is defined as:

b(k)v =
∑

w∈Nout(v)

(λ
(k)
1 pvw + λ

(k)
2 α(k)

vw) · SourceGate(T (k)
w), (6.11)

where SourceGate(⋆) is the source gating mechanism implemented by a 3-layer MLP in this

paper to reflect the nonlinear effect of out-neighbors’ target tendency.

The source representation of node v at (k + 1)-th layer is updated by incorporating its

k-th layer source representation, neighborhood aggregation and its activation state:

S(k+1)
v = σ(γ

(k)
S S(k)

v + γ
(k)
b b(k)v + γ

(k)
X X(k)

v), (6.12)

where γ
(k)
S , γ

(k)
b , γ

(k)
X ∈ R are weight parameters.

6.4.2.3 Target GNN

The target GNN is used to model the nodes’ tendency to be influenced by others. Generally,

the tendency of a node to be activated is determined by its current activation state and

the influence diffusion from its in-neighbors to it. Similarly, for edge (u, v) ∈ E, define

d
(k)
uv = τ (k)[W (k)S

(k)
u ,W (k)T

(k)
v] and

ϕ(k)
uv =

exp(LeakyReLU(d
(k)
uv))∑

u∈Nin(v)
exp(LeakyReLU(d

(k)
uv))

, (6.13)

where τ (k) ∈ R2h(k+1)
is a weight vector. Then the neighborhood aggregation is defined as:

c(k)v =
∑

u∈Nin(v)
(ρ

(k)
1 puv + ρ

(k)
2 ϕ(k)

uv) · TargetGate(S(k)
u), (6.14)

114

where TargetGate(⋆) is the target gating mechanism implemented by a 3-layer MLP in this

paper to reflect the nonlinear effect of in-neighbors’ source ability.

The target representation of node v at (k + 1)-th layer is updated by incorporating its

k-th layer target representation, neighborhood aggregation and its activation state:

T (k+1)
v = σ(µ

(k)
S T (k)

v + µ(k)
c c(k)v + µ

(k)
X X(k)

v), (6.15)

where µ
(k)
S , µ

(k)
c , µ

(k)
X ∈ R are weight parameters.

6.4.3 Putting It Together

At each iteration of ToupleGNN, information diffusion and network structure features can

be passed across nodes. After K iterations, nodes embedding can aggregate information

from its K-hop neighbors. For node u, denote by X
(K)
u , S

(K)
u , T

(K)
u the three components

of u’s node embedding after K iterations. Then u’s node embedding can be obtained by

concatenating these three parts: [X
(K)
u , S

(K)
u , T

(K)
u]. For the k-th layer of state GNN, the

time complexity is O(|V |+ |E|), which is same for source GNN and target GNN. Therefore,

the overall time complexity of ToupleGNN is O(K(|V |+ |E|)).

Based on the obtained node embeddings, the score function to measure the marginal gain

of a node u ∈ S̄t = V \ St with respect to the current seed set St is defined as Q̂(u, St; Θ) =

θ⊤1 ReLU

([
θ2S

(K)
u , θ3

∑
v∈St

S(K)
v , θ4

∑
w∈V \(St∪{u})

T (K)
w

])
, (6.16)

where θ1 ∈ R2l, θ2, θ3, θ4 ∈ Rl×l are model parameters. Since the embeddings used to define

Q̂(u, St; Θ) are computed based on the parameters from ToupleGNN, Q̂(u, St; Θ) will depend

on {θi}4i=1 and all parameters in ToupleGNN. We will train these parameters (denoted by

Θ) end-to-end by RL.

115

6.5 Reinforcement Learning

6.5.1 RL Formulation

RL concerns about how the intelligent agent can take actions according to the current state

when interacting with environment to maximize the total reward received. Why do we use

RL model to learn the parameters in Q̂(u, St; Θ)? Actually, IM problem can be naturally

formulated as a RL problem:

• Action: an action selects a node u ∈ S̄t as the next seed, and we use u’s node embedding

to represent the action.

• State: a state St represents a sequence of actions of selecting nodes in the current seed

set St. We use a |V |-dimensional vector to represent state St, where the corresponding

component of node u is 1 if u ∈ St, and 0 otherwise. For simplicity, we will use St

instead of St to represent the state when there is no ambiguity. The terminal state Sb

is the state after selecting b nodes.

• Transition: changing the activation state Xu from 0 to 1 when u ∈ S̄t is selected as

the seed.

• Reward: the reward r(St, u) at state St is defined as the change of reward after se-

lecting node u into the current seed set St and transition to a new state. That is,

r(St, u) = σ(St ∪ {u}) − σ(St) and r(∅) = 0. In this way, the cumulative reward R

of a terminal state Sb coincides exactly with the influence spread of seed set Sb, i.e.,

R =
∑b−1

t=0 r(St, ut) = σ(Sb).

• Policy: policy maps a state to possibilities of selecting each possible action. That is, a

policy tells the agent how to pick the next action.

116

If we denote by Q∗ the optimal Q-function for this RL problem, then our embedding

parameterized function Q̂(u, St; Θ) will be a function approximator for it, which will be

learned by DDQN.

6.5.2 Training via DDQN

We use DDQN (Van Hasselt et al., 2016) to perform end-to-end learning of parameters in

Q̂(ut, St; Θ), which can avoid the over-optimistic issue of a simple DQN by adopting two

networks: behavior network and target network, parameterized with Θ and Θ′, respectively.

The target network provides Q-values estimation of future states during training of the

behavior network, and only updates parameters Θ′ from the behavior network Θ every m

episodes. The detailed training process is illustrated in Algorithm 18. We use the term

episode to represent a complete sequence of node additions starting from an empty set

until termination, and a single action (node addition) within an episode is referred to as a

step. To collect a more accurate estimate of future rewards, n-step Q-learning (Sutton and

Barto, 1998) is utilized to update the parameters, which is to wait n steps before updating

parameters. Additionally, we apply the fitted Q-iteration (Riedmiller, 2005) with experience

replay for faster learning convergence. Formally, the update is performed by minimizing the

following square loss:

(y − Q̂(ut, St; Θ))2, (6.17)

where y =
∑n−1

i=0 γ
ir(St+i, ut+i) + γnmaxv Q̂(v, St+n; Θ

′), and γ ∈ [0, 1] is the discount rate,

determining the importance of future rewards.

Specifically, we first apply the PDW method (Alg. 17) to obtain initial embeddings.

Then for each episode (Lines 2-20), the seed set is initialized to empty set. For each step,

ε-greedy policy is utilized to select a node, which selects a node randomly with probability

ε and with (1− ε) probability selects the node with the maximum Q-value (Lines 5-14). If

t ≥ n, it will add the current sample (St−n, ut−n,
∑n−1

i=0 γ
ir(St−n+i, ut−n+i), St) to the replay

117

Algorithm 18: Training of ToupleGDD

1 Obtain initial embedding for each u ∈ V by Alg. 17;
2 for episode e = 1 to D do
3 S0 = ∅;
4 for t = 1 to b do
5 Uniformly sample a number c from [0, 1);
6 if c < ε then
7 Randomly select a node ut ∈ V \ St;

8 else
9 for i = 1 to K do

10 for u ∈ V do

11 Update X
(i)
u , S

(i)
u , T

(i)
u by ToupleGNN;

12 for u ∈ V do

13 Calculate Q̂(u, St; Θ) by (6.16);

14 Select ut = argmaxu∈S̄t
Q̂(u, St; Θ);

15 St = St−1 ∪ {ut};
16 if t ≥ n then

17 (St−n, ut−n,
∑n−1

i=0 γ
ir(St−n+i, ut−n+i), St) to replay buffer M ;

18 Sample random batch B ∼M ;
19 Update Θ by Adam optimizer over (6.17) with B;
20 Update Θ′ from Θ every m episodes;

21 return Θ;

buffer M . Instead of performing a gradient step with respect to the loss of the current

example, the parameters are updated with a batch of random samples from the buffer (Lines

24-25). For each episode, we will perform b steps. At each step, node embeddings for each

node will be updated for K times by ToupleGNN. At each layer of ToupleGNN, each node

aggregates information from its in/out-neighborhood (overall O(|E|)). Therefore, the time

complexity of each layer is O(|V | + |E|). Putting it all together, the time complexity of

Algorithm 18 is O(|V ||E|+DbK(|V |+ |E|)).

118

6.6 Experiments

In this section, we conduct several experiments on different datasets to validate the perfor-

mance of our proposed ToupledGDD model. All experiments are conducted on a machine

with Intel Xeon CPU (2.40 GHz, 28 cores), 512 GB of DDR4 RAM, Nvidia Tesla V100

with 16-GB HBM2 memory, running CentOS Linux 7. The source code is available at

https://github.com/Dtrycode/ToupleGDD.

6.6.1 Experimental Setup

Datasets. To thoroughly evaluate the performance of the proposed model, both synthetic

and real-world datasets are used for evaluation. We generate 20 random Erdős-Renyi (ER)

graphs with node size varying from 15 to 50 for training and validation. Specifically, we

first sample the number of nodes uniformly at random from 15 to 50, and then generate an

ER graph with edge probability 0.15. Among those generated synthetic graphs, 15 graphs

are used for training, and the others are used for validation with the soc-dolphins dataset

(Rossi and Ahmed, 2015). The performance of the proposed model and baselines are tested

on seven real-world datasets, whose detailed statistics are shown in Table 6.1. For the

undirected graph, we replace each edge with two reversed directed edges. Among these

datasets, Twitter, Wiki-1, caGr and Buzznet are from (Rossi and Ahmed, 2015), while

Wiki-2, Epinions and Youtube are available on (Leskovec and Krevl, 2014).

Diffusion Models. Our model can be easily adapted to distinct diffusion models by revising

the definition of reward function. In this paper, we report the results under the IC model

here. Unless otherwise specified, the probability on edge (u, v) is set to 1/Nin(v) (in-degree

setting), which is widely used in previous works about IM (Kempe et al., 2003) (Tang et al.,

2014) (Tang et al., 2015) (Borgs et al., 2014) (Nguyen et al., 2016b). To fairly evaluate the

performance of different methods, we first record the seed set obtained by different methods

independently, and then perform 10,000 Monte Carlo simulations to estimate the expected

119

Table 6.1. Dataset characteristics

Dataset n m Type Average degree
soc-dolphins 62 159 directed 5
Twitter 0.8k 1k directed 2
Wiki-1 0.9k 3k directed 6
caGr 4.2k 13.4k undirected 5
Wiki-2 7.1k 103.7k directed 29
Epinions 76k 509k directed 13
Buzznet 101k 3M directed 55
Youtube 1.13M 3M undirected 5

influence spread. All experiments are run 10 times and we report the average of the metric

being measured.

Baselines. We compare the performance of ToupleGDD with the state-of-the-art approxi-

mation algorithm for IM problem, IMM (Tang et al., 2015) and OPIM-C (Tang et al., 2018),

and the DRL methods S2V-DQN (Khalil et al., 2017) and GCOMB (Manchanda et al.,

2020) for CO problem. Note that S2V-DQN is originally designed for CO problem, and we

revised their code for maximum cut problem to solve the IM problem. Another baseline is

PIANO (Li et al., 2022), which is modified from the S2V-DQN model for the IM problem.

For all other baselines, we use the code shared by the authors. For IMM and OPIM-C, we

set ϵ = 0.1.

Training and testing details. For all training datasets, edge weights are set as in-degree

setting. Edge weights on validation datasets and testing datasets have the same setting

(so we will only specify the setting of testing datasets in the following), and may be set as

one of the three settings: (1) in-degree setting; (2) set as 0.1 (0.1-setting); (3) set as 0.5

(0.5-setting). We set the budget b as 5 for all training datasets, while in validation setting

5 and 7 for ER graphs and soc-dolphins dataset, respectively. For each testing dataset, we

vary budget b such that b ∈ {10, 20, 30, 40, 50}. For S2V-DQN and ToupleGDD, we use RIS

method to estimate the influence spread for a given seed set in the training process. For

120

GCOMB, since their code is not able to deal with multiple training graphs, we follow the

same instructions as in their paper and use the training graph shared by them by revising

the edge weight to the in-degree setting.

6.6.2 Experimental Results

Ablation study. In the early version (called DISCO (Li et al., 2019)) of PIANO model, they

have shown that the order of candidate nodes with respect to their Q values remains almost

unchanged whenever we select a seed and recompute the network embeddings as well as the Q

values. Therefore, instead of iteratively selecting and re-computing nodes embeddings and Q

values according to each seed insertion (iterative operation), they simplified the process into

only one iteration, by embedding only once and select the top-b nodes with the maximum Q

(one-time operation). Inspired by this conclusion and operation, we compare the expected

influence spread of seed sets obtained by our ToupleGDD model by these two operations. On

the other hand, we also test the impact of the initial embedding to our model. Three groups

of experiments are conducted: (1) both train and test with initial embedding (TIEI); (2)

train with initial embedding but test without initial embedding (TIEN); (3) both train and

test without initial embedding (TNEN). For all of these three types, the validation setting

is same as the testing, and all experiments of this part use in-degree probability setting.

Besides, for (1) and (2), they share the same training model, and validations are conducted

independently for them. For each of the three groups, the iterative and one-time operations

are performed at the same one experiment. That is, after computing the Q-values, we

first output the top-b nodes with highest Q-values and then perform the iterative operation

according to greedy strategy. Therefore, both of these two operations share the same initial

embeddings if there is any.

The results are shown in Table 6.2. Note that TI and EI represent training and testing

with initial embedding, respectively. Firstly, for the same dataset and seed selection opera-

tion (e.g., Twitter with iterative operation), comparing results of three groups, we see that

121

Table 6.2. Performance of ToupleGDD under different setting

Dataset Operation TI EI
Budget:

10
Budget:

20
Budget:

30
Budget:

40
Budget:

50
Influence
spread

Influence
spread

Influence
spread

Influence
spread

Influence
spread

(time:s) (time:s) (time:s) (time:s) (time:s)

Twitter

iterative

√ √
147.71
(9.17)

210.86
(16.41)

252.11
(23.42)

287.59
(29.84)

315.88
(38.33)

√
146.93
(7.03)

210.66
(13.06)

252.12
(21.13)

287.95
(29.82)

315.99
(33.55)

139.36
(5.69)

188.23
(13.80)

234.41
(19.56)

270.09
(27.22)

301.59
(33.03)

one-time

√ √
146.87
(3.01)

210.86
(3.0)

252.11
(3.08)

288.08
(2.97)

316.60
(3.13)

√
147.26
(0.67)

210.66
(0.58)

251.53
(0.64)

287.95
(0.62)

317.28
(0.63)

139.36
(0.57)

188.29
(0.66)

232.85
(0.63)

270.11
(0.72)

300.34
(0.73)

caGr

iterative

√ √
213.13
(18.40)

368.74
(25.48)

489.15
(31.60)

602.95
(38.16)

696.95
(46.53)

√
214.18
(6.09)

372.13
(12.24)

488.60
(18.15)

602.33
(27.53)

697.99
(37.62)

210.56
(5.78)

368.28
(12.89)

489.33
(19.15)

605.18
(27.80)

699.82
(36.81)

one-time

√ √
208.29
(12.09)

355.87
(11.99)

487.99
(11.65)

604.93
(11.77)

695.95
(11.77)

√
210.10
(0.62)

372.79
(0.61)

488.27
(0.57)

608.25
(0.68)

704.79
(0.65)

208.24
(0.57)

367.52
(0.63)

487.69
(0.63)

608.23
(0.66)

708.54
(0.67)

Wiki-2

iterative

√ √
290.48
(46.79)

423.96
(54.68)

521.79
(63.35)

601.39
(71.72)

669.43
(78.23)

√
290.81
(7.39)

424.77
(15.79)

523.38
(22.82)

600.29
(31.01)

670.27
(40.04)

285.10
(7.24)

422.81
(15.4)

510.53
(19.99)

585.87
(30.18)

647.11
(36.36)

one-time

√ √
288.97
(39.94)

421.39
(40.46)

518.63
(39.05)

599.93
(39.57)

668.39
(39.16)

√
290.22
(0.72)

424.56
(0.70)

516.09
(0.70)

599.04
(0.70)

666.61
(0.73)

282.42
(0.67)

420.99
(0.68)

504.32
(0.66)

579.26
(0.72)

642.27
(0.69)

122

Table 6.2 continued

Dataset Operation TI EI
Budget:

10
Budget:

20
Budget:

30
Budget:

40
Budget:

50
Influence
spread

Influence
spread

Influence
spread

Influence
spread

Influence
spread

(time:s) (time:s) (time:s) (time:s) (time:s)

Epinions

iterative

√ √
6022.85

(2.77×103)
8303.34

(2.75×103)
9693.69

(2.81×103)
10866.88
(2.79×103)

11781.69
(2.8×103)

√
6018.67
(13.4)

8295.06
(29.9)

9708.72
(44.96)

10853.63
(58.2)

11771.37
(75.61)

6013.50
(13.51)

8300.42
(29.11)

9700.72
(42.07)

10840.46
(57.35)

11795.48
(70.3)

one-time

√ √
6022.85

(2.76×103)
8300.36

(2.72×103)
9694.49

(2.76×103)
10832.49
(2.73×103)

11736.67
(2.73×103)

√
6018.67
(1.36)

8315.56
(1.46)

9718.94
(1.42)

10829.7
(1.4)

11758.36
(1.46)

6013.5
(1.38)

8310.07
(1.42)

9729.69
(1.42)

10864.27
(1.43)

11800.19
(1.34)

the expected influence spread of seed set obtained by TIEI and TIEN are very close. How-

ever, the results of TNEN have big differences from the other two under the same budget,

and are not stable under different datasets, which indicates the necessity and importance of

initial embedding in training. Secondly, the running time of TIEN and TNEN is less than

that of TIEI for same dataset and seed selection operation, and this difference is significantly

big for large datasets, like Epinions. This is because there is no initial embedding generation

in TIEN and TNEN when testing, which can save much time especially for large datasets.

Besides, the running time of iterative operation increases with the increase of budget due

to more iterations and selections, and for one-time operation, there is no significant differ-

ence between different budgets. Thirdly, for same group of the experiment (e.g., Twitter

under TIEI), comparing the expected spread obtained by iterative and one-time operation,

we observe the difference between them is very small, but they actually don’t share the

exactly same seed set in most cases. However, we cannot figure out the reason causing this

difference due to the machine accuracy configuration for very close values. Besides, one-time

123

operation can output the seed set faster than iterative selection, due to its less iteration and

computation. From these results, it is convincing that we can use one-time operation for seed

selection and TIEN setting to save time but without large decrease of influence spread. For

ones who want to apply this algorithm in their problems, it is determined by the trade-off

between accuracy and running time.

Influence spread. We test the performance of ToupleGDD and baselines on Wiki-1, Epin-

ions, caGr, Buzznet and Youtube datasets with the in-degree probability setting. Fig. 6.3

and Fig. 6.4 draw the expected influence spread and running time produced by different

models on these five datasets. Note that the results obtained by our model is from TIEN

setting and one-time operation, which could not only provide close influence spread with

corresponding iterative operation but also runs in less time. From the left column of Fig.

6.3 and Fig. 6.4, the expected influence spread increases with the increase of budget, which

is consistent with the monotone increasing characteristic of influence spread under the IC

model. Besides, the performance of ToupleGDD is very close to IMM and outperforms

OPIM-C on Wiki-2, Buzznet and Youtube datasets, which proves the effectiveness of our

model. Comparing the performance of all DRL-based models, ToupleGDD can outperform

all other DRL-based models on all tested datasets, demonstrating the superiority of our

model. And PIANO and S2V-DQN do not perform stably across different datasets, where

S2V-DQN performs better than PIANO on undirected graph caGr, but worse than PIANO

on other datasets. This may be because S2V-DQN is designed for undirected graph, and

the original paper trained and tested the model on undirected graphs. Even though PIANO

is revised from S2V-DQN, its performance is not close to S2V-DQN. This may be because

code of PIANO is revised from the code for minimum vertex cover (MVC) problem in the

shared S2V-DQN code, while our revised code is from maximum cut (MC) problem. Thus,

we use different initial node features. The reason that we choose code of MC is that they

have considered edge weight and edge features in MC but not in MVC. Additionally, PIANO

and GCOMB have close performance on Epinions, caGr and Buzznet datasets.

124

(a) Wiki-2, Performance (b) Wiki-2, Running time

(c) Epinions, Performance (d) Epinions, Running time

(e) caGr, Performance (f) caGr, Running time

Figure 6.3. Performance and running time comparisons among different methods on Wiki-2,
Epinions and caGr datasets.

125

(a) Buzznet, Performance (b) Buzznet, Running time

(c) Youtube, Performance (d) Youtube, Running time

Figure 6.4. Performance and running time comparisons among different methods on Buzznet
and Youtube datasets.

Running time. The right column of Fig. 6.3 and Fig. 6.4 draws the corresponding running

time of different models to obtain the results in the left column. Note that we only record

the time that the model needs to output the seed set for a budget not including the time

to compute influence spread of the seed set. We observe that S2V-DQN needs more time

to output the seed set than ToupleGDD on all datasets except Youtube. This may be

because S2V-DQN use iterative not one-time manner to select seeds, which needs to update

embedding and recompute Q-values for b times. Among all the tested methods, OPIM-

C needs least time and ToupleGDD model runs a little slower. This may be because our

126

model has many parameters and need to compute the dynamic influence importance between

nodes which is time-consuming. But our model’s running time is acceptable since it is less

than 3 seconds even for million-size dataset Buzznet. Note that this time difference also

includes the effects of different implementation language, since ToupleGDD is implemented

by Python, while IMM, OPIM-C and most part of PIANO are implemented by C++. We

also observe that GCOMB runs slower than ToupleGDD and PIANO on Wiki-2, Epinions

and caGr datasets. This may be because GCOMB is proposed for CO problem over very

large networks and in their paper, they claimed GCOMB is hundreds of times faster than

IMM on million-size datasets. However, from the results in Fig. 3, for small graphs Wiki-2,

caGr and Epinions, the running time of GCOMB is longer than ToupleGDD and PIANO

due to its extra computational overhead and efforts of hand-crafting the learning pipeline in

the supervised learning part.

Generalization. To further validate ToupleGDD’s generalization ability, we test the per-

formance of the model trained under in-degree setting and tested on Twitter and Wiki-1

datasets with both 0.1-setting and 0.5-setting. Fig. 6.5 and Fig. 6.6 draw the results for

0.1-setting and 0.5-setting, respectively. From these results, the performance of ToupleGDD

is almost equal to IMM and outperforms OPIM-C under 0.1-setting even though it is trained

under in-degree setting. And ToupleGDD outperforms all other DRL-based models for both

of the two edge probability settings on the two tested datasets. This demonstrates the ro-

bustness and generalization ability of the proposed ToupleGDD model. The performance

of S2V-DQN, PIANO and GCOMB are not stable across different edge weight settings.

S2V-DQN outperforms PIANO and GCOMB under 0.1-setting, while PIANO outperforms

S2V-DQN and GCOMB under 0.5 setting. Furthermore, our model can obtain at least 33%

gain of the expected influence spread than S2V-DQN under 0.1-setting, and at least 20%

gain of the expected influence spread than PIANO under 0.5-setting.

127

(a) Twitter (b) Wiki-1

Figure 6.5. Performance comparisons among different methods under 0.1-setting.

(a) Twitter (b) Wiki-1

Figure 6.6. Performance comparisons among different methods under 0.5-setting.

6.6.3 Intuition of Applying DDQN

Although DQN is an important milestone for deep learning, several limitations of this algo-

rithm are now known. The improvement to DQN has blossomed in the last decades, such

as Dueling DQN (DuelDQN), Double DQN (DDQN) and Duel Double DQN (DuelDDQN).

How about the performance of S2V-DQN by replacing DQN with these improvements on

IM? This is the main purpose of this group of experiments. We incorporate structure2vec

method with these improved models, and compare their performance with S2V-DQN on IM.

128

(a) budget 5 (b) budget 7

(c) budget 9 (d) Testing result

Figure 6.7. Training and testing results for different models. (a) (b) and (c): learning curve
with budget 5, 7 and 9, respectively; Solid line is average, and shadow is one standard
deviation. (d) Testing result: dot is average, and bar shows one standard deviation.

We train the four models on soc-dolphins dataset with 0.5-setting for edge weight and

the budget is taken from {5, 7, 9}. Here we keep the budget same for training and testing

to avoid the effect of changing budget in the performance. For each budget, we train each

framework 1000 epochs with exploration ratio ε starting from 1 and multiplied by a factor

per epoch to balance exploration and exploitation. We run each framework 5 times to get

the average and standard deviation.

129

The learning curves of the four frameworks with budget 5, 7 and 9 are shown in Fig. 6.7

(a), (b) and (c), respectively. We expect S2V-DuelDQN to converge fast and S2V-DuelDDQN

to perform the best. However, from the results, we observe that S2V-DuelDQN may not

work and its advantage of fast convergence is not perceivable. The S2V-DDQN does perform

well and DuelDDQN manages to make its influence score increase more in fewer epochs. The

learning curves fluctuate more with the simple DQN and DuelDQN based models, while the

DDQN based models maintain much more stable learning curves across multiple runs.

Table 6.3. p-value under different budgets (S2V is saved in methods’ name for space)

Model DuelDQN DDQN DuelDDQN

Budget 5 7 9 5 7 9 5 7 9

DQN 0.3799 0.6611 0.4489 2.1029e-14 5.7903e-12 1.1655e-08 2.3740e-14 5.3526e-12 1.2368e-08

DuelDQN - 4.4682e-10 2.0871e-08 0.0011 4.8612e-10 1.9727e-08 0.0011

DDQN - - 0.0082 0.0457 0.4111

We test the trained frameworks on a uniformly sampled graph with the same number of

nodes and edges as in training dataset. For each model from training, we run 5 times on

the testing graph to get its average performance and the seeds are selected with iterative

operation. Fig. 6.7 (d) draws the expected spread of seed set obtained by different models.

We observe that the DDQN based models still perform better than the simple DQN and Du-

elDQN model, and are much more stable. Furthermore, we use p-value to check significance

of testing performance difference between frameworks as shown in Table 6.3. Generally,

when p-value is less than 0.05, the performance difference of the two models is significant.

The p-value results agree with our previous observation that DDQN based models perform

significantly better than DQN and DuelDQN based models. Though the difference between

S2V-DDQN and S2V-DuelDDQN is subtle in Fig. 6.7 (d), DuelDDQN does get significantly

better performance when the budget is small.

Fig. 6.8 (a) and (b) draw the training and testing time averaged from 5 runs for each

framework. The time usage is approximately proportional to the budget size. DDQN based

130

(a) Training time (b) Testing time

Figure 6.8. Running time: dot is average, and bar shows one standard deviation.

models even maintain much lower time usage (both training and testing) compared to DQN

based models, which demonstrates the efficiency of DDQN based models.

131

CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation considers several variants of influence maximization problem in social net-

works, including continuous activity maximization problem, budget profit maximization with

coupon advertisement problem, adaptive multi-Feature budgeted profit maximization prob-

lem, and learning-based influence maximization problem.

For the continuous activity maximization problem in Chapter 3 (see p. 9), we considered

it as the maximization problem on lattice. We proved the hardness and gave a computing

method for the objective function of the continuous activity maximization problem. This

objective function is monotone but not DR-submodular and not DR-supermodular. We

designed the unbiased sampling for it, its upper bound and lower bound. Adapted from IMM

algorithm and sandwich approximation framework, a data-dependent approximation ratio

can be obtained. The performance of the proposed algorithms is verified by experiments.

The analysis of continuous activity maximization problem is applicable to others which is a

branch of maximization problem on lattice.

For the budget profit maximization with coupon advertisement problem in Chapter 4

(see p. 40), we proved it can be classified as submodular maximization with cardinality

constraint problem under the IC/LTmodel. By discretizing Continuous Double Greedy al-

gorithm and combining with Random Greedy algorithm, an improved h(G, k)-approximation

can be obtained. Then, in order to study its robustness, Robust-budget profit maximization

with coupon advertisement problem is proposed, an h(G, k) · α(Θ)- and h(G, k) · (1 − ϵ)-

approximation can be obtained by Lower-Upper framework and uniform sampling. The

performance of the proposed algorithms is verified by experiments. The analysis of bud-

get profit maximization with coupon advertisement and Robust-budget profit maximization

with coupon advertisement problem is applicable to others which is a branch of submod-

ular maximization with cardinality constraint problem. The future work comes from the

132

Discretized-CDG, can we give an exact approximation ratio by connecting time step ∆t and

sampling number λ, we do not give the strict description how small ∆t is and how large λ is.

Next, the running time of Discretized-CDG needed to be improved further. We have given

an initial attempt to replace Monte Carlo simulation by use of RIS, but do not bound the

error theoretically. If you are interested in more about it, please read (Borgs et al., 2014)

(Tang et al., 2014) (Tang et al., 2015).

For the adaptive multi-Feature budgeted profit maximization problem in Chapter 5 (see

p. 68), we studied it under two models, oracle model and noise model. Specifically, a (1−1/e)

expected approximation policy was proposed in the oracle model. Under the noise model,

we computed conditional expected marginal profit of a node under a partial realization by

reverse influence sampling technique and proposed an efficient algorithm, which could achieve

a (1−e−(1−ϵ)) expected approximation ratio, where 0 < ϵ < 1. To evaluate the performance of

our algorithms, extensive experiments were done on six realistic datasets with the comparison

of our proposed policies to their corresponding non-adaptive algorithms and some heuristic

adaptive policies.

For the learning-based influence maximization problem in Chapter 6 (see p. 100), we pre-

sented a novel end-to-end framework, ToupleGDD, to address it by leveraging deep reinforce-

ment learning technique. Specifically, we incorporated graph neural networks for network

embedding and reinforcement learning technique, double deep Q-networks, for parameters

learning. Compared to the state-of-the-art sampling-based approximation algorithms, Tou-

pleGDD can avoid costly sampling of the diffusion paths. Compared to previous works using

deep reinforcement learning method for the influence maximization problem, our model

have a stronger generalization ability and show almost consistent performance across differ-

ent social networks. We conducted extensive experiments to evaluate the performance of

our proposed model. The empirical results show that ToupleGDD can achieve almost equal

expected spread to that of IMM and outperform OPIM-C algorithm on several datasets,

133

which is much better than other learning based methods. This validates the effectiveness

and efficiency of the proposed ToupleGDD model.

Submodular maximization problems on social networks have been extensively studied in

the last few decades. However, the state-of-the-art methods, including heuristics and ap-

proximation algorithms, faced great difficulties such as theoretical guarantee, time efficiency,

generalization, etc, which makes them unable to adapt to large-scale networks and more

complex applications. On the other hand, with recent emerging applications, most of the

objective functions of social network problems have been shown to be non-submodular or

non-linear. Currently, there is no efficient algorithm for the problem with non-monotone and

non-submodular objective function. Existing works are mainly focused on designing data-

driven approximation algorithms, which suffer scalability and generalization issues. With

the latest achievements of deep reinforcement learning in solving the combinatorial opti-

mization problems, I intend to design the end-to-end deep reinforcement learning based

model to solve more maximization problems on social networks efficiently and effectively,

such as rumor blocking problem and competitive influence maximization, which can achieve

good performance even on large-scale networks.

134

REFERENCES

Ali, K., Wang, C.-Y., and Chen, Y.-S. (2018). Boosting reinforcement learning in competitive

influence maximization with transfer learning. In 2018 IEEE/WIC/ACM International

Conference on Web Intelligence (WI), pages 395–400. IEEE.

Ali, K., Wang, C.-Y., Yeh, M.-Y., and Chen, Y.-S. (2020). Addressing competitive in-

fluence maximization on unknown social network with deep reinforcement learning. In

2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM), pages 196–203. IEEE.

Arthur, D., Motwani, R., Sharma, A., and Xu, Y. (2009). Pricing strategies for viral mar-

keting on social networks. In International workshop on internet and network economics,

pages 101–112. Springer.

Banerjee, S., Jenamani, M., and Pratihar, D. K. (2020). Earned benefit maximization in

social networks under budget constraint. Expert Systems with Applications, 169.

Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combinatorial opti-

mization: a methodological tour d’horizon. European Journal of Operational Research,

290(2):405–421.

Borgs, C., Brautbar, M., Chayes, J., and Lucier, B. (2014). Maximizing social influence in

nearly optimal time. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on

Discrete algorithms, pages 946–957. SIAM.

Borodin, A., Filmus, Y., and Oren, J. (2010). Threshold models for competitive influence

in social networks. In International workshop on internet and network economics, pages

539–550. Springer.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012). A tight linear time (1/2)-

approximation for unconstrained submodular maximization. In 2012 IEEE 53rd Annual

Symposium on Foundations of Computer Science, pages 649–658.

Buchbinder, N., Feldman, M., Naor, J. S., and Schwartz, R. (2014). Submodular maximiza-

tion with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM

symposium on Discrete algorithms, pages 1433–1452. Society for Industrial and Applied

Mathematics.

Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R. (2015). A tight linear time (1/2)-

approximation for unconstrained submodular maximization. SIAM Journal on Computing,

44(5):1384–1402.

135

Cai, Z., He, Z., Guan, X., and Li, Y. (2016). Collective data-sanitization for preventing sen-
sitive information inference attacks in social networks. IEEE Transactions on Dependable
and Secure Computing, 15(4):577–590.

Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2011). Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766.

Cao, Q., Shen, H., Gao, J., Wei, B., and Cheng, X. (2020). Popularity prediction on social
platforms with coupled graph neural networks. In Proceedings of the 13th International
Conference on Web Search and Data Mining, pages 70–78.

Chen, H., Qiu, W., Ou, H.-C., An, B., and Tambe, M. (2021). Contingency-aware influence
maximization: A reinforcement learning approach. In Uncertainty in Artificial Intelligence,
pages 1535–1545. PMLR.

Chen, T., Guo, J., and Wu, W. (2022). Adaptive multi-feature budgeted profit maximization
in social networks. Social Network Analysis and Mining, 12(1):164.

Chen, T., Liu, B., Liu, W., Fang, Q., Yuan, J., and Wu, W. (2020a). A random algorithm for
profit maximization in online social networks. Theoretical Computer Science, 803:36–47.

Chen, T., Liu, W., Fang, Q., Guo, J., and Du, D.-Z. (2019). Minimizing misinformation profit
in social networks. IEEE Transactions on Computational Social Systems, 6(6):1206–1218.

Chen, W. (2018). An issue in the martingale analysis of the influence maximization algorithm
imm. In International Conference on Computational Social Networks, pages 286–297.
Springer.

Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., Sun, X., Wang, Y., Wei,
W., and Yuan, Y. (2011). Influence maximization in social networks when negative opin-
ions may emerge and propagate. In Proceedings of the 2011 siam international conference
on data mining, pages 379–390. SIAM.

Chen, W., Lin, T., Tan, Z., Zhao, M., and Zhou, X. (2016). Robust influence maximiza-
tion. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 795–804. ACM.

Chen, W. and Peng, B. (2019). On adaptivity gaps of influence maximization under the
independent cascade model with full-adoption feedback. In Proceedings of the 30th Inter-
national Symposium on Algorithms and Computation (ISAAC’2019).

Chen, W., Peng, B., Schoenebeck, G., and Tao, B. (2020b). Adaptive greedy versus non-
adaptive greedy for influence maximization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 590–597.

136

Chen, W., Wang, C., and Wang, Y. (2010a). Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1029–1038.

Chen, W., Wang, Y., and Yang, S. (2009). Efficient influence maximization in social net-
works. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 199–208.

Chen, W., Wu, R., and Yu, Z. (2018). Scalable lattice influence maximization. arXiv preprint
arXiv:1802.04555.

Chen, W., Yuan, Y., and Zhang, L. (2010b). Scalable influence maximization in social
networks under the linear threshold model. In 2010 IEEE international conference on
data mining, pages 88–97. IEEE.

Dai, H., Dai, B., and Song, L. (2016). Discriminative embeddings of latent variable models
for structured data. In International conference on machine learning, pages 2702–2711.
PMLR.

Domingos, P. and Richardson, M. (2001). Mining the network value of customers. In Pro-
ceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 57–66. ACM.

Fan, C., Zeng, L., Sun, Y., and Liu, Y.-Y. (2020). Finding key players in complex networks
through deep reinforcement learning. Nature machine intelligence, 2(6):317–324.

Feng, S., Cong, G., Khan, A., Li, X., Liu, Y., and Chee, Y. M. (2018). Inf2vec: Latent
representation model for social influence embedding. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 941–952. IEEE.

Golovin, D. and Krause, A. (2011). Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence Research,
42:427–486.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2010). Learning influence probabilities in
social networks. In Proceedings of the third ACM international conference on Web search
and data mining, pages 241–250. ACM.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011a). Celf++ optimizing the greedy algorithm
for influence maximization in social networks. In Proceedings of the 20th international
conference companion on World wide web, pages 47–48.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011b). Simpath: An efficient algorithm for
influence maximization under the linear threshold model. In 2011 IEEE 11th international
conference on data mining, pages 211–220. IEEE.

137

Guo, J., Chen, T., andWu, W. (2020a). Budgeted coupon advertisement problem: Algorithm
and robust analysis. IEEE Transactions on Network Science and Engineering, 7(3):1966–
1976.

Guo, J., Chen, T., and Wu, W. (2020b). Continuous activity maximization in online social
networks. IEEE Transactions on Network Science and Engineering, 7(4):2775–2786.

Guo, J., Chen, T., and Wu, W. (2020c). A multi-feature diffusion model: Rumor blocking
in social networks. IEEE/ACM Transactions on Networking, 29(1):386–397.

Guo, J., Li, Y., and Wu, W. (2019). Targeted protection maximization in social networks.
IEEE Transactions on Network Science and Engineering, pages 1–1.

Guo, J. and Wu, W. (2019). A novel scene of viral marketing for complementary products.
IEEE Transactions on Computational Social Systems, 6(4):797–808.

Guo, J. and Wu, W. (2020a). Adaptive influence maximization: If influential node unwilling
to be the seed. arXiv preprint arXiv:2005.08060.

Guo, J. and Wu, W. (2020b). A k-hop collaborate game model: Adaptive strategy to
maximize total revenue. IEEE Transactions on Computational Social Systems, 7(4):1058–
1068.

Guo, Q., Wang, S., Wei, Z., and Chen, M. (2020d). Influence maximization revisited: Effi-
cient reverse reachable set generation with bound tightened. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pages 2167–2181.

Han, K., Huang, K., Xiao, X., Tang, J., Sun, A., and Tang, X. (2018). Efficient algorithms for
adaptive influence maximization. Proceedings of the VLDB Endowment, 11(9):1029–1040.

Hassani, H., Soltanolkotabi, M., and Karbasi, A. (2017). Gradient methods for submodular
maximization. In Advances in Neural Information Processing Systems, pages 5841–5851.

Hatano, D., Fukunaga, T., and Kawarabayashi, K.-I. (2016). Adaptive budget allocation for
maximizing influence of advertisements. In IJCAI, pages 3600–3608.

He, X. and Kempe, D. (2015). Stability of influence maximization. arXiv preprint
arXiv:1501.04579.

He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., and Li, Y. (2016). Cost-efficient strategies for
restraining rumor spreading in mobile social networks. IEEE Transactions on Vehicular
Technology, 66(3):2789–2800.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep
reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, pages
3215–3222.

138

Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In
The Collected Works of Wassily Hoeffding, pages 409–426. Springer.

Huang, K., Tang, J., Han, K., Xiao, X., Chen, W., Sun, A., Tang, X., and Lim, A. (2020).
Efficient approximation algorithms for adaptive influence maximization. The VLDB Jour-
nal, 29(6):1385–1406.

Huang, K., Wang, S., Bevilacqua, G., Xiao, X., and Lakshmanan, L. V. (2017). Revisit-
ing the stop-and-stare algorithms for influence maximization. Proceedings of the VLDB
Endowment, 10(9):913–924.

Ireland, D. and Montana, G. (2022). Lense: Learning to navigate subgraph embeddings for
large-scale combinatorial optimisation. In International conference on machine learning,
pages 9622–9638. PMLR.

Jung, K., Chen, W., and Heo, W. (2011). Irie: A scalable influence maximization algorithm
for independent cascade model and its extensions. Technical report.

Jung, K., Heo, W., and Chen, W. (2012). Irie: Scalable and robust influence maximization
in social networks. In 2012 IEEE 12th International Conference on Data Mining, pages
918–923. IEEE.

Kamarthi, H., Vijayan, P., Wilder, B., Ravindran, B., and Tambe, M. (2020). Influence max-
imization in unknown social networks: Learning policies for effective graph sampling. In
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, pages 575–583.

Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146.

Kempe, D., Kleinberg, J., and Tardos, É. (2015). Maximizing the spread of influence through
a social network. Theory OF Computing, 11(4):105–147.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems,
30.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Faloutsos, C., VanBriesen, J., and
Glance, N. (2007). Cost-effective outbreak detection in networks. In Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 420–429. ACM.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data.

139

http://snap.stanford.edu/data

Li, H., Xu, M., Bhowmick, S. S., Rayhan, J. S., Sun, C., and Cui, J. (2022). Piano: Influence
maximization meets deep reinforcement learning. IEEE Transactions on Computational
Social Systems.

Li, H., Xu, M., Bhowmick, S. S., Sun, C., Jiang, Z., and Cui, J. (2019). Disco: Influence max-
imization meets network embedding and deep learning. arXiv preprint arXiv:1906.07378.

Li, Z., Chen, Q., and Koltun, V. (2018). Combinatorial optimization with graph convolu-
tional networks and guided tree search. Advances in neural information processing systems,
31:537–546.

Lin, S.-C., Lin, S.-D., and Chen, M.-S. (2015). A learning-based framework to handle multi-
round multi-party influence maximization on social networks. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
695–704.

Lin, Y., Cai, Z., Wang, X., and Hao, F. (2019). Incentive mechanisms for crowdblocking ru-
mors in mobile social networks. IEEE Transactions on Vehicular Technology, 68(9):9220–
9232.

Liu, B., Li, X., Wang, H., Fang, Q., Dong, J., and Wu, W. (2020). Profit maximization
problem with coupons in social networks. Theoretical Computer Science, 803:22–35.

Lu, W., Chen, W., and Lakshmanan, L. V. (2015). From competition to complementarity:
comparative influence diffusion and maximization. Proceedings of the VLDB Endowment,
9(2):60–71.

Lu, W. and Lakshmanan, L. V. (2012). Profit maximization over social networks. In 2012
IEEE 12th International Conference on Data Mining, pages 479–488. IEEE.

Lu, Z., Zhou, H., Li, V. O., and Long, Y. (2016). Pricing game of celebrities in sponsored
viral marketing in online social networks with a greedy advertising platform. In 2016 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3. Citeseer.

Maehara, T., Yabe, A., and Kawarabayashi, K.-i. (2015). Budget allocation problem with
multiple advertisers: A game theoretic view. In ICML, volume 32, pages 428–437.

Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu, S., and Singh, A. (2020). Gcomb:
Learning budget-constrained combinatorial algorithms over billion-sized graphs. Advances
in Neural Information Processing Systems, 33:20000–20011.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2021). Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400.

140

Minoux, M. (1978). Accelerated greedy algorithms for maximizing submodular set functions.
In Optimization techniques, pages 234–243. Springer.

Miyauchi, A., Iwamasa, Y., Fukunaga, T., and Kakimura, N. (2015). Threshold influence
model for allocating advertising budgets. In International Conference on Machine Learn-
ing, pages 1395–1404.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. nature, 518(7540):529–533.

Moore, E. F. (1959). The shortest path through a maze. In Proceedings of the International
Symposium on the Theory of Switching, pages 285–292.

Motwani, R. and Raghavan, P. (1995). Randomized algorithms. Cambridge university press.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations
for maximizing submodular set functions—I. Mathematical programming, 14(1):265–294.

Netrapalli, P. and Sanghavi, S. (2012). Learning the graph of epidemic cascades. In ACM
SIGMETRICS Performance Evaluation Review, volume 40, pages 211–222. ACM.

Nguyen, H. T., Dinh, T. N., and Thai, M. T. (2016a). Cost-aware targeted viral marketing
in billion-scale networks. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE.

Nguyen, H. T., Thai, M. T., and Dinh, T. N. (2016b). Stop-and-stare: Optimal sampling
algorithms for viral marketing in billion-scale networks. In Proceedings of the 2016 Inter-
national Conference on Management of Data, pages 695–710.

Nguyen, H. T., Thai, M. T., and Dinh, T. N. (2017). A billion-scale approximation algorithm
for maximizing benefit in viral marketing. IEEE/ACM Transactions On Networking,
25(4):2419–2429.

Peng, B. and Chen, W. (2019). Adaptive influence maximization with myopic feedback. In
NeurIPS.

Richardson, M. and Domingos, P. (2002). Mining knowledge-sharing sites for viral market-
ing. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 61–70. ACM.

Riedmiller, M. A. (2005). Neural fitted Q iteration - first experiences with a data efficient
neural reinforcement learning method. In European Conference on Machine Learning,
pages 317–328. Springer.

141

Rossi, R. and Ahmed, N. (2015). The network data repository with interactive graph ana-
lytics and visualization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29.

Saito, K., Nakano, R., and Kimura, M. (2008). Prediction of information diffusion probabil-
ities for independent cascade model. In International conference on knowledge-based and
intelligent information and engineering systems, pages 67–75. Springer.

Shan, X., Chen, W., Li, Q., Sun, X., and Zhang, J. (2019). Cumulative activation in social
networks. Science China Information Sciences, 62(5):1–21.

Soma, T. (2017). Non-monotone dr-submodular function maximization. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, pages 898–904. AAAI.

Soma, T., Kakimura, N., Inaba, K., and Kawarabayashi, K.-i. (2014). Optimal budget
allocation: Theoretical guarantee and efficient algorithm. In International Conference on
Machine Learning, pages 351–359.

Soma, T. and Yoshida, Y. (2015). A generalization of submodular cover via the diminishing
return property on the integer lattice. In Advances in Neural Information Processing
Systems, pages 847–855.

Soma, T. and Yoshida, Y. (2018). Maximizing monotone submodular functions over the
integer lattice. Mathematical Programming, 172(1-2):539–563.

Sun, L., Huang, W., Yu, P. S., and Chen, W. (2018). Multi-round influence maximization. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2249–2258.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press.

Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43.

Tang, J., Sun, J., Wang, C., and Yang, Z. (2009). Social influence analysis in large-scale net-
works. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 807–816. ACM.

Tang, J., Tang, X., Xiao, X., and Yuan, J. (2018). Online processing algorithms for influence
maximization. In Proceedings of the 2018 International Conference on Management of
Data, pages 991–1005.

Tang, J., Tang, X., and Yuan, J. (2016). Profit maximization for viral marketing in on-
line social networks. In 2016 IEEE 24th International Conference on Network Protocols
(ICNP), pages 1–10. IEEE.

142

Tang, Y., Shi, Y., and Xiao, X. (2015). Influence maximization in near-linear time: A
martingale approach. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1539–1554.

Tang, Y., Xiao, X., and Shi, Y. (2014). Influence maximization: Near-optimal time com-
plexity meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 75–86.

Tian, S., Zhang, P., Mo, S., Wang, L., and Peng, Z. (2019). A learning approach for topic-
aware influence maximization. In Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint International Conference on Web and Big Data, pages 125–
140. Springer.

Tong, G., Wu, W., and Du, D.-Z. (2018). Coupon advertising in online social systems:
Algorithms and sampling techniques. arXiv preprint arXiv:1802.06946.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
pages 2094–2100.

Vondrák, J. (2013). Symmetry and approximability of submodular maximization problems.
SIAM Journal on Computing, 42(1):265–304.

Wang, C., Chen, W., and Wang, Y. (2012). Scalable influence maximization for independent
cascade model in large-scale social networks. Data Mining and Knowledge Discovery,
25(3):545–576.

Wang, Y., Cai, Z., Zhan, Z.-H., Gong, Y.-J., and Tong, X. (2019). An optimization and
auction-based incentive mechanism to maximize social welfare for mobile crowdsourcing.
IEEE Transactions on Computational Social Systems, 6(3):414–429.

Wang, Z., Yang, Y., Pei, J., Chu, L., and Chen, E. (2017). Activity maximization by
effective information diffusion in social networks. IEEE Transactions on Knowledge and
Data Engineering, 29(11):2374–2387.

Yadav, A., Noothigattu, R., Rice, E., Onasch-Vera, L., Soriano Marcolino, L., and Tambe, M.
(2018). Please be an influencer?: Contingency-aware influence maximization. In Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
pages 1423–1431.

Yang, Y., Mao, X., Pei, J., and He, X. (2016). Continuous influence maximization: What
discounts should we offer to social network users? In Proceedings of the 2016 international
conference on management of data, pages 727–741. ACM.

143

Yang, Y. and Whinston, A. (2020). A survey on reinforcement learning for combinatorial
optimization. arXiv preprint arXiv:2008.12248.

Zhang, H., Mishra, S., Thai, M. T., Wu, J., and Wang, Y. (2014). Recent advances in in-
formation diffusion and influence maximization in complex social networks. Opportunistic
Mobile Social Networks, 37(1.1):37.

Zhang, H., Zhang, H., Kuhnle, A., and Thai, M. T. (2016). Profit maximization for multiple
products in online social networks. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9. IEEE.

Zhang, Y., Yang, X., Gao, S., and Yang, W. (2019). Budgeted profit maximization under
the multiple products independent cascade model. IEEE Access, 7:20040–20049.

Zhou, F., Jiao, R. J., and Lei, B. (2015). Bilevel game-theoretic optimization for prod-
uct adoption maximization incorporating social network effects. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 46(8):1047–1060.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. (2020).
Graph neural networks: A review of methods and applications. AI open, 1:57–81.

144

BIOGRAPHICAL SKETCH

Tiantian Chen received her Bachelor of Science degree in Mathematics and Applied Mathe-

matics, and Master of Science degree in Operational Research and Cybernetics from Ocean

University of China in 2016 and 2019, respectively. She joined the Department of Computer

Science, The University of Texas at Dallas, as a PhD student in 2019. She worked under

the supervision of Dr. Weili Wu and Dr. Ding-Zhu Du. Her research interests include re-

inforcement learning, deep learning, social networks, blockchain, and design and analysis of

approximation algorithms.

145

CURRICULUM VITAE

Tiantian Chen
May 1, 2023

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: tiantian.chen@utdallas.edu

Educational History:

BS, Mathematics and Applied Mathematics, Ocean University of China, June 2016
MS, Operational Research and Cybernetics, Ocean University of China, June 2019
PhD, Computer Science, The University of Texas at Dallas, May 2023

Variant Influence Maximization: Approximation Algorithm and Deep Solution
PhD Dissertation
Department of Computer Science, The University of Texas at Dallas
Advisors: Dr. Weili Wu and Dr. Ding-Zhu Du

Employment History:

Teaching Assistant, The University of Texas at Dallas, August 2019 – present

Professional Recognitions and Honors:

Outstanding Academic Performance, and 2022 Grace Hopper Conference (GHC’22) Schol-
arship, The University of Texas at Dallas, 2022 – 2023
Outstanding Graduate Award of Shandong province, Outstanding Graduate Award and the
Second Class University’s Scholarship, Ocean University of China, 2018 – 2019
Second Prize in the Thirteenth National Post-Graduate Mathematical Contest in Modeling,
Excellent Graduates Award, Excellent Graduate Scholarship, Ocean University of China,
2016-2017
Honorable Mention Award in 2015 Mathematical Contest in Modeling, National Scholarship,
Outstanding Student Award of Shandong province, Outstanding Student Leader Award, and
Outstanding Student Award of university, Ocean University of China, 2014-2015
National Scholarship, Provincial First Prize in 2014 China Undergraduate Mathematical
Contest in Modelling, and Outstanding Student Award, Ocean University of China, 2013-
2014
National Inspiration Scholarship, Ocean University of China, 2012-2013

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Social Network
	Basic Diffusion Models
	Realization
	Influence Maximization

	Continuous Activity Maximization [1]© 2020 IEEE. Reprinted, with permission, from Jianxiong Guo, Tiantian Chen and Weili Wu, “Continuous Activity Maximization in Online Social Networks”, IEEE Transactions on Network Science and Engineering, May, 2020. DOI: 10.1109/TNSE.2020.2993042
	Related Work
	Problem Formulation
	Properties of CAM
	Hardness
	Modularity of Objective Functions

	Upper and Lower Bound
	Bounds Definition
	Properties of the Bounds

	Algorithms
	Sampling techniques
	Modified IMM on Lattice
	Sandwich Approximation Framework

	Experiment
	Experimental Settings
	Experimental Results

	Budget Profit Maximization with Coupon Advertisement [1]© 2020 IEEE. Reprinted, with permission, from Jianxiong Guo, Tiantian Chen and Weili Wu, “Budgeted Coupon Advertisement Problem: Algorithm and Robust Analysis”, IEEE Transactions on Network Science and Engineering, January, 2020. DOI: 110.1109/TNSE.2020.2964882
	Related Work
	Problem Formulation
	Algorithm for BPMCA
	Preliminaries
	Discretization of CDG Algorithm
	Time Complexity
	Solution for BPMCA

	Robust Analysis
	Solution for Robust-BPMCA
	Solution with Uniform Sampling

	Experiment
	Experimental Settings
	Experimental Results

	Adaptive Multi-Feature Budgeted Profit Maximization [1]Reproduced with permission from Springer Nature: Tiantian Chen, Jianxiong Guo, and Weili Wu, “Adaptive multi-feature budgeted profit maximization in social networks”, Social Network Analysis and Mining, 12, 164, 2022, Springer Nature. DOI: 10.1007/s13278-022-00989-3
	Introduction
	Related Works
	Influence Maximization Problem under the MF-model
	Multi-Feature Diffusion Model
	Equivalent Diffusion Process
	Property of (S)

	Multi-feature Budgeted Profit Maximization Problem
	Problem Definition
	Algorithm

	Adaptive Multi-feature Budgeted Profit Maximization Problem
	Problem Definition

	Algorithm and Theoretical Analysis
	Adaptive Greedy Algorithm under the Oracle Model
	Adaptive Greedy Algorithm under the Noise Model

	Experiments
	Experimental Setup
	Experimental Results

	Learning-based Influence Maximization
	Introduction
	Related Works
	Preliminaries and Framework
	Background
	General Framework of GNN
	Framework of ToupleGDD

	Representation: Node Embedding
	Initial Embedding Learning
	ToupleGNN
	Putting It Together

	Reinforcement Learning
	RL Formulation
	Training via DDQN

	Experiments
	Experimental Setup
	Experimental Results
	Intuition of Applying DDQN

	Conclusion and Future Work
	References
	Biographical Sketch
	Curriculum Vitae

