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APPLICATIONS OF MEAN FIELD THEORY IN MANAGEMENT SCIENCE

Joohyun Kim, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Alain Bensoussan, Chair

The main objective of my PhD study is to understand an aggregate effect arising from

a large number of agents who have a similar aspect of decision markings and objectives.

The primary idea of mean field approach is that the individual agent makes a decision

by considering the distribution of the other agents rather than assuming that all agents’

detailed information on states is collectible. In the first essay of my dissertation, the

primary objective is to study the optimal consumption and portfolio selection problem

of risk-controlled investors who strive to maximize their utility of both consumption and

terminal wealth. Risk is measured by the variance of terminal wealth, which introduces a

nonlinear function of the expected value into the control problem, so a standard stochas-

tic control theory is not properly applicable. This control problem is totally open until

the discovery of mean field type control. The second essay explores the dynamic com-

petition among a large number of interacting households who own local storage with a

self-generated renewable energy system, and each can decide the amount of charging or

discharging energy based on the market environment and the level of energy stored. Un-

der the mean field setting, the optimal solution can be interpreted as an optimal policy

suggestion by a central planner who is willing to increase the penetration of local storage

to enhance the resilience of the grid system. The third essay investigates a new control
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problem for dealer’s optimal markup and inventory control regarding Over-The-Counter

(OTC) trades. The explicit solutions obtained by the mean field approach can contribute

to developing a decision support system for dealers willing to coordinate an inter-dealer

and investor-dealer market simultaneously. The proposed decision-making rules may fa-

cilitate dealers’ responses to imbalances in demand and supply to reduce the possibility

of policy intervention about liquidity risk in OTC markets.
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1.1 Introduction

Risk is no doubt essential in portfolio choices. The comprehensive review of portfolio

choices with various risk measures can be found in Mitra and Ji (2010), Krokhmal,

Zabarankin, and Uryasev (2011), Kolm, Tutuncu, and Fabozzi (2014). Also, utility

theory is the foundation for the theory of choice under uncertainty. Hence, it is natural

to combine the expected utility maximization framework with risk measures (utility-risk

management framework hereafter) when considering a risk-controlled individual’s optimal

investment-consumption decision under uncertainty. The research along this line is scarce

and growing (e.g., Basak and Shapiro 2001, Pfeiffer 2016, Wong, Yam, and Zheng 2017),

and we aim to contribute to literature in this direction.

In this study, we combine the utility maximization framework of Merton (1969, 1971)

with variance minimization idea from Markowitz (1952)’s mean-variance analysis to study

the risk management on optimal portfolio and consumption decisions. Our primary

interest is to observe how optimal consumption and portfolio rules are altered due to

the introduction of the variance risk measurement. We consider an agent who strives

to maximize total expected discounted utility of both consumption and terminal wealth

while minimizing the variance of terminal wealth. The inclusion of the variance term

introduces a nonlinear function of the expected value into the objective of the control

problem. The problem is no longer a standard stochastic control problem, but rather a

Mean field type control (MFTC hereafter) problem. We use the HJB-FP framework of

Bensoussan, Frehse, and Yam (2013) to solve the MFTC problem and obtain a solution

depending on the initial condition.

Our work makes four significant contributions. First, despite the growing attention to

investigating portfolio selections under a utility-risk management framework, most work

does not consider portfolio selections and intermediate consumption simultaneously. Our
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model fills the gap by integrating intermediate consumption, portfolio selections, and

utility-risk management in a unified framework.

Second, our study makes a technical contribution to the literature. It turns out that

solving a fixed point equation is the key difficulty of studying the MFTC problem by the

HJB-FP framework in our study. We are not only able to rigorously prove the uniqueness

and existence of the solution to the fixed point equation, but also able to obtain explicit

formulas for the optimal consumption and portfolio choices. Furthermore, the fixed point

has a crucial economic interpretation, the average terminal wealth. As a byproduct, we

show that the optimal terminal wealth is deterministic for an individual whose penalty of

the variance risk is infinite large. Moreover, we rigorously prove that this deterministic

optimal terminal wealth is less than the expected optimal terminal wealth in classical

Merton’s model (i.e., zero penalty of the variance risk), showing that the conservative

portfolio choice due to a zero tolerance of variance risk results in lower expected terminal

wealth.

Third, we demonstrate the significance of embedding variance risk management crite-

ria on optimal consumption and portfolio selections. Numerical analysis results show that

a consumer-investor’s investment in risky assets is inversely related to his perspective on

the importance of the variance risk as well as the progress of time. More importantly,

numerical results demonstrate the increasing-decreasing shape of optimal consumption

rate with respect to a consumer-investor’s perspective on the importance of the variance

risk. We view this nonlinear relation a significant finding, which reveals that our model

can not only allow a consumer-investor to control the variance risk, but also allow a

consumer-investor to increase his consumption rate. This desirable feature is robustness

regardless of values of a consumer-investor’s risk aversion coefficient and the market price

of risk.
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Fourth, our model theoretically derives the expected terminal wealth depending on

the different levels of variance risk. It allows a consumer-investor to choose the proper

level of variance risk considering her risk aptitude by inputting a target expected terminal

wealth. As a result, the extent of risk management for the investor is measurable and

observable.

1.1.1 Literature Review: General Literature

Much of the current research on portfolio theory emanates from the path-breaking mean-

variance portfolio model of Markowitz (1952), who refine the economic logic of diversifi-

cation and offer a practical way to choose an “optimal portfolio” of assets by explicitly

recognizing investment risk as measured by variance of return. Since then, there have

been a considerable amount of studies devoted to the mean-variance framework including

the extension from the single-period setting to the dynamic continuous-time formulation;

see, for example, Li and Ng (2000), Zhou and Li (2000), Li, Zhou, and Lim (2002), Zhou

and Yin (2003), Cesarone, Scozzari, and Tardella (2013), and Qin (2015), among others.

In the extension to the multiperiod and continuous-time framework, before the works of

Li and Ng (2000) and Zhou and Li (2000) who study the problem by the embedding tech-

nique and the stochastic linear-quadratic (LQ) control framework respectively, there is no

analytical result. Moreover, to tackle the computational efficiency and to accommodate

a broader class of risk measures for various considerations, many researchers have applied

the concept of mean-variance analysis to the adoption of different risk measures, such as

mean-absolute deviation risk measures, value-at-risk (VaR) risk measures, and coherent

risk measures; see, for instance, Konno and Yamazaki (1991), Campbell, Huisman, and

Koedijk (2013), He, Jin, and Zhou (2015), Gao, Xiong, and Li (2016), Gao, Zhou, and Li

(2017), Rockafellar and Uryasev (2000, 2002), and Ahmadi-Javid (2012), among others.
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In view that most analyses of portfolio, whether they are of Markowitz’s mean-variance,

maximized over one period, Samuelson (1969) formulate and solve a many-period general-

ization of portfolio selection as lifetime planning of consumption and investment decisions

in a discrete time setup using expected utility maximization. Merton (1969, 1971) ex-

tend Samuelson (1969)’s work to a continuous-time setting. From that point on, dynamic

portfolio optimization through expected utility maximization has been extensively stud-

ied; see, for example, Lehoczky, Sethi and Shreve (1983), Karatzas, Lehoczky, Sethi and

Shreve (1987), Karatzas, Lehoczky, and Shreve (1987), Cox and Huang (1989), Shreve

and Soner (1994), and Brown and Smith (2011), among others.

1.1.2 Literature Review: Mean Field Type Control

Due to time inconsistency, two different optimal strategies of MFTC are both stud-

ied. Bensoussan, Frehse, and Yam (2013) develop a coupled system of Hamilton-Jacobi-

Bellman and Fokker-Planck equations (HJB-FP hereafter) to solve the MFTC problem

and obtain a time inconsistent solution (or pre-commitment solution) which is depending

on the initial condition. An alternative way is to find time-consistent strategies. Bjork,

Murgoci, Zhou (2014) study the mean-variance problem within a game framework. Using

the method introduced in Bjork, Khapko, Murgoci (2017), they derive time consistent

equilibrium control by solving extended HJB equation. Pham and Wei (2017) adopt the

dynamic programming for mean field type control and derive a solution which is indepen-

dent of the initial condition. The current study uses the HJB-FP framework to obtain

the optimal consumption and portfolio rules. The HJB-FP framework of Bensoussan,

Frehse, and Yam (2013) has been applied to study a number of MFTC problems, for

example, Bensoussan, Frehse, and Yam (2013) and Bensoussan, Hoe, and Yan (2019) ap-

ply this framework to study the continuous-time Markowitz portfolio with short-selling
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prohibition and capital investment problem respectively, in which closed-form solutions

are obtained.

1.1.3 Literature Review: Risk Management and Utility Maximization Uni-

fied Framework

Our proposed problem follows the recent trend of embedding risk management criteria

into the utility maximization framework. In this section, three studies closely related

to our work are discussed. Basak and Shapiro (2001) present the first analytical re-

search to embed the concept of risk management into a utility maximizing problem to

analyze optimal dynamic portfolio and wealth/consumption policies. They first con-

sider that a risk-managing investor, constrained to maintain the Value-at-Risk (VaR) of

horizon wealth at a prespecified level for managing market-risk exposure, attempts to

maximize the utility of terminal wealth. Extending the economic setting to a standard

pure-exchange equilibrium model, the study then examines the problem that a VaR man-

ager, who must comply with a VaR constraint imposed at some horizon (shorter than

the agent’s lifetime), strives to maximize the intertemporal utility of consumption over

the lifetime. The dynamic optimization problems are solved using the martingale repre-

sentation approach. Compared to Basak and Shapiro (2001)’s study, our work integrates

intermediate consumption, portfolio selections, and utility-risk management in a unified

framework to study the optimal consumption and portfolio choice problem using MFTC

approach.

Wong, Yam, and Zheng (2017), henceforth WYZ, study the utility-risk portfolio se-

lection problem by maximizing an investor’s utility of terminal wealth with deviation

risk. Although the work of WYZ is closely related to our study, they are different in

several aspects. First, unlike our work, the work of WYZ does not consider intermedi-

ate consumption over the investment horizon in the utility-risk optimization framework.
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Consequently, optimal portfolio rules are different, and our study is able to additionally

provide the insights with respect to the optimal consumption policy, which is not intu-

itively guessable. Second, WYZ do not perform numerical analyses. We, on the other

hand, quantitatively demonstrate the optimal consumption policy, the optimal investment

policy and the wealth process through numerical studies, and obtain several important

implications/insights. Third, WYZ convert the utility-risk problem into an equivalent

nonlinear moment problem while we study the optimal investment-consumption problem

using the HJB-FP framework of Bensoussan, Frehse, and Yam (2013).

Recently, Pfeiffer (2016) studies a continuous-time Merton’s portfolio choice problem

with cost functionals involving the probability distribution of the state variable. The

problem takes the form of a mean-field type control problem. In this study, three cost

functions, which are a cost involving the semi-deviation, the Conditional Value at Risk,

and a cost with a penalization term with a target, are considered to allow for a risk averse

consumer’s risk management. Pfeiffer (2016) tackles the mean-field type control problem

by solving a coupled system of HJB-FP equations numerically with an iterative method.

The main idea of Pfeiffer (2016)’s work is close to the primary purpose of our study, and we

both approach the problem by studying coupled system of HJB-FP equations. However,

as in the work of WYZ, Pfeiffer (2016) does not consider intermediate consumption in

the optimization problem. In addition, we do not only rigorously prove the existence

and uniqueness of the solution by a fixed point argument, but also obtain analytical

results. To the best of our knowledge, our study proposes the first analytical optimal

investment-consumption policy for an extended Merton’s model incorporating the idea

of risk management proposed by Markowitz’s portfolio selection problem.
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1.1.4 Literature Review: Literature Related to Our Numerical Study

In our numerical example, we investigate the dynamic portfolio behavior of a consumer-

investor who has a constant relative risk aversion (CRRA) utility function on consumption

(x
1−γ

1−γ ) and terminal wealth (log utility) with variance control (importance measured by

ε). Note that the parameter γ in utility functions represents the consumer-investor’s

absolute risk aversion. Our MFTC model becomes the traditional Merton’s portfolio

selection problem when ε equals zero, which implies that the consumer-investor is not

willing to manage the variation of terminal wealth. In the MFTC model, therefore, the

consumer-investor chooses a nonmyopic dynamic portfolio regardless of γ by controlling

the variance risk of final wealth.

Dai, Jin, Kou, and Xu (2020) set up a mean-variance model for log returns which

is different from the standard mean-variance model for terminal wealth. They study

the time-consistent portfolio investment in a complete and an incomplete market. They

show that in a complete market the mean-variance optimization and the CRRA utility

are equivalent. Therefore, the optimal investment strategy is to invest a constant frac-

tion of wealth in the risky asset as Merton’s classical result (ε = 0 in our case). While in

incomplete markets, they point out that the investment is decreasing as time progresses.

We obtain the similar observation in our MFTC model with constant investment oppor-

tunity set. In general, the risk aversion coefficient is too difficult to measure in industry

practice as well as academic research. Dai, Jin, Kou, and Xu (2020) suggest that the risk

aversion can be inferred by inputting a target return, since they prove that there exists a

one to one mapping between γ and annual target return in complete market. By analogy,

our model demonstrate that expected terminal wealth ρε depending on ε. Therefore, our

MFTC model allows an investor to choose the proper ε considering her risk aptitude by

inputting a target terminal wealth.
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Sotomayor and Cadenillas (2009) study the optimal consumption-investment problem

with regime switching, and obtain exact solutions for specific HARA utility functions.

They observe a positive effect of consumption as in Merton (1969). That is, the investor

increases his consumption as wealth increases. Interestingly, for all ε, the consumption

in our model is increasing whereas the wealth is decreasing for some time t. In addition,

Sotomayor and Cadenillas (2009) observe very high consumption wealth ratios (greater

than 1) for investors, which is also observed in our model.

Liu (2007) introduce the analytical solutions for dynamic portfolio selection problem

in a continuous-time model with CRRA-class utility functions in stochastic environments.

His model indicates that the optimal terminal wealth for γ =∞ becomes constant if the

investment opportunity is constant, since an infinite risk averse investor constructs the

optimal portfolio using only the riskless asset. Similarly, we investigate the extreme case

for ε =∞ in the MFTC model. In this case, the final wealth (ρ∞) becomes deterministic

because of no variation in the optimal final wealth. The consumer-investor steadily

reduces the weight of risk asset as the remaining time horizon goes to zero, and eventually

allocates all her wealth to the risk-free asset at the terminal time horizon to attain the

best deterministic final wealth.

In the remainder, Section 1.2 presents the model. Section 1.3 summarizes the the-

ory and methodology of the mean field type control approach document in Bensoussan,

Frehse, and Yam (2013) and Bensoussan, Hoe, Kim and Yan (2020), and lays out suffi-

cient condition of optimality. Section 1.4 studies the existence and uniqueness solution of

Merton’s problem with variance control, and presents the optimal feedback and the opti-

mal value of our model. Properties and solutions to two extreme cases are also studied.

Section 1.5 reports the results of our numerical analysis, further highlighting the impor-

tance and benefits of our model. Section 1.6 lays out investment-consumption insights

that can benefit investors. Section 1.7 presents some concluding remarks.
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1.2 Merton’s Problem with Variance Control

Merton (1969, 1971) extended Samuelson (1969)’s optimal investment-consumption model

in a discrete-time setup to a continuous-time setting. A consumer-investor must choose

his consumption and asset allocation strategy between risky assets (stocks) and a risk-

free asset optimally so as to maximize expected utility. Merton used stochastic optimal

control methodology to obtain the optimal portfolio strategy.

A potential risk presented to a consumer-investor in Merton’s model is the deviation

of his terminal wealth from the expected. In view of this, an extension of classical

Merton’s problem that incorporates the variance of a consumer-investor’s terminal wealth

to measure the risk is proposed. The inclusion of the variance term results in a mean

field type control problem that cannot be solved by classical stochastic control methods.

In the following, the financial market where a consumer-investor bases his investment-

consumption decision is introduced first, followed by a brief review of classical Merton’s

problem. This section is concluded by presenting the model of Merton’s problem with

variance control.

1.2.1 Financial Market

A financial market consists of one non-risky asset with a constant interest rate r and n

risky assets. Prices of risky assets Yi(t), i = 1, 2, ...n, evolve as

dYi(t) = Yi(t)
[
αi(t)dt+

n∑
j=1

σij(t)dwj

]
,

Yi(0) = Y 0
i ,

(1.1)

where wj(t) are independent standard Wiener processes, constructed on a probability

space (Ω,A, P ) and a filtration F t, and the coefficients αi(t), σij(t) are deterministic

functions.
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The volatility matrix, σ(t) = {σij(t)}n×n, is invertible. α(t) := (α1(t), α2(t), · · · , αn(t))T ,

σ(t), and σ−1(t) are assumed to be bounded. The Sharpe ratio is given by

θ(t) = σ−1(t)(α(t)− r1),

where 1 := (1, 1, ...)T denotes a vector of Rn. Define the process Z(t) by

dZ(t) = −Z(t)θ(t).dw(t),

Z(0) = 1,

(1.2)

which is called a martingale measure (market indicator). In addition, the process

Z(t)Yi(t)e
−rt,

is a (P,F t) martingale.

1.2.2 Classical Merton’s Problem

Consider a consumer-investor whose unique source of income comes from his portfolio

investment on the market. The wealth at time s is

X(s) = π0(s)er(s−t) +
n∑
i=1

πi(s)Yi(s), s > t,X(t) = x, (1.3)

where π0(s) and πi(s) are respectively the amount of cash and the number of shares

invested in the risky asset i. The portfolio is self-financed and the dynamics of controlled

wealth process is given by

dX(s) = rπ0(s)er(s−t)ds+
n∑
i=1

πi(s)dYi(s)− C(s)ds, s > t,X(t) = x, (1.4)

where C(s), representing the consumption rate, π0(s) and π(s) := (π1(s), π2(s), · · · , πn(s))T

are control variables.
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Using (1.1) and introducing

$i(s) =
πi(s)Yi(s)

X(s)
, i = 1, 2, · · · , n, (1.5)

i.e, $i(s) denotes the proportion of wealth invested in the risky asset i, it follows after

rearrangements

dX(s) = rX(s)ds+X(s)σ∗(s)$(s).(θ(s)ds+ dw(s))− C(s)ds, s > t,

X(t) = x.

(1.6)

ThenX(s) is the state of a dynamic system, with controls$(.) := ($1(.), $2(.), · · · , $n(.))T

and C(.).

The consumer-investor considers the intertemporal portfolio choice over a finite hori-

zon T , where consumption and wealth allocation between risky assets and a risk-free

asset must be made. The investment-consumption performance is measured by utility

functions U1(c) for consumption and U2(x) for final wealth defined by

J($(.), C(.)) = E

∫ T

0

U1(C(s))e−rsds

+EU2(X(T ))e−rT ,

(1.7)

with

dX(s) = rX(s)ds+X(s)σ∗(s)$(s).(θ(s)ds+ dw(s))− C(s)ds,

X(0) = x0.

(1.8)

The consumer-investor’s dynamic portfolio optimization problem is to maximize his

expected utility over a finite horizon T through his choice of consumption and portfolio

investments, that is

Φ(x0, 0) = sup
$(.),C(.)

J($(.), C(.)). (1.9)

The optimization problem of (1.9) can be solved applying dynamic programming and the

value function, Φ(x0, 0), is the solution of the Bellman equation.
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1.2.3 Model of Merton’s Problem with Variance Control

One potential problem associated with the classical Merton’s model (cf. (1.7), (1.9)) is

that a consumer-investor’s terminal wealth may vary significantly. To control the varia-

tion risk, the penalty term, the variance of the terminal wealth, is added to the classical

Merton’s performance function (1.7). The consumer-investor’s performance function be-

comes

Jε($(.), C(.)) = E

∫ T

0

U1(C(s))e−rsds

+EU2(X(T ))e−rT − εe−rT var(X(T )),

(1.10)

subject to (1.8). In (1.10), ε ∈ [0,∞) is a coefficient which weights the importance of

variance.

The dynamic optimization problem is to maximize Jε($(.), C(.)), that is

u(x0, 0) = sup
$(.),C(.)

Jε($(.), C(.)). (1.11)

The consumer-investor’s optimization problem now deals not only with maximizing ex-

pected utility over a finite horizon T but also with minimizing the variance of the terminal

wealth. Because of the presence of the variance term in (1.10), standard stochastic con-

trol cannot be applied to solve the optimization problem. The mean field type control

theory is the right tool to study such a control problem.

Remark 1.1. When ε = 0, (1.10) reduces to the classical Merton’s problem (cf. (1.7),

(1.9)).

Utility functions in (1.10) satisfy the following assumption:

Assumption 1.1. U1(C), U2(x) : R+ −→ R+ is concave and twice differentiable in the

interior, U
′
i (0) = +∞, U ′i (+∞) = 0, i = 1, 2.
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1.3 General Mean Field Type Control

As stated in section 1.2.3, the proposed Merton’s problem with variance control can be

solved applying the mean field type control theory. In this section, the mean-field type

control problem is briefly presented, followed by the sufficient conditions of optimality.

Details can be found in Bensoussan, Frehse, and Yam (2013) and Bensoussan, Hoe, Kim

and Yan (2020).

1.3.1 The Mean Field Type Control Problem

Let (Ω,A, P ) be a probability space and a filtration F t generated by an n−dimensional

standard Wiener process w(t). Consider a diffusion process in Rn given by

dx = g(x, v(x, s))ds+ σ(x, v(x, s))dw,

x(0) = x0.

(1.12)

where x0 ∈ Rn represents the initial state of the system, v(x, s) ∈ Rm is the control

obtained by feedback, and σ(x) is an n× n matrix which is invertible.

Define payoff to be maximized as

J(v(.)) =

∫ T

0

e−rsEf(x(s), v(s))ds

+e−rT Eh(x(T )) + e−rT F (Ex(T )),

(1.13)

where v(s) = v(x(s), s) and x(s) is the solution of (1.12) after inserting the feedback. In

(1.13), F (.) is a nonlinear function of the expected value of x(T ). Because of this term,

this is not a standard control problem, but a mean filed type control problem.

Next, transform the stochastic problem (1.13) into a deterministic control problem

for a P.D.E. by introducing the Fokker Planck equation

∂mv(.)

∂s
−
∑
ij

∂2

∂xi∂xj
(aij(x, v(s))mv(.)) + div(g(x, v(s))mv(.)) = 0,

mv(.)(x, 0) = δ(x− x0),

(1.14)
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and the solution is denoted by mv(.)(x, s), which is the probability distribution of xv(.)(s).

Then the payoff function (1.13) can be rewritten as

J(v(.)) =

∫ T

0

e−rs
∫
Rn
f(x, v(s))mv(.)(x, s)dxds

+e−rT
∫
Rn
h(x)mv(.)(x, T )dx

+e−rT F

(∫
Rn
xmv(.)(x, T )dx

)∫
Rn
mv(.)(x, T )dx.

(1.15)

Remark 1.2. The term
∫
Rn
mv(.)(x, T )dx equal to 1 is inserted in (1.15). So the func-

tional (1.15) coincides with (1.13). The reason is that the problem (1.14), (1.15) is now

considered with mv(.) ∈ L2(Rn) ∩ L1(Rn) and not in the space of probability densities, in

order to use standard variations of the control. A linear variation will not respect the

normalization because the space of probability densities is not a vector space.

1.3.2 Sufficient Conditions of Optimality

Following Bensoussan, Hoe, Kim and Yan (2020), the sufficient conditions of optimality

are briefly presented. First, introduce the Lagrangian function

L(x, q,M, v) = f(x, v) + q · g(x, v) + tr (a(x, v)M), (1.16)

where a(x, v) = 1
2
σ(x, v)σ∗(x, v), q ∈ Rn, M ∈ L(Rn;Rn) and the Hamiltonian function

H(x, q,M) = sup
v
L(x, q,M, v). (1.17)

Let v̂(x, q,M) denote a measurable function, which attains the maximum in v in the

Lagrangian, and write

H(x, q,M) = L(x, q,M, v̂(x, q,M)), (1.18)

G(x, q,M) = g(x, v̂(x, q,M)), (1.19)

P (x, q,M) = a(x, v̂(x, q,M)). (1.20)
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Next, look for two functions u(x, t) ∈ R, Ψ(x, t;T ) ∈ Rn solutions of the coupled system

of PDEs:

−∂u
∂t

+ ru = H(x,Du,D2u),

u(x, T ) = h(x) + x.DF (ρ) + F (ρ),

(1.21)

−∂Ψ

∂t
= trP (x,Du,D2u)D2Ψ +DΨ.G(x,Du,D2u),

Ψ(x, T ;T ) = x,

(1.22)

where

Ψ(x, t;T ) = Ex,t[x̂(T )], (1.23)

and

ρ = Ψ(x0, 0;T ), (1.24)

is the expected value of the optimal final state.

Solving this system, one obtains the optimal feedback

v̂(x, t) = v̂(x,Du,D2u), (1.25)

and the optimal value

J(v̂(.)) = u(x0, 0)− e−rT ρ.DF (ρ). (1.26)

Note that u(x0, 0) is not the optimal value.

1.4 The Existence and Uniqueness Solutions for Merton’s Problem with

Variance Control

In this section, solutions for Merton’s problem with variance control are obtained. The

correspondence of notation is stated first in order to apply the general theory presented
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in Section 1.3.

v =

$
C

 ,

f(x, v) = U1(C), g(x, v) = rx+ x$σθ − C,

h(x) = U2(x)− εx2,

a(x, v) =
1

2
x2$∗σ∗σ$,

F (x) = εx2,

βi = (U ′i)
−1,

L(x, q,M, v) = U1(C) + q(rx+ x$σθ − C) + tr(
1

2
x2$∗σ∗σ$M),

U ′1(Ĉ) = q, Ĉ = β1(q),

$̂ = − q

Mx
(σ∗)−1θ,M < 0,

H(x, q,M) = U1(β1(q))− qβ1(q) + qrx− 1

2

q2|θ|2

M
,

g(x, v̂) = rx− q|θ|2

M
− β1(q) = G(x, q,M),

a(x, v̂) =
1

2

q2|θ|2

M2
= P (x, q,M).

(1.27)

In order for the Lagrangain, L(x, q,M, v), to admit a maximum, we need to assume that

M < 0.

Using the above notations, from Section 1.3.2, the system of coupled PDEs for the

solutions of Merton’s problem with variance control is

−∂u
∂t

+ ru = U1(β1(
∂u

∂x
))− ∂u

∂x
β1(

∂u

∂x
) + rx

∂u

∂x
− 1

2

(
∂u

∂x
)2|θ|2

∂2u

∂x2

,

u(x, T ) = U2(x)− εx2 + ερ2
ε + 2εxρε,

(1.28)
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−∂Ψ

∂t
=
∂Ψ

∂x

(
rx−

|θ|2∂u
∂x

∂2u

∂x2

− β1(
∂u

∂x
)
)

+
1

2

∂2Ψ

∂x2

|θ|2(
∂u

∂x
)2

(
∂2u

∂x2
)2

,

Ψ(x, T ;T ) = x,

(1.29)

and

ρε = Ψ(x0, 0;T ). (1.30)

In (1.28), (1.29) and (1.30), we have written ρε instead of ρ to emphasize the dependence

in ε. Then, the optimal feedback is given by

Ĉε(x, t) = β1(
∂u

∂x
),

$̂ε(x, t) = −

∂u

∂x

x
∂2u

∂x2

(σ∗)−1θ,
(1.31)

and the optimal value is

Jε(Ĉε, $̂ε) = u(x0, 0)− 2ερ2
εe
−rT . (1.32)

From (1.28), (1.29) and (1.30), ρε is solution of a fixed point problem. As shown in the

appendix 1.8.1, by introducing λ(x, t) =
∂u

∂x
(x, t) and with some transformation, we can

reduce the study to a linear P.D.E, and obtain ρε as a solution of a fixed point equation

given below:

Eβ2ε(λε(ρε)ξ0(T )− 2ερε) = ρε, (1.33)

where β2ε(µ) is the solution of U ′2(x) − 2εx = µ, β20(µ) = β2(µ), and µ must be greater

than zero. The number ρε has a crucial economic interpretation. It represents the average

wealth at the horizon T. Namely, it is the target to which the final wealth must be close

to. Solving this fixed point equation becomes the key difficulty of the mean field type

control problem.
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Assumption 1.2.

xU ′2(x) is concave , (1.34)

xU ′2(x) ≤ γx+ 1− γ, 0 ≤ γ ≤ 1, (1.35)

γ <
1

2
λ̄, with λ̄ the solution of E

∫ T

0

ξ0(s)β1

(
λ̄ξ0(s)

)
e−rsds = x0, (1.36)

U
′′′

2 (x) > 0. (1.37)

Theorem 1.1. Define Tε(ρ) = Eβ2ε(λε(ρ)ξ0(T ) − 2ερ). Under Assumption 1.2, there

exists a unique ρε ∈ R+ such that Tε(ρε) = ρε. Moreover, ρε ∈ [0, ρ̄],

where ρ̄ =
8ε(1− γ) + γ2 + λ̄

2
exp |θ|2T − (λ̄− γ)2

4ε(λ̄− 2γ)
.

Proof is given in the appendix 1.8.2.

By Theorem 1.1, the existence and uniqueness of solutions for Merton’s problem

with variance control can be stated explicitly in the following theorem. For notational

convenience, we omit ρε in the subscript.

Theorem 1.2. The optimal consumption, investment, and wealth are respectively

Ĉε(s) = β1(λεξ0(s)), (1.38)

$̂ε(s) = −
λεξ0(s)

∂Gε

∂λ
(λεξ0(s), s)

Gε(λεξ0(s), s)
(σ∗)−1θ, (1.39)

and

X̂ε(s) = Gε(λεξ0(s), s).

The optimal value is

Jε(Ĉε, $̂ε) = E

∫ T

0

U1(β1(λεξ0(s)))e−rs ds

+ E[U2(β2ε(λεξ0(T )− 2ερε))− εβ2
2ε(λεξ0(T )− 2ερε)− ερ2

ε

+ 2ερεβ2ε(λεξ0(T )− 2ερε)]e
−rT ,

(1.40)

where ρε represents the optimal expected wealth at time T , and λε = λε(x0, 0)(λε > λ̄).
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1.4.1 Extreme Cases

Since the proposed model of Merton’s problem with variance control aims at managing

the variance of a consumer-investor’s wealth at the end of investment horizon T , a natural

question to ask is how the expected optimal final wealth at the end of investment horizon is

affected by a consumer-investor’s perspective on the importance of variance risk measured

by ε ∈ [0,∞). The following subsections explore two extreme cases, that is, the cases

when a consumer-investor displays no concern (i.e., ε = 0) and extreme concern (i.e.,

ε = ∞) of the variance risk. Finally, a proven relationship between these two expected

optimal final wealth is presented.

When ε = 0

Proposition 1.1. In this case, the problem reduces to the classical Merton’s problem,

and

ρ0 = Eβ2(λ0ξ0(T )). (1.41)

See the appendix 1.8.4 for proof.

Equation (2.31) gives an explicit formula for the optimal expected final wealth.

When ε→ +∞

Proposition 1.2.

ρ∞ = β2(λ∞), (1.42)

with λ∞ = λ(ρ∞) solution of the equation

β2(λ∞)e−rT + E

∫ T

0

ξ0(s)β1(λ∞ξ0(s))e−rs ds = x0. (1.43)
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See the appendix 1.8.5 for proof.

Equation (1.42) is the best deterministic final wealth guaranteed when ε→ +∞. It is

no surprise because it costs too much for a consumer-investor to pay the penalty arising

from the variance risk, leading to the case of zero variance.

Comparison between ρ0 (ε = 0) and ρ∞ (ε→ +∞)

From Section 1.4.1, ρ∞ turns out to be deterministic, that is, no variation in the optimal

final wealth. It is thus natural to study the relation between ρ0 when no control is made

in the variance of the final wealth and ρ∞ with zero variance.

Proposition 1.3. Assume that β1, β2 > 0 decrease on (0,∞), and also that β2 is strictly

convex. Then ρ0 > ρ∞.

See the appendix 1.8.6 for proof.

Proposition 1.3 is intuitively explained since ρ0 is the expected wealth at T without

considering the variance risk of the final wealth, and ρ∞ is the best deterministic wealth

at T . To be of no surprise at the final wealth, that is, no deviation from the expected, a

consumer-investor allocates all his wealth to risk-free assets. Consequently, ρ∞ is smaller

than ρ0 as suggested by Proposition 1.3 because risk free assets yield less return than

risky assets.

1.5 Numerical Analysis

A primary contribution of this research is to solve for optimal consumption−investment

policies of Merton’s problem with variance control. In this section, numerical studies are

performed to illustrative the quantitative results. In the study, only one risky stock is con-

sidered, and utility functions take the following CRRA form which satisfies Assumption

1.1 and 1.2.
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U1(x) =


x1−γ1

1− γ1

, 0 < γ1 < 1,

lnx, γ1 = 1,

(1.44)

U2(x) = lnx. (1.45)

The base parameter values used for the numerical studies are:

x0 = 1; T = 1; r = 0.04; σ = 0.2.

Remark 1.3. The optimal controls for the CRRA utility function with variance control

problem are given by

Ĉε(s) = (λεξ0(s))
− 1
γ1 , (1.46)

$̂ε(s) = −
λεξ0(s)

∂Gε

∂λ
(λεξ0(s), s)

Gε(λεξ0(s), s)
(σ∗)−1θ, (1.47)

and

X̂ε(s) = Gε(λεξ0(s), s).

Remark 1.4. When γ1 = 1 and ε = 0, the optimal controls are given by

Ĉ0(t) = β1

(
λ0ξ0(t)

)
=

r

1 + (r − 1)e−r(T−t)
X̂0(t),

$̂0(t) =
θ

σ
,

(1.48)

which recover the results obtained by Merton (1969).

Remark 1.5. When γ1 = 1 and ε→ +∞, the optimal controls are given by

Ĉ0(t) = Ĉ∞(t), (1.49)

$̂∞(t) =

1
rλ∞ξ0(t)

(1− e−r(T−t)) θ
σ

ρ∞e
−r(T−t) + 1

rλ∞ξ0(t)
(1− e−r(T−t))

=
θ

σ
− (

ρ∞e
−r(T−t)

X̂∞(t)
)(
θ

σ
). (1.50)
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Unlike Merton’s classical result, the investment policy, $̂∞(t), depends on both the current

wealth and the terminal wealth, and decreases as time progresses.

Under log utility functions, Remark 1.5 shows a “surprising property”. A consumer-

investor’s optimal consumption behavior coincides in two extreme cases, that is, when

he completely disregards the variation risk of terminal wealth and when he is excessively

concerned about the variation risk of terminal wealth. In addition, when a consumer-

investor extremely concerns about the variation of terminal wealth, the investment policy

consists of myopic demand (the first term of equation 1.50, Merton’s classical result) and

hedging demand (the second term of equation 1.50).

1.5.1 Numerical Verification of Theorem 1.1

The fixed point equation (1.33) is numerically studied to verify Theorem 1.1. Figure ??,

which plots the solutions obtained by the intersection of ρ and Tε, confirms a uniquely

determined fixed point.
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Figure 1.1. Fixed Point Problems depending on γ1 ∈ [0.8, 1.0] with θ = 1.0
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1.5.2 Impact of ε on Expected Value and Variance of Optimal Terminal

Wealth, ρε and V ar(X̂ε(T ))

Numerical study exhibits that ρε decreases with respect to ε. A proof of this relationship

for ε small and γ1 = 1 is given in the appendix 1.8.9. This inverse relation persists

regardless of values of γ1 and θ as shown in the left panels of Figure 1.4 and Figure 1.5.

In other words, regardless of γ1 and θ, the more a consumer-investor is concerned about

the variance risk of his final wealth, the smaller his expected optimal final wealth will

be. The result is expected since a consumer-investor decreases his portfolio holding in

risky assets in an effort to reduce the variation of his final wealth as ε increases. The

immediate effect of investing less wealth in risky assets and more wealth in risk-free

assets is a decrease in expected investment returns because risky assets yield higher rates

of return. This also explains why ρ0 and ρ∞ set the ceiling and the floor of the expected

optimal terminal wealth shown in the left panels of Figure 1.2 and Figure 1.3.

Figure 1.9 (left panel) and Figure 1.8 (upper left panel ) reveal the necessity of the

MFTC model (Merton’s problem with variance risk control) with preferable features.

With ε small, the MFTC model allows a consumer-investor to enjoy a higher consumption

rate with lower variation from his optimal terminal wealth. Furthermore, Figure 1.9 (left

panel) shows that at terminal time T , X̂0(T ) (i.e. optimal terminal wealth from the

traditional Merton’s model) is extremely volatile. Obviously, the variance of terminal

wealth in the traditional Merton’s model is too substantial for a consumer-investor to

ignore.

The optimal terminal wealth from MFTC model when ε goes to +∞, X̂∞(T ), is

deterministic, a property proven in Section 1.4.1. In other words, a consumer-investor

with excessive concerns about the variance risk in the terminal wealth can steer clear

of variation in his terminal wealth. Given γ1, ε can then be viewed as the risk aversion
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Figure 1.2. ρε and λε depending on ε ∈ (0, 50] with γ1 = 0.8 and θ = 1.0
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Figure 1.3. ρε and λε depending on ε ∈ (0, 50] with γ1 = 1.0 and θ = 1.0

of a consumer-investor. The result is then in line with Liu (2007)’s work, which studies

dynamic portfolio choice with stochastic variation in investment opportunities, predicting

the optimal terminal wealth for an investor with infinite risk aversion is a constant. More

importantly, our model exhibits a distinct feature that a consumer-investor with constant

terminal wealth can enjoy the same consumption rate as if the traditional Merton’s model

were implemented as shown in the upper right panels of Figure 1.8 and Remark 1.5.
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Figure 1.4. ρε and λε depending on ε ∈ (0, 30] with γ1 ∈ {0.8, 0.9, 1.0} and θ = 1.0
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Figure 1.5. ρε and λε depending on ε ∈ (0, 30] with γ1 = 0.8 and θ ∈ {0.9, 1.0, 1.1}

1.5.3 Impact of ε on Optimal Consumption Rate Cε(t)

From equation (1.46), optimal consumption rate is inversely related to λε; therefore,

we will study λε for the consumption rate behavior. The right panels of Figure 1.2

and Figure 1.3 depict a non-linear relation between ε and 1/λε, and the relation holds

regardless values of γ1 and θ as shown in the right panels of Figure 1.4 and Figure 1.5.

As ε increases, the optimal consumption rate grows rapidly to a positive maximum

and then decreases at a decreasing rate. This nonlinearity can be explained by risk-reward
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trade-off measured by the ratio between the expected optimal terminal wealth and the

standard deviation of the terminal wealth (i.e., ρε/SD(X̂ε(T ))). As shown in the right

panel of Figure 1.9, the reward (ρε) per unit of risk (terminal standard deviation) for a

consumer-investor is increasing as ε increases. Therefore, a consumer-investor is willing to

rebalance his optimal investment and consumption policies to reduce the variance of the

terminal wealth when ε starts kicking in. The consumer-investor can accomplish this goal

by buying or selling assets at the market to change the asset allocation of his portfolio
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Figure 1.8. Expectation of Ĉε(t), $̂ε(t), and X̂ε(t) for ε ∈ {0, 0.1, 1.0,+∞}

from risky assets to risk free assets or to finance more consumption. As ε increases, he

reduces his investment in risky assets and rebalances it between the risk-free asset and the

consumption rate. When ε increases to the level where the variance of the terminal wealth

is close to the level of zero, most of his investment is allocated toward the risk-free asset,

and thus the amount of wealth that the consumer-investor can finance his consumption

decreases. That is why the consumption rate starts decreasing after the point where the

variance of the terminal wealth is close to the level of zero.
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Figure 1.10. Ratio of the expectation of Ĉε(t)), and the expectation of X̂ε(t)

1.5.4 Expected Optimal Consumption Rate, Expected Optimal Percentage

Allocations in Risky Assets and Expected Optimal Wealth, EĈε(t),

E$̂ε(t) and EX̂ε(t)

Figure 1.8 graphically studies the expectation of optimal consumption, the expectation

of optimal percentage allocations in risky assets, and the expectation of optimal wealth

against time. The upper left panel confirms the increasing-decreasing pattern of optimal
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consumption process as ε increases, discussed in section 1.5.3. For a given ε, the expected

optimal consumption is monotonically increasing against t similar to Merton (1969).

The upper right panel plots the expected optimal proportion of wealth allocated in

risky assets, E[$̂ε(t)], for different values of ε against time. It shows that percentage

allocations in risky assets continuously decrease as the remaining investment horizon

approaches zero and as ε increases. For a given γ1, ε can be viewed as a consumer-

investor’s risk aversion toward terminal wealth given. As such, these observations are

comparable to the empirical study by Barberis (2000). Barberis (2000) proposes the

optimal portfolio choice for an investor who has a CRRA class utility over terminal

wealth. This research shows that the allocation to stocks for the investor, optimally

rebalancing the portfolio, steadily decreases as the remaining time horizon goes to zero,

and the stock allocation falls as the risk aversion of investor’s preferences over terminal

wealth increases. In addition, Dai, Jin, Kou, and Xu (2020), who study a dynamic

portfolio choice model with the mean-variance criterion for log-returns, also derive that

E[$̂ε(t)] decreases as time proceeds toward the end of the investment horizon, under the

incomplete market setting. It is noted that, under a complete market setting, Dai, Jin,

Kou, and Xu (2020) obtain the optimal fraction of the total wealth in risky assets as a

constant independent of time and wealth, same as in Merton (1969).

Finally, the lower panel presents the expected optimal wealth process, a result of a

consumer-investor’s investment-consumption decision, for various ε. It shows that the

expected optimal wealth process decreases as ε increases. Comparing to Merton (1969),

our model leads to a non-monotonic expected optimal wealth process against time. As
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time t increases, the expected optimal wealth process increases first and then decreases.

The non-monotonic shape holds true even for the extreme case, ε→∞.

1.5.5 Expected Consumption-Wealth Ratio

In Figure 1.10, the expected consumption-wealth ratio is non-monotonic in ε at the be-

ginning investment horizon. However, as t progresses, the expected consumption-wealth

ratio becomes monotonically increasing in ε. The observation is expected. The differ-

ences in the expected wealth among ε are not significant at the beginning of investment

horizon, and then increase at an increasing rate as time progresses, see Figure 1.8 (lower

panel). On the contrary, the differences in expected consumption among ε stay quite

constant over the entire investment horizon. Consequently, the consumption-wealth ra-

tio becomes monotonically increasing in ε after the time when decreases in the expected

wealth dominate.

It is not surprising that consumption-wealth ratio in our model is higher than Merton’s

since our model predicts higher consumption and lower wealth. Moreover, as shown in the

figure, the ratios in our model can be greater than one, while in Merton’s model the ratios

are increasing to one at time T . Sotomayor and Cadenillas (2009) who study investment-

consumption problems with regime switching under utility maximization framework, also

observes ratios higher than 1 for the power utility xα with 0 < α < 1 in every market

regime ( bull or bear ).

1.6 Investment-Consumption Insights

Our MFTC model, combining Merton (1969)’s investment-consumption model and Markowitz

(1952)’s mean-variance framework, investigates the optimal investment and consumption

policies when the variance risk is explicitly incorporated into the investor-consumer’s
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portfolio selection framework. We obtain the following investment-consumption insights

that can benefit investors:

1. Ignoring variance risk of terminal wealth in a consumer-investor’s portfolio selection

framework is likely to end up yielding terminal wealth significantly lower than the

expected. This message is important to both individual investors and professional

investors because neither of them would want to be surprised at much lower accu-

mulated terminal wealth than the expected at the end of the investment horizon.

2. The lower the variance risk of terminal wealth that a consumer-investor achieves,

the lower the expected terminal wealth will be. This is consistent with the popular

investment quote, “In investing, what is comfortable is rarely profitable.” by Robert

Arnott. There is no free lunch; it is a risk-reward tradeoff for investing comfort

zone. Consequently, it is important to be able to quantify the variance risk in

the portfolio selection instead of risk blindness. As said by Ben Graham, “The

individual investor should act consistently as an investor and not as a speculator.”.

3. Consumer-investors do not control variance risk at the expense of consumption. In

fact, consumer-investors enjoy at least the same consumption rate as if he were not

to control the variance risk. This again points out the necessity of incorporating the

variance risk in the portfolio selection framework. The framework has the benefit

of feeding two birds with one stone, that is, consumer-investors not only achieve

the target terminal wealth at lower risk, but also enjoy higher consumption rates.

4. For a consumer-investor to achieve a guaranteed terminal wealth, it does not mean

he will only invest in risk-free assets over the entire investment horizon. If he does

so, he will not be able to afford the consumption rate as one who does not control
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the variance risk at all because his gains will be minimal due to the extremely

low interest rates from risk-free assets. Our MFTC model can actually help a

consumer-investor achieve the goal through the investment policy which properly

balances portfolios between risky assets and risk-free assets over the investment

horizon.

1.7 Conclusion

A consumer-investor’s investment-consumption problem is studied through integrating

intermediate consumption, portfolio selections, and utility-risk management in a unified

framework. Applying the mean field type control theory and overcoming the the key

difficulty of solving a fixed point equation, explicit formulas for the optimal consumption

and portfolio choices are obtained. When ε = 0, closed form solutions for the tradi-

tional Merton’s problem with logarithmic utilities (U1(x) = U2(x) = lnx) are recovered.

For comparison purposes, closed form solutions for our MFTC model are derived when

ε→∞. By inspecting the closed form solutions obtained, it reveals that, by implement-

ing our MFTC model, a consumer-investor can obtain guaranteed terminal wealth and

meanwhile enjoy the same consumption rate as the traditional Merton’s model which

bears high variation in the terminal wealth.

Numerical analysis results show that our MFTC model can not only effectively con-

trol the variance risk, but also allow a consumer-investor to increase his consumption

rate. This desirable feature is illustrated by the increasing-decreasing shape of optimal

consumption rate with respect to ε. Regardless of values of γ1 and θ, the optimal con-

sumption rate increases quickly to a positive maximum before starting to decrease at

a decreasing rate as ε increases. By inspecting numerical results graphically, it reveals

that the nonlinear shape is a consequence of a risk averse consumer-investor’s risk-reward
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trade-off (ρε/SD(X̂ε(T )) ) as well as the decreasing return from increasingly investing in

risk-free assets. When ε increases to the level where the variance of the terminal wealth

is close to the level of zero, most of his investment is allocated toward the risk-free asset,

and thus the amount of wealth that the consumer-investor can finance his consumption

decreases. That is why the consumption rate starts decreasing after the point where the

variance of the terminal wealth is close to the level of zero.
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1.8 Appendix. Proofs

1.8.1 Derivation of Merton’s Solution

From (1.28), (1.29) and (1.30), ρε is solution of a fixed point problem, we begin by setting

ρ > 0 and look for uε,ρ, the solution of

−∂u
∂t

+ ru = U1(β1(
∂u

∂x
))− ∂u

∂x
β1(

∂u

∂x
) + rx

∂u

∂x
− 1

2

(
∂u

∂x
)2|θ|2

∂2u

∂x2

,

u(x, T ) = U2(x)− εx2 + ερ2 + 2εxρ.

(1.51)

The Derivative Equation

In fact, λ(x, t) =
∂u

∂x
(x, t) is the solution of the equation

− ∂λ

∂t
=
(
− β1(λ

)
+ rx

)∂λ
∂x
− |θ|2λ+

1

2
λ2

∂2λ

∂x2

(
∂λ

∂x
)2

|θ|2, (1.52)

with the boundary condition

λ(x, T ) = U ′2(x)− 2εx+ 2ερ. (1.53)

We postulate that λ(x, t) can be obtained as the inverse of a function G(λ, t) by

solving G(λ, t) = x. We can write the derivatives

∂λ

∂t
= −

∂G

∂t
∂G

∂λ

,
∂λ

∂x
=

1

∂G

∂λ

,
∂2λ

∂x2
= −

∂2G

∂λ2(∂G
∂λ

)3
. (1.54)

Then from equation (1.52), G(λ, t) is the solution of a linear P.D.E.

−∂G
∂t
− |θ|2λ

(∂G
∂λ

+
1

2
λ
∂2G

∂λ2

)
+ rG = β1(λ). (1.55)
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At time T, we also have

G(λ, T ) = x⇐⇒ λ(x, T ) = U ′2(x)− 2εx+ 2ερ.

For µ ∈ R, there exists one and only one solution x > 0 of

U ′2(x)− 2εx = µ. (1.56)

We call it β2ε(µ). Of course β20(µ) = β2(µ) and µ must be greater than zero. So the final

condition is

G(λ, T ) = β2ε(λ− 2ερ). (1.57)

Let ξt(s) be the martingale

dξt(s) = −ξt(s)θ.dw(s),

ξt(t) = 1.

(1.58)

Then from the Feynman-Kac formula, the solution of (1.55), (1.57) can be expressed by

Gε,ρ(λ, t) = Eξt(T )β2ε(λξt(T )− 2ερ)e−r(T−t) (1.59)

+E

∫ T

t

ξt(s)β1(λξt(s))e
−r(s−t) ds,

and λε,ρ(x, t) =
∂uε,ρ
∂x

is obtained by solving Gε,ρ(λ, t) = x.

Finding uε,ρ(x, t)

We can express

uε,ρ(x, t) = Φε,ρ(λε,ρ(x, t), t), (1.60)

with Φε,ρ(λ, t) solution of

−∂Φ

∂t
+ rΦ− 1

2
λ2|θ|2∂

2Φ

∂λ2 = U1(β1(λ)),

Φ(λ, T ) = U2(β2ε(λ− 2ερ))− εβ2
2ε(λ− 2ερ) + ερ2 + 2ερβ2ε(λ− 2ερ),

(1.61)
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and we have

Φε,ρ(λ, t) = E

∫ T

t

U1(β1(λξt(s)))e
−r(s−t) ds

+E
[
U2(β2ε(λξt(T )− 2ερ))− εβ2

2ε(λξt(T )− 2ερ) + ερ2 + 2ερβ2ε(λξt(T )− 2ερ)
]
e−r(T−t).

(1.62)

Finding Ψε,ρ(x, t;T )

Similarly, we have

Ψε,ρ(x, t;T ) = χε,ρ(λε,ρ(x, t), t), (1.63)

with χε,ρ(λ, t) solution of

∂χ

∂t
+

1

2
λ2|θ|2∂

2χ

∂λ2 = 0,

χ(λ, T ) = β2ε(λ− 2ερ),

(1.64)

We can then write

χε,ρ(λ, t) = Eβ2ε(λξt(T )− 2ερ). (1.65)

Therefore,

χε,ρε(λε(ρε), 0) = Ψ(Gε,ρε(λε(ρε)), 0;T ) = Ψ(x0, 0;T ),

with

λε(ρε) = λε,ρ(x0, 0).

Equivalently,

Eβ2ε(λε(ρε)ξ0(T )− 2ερε) = ρε. (1.66)

Hence, ρε is a solution of a fixed point equation.
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1.8.2 Proof of Theorem 1.1

Before proving this theorem we need the following three lemmas. Lemma 1.1 is needed

in the proof of Lemma 1.2, Lemma 1.2 establishes the property needed in the contraction

mapping used in the proof a unique fixed point in Theorem 1.1, Lemma 1.3 establishes

the property that ρ is bounded from above.

Lemma 1.1.

λ′ε(ρ) > 0. (1.67)

Proof:

For fixed ρ, there exists a single λε(ρ) solution of

Gε,ρ(λ, 0) = x0. (1.68)

Indeed

Gε,ρ(λ, 0) = Eξ0(T )β2ε(λξ0(T )− 2ερ)e−rT + E

∫ T

0

ξ0(s)β1

(
λξ0(s)

)
e−rsds (1.69)

As λ varies from 0 to +∞, Gε,ρ(λ, 0) decreases ∞ to 0. From (1.68) and (1.69), differen-

tiate respect to ρ to deduce that

Eξ0(T )β′2ε
(
λε(ρ)ξ0(T )− 2ερ

)(
λ′ε(ρ)ξ0(T )− 2ε

)
e−rT

+E

∫ T

0

ξ2
0(s)β′1

(
λε(ρ)ξ0(s)

)
λ′ε(ρ)e−rsds = 0.

(1.70)

so that

λ′ε(ρ)
[
Eξ2

0(T )β′2ε
(
λε(ρ)ξ0(T )− 2ερ

)
e−rT + E

∫ T

0

ξ2
0(s)β′1

(
λε(ρ)ξ0(s)

)
e−rsds

]
= 2εe−rTEξ0(T )β′2ε

(
λε(ρ)ξ0(T )− 2ερ

)
.

(1.71)
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From Assumption 1.1, we have β′2ε < 0 and β′1 < 0, therefore,

λ′ε(ρ) > 0. (1.72)

Lemma 1.2.

|T′ε(ρ)| ≤ −2εEβ′2ε
(
λε(ρ)ξ0(T )− 2ερ

)
. (1.73)

Proof:

First, it is obvious that

T′ε(ρ) ≤ −2εEβ′2ε
(
λε(ρ)ξ0(T )− 2ερ

)
. (1.74)

Second,

−T′ε(ρ) ≤
2εe−rT

(
Eξ0(T )β′2ε

(
λε(ρ)ξ0(T )− 2ερ

))2

−Eξ2
0(T )β′2ε

(
λε(ρ)ξ0(T )− 2ερ

)
e−rT − E

∫ T
0
ξ2

0(s)β′1
(
λε(ρ)ξ0(s)

)
e−rsds

≤ −2εEβ′2ε
(
λε(ρ)ξ0(T )− 2ερ

)
,

(1.75)

and thus (1.73) is proved.

Lemma 1.3. Assume (1.34),(1.35), and (1.36). Then a fixed point of the map Tε(ρ)

satisfies

ρ ≤ ρ̄ =
8ε(1− γ) + γ2 + λ̄

2
exp |θ|2T − (λ̄− γ)2

4ε(λ̄− 2γ)
. (1.76)

Proof:

From Gε,ρ(λε(ρ), 0) = x0 and from (1.59), it follows that

E

∫ T

0

ξ0(s)β1

(
λε(ρ)ξ0(s)

)
e−rsds ≤ x0. (1.77)
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Therefore, λε(ρ) > λ̄ > 0 with λ̄ the solution of

E

∫ T

0

ξ0(s)β1

(
λ̄ξ0(s)

)
e−rsds = x0. (1.78)

Since λε(ρ) > λ, we have

Tε(ρ) ≤ Eβ2ε(λ̄ξ0(T )− 2ερ); (1.79)

so ρ must satisfy

ρ ≤ Eβ2ε(λ̄ξ0(T )− 2ερ). (1.80)

If we introduce Xε(ρ) = β2ε(λ̄ξ0(T )− 2ερ), then from (1.56), we obtain

U
′

2(Xε(ρ))− 2εXε(ρ) = λ̄ξ0(T )− 2ερ. (1.81)

Multiplying both sides of the equation by Xε(ρ) yields

2εX2
ε (ρ) +

(
λ̄ξ0(T )− 2ερ

)
Xε(ρ)−Xε(ρ)U

′

2(Xε(ρ)) = 0. (1.82)

Therefore,

Xε(ρ) =
−
(
λ̄ξ0(T )− 2ερ

)
+
√(

λ̄ξ0(T )− 2ερ
)2

+ 8εXε(ρ)U
′
2(Xε(ρ))

4ε
. (1.83)

Taking expectations, we obtain

EXε(ρ) ≤
−
(
λ̄− 2ερ

)
+

√
λ̄

2
exp |θ|2T + 4ε2ρ2 − 4ερλ̄+ 8εEXε(ρ)U

′
2(EXε(ρ))

4ε
, (1.84)

which is equivalent to

(
4εEXε(ρ) + λ̄− 2ερ

)2 ≤ λ̄
2

exp |θ|2T + 4ε2ρ2 − 4ερλ̄+ 8εEXε(ρ)U
′

2(EXε(ρ)). (1.85)

From the assumption (1.35), we have

16ε2
(
EXε(ρ)

)2
+ 8εEXε(ρ)

(
λ̄− 2ερ− γ

)
≤ 8ε(1− γ) + λ̄

2
(exp |θ|2T − 1); (1.86)
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then,

ρ ≤ EXε(ρ) ≤
2ερ+ γ − λ̄+

√
8ε(1− γ) + (2ερ+ γ)2 + λ̄

2
exp |θ|2T

4ε
.

(1.87)

Therefore, we must have

2ερ+ λ̄ ≤ γ +

√
8ε(1− γ) + (2ερ+ γ)2 + λ̄

2
exp |θ|2T . (1.88)

By the assumption (1.36), we observe

ρ ≤ ρ̄ =
8ε(1− γ) + γ2 + λ̄

2
exp |θ|2T − (λ̄− γ)2

4ε(λ̄− 2γ)
. (1.89)

Now we prove Theorem 1.1. From Lemma 1.2,

|T′ε(ρ)| ≤ −2εβ′2ε(λε(ρ)ξ0(T )− 2ερ), (1.90)

and

U
′

2(β2ε)− 2εβ2ε = µ. (1.91)

Differentiate (1.91) twice with respect to µ to obtain

β
′′

2ε(µ) =
U
′′′
2 (β2ε)(

− U ′′2 (β2ε) + 2ε
)3 .

From the assumption (1.37), β
′

2ε(µ) is increasing. So,

|T′ε(ρ)| ≤ −2εβ′2ε(−2ερ) =
2ε

2ε− U ′′2
(
β2ε(−2ερ)

) . (1.92)

The function −U ′′2
(
β2ε(−2ερ)

)
is decreasing since

U
′′′

2

(
β2ε(−2ερ)

)
β′2ε(−2ερ)2ε < 0. (1.93)

Therefore,

|T′ε(ρ)| ≤ 2ε

2ε− U ′′2
(
β2ε(−2ερ)

) ≤ 2ε

2ε− U ′′2
(
β2ε(−2ερ̄)

) < 1, (1.94)

we can conclude that Tε is a contraction map. Moreover, from Lemma 1.3, Tε(ρ) < ρ̄,

Hence, we look for ρε ∈ [0, ρ̄], the desired result then follows.
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1.8.3 Proof of Theorem 1.2

From (2.18), the optimal feedbacks are

Ĉε(x, t) = β1(λε(x, t)), (1.95)

x$̂ε(x, t) = −λε(x, t)
∂Gε

∂λ
(λε(x, t), t)(σ

∗)−1θ. (1.96)

In what follows, we first derive the optimal wealth X̂ε(s) and then use it to simplify the

above optimal feedbacks. If we plug the optimal feedbacks in the state (wealth) equation

(1.8), then the corresponding state denoted by X̂ε(s), the solution of (1.8), appears as

the solution of

dX̂ε =
(
rX̂ε − |θ|2

λε
λ′ε

(X̂ε, s)− β1

(
λε(X̂ε, s)

))
ds− λε

λ′ε
(X̂ε, s)θ.dw,

X̂ε(0) = x0.

(1.97)

We already introduced the martingale (1.58), then we claim that

X̂ε(s) = Gε(λεξ0(s), s), (1.98)

where

λε = λε(x0, 0). (1.99)

Let us check that the (1.98) satisfies (1.97). Fist we recall that

x0 = Gε(λε, 0) = X̂ε(0).

Also we have

λεξ0(s) = λε(X̂ε(s), s), (1.100)

and

∂Gε

∂λ

(
λε(ρ)ξ0(s), s

)
=
∂Gε

∂λ

(
λε(X̂ε(s), s), s

)
=

1

∂λε
∂x

(
X̂ε(s), s

) . (1.101)
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We use Itô’s formula for (1.98) and obtain

dX̂ε =
∂Gε

∂s
− ∂Gε

∂λ
λεξ0(s)θdw +

1

2

∂2Gε

∂λ2 λ
2
εξ

2
0(s)|θ|2ds, (1.102)

so from (1.55) we have

dX̂ε =
[
− |θ|2λεξ0(s)

∂Gε

∂λ

(
λεξ0(s), s

)
+ rGε

(
λεξ0(s), s

)
− β1

(
λεξ0(s)

)]
ds

−λεξ0(s)
∂Gε

∂λ

(
λεξ0(s), s

)
θdw

=
(
rX̂ε − |θ|2

λε
λ′ε

(X̂ε, s)− β1

(
λε(X̂ε, s)

))
ds− λε

λ′ε
(X̂ε, s)θdw.

(1.103)

which is exactly (1.97). Therefore, we have the optimal feedbacks (2.28) and (2.29).

We now come to prove the optimal value. By (1.32), the optimal value is

Jε(Ĉε,$̂ε) = u(x0, 0)− 2ερ2
εe
−rT . (1.104)

We have

u(x0, 0) = u
(
Gε,ρε(λε, 0), 0

)
= Zε,ρε(λε, 0), (1.105)

where

Zε,ρ(λ, t) = u
(
Gε,ρ(λ, t), t

)
, (1.106)

a solution of

−∂Zε,ρ
∂t
− |θ|

2

2
λ2∂

2Zε,ρ

∂λ2 + rZε,ρ = U1(β1(λ)),

Zε,ρ(λ, T ) = U2

(
Gε,ρ(λ, T )

)
− εG2

ε,ρ(λ, T ) + ερ2
ε + 2ερεGε,ρ(λ, T ),

Gε,ρ(λ, T ) = β2ε(λ− 2ερ).

(1.107)

We obtain

Zε,ρ(λ, 0) = e−rTEZ(λξ0(T ), T ) + E

∫ T

0

e−rsU1

(
β1

(
λξ0(s)

))
ds, (1.108)
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and

Zε,ρ(λ, 0) = e−rT
[
EU2

(
β2ε(λξ0(T )− 2ερ)

)
− εEβ2

2ε(λξ0(T )− 2ερ)

+ερ2
ε + 2ερεEβ2ε(λξ0(T )− 2ερ)

]
+ E

∫ T

0

e−rsU1

(
β1

(
λξ0(s)

))
ds.

(1.109)

Therefore,

Jε
(
Ĉε, $̂ε

)
= e−rT

[
EU2

(
β2ε(λεξ0(T )− 2ερε)

)
− εEβ2

2ε(λεξ0(T )− 2ερε)

−ερ2
ε + 2ερεEβ2ε(λεξ0(T )− 2ερε)

]
+ E

∫ T

0

e−rsU1

(
β1

(
λεξ0(s)

))
ds.

(1.110)

1.8.4 Proof of Proposition 1.1

In this case, the problem reduces to the classical Merton’s problem with β2ε(µ) = β2(µ)

and G0,ρ(λ, t) = G(λ, t) independent of ρ.

Then G(λ0, 0) = x0; it follows

T0(ρ) = Eβ2(λ0ξ0(T )).

Therefore,

ρ0 = Eβ2(λ0ξ0(T )). (1.111)

1.8.5 Proof of Proposition 1.2

We first check that

β2ε(λ− 2ερ)→ ρ as ε→ +∞;
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hence λε(ρ)→ λ∞(ρ) = λ(ρ) solution of

ρe−rT + E

∫ T

0

ξ0(s)β1(λξ0(s))e−rs ds = x0. (1.112)

We then see that Tε(ρ)→ ρ. To obtain the limit of ρε, we need an asymptotic expan-

sion.

In fact,

β2ε(λ− 2ερ) ∼ ρ+
U ′2(ρ)− λ

2ε
,

and

Tε(ρ) ∼ ρ+
U ′2(ρ)− λ(ρ)

2ε
.

It follows that ρ∞ is the solution of

U ′2(ρ∞)− λ(ρ∞) = 0. (1.113)

We need to find λ∞ = λ(ρ∞) solution of the equation

β2(λ∞)e−rT + E

∫ T

0

ξ0(s)β1(λ∞ξ0(s))e−rs ds = x0, (1.114)

which has a unique solution. Then ρ∞ = β2(λ∞).

1.8.6 Proof of Proposition 1.3

We have

ρ0 = Eβ0(λ0ξ0(T )), (1.115)

ρ∞ = β2(λ∞), (1.116)

dξ0(s) = −ξ0(s)θ.dw,

ξ0(0) = 1.

(1.117)

and

ρ∞e
−rT + E

∫ T

0

ξ0(s)β1(λ∞ξ0(s))e−rsds = x0, (1.118)
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Eξ0(T )β2(λ0ξ0(T ))e−rT + E

∫ T

0

ξ0(s)β1(λ0ξ0(s))e−rsds = x0. (1.119)

We can rewrite (1.118) as

ρ∞e
−rT + E

∫ T

0

ξ0(s)β1

(
β−1

2 (ρ∞)ξ0(s)
)
e−rsds = x0. (1.120)

We are going to prove that

ρ0e
−rT + E

∫ T

0

ξ0(s)β1

(
β−1

2 (ρ0)ξ0(s)
)
e−rsds ≥ x0. (1.121)

Since the function

ρe−rT + E

∫ T

0

ξ0(s)β1

(
β−1

2 (ρ)ξ0(s)
)
e−rsds, (1.122)

is monotone increasing in ρ. (1.120) and (1.121) implies ρ0 ≥ ρ∞.

To prove (1.121), we prove separately

β−1
2 (ρ0) ≤ λ0, (1.123)

Eξ0(T )β2(λ0ξ0(T )) ≤ ρ0. (1.124)

To prove (1.123) we check that

ρ0 ≥ β2(λ0), (1.125)

which means

Eβ2(λ0ξ0(T )) ≥ β2(λ0). (1.126)

Since β2 is strictly convex, Jensen’s inequality implies

β2(λ0Eξ0(T )) < Eβ2(λ0ξ0(T )), (1.127)

and recall that Eξ0(T ) = 1, we obtain (1.126).

In the following, we shall prove that ∀t ≥ 0, ∀λ > 0

Eλξt(T )β2(λξt(T )) ≤ λEβ2(λξt(T )), (1.128)
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then applying with t = 0 and λ = λ0, we get (1.124).

We set

u(λ, t) = Eλξt(T )β2(λξt(T )),

v(λ, t) = Eβ2(λξt(T )),

(1.129)

where

dξt(s) = −ξt(s)θ.dw,

ξt(t) = 1.

(1.130)

We also introduce the notation ξtλ(s) = λξt(s), then

dξtλ(s) = −ξtλ(s)θ.dw,

ξtλ(t) = λ.

(1.131)

Clearly, (1.128) means

u(λ, t) ≤ λv(λ, t). (1.132)

Let u(λ, t) is the solution of

∂u

∂t
+

1

2
λ2|θ2|∂

2u

∂λ2 = 0,

u(λ, T ) = λβ2(λ).

(1.133)

and v(λ, t) is the solution of

∂v

∂t
+

1

2
λ2|θ2|∂

2v

∂λ2 = 0,

v(λ, T ) = β2(λ).

(1.134)

Set ṽ(λ, t) = λv(λ, t), then we have

∂ṽ

∂t
+

1

2
λ2|θ2|∂

2ṽ

∂λ2 = λ2|θ|2∂v
∂t
,

ṽ(λ, T ) = λβ2(λ).

(1.135)
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From the definition of v(λ, t) and the fact that β2 is decreasing, we can check that

v′(λ, t) =
∂v

∂λ
(λ, t) ≤ 0 (1.136)

Set ζ(λ, t) = u(λ, t)− ṽ(λ, t), then

∂ζ

∂t
+

1

2
λ2|θ2|∂

2ζ

∂λ2 = −λ2|θ|2v′(λ, t) > 0,

ζ(λ, T ) = 0.

(1.137)

Applying Itô’s formula to ζ(λ, t), we obtain

dζ(λ, t) = (
∂ζ

∂t
+

1

2
λ2|θ2|∂

2ζ

∂λ2 )dt+ θλ
∂ζ

∂λ
(λ, t)dw.

From (1.137), we have

dζ(λ, t) = −λ2|θ|2v′(λ, t) + θλ
∂ζ

∂λ
(λ, t)dw,

integrating from t to T and taking expectations, it is easy to see that ζ(λ, t) ≤ 0, hence

the result (1.128), which completes the proof.

1.8.7 Proof of Remark 1.4

We note that

Gε,ρ(λ, t) = Eξt(T )β2ε(λξt(T )− 2ερ)e−r(T−t) + E

∫ T

t

ξt(s)β1

(
λξt(s)

)
e−r(s−t)ds, (1.138)

G0,ρ(λ, t) = Eξt(T )β2(λξt(T ))e−r(T−t) + E

∫ T

t

ξt(s)β1

(
λξt(s)

)
e−r(s−t)ds

=
1

λ
e−r(T−t) +

1

rλ
(1− e−r(T−t)),

(1.139)

and

∂G0,ρ(λ, t)

∂λ
= − 1

λ2 e
−r(T−t) − 1

rλ2 (1− e−r(T−t)). (1.140)
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Therefore, we have

G0,ρ(λ0ξ0(t), t) =
1

λ0ξ0(t)
e−r(T−t) +

1

rλ0ξ0(t)
(1− e−r(T−t)), (1.141)

and

∂G0,ρ(λ0ξ0(t), t)

∂λ
= − 1

λ2
0ξ

2
0(t)

e−r(T−t) − 1

rλ2
0ξ

2
0(t)

(1− e−r(T−t)). (1.142)

From

X̂0(t) = G0,ρ(λ0ξ0(t), t), (1.143)

and (1.141), we obtain that

Ĉ0(t) = β1

(
λ0ξ0(t)

)
=

r

1 + (r − 1)e−r(T−t)
X̂0(t). (1.144)

Substitute (1.143) and (1.142) into

$̂0(s)X̂0(t) = −λ0ξ0(t)
∂G0,ρ0

∂λ

(
λ0ξ0(t), s

)
(σ∗)−1θ, (1.145)

we have

$̂0(t) =
α− r
σ2

. (1.146)

1.8.8 Proof of Remark 1.5

At first, we have

lim
ε→∞

β2ε(λεξ0(t)ξt(T )− 2ερε) = ρ∞, (1.147)

and

lim
ε→∞

∂β2ε(λεξ0(t)ξt(T )− 2ερε)

∂λ
= lim

ε→∞
β′2ε(λεξ0(t)ξt(T )− 2ερε)ξt(T ) = 0. (1.148)
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Hence,

X̂∞(t) = G∞,ρ∞(λ∞ξ0(t), t) = ρ∞e
−r(T−t) +

1

rλ∞ξ0(t)
(1− e−r(T−t)), (1.149)

Therefore,

∂G∞,ρ∞(λ∞ξ0(t), t)

∂λ
= − 1

rλ2
0ξ

2
0(t)

(1− e−r(T−t)). (1.150)

which substituted in

$̂∞(t)X̂∞(t) = −λ∞ξ0(t)
∂G∞,ρ∞
∂λ

(
λ∞ξ0(t), t

)
(σ∗)−1θ,

gives

$̂∞(t) =

1
rλ∞ξ0(t)

(1− e−r(T−t)) θ
σ

ρ∞e
−r(T−t) + 1

rλ∞ξ0(t)
(1− e−r(T−t))

. (1.151)

In addition, (1.49) is obvious since

Ĉ∞(t) = β1

(
λ∞ξ0(t)

)
= β1

(
λ0ξ0(t)

)
= Ĉ0(t). (1.152)

1.8.9 Proof of relationship between ρε and ρ0 for ε is small and γ1 = 1.

Proposition 1.4. When ε is small and γ1 = 1, the relationship between ρε and ρ0 is

given by

ρε ≈ ρ0 + αρ3
0ε,

where

α = e|θ|
2T − e3|θ|2T +

e−rT (e|θ|
2T−1)

e−rT + 1−e−rt
r

.

Since

α < e|θ|
2T − e3|θ|2T + e|θ|

2T − 1 < 0,

we have expected optimal terminal wealth ρε is decreasing with ε.
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Proof:

From Maclaurin series, we have

β2ε(µ) =
µ

4ε
(−1 +

√
1 +

8ε

µ2
) =

µ

4ε
(
4ε

µ2
− 8ε2

µ4
) =

1

µ
− 2ε

µ3
,

1

λξ0(T )− 2ερ
=

1

λξ0(T )(1− 2ερ
λξ0(T )

)
=

1

λξ0(T )
(1 +

2ερ

λξ0(T )
).

Therefore,

Gε,ρ(λ, 0) = Eξ0(T )β2ε(λξ0(T )− 2ερ)e−r(T ) + E

∫ T

0

ξ0(s)β1

(
λξ0(s)

)
e−r(s)ds

=
e−rT

λ
+

1− e−rT

rλ
+

2ερ

λ2 E
1

ξ0(T )
e−rT − 2ε

λ3E
1

ξ2
0(T )

e−rT ,

(1.153)

From 1.117, and define η0(t) = 1
ξ0(t)

, we have

Eη0(T ) = e|θ|
2T ,

Eη2
0(T ) = e3|θ|2T .

Plugging these into 1.153 yields

Gε,ρ(λ, 0) =
e−rT

λ
+

1− e−rT

rλ
+

2ερ

λ2 e
−(r−|θ|2)T − 2ε

λ3 e
−(r−3|θ|2)T . (1.154)

Since for ε = 0, λε(ρ) = λ0(ρ), we assume

λε(ρ) = λ0(ρ)(1 + εa(ρ)),

where a(ρ) is determined later.

Note that Gε,ρ(λ, 0) = x0, λ2
ε(ρ) = λ2

0(ρ)(1 + 2εa(ρ)), and λ3
ε(ρ) = λ0(ρ)(1 + 3εa(ρ)).

Solving λ3Gε,ρ(λ, 0) = λ3x0 gives

a(ρ) =
2ρλ0(ρ)e−(r−θ|2)T − 2e−(r−3θ|2)T

x0λ
3
0(ρ)

.
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Therefore,

λε(ρ)ξ0(T )− 2ερ = λ0(ρ)ξ0(T ){1 + 2ε
e−(r−|θ|2)T

x0λ
2
0(ρ)

(ρ− e2|θ|2)T

λ0(ρ)
)− 2ερ

λ0(ρ)ξ0(T )
}. (1.155)

Note that ρε = Eβ2ε

(
λε(ρε)ξ0(T )− 2ερε) and Tε(ρε) = ρε, a direct calculation gives

ρε = ρ0 + αρ3
0ε,

where

α = e|θ|
2T − e3|θ|2T +

e−rT (e|θ|
2T−1)

e−rT + 1−e−rt
r

.

.
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2.1 Introduction

2.1.1 Motivation and Some Related Literature

The growing concerns regarding an environmental issue, fossil fuel depletion, and energy

independence have driven the introduction of renewable energy policy. In particular,

the number of self-generated renewable energy facility (e.g., photovoltaic solar panel) for

households has been considerably increased by an economic incentive from this energy

policy (Paraschiv et al. 2014). In the past, the installation of a solar panel was an al-

ternative energy generator to replace a traditional energy production plant. Increasing

the penetration of self-generated renewable energy facility induces a new role in a smart

grid market. For instance, by installing local storage with solar panels for individual

households, various services such as spinning reserve, active power grid regulation, and

dynamic load balancing are allowed. The main theme of these services is to cope with

rapid changes in energy demand in the grid system by considering local storage as sup-

plement energy storage. Since the short on energy in the grid would cause a blackout

resulting in numerous cascading problems, it is indispensable for the smart grid operator

to properly manage the surging demand. Therefore, it is evident that there are attractive

advantages of the local storage strategy for the grid operator. The household who installs

the local storage with the solar panel may reap a benefit from a bidirectional energy trans-

action by charging remnant energy during the off-peak times and by discharging stored

energy during the on-peak time. This energy transaction would be profitable for the

households because a dynamic market pricing scheme depends on the real-time demands

in the grid system. Given how crucial the understanding of local storage strategy is for

enhancing the resilience of the grid system, surprisingly little is explored analytically

about it, as a lack of proper analytic models so far.
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Qi et al. (2015) proposes the problem of economic planning for the energy storage

system based on a linear programming model to decide the optimal size and location of

energy storage for wind energy generation. This study shows how to choose the optimal

size of energy storage by estimating a closed-form upper bound. However, this work is

limited to understand a real-time operating decision to control the level of stored energy

in energy storage. Cruise et al. (2019) studies for the large-scale energy storage opti-

mization problem using a deterministic Lagrangian approach to derive the optimal level

of inventory to minimize the cost structure. Lin et al. (2019) considers the approximate

linear programming as a proper approach to manage high dimensional decision processes

regarding inventory control in energy storage. The works of Cruise et al. (2019) and

Lin et al. (2019) contribute the understanding of dynamic aspect of market system via

efficient algorithms on calibrating the control rather than obtaining an explicit solution.

In the viewpoint of a central planner, Zhou et al. (2016) suggests a finite Markov decision

process to explain the comparison between the disposal strategy and the storage strategy

by using the perishable electricity. This research work shows that a policymaker needs

to establish economic incentives to promote the storage strategy because the disposal

strategy is normally preferred by the merchants. Even though the market price is piv-

otal to draw a policy implication, this price impact is exogenous in their modelling. As

discussed above, using only one of the techniques such as the linear programming, the

Lagrangian approach, and the Markov decision process at a time can certainly illuminate

one spectacular aspect of smart grid of energy storage though subject to a certain degree

of limitation. In our opinion, the mean field approach can on one hand highlight the pros

of these modellings, while on the other hand, remedy their cons too, henceforth a more

comprehensive model for the energy-grid dynamic system can be obtained.

In our paper, we study a quantity competition model among the large number of inter-

acting households who own local storage with a self-generated renewable energy system
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for the bidirectional energy transaction between the local storage and a grid in a dy-

namic setting, where the individual household can make a decision regarding an amount

of charging or discharging energy based on the current spot price, the energy demand of

the grid, and the level of stored energy. A game theory technique can be considered one

of the tools to understand the optimal behavior of households and a grid operator. More

specifically, a non-cooperative Stackelberg game allows us to capture their relationship.

Stackelberg (1934) suggested the concept of an equilibrium to understand the optimal

behavior for a leader and followers in 1934. In the grid system, the grid operator is

considered as a leader and the group of households is considered as followers. The main

objective of the group of households is to maximize their utility by strategically choos-

ing the charging amount. Based on the group of households’ optimal strategy, the grid

operator is able to derive the optimal pricing strategy to maximize its profit. However,

this approach is limited to describe an aspect of the dynamic market pricing scheme

depending on the aggregated interaction among a large number of households. One of

the pleasant ways to illustrate this aspect is the use of Stochastic Differential Games

(SDGs) (see e.g., Friedman 1994). For example, Bensoussan and Frehse (2000) introduce

the zero-sum SDGs with N players by using a dynamic programming approach, but this

approach is limited to derive equilibrium outputs in numerous applications because of

mathematical complexity.

In this paper, we propose an extended mean field type approach to study a dynamic

integration model between a grid and a large number of households. Mean Field games

have been introduced by Lasry and Lions (2007) and independently by Huang et al.

(2006). See Bensoussan et al. (2013) for the comparison between Mean Field Games and

Mean Field type Control Theory. To study the interacting particle system, mean field

term was introduced as a medium. The novelty of MFGs is to describe the behavior of
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agents in social science as the interaction of particles in physics. The mean-field terms

represent the probability distribution when the number of populations goes to infinity.

In addition, this term can capture an aggregated effect arising from the status of popu-

lations.

The mean field type approach is a promising approach to describe a smart grid mar-

ket mechanism (Couillet et al. 2012, Paola et al. 2016). However, the analysis of this

approach requires several logical assumptions: (1) the sufficiently large number of players

to be considered infinite; (2) homogeneity in strategic behavior of players; and (3) social

interactions governed by mean field term. The first assumption is supported by the fact

that there are a huge number of households who own local storage with a self-generated

energy facility. The second assumption is justifiable since each player has similar con-

straints and objectives. This means that individual households do not vary and they

have almost identical objectives such as minimizing costs and maximizing its utility. The

last assumption explains the fact that each household can marginally contribute to the

grid system, but the status of each household follows a probability distribution. In this

research, the dynamic market pricing scheme is governed by the mean field term. We will

explain this term more specifically in the Section 2.1.3.

A study for dynamic quantity competition with a large number of interacting players

has been introduced by Chan and Sircar (2015). This study suggests a continuous time

Cournot (1838) competition model based on the concept of MFGs. In this study, a mar-

ket price is a function of aggregated quantity decisions from players, but this model does

not take into account the concept of inventory management that should be considered to

properly explain why the individual households strategically choose the amount of charg-

ing or discharging energy by considering the level of stored energy in local storage. In

the existing literature, a mean field type control problem is concerned with controlling a
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McKean-Vlasov type state process, one can refer to Carmona and Delarue (2017), or for a

shorter presentation in Bensoussan et al. (2013) for discussion; in principle, on the top of

the classical stochastic control theory, it adds the influence of the overall probability dis-

tribution of the state on both the state dynamics and objective functionals. The example,

which motivates us, Alasseur et al. (2020) incorporates also the probability distribution

of the control. The extension of mean field type control to situations where the equation

and the pay off depend also on the evolution of the probability distribution of the control

has been studied by Pham and Wei (2018), at the level of Bellman equation. We extend

it at the level of the Master equation and system of Hamilton-Jacobi-Bellman-Fokker

Planck equations. To best our knowledge, our work is the first theoretical work to derive

a Master equation and a corresponding the system of HJB–FP equations for the extended

mean field type control approach. Furthermore, we completely solve the application of

an energy-grid dynamic optimization studied in the paper of Alasseur et al. (2020), who

solve this problem using a stochastic maximum principle.

2.1.2 Contributions of our work

We explicitly derive the feedback control regarding the optimal charging or discharging

rule for a household who owns a self-generated renewable energy system with a local

storage facility based on the dynamic pricing scheme of a spot energy price. In our mean

field model, the feedback control can help to modulate the behavior of the consumer

by managing himself or herself to avoid over-charging or over-discharging the energy in

the grid system. If the consumer charges the energy more than the average, then he

or she will tend to use less energy or vice versa. Therefore, the movement of the spot

energy price would be less volatile, so this is the main feature of having the feedback

control that can reduce the furious fluctuation of the spot energy price. Our setting is

58



especially relevant to the implementation of the dynamic pricing scheme in a grid as the

popularity of a renewable energy facility increases. The dynamic pricing scheme triggers

the economic incentive and ensures the energy bill stability because the consumers can

adjust their consumption behavior in accordance with the spot energy price; despite of

these advantages, there are only seven European countries (namely, Denmark, Estonia,

Finland, Netherlands, Spain, Sweden, and the United Kingdom) which partially introduce

the dynamic pricing scheme because there could be some risk inherent in the system from

the high fluctuation of spot price energy (Dutta and Mitra 2017, European Commission

2019). Our mean field approach with a local storage strategy when combined with the

dynamic pricing scheme can lead to a promising policy scheme for policymakers to reduce

the volatility risk of the dynamic pricing scheme on one hand and also to ensure the

mentioned advantages on the other hand.

The mean field approach allows us to propose a compelling model by overcoming

the limitation of previous studies (see e.g., Qi et al. 2015, Zhou et al. 2016, Cruise et

al. 2019, Lin et al. 2019) that have not yet considered an endogenous with feedback

pricing scheme. Although their works remarkably illuminate one aspect of the control

of local storage given an exogenous pricing scheme in a widespread energy-grid system,

it is crucial to describe a tangible feedback mechanism between a local storage strategy

and an endogenous pricing scheme in a future energy-grid system. In our mean field

setting, we consider the endogenous pricing scheme based on the real-time amount of

aggregate energy being consumed in the grid system. Our pricing scheme is modulated

by the mean field term being the law of the control. This term can be regarded as

the average of historical performance of one single player who tries to adhere to this

pricing rule in alignment with his or her usual practice reflected by the mean field term.

For instance, Alasseur et al. (2020) recently takes advantage of the novelty of mean
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field approach for a dynamic grid optimization problem; the analytical solution of their

optimization problem is derived by a stochastic maximum principle via an adjoint process

decoupled by the corresponding FBSDE. On the other hand, we consider the problem via

the dynamic programming principle and so the solution can be immediately recovered.

We also construct the corresponding system of stochastic HJB–FP equations into the

Master equation (see Section 2.2). Our Master equation approach is more analytic in

nature, while that of Alasseur et al. (2020) has a strong probabilistic favor. Unlike our

approach, the stochastic maximum principle demands the existence of the FBSDE which

is mostly not so immediate especially in the infinite dimensional setting.

With a plenty of numerical experiments, we interpret the role of feedback control

obtained under the mean field setting for a local storage facility from the comparison

of two energy pricing policies: (1) a dynamic pricing scheme; and (2) a static pricing

scheme (see Section 2.7). Particularly, we show that our feedback control enables a proper

management of the seasonality of energy flow in a grid system through the sensitivity

analysis of the rate of mean reversion. It is our hope that our work can later be studied

further by incorporating real energy transaction data between local storage facilities and

a central grid system in the energy market. For example, this further study would capture

an empirical relationship between the change of energy pricing scheme and the efficiency

of dynamic energy load balancing service in the grid.

2.1.3 Application

In a recent interesting work of Alasseur et al. (2020), the authors considered the problem

of an energy-grid dynamic optimization in which there are both local producers and

consumers, and through out their work they addressed several possibilities of grouping

the players. Without loss of generality, in the present study, we consider only one group of
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identical players. The interaction among the prosumers (who can generate and consume

simultaneously) stems from the price of energy, which appears naturally in their individual

payoffs. Note that this price is not exogenous and it depends among the decisions of all

consumers. Particularly, none of the agents can individually influence this price but

it depends on the overall average of decisions, and hence the price can be regarded as a

mean field term. Here the community has a representative agent, whose state evolution is

driven by a standard diffusion, while the mean field term influences the payoff functional

of the representative. Since the representative agent represents the whole community, it

is legitimate to use the mean field type control approach rather than via the mean field

games.

The representative agent has two state variables S(t) and Q(t), here S(t) is the amount

of energy stored at any time t, and Q(t) is the demand (or supply) rate of the agent by

subtracting the rate of consumption from the rate of production. The evolution of Q(t)

is stochastic, described by a diffusion, however it is not controlled; instead the control

is in the storage, which is defined by a feedback function of the state variable, v(S,Q, t)

(or v(S,Q) in short). More precisely, the evolution dynamics is defined by the following

equations 
dS

dt
= v(S,Q), S(0) = 0;

dQ = b(Q)dt+ σ(Q)dw(t), Q(0) = Q0,

(2.1)

where w(t) is the standard Wiener process and Q0 is a random variable being independent

of the Wiener process. The quantity Q(t) − v(S(t), Q(t)) is actual energy flow between

a energy grid and a local storage per unit time, and its average is denoted by E(Q(t) −

v(S(t), Q(t))). The price paid by the community declines with this average. Note that

the positive sign of energy flow rate indicates the energy flow from the local storage

to the energy grid and vice versa. Following the modelling in Alasseur et al. (2020),
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we denote this price by p(−E(Q(t) − v(S(t), Q(t)))), here the price function p(x) is a

monotonic increasing function. The random revenue from the storage strategy is thus

p(−E(Q(t)− v(S(t), Q(t)))) (Q(t)− v(S(t), Q(t))). There are various costs to be incurred

in front of this revenue. We choose to minimize, so the income enters in the payoff with

a negative sign, and we take the costs as in Alasseur et al. (2020). The cost functional is

now given by:

J(v) := E
∫ T

0

[
a

2
S(t)2 + lS(t) +

c

2
v2(S(t), Q(t))︸ ︷︷ ︸

current storage cost

+
K

2

∣∣∣∣Q(t)− v(S(t), Q(t))

∣∣∣∣2︸ ︷︷ ︸
demand charge

]
dt

− E
∫ T

0

p(−E(Q(t)− v(S(t), Q(t))))E(Q(t)− v(S(t), Q(t)))︸ ︷︷ ︸
volumetric charge

dt+ Eh(S(T )),︸ ︷︷ ︸
terminal storage cost

(2.2)

where a, l, c,K are constant coefficient. The current storage cost represents the agent’s

effort to manage the load of demand. The demand charge depends on the maximum

level of instantaneous power demand since an electricity system is designed to satisfy the

peak level of demand, incurring an additional transmission cost and a loss of energy. The

volumetric charge is a random profit or cost from a storage strategy based on a current

spot price. The terminal storage cost requires the minimum level of stored energy at the

end of the time horizon.

The rest of the paper is organized as follows: Section 2.2 describes a general extended

mean field type control problem with a McKean-Vlasov stochastic differential equation

which depends on not only the evolution of the probability distribution of state but

also the probability distribution of control as in Pham and Wei (2018). In Section 2.3,

we write down the master equation and the corresponding system of HJB-FP equations

for extended mean field type control problems. In Section 2.4, we study the particular
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energy example proposed by the work of Alasseur et al. (2020). The explicit solutions

can be obtained by the master equation and the system of HJB-FP equations we derive in

Section 2.3. Section 2.5 and Section 2.6 introduce a theoretical model of extended mean

field type control problem with common noise and its application, respectively. In section

2.7, we show the numerical results regarding the effectiveness of local storage strategy,

the comparison of a dynamic pricing scheme and a fixed pricing scheme, and the grid

resilience against perturbations of demand. Section 2.8 concludes with some managerial

implications on operating the grid system.

2.2 General Extended Mean Field Type Control Problem

2.2.1 Formulation and Settings

The payoff (2.2) contains the expected values of both the state variables and some func-

tions of the control variables, and due to the generic nature of p, the commonly found

approach from mean field type control theory is insufficient. Pham and Wei (2018) discuss

Bellman equation. We proceed further and also write down the master equation and the

corresponding system of HJB-FP equations. This general mean field type control prob-

lem is stated as follows: we consider a probability space (Ω,A,P), on which we construct

the standard Wiener processes. We have a state process x(t) or simply xt ∈ Rn, and its

probability distribution is denoted by Pxt . The control take values in Rd and is defined

by a feedback one, v(xt,Pxt); it actually depends on time, but we omit the argument t

for simplicity. The probability distribution of this control is denoted by Pv(xt,Pxt ). The

state evolution is defined by:

dx = g(xt,Pxt , v(xt,Pxt),Pv(xt,Pxt ))dt+ σ(xt)dw(t), x(0) = ξ, (2.3)
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where ξ is the initial random variable being independent of the Wiener process w(t).

In (2.3), the drift is a function g(x,m, v, µ) where the arguments x ∈ Rn and v ∈ Rd,

while the arguments m and µ are probability measures on Rn and Rd, respectively. Note

that the probability Pv(xt,Pxt ) is the push forward image of the law of Pxt by the map

x 7→ v(x,Pxt). In the sequel, we use the notation v(·,m)#m for the image or push forward

measure of m by the map x 7→ v(x,m). Therefore, we can rewrite (2.3) as

dx = g(xt,mt, v(xt,mt), v(·,mt)#mt)dt+ σ(xt)dw(t), x(0) = ξ, (2.4)

where mt = m(t) = Pxt . The functional we aim to minimize is:

J(v) = E
[∫ T

0

f(xt,mt, v(xt,mt), v(·,mt)#mt)dt+ h(xT ,mT )

]
(2.5)

2.2.2 Reformulation

Assume that ξ has a probability distribution with a density m0(x). Denote by A =

A(t) the second order differential operator Aϕ(x) := −tr
(
a(x)D2ϕ(x)

)
, where a(x) =

1

2
σ(x)σ∗(x). We call A∗ the adjoint operator

A∗ϕ(x) = −
n∑

i,j=1

∂2

∂xi∂xj
(aij(x)ϕ(x)).

Under some mild technical assumptions, the probability measure mt should have a density

m(x, t) satisfying the Fokker-Planck equation:

∂

∂t
m+ A∗m+ div

(
g(x,m, v(x,m), v(·,m)#m)m(x, t)

)
= 0, m(x, 0) = m0(x), (2.6)

and the objective functional (2.5) can be written as follows:

J(v) =

∫ T

0

∫
Rn
f(x,mt, v(x,mt), v(·,m)#mt)m(x, t)dxdt+

∫
Rn
h(x,mT )m(x, T )dx,

(2.7)
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where mt = m(x, t). As usual we have reduced the original stochastic control problem

to a deterministic control problem for a distributed parameter system, whose evolution

is described by the FP equation (2.6). To apply Dynamic Programming principle, we

embed problem (2.6) and (2.7) into the family, given m(x),

∂

∂s
m+ A∗m+ div(g(x,m, v(x,m), v(·,m)#m)m(x, s)) = 0, s > t, m(x, t) = m(x);

(2.8)

Jm,t(v) =

∫ T

t

∫
Rn
f(x,ms, v(x,ms), v(·,m)#ms)m(x, s)dxds+

∫
Rn
h(x,mT )m(x, T )dx.

The value function is given by

Φ(m, t) := inf
v
Jm,t(v)

2.2.3 Bellman Equation

Subject to the existence of derivatives, the function Φ(m, t) is the solution of Bellman

equation. In the following, we provide some formal derivation. The functional derivative

∂

∂m
Φ(m, t)(x) is the function (omitting the argument t) such that

Φ(m′)− Φ(m) =

∫ 1

0

∂

∂m
Φ(θm′ + (1− θ)m)(x)(m′ −m)(dx).

We introduce the Lagrangian

L(x,m, v, µ, ρ) := f(x,m, v, µ) + ρg(x,m, v, µ). (2.9)

Now, the Bellman equation can be written as:

−∂Φ

∂t
+

∫
Rn
Ax

∂

∂m
Φ(m, t)(x)m(x, t)dx

= infv
∫
Rn L

(
x,m, v(x,m), v(·,m)#m,Dx

∂

∂m
Φ(m, t)(x)

)
m(x)dx,

Φ(m,T ) =

∫
Rn
h(x,m)m(x)dx.

65



We shall use the notation

U(x,m, t) =
∂

∂m
Φ(m, t)(x),

and then Bellman equation can be rewritten as

−∂Φ

∂t
+

∫
Rn
Ax

∂

∂m
Φ(m, t)(x)m(x, t)dx

= inf
v

∫
Rn
L(x,m, v(x,m), v(·,m)#m,DxU(x,m, t))m(x)dx

(2.10)

and v̂(x,m) = v̂(x,m, t) minimizes the functional, in v,

L (v, v(·,m)#m) :=

∫
Rn
L(x,m, v(x,m), v(·,m)#m,DxU(x,m, t))m(x)dx. (2.11)

2.2.4 Rules of Derivation

To proceed, we need two important derivation rules. Details for the formal derivation

rules can be found in Bensoussan et al. (2015, 2017). Consider a functional Ψ(µ) on

probability measures on Rd and then Ψ(v(·,m)#m) is a functional of v(x,m) and it is

also a functional of m for Ψ having a functional derivative
∂

∂µ
Ψ(µ)(w), with w ∈ Rd, we

then first claim that

d

dθ
Ψ((v(·,m) + θṽ(·,m))#m)

∣∣∣∣∣
θ=0

=

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m)#m)(v(x,m)) · ṽ(x,m) ·m(x)dx.

(2.12)

For the second rule, we consider the map m 7→ Ψ(v(·,m)#m) and establish its functional

derivative as follows. We claim the formula

∂

∂m
Ψ(v(·,m)#m)(x) =

∂

∂µ
Ψ(v(·,m)#m)(v(x,m))

+

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m)#m)(v(ξ,m)) · ∂

∂m
v(ξ,m)(x)m(ξ)dξ.

(2.13)

We want to make clear with the notations are used here, for the function f(x,m, v(x,m),

v(·,m)#m), when we write
∂

∂m
f(x,m, v(x,m), v(·,m)#m)(ξ), we mean the function
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∂

∂m
f(x,m, v, µ)(ξ) in which the arguments v and µ are replaced by v(x,m) and v(·,m)#m,

respectively. We are not differentiating with respect to the argument m indexed in v(x,m)

or v(·,m)#m.

Using the first rule of differentiation (2.12), we can write the Euler condition of op-

timality for the optimal feedback v̂(x,m) in the minimization of the objective functional

(2.11); indeed, we first note that by using (2.12),

d

dθ
L(v, v(·,m)#m)

∣∣∣∣∣
θ=0

= 0 for any ∀ṽ(·,m)

gives the following relation

Lv(x,m, v̂(x,m), v̂(·,m)#m,DxU(x,m, t))

+

∫
Rn
Dw

∂

∂µ
L(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(v̂(x,m))m(ξ)dξ = 0.

(2.14)

It will be important in the sequel to compute the functional derivative of the objective

functional

L(m) =

∫
Rn
L(x,m, v̂(x,m), v̂(·,m)#m,DxU(x,m, t))m(x)dξ,

by taking into account that v̂(x,m) is already the optimal one, and thus that the necessary

condition of optimality (2.14) is fufilled. We obtain the formula

∂

∂m
L(m)(x) =L(x,m, v̂(x,m), v̂(·,m)#m,DxU(x,m, t))

+

∫
Rn

∂

∂m
L(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(x)m(ξ)dξ

+

∫
Rn

∂

∂µ
L(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(v̂(x,m))m(ξ)dξ

+

∫
Rn
Dξ

∂

∂m
U(ξ,m, t)(x) · g(ξ,m, v̂(ξ,m), v̂(·,m)#m)m(ξ)dξ,

(2.15)

where to obtain the third term, we first apply (2.13) and then use Fubini’s theorem, then

the Euler-optimality condition (2.14) helps to simplify; to obtain the fourth term, just

note that
∂L

∂ρ
= g by using (2.9).
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2.3 Master Equation and System of HJB-FP Equations

2.3.1 Master Equation

The master equation is obtained by differentiating Bellman equation (2.10) with respect

to the probability measure m. Thanks to formula (2.15), we obtain the equation for

U(x,m, t) as follows:



−∂U
∂t

+ AxU(x,m, t) +

∫
Rn
Aξ

∂

∂m
U(ξ,m, t)(x)m(ξ)dξ

= L(x,m, v̂(x,m), v̂(·,m)#m,DxU(x,m, t))

+

∫
Rn

∂

∂m
L(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(x)m(ξ)dξ

+

∫
Rn

∂

∂µ
L(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(v̂(x,m))m(ξ)dξ

+

∫
Rn
Dξ

∂

∂m
U(ξ,m, t)(x) · g(ξ,m, v̂(ξ,m), v̂(·,m)#m)m(ξ)dξ,

U(x,m, T ) = h(x,m) +

∫
Rn

∂

∂m
h(ξ,m)(x)m(ξ)dξ;

and v̂(x,m) is related to U(x,m, t) by the relation (2.14).

2.3.2 System of HJB-FP Equations

From the master equation, we can derive the system of HJB-FP equations. First of all,

using the optimal feedback v̂(x,m) in the FP equation (2.8), we obtain a probability

density that we here just simplify the notation m(x, t) by adopting mt; we also set

v̂(x, t) = v̂(x,mt, t). Thus, the probability density m(x, t) is the solution of

∂m

∂t
+ A∗m+ div(g(x,mt, v̂(x, t), v̂(·, t)#mt)m(x, t)) = 0, m(x, 0) = m(x). (2.16)
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We also define u(x, t) := U(x,mt, t). We can state that the optimal control v̂(x, t) satisfies

the Euler optimality condition:

Lv(x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t))

+

∫
Rn
Dw

∂

∂µ
L(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))m(ξ, t)dξ = 0.

(2.17)

Finally, we obtain the HJB equation for u(x, t) by using (2.16) and note that

∂u

∂t
=
∂U

∂t
+

∫
Rn

∂U

∂m
(ξ,mt, t) ·

∂m

∂t
(ξ)dξ



−∂u
∂t

+ Axu = L(x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t))

+

∫
Rn

∂

∂m
L(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(x)m(ξ, t)dξ

+

∫
Rn

∂

∂µ
L(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))m(ξ, t)dξ,

u(x, T ) = h(x,m(T )) +

∫
Rn

∂

∂m
h(ξ,m(T ))m(ξ, T )dξ.

(2.18)

Therefore, we have to solve jointly the system of HJB-FP equations (2.16) and (2.18)

subject to the Euler optimality condition (2.17).

2.4 Application

2.4.1 Derivation of the Optimal Feedback

In this section, we derive the optimal feedback for a dynamic grid optimization problem

described in Section 2.1.3. The household who owns local storage with a self-generated

energy facility (e.g., a photovoltaic solar panel) makes a decision regarding how much

charge or discharge energy by considering the current level of stored energy and the grid

market environment. In our mean field type approach, we consider the fact that the

individual household’s decision marginally influences the market price, but the average
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of households’ decision directly contribute to the formation of market price. For the

derivation of the optimal feedback, we shall make the following assumption

h(S) = h0
S2

2
+ h1S + h2, (2.19)

where h0, h1, and h2 are constant coefficient. Also, we use the notation

v̂(t) =

∫
v̂(s, q, t)mt(ds, dq); Q(t) =

∫
qmt(ds, dq).

Proposition 2.1. We assume the terminal cost function is quadratic as in (2.19), then

the feedback v̂(S,Q, t) is given by

v̂(S,Q, t) =
KQ− λ(S,Q, t)− ζ

(
v̂(t)−Q(t)

)
c+K

,

where ζ(x) = p(x) + xp′(x) and λ(S,Q, t) =
∂u

∂S
(S,Q, t) is the solution of

−∂λ
∂t
− 1

2
σ2(Q)

∂2λ

∂Q2
− b(Q)

∂λ

∂Q
+

1

c+K
λ
∂λ

∂S
− 1

c+K

(
KQ− ζ

(
v̂(t)−Q(t)

)) ∂λ
∂S

= aS + l,

λ(S,Q, T ) = h0S + h1.

Details in the proof of Proposition 2.1 can be found in the appendix. Once we know

the λ(S,Q, t), everything is explicit. We can obtain λ(S,Q, t) as

λ(S,Q, t) = λ0(Q, t)S + λ1(Q, t);

and we have to solve the equation for λ0(Q, t) which is

−∂λ0

∂t
− 1

2
σ2(Q)

∂2λ0

∂Q2
− b(Q)

∂λ0

∂Q
+

(λ0)2

c+K
= a, λ0(Q, T ) = h0;

and the equation for λ1(Q, t) which is

−∂λ1

∂t
− 1

2
σ2(Q)

∂2λ1

∂Q2
− b(Q)

∂λ1

∂Q
+

λ0λ1

c+K
=

1

c+K
(KQ− ζ(v̂(t)−Q(t)))λ0 + l,

λ1(Q, T ) = h1.
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Since a, c, K, h0 are constants, λ0(Q, t) = λ0(t) solution of

−dλ0

dt
+

(λ0)2

c+K
= a, λ0(T ) = h0

whose solution is

λ0(t)√
a(c+K)

=

(h0 +
√
a(c+K)) exp 2

√
a

c+K
(T − t) + h0 −

√
a(c+K)

(h0 +
√
a(c+K)) exp 2

√
a

c+K
(T − t)− (h0 −

√
a(c+K))

We can save notation in defining

µ0(t) =
λ0(t)

c+K
, a0 =

√
a

c+K
, k0 =

h0

c+K
,

then we have

µ0(t) = a0
(k0 + a0) exp 2a0(T − t) + k0 − a0

(k0 + a0) exp 2a0(T − t)− (k0 − a0)
;

and λ1(Q, t) is the solution of

− ∂λ1

∂t
− 1

2
σ2(Q)

∂2λ1

∂Q2
− b(Q)

∂λ1

∂Q
+µ0λ1 =

(
KQ− ζ

(
v̂(t)−Q(t)

))
µ0 + l, λ1(Q, T ) = h1,

(2.20)

which is a linear parabolic equation, the probabilistic interpretation of which, with respect

to the diffusion (2.1) is immediate. The feedback v̂(S,Q, t) is given by

v̂(S,Q, t) =
KQ− λ1(Q, t)− ζ

(
v̂(t)−Q(t)

)
c+K

− µ0(t)S. (2.21)

Remark 2.1. In the paper of Alasseur et al. (2020), the stochastic maximum principle is

used. Our results concur naturally with the results of this work, and provide the dynamic

programming version of the solution.

Lemma 2.1. Consider the situation in which the price function is linear

p(x) = p0x+ p1

with p0 > 0, then the feedback v̂(S,Q, t) is completely linear.

The proof of Lemma 3.1 is put in the appendix.
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2.5 Extended Mean Field Type Control with Common Noise

2.5.1 Formulation of the Problem

We generalize the state equation (2.3) as follows. We introduce a new Brownian motion

b(t), independent of w(t), and ξ, which we take scalar (to simplify) standard. Equation

(2.4) becomes

dx = g(x,mt, v(x,mt), v(·,mt)#mt)dt+ σ(xt)dw(t) + βdb(t), x(0) = ξ, (2.22)

where β is a constant vector in Rn. This time, mt is not the probability law of xt, but

the conditional probability law given the σ−algebra Bt = σ(b(s), 0 ≤ s ≤ t). Indeed, in

the applications, b(t) represents a common noise, which is observable. The probability

measure will have a density, m(x, t), which is a random field adapted to the filtration Bt.

Thanks to the fact that β is a constant vector, it is pretty standard to check that m(x, t)

is the solution of the stochastic Fokker-Planck equation



dtm(x, t)

+

(
A∗m(x, t)− 1

2
trD2m(x, t)ββ∗ + div (g(x,mt, v(x,mt), v(·,mt)#mt)m(x, t))

)
dt

+β∗Dm(x, t) db(t),

m(x, 0) = m0(x),

(2.23)

where m0(x) is the density of the probability distribution of the variable ξ. Following

invariant embedding framework, we shall consider arbitrary initial time t, a Brownian

motion which vanishes at t, bt(s) = b(s) − b(t), s ≥ t, and an initial random variable ξ,
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independent of w(·) and b(·). So we replace (2.23) by

dsm(x, s)

+

(
A∗m(x, s)− 1

2
trD2m(x, s)ββ∗ + div (g(x,ms, v(x,ms), v(·,ms)#ms)m(x, s))

)
ds

+β∗Dm(x, s) db(s),

m(x, 0) = m0(x).

We next define the cost functional

Jm,t(v) = E
[∫ T

t

f(x,ms, v(x,ms), v(·,ms)#ms)m(x, s)dxds+

∫
Rn
h(x,mT )m(x, T )dx

]
and the value function is given by

Φ(m, t) = inf
v
Jm,t(v).

2.5.2 Bellman Equation

The functional Φ(m, t) is the solution of a second-order infinite dimensional P.D.E. To

simplify notation, we introduce a Lagrangian as follows:

L(x,m, v, µ, ρ) = f(x,m, v, µ) + ρ · g(x,m, v, µ). (2.24)

The arguments m and µ are probability measures, respectively on Rn and Rd. The

arguments x and v are in Rn and Rd respectively and ρ ∈ Rn. By standard arguments,

we check formally that Φ(m, t) is the solution of the equation

−∂Φ

∂t
+

∫
Rn

(
Ax

∂Φ

∂m
(m, t)(x)− 1

2
tr D2

x

∂Φ

∂m
(m, t)(x)ββ∗

)
m(x)dx

−1

2

∫
Rn

∫
Rn

trDξDη
∂2Φ

∂m2
(m, t)(ξ, η)ββ∗m(ξ)m(η)dξdη

= inf
v

∫
Rn
L

(
x,m, v(x,m), v(·,m)#m, Dx

∂Φ

∂m
(m, t)(x)

)
m(x)dx,

Φ(m,T ) =

∫
Rn
h(x,m)m(x)dx.
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We note that the infimum is not achieved pointwise, because of the term v(·,m)#m which

is not local. So, we cannot define an Hamiltonian as in the standard theory. In the sequel,

we shall consider

U(x,m, t) =
∂Φ

∂m
(m, t)(x).

We define the optimal feedback v̂(x,m) = v̂(x,m, t) which achieves the infimum of the

functional

∫
Rn
L (x,m, v(x,m), v(·,m)#m, DxU(x,m, t))m(x)dx.

We write the Euler equation of optimality, taking into account the rules of differentiation,

also see Section 2.2.4:

Lv(x,m, v̂(x,m), v̂(·,m)#m,DxU(x,m, t))

+

∫
Rn
Dw

∂L

∂µ
(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(v̂(x,m))m(ξ)dξ = 0.

2.5.3 Master Equation

The master equation is the equation giving the evolution of U(x,m, t). It is obtained by

differentiating Bellman equation, with respect to the argument m. After lengthy calcula-
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tions, we can write formally the equation



−∂U
∂t

+ AxU(x,m, t)− 1

2
trD2

xU(x,m, t)ββ∗

+

∫
Rn

(
Aξ
∂U

∂m
(ξ,m, t)(x)− 1

2
trD2

ξ

∂U

∂m
(ξ,m, t)(x)ββ∗

)
m(ξ)dξ

−1

2

∫
Rn

∫
Rn

∂2U

∂m2
(x,m, t)(ξ, η)β∗Dm(ξ)β∗Dm(η)dξdη

+β∗Dx

∫
Rn
∂U

∂m
(x,m, t)(ξ)β∗Dm(ξ)dξ

= L(x,m, v̂(x,m), v̂(·,m)#m,DxU(x,m, t))

+
∫
Rn g(ξ,m, v̂(ξ,m), v̂(·,m)#m) ·Dξ

∂

∂m
U(ξ,m, t)(x)m(ξ)dξ

+

∫
Rn

∂L

∂m
(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(x)m(ξ)dξ

+

∫
Rn

∂L

∂µ
(ξ,m, v̂(ξ,m), v̂(·,m)#m,DξU(ξ,m, t))(v̂(x,m))m(ξ)dξ,

U(x,m, T ) = h(x,m) +

∫
Rn

∂h

∂m
(ξ,m)(x)m(ξ)dξ.

2.5.4 System of Stochastic HJB-FP Equations

Using the feedback v̂(x,m) in the stochastic Fokker-Planck equation (2.23), we obtain a

solution, which we still call mt(x) = m(x, t) and we set

v̂(x, t) = v̂(x,mt, t); u(x, t) = U(x,mt, t); Z(x, t) =

∫
Rn
β∗Dξ

∂U

∂m
(ξ,mt, t)(x)mt(ξ)dξ.
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We obtain the following system



−dtu+

(
Axu−

1

2
trD2

xuββ
∗ − β∗DxZ(x, t)

)
dt

=

[
L(x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t))

+
∫
Rn

∂L

∂m
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(x)mt(ξ)dξ

+

∫
Rn

∂L

∂µ
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))mt(ξ)dξ

]
dt− Z(x, t)db(t),

u(x, T ) = h(x,mT ) +

∫
Rn

∂h

∂m
(ξ,mT )(x)mT (ξ)dξ;

(2.25)

and



dtmt(x) +

(
A∗mt(x)− 1

2
trD2mt(x)ββ∗ + div (g(x,mt, v̂(x, t), v̂(·, t)#mt)mt(x))

)
dt

+β∗Dmt(x) db(t),

m(x, 0) = m0(x)

(2.26)

with the optimality condition

Lv(x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t))

+

∫
Rn
Dw

∂L

∂µ
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))mt(ξ)dξ = 0.

(2.27)

Equation (2.25) is a backward stochastic P.D.E. and the random fields u(x, t), Z(x, t) are

adapted to the filtration Bt.

Remark 2.2. In order to get the optimal control, we should use the Pontryagin Maximum

Principle but the detail is put in the appendix.

76



2.6 Application

2.6.1 Model

We extend the model described in the introduction, see Section 2.1.3, by considering that,

besides the representative agent, there is an external producer with no storage facilities.

Whereas the market price depends on only the prosumers who own the local storage in

Section 2.1.3, this extended model can capture the more realistic environment, where the

market price depends on the energy flow from prosumers who own the local storage and

the energy flow from the external producer who have not installed the storage.

We denote by Q0(t) the energy delivered to the grid by this external producer, and by

Q1(t) the energy delivered by the representative agent. The evolution of these energies

is described by the equations
dQ0(t) = b0(Q0)dt+ β0db(t), Q0(0) = Q00;

dQ1(t) = b1(Q1)dt+ σ(Q1)dw(t) + β1db(t), Q1(0) = Q10.

(2.28)

Therefore, b(t) is a common noise between the two productions. The initial values can

be random. They are independent from the Wiener processes w(t) and b(t). We set

Q(t) =

 Q0(t)

Q1(t)

. For the representative agent, there is the storage equation

dS

dt
= v(S,Q), S(0) = 0,

in which v(S,Q, t) is a feedback, which for S,Q fixed is a process adapted to the filtration

Bt. The global payoff is written as follow:

J(v) =E
∫ T

0

[
a

2
S2(t) + lS(t) +

c

2
v2(S(t), Q(t)) +

K0

2
Q2

0(t) +
K1

2

∣∣∣Q1(t)− v(S,Q)
∣∣∣2

+ p
(
EB

t

(v(S,Q)−Q0(t)−Q1(t))
)

(v(S,Q)−Q0(t)−Q1(t))

]
dt

+ E
[
h0

2
S2(T ) + h1S(T )

]
.
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2.6.2 Derivation of the Optimal Feedback

In Section 2.4.1, we consider the specific case where there is a continuum of households

who operate local storage with a self-produced energy facility. Hence, the optimal feed-

back in Proposition 2.1 is obtained under an underlying assumption that the market price

only depends on their decisions and states. For a further realistic approach to derive the

optimal feedback, we take into account an external producer who does not operate a

storage facility. In addition, a term of common noise is considered to capture aggregate

shocks arising from an unpredictable change in the grid market.

The optimal feedback is denoted as v̂(S,Q, t). We also note u(S,Q, t), mt(S,Q) =

m(S,Q, t), and Z(S,Q, t) the random fields solution of the stochastic HJB-FP equa-

tions (2.25) and (2.26). We also omit t as an argument, but not when we refer to

mt. The writing mt(S,Q) refers to a probability density. We also need µt = v̂(·, t)#mt

which is the conditional probability law of v̂(S,Q, t), given Bt. We use the notation

v̂(t) =

∫
wµt(dw); Q0(t) =

∫
q0mt(ds, dq); Q1(t) =

∫
q1mt(ds, dq) and set λ(S,Q, t) =

∂u

∂S
(S,Q, t); Γ(S,Q, t) =

∂Z

∂S
(S,Q, t).

Proposition 2.2. The feedback v̂(S,Q, t) is given by

v̂(S,Q, t) =
K1Q− λ(S,Q, t)− ζ

(
v̂(t)−Q0(t)−Q1(t)

)
c+K1

,

where ζ(x) = p(x) + xp′(x) and λ(S,Q, t) is the solution of

−dtλ+

(
−1

2
β2

0

∂2λ

∂Q2
0

− 1

2
(σ2(Q1) + β2

1)
∂2λ

∂Q2
1

− β0β1

∂2λ

∂Q0∂Q1

−∂λ
∂S

(
K1Q1 − λ− ζ(v̂(t)−Q0(t)−Q1(t))

c+K1

)
− ∂λ

∂Q0

b0(Q0)− ∂λ

∂Q1

b1(Q1)− β0

∂Γ

∂Q0

− β1

∂Γ

∂Q1

dt

= (aS + l)dt− Γ(S,Q)db(t),

λ(S,Q, T ) = h0S + h1,

(2.29)
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Let us consider next the process

λ(t) =

∫
λ(s, q, t)m(ds, dq, t) (2.30)

We can compute the Ito differential of λ(t) by combining (2.29) with the stochastic FP

equation in Proposition 2.2 (see the proof of Proposition 2.2 in the appendix). After

some calculations, recalling that

dλ(t) = −(l + aS(t))dt+ χ(t)db(t); χ(t) =

∫ (
Γ + β0

∂λ

∂Q0

+ β1

∂λ

∂Q1

)
(s, q, t)m(ds, dq, t)

(2.31)

with the final condition

λ(T ) = h0S(T ) + h1

with the notation S(t) =

∫
sm(ds, dq, t). From the FP equation, we have also

S(t) =

∫ t

0

v̂(τ)dτ (2.32)

and from (2.30), we obtain the relation

(c+K1)v̂(t) = K1Q1(t)− λ(t)− ζ
(
v̂(t)−Q0(t)−Q1(t)

)
. (2.33)

From (2.31), (2.32), and (2.33) we can obtain the processes λ(t), S(t), and v̂(t). From

(2.31) and (2.32) we have

λ(t) = l(T − t) + h1 + EBt
[∫ T

0

v̂(s)(a(T − s ∨ t) + h0)ds

]
and from (2.33) we obtain a functional equation for v̂(t), namely

(c+K1)v̂(t) + ζ
(
v̂(t)−Q0(t)−Q1(t)

)
+ EBt

[∫ T

0

v̂(s)(a(T − s ∨ t) + h0)ds

]
= K1Q1(t)− l(T − t)− h1.

(2.34)
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This equation is the generalization of the integral equation for the function v̂(t) studied in

Proposition 2.1. Knowing v̂(t), we can obtain λ(S,Q, t) by solving (2.29). We postulate

a solution of the form

λ(S,Q, t) = λ0(t)S + λ1(Q1, t) + ν(t),

where λ0(t) is a deterministic function of time, λ1(Q1, t) is a deterministic function of Q1

and time, and ν(t) is an adapted process. Using this expression in (2.29) yields

−dλ0

dt
+

λ2
0

c+K1

= a, λ0(T ) = h0

then λ1(Q1, t) is the solution of

−∂λ1

∂t
− 1

2
(σ2(Q1) + β2

1)
∂2λ1

∂Q2
1

− b1(Q1)
∂λ1

∂Q1

+
λ0(t)

c+K1

λ1 =
K1λ0(t)

c+K1

Q1, λ1(Q1, T ) = 0;

and ν(t) is solution of the BSDE

−dν(t)+
λ0(t)

c+K1

ν(t)dt =

(
l − λ0(t)

c+K1

ζ
(
v̂(t)−Q0(t)−Q1(t)

))
dt−Γ(t)db(t), ν(T ) = h1.

Therefore, everything is explicit, provided we can solve the functional equation (2.34).

We shall make the following monotonicity assumption

(ζ(x1)− ζ(x2))(x1 − x2) ≥ 2p0|x1 − x2|2 (2.35)

We then state

Proposition 2.3. We assume (2.35) and

1

c+K1 + 2p0

√∫ T

0

∫ T

0

(a(T − s ∨ t) + h0)2dsdt < 1. (2.36)

Then there exists a unique process v̂(t), which is adapted to the filtration Bt and is square

integrable, and solution of the functional equation (2.34).
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2.6.3 Particular Price Function

We assume that the price function is linear as in Lemma 3.1. Then ζ(x) = 2p0x+ p1 and

the equation (2.34) becomes (writing ρ(t) = v̂(t) to simplify notation)

(c+K1 + 2p0)ρ(t) + EBt
∫ T

0

ρ(s)(a(T − s ∨ t) + h0)ds

= 2p0Q0(t) + (K1 + 2p0)Q1(t)− l(T − t)− h1 − p1.

This equation is not a BSDE, and although linear does not seem to have an explicit solu-

tion. We can compute easily the expected value ρ(t) = Eρ(t), solution of the deterministic

functional equation,

(c+K1 + 2p0)ρ(t) +

∫ T

0

ρ(s)(a(T − s ∨ t) + h0)ds

= 2p0EQ0(t) + (K1 + 2p0)EQ1(t)− l(T − t)− h1 − p1

which is the same problem in Lemma 3.1 (refer to the proof of Lemma 3.1 in the ap-

pendix). If we consider for equations (2.28), mean reverting models become

b0(Q0, t) = −α0(Q0 − γ0(t)); b1(Q1, t) = −α1(Q1 − γ1(t)) (2.37)

where γ0(t) and γ1(t) are deterministic functions, and take σ(Q1) = σ, then we can check

easily that
Q0(t) = Q00 exp(−α0t) +

∫ t
0

exp(−α0(t− s)) (α0γ0(s)ds+ β0db(s)) ;

Q1(t) = Q10 exp(−α1t) +
∫ t

0
exp(−α1(t− s)) (α1γ1(s)ds+ β1db(s)).

(2.38)

By linearity, we can look for the solution ρ(t) as a sum of a deterministic part (which gives

the mean) and two stochastic parts corresponding to the stochastic integrals appearing at

the right hand side of the two equations (2.38). We have to solve the stochastic integral
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equations

(c+K1 + 2p0)ρ0(t)−a
∫ t

0

(t− s)ρ0(s)ds+ EBt
∫ T

0

ρ0(s)(a(T − s) + h0)ds

= 2p0β0 exp(−α0t)

∫ t

0

expα0s db(s);

(2.39)

(c+K1 + 2p0)ρ1(t)−a
∫ t

0

(t− s)ρ1(s)ds+ EBt
∫ T

0

ρ1(s)(a(T − s) + h0)ds

= (K1 + 2p0)β1 exp(−α1t)

∫ t

0

expα1s db(s);

(2.40)

and finally

ρ(t) = ρ(t) + ρ0(t) + ρ1(t).

The new problem is (2.39) and (2.40) is equivalent to (2.39). We define

r0 = −r1 =

√
a

c+K1 + 2p0

.

We shall prove the following:

Proposition 2.4. The solution ρ0(t) of the functional stochastic equation (2.39) is given

by

ρ0(t) = A(t)b(t) +

∫ t

0

B(t, s)b(s)ds, (2.41)

where A(t), B(t, s) are deterministic functions such that

B(t, s) = − 2p0β0α
3
0

c+K1 + 2p0

1

α0 + r0

1

α0 + r1

exp
(
−α0(t−s)

)
+B1(s) exp

(
r0(t−s)

)
+B2(s) exp

(
r1(t−s)

)
(2.42)

and A(t), B1(t), B2(t) are defined by the relations
(c+K1 + 2p0)(A′(t) +B1(t) +B2(t)) = − 2p0β0α0r0r1

(α0 + r0)(α0 + r1)
,

A(T ) =
2p0β0

c+K1 + 2p0

;

(2.43)
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A(t)− B1(t)

r0

− B2(t)

r1

=
2p0β0α

2
0

(c+K1 + 2p0)(α0 + r0)(α0 + r1)

[
1−

1− exp
(
− α0(T − t)

)
α0(T − t)

]
,

(2.44)

and

h0A(t) +B1(t)

[
(c+K1 + 2p0 +

h0

r0

) exp
(
r0(T − t)

)
− h0

r0

]
+B2(t)

[
(c+K1 + 2p0 +

h0

r1

) exp
(
r1(T − t)

)
− h0

r1

]
= − 2p0β0α0r0r1

(α0 + r0)(α0 + r1)
+

2p0β0α
2
0

c+K1 + 2p0

h0

(α0 + r0)(α0 + r1)

(
1− exp

(
− α0(T − t)

))
.

(2.45)

Remark 2.3. From formulas (2.44) and (2.45), we can express B1(t) and B2(t) as affine

functions of A(t). We can then solve the linear first order differential equation (2.43) and

obtain the function A(t) (see the proof of Proposition 2.4 in the appendix for details).

2.7 Numerical Examples

2.7.1 The Effectiveness of Local Storage Strategy

We illustrate numerical results for the optimal storage strategy of a representative energy

prosumer in a smart grid system considering the energy flow from an external producer

with no storage facilities (see the description of numerical examples in the appendix).

Figure 2.1 shows the net energy flow from the external producer Q0 and the local pro-

sumers Q1, respectively. The bottom panel of Figure 2.1 presents the net energy flow

deducting optimal storage decision. We can observe that the variation of prosumers’ net

energy flow decreases from the storage strategy.

As shown in the left panel of Figure 2.2, the local storage strategy would diminish the

fluctuation of the spot energy price, especially that at the peak hours. The right panel

of Figure 2.2 also shows that the overall variation of the net energy flow decreases. Both
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Figure 2.1. The net power flow from the external prosumer Q0(t) (upper graph), the net
power flow from the local prosumers Q1(t) (middle graph), and the net delivered power
flow Q1(t)− v̂ (lower graph).

of these results confirm that the local storage facility effectively rebalances the real-time

demand or supply in the grid while it also reduces the furious fluctuation of the market

price of energy. In our numerical experiments, we assume that the energy flow from the

external producer to a grid is double compared to that of the representative local pro-

sumer. This reflects the rationale that the households who installed the local storage used

not to be dominant in the current grid market (Gur 2018). However, the investments

on energy storage projects have been improved the global capacity of energy supply in

the last few years; for instance, the installed storage capacity in 2016 increased by 28%

compared to 2012 and globally 1,273 energy storage projects were operational as of 2018

(Gur 2018, Center for Sustainable Systems 2019). Considering the efforts on increasing

the popularity of energy storage, we easily anticipate that the energy storage facility will
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play a crucial role in controlling the variation of the spot energy price and the real-time

peak level of energy flow. The left panel on Figure 2.3 represents the relationship between
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Figure 2.2. [1,left] The spot price P (t) without a local storage (dot line) and with a
local storage (straight line), [2, right] the trajectory of Q1(t) without local a storage (dot
line) and Q1(t)− v̂(t) with a local storage (straight line)

the trajectory of spot price and the amount of stored energy. Whereas the local prosumer

is willing to save the produced energy when the spot price is relatively low, the prosumer

discharges the stored energy to the grid system when the spot price is higher than the

mean of the overall spot price.

As we observed the results of numerical analyses in Figure 2.1-2.3, a storage strategy
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Figure 2.3. [1,left] The trajectory of P (t) (straight line) with a mean field type pricing
and mean of P (t) (dashed line) with storage (upper graph) and S(t) (lower graph), [2,
right] the trajectory of P (t) (dashed line) with a fixed pricing with storage (upper graph)
and S(t) (lower graph)

enables to reduce overall operating costs. Note that the summary of operational costs

is shown in the appendix by considering two cases: the installation of a local storage

system and no installation of local storage. The volumetric charges decrease in aver-

age by 28.46% after the installation of local storage. Figure 2.2 and Figure 2.3 support

the local prosumer’s strategic behavior to understand the reduction in the volumetric

charges. The right of Figure 2.2 presents that the storage strategy reduces the maximum

instantaneous power consumption, resulting in a decrease in demand charges on average
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by 35.78%. However, the storage strategy generates additional storage costs including

a terminal cost. The Figure 2.3 also shows agents’ storage level, incurring the current

storage cost to manage a load of demand and the terminal cost to guarantee the minimum

level of stored energy at the end of time horizon. Even considering the storage costs, the

total operating costs decrease in average by 27.04% thanks to the storage strategy.

2.7.2 The Comparison of a Mean Field Type Pricing Scheme and a Fixed

Pricing Scheme

We draw the policy implications on the structure of pricing scheme in the grid system by

comparing the pricing scheme between the mean field type pricing and the fixed pricing.

In our mean field type model, we consider a dynamic pricing scheme based on the real-

time amount of aggregate energy being consumed in a grid system. While a fixed (or

flat) rate is exogeneous, our dynamic pricing scheme is modulated by the mean field term

being the law of the control. This term can be interpreted as the average of historical

performance of one single player and be considered as the stringent restrictions on the

behavior of this player by managing himself or herself to avoid over consumption or much

saving. In other words, the single player has his or her own historical records over time,

he or she needs to stick to the pricing rule in alignment with the mean field term by his

or her feedback control. For instance, if the single player charges the energy more than

the average, then he or she will tend to charge less energy. As described in the work

of Alasseur et al. (2020), the single player can be regarded as a central planner who

coordinates the local storage in the grid; thus, the solution of our approach is the optimal

charging or discharging strategy of a central planner to allocate it to all local storage at

once.

Since the European countries are eagerly willing to introduce a renewable energy fa-

cility, European Commission (2019) studies the profitability of a dynamic pricing scheme
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in a grid system. Even though there are only seven European countries (Denmark, Esto-

nia, Finland, Netherlands, Spain, Sweden, and the United Kingdom) that partially allow

consumers to choose the dynamic pricing scheme, European Commission (2019) sheds

light on the benefit of the dynamic pricing scheme. According to this research, the an-

nual saving with the dynamic pricing scheme can be in the range of 15 − 80 Euros for

small usage consumers whose annual consumption are less than 1000 kWh. Even though

the dynamic pricing has an economic inventive for consumers, this pricing scheme is not

prevalent because of the concern regarding a systemic risk from the fluctuation of a spot

price of energy (Dutta and Mitra 2017, European Commission 2019). Our mean field

approach with a local storage strategy is a proper way to lessen the system risk in a grid

with dynamic pricing scheme as described in Section 2.7.1.

In Figure 2.4, we set a rate of fixed price as an overall mean of dynamic pricing rate in

Figure 2.3. Then, the trajectory of optimal storage level with the fixed pricing scheme is

close to an inverse U -shape while the mean field pricing scheme is similar to an M -shape.

Whereas the M -shape storage level means that the prosumer optimally makes a decision

how much charge or discharge energy in local storage against the variation of market

spot price, the inverse U -shape storage level implies that the prosumer derives a decision

based on the terminal time horizon. Numerically, the mean field pricing scheme reduces

the average of costs for the storage strategy compared to the fixed pricing scheme by

18.05% (see the detailed comparison between mean field pricing scheme and fixed pricing

scheme in the appendix). This implies that the dynamic pricing scheme modeled by a

mean field type approach is implementable on the problem of an energy-grid dynamic

optimization for prosumers with the storage strategy.
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2.7.3 The Impact of the Rate of Mean Reversion for Local Storage Strategy

We assume that the energy flow, Q0(t) and Q1(t) are modeled by a mean reverting process

as in (2.37). At here, α0 and α1 represent the rate of mean reversion which implies

how strongly the system reacts to perturbations. The numerical analyses regarding the

impact of the rate of mean reversion have been implemented for 1,000 times, and then

we illustrate the average trajectory of storage level in Figure 2.4. In the left panel of

Figure 2.4, the trajectory of storage level follows an M -shape with a relatively high mean

revering property. Prosumers who operate the local storage tend to strategically react to

the variation of the market price thanks to strong mean revering properties. In the right

panel of Figure 2.4, however, the overall path of storage level is close to an inverse U -shape

with weak mean revering property that may not appropriately cope with perturbations.

This result is similar to the overall trajectory of storage level described in the case of a

fixed pricing scheme as shown in the right panel of Figure 2.3.

As the rate of mean reversion increases, the peak level of storage decreases in Figure

2.4. A strong mean reverting-property guarantees that the system process reverts to its

mean or average level without a significant perturbation. Therefore, prosumers properly

cope with the variation of energy flow between a grid and local storage by efficiently

controlling the level of stored energy. In addition, the rate of mean reversion is inversely

related to the stationary variance of the Ornstein-Uhlenbeck process. The system of

energy flow in the grid is under a certain level of uncertainty measured by the stationary

variance of the stochastic process. The weaker the mean-reverting property is, the higher

the uncertainty level of energy flow between the grid and local prosumers increases. Local

prosumers are willing to bear a high storage cost to manage the uncertainty of energy

flow by increasing the peak level of stored energy.
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Figure 2.4. [1,left] The average trajectory of storage level with relatively high α0 and α1,
[2,right] the average trajectory of storage level with relatively low α0 and α1

2.8 Managerial Implications and Concluding Remarks

In numerical experiments, we confirm that the prosumer’s behavior to manage the level

of energy stored in the grid system is highly close to the market maker and the trader’s

behavior to control the amount of holding assets in the security trading market (see e.g.

Duffie et al. 2005, 2007, Weill 2007). In the viewpoint of prosumer’s strategic decision,

the stored energy can be considered as a tradable financial asset. The grid system allows

buyers and sellers to quickly exchange their assets. Under the stable economic conditions,
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the traders are willing to stock up the inventory of securities when the market price goes

down and to dispose of inventories when the market price goes up at profit (Weill 2007).

Similarly, in the left panel of Figure 2.3, if the current spot price is relatively lower than

the future price that the prosumer anticipates, she strategically reduces the actual en-

ergy flow sent to the grid by accumulating the energy in storage (Paola et al. 2016).

During the financial disruption like the financial crisis 2007-2008, there would be strong

selling pressure on traders. In the crisis, the main role of a market maker is to providing

with liquidity by absorbing this selling pressure (Weill 2007). In a similar way, as shown

in Figure 2.2, when the grid has excessive residual energy, households who own a local

storage facility intentionally charge it by rebalancing a load of energy in the grid system

(Paola et al. 2016).

In the viewpoint of a central planner who coordinates between a grid operator and a

continuum of prosumers, increasing penetration of local storage may decrease the varia-

tion of spot price as well as the peak level of demand, resulting in the enhancement of the

resilience of grid systems. In addition, the introduction of dynamic pricing scheme mod-

eled by a mean field term gives prosumers an incentive to install local storage. Prosumers

may reduce an electricity bill with a dynamic pricing scheme compared to a fixed pricing

scheme even considering a storage cost. Our results are in line with the Dutta and Mitra

(2017)’s survey study for dynamic pricing of electricity. This research shows that the dy-

namic pricing policy is preferred over the fixed pricing policy because the dynamic pricing

scheme is more effective to provide customers with economic incentives and revenue sta-

bility. However, they pointed out that the dynamic pricing scheme should have inherent

systemic risk engendered by a variation of real-time electricity price. In our research, we

suggest a local storage strategy as a proper remedy to lessen this risk in a grid system.

Prosumers who own local storage can charge or discharge supplement energy based on

91



the the real-time spot price, resulting in the decrease of price variation. In addition, we

show that the storage strategy is effective when a mean reverting property is even weak.

The rate of mean reversion is directly related to uncertainty in energy flow between the

grid and local storage. Prosumers may mitigate this uncertainty by increasing the peak

level of stored energy. Eventually, a central planner’s goal is achieved to assign optimal

storage strategy so that a continuum of prosumers simultaneously choose controls for

all of the prosumers to optimize the average pay off by enhancing the resilience of grid

system.

The main task of our study has been the formulation of an extended mean field type

control problem, applicable to an energy-grid dynamic optimization as studied in Alasseur

et al. (2020), who solve this problem using a stochastic maximum principle. Our study

is the first theoretical work to suggest a Master equation and the system of HJB-FP

equations for the extended mean field type control approach. The model is extendable to

a number of research questions for further studies. For example, we suggested a dynamic

Cournot competition model among a large number of interacting players based on the

concept of inventory control. It would be interesting to what quantity decision-making

rules are proper under competition when a pricing rule is not external, but this is a func-

tion of the average decision of multiple players. In addition, this pricing rule influences

the level of inventory related to the cost structure. This setting is especially relevant

for the energy, online-retailing, and financial industry, where a large number of players

compete the quantity decision by considering their current level of inventory.
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2.9 Appendix. Proofs

2.9.1 Proof of Proposition 2.1

In the model (2.1) and (2.2) we have x = (S,Q) and

g(S,Q,m, v, µ) =

∣∣∣∣∣∣∣
v

b(Q)
, σ(x) =

∣∣∣∣∣∣∣
0

σ(Q)

then

Aϕ(S,Q) = −1

2
σ2(Q)

∂2ϕ

∂Q2

Also

f(S,Q,m, v, µ) =
a

2
S2 + lS+

c

2
v2 +

K

2
|Q− v|2 + p

(∫
wµ(dw)−

∫
qm(ds, dq)

)
(v−Q)

h(x,m) = h(S)

We get the Lagrangian

L(S,Q,m, v, µ, ρ) =
a

2
S2 + lS +

c

2
v2 +

K

2
|Q− v|2

+p

(∫
wµ(dw)−

∫
qm(ds, dq)

)
(v −Q) + %v + ρ1b(Q)

with ρ =

 %

ρ1

 . We obtain the derivatives

Lv(S,Q,m, v, µ, ρ) = (c+K)v −KQ+ p

(∫
wµ(dw)−

∫
qm(ds, dq)

)
+ %,

∂

∂m
L(S,Q,m, v, µ, ρ)(s, q) = −p′

(∫
wµ(dw)−

∫
qm(ds, dq)

)
q(v −Q),

∂

∂µ
L(S,Q,m, v, µ, ρ)(w) = p′

(∫
wµ(dw)−

∫
qm(ds, dq)

)
w(v −Q).
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We use the notation

v̂(t) =

∫
v̂(s, q, t)mt(ds, dq),

Q(t) =

∫
qmt(ds, dq).

We can then note that

Lv(S,Q,mt, v̂(S,Q, t), v̂(·, t)#mt, ρ)

= (c+K)v̂(S,Q)−KQ+ p
(
v̂(t)−Q(t)

)
+ %,

∂

∂µ
L(S,Q,mt, v̂(S,Q, t), v̂(·, t)#mt, ρ)(w)

= p′
(
v̂(t)−Q(t)

)
w(v̂(S,Q)−Q),

∂

∂m
L((S,Q,mt, v̂(S,Q, t), v̂(·, t)#mt, ρ)(s, q)

= −p′
(
v̂(t)−Q(t)

)
q(v̂(S,Q)−Q),∫

Dw
∂

∂µ
L(S,Q,mt, v̂(S,Q, t), v̂(·, t)#mt, ρ)(v̂(S,Q))mt(ds, dq)

= p′
(
v̂(t)−Q(t)

)
(v̂(t)−Q(t)).

Introduce the function

ζ(x) = p(x) + xp′(x)

then the Euler condition (2.17) becomes

(c+K)v̂(S,Q)−KQ+
∂u

∂S
+ ζ

(
v̂(t)−Q(t)

)
= 0 (2.46)

from which we derive

(c+K)v̂(t)−KQ(t) +

∫
∂u

∂S
(s, q, t)mt(ds, dq) + ζ

(
v̂(t)−Q(t)

)
= 0. (2.47)
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The HJB equation (2.18) becomes

−∂u
∂t
− 1

2
σ2(Q)

∂2u

∂Q2
− ∂u

∂S
v̂(S,Q)− ∂u

∂Q
b(Q)

=
a

2
S2 + lS +

c

2
v̂(S,Q)2 +

K

2
|Q− v̂(S,Q)|2 + (v̂(S,Q)−Q)ζ

(
v̂(t)−Q(t)

)
,

u(S,Q, t) = h(S);

(2.48)

and the FP equation is
∂m

∂t
− 1

2

∂2

∂Q2
(σ2(Q)m) +

∂

∂S
(v̂(S,Q)m) +

∂

∂Q
(b(Q)m),

m(S,Q, 0) = δ(S)
⊗
m0(Q),

(2.49)

where m0(Q) is the probability distribution of the initial value Q0. Combining (2.48) with

(2.46), we obtain the equation
−∂u
∂t
− 1

2
σ2(Q)

∂2u

∂Q2
−Q∂u

∂S
− b(Q)

∂u

∂Q
+
c+K

2

∣∣∣∣v̂(S,Q)−Q
∣∣∣∣2 =

a

2
S2 +

c

2
Q2 + lS,

u(S,Q, T ) = h(S).

(2.50)

We then define λ(S,Q, t) =
∂u

∂S
(S,Q, t). Differentiating (2.50) with respect to S we obtain

−∂λ
∂t
− 1

2
σ2(Q)

∂2λ

∂Q2
−Q∂λ

∂S
− b(Q)

∂λ

∂Q
+ (c+K)(v̂(S,Q)−Q)

∂v̂(S,Q)

∂S
= aS + l,

λ(S,Q, T ) = h′(S).

On the other hand, from (2.46), we can write

(c+K)
∂v̂

∂S
+
∂λ

∂S
= 0.

Then, we obtain the following equation for λ
−∂λ
∂t
− 1

2
σ2(Q)

∂2λ

∂Q2
− v̂(S,Q)

∂λ

∂S
− b(Q)

∂λ

∂Q
= aS + l;

λ(S,Q, T ) = h′(S).

(2.51)
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From (2.49) and (2.51) , we can infer

λ(t) =

∫
λmt(ds, dq) =

∫
h′(s)mT (ds, dq)+ l(T−t)+a

∫ T

t

(∫
smτ (ds, dq)

)
dτ (2.52)

On the other hand, from the FP equation we get also

d

dt

∫
smt(ds, dq) = v̂(t)

and since the initial condition in S is 0, we obtain∫
smt(ds, dq) =

∫ t

0

v̂(τ)dτ . (2.53)

So (2.52) becomes

λ(t) =

∫
h′(s)mT (ds, dq) + l(T − t) + a

∫ T

0

(T − t ∨ τ)v̂(τ)dτ .

Finally, from (2.47) we obtain

(c+K)v̂(t)−KQ(t) + ζ
(
v̂(t)−Q(t)

)
+

∫
h′(s)mT (ds, dq) + l(T − t) + a

∫ T

0

(T − t ∨ τ)v̂(τ)dτ = 0
(2.54)

In this equation, the probability mT (ds, dq) stills intervenes and the full system HJB-FP

and (2.54) remains coupled. We get a decoupling when the function h(S) is quadratic.

We then assume

h(S) = h0
S2

2
+ h1S + h2.

Therefore, using (2.53), it follows that∫
h′(s)mT (ds, dq) = h0

∫ T

0

v̂(τ)dτ + h1.

and we get from (2.54) an integral equation for the function v̂(t), namely

(c+K)v̂(t)+ζ
(
v̂(t)−Q(t)

)
+

∫ T

0

v̂(τ)(a(T−t∨τ)+h0)dτ = KQ(t)−l(T−t)−h1. (2.55)

Knowing the function v̂(t) we can obtain the function λ(S,Q, t) by solving (2.51), taking

account of (2.46). This concludes the proof. �
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2.9.2 Proof of Lemma 2.1

Consider the situation in which

p(x) = p0x+ p1,

with p0 > 0. Then

ζ(x) = 2p0x+ p1.

Equation (2.55) becomes linear. Setting ρ(t) = v̂(t) to simplify notation, it reduces to,

after rearrangements

(c+K + 2p0)ρ(t) +

∫ T

0

ρ(τ)(a(T − τ ∨ t) + h0)dτ = (K + 2p0)Q(t)− l(T − t)− h1 − p1

Differentiation twice, we obtain the second order differential equation

(c+K + 2p0)ρ′′(t)− aρ(t) = (K + 2p0)(Q(t))′′ (2.56)

Setting r0 =

√
a

c+K + 2p0

and r1 = −r0, the general solution of (2.56) is given by

ρ(t) = A0 exp r0t+ A1 exp r1t

− K + 2p0

(c+K + 2p0)(r0 − r1)

∫ T

t

(Q(s))′′(exp
(
− r0(s− t)) − exp(−r1(s− t)) )ds

(2.57)

We have two boundary conditions

(c+K + 2p0)ρ(T ) + h0

∫ T

0

ρ(τ)dτ = (K + 2p0)Q(T )− h1 − p1

(c+K + 2p0)ρ(0) +

∫ T

0

(a(T − τ) + h0)ρ(τ)dτ = (K + 2p0)Q(0)− lT − h1 − p1

From (2.57) we obtain∫ T

0

ρ(τ)dτ =A0
exp(r0T )− 1

r0

+ A1
exp(r1T )− 1

r1

− K + 2p0

(c+K + 2p0)(r0 − r1)

∫ T

0

(Q(s))′′
(

1− exp(−r0s)

r0

− 1− exp(−r1s)

r1

)
ds
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Similarly, ∫ T

0

(T − τ)ρ(τ)dτ = A0
exp(r0T )− 1− r0T

r2
0

+ A1
exp(r1T )− 1− r1T

r2
1

− K + 2p0

c+K + 2p0

T

(r0 − r1)

∫ T

0

(Q(s))′′
(

1− exp(−r0s)

r0

− 1− exp(−r1s)

r1

)
ds

+
K + 2p0

(c+K + 2p0)(r0 − r1)

[∫ T

0

(Q(s))′′
(

exp(−r0s) + r0s

r2
0

− exp(−r1s) + r1s

r2
1

)
ds

]
Combining results, we obtain the following linear algebraic system for the constants A0, A1

A0

[
(c+K + 2p0) exp(r0T ) + h0

exp(r0T )− 1

r0

]
+A1

[
(c+K + 2p0) exp(r1T ) + h0

exp(r1T )− 1

r1

]
= (K + 2p0)Q(T )− h1 − p1

+h0
K + 2p0

(c+K + 2p0)(r0 − r1)

∫ T

0

(Q(s))′′
(

1− exp(−r0s)

r0

− 1− exp(−r1s)

r1

)
ds

and

A0

[
c+K + 2p0 + a

exp(r0T )− 1− r0T

r2
0

+ h0
exp(r0T )− 1

r0

]
+A1

[
c+K + 2p0 + a

exp(r1T )− 1− r1T

r2
1

+ h0
exp(r1T )− 1

r1

]
=(K + 2p0)Q(0)− lT − h1 − p1 +

K + 2p0

r0 − r1

∫ T

0

(Q(s))′′(exp(−r0s)− exp(−r1s))ds

+
(K + 2p0)(aT + h0)

(c+K + 2p0)(r0 − r1)

∫ T

0

(Q(s))′′
(

1− exp(−r0s)

r0

− 1− exp(−r1s)

r1

)
ds

− (K + 2p0)a

(c+K + 2p0)(r0 − r1)

∫ T

0

(Q(s))′′
(

exp(−r0s) + r0s

r2
0

− exp(−r1s) + r1s

r2
1

)
ds

We obtain a completely explicit expression for the feedback (2.21). One still has to solve

the linear PDE (2.20). As in the simulation developed in Alasseur et al. (2020), one has

σ(Q) = σ and b(Q) = −α(Q− β). Equation (2.20) becomes
−∂λ1

∂t
− 1

2
σ2∂

2λ1

∂Q2
+ α(Q− β)

∂λ1

∂Q
+ µ0λ1 = µ0

[
KQ− p1 − 2p0(ρ(t)−Q(t))

]
+ l,

λ1(Q, T ) = h1;
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and the solution is a linear function in Q, namely

λ1(Q, t) = ν(t)Q+ θ(t)

with 
−dν
dt

+ (α + µ0)ν = µ0K, ν(T ) = 0;

−dθ
dt

+ µ0θ = αβν − µ0

[
p1 + 2p0(ρ(t)−Q(t))

]
+ l, θ(T ) = h1.

The feedback v̂(S,Q, t) is completely linear. �

2.9.3 Proof of Proposition 2.2

This problem enters into the general theory developed in section 2.5.1. with the state

x = (S,Q) and

g(S,Q,m, v, µ) =

∣∣∣∣∣∣∣∣∣∣
v

b0(Q0)

b1(Q1)

, σ(S,Q) =

∣∣∣∣∣∣∣∣∣∣
0

0

σ(Q1)

, β =

∣∣∣∣∣∣∣∣∣∣
0

β0

β1

f(S,Q,m, v, µ) =
a

2
S2 + lS +

c

2
v2 +

K0

2
Q2

0 +
K1

2

∣∣∣∣Q1

−v
∣∣∣∣2 + (v −Q0 −Q1)p

(∫
wµ(dw)−

∫
(q0 + q1)m(ds, dq)

)
,

in which µ is a probability on R (the control v) and m is a probability on R3 (the state

S and Q). We write the system (2.25), (2.26), and (2.27). We first write the Lagrangian

(2.24). We get

L(S,Q,m, v, µ, ρ) =
a

2
S2 + lS +

c

2
v2 +

K0

2
Q2

0 +
K1

2

∣∣∣Q1 − v
∣∣∣2

+ (v −Q0 −Q1)p

(∫
wµ(dw)−

∫
(q0 + q1)m(ds, dq)

)
+ %v + ρ0b0(Q0) + ρ1b1(Q1),
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where ρ =


%

ρ0

ρ1

 . We need its derivatives

Lv(S,Q,m, v, µ, ρ) = (c+K1)v −K1Q1 + p

(∫
wµ(dw)−

∫
(q0 + q1)m(ds, dq)

)
∂L

∂m
(S,Q,m, v, µ, ρ)(s, q)

= −(v −Q0 −Q1)p′
(∫

wµ(dw)−
∫

(q0 + q1)m(ds, dq)

)
(q0 + q1)

∂L

∂µ
(S,Q,m, v, µ, ρ)(w)

= (v −Q0 −Q1)p′
(∫

wµ(dw)−
∫

(q0 + q1)m(ds, dq)

)
w

(2.58)

We use the notation

v̂(t) =

∫
wµt(dw); Q0(t) =

∫
q0mt(ds, dq); Q1(t) =

∫
q1mt(ds, dq)

We begin with the Euler condition (2.27). We have, using (2.58)∫
Rn
Dw

∂L

∂µ
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))mt(ξ)dξ

= (v̂(t)−Q0(t)−Q1(t))p′(v̂(t)−Q0(t)−Q1(t))

and

Lv(x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t))

= (c+K1)v̂(S,Q, t)−K1Q1 + p
(
v̂(t)−Q0(t)−Q1(t)

)
+
∂u

∂S
(S,Q, t).

If we set

ζ(x) = p(x) + xp′(x),

we can write the Euler condition as (omitting arguments)

(c+K1)v̂ −K1Q1 + ζ
(
v̂(t)−Q0(t)−Q1(t)

)
+
∂u

∂S
= 0. (2.59)
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We turn to HJB equation (2.25). We first have

L(x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t)) =
a

2
S2 + lS +

c

2
v̂2 +

K0

2
Q2

0 +
K1

2

∣∣∣Q1 − v̂
∣∣∣2

+ (v̂ −Q0 −Q1)p
(
v̂(t)−Q0(t)−Q1(t)

)
+
∂u

∂S
v̂ +

∂u

∂Q0

b0(Q0) +
∂u

∂Q1

b1(Q1)

then ∫
Rn

∂L

∂m
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(x)mt(ξ)dξ

= −(v̂(t)−Q0(t)−Q1(t))p′
(
v̂(t)−Q0(t)−Q1(t)

)
(Q0 +Q1)∫

Rn

∂L

∂µ
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))mt(ξ)dξ

= (v̂(t)−Q0(t)−Q1(t))p′
(
v̂(t)−Q0(t)−Q1(t)

)
v̂

Adding up, we obtain

X =L (x,mt, v̂(x, t), v̂(·, t)#mt, Dxu(x, t))

+

∫
Rn

∂L

∂m
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(x)mt(ξ)dξ

+

∫
Rn

∂L

∂µ
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, Dξu(ξ, t))(v̂(x, t))mt(ξ)dξ

=
a

2
S2 + lS +

c

2
v̂2 +

K0

2
Q2

0 +
K1

2

∣∣∣Q1 − v̂
∣∣∣2

+ (v̂ −Q0 −Q1)ζ
(
v̂(t)−Q0(t)−Q1(t)

)
+
∂u

∂S
v̂ +

∂u

∂Q0

b0(Q0) +
∂u

∂Q1

b1(Q1)

=
a

2
S2 + lS +

c

2
v̂2 +

K0

2
Q2

0 +
K1

2

∣∣∣Q1 − v̂
∣∣∣2

+ (v̂ −Q0 −Q1)

(
∂u

∂S
+ ζ

(
v̂(t)−Q0(t)−Q1(t)

))
+
∂u

∂S
(Q0 +Q1) +

∂u

∂Q0

b0(Q0) +
∂u

∂Q1

b1(Q1).

Using the Euler condition (2.59), we have to compute

a

2
S2 + lS +

c

2
v̂2 +

K0

2
Q2

0 +
K1

2

∣∣∣∣Q1 − v̂
∣∣∣∣2 + (v̂ −Q0 −Q1)(K1Q1 − (c+K1)v̂)

=
a

2
S2 + lS − K1 + c

2

∣∣∣∣v̂ −Q0 −Q1

∣∣∣∣2 +
K0 +K1

2
Q2

0 +
c

2
(Q0 +Q1)2.
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Combining results we obtain the HJB equation

−dtu+
(
− 1

2
β2

0

∂2u

∂Q2
0

− 1

2
(σ2(Q1) + β2

1)
∂2u

∂Q2
1

− β0β1

∂2u

∂Q0∂Q1

−∂u
∂S

(Q0 +Q1)− ∂u

∂Q0

b0(Q0)− ∂u

∂Q1

b1(Q1)− β0

∂Z

∂Q0

− β1

∂Z

∂Q1

+
K1 + c

2

∣∣∣∣v̂ −Q0 −Q1

∣∣∣∣2)dt
=

(
a

2
S2 + lS +

K0 +K1

2
Q2

0 +
c

2
(Q0 +Q1)2

)
dt− Z(S,Q)db(t),

u(S,Q, T ) =
h0

2
S2 + h1S.

(2.60)

We finally write the FP equation

dtm+

(
−1

2
β2

0

∂2m

∂Q2
0

− 1

2

∂2

∂Q2
1

((σ2(Q1) + β2
1)m)− β0β1

∂2m

∂Q0∂Q1

+
∂

∂S
(v̂m) +

∂

∂Q0

(b0(Q0)m) +
∂

∂Q1

(b1(Q1)m)

)
dt+

(
β0

∂m

∂Q0

+ β1

∂m

∂Q1

)
db(t) = 0,

m(S,Q, 0) = δ(S)
⊗
m0(Q).

In the general theory, we have introduced the gradient λ(x, t) = Dxu(x, t). Here, only

λ(S,Q, t) =
∂u

∂S
(S,Q, t) will play a role. We obtain the equation for λ, by differentiating

(2.60) with respect to S. We use the expression of v̂ in terms of λ given by (2.59), and

its derivative

∂v̂

∂S
(S,Q, t) = − 1

c+K1

∂λ

∂S
(S,Q, t)

Rearranging and setting Γ(S,Q, t) =
∂Z

∂S
(S,Q, t), we obtain the results. �

2.9.4 Proof of Proposition 2.3

We shall use a fixed point argument, in the Hilbert space L2
Bt(0, T ) , closed subspace

of L2(0, T ;L2(Ω,A, P )) of processes which are adapted to the filtration Bt. For any z ∈
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L2
Bt(0, T ), there exists a unique ρ ∈ L2

Bt(0, T ) , solution of

(c+K1)ρ(t) + ζ(ρ(t)−Q0(t)−Q1(t))

= K1Q1(t)− l(T − t)− h1 − EBt
[∫ T

0

z(s)(a(T − s ∨ t) + h0)ds

]
This follows from the fact that, by assumption (2.35), the function ζ(x) is monotone.

Considering two processes z1 and z2 and the corresponding images ρ1 and ρ2, we have

(c+K1)E (ρ1(t)− ρ2(t))2

+E
[
ζ
(
ρ1(t)−Q0(t)−Q1(t)

)
− ζ

(
ρ2(t)−Q0(t)−Q1(t)

)]
(ρ1(t)− ρ2(t))

= −E (ρ1(t)− ρ2(t))

∫ T

0

(z1(s)− z2(s))(a(T − s ∨ t) + h0)ds

By easy majorations, using the assumption (2.35), we obtain

(c+K1 + 2p0)2E
∣∣∣ρ1(t)− ρ2(t)

∣∣∣2 ≤ E
∫ T

0

∣∣∣z1(s)− z2(s)
∣∣∣2ds ∫ T

0

(a(T − s ∨ t) + h0)2ds

Integrating in t, we obtain immediately

||z1 − z2||L2
Bt (0,T ) ≤

1

c+K1 + 2p0

√∫ T

0

∫ T

0

(a(T − s ∨ t) + h0)2dsdt ||ρ1 − ρ2||L2
Bt (0,T )

Thanks to the assumption (2.36), the map z → ρ is a contraction, which leads to the

result. �

2.9.5 Proof of Proposition 2.4

We write the right hand side of (2.39) as

2p0β0b(t)− 2p0β0α0 exp(−α0t)

∫ t

0

b(s) exp(α0s)ds
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We then insert (2.41) into equation (2.39) and equate terms in b(t) and in
∫ t

0
b(s)...ds.

We obtain the relations

(c+K1 + 2p0)A(t) +

∫ T

t

A(s)(a(T − s) + h0)ds

+

∫ T

t

(∫ T

s

B(τ , s)(a(T − τ) + h0)dτ

)
ds = 2p0β0,

(2.61)

and

(a(T − t)+h0)A(s) + (c+K1 + 2p0)B(t, s) + (a(T − t) + h0)

∫ t

s

B(τ , s)dτ

+

∫ T

t

(a(T − τ) + h0)B(τ , s)dτ = −2p0β0α0 exp
(
− α0(t− s)

)
.

(2.62)

If we differentiate the relation (2.62) twice in t, we see that the function t 7−→ B(t, s)

satisfies the second order differential equation

(c+K1 + 2p0)Btt(t, s)− aB(t, s) = −2p0β0α
3
0 exp

(
− α0(t− s)

)
(2.63)

from which it is easy to obtain the result (2.42), the first function being a particular

solution of the second order differential equation (2.63). Next, differentiating (2.61) in t

yields

(c+K1 + 2p0)A′(t)− A(t)(a(T − t) + h0)−
∫ T

t

B(τ , t)(a(T − τ) + h0)dτ = 0.

But applying (2.62) with s = t yields

(a(T − t) + h0)A(t) + (c+K1 + 2p0)B(t, t) +

∫ T

t

(a(T − τ) + h0)B(τ , t)dτ = −2p0β0α0,

and from (2.42) with s = t we obtain

B(t, t) = − 2p0β0α
3
0

c+K1 + 2p0

1

α0 + r0

1

α0 + r1

+B1(t) +B2(t).
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Combining we get (2.43). The value of A(T ) is obtained by taking t = T in (2.61).

Combining the last two relations, it follows that

(a(T − t) + h0)A(t) + (c+K1 + 2p0)(B1(t) +B2(t))

+

∫ T

t

(a(T − τ) + h0)B(τ , t)dτ = − 2p0β0α0r0r1

(α0 + r0)(α0 + r1)
.

(2.64)

Also applying (2.62) with t = T, s = t we obtain

h0A(t) + (c+K1 + 2p0)B(T, t) +h0

∫ T

t

B(τ , t)dτ = −2p0β0α0 exp
(
−α0(T − t)

)
. (2.65)

We use (2.42) to compute

∫ T

t

(a(T − τ) + h0)B(τ , t)dτ = B1(t)

[
− a
r0

(T − t) +
1

r0

(h0 +
a

r0

)
(

exp
(
r0(T − t)

)
− 1
)]

+B2(t)

[
− a
r1

(T − t) +
1

r1

(h0 +
a

r1

)
(

exp
(
r1(T − t)

)
− 1
)]

− 2p0β0α
2
0

c+K1 + 2p0

1

α0 + r0

1

α0 + r1

[
(h0 −

a

α0

)
(
1− exp

(
− α0(T − t)

))
+ a(T − t)

]
,∫ T

t

B(τ , t)dτ = B1(t)
exp r0(T − t)− 1

r0

+B2(t)
exp(r1(T − t))− 1

r1

− 2p0β0α
2
0

c+K1 + 2p0

1

α0 + r0

1

α0 + r1

(
1− exp

(
− α0(T − t)

))
.

Then (2.64) yields

(a(T − t) + h0)A(t) +B1(t)

[
− a
r0

(T − t) +
1

r0

(h0 +
a

r0

) exp
(
r0(T − t)

)
− h0

r0

]
+B2(t)

[
− a
r1

(T − t) +
1

r1

(h0 +
a

r1

) exp
(
r1(T − t)

)
− h0

r1

]
=

2p0β0α
2
0

c+K1 + 2p0

1

α0 + r0

1

α0 + r1

[
a(T − t)− (h0 −

a

α0

) exp
(
− α0(T − t)

)
+ h0

] (2.66)
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and (2.65) yields

h0A(t) +B1(t)

[
(c+K1 + 2p0 +

h0

r0

) exp
(
r0(T − t)

)
− h0

r0

]
+B2(t)

[
(c+K1 + 2p0 +

h0

r1

) exp
(
r1(T − t)

)
− h0

r1

]
= − 2p0β0α0r0r1

(α0 + r0)(α0 + r1)
+

2p0β0α
2
0

c+K1 + 2p0

h0

(α0 + r0)(α0 + r1)

(
1− exp

(
− α0(T − t)

))
,

(2.67)

Substracting (2.67) from (2.66) and then dividing the difference by a(T − t) yields (2.44).

This concludes the proof. �

2.10 Appendix. Pontryagin Maximum Principle

We begin by considering the gradient λ(x, t) = Dxu(x, t). We differentiate (2.25), and

take account of the optimality condition, as well as the property that Dxλ(x, t) is a

symmetric matrix. We obtain

−dtλ+

(
−tr(Dxσ

∗Dxλσ) + Axλ−
1

2
tr(D2

xλββ
∗)− β∗D2

xZ(x, t)

)
dt

=

[
DxL(x,mt, v̂(x, t), v̂(·, t)#mt, λ(x, t)) +Dxλ(x, t)g(x,mt, v̂(x, t), v̂(·, t)#mt)

+Dx

∫
Rn

∂L

∂m
(ξ,mt, v̂(ξ, t), v̂(·, t)#mt, λ(ξ, t))(x)mt(ξ)dξ

]
dt−DxZ(x, t)db(t),

λ(x, T ) = Dxh(x,mT ) +Dx

∫
Rn

∂h

∂m
(ξ,mT )(x)mT (ξ)dξ.

We recall that λ(x, t) is a vector, so Dxλ is a symmetric matrix, hence tr(Dxσ
∗Dxλσ) is

the vector

(tr(Dxσ
∗Dxλσ))i =

∑
jkl

∂σjl
∂xi

σkl
∂λj
∂xk

.

We consider next the optimal trajectory, corresponding to (2.22) when we use the optimal

feedback v̂(x, t). We obtain a process, which we denote by y(t). To be precise with the
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meaning of mt, we denote it PBty(t), which means the conditional probability of y(t) given

the σ-algebra Bt. We next call v̂(t) = v̂(y(t), t). Clearly v̂(·, t)#mt is the conditional

probability of v̂(t) given Bt, that we denote by PBtv̂(t). With this notation the optimal

state y(t) is the solution of the SDE

dy = g
(
y(t),PBty(t), v̂(t),PBtv̂(t)

)
dt+ σ(y(t))dw(t) + βdb(t), y(0) = ξ.

We then introduce the adjoint state p(t) by the formula

p(t) = λ(y(t), t). (2.68)

We turn to the necessary condition of optimality (2.27) in which we take x = y(t). The

first term can be interpreted easily. To avoid confusion, we consider an independent copy

of (y(t), v̂(t), p(t)) that we call (ỹ(t), ˜̂v(t), p̃(t)), and we can interpret condition (2.27)

as follows:

Lv

(
y(t),PBty(t), v̂(t),PBtv̂(t), p(t)

)
+EBt

[
Dw

∂L

∂µ

(
ỹ(t),PBty(t),

˜̂v(t),PBtv̂(t), ỹ(t), ˜̂v(t), p̃(t)
)]

(v̂(t)) = 0,

in which the conditional expectation with respect to Bt refers to the random variables

(ỹ(t), ˜̂v(t), p̃(t)). It remains to find the equation of the adjoint state p(t). It is obtained by

taking the Ito differential of the right hand side of (2.68). However, because the function

λ(x, t) is not deterministic and there is a correlation at the level of the Wiener process

b(t) between its Ito differential for fixed x and the Ito differential of y(t), we cannot use

the standard Ito’s formula. We need to use a generalization due to Kunita, see Kunita

(1982). We obtain the following backward SDE

−dp(t) =

(
DxL

(
y(t),PBty(t), v̂(t),PBtv̂(t), p(t)

)
+ tr

(
Dxσ

∗(y(t))
)
r(t)

+DxEB
t

[
∂L

∂m
(ỹ(t),PBty(t),

˜̂v(t),PBtv̂(t), ỹ(t), ˜̂v(t), p̃(t))

]
(y(t))

)
dt− r(t)dw(t)− θ(t)db(t),

p(T ) = Dxh
(
y(T ), PB

T

y(T )

)
+DxEB

T

[
∂h

∂m
(ỹ(T ), PB

T

y(T ))

]
(y(T )),
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where r(t) and θ(t) are stochastic processes with values in L(Rn,Rn) and Rn respectively.

Denoting F t = σ(w(s), b(s), s ≤ t), all processes y(t), v̂(t), p(t), r(t), and θ(t) are adapted

to the filtration F t. We can express the processes r(t) and θ(t) in terms of the gradients

of the random fields λ(x, t) and Z(x, t) as follows:

r(t) = Dxλ(y(t), t)σ(y(t)); θ(t) = DxZ(y(t), t) +Dxλ(y(t), t)β.

2.11 Appendix. Numerical Results

Table 2.1. The average of costs without storage and with storage.
without storage with storage percentage decrease

volumetric charges 1.4751 1.0553 28.46%
demand charges 0.6780 0.4354 35.78%
storage costs 0 0.0802 N/A
(inc., terminal cost)
total costs 2.1531 1.5709 27.04 %

Table 2.2. The average of costs with fixed pricing scheme and with mean field pricing
scheme.

fixed pricing mean field pricing percentage decrease

volumetric charges 1.2291 1.0553 16.47%
demand charges 0.5540 0.4354 27.24%
storage costs 0.0713 0.0802 -11.09%
(inc., terminal cost)
total costs 1.8544 1.5709 18.05 %

We present numerical examples based on the theoretical model. The main objective

of each prosumer is to minimize her electricity bill and a storage cost by optimizing the

control v(t) in the storage S(t). The underlying assumption of energy flow system is

seasonal. The net energy sent to the grid after deducting consumption of energy, Q0(t)

and Q1(t) are random, but Q0(t) and Q1(t) are mean reverting stochastic processes by
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modeled an Ornstein-Uhlenbeck (OU) process as described in (2.37). The seasonality

components of net energy sent to grid are defined by

γ1(t) = 0.5cos(4πt− π/2) and γ0(t) = cos(4πt− π/2).

In addition, the other parameters are given as follows: α0 = α1 = 100, σ1 = β0 = 1.0,

β1 = 0.5, p0 = 4, p1 = 8, K = 11, c = 55, a = 125, l = −0.15a, h0 = 25, h1 = −0.11h0,

and h2 = h2
1/2h0. In the simulations, we observe the short-term behavior of the agent’s

operational decision, so we set the terminal time as 1 day (i.e., T = 1). We draw the

numerical results to check whether a storage strategy and a mean field pricing scheme are

effective by implementing 1,000 times. The details are shown in Table 3.4.1 and Table

2.2. From these results, we conclude that the local storage is profitable and the mean

field pricing is superior than the fixed pricing for individual households.

Our model does not enforce constraints on the capacity of local storage, but the level of

storage nearly maintain positive value by adjusting numerical parameters for reasonable

interpretations. In the numerical analysis of Alasseur et al.(2020), the negative value of

storage level is allowed, so we may not directly compare how much the storage strategy

reduce the local prosumer’s electricity bill. In addition, the setting on parameters is

different in both models. Even though the specific figures in numerical results are not

identical, both models show that the installation of local storage for prosumers is effective

in diminishing the volatility of spot price and in reducing the electricity bill. This implies

that a central planner has an incentive to increase the penetration of local storage for

prosumers in the grid system.
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2.12 Miscellaneous Appendix

2.12.1 Assumptions

Assumption 2.1. (Lipschitz Condition) g and σ are globally Lipschitz continuous in all

arguments, i.e., ∃L > 0, such that

|g(x,m, v, µ)− g(x′,m′, v′, µ′)| ≤ L (|x− x′|+ ||m−m′||+ |v − v′|+ ||µ− µ′||) ;

|σ(x)− σ(x′)| ≤ L (|x− x′|) .

Assumption 2.2. (Linear Growth) g and σ are of linear growth in all arguments, i.e.,

∃L > 0, such that

|g(x,m, v, µ)| ≤ L (1 + |x|+ ||m||+ |v|+ ||µ||) ;

|σ(x)| ≤ L (1 + |x|) .

Assumption 2.3. (Quadratic Condition on the Cost Functional (See (A.5) in Carmona

and Delarue (20)) ∃L > 0, such that

|f(x,m, v, µ)− f(x′,m′, v′, µ′)|

≤ L
[
1 + |x|+ ||m||+ |v|+ ||µ||+ |x′|+ ||m′||+ |v′|+ ||µ′||

]
·
[
|x− x′|+ ||m−m′||+ |v − v′|+ ||µ− µ′||

]
;

|h(x,m)− h(x′,m′)| ≤ L
[
1 + |x|+ ||m||+ |x′|+ ||m′||

]
·
[
|x− x′|+ ||m−m′||

]
.

2.12.2 Bellman Equation

We assume that the optimal control is approximately constant for s ∈ [t, t + ε]. The

dynamic programming principle tells us that

Φ(m, t) = inf
v

[∫ t+ε

t

∫
Rn
f(x,ms, v(x,ms), v(·,m)#ms)m(x, s)dxds+ Φ(m(t+ ε), t+ ε)

]
.

(2.69)
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At here,

Φ(m(t+ ε), t+ ε) = Φ(m, t) + ε
∂Φ

∂t
+ ε

∫
Rn

∂Φ

∂m

∂m

∂t
dx+ o(ε).

Now, plug this into (2.69)

Φ(m, t) = inf
v

[ ∫ t+ε

t

∫
Rn
f(x,ms, v(x,ms), v(·,m)#ms)m(x, s)dxds+ Φ(m, t)

+ε
∂Φ

∂t
+ ε

∫
Rn

∂Φ

∂m

∂m

∂t
dx+ o(ε)

]
.

The term Φ(m, t) can be pulled out of the infimum, then

0 = inf
v

[∫ t+ε

t

∫
Rn
f(x,ms, v(x,ms), v(·,m)#ms)m(x, s)dxds+ ε

∂Φ

∂t

+ε

∫
Rn

∂Φ

∂m

∂m

∂t
dx+ o(ε)

]
.

After dividing by ε and let ε→ 0

0 = inf
v

[∫
Rn
f(x,m, v(x,m), v(·,m)#m)m(x)dx+

∂Φ

∂t
+

∫
Rn

∂Φ

∂m

∂m

∂t
dx

]
.

Using the Fokker-Plank equation (2.6), we obtain that

−∂Φ

∂t
+

∫
Rn
Ax

∂

∂m
Φ(m, t)(x)m(x, t)dx

= inf
v

[ ∫
Rn
f(x,m, v(x,m), v(·,m)#m)m(x)dx

−
∫
Rn

∂

∂m
Φ(m, t)(x)div

(
g(x,m, v(x,m), v(·,m)#m)m(x)

)
dx
]
.

This equation can be rewritten with the Lagrangian (2.9), then we get the Bellman

equation (2.10).
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Rules of Derivation

The first derivative rule is obtained by

d

dθ
Ψ((v(·,m) + θṽ(·,m))#m)

∣∣∣∣∣
θ=0

= lim
θ→0

Ψ((v(·,m) + θṽ(·,m))#m)−Ψ(v(·,m))

θ

= lim
θ→0

Ψ(

random variable︷ ︸︸ ︷
(v(x0,m) + θṽ(x0,m)))−Ψ(v(x0,m))

θ
, x0 ∼ m

= E
(
DxΨ(v(x0,m)) · ṽ(x0,m)

)
=

∫
Rn
DxΨ(v(x,m)) · ṽ(x,m) ·m(dx)

=

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m)#m)(v(x,m)) · ṽ(x,m) ·m(x)dx.

(2.70)

We derive the second derivative rule based on the result of the first derivative rule (2.70)

as follow:

∂

∂m
Ψ(v(·,m)#m)(x) = lim

θ→0

Ψ(v(·,m)#(m+ θm̃))−Ψ(v(·,m)#m)

θ︸ ︷︷ ︸
(i)

+ lim
θ→0

Ψ(v(·,m+ θm̃)#m)−Ψ(v(·,m)#m)

θ︸ ︷︷ ︸
(ii)

.

(i) = lim
θ→0

Ψ(v(·,m)#(m+ θm̃)− v(·,m)#m+ v(·,m)#m)−Ψ(v(·,m)#m)

θ

= lim
θ→0

1

θ

[∫
Rn

∂Ψ

∂µ
(v(·,m)#m)(x)

(
v(·,m)#(m+ θm̃)− v(·,m)#m

)
(dx)

]
= lim

θ→0

1

θ

[∫
Rn

∂Ψ

∂µ
(v(·,m)#m)(v(x,m))d(m+ θm̃)−

∫
Rn

∂Ψ

∂µ
(v(·,m)#m)(v(x,m))dm

]
=

∫
Rn

∂Ψ

∂µ
(v(·,m)#m)(v(x,m))dm̃ =

∂

∂µ
Ψ(v(·,m)#m)(v(x,m)).

(ii) = lim
θ→0

Ψ(v(x0,m+ θm̃))−Ψ(v(x0,m))

θ
, x0 ∼ m

=

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m)#m)(v(ξ,m)) · lim

θ→0

v(ξ,m+ θm̃)− v(ξ,m)

θ
m(dξ)

=

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m)#m)(v(ξ,m)) · ∂

∂m
v(ξ,m)(x)m(ξ)dξ.
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Combining the results (i) and (ii), we obtain the second derivative rule (2.13).
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3.1 Introduction

An Over-The-Counter (OTC) market is a decentralized market that can be split into two

levels: (i) a primary market and (ii) a secondary market. Whereas a primary market refers

to a market, where an issuer creates a new asset, a secondary market is where investors

trade the asset that they already possess. A huge number of OTC trades is negotiated in

the secondary market that mainly consists of a competitive inter-dealer market and an

OTC trade market between investors and dealers. An investor who is willing to sell or

buy an asset traded in the OTC market makes an effort to search for dealers who take

the role of market makers like intermediaries in bilateral trades. There are search and

bargaining processes between two parties, but it is not necessary to publicly disclose the

settled price. OTC tradings frequently occur with trade bonds, derivatives, mortgage-

backed securities, and commodities. In addition, the volume of OTC tradings cannot

be overlooked. For example, the average daily trending volume of U.S. corporate bonds

publicly traded in 2018 is nearly 24.8 USD billion.

In a traditional OTC market, market participants such as dealers, banks, insurance

companies, and funds managers mainly negotiated OTC trades through a simple elec-

tronic chatting system or telephone. Investors needed to individually contact one or

multiple dealers to get quotes regarding the current available price and tradable amounts

of assets. There were also voice brokers who may help a matching process between dealers

by facilitating the exchange of information about dealers’ transaction preferences. Con-

sidering a market environment, past theoretical works (see e.g. Duffie et al. 2005, Duffie

et al. 2007, Weill 2007, Lagos et al. 2011) focused on an understanding of searching

behaviors within market participants. After the late 1990s, Electronic Trading Platforms

(ETPs) have been developed for inter-dealers trades about Treasury bonds in the United

States. Dealer-investors OTC trades were also popularly negotiated via ETPs from the
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early 2000s. There are two types of trending platforms in OTC markets. Single-Dealer

Platforms (SDPs) are trading systems to assist a bilateral asset trade between a single

dealer and its customer. Multi-Dealer Platforms (MDPs) allow investors to obtain multi-

ple quotes simultaneously from many dealers, so this system enables dealers’ competition

for asset trades.

The major shift from voice-based tradings to electronic-based tradings induces a va-

riety of interactions between market participants (Bech et al., 2016). The majority of

protocols in the inter-dealer market is a central limit order book (CLOB). The CLOB

is a trading protocol that has a virtual queue, where the limit orders are stored with

a specified trading rule. Under the CLOB setting, the inter-dealer market is relatively

transparent because dealers may monitor the real-time bid-ask spreads and obtain in-

formation about historical settled price data and the volume of transactions. Thus, this

market is somewhat similar to a central exchange. In this research, we assume that

the inter-dealer market is competitive, and dealers are available to obtain a fair price of

trading assets. By contrast, a dealer-investor market is mainly traded by the request for

quote (RFQ) trading protocol, an asymmetric execution model where an investor requests

quotes from dealers who respond to a bid or offer. The RFQ protocol not only allows

the investor to obtain multiple quotes simultaneously from dealers but also dealer have

advantages of markup pricing using information from the inter-dealer market.

The primary incentive of electronic trading has been the potential to reduce the cost

of price discovery and improve market liquidity (Bech et al., 2016). This trading system

reduces the need for human intervention, lowering operational costs and risk. Our mean

field setting helps develop a decision support system for dealers willing to coordinate

inter-dealer and dealer-investor markets simultaneously. Via an inter-dealer platform,

the dealers tend to control the position of inventory in a competitive market with a large
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number of dealers. Also, dealers promptly respond to an investor’s request for a price of

tradable securities. The demand of investors depends on the collective behavior of deal-

ers’ pricing strategy, so an individual dealer needs to predict other dealers’ price markup

decisions. Under the mean field setting, the dealer derives the decision considering the

distribution of other players’ decisions rather than assuming that the dealer can have all

information about market participants. The mean field approach can give a theoretical

insight to capture dynamic inter-dependencies between dealers via ETPs.

3.2 Related Literature and Contributions

The theoretical framework of control problems in a dealership market has been widely

studied (see e.g. Stoll 1978, Amihud and Mendelson 1980, Ho and Stoll 2017), but the

theoretical models for the OTC market has recently suggested as the popularity of OTC

trade increases. Whereas the seminal works of Duffie et al. (2005, 2007) only consider

the role of match makers who cannot hold inventory to understand the concept of long

term liquidity provision, Weill (2007) extends their theoretical models by introducing

the market makers who can adjust inventory positions to provide market liquidity by

absorbing selling pressure during financial disruptions. In addition, the work of Lagos et

al. (2011) demonstrates the conditions of policy intervention by a regulator when market

makers cannot properly perform the role of liquidity provider during financial crises.

Previous theoretical studies of Weill (2007) and Lagos et al. (2011) focus on the role

of market makers during the financial crisis as liquidity providers rather than describing

the underlying mechanism of OTC trades to explain why market makers hold inventory

even in the stable market environment. Past works (see e.g. Duffie et al. 2005, Duffie

et al. 2007, Weill 2007, Lagos et al. 2011) assume that dealers act as matchmakers

who never hold inventory because they buy and resell assets immediately under a normal
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market condition. However, a recent empirical work of Randall (2015) show that dealers

naturally have a finite amount of inventory regardless of market status. This is because

previous works have overlooked the rationale that dealers can be considered as investors

who exploit the asymmetric information advantage between dealers and customers in the

opaque OTC market. The solution obtained by the mean field approach represents mar-

ket makers’ optimal price markup strategy to explain why dealers are willing to adjust

the position of inventory in stable market conditions.

Eventually, our model can explicitly obtain the feedback control policies to increase

the efficiency of market makers’ liquidity provision and to reduce the desirability of policy

intervention in OTC markets. In our model, the market demand is modulated by the

mean field term being the law of the dealer’s price markup control. This term can be

regarded as the stringent restrictions on the dealer’s behavior to avoid over price markup

or under price markup. In other words, the dealer has historical performance over time,

she or he needs to adhere to the endogenous demand rule described by her feedback con-

trol. For example, if the market price is higher than the average, then she or he is willing

to set less price markup, and vice versa. Therefore, both the movement of the market

demand and the spot price would be less volatile, so these are the main feature of having

the feedback control that can guarantee a stable investment environment. Consequently,

the stable movement of market price encourages greater market participation by latent

investors as the market transparency increases in the opaque OTC market.

Our theoretical model can contribute to developing a more affordable ETP for deal-

ers who are willing to simultaneously integrate both the inter-dealer and dealer-investor

trades. In particular, the closed form solution obtained by the extended version of mean

field type control may reduce a computational load to derive the optimal markup deci-

sion and inventory control in electronic OTC tradings. For dealers, ETPs with optimal
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markup decisions obtained by the analytical approach can contribute to ensuring eco-

nomic incentives as well as reducing the average costs of asset trades. Understanding

the strategic behavior of dealers’ inventory control may increase the efficiency of dealers’

liquidity provision and reduce the desirability of policy intervention. Consequently, this

research can contribute to lowering the entry barriers for dealers by introducing a more

favorable trading system. We are expected that our theoretical model can be a driver of

electronic trading so that ETPs lessen a liquidity provision in OTC markets by giving

dealers economic incentives to readily respond to inventors’ quotes.

To the best of our knowledge, our study is the first mean field type approach for the

understanding of a secondary OTC market, where the competitive interaction among a

large number of players and the corresponding inventory management are implemented.

We hope that our theoretical model can later be investigated further by using real trans-

action data between dealers and customers in the secondary OTC market. For instance,

this further study would illustrate an empirical relationship between the price markup

decision and the change of market demand in the OTC market. Our model can be extend-

able to understand the relationship between market transparency and prevailing markets

in a secondary search OTC market (Duffie et al. 2017) and the inventory management

between a core and peripheral dealers in an inter-dealer network (Colliard et al. 2018).

3.3 A Theoretical Model for Mean Field Type Control

3.3.1 Theoretical Motivation

The main contribution of this article is to explain the role of a market maker and her

inventory control considering a prevailing market price and investors’ demand in the OTC

market. We consider a secondary OTC market with a continuum of market makers (e.g.

dealers). The market maker trades a single risky asset in a finite time horizon, T . We
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assume that the market maker is risk-averse to hold a risky asset. This means that there

is a penalty to hold the assets for market makers. Therefore, the market maker needs

to derive the optimal level of inventory accumulation by considering the trends of the

market price. There is an incentive for the market maker to reap a profit when she buys

assets at a relatively low price and then she resells them at a relatively high price even

considering the holding penalty.

The secondary OTC market consists of a competitive inter-dealer market and a dealer-

investor trade market in which dealers and investors bargain over the price. We assume

that the inter-dealer market is a perfect competition market, where the asset is traded

at a prevailing market price. This is because the majority of trades in the inter-dealer

market are executed under the protocol of CLOB. The prevailing market price is close to

the concept of a true value of the asset. In the dealer-investor market, we assume that a

dealer has an information advantage, so the bargaining price is set based on the prevailing

market price and the dealer’s price markup. This reflects the rationale that the dealer is

relatively accessible to the true value of an asset compared to the investor. In addition,

the assumption is supported by the fact that a dealer-investor market is mostly traded

by the RFQ protocol.

In our trade model, we consider two types of trades: (i) a paired trade and (ii) an

unpaired trade. The paired trade is a dealer-investor trade, where the dealer immediately

unwinds the imbalance of selling demand and buying demand into the inter-dealer market.

The role of a market maker becomes a broker rather than a dealer in the paired trade.

Therefore, the broker is not willing to stock up the inventory by implementing the inter-

dealer trades with the exact different volume of the selling demand and buying demand. In

the unpaired trade, on the contrary, the dealer strategically manages the level of inventory.

This means that the inter-dealer trading volume is not identical to the imbalance of selling
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demand and buying demand. It is crucial for the dealer to manage the level of inventory

in the unpaired trade.

We introduce a new control problem for dealers’ optimal markup and inventory control

regarding OTC market trades based on a mean field type approach. The investor’s

aggregate demand on OTC trades is modeled by a mean field term, a medium to describe

interactions among a continuum of players. Using the mean field type approach, we

can explicitly obtain the market maker’s optimal feedback regarding price markup and

inventory management. Under the legitimate of mean field type control, this feedback

can be considered as the policy suggestion of a central planner like a market regulator in

the OTC market.

Since a seminal work by Aumann (1964) introduced static games with a continuum

of players, there is a huge number of works regarding related topics on non-atomic games

(e.g. Aumann and Shapley 1964, Mas-Colell 1984, Schmeidler 1973). In the viewpoint

of dynamic games, Lasry and Lions (2007) introduced the mean field approach based

on the concept of differential games from the mean field theory in the field of physics.

Unlike a zero-intelligence model in a particle interaction system, a mean-field model in a

social interaction system considers a large number of players who are willing to optimize

their objective. The mean field model consists of two approaches, namely, mean field

games and mean field type control. The key difference between the two approaches is

that the former is close to the concept of a non-cooperative game with a continuum of

players to find a mean field Nash equilibrium. However, the mean field type control is to

simultaneously assign a decision for all players at once so that the average payoff of players

is optimized. Therefore, the optimal feedback in mean field type control models can be

interpreted as the policy suggestion of a central planner. The details in a theoretical

comparison of mean field games and mean field type control can be found in the work of
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Huang et al. (2006) and Bensoussan et al. (2013).

We believe that the mean field approach is a promising methodology to understand

market makers’ behavior in OTC markets, where there is a competitive competition

among a continuum of players. The mean field system consists of a Hamilton-Jacobi-

Bellman (HJB) equation for a value function and a Fokker-Planck (FP) equation for a

density of mean field. The evolution of an individual player’s value function is written

by the HJB equation and the decision of each player is coupled to the density of the

rest of players governed by the FP equation. In mean field approach, this FP equation

depends on not only the feedback but also the solution of the HJB equation. This system

allows us to analyze an optimization problem with a large number of interacting players.

Intuitively, the individual player makes a decision by considering the distribution of the

other players rather than assuming that all players’ detailed information on states is

collectible. This reflects the fact that it is unrealistic to fully gather market information

about a huge number of players. Therefore, the mean field setting enables us to more

realistically interpret the role of market maker in the OTC market.

3.3.2 General Formulation

A mean field type control model considers a Mckean-Vlasov type process, where both the

state dynamics and objective functional depend on the overall probability distribution of

the state (Bensoussan et al. 2013, Carmona and Delarue 2017). Alasseur et al. (2020)

extended the concept of mean field type control model by incorporating the probability

distribution of the control into the evolution of states and the payoff using stochastic

maximum principle. Pham and Wei (2018) studied this theoretical model at the level of

Bellman equation, then Bensoussan et al. (2021) suggested the Master equation with a

corresponding system consist of HJB-FP equations. In our study, we use the theoretical
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result of Bensoussan et al. (2021)’s extended mean field type control model to understand

the dealers’ inventory management in a secondary OTC market. The main difference

between Bensoussan et al. (2021)’s model and our model is that the former study is

close to a dynamic Cournot competition, but our model is related to a dynamic Bertrand

competition with a continuum of players.

In this section, we briefly introduce the theoretical model for an extended mean field

type approach. The details on the notation and the derivation of this model can be

found in Bensoussan et al. (2021). Consider a probability space (Ω, A,P) on which

Wiener processes are defined. We set F t = σ(x0, w(s); s ≤ t). The control v(x, t) at

time t is a feedback. We consider function f(x,m, v), g(x,m, v), h(x,m) and σ(x) where

x ∈ Rn; m is a probability measure on Rn. v is a control in Rd. The function f and h are

scalar, but g is a vector in Rn and σ(x) is n× n matrix. We have a state x(t) = xt ∈ Rn.

Its probability distribution is denoted by Pxt . The control belongs to Rd and is defined by

a feedback v(xt,Pxt). The probability distribution at the control is denoted by Pv(xt,Pxt ).

We assume that ξ has a probability distribution, obtained from a density m0(x). We

define the state equation as

dx = g
(
xt,Pxt , v(xt,Pxt),Pv(xt,Pxt )

)
dt+ σ(xt)dw(t), x(0) = ξ.

The drift term is a function g(x,m, v, µ) where the arguments x, v are in Rn, Rd respec-

tively. In addition, the argument m,µ are probability measures on Rn, Rd respectively.

Note that the probability Pv(xt,Pxt ) is the image of Pxt . In the sequel, we use the notation

v(·,m) ∗m for image measure of m by the map x → v(x,m). Therefore, we rewrite the

state equation as

dx = g
(
xt,mt, v(xt,mt), v(·,mt) ∗mt

)
dt+ σ(xt)dw(t), x(0) = ξ,
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where mt = m(t) = Pxt represents the probability density of x(t), given the σ−algebra

F t. We want to maximize the objective functional

J
(
v(·)
)

= E
[ ∫ T

0

f(xt,mt, v(xt,mt), v(·,mt) ∗mt)dt+ h(xT ,mT )
]
.

We denote A = A(t) as the second order differential operator

Aφ(x) = −tr a(x)D2φ(x),

where a(x) = 1
2
σ(x)σ∗(x). We call A∗ the operator

A∗φ(x) = −
n∑

i,j=1

∂2

∂xi∂xj

(
aij(x)φ(x)

)
.

The probability measure mt has a density m(x, t), solution of Fokker-Planck (FP) equa-

tion

∂m

∂t
+ A∗m+ div

(
g
(
x,m, v(x,m), v(·,m) ∗m

)
m(x, t)

)
= 0, m(x, 0) = m0(x).

The objective functional is

J
(
v(·)
)

=

∫ T

0

∫
Rn
f
(
x,m(t), v(x,m(t)), v(·,m(t)) ∗m(t)

)
m(x, t)dxdt

+

∫
Rn
h(x,m(T ))m(x, T )dx.

Using the invariant embedding, we rewrite this system indexed by m, t

∂m

∂s
+ A∗m+ div

(
g
(
x,m, v(x,m), v(·,m) ∗m

)
m(x, s)

)
= 0, s > t, m(x, t) = m0(x)

and

Jm,t
(
v(·)
)

=

∫ T

t

∫
Rn
f
(
x,m(s), v(x,m(s)), v(·,m(s)) ∗m(s)

)
m(x, s)dxds

+

∫
Rn
h(x,m(T ))m(x, T )dx.

We define the value function by

Φ(m, t) = sup
v(·)

Jm,t
(
v(·)
)
.
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3.3.3 Rules of Derivation

To proceed, we introduce two important derivation rules. Details for the formal derivation

rules can be found in Bensoussan et al. (2021). Consider a functional Ψ(µ) on probability

measures on Rd and then Ψ(v(·,m)∗m) is a functional of v(x,m) and it is also a functional

of m for Ψ having a functional derivative
∂

∂µ
Ψ(µ)(w), with w ∈ Rd, we then first claim

that

d

dθ
Ψ((v(·,m) + θṽ(·,m)) ∗m)

∣∣∣∣∣
θ=0

=

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m) ∗m)(v(x,m)) · ṽ(x,m) ·m(x)dx.

(3.1)

For the second rule, we consider the map m 7→ Ψ(v(·,m)∗m) and establish its functional

derivative as follows. We claim the formula
∂

∂m
Ψ(v(·,m) ∗m)(x) =

∂

∂µ
Ψ(v(·,m) ∗m)(v(x,m))

+

∫
Rn
Dw

∂

∂µ
Ψ(v(·,m) ∗m)(v(ξ,m)) · ∂

∂m
v(ξ,m)(x)m(ξ)dξ.

(3.2)

Using two derivative rules (3.1) and (3.2), we derive the master equation and the cor-

responding HJB-FP equations, but we do not describe the detail derivation here. The

details can be found in Bensoussan et al. (2021).

3.3.4 Bellman Equation

Φ(m, t) satisfies the Dynamic Programming equation

−∂Φ

∂t
+

∫
Rn
Ax

∂Φ(m, t)

∂m
(x)m(x, t)dx

= sup
v(·)

(∫
Rn

[
f(x,m, v(x,m), v(·,m) ∗m)

+Dx
∂Φ(m,t)
∂m

(x) · g(x,m, v(x,m), v(·,m) ∗m)
]
m(x)dx

)
,

Φ(m,T ) =

∫
Rn
h(x,m)m(x)dx.

(3.3)
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To obtain the master equation, we shall use the notation

U(x,m, t) =
∂Φ(m, t)

∂m
(x)

and from the Bellman equation (3.3) we obtain

−∂Φ

∂t
+

∫
Rn
Ax

∂Φ(m, t)

∂m
(x)m(x, t)dx

= sup
v(·)

(∫
Rn

[
f(x,m, v(x,m), v(·,m) ∗m)

+DxU(x,m, t) · g(x,m, v(x,m), v(·,m) ∗m)
]
m(x)dx

)
,

Φ(m,T ) =

∫
Rn
h(x,m)m(x)dx.

(3.4)

and v̂(x,m) = v̂(x,m, t) maximize the functional∫
Rn

[
f(x,m, v(x,m), v(·,m) ∗m) +DxU(x,m, t).g(x,m, v(x,m), v(·,m) ∗m)

]
m(x)dx.

(3.5)

We write the Euler equation of optimality by following derivation rules suggested by

Bensoussan et al., (15) to maximize the functional (3.5).

∂f

∂v
(x,m, v̂(x,m), v̂(·,m) ∗m) +DxU(x,m, t) · ∂g

∂v
(x,m, v̂(x,m), v̂(·,m) ∗m)

+

∫
Rn
Dw

∂f

∂µ
(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)

(
v̂(x,m)

)
m(ξ)dξ

+

∫
Rn
DξU(ξ,m, t) ·Dw

∂g

∂µ
(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)

(
v̂(x,m)

)
m(ξ)dξ = 0.

(3.6)
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3.3.5 Master Equation and HJB-FP Equations

We then differentiate the Bellman equation with respect to m to obtain the master

equation.

−∂U
∂t

+ AxU(x,m, t) +

∫
Rn
Aξ

∂

∂m
U(ξ,m, t)(x)m(ξ)dξ

= f(x,m, v̂(x,m), v̂(·,m) ∗m) +DxU(x,m, t) · g(x,m, v̂(x,m), v̂(·,m) ∗m)

+

∫
Rn

[
∂

∂m
f(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)(x)

+DξU(ξ,m, t) · ∂
∂m
g(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)(x)

]
m(ξ)dξ

+

∫
Rn

[
∂

∂µ
f(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)(v̂(x,m))

+DξU(ξ,m, t) · ∂
∂µ
g(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)(v̂(x,m))

]
m(ξ)dξ

+

∫
Rn
Dξ

∂

∂m
U(ξ,m, t)(x) · g(ξ,m, v̂(ξ,m), v̂(·,m) ∗m)m(ξ)dξ,

U(x,m, T ) = h(x,m) +

∫
Rn

∂h(ξ,m)

∂m
(x)m(ξ)dξ.

(3.7)

Consider the probability density process corresponding to the optimal feedback to derive

a system of coupled HJB-FP (Hamilton-Jacobi-Bellman-Fokker-Planck) equations. We

set v̂(x, t) = v̂(x,m(t), t) and thus the probability density m(x, t) is the solution of
∂m

∂t
+ A∗m+ div

(
g
(
x,m, v(x,m), v(·,m) ∗m

)
m(x, t)

)
= 0,

m(x, 0) = m0(x).

(3.8)

Set u(x, t) = U(x,m, t). We can state that the function v̂(x, t) satisfies the Euler condition

∂f

∂v

(
x,m(t), v̂(x, t), v̂(·, t) ∗m(t)

)
+Dxu(x, t) · ∂g

∂v

(
x,m(t), v̂(x, t), v̂(·, t) ∗m(t)

)
+

∫
Rn
Dw

∂f

∂µ

(
ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t)

)(
v̂(x, t)

)
m(ξ, t)dξ

+

∫
Rn
Dξu(ξ, t) ·Dw

∂g

∂µ

(
ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t)

)(
v̂(x, t)

)
m(ξ, t)dξ = 0.

(3.9)
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Finally, we obtain the HJB equation for u(x, t)

−∂u
∂t

+ Axu = f(x,m(t), v̂(x, t), v̂(·,m) ∗m(t))

+Dxu(x, t) · g(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

+

∫
Rn

[
∂f

∂m
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))(x)

+Dξu(ξ, t) · ∂g
∂m

(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))(x)

]
m(ξ, t)dξ

+

∫
Rn

[
∂f

∂µ
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))(v̂(x, t))

+Dξu(ξ, t) · ∂g
∂µ

(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))(v̂(x, t))

]
m(ξ, t)dξ,

u(x, T ) = h(x,m(T )) +

∫
Rn

∂h(ξ,m(T ))

∂m
(x)m(ξ, T )dξ.

(3.10)

3.4 Model

3.4.1 Setting of the Problem

We propose a new dynamic trading model of an OTC market by introducing the concept

of mean field approach. Under the legitimate of mean field type control, we assume that

there is a representative agent to represent a continuum of dealers. The representative

agent has three state variables S(t), Y (t), and Z(t). S(t) is the cash position of the

dealer at any time t. The evolution of S(t) depends on the demand of investors with the

settled price and cash earning with the constant interest rate r. Y (t) is the rate of the

prevailing market price and this is modeled by a continuous-time stochastic differential

equation. The evolution of Y (t) is random, described by diffusion but is not controlled.

Lastly, Z(t) represents the rate of change of a dealer’s inventory. The evolution of Z(t) is

modeled by the rate of the difference of the inventor’s selling demand and buying demand

and inter-dealer trades.
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The dealer-investor trades have two types of trading prices: (i) the price of sell-

ing trade and (ii) the price of buying trade. Each price is settled by the sum of the

prevailing market price and markup, a dealer’s decision. At each time t, the dealer

derives the markup for selling trade, vS(Y, S, Z, t) and the markup for buying trade,

vB(Y, S, Z, t), where the letters S and B designate the selling trade and the buying

trade, respectively. We note that Y (t) + vS(Y (t), S(t), Z(t)) is the rate of unit price

in selling trades considering the prevailing market price and the markup. Its expected

value is denoted by E
(
Y (t) + vS(Y (t), S(t), Z(t)))

)
. Also, Y (t) − vB(Y (t), S(t), Z(t))

is the rate of unit price in buying trades based on the prevailing market price and the

markup. E
(
Y (t) − vB(Y (t), S(t), Z(t))

)
denotes the expected value of price in buying

trades. The rate of demand is denoted by DS

(
E
(
− Y (t) − vS(Y (t), S(t), Z(t))

)
and

DB

(
E
(
Y (t)− vB(Y (t), S(t), Z(t))

)
. We assume that the demand function in selling and

buying trades are monotone increasing functions. The dealer consumes cash at the rate

vC(Y (t), S(t), Z(t)). vI(Y (t), S(t), Z(t)) denotes the rate of inter-dealer trades settled at

the prevailing market price Y (t). The sign of vI(Y (t), S(t), Z(t)) represents the direction
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of trades. The evolution of states are defined by

dY =α(Y )dt+ β(Y )dw(t), Y (0) = Y0,

dS

dt
= rS︸︷︷︸

cash interest

+ DS

(
− E

(
Y (t) + vS(Y (t), S(t), Z(t))

))(
Y (t) + vS(Y (t), S(t), Z(t))

)
︸ ︷︷ ︸

dealer-customer selling trades

−DB

(
+ E

(
Y (t)− vB(Y (t), S(t), Z(t))

))(
Y (t)− vB(Y (t), S(t), Z(t))

)
︸ ︷︷ ︸

dealer-customer buying trades

− vI(Y (t), S(t), Z(t))Y (t)︸ ︷︷ ︸
inter-dealer trades

− vC(Y (t), S(t), Z(t))︸ ︷︷ ︸
consumption

, S(0) = S0,

dZ

dt
=−DS

(
− E

(
Y (t) + vS(Y (t), S(t), Z(t))

))︸ ︷︷ ︸
dealer-customer selling demand

+ DB

(
+ E

(
Y (t)− vB(Y (t), S(t), Z(t))

))︸ ︷︷ ︸
dealer-customer buying demand

+ vI(Y (t), S(t), Z(t))︸ ︷︷ ︸
inter-dealer trade volume

, Z(0) = Z0,

(3.11)

where Y0, S0, and Z0 are random variables. The dealer’s objective is to maximize the

present value of the utility of consumption stream and to minimize the present value

of the utility of efforts on information advantage and the present value of the utility of

holding inventory. In addition, the dealer’s objective is to minimize the penalty utility of

short cash and short inventory by considering the utility of transaction efforts on inter-

dealer trades.

The dealer takes information advantage and charges price markups in an opaque OTC

market. UI(·) is a utility function for efforts on information advantage. Based on this

information advantage, dealers make a price markup decision but the penalty of the

utility of price markup guarantee that the dealer cannot make an excessive price markup

for dealer-customer trades. UZ(·) is a utility function for holding inventory, similar to the

concept of carrying (holding) costs in the traditional inventory management problem.
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UC(·) is a utility function for the dealer’s consumption. This is the dealer’s incentive

for providing a secondary OTC market with liquidity. USC(·) and USI(·) denote the

penalty utility of dealers of short cash and short inventory, respectively. Because of

these utilities, dealers are willing to maintain the positive value of cash position and

inventory position. Whereas dealers stock up inventory from the inter-dealer trades

to cope with short inventory, dealers unwind accumulated inventory to the inter-dealer

market to secure a sufficient cash position. UIT (·) represents the utility flow of transaction

efforts on inter-dealer trades. In our model, we assume that an investor needs to pay the

transaction costs of dealer-customer trades instead of a dealer. Lastly, UH(·) is the utility

of salvage value depending on the inventory position at the terminal time T . In addition,

we set v(Y, S, Z) =
(
vS(Y, S, Z), vB(Y, S, Z), vI(Y, S, Z), vC(Y, S, Z)

)ᵀ
. The objective

functional is

J(v(·)) =E
∫ T

0

e−rt

[
−UI

(
vS(Y (t), S(t), Z(t))

)
− UI

(
vB(Y (t), S(t), Z(t))

)
︸ ︷︷ ︸

the utility flow of efforts on information advantage

− UZ

(
Z(t)+

)
︸ ︷︷ ︸

the utility flow of holding inventory

− UIT

(
vI(Y (t), S(t), Z(t))

)
︸ ︷︷ ︸

the utility flow of transaction efforts on inter-dealer trades

− USC

(
S(t)−

)
︸ ︷︷ ︸

the utility flow of short cash

− USI

(
Z(t)−

)
︸ ︷︷ ︸

the utility flow of short inventory

+ UC

(
vC(Y (t), S(t), Z(t))

)
︸ ︷︷ ︸

the utility flow of consumption

]
dt+ EUH0(S, T )e−rT︸ ︷︷ ︸

the utility of terminal cash position

+ EUH1(Z, T )e−rT︸ ︷︷ ︸
the utility of salvage value

(3.12)
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where r is the discount rate the same as an interest rate. In the OTC market, there is

information asymmetry between a dealer and an investor, resulting in a dominance of

bargaining power. Dealers would reap a benefit from the asymmetry of bargaining power

by setting a price markup, but this also generates utility efforts that incorporate into the

objective functional.

The comprehensive model (3.11) and (3.12) capture simultaneously the paired and

unpaired trades. In the following sections, we study a simple model at first, then we

attempt to build up the complicated model like an induction process.

Table 3.1. The summary of studies regarding the OTC trades model
price markup consumption inventory management

Paired trades model X X
(Sec. 3.4.2)
Unpaired trades model X X
(Sec. 3.4.3)
Comprehensive model X X X
(Sec. 3.4.4)

3.4.2 A Paired Trade Model

At first, we study for a paired trade which is a dealer-customer trade immediately un-

wound in the inter-dealer market. The main feature of the paired trade is to reap a profit

from the price markup, so the dealer’s role becomes the broker’s role. In this model, we

do not consider the level of inventory Z(t). The primary objective of the broker is to

maximize the terminal cash position and the utility of consumption by minimizing the

penalty utility of efforts on information advantage and short on the cash position. Then,
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the evolution of states are defined by

dY =α(Y )dt+ β(Y )dw(t), Y (0) = Y0,

dS

dt
= rS︸︷︷︸

the cash interest flow

+ DS

(
E
(
− Y (t)− vS(Y (t), S(t))

)
vS(Y (t), S(t))︸ ︷︷ ︸

the profit flow of trades

+ DB

(
E
(
Y (t)− vB(Y (t), S(t))

)
vB(Y (t), S(t))︸ ︷︷ ︸

the profit flow of trades

− vC(Y (t), S(t))︸ ︷︷ ︸
the consumption flow

, S(0) = 0,

(3.13)

and the objective functional of a broker is

J(v(·)) =E
∫ T

0

e−rt

[
− UI

(
vS(Y (t), S(t))

)
− UI

(
vB(Y (t), S(t))

)
︸ ︷︷ ︸

the utility flow of efforts on information advantage

+ UC

(
vC(Y (t), S(t))

)
︸ ︷︷ ︸

the utility flow of consumption

− USC

(
S(t)−

)
︸ ︷︷ ︸

the utility flow of short on cash

]
dt+ EUH0(S, T )e−rT︸ ︷︷ ︸

the utility of terminal cash position

(3.14)

In the model (3.13) and (3.14) we have v(x,m) =
(
vS(x,m), vB(x,m), vC(x,m)

)
and

x = (Y (t), S(t))ᵀ. We denote the component of state variables: Y (t) = x1, S(t) = x2 and

the component of controls: vS(x,m) = v1(x,m), vB(x,m) = v2(x,m), and vC(x,m) =

v3(x,m).

Proposition 3.1. Once we assume that DS(·), DB(·), USC(·), and UH(·) are linear and

UI(·) and UC(·) are quadratic, the optimal feedback v(x,m) is completely explicit.

Proof. The proof of Proposition 3.1 can be found in the appendix.
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Remark 3.1. When we assume that DS(·), DB(·), USC(·), and UH0(·) are linear and

UI(·) and UC(·) are quadratic, λx2(x, t) = λx2(t).

Proof. The proof of Remark 3.1 can be found in the appendix

3.4.3 An unpaired trade model

An unpaired trade is a dealer-customer trade, where the dealer strategically accumulates

the assets rather than immediately unwinding them in the inter-dealer market. The

dealer’s objective is to maximize the revenue of dealer-customer trades and inter-dealer

trades by optimizing the level of inventory. In this unpaired trade model, a dealer is

willing to focus on the inventory control vI(·, t) rather than managing the cash position

S(t) and the consumption rate vC(·, t). Then, the evolution of states are defined by

dY =α(Y )dt+ β(Y )dw(t), Y (0) = Y0,

dZ

dt
=−DS

(
E
(
− Y (t)− vS(Y (t), Z(t))

)
+ DB

(
E
(
Y (t)− vB(Y (t), Z(t))

)
︸ ︷︷ ︸
the change rate of inventory position from dealer-customer trades

+ vI(Y (t), Z(t))︸ ︷︷ ︸
the change rate of inventory position from inter-dealer trades

, Z(0) = 0,

(3.15)
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and the objective functional of a dealer is

J(v(·)) = E
∫ T

0

[
DS

(
− E

(
Y (t) + vS(Y (t), Z(t))

))(
Y (t) + vS(Y (t), Z(t))

)
︸ ︷︷ ︸

the profit flow of dealer-customer trades

−DB

(
+ E

(
Y (t)− vB(Y (t), Z(t))

))(
Y (t)− vB(Y (t), Z(t))

)
︸ ︷︷ ︸

the profit flow of dealer-customer trades

− vI(Y (t), Z(t))Y (t)︸ ︷︷ ︸
the profit flow of inter-dealer trades

−UI
(
vS(Y (t), Z(t))

)
− UI

(
vB(Y (t), Z(t))

)
︸ ︷︷ ︸

the cost flow of efforts on information advantage

− UIT

(
vI(Y (t), Z(t))

)
︸ ︷︷ ︸

the cost flow of transaction efforts on inter-dealer trades

− USI

(
Z(t)−

)
︸ ︷︷ ︸

the cost flow of short inventory

− UZ

(
Z(t)+

)
︸ ︷︷ ︸

the cost flow of holding inventory

]
dt

+ EUH1(Z, T )︸ ︷︷ ︸
the profit flow of salvage value

(3.16)

In the model (3.15) and (3.16) we have v(x,m) =
(
vS(x,m), vB(x,m), vI(x,m)

)
and

x = (Y (t), Z(t))ᵀ. We denote the component of state variables: Y (t) = x1, Z(t) = x2

and the component of controls: vS(x,m) = v1(x,m), vB(x,m) = v2(x,m), and vI(x,m) =

v3(x,m).

Proposition 3.2. Once we assume that DS(·), DB(·), USI(·), UZ(·) and UH1(·) are linear

and UI(·) and UIT (·) are quadratic, the optimal feedback v(x,m) is completely explicit.

Proof. The proof of Proposition 3.2 can be found in the appendix.

Remark 3.2. When we assume that DS(·), DB(·), USI(·), UZ(·) and UH1(·) are linear

and UI(·) and UIT (·) are quadratic, λx2(x, t) = λx2(t).
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Proof. The proof of Remark 3.2 can be found in the appendix.

3.4.4 The Comprehensive Model

In this section, we attempt to solve the proposed model (3.11) and (3.12). This model re-

flects the fact that there are paired trades and unpaired trades simultaneously in the OTC

market. Therefore, a market maker is willing to maximize the utility of inter-dealer trades

and the utility of dealer-customer trades by optimizing the cash position and inventory

position and by maximizing the utility of consumption. In the model (3.11) and (3.12),

we have x = (Y (t), S(t), Z(t))ᵀ and v(x,m) =
(
vS(x,m), vB(x,m), vI(x,m), vC(x,m)

)
.

We denote the component of state variables: Y (t) = x1, S(t) = x2, and Z(t) = x3 and the

component of controls: vS(x,m) = v1(x,m), vB(x,m) = v2(x,m), vI(x,m) = v3(x,m),

and vC(x,m) = v4(x,m).

Proposition 3.3. Once we assume that DS(·), DB(·), USC(·), USI(·), UZ(·), UH0(·), and

UH1(·) are linear and UI(·), UIT (·), and UC(·) are quadratic, the optimal feedback v(x,m)

is completely explicit.

Proof. The proof of Proposition 3.3 can be found in the appendix.

3.5 Concluding Remarks and Further Studies

We introduce a new control problem for dealers’ optimal markup and inventory control

regarding OTC market trades based on a mean field type approach. An OTC market is a

decentralized market in which dealers and investors bilaterally trade securities not listed

in exchanges. Previous theoretical studies focus on the role of market makers during the

financial crisis as liquidity providers rather than describing the underlying mechanism of

OTC trades to explain why market makers hold inventory even in a stable market envi-

ronment. This is because previous works have overlooked the rationale that dealers can
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be considered as investors who exploit the asymmetric information advantage between

dealers and customers in the opaque OTC market. On the contrary, the solution obtained

by the mean field approach represents market makers’ optimal inventory control strategy

to explain why dealers are willing to adjust the position of inventory in stable market

conditions. Furthermore, our theoretical model also proposes a dealer’s pricing strategy

when investors are able to simultaneously access many dealer’s quotes via MDPs. In a

traditional voice trading platform, the investors are limited to obtain multiple quotes si-

multaneously because the opportunity to accept the quote lapses quickly. Recently, The

development of electronic platforms makes it easier to obtain multiple quotes. There-

fore, it is crucial to understand the dynamic inter-dependencies in supporting dealers

and ETPs. The mean field approach enables to capture a tangible interaction among a

huge number of dealers who have similar aspects of decision makings and objectives in

OTC markets. I believe that the mean field approach is a promising modeling technique

that supports the development of decision making processes for dealers willing to derive

the optimal control of inventory and the price markup decision.

This research contributes to understanding how to overcome transparency and liq-

uidity issues in OTC markets. Our theoretical model explores the dynamic inventory

control problem using mean field approach to develop a decision support system. We

obtained explicit solutions about the control of inventory and the price mark-up deci-

sion. These solutions can reduce the computational load for ETPs that helps to enhance

price efficiency and market liquidity. In addition, our theoretical model may suggest

more affordable electronic trading platforms for dealers who are willing to coordinate

the inter-dealer and investor-dealer markets simultaneously. Considering the position of

inventory and the market information, the dealer can respond to the request of quotes

from an investor via multi dealer platform. It ensures an economic incentive for dealers
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to make a profit from mark-up decision and also reduce the average costs of asset trades.

A more affordable trading environment leads to lowering the entry barriers of dealers.

Consequently, the main outcome of our research may answer the question about how to

reduce the policy intervention to manage liquidity issues. Our decision-making rules may

facilitate dealers’ responses to imbalances in demand and supply to ensure the market

transparency in matching processes between especially dealers and investors.

Lastly, We hope that our theoretical model can later be investigated further by using

real transaction data between dealers and customers in the secondary OTC market. For

instance, this further study would illustrate an empirical relationship between the price

markup decision and the change of market demand in the OTC market. Our model can

be extendable to understand the relationship between market transparency and prevailing

market prices in a secondary search OTC market and the inventory management between

core and peripheral dealers in an inter-dealer network.

3.6 Appendix. Proof

3.6.1 Proof of Proposition 3.1

g(x,m, v, µ)

=

∣∣∣∣∣∣∣
α(x1)

rx2 + v1DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
+ v2DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
− v3

∣∣∣∣∣∣∣ ,

σ(x) =

∣∣∣∣∣∣ β(x1)

0

∣∣∣∣∣∣ ,
then

Aϕ(x) = −1

2
β2(x1)

∂2ϕ

∂x21
.

Also,

f(x,m, v, µ) = −UI(v1)− UI(v2) + UC(v3)− USC(x−2 )
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h(x,m) = UH0
(x2).

We obtain the derivatives

∂f

∂v
(x,m, v, µ) =

∣∣∣ −U ′I(v1) −U ′I(v2) U ′C(v3)

∣∣∣
∂f

∂m

(
(x,m, v, µ)

)
(ξ) =

∂f

∂µ

(
(x,m, v, µ)

)
(η) = 0,

∂g

∂v
(x,m, v, µ)

=

∣∣∣∣∣∣∣
0 0 0

DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
−1

∣∣∣∣∣∣∣ ,
∂g

∂m

(
(x,m, v, µ)

)
(ξ)

=

∣∣∣∣∣∣∣
0

−v1ξ1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
+ v2ξ1D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
∣∣∣∣∣∣∣ ,

∂g

∂µ

(
(x,m, v, µ)

)
(η)

=

∣∣∣∣∣∣∣
0 0 0

−v1η1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
−v2η2D′B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
0

∣∣∣∣∣∣∣ ,
We use the notation

x1(t) =

∫
ξ1m(ξ, t)dξ; v̂1(t) =

∫
η1dµ(η, t); v̂2(t) =

∫
η2dµ(η, t).

∂f

∂v
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t)) =

∣∣∣ −U ′I(v̂1(x, t)) −U ′I(v̂2(x, t)) U ′C(v̂3(x, t))

∣∣∣ ,
∂f

∂m

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(ξ) =

∂f

∂µ

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(η) = 0.

∂g

∂v
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t)) =

∣∣∣∣∣∣ 0 0 0

DS

(
−x1(t)− v̂1(t)

)
DB

(
x1(t)− v̂2(t)

)
−1

∣∣∣∣∣∣ ,
∂g

∂m

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(ξ)

=

∣∣∣∣∣∣ 0

−v̂1(x, t)ξ1D
′
S

(
−x1(t)− v̂1(t)

)
+ v̂2(x, t)ξ1D

′
B

(
x1(t)− v̂2(t)

)
∣∣∣∣∣∣ ,
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∂g

∂µ

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(η)

=

∣∣∣∣∣∣ 0 0 0

−v̂1(x, t)η1D
′
S

(
−x1(t)− v̂1(t)

)
−v̂2(x, t)η2D

′
B

(
x1(t)− v̂2(t)

)
0

∣∣∣∣∣∣ ,

∫
Dw

∂f

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)(
v̂(x, t)

)
m(ξ, t)dξ = 0

∫
Dξu(ξ, t) ·Dw

∂g

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)(
v̂(x, t)

)
m(ξ, t)dξ

=

∣∣∣∣∣∣∣∣∣∣
−D′S

(
−x1(t)− v̂1(t)

)
v̂1(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

−D′B
(
x1(t)− v̂2(t)

)
v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

0

∣∣∣∣∣∣∣∣∣∣

ᵀ

.

The Euler condition (3.9) becomes

−U ′I(v̂1(x, t))+
∂u(x, t)

∂x2
DS

(
−x1(t)− v̂1(t)

)
−D′S

(
−x1(t)− v̂1(t)

)
v̂1(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

−U ′I(v̂2(x, t))+
∂u(x, t)

∂x2
DB

(
x1(t)− v̂2(t)

)
−D′B

(
x1(t)− v̂2(t)

)
v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

U ′C(v̂3(x, t))−∂u(x, t)

∂x2
= 0.

(3.17)

Next,

f(x,m(t), v̂(x, t), v̂(·, t) ∗m(t)) = −UI(v̂1(x, t))− UI(v̂2(x, t)) + UC(v̂3(x, t))− USC(x−2 )

∫
∂f

∂m

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(x)m(ξ, t)dξ = 0,

∫
∂f

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(v̂(x, t))m(ξ, t)dξ = 0,

∫
Dξu(ξ, t) · ∂g

∂m

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(x)m(ξ, t)dξ

= −x1D′S
(
−x1(t)− v̂1(t)

)
v̂1(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

+ x1D
′
B

(
x1(t)− v̂2(t)

)
v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ
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∫
Dξu(ξ, t) · ∂g

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(v̂(x, t))m(ξ, t)dξ

= −v̂1(x, t)D′S
(
−x1(t)− v̂1(t)

)
v̂1(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

− v̂2(x, t)D′B
(
x1(t)− v̂2(t)

)
v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ,

The HJB equation (3.10) becomes



−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)

− ∂u

∂x2

(
rx2 + v̂1(x, t)DS

(
− x1(t)− v̂1(t)

)
+ v̂2(x, t)DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)

)
+ ru

= −UI(v̂1(x, t))− UI(v̂2(x, t)) + UC(v̂3(x, t))− USC(x−2 )

+(−x1 − v̂1(x, t))D′S
(
−x1(t)− v̂1(t)

)
v̂1(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

+(x1 − v̂2(x, t))D′B
(
x1(t)− v̂2(t)

)
v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

u(x, T ) = UH0
(x2).

Using the Euler conditions (3.17), we rewrite the HJB equation:



−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)

− ∂u

∂x2

(
rx2 − x1DS

(
− x1(t)− v̂1(t)

)
+ x1DB

(
x1(t)− v̂2(t)

))
+ ru

= v̂1(x, t)U ′I(v̂1(x, t))− UI(v̂1(x, t)) + v̂2(x, t)U ′I(v̂2(x, t))− UI(v̂2(x, t))

−v̂3(x, t)U ′C(v̂3(x, t)) + UC(v̂3(x, t))− USC(x−2 ) + x1U
′
I(v̂1(x, t))− x1U ′I(v̂2(x, t))

u(x, T ) = UH0
(x2).

For the derivation of the optimal solution, we shall make the following assumption for the utility function:

UI(v(x, t)) =
a0
2
v2(x, t); UC(v(x, t)) = c1v(x, t)− c0

2
v2(x, t)

and

USC(x(t)) = p0x(t); UH0
(x(t)) = h0x(t),

141



where a0, c0, c1, h0, and p0 are positive constant coefficient. Then,

−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)

− ∂u

∂x2

(
rx2 − x1DS

(
− x1(t)− v̂1(t)

)
+ x1DB

(
x1(t)− v̂2(t)

))
+ ru

=
a0
2

∣∣∣x1 + v̂1(x, t)
∣∣∣2 +

a0
2

∣∣∣x1 − v̂2(x, t)
∣∣∣2 +

c0
2
v̂23(x, t)− p0x−2 − a0x21

u(x, T ) = h0x2.

(3.18)

and the FP equation is

∂m

∂t
− 1

2

∂2

∂x21

(
(β2(x1))m

)
+

∂

∂x1

((
α(x1)

)
m
)

+
∂

∂x2

((
rx2 + v̂1(x, t)DS

(
− x1(t)− v̂1(t)

)
+ v̂2(x, t)DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)

)
m
)

= 0,

m(x, 0) = δ(x)
⊗
m0(x),

(3.19)

In addition, the Euler conditions become

−a0v̂1(x, t)+
∂u(x, t)

∂x2
DS

(
−x1(t)− v̂1(t)

)
−D′S

(
−x1(t)− v̂1(t)

)
v̂1(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

−a0v̂2(x, t)+
∂u(x, t)

∂x2
DB

(
x1(t)− v̂2(t)

)
−D′B

(
x1(t)− v̂2(t)

)
v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

c1−c0v̂3(x, t)− ∂u(x, t)

∂x2
= 0.

(3.20)

We define

λx2
(x, t) =

∂u

∂x2
(x, t)

Differentiating (3.18) with respect to x2, we obtain

−∂λx2

∂t
− 1

2
β2(x1)

∂2λx2

∂x21
− ∂λx2

∂x1
α(x1)− ∂λx2

∂x2

(
rx2 − x1DS

(
− x1(t)− v̂1(t)

)
+ x1DB

(
x1(t)− v̂2(t)

))
= a0(x1 + v̂1(x, t))

∂v̂1(x, t)

∂x2
− a0(x1 − v̂2(x, t))

∂v̂2(x, t)

∂x2
+ c0v̂3(x, t)

∂v̂3(x, t)

∂x2
− p01x2<0

λx2(x, T ) = h0.

From the Euler condition, we have

−a0
∂v̂1(x, t)

∂x2
+
∂λx2

(x, t)

∂x2
DS

(
−x1(t)− v̂1(t)

)
= 0,

−a0
∂v̂2(x, t)

∂x2
+
∂λx2

(x, t)

∂x2
DB

(
x1(t)− v̂2(t)

)
= 0,

−c0
∂v̂3(x, t)

∂x2
−λx2(x, t)

∂x2
= 0.
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Eventually, we get

−∂λx2

∂t
− 1

2
β2(x1)

∂2λx2

∂x21
− ∂λx2

∂x1
α(x1)

−∂λx2

∂x2

(
rx2 + v̂1(x, t)DS

(
− x1(t)− v̂1(t)

)
+ v̂2(x, t)DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)

)
= −p01x2<0

λx2
(x, T ) = h0.

(3.21)

From (3.19) with (3.21), we can infer

λx2
(t) =

∫
λx2

(ξ, t)m(ξ, t)dξ =

∫
λx2

(ξ, T )m(ξ, T )dξ − p01x2<0(T − t) = h0 − p01x2<0(T − t). (3.22)

We assume that the evolution of a prevailing price of an asset is described by the mean revering model

as below:

α(x1, t) = −α1(x1 − γ1(t))

, where γ1(t) is deterministic function and we take β(x1) = β. Then, we can easily obtain

x1(t) = x10 exp−α1t+

∫ t

0

exp−α1(t− s)(α1γ1(s)ds+ βdw(s)).

From the Euler conditions (3.20), we have

−a0v̂1(t)+DS

(
−x1(t)− v̂1(t)

)
λx2

(t)−D′S
(
−x1(t)− v̂1(t)

)
v̂1(t)λx2

(t) = 0,

−a0v̂2(t)+DB

(
x1(t)− v̂2(t)

)
λx2(t)−D′B

(
x1(t)− v̂2(t)

)
v̂2(t)λx2(t) = 0.

Consider the linear demand in which

DS(x) = dS0x+ dS1 and DB(x) = dB0x+ dB1 ,

where dS0
, dS1

, dB0
, and dB1

are positive constant coefficients. Then, we obtain

v̂1(t) =
−dS0

x1(t)λx2
(t) + dS1

λx2
(t)

a0 + 2dS0λx2(t)
;

v̂2(t) =
dB0

x1(t)λx2
(t) + dB1

λx2
(t)

a0 + 2dB0
λx2

(t)
.

In addition, the optimal feedback is defined:

v̂1(x, t) =
1

a0

[(
dS0

(
−x1(t)− v̂1(t)

)
+ dS1

)
λx2(x, t)− dS0 v̂1(t)λx2(t)

]
v̂2(x, t) =

1

a0

[(
dB0

(
x1(t)− v̂2(t)

)
+ dB1

)
λx2

(x, t)− dB0
v̂2(t)λx2

(t)
]

v̂3(x, t) =
1

c0

(
c1 − λx2

(x, t)
)
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In addition, we set

ϕS0
(t) =

dS0

(
−x1(t)− v̂1(t)

)
+ dS1

a0
and ϕB0

(t) =
dB0

(
x1(t)− v̂2(t)

)
+ dB1

a0
;

ϕS1
(t) =

dS0
v̂1(t)λx2

(t)

a0
and ϕB1

(t) =
dB0

v̂2(t)λx2
(t)

a0

Then, the optimal feedback is

v̂1(x, t) = ϕS0
(t)λx2

(x, t)− ϕS1
(t)

v̂2(x, t) = ϕB0
(t)λx2

(x, t)− ϕB1
(t)

v̂3(x, t) = c−10 c1 − c−10 λx2
(x, t)

(3.23)

Once we know λx2(x, t), everything is explicit. We rewrite (3.21) using the optimal feedback (3.23) as

below:

−∂λx2

∂t
− 1

2
β2 ∂

2λx2

∂x21
+
∂λx2

∂x1
α1

(
x1 − γ1(t)

)
−∂λx2

∂x2

(
rx2 +

(
ϕS0

(t)λx2
(x, t)− ϕS1

(t)
)
a0ϕS0

(t) +
(
ϕB0

(t)λx2
(x, t)− ϕB1

(t)
)
a0ϕB0

(t)

− c−10 c1 + c−10 λx2
(x, t)

)
= −p01x2<0

λx2
(x, T ) = h0.

(3.24)

We can obtain λx2
(x, t) as

λx2
(x, t) = λ20(t)x2 + λ21(x1, t)

Then, we have to solve the equation for λ20(t) which is

−∂λ20
∂t
− (a0ϕS0

(t)2 + a0ϕB0
(t)2 + c−10 )λ220 − rλ20 = 0, λ20(T ) = 0. (3.25)

and the equation for λ21(x1, t) which is

−∂λ21
∂t
− 1

2
β2 ∂

2λ21
∂x21

+
∂λ21
∂x1

α1

(
x1 − γ1(t)

)
− θ0λ21 + θ1 = −p01x2<0, λ21(x1, T ) = h0, (3.26)

where

θ0(t) = (a0ϕS0
(t)2 + a0ϕB0

(t)2 + c−10 )λ20(t)

θ1(t) = (a0ϕS0
(t)ϕS1

(t) + a0ϕB0
(t)ϕB1

(t) + c−10 c1)λ20(t).

From (3.25), we can infer λ20(t) = 0. Then we rewrite (3.26):

−∂λ21
∂t
− 1

2
β2 ∂

2λ21
∂x21

+
∂λ21
∂x1

α1

(
x1 − γ1(t)

)
= −p01x2<0, λ21(x1, T ) = h0, (3.27)
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The solution of (3.27) is a linear function of x1, namely

λ21(x1, t) = ψ0(t)x1 + ψ1(t)

with 
−∂ψ0

∂t
+ α1ψ0 = 0, ψ0(T ) = 0.

−∂ψ1

∂t
− γ1ψ0 = −p01x2<0, ψ1(T ) = h0.

whose solutions are

ψ0(t) = 0 and ψ1(t) = −p01x2<0(T − t) + h0

Therefore, we conclude that

λx2(x, t) = −p01x2<0(T − t) + h0. (3.28)

Eventually, we obtain the optimal feedback

v̂1(x, t) = ϕS0
(t)(−p01x2<0(T − t) + h0)− ϕS1

(t)

v̂2(x, t) = ϕB0
(t)(−p01x2<0(T − t) + h0)− ϕB1

(t)

v̂3(x, t) = c−10 c1 − c−10 (−p01x2<0(T − t) + h0). �

3.6.2 Proof of Remark 3.1

Proof. Refer to (3.22) and (3.28). �

3.6.3 Proof of Proposition 3.2

Proof.

g(x,m, v, µ) =

∣∣∣∣∣∣∣
α(x1)

−DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
+ DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
+ v3

∣∣∣∣∣∣∣ ,

σ(x) =

∣∣∣∣∣∣ β(x1)

0

∣∣∣∣∣∣ ,
then

Aϕ(x) = −1

2
β2(x1)

∂2ϕ

∂x21
.
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Also,

f(x,m, v, µ) =(x1 + v1)DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
− (x1 − v2)DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
− v3x1 − UI(v1)− UI(v2)− UIT (v3)− USI(x−2 )− UZ(x+2 )

h(x,m) = UH1(x2).

We obtain the derivatives

∂f

∂v
(x,m, v, µ)

=

∣∣∣∣ DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
− U ′I(v1) DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
− U ′I(v2) −x1 − U ′IT (v3)

∣∣∣∣ ,
∂f

∂m

(
(x,m, v, µ)

)
(ξ)

= −(x1 + v1)ξ1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
− (x1 − v2)ξ1D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)

∂f

∂µ

(
(x,m, v, µ)

)
(η)

=

∣∣∣∣ −(x1 + v1)η1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
(x1 − v2)η2D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
0

∣∣∣∣
∂g

∂v
(x,m, v, µ) =

∣∣∣∣∣∣ 0 0 0

0 0 1

∣∣∣∣∣∣ ,
∂g

∂m

(
(x,m, v, µ)

)
(ξ) =

∣∣∣∣∣∣∣
0

ξ1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
+ ξ1D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
∣∣∣∣∣∣∣ ,

∂g

∂µ

(
(x,m, v, µ)

)
(η) =

∣∣∣∣∣∣∣
0 0 0

η1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
−η2D′B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
0

∣∣∣∣∣∣∣ ,
We use the notation

x1(t) =

∫
ξ1m(ξ, t)dξ; v̂1(t) =

∫
η1dµ(η, t); v̂2(t) =

∫
η2dµ(η, t).

∂f

∂v
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

=
∣∣∣ DS

(
−x1(t)− v̂1(t)

)
− U ′I(v̂1(x, t)) DB

(
x1(t)− v̂2(t)

)
− U ′I(v̂2(x, t)) −x1 − U ′IT (v̂3(x, t))

∣∣∣ ,
∂f

∂m

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(ξ)

= −(x1 + v̂1(x, t))ξ1D
′
S

(
−x1(t)− v̂1(t)

)
− (x1 − v̂2(x, t))ξ1D

′
B

(
x1(t)− v̂2(t)

)
,

∂f

∂µ

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(η)

=
∣∣∣ −(x1 + v̂1(x, t))η1D

′
S

(
−x1(t)− v̂1(t)

)
(x1 − v̂2(x, t))η2D

′
B

(
x1(t)− v̂2(t)

)
0

∣∣∣ .
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∂g

∂v
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t)) =

∣∣∣∣∣∣ 0 0 0

0 0 1

∣∣∣∣∣∣ ,

∂g

∂m

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(ξ) =

∣∣∣∣∣∣ 0

ξ1D
′
S

(
−x1(t)− v̂1(t)

)
+ ξ1D

′
B

(
x1(t)− v̂2(t)

)
∣∣∣∣∣∣ ,

∂g

∂µ

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(η) =

∣∣∣∣∣∣ 0 0 0

η1D
′
S

(
−x1(t)− v̂1(t)

)
−η2D′B

(
x1(t)− v̂2(t)

)
0

∣∣∣∣∣∣ ,
∫
Dw

∂f

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)(
v̂(x, t)

)
m(ξ, t)dξ

=
∣∣∣ −D′S

(
−x1(t)− v̂1(t)

) (
x1(t) + v̂1(t)

)
D′B

(
x1(t)− v̂2(t)

) (
x1(t)− v̂1(t)

)
0

∣∣∣∫
Dξu(ξ, t) ·Dw

∂g

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)(
v̂(x, t)

)
m(ξ, t)dξ

=

∣∣∣∣ D′S
(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ −D′B

(
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ 0

∣∣∣∣ .
The Euler condition (3.9) becomes

DS

(
−x1(t)− v̂1(t)

)
− U ′I(v̂1(x, t)) + D′S

(
−x1(t)− v̂1(t)

) (
− x1(t)− v̂1(t)

)
+ D′S

(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

DB

(
x1(t)− v̂2(t)

)
− U ′I(v̂2(x, t)) + D′B

(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

)
−D′B

(
x2(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

−x1 − U ′IT (v3) +
∂u(x, t)

∂x2
= 0.

(3.29)

Next,

f(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

= (x1 + v̂1(x, t))DS

(
−x1(t)− v̂1(t)

)
− (x1 − v̂2(x, t))DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)x1

−UI(v̂1(x, t))− UI(v̂2(x, t))− UIT (v̂3(x, t))− USI(x−2 )− UZ(x+2 )∫
∂f

∂m

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(x)m(ξ, t)dξ

=−D′S
(
−x1(t)− v̂1(t)

)
x1
(
x1(t) + v̂1(t)

)
−D′B

(
x1(t)− v̂2(t)

)
x1
(
x1(t)− v̂2(t)

)
,
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∫
∂f

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(v̂(x, t))m(ξ, t)dξ

=−D′S
(
−x1(t)− v̂1(t)

)
v̂1(x, t)

(
x1(t) + v̂1(t)

)
+ D′B

(
x1(t)− v̂2(t)

)
v̂2(x, t)

(
x1(t)− v̂2(t)

)
∫
Dξu(ξ, t) · ∂g

∂m

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(x)m(ξ, t)dξ

= x1D
′
S

(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ + x1D

′
B

(
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

∫
Dξu(ξ, t) · ∂g

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(v̂(x, t))m(ξ, t)dξ

= v̂1(x, t)D′S
(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ − v̂2(x, t)D′B (x1(t)

− v̂2(t)

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ,

The HJB equation (3.10) becomes

−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)− ∂u

∂x2

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
= −(−x1 − v̂1(x, t))DS

(
−x1(t)− v̂1(t)

)
− (x1 − v̂2(x, t))DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)x1

−UI(v̂1(x, t))− UI(v̂2(x, t))− UIT (v̂3(x, t))− USI(x−2 )− UZ(x+2 )

−D′S
(
−x1(t)− v̂1(t)

)
(−x1 − v̂1(x, t)

(
− x1(t)− v̂1(t)

)
−D′B

(
x1(t)− v̂2(t)

)
(x1 − v̂2(x, t))

(
x1(t)− v̂2(t)

)
−D′S

(
−x1(t)− v̂1(t)

)
(−x1 − v̂1(x, t))

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

+D′B
(
x1(t)− v̂2(t)

)
(x1 − v̂2(x, t))

∫
∂u

∂x2
(ξ, t)m(ξ, t)dξ

u(x, T ) = UH1
(x2).

Using the Euler conditions (3.29), we rewrite the HJB equation:

−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)− ∂u

∂x2

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

))
= v̂1(x, t)U ′I(v̂1(x, t))− UI(v̂1(x, t)) + v̂2(x, t)U ′I(v̂2(x, t))− UI(v̂2(x, t))

+v̂3(x, t)U ′IT (v̂3(x, t))− UIT (v̂3(x, t))− USI(x−2 )− UZ(x+2 ) + x1U
′
I(v̂1(x, t))− x1U ′I(v̂2(x, t))

u(x, T ) = UH1(x2).

For the derivation of the optimal solution, we shall make the following assumption for the cost function:

UI(v(x, t)) =
a0
2
v2(x, t); UIT (v(x, t)) =

k0
2
v2(x, t)
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and

USI(x(t)) = q0x(t); UZ(x(t)) = q1x(t); UH1(x(t)) = h1x(t),

where a0, k0, h1, q0, and q1 are positive constant coefficient. Then,

−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)− ∂u

∂x2

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

))
=
a0
2

∣∣∣x1 + v̂1(x, t)
∣∣∣2 +

a0
2

∣∣∣x1 − v̂2(x, t)
∣∣∣2 +

k0
2
v̂23(x, t)− q0x−2 − q1x

+
2 − a0x21

u(x, T ) = h1x2.

(3.30)

and the FP equation is

∂m

∂t
− 1

2

∂2

∂x21

(
(β2(x1))m

)
+

∂

∂x1

((
α(x1)

)
m
)

+
∂

∂x2

((
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
m
)

= 0,

m(x, 0) = δ(x)
⊗
m0(x),

(3.31)

In addition, the Euler conditions become

−a0v̂1(x, t)+DS

(
−x1(t)− v̂1(t)

)
+ D′S

(
−x1(t)− v̂1(t)

) (
− x1(t)− v̂1(t)

)
+ D′S

(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

−a0v̂2(x, t)+DB

(
x1(t)− v̂2(t)

)
+ D′B

(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

)
−D′B

(
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ = 0,

−k0v̂3(x, t)− x1 +
∂u(x, t)

∂x2
= 0.

(3.32)

We define

λx2(x, t) =
∂u

∂x2
(x, t)

Differentiating (3.30) with respect to x2, we obtain

−∂λx2

∂t
− 1

2
β2(x1)

∂2λx2

∂x21
− ∂λx2

∂x1
α(x1)− ∂λx2

∂x2

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

))
= a0(x1 + v̂1(x, t))

∂v̂1(x, t)

∂x2
− a0(x1 − v̂2(x, t))

∂v̂2(x, t)

∂x2
+ k0v̂3(x, t)

∂v̂3(x, t)

∂x2
− q01x2<0 − q11x2>0

λx2(x, T ) = h1.
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From the Euler condition, we have

∂v̂1(x, t)

∂x2
= 0,

∂v̂2(x, t)

∂x2
= 0,

−k0
∂v̂3(x, t)

∂x2
+
λx2(x, t)

∂x2
= 0.

Eventually, we get

−∂λx2

∂t
− 1

2
β2(x1)

∂2λx2

∂x21
− ∂λx2

∂x1
α(x1)

−∂λx2

∂x2

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
= −q01x2<0 − q11x2>0

λx2(x, T ) = h1.

(3.33)

From (3.31) with (3.33), we can infer

λx2
(t) =

∫
λx2

(ξ, t)m(ξ, t)dξ

=

∫
λx2

(ξ, T )m(ξ, T )dξ − q01x2<0(T − t)− q11x2>0(T − t)

= h1 − q01x2<0(T − t)− q11x2>0(T − t).

(3.34)

We assume that the evolution of a prevailing price of an asset is described by the mean revering model

as below:

α(x1, t) = −α1(x1 − γ1(t))

, where γ1(t) is deterministic function and we take β(x1) = β. Then, we can easily obtain

x1(t) = x10 exp−α1t+

∫ t

0

exp−α1(t− s)(α1γ1(s)ds+ βdw(s)).

From the Euler conditions (3.32), we have

−a0v̂1(t) + DS

(
−x1(t)− v̂1(t)

)
+ D′S

(
−x1(t)− v̂1(t)

) (
− x1(t)− v̂1(t)

)
+D′S

(
−x1(t)− v̂1(t)

)
λx2

(t) = 0,

−a0v̂2(t) + DB

(
x1(t)− v̂2(t)

)
+ D′B

(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

)
−D′B

(
x1(t)− v̂2(t)

)
λx2(t) = 0.

Consider the linear demand in which

DS(x) = dS0
x+ dS1

and DB(x) = dB0
x+ dB1

,
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where dS0
, dS1

, dB0
, and dB1

are positive constant coefficients. Then, we obtain

v̂1(t) =
−2dS0

x1(t) + dS0
λx2

(t) + dS1

a0 + 2dS0

;

v̂2(t) =
2dB0x1(t)− dB0λx2(t) + dB1

a0 + 2dB0

.

In addition, the optimal feedback is defined:

v̂1(x, t) =
1

a0

[
2dS0

(
−x1(t)− v̂1(t)

)
+ dS0

λx2
(t) + dS1

]
,

v̂2(x, t) =
1

a0

[
2dB0

(
x1(t)− v̂2(t)

)
− dB0λx2(t) + dB1

]
,

v̂3(x, t) =
1

k0

(
− x1 + λx2

(x, t)
)
.

(3.35)

Once we know λx2
(x, t), everything is explicit. We rewrite (3.33) using the optimal feedback (3.35) as

below: 

−∂λx2

∂t
− 1

2
β2 ∂

2λx2

∂x21
+
∂λx2

∂x1
α1

(
x1 − γ1(t)

)
−∂λx2

∂x2

(
(dS0

+ dB0
)x1(t) + dS0

v̂1(t)− dB0
v̂2(t)− dS1

+ dB1
− k−10 x1 + k−10 λx2

)
= −q01x2<0 − q11x2>0

λx2(x, T ) = h1.

We can obtain λx2(x, t) as

λx2
(x, t) = λ20(t)x2 + λ21(x1, t)

Then, we have to solve the equation for λ20(t) which is

−∂λ20
∂t
− k−10 λ220 = 0, λ20(T ) = 0. (3.36)

and the equation for λ21(x1, t) which is

−∂λ21
∂t
− 1

2
β2 ∂

2λ21
∂x21

+
∂λ21
∂x1

α1

(
x1 − γ1(t)

)
− k−10 λ20λ21

−λ20
(
(dS0 + dB0)x1(t) + dS0 v̂1(t)− dB0 v̂2(t)− dS1 + dB1

)
− k−10 λ20x1 = −q01x2<0 − q11x2>0,

λ21(x1, T ) = h0,

(3.37)

From (3.36), we can infer λ20(t) = 0. Then we rewrite (3.37):

−∂λ21
∂t
− 1

2
β2 ∂

2λ21
∂x21

+
∂λ21
∂x1

α1

(
x1 − γ1(t)

)
= −q01x2<0 − q11x2>0, λ21(x1, T ) = h1, (3.38)
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The solution of (3.38) is a linear function of x1, namely

λ21(x1, t) = %0(t)x1 + %1(t)

with 
−∂%0
∂t

+ α1%0 = 0, %0(T ) = 0.

−∂%1
∂t
− γ1%0 = −q01x2<0 − q11x2>0, %1(T ) = h1.

whose solutions are

%0(t) = 0 and %1(t) = −q01x2<0(T − t)− q11x2>0(T − t) + h1

Therefore, we conclude that

λx2
(x, t) = −q01x2<0(T − t)− q11x2>0(T − t) + h1. (3.39)

Eventually, we obtain the optimal feedback

v̂1(x, t) =
1

a0

[
2dS0

(
−x1(t)− v̂1(t)

)
+ dS0λx2(t) + dS1

]
,

v̂2(x, t) =
1

a0

[
2dB0

(
x1(t)− v̂2(t)

)
− dB0

λx2
(t) + dB1

]
,

v̂3(x, t) =
1

k0

(
− x1 − q01x2<0(T − t)− q11x2>0(T − t) + h1

)
. �

3.6.4 Proof of Remark 3.2

Proof. Refer to (3.34) and (3.39). �

3.6.5 Proof of Proposition 3.3

Proof.

g(x,m, v, µ)

=

∣∣∣∣∣∣∣∣∣∣∣

α(x1)

rx2 + (x1 + v1)DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
− (x1 − v2)DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
− v3x1 − v4

−DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
+ DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
+ v3

∣∣∣∣∣∣∣∣∣∣∣
,

σ(x) =

∣∣∣∣∣∣∣∣∣∣
β(x1)

0

0

∣∣∣∣∣∣∣∣∣∣
,
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then

Aϕ(x) = −1

2
σ2(x1)

∂2ϕ

∂x21
.

Also,

f(x,m, v, µ) = −UI(v1)− UI(v2)− UIT (v3) + UC(v4)− UZ(x+3 )− USI(x−3 )− USC(x−2 )

h(x,m) = UH0(x2) + UH1(x3).

We obtain the derivatives

∂f

∂v
(x,m, v, µ) =

∣∣∣ −U ′I(v1) −U ′I(v2) −U ′IT (v3) U ′C(v4)

∣∣∣
∂f

∂m

(
(x,m, v, µ)

)
(ξ) =

∂f

∂µ

(
(x,m, v, µ)

)
(η) = 0,

∂g

∂v
(x,m, v, µ) =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0

DS

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
DB

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
−x1 −1

0 0 1 0

∣∣∣∣∣∣∣∣∣∣
,

∂g

∂m

(
(x,m, v, µ)

)
(ξ)

=

∣∣∣∣∣∣∣∣∣∣∣

0

−(x1 + v1)ξ1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
− (x1 − v2)ξ1D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
ξ1D

′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
+ ξ1D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
∣∣∣∣∣∣∣∣∣∣∣
,

∂g

∂µ

(
(x,m, v, µ)

)
(η)

=

∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0

−(x1 + v1)η1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
(x1 − v2)η2D

′
B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
0 0

η1D
′
S

(
−
∫
ξ1m(ξ)dξ −

∫
η1dµ(η)

)
−η2D′B

(∫
ξ1m(ξ)dξ −

∫
η2dµ(η)

)
0 0

∣∣∣∣∣∣∣∣∣∣∣
,

We use the notation

x1(t) =

∫
ξ1m(ξ, t)dξ; v̂1(t) =

∫
η1dµ(η, t); v̂2(t) =

∫
η2dµ(η, t).

∂f

∂v
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

=
∣∣∣ −U ′I(v̂1(x, t)) −U ′I(v̂2(x, t)) −U ′IT (v̂3(x, t)) U ′C(v̂4(x, t))

∣∣∣ ,
∂f

∂m

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(ξ) =

∂f

∂µ

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(η) = 0.
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∂g

∂v
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t)) =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0

DS

(
−x1(t)− v̂1(t)

)
DB

(
x1(t)− v̂2(t)

)
−x1 −1

0 0 1 0

∣∣∣∣∣∣∣∣∣∣
,

∂g

∂m

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(ξ)

=

∣∣∣∣∣∣∣∣∣∣
0

−(x1 + v̂1(x, t))ξ1D
′
S

(
−x1(t)− v̂1(t)

)
− (x1 − v̂2(x, t))ξ1D

′
B

(
x1(t)− v̂2(t)

)
ξ1D

′
S

(
−x1(t)− v̂1(t)

)
+ ξ1D

′
B

(
x1(t)− v̂2(t)

)
∣∣∣∣∣∣∣∣∣∣
,

∂g

∂µ

(
(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

)
(η)

=

∣∣∣∣∣∣∣∣∣∣
0 0 0 0

−(x1 + v̂1(x, t))η1D
′
S

(
−x1(t)− v̂1(t)

)
(x1 − v̂2(x, t))η2D

′
B

(
x1(t)− v̂2(t)

)
0 0

η1D
′
S

(
−x1(t)− v̂1(t)

)
−η2D

′
B

(
x1(t)− v̂2(t)

)
0 0

∣∣∣∣∣∣∣∣∣∣
,

∫
Dw

∂f

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)(
v̂(x, t)

)
m(ξ, t)dξ = 0

∫
Dξu(ξ, t) ·Dw

∂g

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)(
v̂(x, t)

)
m(ξ, t)dξ

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−D′S
(
−x1(t)− v̂1(t)

)(
x1(t) + v̂1(t)

)∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ + D′S

(
−x1(t)− v̂1(t)

)∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ

D′B

(
x1(t)− v̂2(t)

)(
x1(t)− v̂2(t)

)∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ −D′B

(
x1(t)− v̂2(t)

)∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ᵀ

.
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The Euler condition (3.9) becomes

−U ′I(v̂1(x, t))+
∂u(x, t)

∂x2
DS

(
−x1(t)− v̂1(t)

)
+ D′S

(
−x1(t)− v̂1(t)

) (
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

+ D′S
(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ = 0,

−U ′I(v̂2(x, t))+
∂u(x, t)

∂x2
DB

(
x1(t)− v̂2(t)

)
+ D′B

(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

−D′B
(
x1(t)− v̂2(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ = 0,

−U ′IT (v̂3(x, t))−∂u(x, t)

∂x2
x1 +

∂u(x, t)

∂x3
= 0,

U ′C(v̂4(x, t))−∂u(x, t)

∂x2
= 0.

(3.40)

Next,

f(x,m(t), v̂(x, t), v̂(·, t) ∗m(t))

= −UI(v̂1(x, t))− UI(v̂2(x, t))− UIT (v̂3(x, t)) + UC(v̂4(x, t))− UZ(x+3 )− USI(x−3 )− USC(x−2 )∫
∂f

∂m

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(x)m(ξ, t)dξ = 0,∫

∂f

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(v̂(x, t))m(ξ, t)dξ = 0,∫

Dξu(ξ, t) · ∂g
∂m

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(x)m(ξ, t)dξ

= −x1D′S
(
−x1(t)− v̂1(t)

) (
x1(t) + v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

− x1D′B
(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

+ x1D
′
S

(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ + x1D

′
B

(
x1(t)− v̂2(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ,

∫
Dξu(ξ, t) · ∂g

∂µ

(
(ξ,m(t), v̂(ξ, t), v̂(·, t) ∗m(t))

)
(v̂(x, t))m(ξ, t)dξ

= −v̂1(x, t)D′S
(
−x1(t)− v̂1(t)

) (
x1(t) + v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

+ v̂2(x, t)D′B
(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

+ v̂1(x, t)D′S
(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ

− v̂2(x, t)D′B
(
x1(t)− v̂2(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ,
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The HJB equation (3.10) becomes



−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)

− ∂u

∂x2

(
rx2 + (x1 + v̂1(x, t))DS

(
− x1(t)− v̂1(t)

)
−(x1 − v̂2(x, t))DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)x1 − v̂4(x, t)

)
− ∂u

∂x3

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
+ ru

= −UI(v̂1(x, t))− UI(v̂2(x, t))− UIT (v̂3(x, t)) + UC(v̂4(x, t))− UZ(x+3 )− USI(x−3 )− USC(x−2 )

−(−x1 − v̂1(x, t))D′S
(
−x1(t)− v̂1(t)

) (
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

−(x1 − v̂2(x, t))D′B
(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

−(−x1 − v̂1(x, t))D′S
(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ

+(x1 − v̂2(x, t))D′B
(
x1(t)− v̂2(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ

u(x, T ) = UH0
(x2) + UH1

(x3).

Using the Euler conditions (3.40), we rewrite the HJB equation:

−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)− ∂u

∂x2
(rx2)

− ∂u

∂x3

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

))
+ ru

= v̂1(x, t)U ′I(v̂1(x, t))− UI(v̂1(x, t)) + v̂2(x, t)U ′I(v̂2(x, t))

−UI(v̂2(x, t)) + v̂3(x, t)U ′IT (v̂3(x, t))− UIT (v̂3(x, t))

−v̂4(x, t)U ′C(v̂4(x, t)) + UC(v̂4(x, t))− UZ(x+3 )− USI(x−3 )− USC(x−2 ) + x1U
′
I(v̂1(x, t))− x1U ′I(v̂2(x, t))

u(x, T ) = UH0(x2) + UH1(x3).

For the derivation of the optimal solution, we shall make the following assumption for the utility function:

UI(v(x, t)) =
a0
2
v2(x, t); UIT (v(x, t)) =

k0
2
v2(x, t); UC(v(x, t)) = c1v(x, t)− c0

2
v2(x, t)

and

UZ(x(t)) = q1x(t); USI(x(t)) = q0x(t); USC(x(t)) = p0x(t); UH0
(x(t)) = h0x(t); UH1

(x(t)) = h1x(t),
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where a0, c0, c1, h0, h1, k0, p0, q0, and q1 are positive constant coefficient. Then,



−∂u
∂t
− 1

2
β2(x1)

∂2u

∂x21
− ∂u

∂x1
α(x1)− ∂u

∂x2
(rx2)

− ∂u

∂x3

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

))
+ ru

=
a0
2

∣∣∣x1 + v̂1(x, t)
∣∣∣2 +

a0
2

∣∣∣x1 − v̂2(x, t)
∣∣∣2 +

k0
2
v̂23(x, t) +

c0
2
v̂24(x, t)− q1x+3 − q0x

−
3 − p0x

−
2 − a0x21

u(x, T ) = h0x2 + h1x3.

(3.41)

and the FP equation is



∂m

∂t
− 1

2

∂2

∂x21
(β2(x1)m) +

∂

∂x1

((
α(x1)

)
m
)

+
∂

∂x2

((
rx2 + (x1 + v̂1(x, t))DS

(
− x1(t)− v̂1(t)

)
−(x1 − v̂2(x, t))DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)x1 − v̂4(x, t)

)
m
)

+
∂

∂x3

((
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
m
)

= 0,

m(x, 0) = δ(x)
⊗
m0(x),

(3.42)

In addition, the Euler conditions become

−a0v̂1(x, t)+
∂u(x, t)

∂x2
DS

(
−x1(t)− v̂1(t)

)
+ D′S

(
−x1(t)− v̂1(t)

) (
−x1(t)− v̂1(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

+ D′S
(
−x1(t)− v̂1(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ = 0,

−a0v̂2(x, t)+
∂u(x, t)

∂x2
DB

(
x1(t)− v̂2(t)

)
+ D′B

(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

) ∫ ∂u

∂x2
(ξ, t)m(ξ, t)dξ

−D′B
(
x1(t)− v̂2(t)

) ∫ ∂u

∂x3
(ξ, t)m(ξ, t)dξ = 0,

−k0v̂3(x, t)−∂u(x, t)

∂x2
x1 +

∂u(x, t)

∂x3
= 0,

c1−c0v̂4(x, t)− ∂u(x, t)

∂x2
= 0.

(3.43)

We define

λx2
(x, t) =

∂u

∂x2
(x, t)
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Differentiating (3.41) with respect to x2, we obtain



−∂λx2

∂t
− 1

2
β2(x1)

∂2λx2

∂x21
− ∂λx2

∂x1
α(x1)− ∂λx2

∂x2
(rx2)

−∂λx2

∂x3

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

))
= a0(x1 + v̂1(x, t))

∂v̂1(x, t)

∂x2
− a0(x1 − v̂2(x, t))

∂v̂2(x, t)

∂x2

+k0v̂3(x, t)∂v̂3(x,t)∂x2
+ c0v̂4(x, t)∂v̂4(x,t)∂x2

− p01x2<0

λx2(x, T ) = h0.

From the Euler condition, we have

−a0
∂v̂1(x, t)

∂x2
+
∂λx2

(x, t)

∂x2
DS

(
−x1(t)− v̂1(t)

)
= 0,

−a0
∂v̂2(x, t)

∂x2
+
∂λx2

(x, t)

∂x2
DB

(
x1(t)− v̂2(t)

)
= 0,

−k0
∂v̂3(x, t)

∂x2
−λx2

(x, t)

∂x2
x1 +

λx2
(x, t)

∂x3
= 0,

−c0
∂v̂4(x, t)

∂x2
−λx2

(x, t)

∂x2
= 0.

Eventually, we get



−∂λx2

∂t
− 1

2
β2(x1)

∂2λx2

∂x21
− ∂λx2

∂x1
α(x1)

−∂λx2

∂x2

(
rx2 + (x1 + v̂1(x, t))DS

(
− x1(t)− v̂1(t)

)
−(x1 − v̂2(x, t))DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)x1 − v̂4(x, t)

)
−∂λx2

∂x3

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
= −p01x2<0

λx2
(x, T ) = h0.

(3.44)

In addition, we define

λx3
(x, t) =

∂u

∂x3
(x, t)
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Then,

−∂λx3

∂t
− 1

2
β2(x1)

∂2λx3

∂x21
− ∂λx3

∂x1
α(x1)

−∂λx3

∂x3

(
rx2 + (x1 + v̂1(x, t))DS

(
− x1(t)− v̂1(t)

)
−(x1 − v̂2(x, t))DB

(
x1(t)− v̂2(t)

)
− v̂3(x, t)x1 − v̂4(x, t)

)
−∂λx3

∂x3

(
−DS

(
− x1(t)− v̂1(t)

)
+ DB

(
x1(t)− v̂2(t)

)
+ v̂3(x, t)

)
= −q01x3<0 − q11x3>0

λx3
(x, T ) = h1.

(3.45)

From (3.42) with (3.44) and (3.45), we can infer

λx2
(t) =

∫
λx2

(ξ, t)m(ξ, t)dξ =

∫
λx2

(ξ, T )m(ξ, T )dξ − p01x2<0(T − t) = h0 − p01x2<0(T − t)

λx3
(t) =

∫
λx3

(ξ, t)m(ξ, t)dξ =

∫
λx3

(ξ, T )m(ξ, T )dξ − q01x3<0(T − t)− q11x3>0(T − t)

= h1 − q01x3<0(T − t)− q11x3>0(T − t)

We assume that the evolution of a prevailing price of an asset is described by the mean revering model

as below:

α(x1, t) = −α1(x1 − γ1(t))

, where γ1(t) is deterministic function and we take β(x1) = β. Then, we can easily obtain

x1(t) = x10 exp−α1t+

∫ t

0

exp−α1(t− s)(α1γ1(s)ds+ βdw(s)).

From the Euler conditions (3.43), we have

−a0v̂1(t) + DS

(
−x1(t)− v̂1(t)

)
λx2

(t) + D′S
(
−x1(t)− v̂1(t)

) (
−x1(t)− v̂1(t)

)
λx2

(t)

+D′S
(
−x1(t)− v̂1(t)

)
λx3

(t) = 0,

−a0v̂2(t) + DB

(
x1(t)− v̂2(t)

)
λx2

(t) + D′B
(
x1(t)− v̂2(t)

) (
x1(t)− v̂2(t)

)
λx2

(t)

−D′B
(
x1(t)− v̂2(t)

)
λx3(t) = 0.

Consider the linear demand in which

DS(x) = dS0
x+ dS1

and DB(x) = dB0
x+ dB1

,
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where dS0
, dS1

, dB0
, and dB1

are positive constant coefficients. Then, we obtain

v̂1(t) =
−2dS0

x1(t)λx2
(t) + dS0

λx3
(t) + dS1

λx2
(t)

a0 + 2dS0
λx2

(t)
;

v̂2(t) =
2dB0x1(t)λx2(t)− dB0λx3(t) + dB1λx2(t)

a0 + 2dB0
λx2

(t)
.

In addition, the optimal feedback is defined:

v̂1(x, t) =
1

a0

(
dS0

(
− x1(t)− v̂1(t)

) (
λx2

(x, t) + λx2
(t)
)

+ dS0
λx3

(t) + dS1
λx2

(x, t)
)

v̂2(x, t) =
1

a0

(
dB0

(
x1(t)− v̂2(t)

) (
λx2

(x, t) + λx2
(t)
)
− dB0

λx3
(t) + dB1

λx2
(x, t)

)
v̂3(x, t) =

1

k0

(
− λx2(x, t)x1 + λx3(x, t)

)
v̂4(x, t) =

1

c0

(
c1 − λx2

(x, t)
)

(3.46)

In addition, we set

ϕS0
(t) =

dS0

(
− x1(t)− v̂1(t)

)
+ dS1

a0
and ϕB0

(t) =
dB0

(
x1(t)− v̂2(t)

)
+ dB1

a0
;

ϕS1
(t) =

dS0

(
− x1(t)− v̂1(t)

)
a0

λx2
(t) +

dS0

a0
λx3

(t) and ϕB1
(t) =

dB0

(
x1(t)− v̂2(t)

)
a0

λx2
(t)− dB0

a0
λx3

(t)

Then, the optimal feedback is

v̂1(x, t) = ϕS0
(t)λx2(x, t) + ϕS1

(t)

v̂2(x, t) = ϕB0
(t)λx2

(x, t) + ϕB1
(t)

v̂3(x, t) = −k−10 λx2(x, t)x1 + k−10 λx3(x, t)

v̂4(x, t) = c−10 c1 − c−10 λx2
(x, t)

(3.47)

Once we know λx2
(x, t) and λx3

(x, t), everything is explicit. From the Lemma 3.1 and Lemma 3.2, we

can infer that

λx2
(x, t) = λx2

(t) and λx3
(x, t) = λx3

(t).

Then, we can rewrite the optimal feedback (3.47) as below:

v̂1(x, t) = ϕS0
(t)λx2

(t) + ϕS1
(t)

v̂2(x, t) = ϕB0
(t)λx2(t) + ϕB1

(t)

v̂3(x, t) = −k−10 λx2
(t)x1 + k−10 λx3

(t)

v̂4(x, t) = c−10 c1 − c−10 λx2(t),
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where

λx2
(t) = h0 − p01x2<0(T − t) and λx3

(t) = h1 − q01x3<0(T − t)− q11x3>0(T − t). �
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