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Abstract
Communication system mismatch represents a major influence
for loss in speaker recognition performance. This paper consid-
ers a type of nonlinear communication system mismatch- mod-
ulation/demodulation (Mod/DeMod) carrier drift in single side-
band (SSB) speech signals. We focus on the problem of esti-
mating frequency offset in SSB speech in order to improve s-
peaker verification performance of the drifted speech. Based on
a two-step framework from previous work, we propose using
a multi-layered neural network architecture, stacked denoising
autoencoder (SDA), to determine the unique interval of the off-
set value in the first step. Experimental results demonstrate that
the SDA based system can produce up to a +16.1% relative im-
provement in frequency offset estimation accuracy. A speaker
verification evaluation shows a +65.9% relative improvement in
EER when SSB speech signal is compensated with the frequen-
cy offset value estimated by the proposed method.

Index Terms: frequency offset, single sideband, speaker verifi-
cation, denoising autoencoder

1. Introduction
In radio communication, single side-band (SSB) communica-
tion is an important and commonly used contemporary commu-
nicative approach. The main reason for its popularity lies in the
advantages of power saving and narrow bandwidth introduced
by the techniques of suppressing or removing the carrier signal
and one sideband, while only leaving a single sideband in the
transmitted signal. These advantages are very appealing as the
radio-frequency spectrum, once thought to be adequate for all
needs, is becoming crowded due to increased data/voice traffic
requirement in todays wirelessly connected society.

A disadvantage of SSB transmission is that the received sig-
nal is easily distorted by a frequency offset introduced by a mis-
match between the carrier frequency of the received signal and
the carrier frequency used in demodulation. For speech signals,
the distortion of frequency shift makes the speech unpleasan-
t, sounding strange and Donald Duck-like to the listener, and
results in poor quality and intelligibility of the speech signal
[1]. Moreover, frequency offset causes a problem in automatic
speech and speaker recognition because it affects features based
on spectral structure such as MFCCs and PLPs. Automatical-
ly estimating frequency offset in SSB speech, in order to help
improve speaker recognition in radio communication data, has
been a problem we investigated in current and previous studies
[2].

A number of studies have been reported to detect and cor-
rect frequency offset in SSB speech [3],[4],[5],[6]. Most ap-
proaches are based on the relationship between the estimated

pitch f0 and the observed peak locations corresponding to the
harmonics of f0 in voiced speech. In [3],[6], both f0 and the
positions of several spectral peaks, p(n), are estimated, and Δf
is deduced from the linear relationship Δf = p(n) − nf0. In
[4],[5], a comb filter with a spectral period equal to f0 and a
moving phase was fitted to the spectrum of voiced speech. Δf
was then estimated as the phase of the best fitting comb filter.
The ambiguity is obvious from this framework: if Δf is a possi-
ble frequency shift, Δf±nf0(n = 1, 2, 3) are also possible op-
tions. [4],[6] overcame this problem by accumulating the max-
imum value of correlation from frame to frame as a histogram.
Δf was then estimated as the position that gives the maximum
in this histogram. The method obtained effective results given
sufficiently long speech signals. [7] used a probabilistic estima-
tion method to overcome the above limitation.

In [2], we proposed a two-step method to estimate the fre-
quency offset in SSB speech. In the first step, the value of Δf
is scaled to an unique interval where board ambiguity can be
mostly eliminated by a statistical method; then a fine-tuning is
performed within the predetermined unique interval to estimate
Δf without uncertainty. The first step which contributed most
of performance improvement is critical to the proposed method.
A statistical method and an innovative feature, SPSS-MFCC,
were proposed to detect the unique interval which frequency
offset should belong to; i-Vector and PLDA were used as back-
end classifier of the proposed feature following the same strate-
gies in speaker recognition [8],[9],[10].

Deep neural networks (DNN) have become widely used for
speech and speaker recognition problems in recent years to im-
prove the recognition performance. Deep Belief Network (DB-
N) has been successfully used in speech recognition [11]. DBN
and Auto Associative Neural Network (AANN) have been in-
vestigated as a front-end speaker specific feature extractor for
speaker recognition [12],[13]. [14],[15] used DBN as a substi-
tute for GMM UBM to extract statistics needed for Gaussian
supervector system and i-Vector system in speaker recognition.
Autoencoder, also known as Auto Associative Neural Network
(AANN), has been proven to be able to extract robust speaker
specific features by unsupervised training aimed at reconstruct-
ing the input feature before supervised fine tuning parameters.
[16] used DNN to assist speaker recognitin under lombard ef-
fect. In this study, we propose to implement a multi-layered
Autoencoder in the first step of above frequency offset estima-
tion process to detect the unique interval of the frequency offset
in speech.

The paper is organized as follows: Section 2 and Section 3
briefly review the two-step framework and feature used in the
first step, symmetric partial spectral smoothed MFCC (SPSS-
MFCC) respectively. Section 4 discusses in detail the stacked
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Figure 1: Block diagram of the overall frequency offset estima-
tion

denoising autoencoder model, and the way we implement it in
the first step of our framework. Section 5 is devoted to experi-
mental settings and results. For comparison, the back end used
in previous study, i-Vector and PLDA, is also briefly reviewed.
Section 6 will draw conclusions.

2. Overview of Framework
An offset estimation method was proposed based on the two
steps illustrated in Fig 1. In the first step, a unique interval that
contains the possible frequency offset without ambiguity caused
by the periodic property in frequency is detected, which means
that only one value in this interval can be the possible candi-
date for more-refined estimation results in the second step. The
length of interval is set to 50Hz in our study to satisfy above
requirement, given that the pitch values of most speakers are
between 60Hz and 200Hz. A statistical method was used to ob-
tain this unique interval for each utterance. Once the unique
interval is identified, a fine search for the frequency offset with-
in the detected frequency interval is carried out in the second
step.

2.1. Unique interval detection

A frequency offset range from -200Hz to 400Hz, where the ma-
jority of frequency offsets locate in the experiments, is divided
into small bins of 50Hz without overlap, which are called u-
nique intervals here. Each utterance is segmented into 40ms
frames with a 20ms overlap. Voice activity detection (VAD) is
used to choose the frames having voice information. A feature
modified from MFCC has been proposed for each voice active
frame representing different frequency offsets. Empirical ob-
servation shows that the proposed feature worked successfully
in unique interval detection. The next section describes how we
modify the MFCC feature to make it more efficient for this task.

After acoustic feature extraction, [2] used two back-end
systems, GMM SVM back-end and i-Vector PLDA back-end
to decide which unique interval should be labeled for the utter-
ance.

Once the unique interval is detected, the value of the fre-
quency offset can be finely searched within the determined u-
nique interval using (1)-(3) based on Complex correlation:

C(n) =
1

N

N−1∑

k=0

S(k)exp(j2πkn/N) (1)

f0 = fs/T (2)

Δfr = (
f0
2π

arctan(
ImC(T )

Re(C(T )
)) + rf0 (3)

Where S(k) represents power spectrum on positive frequencies,
C(n) is mathematical definition of Complex correlation. T is

pitch period can be estimated as the index that provides the max-
imum value of the magnitude of complex correlation C(n), af-
ter ruling out the first few indexes. Eq.(3) gives a set of possible
values of frequency offset �f for a given frame with different
values of r, among which only the value that falls into the pre-
determined unique interval is chosen as the correct one. More
details of fine tuning process can be found in [4].

3. Symmetric Partial Smoothed Spectral
MFCC (SPSS-MFCC)

The overall process to calculate the SPSS-MFCC feature is sim-
ilar to MFCC except for spectrum smoothing and the filter bank
shape. Specifically, after pre-emphasis and segmentation, each
speech frame is transformed into the frequency domain by a
DFT. Next, the spectrum is smoothed by averaging the spectra
of each frame with its adjacent frames. The length of the s-
moothing window can be varied with frequency. In our study,
the window length of 3 is an empirical optimal. Following s-
moothing, a vector of spectral power representation is calculat-
ed by applying the symmetric partial mel-frequency filter to the
smoothed spectrum where the width of the filters are symmetric
to the middle of the entire frequency range and only the filters in
low frequency and high frequency are used. The number of fil-
ters in the filter bank was determined empirically. The optimal
number is 80 by experience. A discrete cosine transform (DC-
T) is applied to the logarithm of the power representation. The
first 12 DCT coefficients and log of the energy constitute the
13-dimensional SPSS-MFCC coefficients, which is concatenat-
ed with its first and second differential Δ,ΔΔ to form a 39-
dimensional feature vector for each signal frame. More details
of SPSS-MFCC can be found in [2].

4. Deep Denoising Autoencoder
DNN is generally interpreted as a neural network with multi-
ple linear or non-linear hidden layers which aims at represent-
ing the data in a form of encoding. Autoencoder is a class of
such models that can represent the data in a series of nonlinear
transformations [17]. The objective of learning is to minimize
the data reconstruction error. Autoencoder is mainly used as a
dimensionality reduction tool in the bottle-neck networks, but
the flexibility in choosing their structural topology makes them
an alternative strategy in the pre-training phase of construct-
ing deep networks [18]. Denoising autoencoder is a strategy to
avoid identity learning structure and obtain a more robust repre-
sentation of the input. This section will first discuss principle of
autoencoder and denoising autoencoder, and then a multi-layer
structure is formed by stacking layers of the denoising autoen-
coder as a classifier.

4.1. Autoencoder

Autoencoder is a two-layered neural network with a single non-
linear hidden layer. In greedy layer-wise structure as in Fig 2,
the representation learned by one autoencoder serves as an input
to the next level autoencoder. Specifically, an m dimensional in-
put x is first mapped to a hidden representation y of dimension
n:

y = f(Wx+ b) (4)

where f is a non-linear function which is in general a sigmoid
function. This mapping process is also called an encoder, after
which the latent representation is mapped back into a recon-
struction z of the same length as x through a similar transfor-
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Figure 2: Structure of Stacked Denoising Autoencoder

mation:
z = f(W ′y + b′) (5)

z can be viewed as a prediction of x given the code y. The
mapping process from y to z is called a decoder. In Eq.5, W ′

could be any n×m dimensional matrix, here it is constrained by
W ′ = WT , where WT indicates the transpose of W . The ob-
jective function used here for training the autoencoder network
is the mean square error between the actual and reconstructed
input:

L(x, z) =
1

|x|
|x|∑

i=1

(xi − zi) = ‖x− z‖22 (6)

where |x| indicates the length of x. The parameters of the model
(W, b, b′) are optimized so that the objective function is mini-
mized iteratively. Stochastic gradient descent is used here to
update the model parameters for each iteration.

4.2. Denoising Autoencoder

An Autoencoder can reconstruct the input with arbitrary pre-
cision when the dimension of the hidden layer is equal to or
greater than the input data dimension. To avoid the system
learning an identity function, the input features are artificially
corrupted by adding noise at a certain level and the network is
trained to construct the clean input. The mismatch between the
desired target and actual input compels the network to focus
on the statistical structure of the input data in the hidden layer.
Data corruption can be carried out in different ways depending
upon the numerical structure of the input. Here we follow the
process in [17] which randomly sets part of the input to zero.
Consequently, x in Eq.4 is replaced by the corrupted version of
input and cost function as follows:

L(x̂, z) =
1

|x|
|x|∑

i=1

(x̂i − zi) = ‖x̂− z‖22 (7)

where x̂ represents the corrupted input feature and z is the re-
covery of the clean inputs from the corrupted versions.

4.3. Stacked Denoising Autoencoder (SDA)

The trained denoising autoencoders can be stacked to form a
deep network by feeding the latent representation of the denois-

ing auto-encoder calculated on the layer below as input to the
current layer (see Fig 2). The layer-wised unsupervised pre-
training of such an architecture as described in preceding sec-
tion is accomplished one layer at a time. Each layer is trained
as a denoising auto-encoder by minimizing the reconstruction
of its input (which is the output code of the previous layer). Af-
ter all layers have been pre-trained, the network goes through
a second stage of training called fine-tuning. In this stage we
carry out traditional supervised training aimed at minimizing
the prediction error for the supervised task. First, a logistic re-
gression layer is added on top of the network. Next, the entire
network was trained as a multilayer perceptron with the param-
eters initiated by the pre-training results. At this point, we only
consider the encoding parts of each auto-encoder as shown in
Fig 2. Class probabilities are obtained by a softmax function
applied to the output of the last hidden layer as follows:

P (Y = i|x) = softmaxi(Wz + b) =
eWiz+bi

∑
j e

Wjz+bj
(8)

where W and b are trained parameters of logistic regression
layer, and z is the output of the last hidden layer.

4.4. SDA for unique interval detect

After a 39 dimensional SPSS-MFCC feature is extracted for
each frame, an three hidden layered SDA is trained as preceding
description using features derived from the training data. For
test, each frame is scored after passing though the trained net-
work. The max of the average scores over the entire utterance
results in the overall class label.

5. Experiments and Results
5.1. Frequency Offset Estimation

The DARPA RATS corpus [19] contains voice communica-
tions in various languages transmitted over several adverse ra-
dio channels, one of which corresponds to SSB transmission
demonstrating frequency offset distortion. The transmitted au-
dio streams are recorded in parallel with the original clean
source speech and time alignment is provided so that the or-
acle frequency shift value for each sentence can be traced by
cross correlation the spectrogram of the source signal with that
transmitted through the SSB channel.

Control experiments using our previous method based on
GMM SVM and i-Vector PLDA techniques are also implement-
ed on the same data set. Details of the systems can be found
in [2]. We first assess the ability of uniqueness interval detec-
tion of SDA back-end systems compared with the other two for
actual RATS data. The training data is constructed by adding
noised extracted from RATS data by SNR of 20dB, 10dB and
0dB to the original clean resource data, passing them through
a channel-like filter and then artificially shifting them by a val-
ue of central frequency of each uniqueness interval between -
200Hz to +400Hz with a length of 50Hz and no overlapping.
2000 utterances for each shifting case under each SNR condi-
tion are used for training. The classification accuracies for three
speech durations (2s, 5s and 10s) are summarized in Fig 3. A
comparison between three systems shows superior performance
for the SDA system over other two systems. Numerically, the
averaged accuracies over various durations using three systems
are 51.9% (GMM), 73.5%(i-Vector) and 85.6% (SDA).

Performance of the overall system is evaluated in terms of
estimation accuracy calculated as the percentage of estimates
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Figure 3: Uniqueness interval classification accuracy (%) using
three back end strategies on various speech durations.

that fall within 10Hz of the correct value. Fig 4 demonstrates
results of fine-tuning with/without proposed unique interval de-
tection methods using various data lengths. The results show
that gross scaling searching range into the uniqueness interval
detected by any of the three proposed methods can increase
estimation results dramatically. Since SDA performs the best
in uniqueness interval detection, it is no surprise that the com-
bined SDA system outperforms the other systems in overall es-
timation results. The averaged accuracies of overall estimation
over 10 durations for systems with three uniqueness interval
front-end techniques are 48.4%(GMM), 68.9%(i-Vector), and
80%(SDA), while it is only 27.9% for the system without any
uniqueness interval detection.

5.2. Application to Speaker Verification

The proposed frequency shift estimating system is applied to
the SSB channel of RATS corpora for speaker verification. The
data was produced in an ideal condition that the frequency off-
set keeps unchanged through each utterance. However, in actual
transmissions the frequency offset can drift over time. This is
the reason for focusing on estimating frequency offset using a
very short duration block of speech. In this study, for each ut-
terance a 5s segment is used to estimate the frequency offset
of the entire utterance with the proposed system. The offset is
compensated by employing the shift with the estimated value
in opposite manner. The compensated voice transmissions are
used for speaker verification.

A 39 dimensional MFCC is used as acoustic feature for s-
peaker verification system. A 512-mixture, gender-independent
UBM was trained using the training data. The UBM means
were used to train a 400-dimensional i-Vector using the devel-
opment dataset. The resulting i-Vectors were then used to train a
PLDA system, producing a 100-dimensional subspace for final
scoring.

Speaker verification results are compared under two condi-
tions: (1) training using clean source speech mismatched with
distorted/compensated testing data, and (2) training using com-
pensated speech matched with testing data.
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Figure 4: Results of fine-tuning with/without unique interval
detection using three back-end systems.

Evaluation is carried out on SSB data (i) without compensa-
tion, (ii) compensated using system with SDA and (iii) i-Vector
PLDA system respectively. Table 1 shows EER results on these
data. Under either matched or mismatched training condition,
compensation using values estimated by the proposed SDA sys-
tem obtains the best speaker verification performance. Numer-
ically, for match condition a +13.8% relative gain is obtained
compared to the data without compensation and a +9.1% im-
provement compared to the data compensated using previous
method; for mismatched condition, +32% and +65.9% relative
gain is obtained.

Mismatch Match

w/o compensation 26.1 5.8

Compensate using i-Vector 13.1 5.5

Compensate using SDA 8.9 5.0

Table 1: EER(%) of speaker verification experiment on SSB
speech w/o frequency offset compensation using different meth-
ods under matched/mismatched training conditions

6. Conclusion
In this paper, we proposed using a three-layer stacked de-
noising autoencoder to estimate frequency offsets in a SSB
Mod/DeMod communication channel. Working with the two-
step framework and SPSS-MFCC feature proposed previously,
the new SDA based algorithm improves relative offset estima-
tion performance by +16.1%. When applied to speaker verifi-
cation, the compensation according to the offset estimated by
the SDA system is shown to improve the speaker verification
performance in both matched (up to +9.1% relative improve-
ment) and mismatched training conditions (+32% relative im-
provement) compared to the previous i-Vector system solution.
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