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ABSTRACT

Because of inaccurate, incomplete, and inconsistent wave-
form records, full-waveform inversion (FWI) in the framework
of a local optimization approach may not have a unique sol-
ution, and thus it remains an ill-posed inverse problem. To im-
prove the robustness of FWI, we have developed a new model
regularization approach that enforced the sparsity of solutions
in the seislet domain. The construction of seislet basis func-
tions requires structural information that can be estimated iter-
atively from migration images. We implement FWI with seislet
regularization using nonlinear shaping regularization and im-
pose sparseness by applying soft thresholding on the updated
model in the seislet domain at each iteration of the data-fitting
process. The main extra computational cost of the method rel-
ative to standard FWI is the cost of applying forward and in-
verse seislet transforms at each iteration. This cost is almost
negligible compared with the cost of solving wave equations.
Numerical tests using the synthetic Marmousi model demon-
strate that seislet regularization can greatly improve the robust-
ness of FWI by recovering high-resolution velocity models,
particularly in the presence of strong crosstalk artifacts from
simultaneous sources or strong random noise in the data.

INTRODUCTION

Full-waveform inversion (FWI) is a data-fitting procedure used
to construct high-resolution quantitative subsurface models by ex-
ploiting full information in the observed data (Lailly, 1983; Tar-
antola, 1984; Virieux and Operto, 2009). However, the problem is

inherently ill-posed and suffers from artifacts that could be falsely
interpreted as “geological structures.” One way to mitigate this
problem is by adding regularization or preconditioning to guide
the inversion toward a model consistent with a priori geologic
or geophysical constraints. The choice among different regulari-
zation techniques depends on the specific problem, and it can
be governed by the need to preserve or emphasize particular de-
sired features of the model (Loris et al., 2007). For example, if one
is mostly interested in large-scale features, it is natural to introduce
a regularizing constraint or penalty term involving spatial deriv-
atives. On the other hand, if one seeks to find solutions that are
sparse with respect to a given basis, this can be achieved by im-
posing a sparsity constraint involving appropriate transforms, such
as Fourier, wavelet, or curvelet transforms (Loris et al., 2007).
This regularization procedure finds solutions that are faithfully
represented by a relatively small number of nonzero coefficients
in the transformed domain.

We propose to impose sparsity regularization on the model in the
seislet domain (Fomel and Liu, 2010) to improve the robustness of
FWI. We refer to this regularization as seislet regularization. A
model in the seislet domain is expressed using basis functions
aligned along locally planar structures. Other researchers have pre-
viously used the sparsity of velocity model in other transform do-
mains for velocity model building. For instance, Loris et al. (2007)
apply /;-norm regularization in a wavelet basis to solve global seis-
mic tomography problems, allowing for the possibility of sharp dis-
continuities superimposed on a smoothly varying background
model. Li et al. (2012) compute the model updates from random
subsets of data and use curvelet-domain sparsity promotion to sup-
press crosstalk between different sources. Curvelets are appropriate
for seismic data because they provide a provably optimal decom-
position of wave-propagation operators (Candés and Demanet,
2005). In this paper, sparsity regularization for a velocity model
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is implemented by imposing a soft thresholding on the updated
model in the seislet domain. Compared with other transform do-
mains, seislets exhibit superior data compression and sparsity for
events with dominant local slopes (Chen et al., 2016). The classic
digital wavelet transform is equivalent to the seislet transform with
an erroneous zero slope (Fomel and Liu, 2010).

Seislet regularization allows us to build a model that fits the data
and has a strong tendency to be sparse in the seislet basis. Because
seislet basis functions are aligned along locally planar structures,
this helps to attenuate random noise and build geologically consis-
tent models. Different approaches in generating geologically sen-
sible models for seismic inversion have been proposed before.
Guitton et al. (2012) use a directional Laplacian filter as a model
preconditioning operator in FWI to smooth gradients along geo-
logic dips. Ma et al. (2012) propose to invert for a sparse velocity
model in FWI, and connect the sparse and dense models through
image-guided interpolation. Xue et al. (2016) incorporate linear
shaping regularization (Fomel, 2007) into least-squares reverse time
migration (RTM) and use structure-enhancing filtering to mitigate
artifacts caused by simultaneous-source or incomplete data. Com-
pared with these methods, the proposed method offers an alternative
formulation with a highly efficient implementation. It is formulated
as the sparsity constraint on the model in the seislet domain, and it is
implemented by imposing a soft thresholding on the updated model
at each iteration.

In this paper, we first introduce FWI with and without seislet
regularization, and illustrate their implementation differences.
Then, we use two numerical examples to verify the effectiveness
of the proposed method in improving the robustness of FWI by sup-
pressing artifacts caused by encoded data and random noise. Both
examples are based on the 2D Marmousi synthetic model (Bour-
geois et al., 1991).

THEORY

The objective function of standard FWI can be written as
! 2
J(m) :EHdobs _F(m)HZ’ )]

where m is the velocity model, d, is the observed waveform data,
and F stands for the nonlinear forward-modeling operator.

A popular local optimization algorithm for minimizing this func-
tion is based on the nonlinear conjugate-gradient method (Mora,
1987; Tarantola, 1987), where the model is updated at the iteration
n in the direction of s,,, which is a linear combination of the gradient
at iteration n, VJ(m, ), and the previous conjugate direction s,_;.
This optimization scheme can be formulated as follows:

mn+1 = mn + ansna Sn = _VJ(mn) +ﬂnsn—17 (2)
where scalar a,, can be obtained by performing a line search and f,
is designed to guarantee that s, and s,_; are conjugate.

We propose to apply nonlinear shaping regularization (Fomel,
2008) to impose sparseness of the velocity model in the seislet do-
main and modify the iteration process in equation 2 as follows:

m,,, = S_ITS(mn + (){nsn)7 (3)

where S~! and S stand for the inverse and forward seislet trans-
forms, respectively. Here, T is the soft thresholding operator and has
the following function expression:

xX—t x>1,
T(x) ={ 0, x| <1, )
x4+t x<-t,

where 7 is a positive threshold level. If the seislet transform were an
unitary operator, the iteration process in equation 3 would be equiv-
alent to using the linearized Bregman iteration (Yin et al., 2008; Cai
et al., 2009) to minimize the following objective function:

1
J(m) = = [|dops = F(m) |3 + 2| Sml| o)

where A is a regularization parameter.

The difference of equation 3 to the iterative scheme described in
equation 2 is that the new scheme involves a model shaping oper-
ator, which is the combination of the inverse seislet transform, soft
thresholding operator, and forward seislet transform. The purpose of
the shaping operator S™' TS is to remove possible artifacts existing in
the updated model and to gradually achieve a geologically meaning-
ful model. In implementation of equation 3, step length «,, is esti-
mated by line search without including the shaping operator, and
we apply the shaping operator to the updated model after the line
search to get the new model m,, ;. In this way, we just use the shap-
ing operator once at each iteration.

The seislet transform requires the input of local slope because in
the seislet domain, the model is represented by the basis functions
that are aligned with local structures. Figure 1 shows a simple test
to check the properties of the velocity model in the seislet domain.
We compare seislet coefficients and basis functions with those of
the digital wavelet transform, using the Marmousi model (Fig-
ure la). The dip required by the seislet transform is directly esti-
mated from the Marmousi model in this test. Figure 1b and 1c
shows the Marmousi model in the wavelet and seislet domains,
respectively. We observe that the nonzero seislet coefficients focus
at coarse scales, but the wavelet transform has small residual coef-
ficients at fine scales. From this observation, we can conclude that the
seislet transform has better data compression and sparsity than the
wavelet transform, which is further verified in Figure 1d, in which
a significantly faster decay of the seislet coefficients is evident. Fig-
ure le and 1f shows some randomly selected representative basis
functions for the wavelet and seislet transforms, respectively. We
can observe that the direction of the seislet basis functions follows
structural direction, whereas the wavelet basis functions correspond
to the zero slope.

EXAMPLES
Experiment setup

We use the classic 2D Marmousi model (Bourgeois et al., 1991)
to test the effectiveness of the proposed method. The model was first
subsampled from 2301 X 751 cells at 4 m cell size to 512 X 188
cells at 16 m cell size, as shown in Figure 1a. Figure 2a shows the
initial model for FWI, obtained by smoothing the target model.
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A fixed-spread surface acquisition is used, involving 32 sources lo-
cated at every 240 m. A Ricker wavelet with center frequency of
13 Hz is used to generate the synthetic data. Figure 2b shows a shot
record with source location at 4 km. We perform frequency-domain
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FWTI using the fast Helmholtz solver (Li et al., 2014). We used eight
frequencies ranging from 4 to 11 Hz and carried out 10 iterations for
each frequency. We perform two tests: one with encoded data and
the other with noisy data.
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Figure 1. Coefficients and basis functions of wavelet and seislet transforms for the Marmousi model: (a) The exact Marmousi model, (b) model
in the wavelet domain, (c) model in the seislet domain, (d) transform coefficients sorted from large to small, normalized, and plotted on a
decibel scale, (e) and (f) randomly selected representative basis functions for wavelet and seislet transforms, respectively.
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Figure 2. (a) Initial model and (b) one shot record for the true model with x; = 4 km.
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Dip estimation

Before we conduct FWI with seislet regularization, we need
to provide local-dip information for the seislet transform. We es-
timate the local dip from the RTM image using plane-wave de-
struction (Fomel, 2002). The dip estimation is computationally
inexpensive compared with RTM. With the initial velocity, we
can get an initial RTM image as shown in Figure 3a. Although
some structures of the image appear at wrong locations, we
can get an acceptable local dip map (Figure 3b). We use this ini-
tially estimated dip to perform the first 30 iterations (for the first
three frequencies). After we finish the iterations at 6 Hz, a more
accurate velocity is obtained, with which we can get a better RTM
image. Then, we can estimate the second dip for the next 30 iter-
ations (for the frequencies 7-9 Hz). Similarly, we can perform the
third RTM (Figure 3c) after the inversions with 9 Hz frequency
and get a much better dip (Figure 3d), which is used for the last
20 iterations (for the frequencies 10—11 Hz). Comparing Figure 3a
and 3c, we can find that the previous position of structures in
the central and deep parts has been corrected in the new RTM
image. Note that we use unencoded data to perform RTM in the
encoded data test to avoid crosstalk artifacts in the RTM images.
In the noisy data test, the assumed noisy data are used to carry
out RTM.

Encoded data test

To reduce the computational burden, one well-known technique
is to build supershots by assembling several sources, which can re-
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duce the computational cost by a factor roughly equal to the number
of sources assembled together (Morton and Ober, 1998; Romero
et al., 2000). However, the source-combination technique may in-
troduce crosstalk noise arising from the interference of waves gen-
erated at spatially adjacent sources. To remove the unwanted
crosstalk noise, the blended data are typically paired with phase-
encoding strategies; among them, dynamic phase encoding (Krebs
et al., 2009; Baumstein et al., 2011; Ben-Hadj-Ali et al., 2011) is a
particularly effective approach. Dynamic phase encoding in fre-
quency-domain FWI involves changing the encoding code and
building a new encoded superset at each iteration of each frequency
inversion (Ben-Hadj-Ali et al., 2011).

In this test, we combine every eight equidistant shots in one
supershot, creating four supershots in total. The first supershot con-
tains shots with the following indices: 1, 5,9, 13, 17, 21, 25, and 29.
‘We perform three inversions. The first inversion is the standard FWI
with the blended data without phase encoding, which means that
data are directly blended together without any designed codes.
The second inversion is the standard FWI with the dynamic phase
encoding technique, and at each iteration, a new encoding code is
generated to build a new super data set. The encoding code used in
this study is the simple phase function e”, where y is a random
number in [0, 27z]. Figure 4 shows the real part of the four encoded
supershots at the first iteration of the 6 Hz frequency data inversion.
From each supershot, we can roughly observe eight large peaks
and troughs, and their locations correspond to that of the original
sources. The third inversion inverts the dynamic phase encoded data
by using FWI with seislet regularization. We set the soft threshold-
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Figure 3. Dip estimation from migration images: (a) RTM with initial velocity, (b) local dip map estimated from (a), which will be used for the
first 30 iterations, (c) third RTM with updated velocity after 60 iterations (4—9 Hz data), and (d) dip map estimated from (c) and used for the last

20 iterations (10-11 Hz data).
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Figure 4. Real part of 6 Hz frequency component data after the first
dynamic phase encoding. (a) First supershot containing shots with index
i that satisfies i%4 =1 and 1 <i <32, (b) second supershot (i%4 =2),
(c) third supershot (i%4 = 3), and (d) fourth supershot (i%4 = 0).

a) Distance (km)
0 1 2 3 4 5 6 7 8 P’
o~
- ©
£ N
X
~un
< 2 L]
o
3
SN 0
L2l
<
C) Distance (km)
0 1 2 3 4 5 6 7 8
o~
N 0
X
o
£~
aQ
3 <

Velocity (km/s)

Velocity (km/s)

A47

ing parameter in the seislet regularization empirically to be 18%,
meaning that 82% of the smaller seislet coefficients get removed
at each iteration.

Figure 5 shows the final results of the three inversions. All the
results were obtained after 80 iterations. The result of standard FWI
without phase encoding contains visible crosstalk artifacts, and the
model is blurred by noise. Dynamic phase encoding can effectively
suppress some of the artifacts, but there are some remaining arti-
facts. As shown in Figure 5c, seislet regularization leads to a
noise-free and high-resolution model. Because this is a synthetic
data inversion test, we can also display the evolution of the model
misfits. As shown in Figure 5d, FWI with seislet regularization has a
faster model convergence rate.

Noisy data test

To further test the robustness of the proposed method, we gen-
erate a noisy data set by adding strong random noise to the original
time domain data. Then, we transform the noisy data to the fre-
quency domain for inversion. We perform two inversions: standard
FWI and FWI using seislet regularization, and we compare their
results in Figure 6a and 6b. In this comparison, we find that seislet
regularization suppresses the noise caused by the ambient noise in
the data, and it helps to get a good inversion result. Figure 6¢ shows
the model convergence curves, which also tell us that FWI using
seislet regularization has a faster model convergence rate. Finally,
we show the data convergence of FWI using seislet regularization
for each frequency inversion in Figure 6d. We can observe that at
each separate frequency, the proposed method exhibits a fast data-
fitting convergence.
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Figure 5. FWI results of encoded data. (a) Standard FWI without phase encoding, (b) standard FWI with dynamic phase encoding, (c) FWI
using seislet regularization with dynamic phase encoding, and (d) normalized model error versus iteration for different inversions: (a) fine

dotted, (b) large dashed, and (c) solid line.
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Figure 6. FWI results of noisy data. (a) Standard FWI, (b) FWI with seislet regularization, (c) normalized model error versus iteration for
standard FWI (dotted line) and FWI with seislet regularization (solid line), and (d) data convergence of FWI using seislet regularization at each

frequency.

CONCLUSION

With the observation that velocity models with planar structures
appear sparse in the seislet domain, we introduce a sparsity regulari-
zation scheme with seislet transform to improve the robustness of
FWI and to recover a noise-free, geologically consistent velocity
model. We implement this seislet regularization by imposing soft
thresholding on the updated model in the seislet domain at each iter-
ation. We estimate the dip needed by the seislet transform from the
migration image generated during the iterative inversion. Two numeri-
cal tests verify the effectiveness of FWI using seislet regularization.
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