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Understanding how local potentials affect system eigenmodes is crucial for experimental studies of nontrivial
bulk topology. Recent studies have discovered many exotic and highly nontrivial topological states in non-
Hermitian systems. As such, it would be interesting to see how non-Hermitian systems respond to local
perturbations. In this work we consider chiral and particle-hole-symmetric non-Hermitian systems on a bipartite
lattice, including the Su-Schrieer-Heeger model and photonic graphene, and find that a disordered local potential
could induce bound states evolving from the bulk. When the local potential on a single site becomes infinite,
which renders a lattice vacancy, chiral-symmetry-protected zero-energy mode and particle-hole-symmetry-
protected bound states with purely imaginary eigenvalues emerge near the vacancy. These modes are robust
against any symmetry-preserved perturbations. Our work generalizes the symmetry-protected localized states to

non-Hermitian systems.

DOI: 10.1103/PhysRevA.99.062107

I. INTRODUCTION AND MOTIVATION

A non-Hermitian Hamiltonian captures the essentials of
open systems governed by non-Hermitian operators [1-10],
for instance, optical and mechanical structures with gain and
loss [11-23]. Intriguingly, although non-Hermitian operators
usually have complex eigenvalues, the energy spectra of a
non-Hermitian Hamiltonian with parity-time (P7) symmetry
could be real valued in P77 -symmetric regimes. Such a reality
could also be broken by tuning, for example, the gain or
loss strength, and in the resultant P7 -broken regime, the
PT symmetry is said to be broken spontaneously [24,25].
PT -symmetry breaking has already been observed in optical
waveguides [26]. Similar physics exists in CP symmetry,
where C denotes particle-hole symmetry, due to the antilin-
earity of C and 7. For a CP-symmetric Hamiltonian H, CP
and P7T symmetries are equivalent under the transforma-
tion H — iH [27-29]. Consequently, the eigenenergies of a
CP-symmetric system is imaginary when CP symmetry is
preserved in the spectrum. Otherwise, it could be real in the
CP-broken regimes.

In contrast, topological states have attracted intensive at-
tention in various Hermitian systems [30,31]. Recently, the
concept of topological phases has been extended to non-
Hermitian systems. C and 7 symmetries are unified by non-
Hermiticity, which allows topological phases in high dimen-
sions. The interplay between topology and non-Hermiticity
leads to rich topological features with no Hermitian coun-
terpart [32—46]. In particular, the conventional bulk-boundary
correspondence breaks down in non-Hermitian systems and
new topological invariants like the non-Bloch topological
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invariant and vorticity must be introduced to understand the
underlying topological properties.

The nontrivial bulk topology in Hermitian systems can be
detected by defects such as edges, m flux, dislocations, and
vortices [47-52]. When it comes to non-Hermitian systems,
stable edge states could also exist at the interface between
topological and trivial phases [28,53—-60]. These topological
states, originated from bulk topologies, are immune to local
symmetry-preserved perturbations. It is well known that a
local potential could induce localized modes in topological
phases of Hermitian systems [61-63], while such a problem
has been far less investigated in non-Hermitian systems. In
addition, recent studies of topological states in open systems
have found many novel and unique topological phases in
non-Hermitian systems. In this sense, it is worth investigating
how a local potential affects the system eigenmodes in non-
Hermitian systems. In general, for a bipartite lattice with a
Hamiltonian H obeying the symmetry OHO~! = —H, the
quantum states are paired with opposite real parts of eigen-
values. Then, once a single lattice site is removed by an
infinite local potential, an unpaired mode with zero or purely
imaginary energy appears.

In this work we generalize the idea to non-Hermitian
systems and show the robustness of the induced bound states.
Specifically, we focus on both one-dimensional (1D) and 2D
systems with two sublattice degrees of freedoms, respecting
either chiral (O = S) or particle-hole (O = C) symmetry,
which are responsible for versatile symmetry-protected topo-
logical phases in low dimensions. We show that, in the cases
of non-Hermitian systems, the lattice vacancy can induce
symmetry-protected localized modes in both topological and
trivial phases.

The rest of this paper is organized as follows. In Sec. II
we discuss S and C symmetries on a bipartite lattice
and derive the eigenvalue-correspondence relation. We start
with a 1D system in Sec. III, namely, the non-Hermitian

©2019 American Physical Society
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Su-Schrieffer-Heeger (SSH) model with either S or C sym-
metry, and study the effects of a lattice vacancy. In Sec. IV
we extend the study to 2D photonic graphene. We apply both
symmetry analysis and numerical calculations to investigate
how lattice vacancies change the system eigenmodes. Con-
clusions and a discussion are presented in Sec. V.

II. CHIRAL AND PARTICLE-HOLE SYMMETRIES
IN NON-HERMITIAN SYSTEMS

In this section we study the general theory of symmetry-
protected modes induced by vacancies. For simplicity, we
consider non-Hermitian effective models on a bipartite lattice
(sublattices A and B) In momentum space, the generic effec-
tive Hamiltonian is H = PR TH(k)\I’k, with \Il,j = (ak, )
and

Hk)=hy o +ih, - o, (1)

where o¢ and o = (o, 0y, 0;) are an identity matrix and Pauli
matrices that act on sublattice space, respectively, and h; =
(hix, hiy, hi ), i =0, 1, are real.

First, we consider S symmetry described by SH(k)S™! =
—H (k), where S is a unitary operator. When S = o is chosen
in this basis, we obtain

H (k) = ho 0. + ho y0y + ihy x0, + ihy y0y. 2)

If ¢ is an eigenstate for the Hamiltonian H (k) with eigen-
value Ej, Sy is an eigenstate for the Hamiltonian H (k) with
eigenvalue —Ej. Thus, for the above non-Hermitian system
on a bipartite lattice, there exists the energy-eigenvalue cor-
respondence Ej; < —E;. This symmetry dictates that energy
eigenvalues must be paired.

Second, let us consider C symmetry described by
CH(k)C™!' = —H(—k) and C symmetry being antiunitary.!
When C = ¢,K is chosen in this basis, we have

H(k) = hO,xGx + hO,yGy + ihl,zoza (3)

with the constraints hq (k) = ho (—=k), ho y(k) = —hg ,(—k),
and h (k) = hy (k). Provided vy is an eigenstate with
eigenvalue E; for the Hamiltonian H (k), Cy, is an eigenstate
of the Hamiltonian H(—k) with eigenvalue —E;. Therefore,
the energy spectrum has the correspondence E; < —E*,
under periodic boundary conditions. This symmetry classifies
energy eigenvalues in complex-conjugate pairs, except when
they are purely imaginary.

Consider an S-symmetric non-Hermitian system with N,
unit cells. If a lattice site is removed (corresponds to a
lattice vacancy defect), the translational symmetry is broken,
but the S symmetry of the Hamiltonian is still preserved
through the transformations a; = a;, b; = —b;, and H =
—H, where &; (b;) denotes annihilation operators on lattice
site i of sublattice A (B). Now, only 2N, — | quantum states

"We remark that in a rigorous classification of symmetry classes
of non-Hermitian systems, the particle-hole symmetry is unitary,
contrary to its Hermitian counterpart. However, since the full clas-
sification has not been achieved yet, we still call the C symmetry
particle-hole symmetry in this work, following most of the current
literature.

FIG. 1. Illustration of the non-Hermitian SSH model. The dotted
rectangle denotes the unit cell. (a) Here t, = A, t;z, and 7, are
tunneling strengths and +iy denote balanced gain and loss. (b) The
red dashed circle at i, denotes the site under a local potential
Vs = Vo(1 — B)/B. The hopping amplitude related to this site is
proportional to S.

are available, which leads to the energy-eigenvalue corre-
spondence E; n,—1 < —En,+1...2N,—1, 1.€., only 2N, —2
states are paired. To guarantee S symmetry, the single left
unpaired state must satisfy Ey, <& —Ey,, which means that
the remaining single state must have zero eigenenergy. While
this argument is the same for Hermitian and non-Hermitian
systems, the physics is richer with non-Hermiticity, as we will
see later.

Next we consider a C-symmetric non-Hermitian system
with N, unit cells. When a single lattice site is removed, a
lattice vacancy arises and 2N, — 1 quantum states remain. At
this time, the C symmetry of the system is also respected
through the partlcle hole transformation a; = a b= b
and H = —H, which leads to the energy- elgenvalue corre-
spondence E; _n,—1 < EN N1 ie., 2N, — 2 states
are conjugate paired. To guarantee C symmetry, the single left
unpaired state must satisfy Ey, <> —Ey , which means that
this single unpaired state has either zero or purely imaginary
energy. Obviously, the latter is only feasible in non-Hermitian
systems.

In the following, we will provide two concrete examples to
elucidate both S- and C-symmetry-protected modes induced
by a lattice vacancy.

.....

III. SU-SCHRIEFFER-HEEGER MODEL

In this section we consider the non-Hermitian SSH model
shown in Fig. 1(a), which is relevant to the current experi-
ments. The generic Bloch Hamiltonian is

HS,O(k) = hO,xe + (hO,y + i)L)Uy +iyo,, “4)

where ho =1, + (tzg +1p)cosk and ho, = (tzg — 1) sink.
Note that iAo, and iy o, are non-Hermitian parameters, which
stem from unequal hopping strength within a unit cell and bal-
anced gain and loss, respectively. Hereafter, we will discuss
chiral- and particle-hole-symmetry-protected modes induced
by the lattice vacancy.

A. Chiral-symmetry-protected mode

When y =0, the model has a chiral symmetry
UZHS,O(k)GZ’1 = —Hg (k). It has been studied in Ref. [42],
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FIG. 2. Spectrum of the SSH model with respect to varying
disordered strength 8, showing the (a) real and (b) imaginary parts
of the eigenvalues. The top (bottom) inset shows the particle-density
distribution of localized mode with 8 =0 (8 = 0.8) in real space.
The parameters are t, = 1.5, A =0.1, 1,z = 1.0, £, = 0.1, y =0,
Vo = 10.0, and N,, = 100.

where the issue of the breakdown of conventional
bulk-boundary correspondence has been settled and
non-Bloch bulk-boundary correspondence was introduced.
Chiral symmetry ensures that the eigenvalues appear in
(Ex, —Ey) pairs. If a vacancy exists [see Fig. 1(b)], the
translational symmetry is broken. However, the -chiral
symmetry is still respected by the Hamiltonian. Because
the SSH model is based on a bipartite lattice, an unpaired
state exists. Due to the eigenvalue-correspondence relation
discussed in the preceding section, the leftover state must
have exactly zero energy.

Next we numerically study the effects of a lattice vacancy
on the quantum states within the system. The vacancy can be
seen as a hole in the system by removing a lattice site. To
simulate the vacancy, we gradually vary the local potential on
a given site iy labeled in Fig. 1(b). The overall Hamiltonian
is then Hg o = Hs.o(i # io) + Hy, where Hg (i # i) does not
contain terms related to the site iy, and Hy is

A R A IR
Hy =8 Z (tio,jciocj + tj,,-oc;cio) + Z VdCiTOC,'U. 5)

i0,J io

Here t;, ; (t;,;,) denotes the bare hopping amplitude (without
local disordered potential) between sites j and iy and the
local potential reads V; = Vo(1 — B8)/B. When g =1, the
local potential V; = 0. The Hamiltonian Ay reduces to Hy and
exhibits translational invariance. As 8 decreases, V; gradually
increases. When 8 — 0, the local potential V; — oo and the
effective hopping amplitude related to site i approaches zero.
This corresponds to a lattice vacancy at site ig. The numerical
results are shown in Fig. 2. We see that all eigenvalues are real.
As B decreases, the wave function evolves from an extended
state to an in-gap state. For 0 < 8 < 1, chiral symmetry
is observed to be broken in the spectra by a bound state.
Such a localized state resides in the energy gap, which is
labeled by the solid tangerine curve in Fig. 2(a). When g
approaches zero, an exact zero-energy state exists and the
energy spectrum becomes symmetric. The insets of Fig. 2(b)
showecase the particle-density distribution of localized modes
in real space.
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FIG. 3. (a) Real and (b) imaginary spectra of the SSH model with
chiral symmetry. The orange and red dots indicate two zero-energy
states localized near the vacancy in two topologically distinct phases.
The insets (L1) and (L2) in (b) show the real part of energies Re(E)
versus the indices of states n and the particle density distribution p
versus lattice site indices i of the vacancy-induced zero-energy mode
in the topological phase (Top.) [8 = 0.2, indicated by the orange
dot in (a) and (b)], respectively. The insets (R1) and (R2) present
Re(E) and p of the zero-energy mode in trivial phase (Tri.) [8 = 1.5,
indicated by the red dot in (a) and (b)], respectively. The parameters
are . =0.1,1, = 1.0,4, =0.1, y =0, V;, = 10.0, and N, = 100.

It is known that there is a topological phase transition
by tuning t,/t g [42], but the chiral symmetry is always re-
spected. To see how the vacancy-induced zero-energy modes
respond to topological phase transitions, we choose an open-
boundary chain (2N, lattice sites with a single vacancy) and
calculate the eigenvalues at different 7,/f;z. The numerical
results are shown in Fig. 3. There are two distinct phases,
i.e., the topological phase and the trivial phase. In the topo-
logical phase, besides the two edge states, there is another
zero-energy state localized near the vacancy, as shown in
insets (L1) and (L2) of Fig. 3(b). In the trivial phase, the
edge states disappear, but the state localized near the vacancy
survives, as shown in insets (R1) and (R2) of Fig. 3(b). The
wave function could be spatially extended as 7, increases, but
its energy always remains zero. In summary, such a chiral-
symmetric zero-energy bound state is robust to topological
phase transition.

B. Particle-hole-symmetry-protected mode

When A =0, the model has particle symmetry, which
ensures that the eigenvalues appear in (Ej, —E[) pairs. In
addition, this model also has P7 symmetry o.H{,(k)o, =
H;s o(—k); consequently, it may possess a real spectrﬁm. How-
ever, PT symmetry could be spontaneously broken in the
interval #, — y <t <1, + vy, leaving complex energies in
the spectrum [56]. We apply the same methods to simulate the
vacancy and study its effects on the system. The Hamiltonian
is H = I-?S,O(i # ip) + Hy, where Hy is the same as Eq. (5)
except that V; = i€;y /B with €4 = +1 and €cp = —1.
Obviously, if B =1, the system reduces the Hamiltonian
Hs,o and exhibits translational symmetry. As f decreases, the
amplitude for V; increases, but the hopping amplitude related
to the site iy decreases. As B — 0, the effective hopping
amplitude from or to the site iy approaches zero and |V;|
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FIG. 4. Similar to Fig. 3 but plotted with different non-Hermitian
parameters A = 0 and y = 0.1.

becomes infinite. When 8 = 0, a lattice vacancy appears at
site ip.

Let us numerically study the system with a single vacancy
(B = 0), of which the translational symmetry is broken, but
the particle-hole symmetry is still respected. Because the SSH
model is based on a bipartite lattice, an unpaired state ex-
ists. Due to the spectral symmetry (E <> —E*), the unpaired
state must have exactly zero or purely imaginary energy. We
calculate eigenenergies for a chain with a single vacancy
under open boundary conditions. The numerical results are
shown in Fig. 4 and there are two distinct phases. In the
topological phase, there are two edge states with imaginary
energies %iy, as verified in Fig. 4. In the presence of a lattice
vacancy, in both phases a state with purely imaginary energy
+iy (—iy) is localized near the vacancy if iy € B (A), as
shown in the energy distribution in the insets (L1) and (R1)
of Fig. 4(b). In the topological phase, when the vacancy site
ip € B, because of t, < 17, the localized state extends to the
B site on the right, as confirmed by the density distribution
in the inset (L2) of Fig. 4(b). In contrast, in the trivial phase,
due to 7, > g, the localized state extends to the B site on
the left, as shown in the inset (R2) of Fig. 4(b). If iy € A, the
extension direction of the localized state is opposite to that
when iy € B. Due to the particle-hole symmetry, the unpaired
bound state with E = =iy cannot acquire a finite real energy
through any perturbations with C symmetry, but may only
change its imaginary part. This robust pinning to zero real
energy is protected by C symmetry. Here we also would like to
remark that the vacancy-induced localized states are robust to
PT-symmetry breaking, as they are to the topological phase
transition (see Appendix A for more details).

IV. PHOTONIC GRAPHENE

In this section we consider the 2D honeycomb lat-
tice sketched in Fig. 5, which is relevant to photonic
graphenes [60,64—71]. The Bloch Hamiltonian on the honey-
comb lattice reads Hg (k) = ho <0y + (hoy + iA)oy, + iy o,
where ho, = t, + 2t, cos(3k,/2) cos(\/gky/2) and ho, =
—2t,sin(3k,/2) cos(\/gky /2). Uneven hopping amplitudes in-
troduce the non-Hermitian term iAoy, and the balanced gain
and loss give rise to iyo,. In the absence of non-Hermitian
terms, i.e., . = y = 0, this corresponds to isotropic graphene

FIG. 5. Illustration of a honeycomb lattice. The parameters 7, and
1, £ A are tunneling strengths and £iy denote balanced gain and loss.
The lattice spacing is set as a = 1.

if t,/t, = 1. As |t,/tp| decreases, C3 symmetry is broken and
the two Dirac nodes of vorticity & gradually approach each
other and finally meet up and are annihilated at a time-reversal
invariant momentum at |f,/t,| = 1/2. As |t,/t,| decreases
further, the system enters a gapped topological phase, dubbed
a high-order topological insulator, which hosts zero-energy
corner modes [72,73]. In the presence of a non-Hermitian term
iloy or iyo;, the corner modes remain as shown in Figs. 6
and 7; this will be detailed in the following.

A. Chiral-symmetry-protected modes

In the absence of gain and loss, i.e., y = 0, this system
has chiral symmetry. The zero-energy corner modes localize
at the corner. In addition, the chiral symmetry ensures that the
eigenvalues appear in (Ej, —FE}) pairs. Similar to the analysis
for the SSH model in the preceding section, we introduce
a disordered local potential on one site. By gradually vary-
ing the local potential as in Sec. IIT A, a bound state also
evolves from the bulk states and localizes near the defect. We

(a)4 (b) 0.5
M M 2 (L1)
GJ“I eeee
0 eee
2 O -1eees
o 415 420
m) m)
& 0 E 0 .

tb/ta

FIG. 6. (a) Real and (b) complex spectra of the graphene model
with chiral symmetry versus the parameter #,/f,. The orange disk
indicates the zero-energy state localized near the vacancy in the
gapped phase. The top inset (L1) shows the real part of energies when
ty/t, = 4.0 and the bottom inset (L2) shows the density distribution
of the localized zero mode. The density is proportional to the radius
of the pink spots. The parameters are A = 0.2,7, = 1.0, and y = 0.
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FIG. 7. Similar to Fig. 6 but with modified non-Hermitian pa-
rameters A = 0 and y = 0.2.

numerically compute the quantum states of this honeycomb
lattice model (32 x 26 lattice) with vacancy site iy under open
boundary conditions. Figures 6(a) and 6(b) present the real
and imaginary parts of energies of the states, respectively.
There are two distinct phases, namely, the metallic phase (M)
and the gapped phase. In addition to the two zero-energy
corner modes, we find that a localized zero mode [solid orange
dot in (L1) of Fig. 6] appears near the vacancy, as shown in
the inset (L2).

B. Particle-hole-symmetry-protected modes

If A = 0, the particle-hole symmetry is respected. Because
of the eigenvalue correspondence (E <> —E™), the unpaired
state must have exactly zero energy or a purely imaginary
energy. We repeat the numerical processes and the results
are plotted in Fig. 7. In the gapped phase, there are two
corner states with imaginary energies +iy. The lattice va-
cancy induces an extra state (indicated by the orange disk)
with purely imaginary energy +iy (—iy) localized near the
vacancy if iy € B (A). In the gapped phase, when the vacancy
site is located at iy € A, because 1, < 15, the localized state
extends to the B site on the right, which is verified by numerics
in the bottom inset (L2) of Fig. 7(b). However, if iy € A,
the extension direction would be the opposite, similar to the
non-Hermitian SSH model.

V. DISCUSSION AND CONCLUSION

In the presence of multivacancies, there exists a parity
effect, which states that for a system with an odd number
of vacancies, there always exists a symmetry-protected mode
due to the eigenvalue correspondence, while for a system
with an even number of vacancies, the localized states would
possess a finite-energy shift due to quantum tunneling ef-
fects. A numeric investigation of this matter is discussed in
Appendix B. In this paper we mainly study one- and two-
dimensional systems. The general theory is also applicable
to three-dimensional lattice systems, such as the diamond
lattice model. In fact, the obtained result is applicable not
only for the bipartite-lattice models, but also for the lattice
models with a unit cell of an even number of sites preserv-
ing chiral or particle-hole symmetry [74]. These conclusions
can also be generalized to Hermitian systems with chiral
or particle-hole symmetry, where the zero mode gives rise

to a fractional charge [75]. The non-Hermitian SSH model
and graphene model may be realized by optical lattices, and
the vacancy-induced localized modes could be detected with
current experimental techniques.

In summary, we have studied the vacancy-induced local-
ized modes in non-Hermitian systems with either chiral or
particle-hole symmetries. The localized states are symmetry
protected in the sense they are robust against perturbations
respecting the underlying symmetries.
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APPENDIX A: ROBUSTNESS TO
PT-SYMMETRY BREAKING

Generally, the exceptional point is crucial for understand-
ing many important physical phenomena in non-Hermitian
systems and it happens when the system experiences a spon-
taneous symmetry breaking. In the main text, we focus on
the symmetry-protected modes induced by local potentials
at fixed on-site gain or loss strength. To illustrate the role
of PT-symmetry breaking and exceptional points, we study
the spectrum through varying the gain or loss strength y, as
shown in Fig. 8, which shows that the system undergoes a
PT-symmetry breaking at the exceptional point y,, where the
bulk spectrum turns from real to imaginary. However, we find
that any nonzero y would render a localized mode with purely
imaginary energy, as indicated by the red line in Fig. 8, due to
the particle-hole symmetry. So the vacancy-induced localized
states are robust to P77 -symmetry breaking, as they are to the
topological phase transition.

(@5

FIG. 8. (a) Real part Re(£) and (b) imaginary part Im(E') of the
eigenenergies of the SSH model with a single lattice vacancy versus
the gain or loss strength y. The other parameters are fixed as#, = 1.8,
g = 1, I = 01, and A = 0.
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FIG. 9. (a) The SSH model with multivacancies. (b) Eigenener-
gies of the SSH model versus the the number of vacancies. Here N, =
m corresponds to vacancies existing at sites 1, 2, ..., m, as shown in
(a). Also shown is the particle density distribution of localized modes
in the presence of (c¢) Ny = 2 and (d) N, = 5 vacancies. The density
is proportional to the radius of the pink spots. The parameters are
t, =14, =0.5,1,=0.1,A=0.1,y =0, and N, = 100.

APPENDIX B: PARITY EFFECT IN THE PRESENCE
OF MULTIVACANCIES

Without loss of generality, we take the chiral symmetric
SSH as an example to illustrate the parity effect regarding
multivacancies. In the presence of multivacancies, as illus-
trated in Fig. 9(a), the symmetry-protected localized mode
exhibits a parity effect.

First, in the presence of an odd number of vacancies (N, =
1, 3,5, 7), there always exists a localized zero-energy mode
guaranteed by the chiral symmetry, as confirmed by Fig. 9(b).
Figure 9(d) showcases the particle density distribution of
localized modes with an odd number (N, = 5) of vacancies in
real space. Besides the zero-energy localized mode (indicated
by the bigger pink spot), there are also two localized in-gap
modes with finite energy (indicated by the two smaller pink
spots, less localized than the zero-energy mode). Second, for
the system with an even number of vacancies, the tunneling
effect could give rise to an energy splitting, so the zero-
energy state may disappear. For instance, the case of N, = 2
demonstrates this point, as shown in Fig. 9(b). However, the
in-gap modes possessing finite energy may also be localized
near vacancies, as shown in Fig. 9(c) in the case of an even
number (N, = 2) of vacancies.

In particle-hole symmetric non-Hermitian systems with
multivacancies, the parity effect also exists in analogy to that
in the aforementioned chiral symmetric systems. The particle-
hole-symmetry-protected localized mode with zero or purely
imaginary energy always exists in the presence of an odd
number of vacancies, while for a system with an even number
of vacancies, the localized states would possess a finite-energy
shift due to tunneling effects.
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