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Abstract

Introduction: In order to monitor the effectiveness of HPV vaccination in Canada the linkage of multiple data registries may
be required. These registries may not always be managed by the same organization and, furthermore, privacy legislation or
practices may restrict any data linkages of records that can actually be done among registries. The objective of this study
was to develop a secure protocol for linking data from different registries and to allow on-going monitoring of HPV vaccine
effectiveness.

Methods: A secure linking protocol, using commutative hash functions and secure multi-party computation techniques was
developed. This protocol allows for the exact matching of records among registries and the computation of statistics on the
linked data while meeting five practical requirements to ensure patient confidentiality and privacy. The statistics considered
were: odds ratio and its confidence interval, chi-square test, and relative risk and its confidence interval. Additional statistics
on contingency tables, such as other measures of association, can be added using the same principles presented. The
computation time performance of this protocol was evaluated.

Results: The protocol has acceptable computation time and scales linearly with the size of the data set and the size of the
contingency table. The worse case computation time for up to 100,000 patients returned by each query and a 16 cell
contingency table is less than 4 hours for basic statistics, and the best case is under 3 hours.

Discussion: A computationally practical protocol for the secure linking of data from multiple registries has been
demonstrated in the context of HPV vaccine initiative impact assessment. The basic protocol can be generalized to the
surveillance of other conditions, diseases, or vaccination programs.
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Introduction

The human papillomavirus (HPV) is one of the most prevalent

sexually transmitted viral infections in the world [1]. Persistent

infection with oncogenic high-risk HPV types, in particular 16

and/or 18, accounts for the majority of cervical cancer and is

associated with oral, vulvar, vaginal, penile and anal intraepithelial

neoplasia and cancer [2]. HPV is also the cause of external genital

warts, with over 90% attributable to low-risk HPV types 6 and 11

[2]. HIV co-infected individuals are at greater risk of developing

rarer and/or more aggressive forms of cancer such as anal and

penile carcinoma as well as genital warts [2].

Since 2007 an effective preventive quadrivalent vaccine has

been available in Canada that protects against low risk (non-

oncogenic) types 6 and 11, and high risk (oncogenic) types 16 and

18; in 2010 a bivalent second vaccine against types 16 and 18 was

approved for use. Currently, publicly funded school-based HPV

immunization programs have been implemented for girls in all 13

Canadian jurisdictions. However, program details, such as school

grade(s) in which the vaccine is offered and whether or not there is

a catch-up program, vary by province/territory. While the vaccine

has the potential to substantially reduce costs associated with

screening and treatment and to reduce the overall HPV-related

disease morbidity/mortality burden, the long-term and popula-

tion-level effectiveness of this vaccine are not known. HPV

surveillance and research are necessary in order to understand the

vaccine’s impact on population health and to inform policy

decisions concerning the allocation of health care resources.
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Detailed baseline information on the distribution and determi-

nants of HPV types, variation by geographic location and risk

behaviour is not available for all regions in Canada. Noting that

vaccine impact on cancer incidence will not be measurable in a

vaccinated population for another generation, we need to monitor

HPV type distribution, changes in sexual behaviour, and

associations with cytological abnormalities (including pre-cancer-

ous lesions), as well as anogenital warts in the short term.

One of the proposed mechanisms to address the short- and

long-term objectives to assess the impact of the HPV vaccine

introduction is via the linkage of population-based databases

(registries) on cancer, cervical screening, health care services, and

immunization. Certain jurisdictions, for example, Manitoba, have

robust population-based registries; others are in the early stages of

developing such systems. Regardless of the maturity of such

registry-based systems, data linkages between registries can only be

conducted in an environment that is responsive to patient privacy

concerns.

Statutes in Canadian jurisdictions permit the reporting of

personal health information (PHI) [3] for public health purposes

without patient consent. Similarly, the US Health Insurance

Portability and Accountability Act (HIPAA) Privacy Rule permits

the disclosure of PHI to a public health authority without patient

authorization [4–10]. However, in general, the public is more

comfortable with their health information being used for

secondary purposes if it is de-identified at the earliest opportunity

[11–18] and in practice providers and data custodians have been

reluctant to disclose identifiable patient information to public

health even when permitted by legislation [19–22]. Such

reluctance can be overcome if patient consent to disclose the data

for public health purposes is sought. However, there is compelling

evidence that requiring explicit consent can bias data sets because

consenters and non-consenters differ on important demographic

and socio-economic characteristics [23–25].

In this paper we present a protocol for the secure linking and

surveillance of patient records in different registries where the

sharing of identifying patient information is not possible, either

because the registries are not set up to allow for such linkages or

because the custodians of the registries are not authorized to link

data between them due to patient privacy concerns. The proposed

protocol will allow a public health unit (PHU) to compute relevant

statistics from linked data on an on-going basis while providing

strong patient privacy guarantees.

Methods

Motivating Example
While linking data registries when identifiable information

about the patients cannot be shared is a general problem, we

consider it within the context of an HPV surveillance example to

motivate and illustrate our solution. We assume that there are two

registries. One registry contains demographic information about

the population, and the second registry contains the results of

HPV-associated tests. For example, the former can be a large

practice, a hospital, or a vital statistics registry. The latter can be at

private or public laboratories at the local or provincial level.

As an example, should the PHU wish to investigate the

relationship between HPV test results and ethnicity, the relation-

ship can be expressed as a chi-square test, an odds ratio test, or a

relative risk. If HPV test results are captured in one registry and

ethnicity in another (as is typically the case), any analyses require

that the records in the two registries be linked. Table 1 shows the

contingency table that we need to construct to investigate the

association between ethnicity and the results of an HPV test. The

cells of the table are the counts of patients. We refer to the two

registries as R1 (with HPV screening data) and R2 (with ethnicity

data).This example can be extended to multiple dimensions

without loss of generality, but we will use this simple 262 example

to discuss previous work in this area and to illustrate our secure

linking protocol.

The two registries will not contain exactly the same patients, but

there is expected to be an overlap between them. This means that

not all patients in R1 will have records in R2 and vice versa.

The two registries hold one or more common linking fields on

all of their patients. We assume that these linking fields are direct

identifiers, such as a health insurance card number and/or a social

insurance number. In practice, multiple fields can be concatenated

or encoded to create a single identifier used for linking. Also, note

that these direct identifiers do not need to be numeric but can be

strings, dates or categorical values. For example, in a Canadian

context the date of birth, postal code, and gender uniquely identify

approximately 99% of adults living in urban area [26], making

that combination of commonly collected demographic information

suitable for linking purposes.

For simplicity, and without loss of generality, we will refer to a

single linking field in Table 1. By comparing the two registries on

the linking field it would be possible to match their records with

certainty. Because the linking field is a direct identifier, it can be

used to determine the identity of the patients, and would therefore

be considered personally identifying information.

Requirements for a Secure Linking Protocol
Based on the practical realities of privacy problems experienced

by an actual PHU, we have formulated five requirements for a

protocol to link the data in the two registries. We will examine

each of these requirements in turn to illustrate the strengths and

weaknesses of the various approaches that have been proposed:

N A1. The PHU cannot collect personal health informa-
tion from the registries. The registries cannot disclose

identifiable health information to the PHU because of

legislative constraints or because they have reservations about

privacy.

N A2. The protocol must not use a trusted third party
(TTP). A TTP would be an entity independent of the

registries and the PHU, but would be able to access identifiable

information about the patients. While it is possible to use a

TTP to link the data from the two registries, there are

pragmatic challenges to consider. First, the custodians of both

registries need to be able to share the data with the TTP, and

this may be challenging if the registries are within different

organizations or jurisdictions, and each wants the TTP to be

‘housed’ within their organization or jurisdiction. For example,

if the source registries are in different jurisdictions but cover

the same patient population (e.g., provincial and federal) they

may not agree on who the TTP should be. Second, the

Table 1. Example of a contingency table for which we want
to compute a bivariate relationship.

Any HPV (R1)

2ve +ve

Ethnicity (R2) Aboriginal n11 n12

White n21 n22

doi:10.1371/journal.pone.0039915.t001

Secure Linking of Registries for HPV Surveillance
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registries may not have the authority to disclose personal

information to a third party without patient consent, even if it

is for the purpose of linking information and the data remain

within the jurisdiction.

N A3. The two registries must not have to trust each
other. It must not be necessary for the registries linking their

data to trust each other. This lack of trust may be driven by

security or legal concerns. For example, trust is necessary if the

two registries need to share a secret key, in which case each

registry must trust the other one will protect the key since a key

compromise would endanger the information held by both

registries. Furthermore, the registries may not have the

authority to share identifiable patient data amongst themselves

without patient consent. For example, the two registries may

be within two different government departments and there is

no legal basis for sharing data between them.

N A4. No new information can be discovered about
patients in any one registry due to the linking
exercise. Any matching protocol must not allow a registry

to discover new information about its patients that is gained

from the linking with the other registry. It is often the case that

a registry is not able to collect new information without

consent or additional authorization. This is a common

requirement in the privacy-preserving computation literature

where parties collaborating in a computation must not learn

something new due to their participation [27,28].

N A5. A security compromise at the site of any party
involved in the protocol must not reveal the identity
and any sensitive information of any patients. In

addition to the registries that are the data sources for linking,

other parties involved in the secure linking protocol should not

hold any PHI. This will ensure that if the security of these

other parties is compromised that no PHI will be disclosed.

The above requirements have been implicitly acknowledged in

the literature in that different protocols have been developed to

address subsets of them. In the following review we examine how

well these requirements have been met.

Data Linking Architectures and Protocols
Current data linking protocols can be classified into one of the

five architectures shown in Figure 1. The simplest architecture is

(a), where both registries provide their raw data to the PHU, which

then performs the linking. This means that the registries provide

the PHU with the linking fields, ethnicity, and the HPV results.

This protocol does not meet requirements A1 and A5. For A1, the

PHU would get identifiable patient information, and for A5 a

security compromise at the PHU would reveal the identity and

sensitive information of the patients.

Under architecture (b) in Figure 1, R1 can give the linking fields

for all of its patients to R2 to link with its own data. R2 links the

data and generates new unique keys for all of the records, which it

sends back to R1. Then both registries send their ethnicity and

HPV data with the unique keys separately to the PHU, which can

re-link the data and create the contingency table in Table 1.

However, with this protocol, a registry may discover new

information about its patients. For example, R2 may discover

which one of its patients has been tested for HPV. This would fail

on requirement A4. While the fact of being tested for HPV may

not seem like a major breach if testing is common, consider

situations where a registry only holds information about those

receiving treatment for drug addiction and substance abuse, or

individuals who receive social assistance. In such a case knowing

that an individual exists in a particular registry could reveal highly

sensitive information. Furthermore, this approach does not meet

requirement A3. Finally, the PHU could potentially re-identify

individuals because when the data is cross-tabulated as in Table 1

there may be small cells in the contingency table. Small cells can

allow an adversary to re-identify patients. We examine this

situation in more detail below.

Consider Table 2, which covers a known population. The

Aboriginal individual who was not HPV positive will know that all

of the other Aboriginal individuals in the data set tested positive.

In this case an individual in the data can reveal information about

all other individuals in the data. Table 3 would allow an external

user to know that all Aboriginal individuals in the data set tested

positive.

If the data in Table 2 and Table 3 does not represent the whole

or a known population, there is still a risk of re-identifying

Figure 1. Different architectures in the literature for linking
two registries.
doi:10.1371/journal.pone.0039915.g001

Table 2. Example of a contingency table for which there is a
high identity disclosure risk within the population.

Any HPV

2ve +ve

Ethnicity Aboriginal 1 11

White 50 15

doi:10.1371/journal.pone.0039915.t002

Secure Linking of Registries for HPV Surveillance
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individuals. This would occur, for example, if the data set is a

sample. For Table 2, if one can estimate that there was only a

single individual in the cell ‘Aboriginal and Negative’ in the whole

population (i.e., can estimate that the sample ‘unique’ is also a

population ‘unique’), then the same re-identification risk as for

small cells exists. Similarly, for Table 3, if one can determine that

there were indeed only five positive Aboriginals in the population

then the same re-identification risk exists as for small cells. It is

possible to estimate the cell size for the population using sample

data [29].

One possible solution is to develop a protocol to suppress the

small cells in the contingency table before it is disclosed to the

PHU. However, it would not be possible to compute associations

on tables with suppressed cells. In addition, by executing

additional queries on the data it would be possible to reconstruct

the suppressed cells. For example, consider Table 4 which had a

small cell suppressed. Now the PHU can execute another query

shown in Table 5 that does not have small cells on the same data

(assuming a minimal cell size of 5). Because the marginal totals for

the ethnicity in the two tables are expected to be the same, it

would be possible determine that the value of the suppressed cell in

Table 4 was 1. As another example, consider Table 6 which had a

small cell suppressed. Another query, shown in Table 7, with

gender instead of ethnicity does not have small cells and reveals

the marginal totals for the HPV results, which then reveals that the

suppressed cell in Table 6 is of size zero. More generally, iterative

algorithms can be used to determine the exact value or a narrow

value range for suppressed cells if the marginal totals are known

[30].

Therefore, as long as multiple tables can be generated it cannot

be guaranteed that cell suppression would work. This is a known

inference problem in statistical databases [31].

Secure protocols following architecture (b) have been proposed

[27,32–38]. These require collaboration among the registries and

at the end of their joint computations the contingency table would

be shared with the PHU by one or both of the registries. However,

they would all be prone to the small cells problem noted above,

and the two registries would still need to trust each other since in

many of these protocols one of the registries would end up with the

contingency table (requirement A3). In addition, some protocols

will only work with three or more registries [34,38], and would

therefore not be applicable in the simplest case of two registries.

A slight modification is architecture (c) where the PHU actively

participates in the matching and the computations needed rather

than being just a recipient of data. One approach is for the two

registries to agree on a secret random value and concatenate it to

the linking variables, and then hash this concatenated value. The

hashed values are then sent to the PHU from each registry [39,40].

The PHU would match the hashed values from the two registries,

count the number of matching hashes, and compute the cell values

in the contingency table of Table 1. A number of other

cryptographic protocols have been developed that are suitable

for this architecture [41–45]. These protocols also do not meet the

same requirements as the ones following architecture (b) in that

they can reveal identifying information to the PHU through small

cells and require both registries to trust each other.

Some protocols use a TTP to participate in the linking instead

of providing the data to the PHU as illustrated in architecture (d).

The TTP would not obtain the contingency table. Instead, the

contingency table would be computed from one or both registries

and this information would be transmitted to the PHU. One

protocol requires the registries to send hashed values to the TTP

who then performs the linking [46]. However, this is prone to a

dictionary attack, which is when an adversary tries all possible

input values until one hashes to the same value. More secure

protocols have been proposed [47,48], but these have the same

disadvantages as those following architecture (c), as well as

requiring a TTP and being vulnerable to collusion between the

TTP and one of the registries. Furthermore, if a TTP’s security is

compromised then this would result in a significant breach

affecting both registries.

The final architecture illustrated in panel (e) also requires a

TTP. In one deployment of this architecture in Wales, the

demographic information is separated from the clinical informa-

tion, and all of the data sources send the demographic information

to a TTP who then performs probabilistic matching of the records

on these variables, generates a new unique identifier for each

record to allow linking, and sends the unique identifier back to the

data sources [49,50]. The data sources then provide the unique

identifier with the clinical information to a databank accessed by

external parties, such as researchers. In our case the databank

Table 3. Example of a contingency table for which there is a
high identity disclosure risk from an external attacker.

Any HPV

2ve +ve

Ethnicity Aboriginal 0 5

White 50 15

doi:10.1371/journal.pone.0039915.t003

Table 4. Example of contingency table with suppressed cells.

Any HPV

2ve +ve

Ethnicity Aboriginal – 11

White 50 15

doi:10.1371/journal.pone.0039915.t004

Table 5. Example of contingency table that would reveal the
contents of the suppressed cells in Table 4.

Age

,20 .20

Ethnicity Aboriginal 6 6

White 50 15

doi:10.1371/journal.pone.0039915.t005

Table 6. Example of contingency table with suppressed cells.

Any HPV

2ve +ve

Ethnicity Aboriginal – 5

White 50 15

doi:10.1371/journal.pone.0039915.t006

Secure Linking of Registries for HPV Surveillance
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would be housed in the PHU. Another protocol that does not use

cryptographic techniques utilizes a TTP to run remote sub-queries

at the registries and combine and return results back to the PHU

[51]. One protocol hashes the linking variables, but also requires

that the registries share a secret key [52]. A more secure protocol

that utilizes bloom filters has been proposed, which also requires a

TTP [53]. A stand alone probabilistic linking technique has been

proposed which can be used within this architecture [54]. All of

these protocols would not meet requirement A1 because they are

vulnerable to the small cells problem that could leak personal

information.

Even though various subsets of the requirements have been met

in previous research, there have been no protocols developed that

address all of the requirements, which is the main contribution of

this paper.

Principles and Techniques
As background, we present a set of design elements and building

blocks that we integrated into our final protocol.

Using A Semi-Trusted Third Party
In our proposed protocol we use a semi-trusted third party

(sTTP). This is a commonly used term to describe a party who

would not be able to obtain personal information about the

patients, even if it tried to do so. Therefore, there is no risk that

patient privacy would be breached, making it unnecessary to fully

trust that third party. The only requirement on the sTTP is that

they execute the linking protocol faithfully. The utilization of an

sTTP in a secure linking protocol would allow us to meet all of the

requirements posited earlier. Utilization of an sTTP is a weaker

trust requirement than requiring a trusted-third party, who would

be able to obtain personal information if it wanted to (hence it

needs to be fully trusted). Furthermore, a data breach from an

sTTP would not compromise any PHI.

To ensure that the third-party need only be semi-trusted, we

propose to compute the statistics that are needed by the PHU

directly rather than disclose a contingency table to the PHU. The

statistics we will use are the omnibus chi-square test, the odds ratio

and its confidence interval, and the relative risk and its confidence

interval. The remainder of the paper describes such a protocol

while meeting all of the requirements.

Commutative Hash Function
A hash function transforms an input value A to an output value

B such that the B value is unique to A and it is not possible to

obtain A from B. The input A would typically consist of a message

to be hashed and a key. A commutative hash function HðÞ has the

additional property that:

H m1,H m2,m3ð Þð Þ~H m2,H m1,m3ð Þð Þ ð1Þ

This means that multiple applications of the hash function in

different order will produce the same results. A detailed discussion

of a commutative hash function based on the discrete log that is

suitable for the problem of matching records from multiple

registries is presented in Appendix S1.

Secure Computation
Privacy-preserving computation protocols often utilize Secure

Multi-party Computation (SMC) [55,56]. SMC computes the final

result in a secure way among multiple parties. Cryptographic and

other tools are often used among two or more parties to jointly and

securely compute one or more functions using their own private

inputs. By using this approach, the final result is the same as that in

the corresponding non-secure algorithm, and thus the main trade-

off is between security and efficiency. SMC methods have been

used previously to define secure disease surveillance protocols [57].

One of the popular encryption techniques used in privacy-

preserving methods is homomorphic encryption. In this type of

cryptosystem, one operation on the plaintexts will be mapped to

another, or even the same, operation on the ciphertexts. For

instance, in Paillier [58] encryption, for any two plaintext messages

m1 and m2 and their encryption E m1ð Þ and E m2ð Þ, the following

equation is satisfied:

D E m1ð Þ|E m2ð Þ mod n2
� �

~m1zm2 mod n ð2Þ

where n is a product of two large prime numbers, and D is the

decryption function. Therefore, in this type of cryptosystem

addition of the plaintexts is mapped to multiplication of the

corresponding encrypted values. The Paillier cryptosystem also

allows a limited form of the product of an encrypted value:

D E m1ð Þm2 mod n2
� �

~m1|m2 mod n ð3Þ

which allows an encrypted value to be multiplied with a plaintext

value to obtain their product.

Another property of Paillier encryption is that it is probabilistic.

This means that it uses randomness in its encryption algorithm so

that when encrypting the same message several times it will, in

general, yield different ciphertexts. This property is important to

ensure that an adversary holding a public key would not be able to

compare an encrypted message to all possible encrypted counts

from zero onwards and determine what the original plaintext

value is.

In our protocol we use two sub-protocols based on the Paillier

cryptosystem that to perform the intermediate calculations [59]:

secure two-party addition and secure two-party multiplication.

Secure two-party addition allows any two parties to jointly add

two integers together without either party revealing the value of

the individual integer to the other, and without sharing the sum.

Each party ends with a partial result (private output values). The

two parties, P1 and P2, each has her own private integer value, a1

and a2 respectively. They obtain their own private output values,

b1 and b2, such that:

a1za2~ b1|b2ð Þmod n ð4Þ

Secure two-party multiplication allows the two parties to jointly

multiply two integers without revealing the values of these integers

or the resulting product to each other. For two parties, P1 and P2,

they compute their own private output values, b1 and b2, using

their private input values, a1 and a2 such that:

Table 7. Example of contingency table that would reveal the
contents of the suppressed cells in Table 6.

Any HPV

2ve +ve

Gender Male 25 2

Female 25 18

doi:10.1371/journal.pone.0039915.t007

Secure Linking of Registries for HPV Surveillance
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a1|a2~ b1zb2ð Þ mod n ð5Þ

The Secure Linking Protocol
There are three actors in our protocol as follows:

Registry. The custodians of the data that need to be linked. In

our example we assume two registries but this can be easily

extended without loss of generality.

Aggregator. The aggregator is a semi-trusted third party who

can securely compute the statistics on the contingency table and

sends the result back to the PHU. We assume there are two

aggregators.

PHU. Defines which data elements are required and receives

the final result of the analysis.

The protocol has three phases: (a) request, (b) matching, and (c)

analysis.

Request Phase
The protocol is initiated each time an analysis needs to be

performed. For example, if the PHU wants to investigate the

relationship between HPV test results and ethnicity, then the

protocol is initiated. The completion of the protocol results in the

production of the desired statistical result. In our example we

assume that the PHU wishes to compute the odds ratio on the 262

contingency table. If the PHU then wants to investigate another

relationship using the same two registries or different registries, say

the relationship between HPV vaccination and HPV results, then

the protocol would be initiated again.

The PHU then sends four different queries to the registries, one

for each row and column in the contingency table. Each query has

a unique identifier, Qk, where the value of k indicates the column

or row in the contingency table. For example, the query Q1z is for

the Aboriginal patients. Another query, Qz2 would be for patients

with positive HPV results. This is illustrated in Figure 2. To

compute statistics on a 262 table, four queries would need to be

generated by the PHU with two targeted at each registry.

Upon receiving a query, each registry generates a random

number only known to the registry, denoted by Rk. The random

number is specific to each query.

Matching Phase
Each registry would respond with a value for each patient

matching the query. A registry would select an Aggregator at

random to respond to. Let’s say that the direct identifier (linking

field) for a patient from Registry 1 is denoted by IDi and the

linking field for a patient from Registry 2 is denoted by IDj .

Registry 1 sends the hash value H R1z,IDið Þ to the Aggregator.

In the example in Figure 3, Registry 1 sends this value to

Aggregator 1. Aggregator 1 was chosen randomly by the registry

and Registry 1 may send the value for the next patient to

Aggregator 2. Because this is a hashed value and Aggregator 1

does not know the value of R1z, Aggregator 1 would not be able

to determine the IDi value. Aggregator 1 then forwards that

information to Registry 2, which hashes that value and sends it

back asH Rz2,H R1z,IDið Þð Þ. Aggregator 1 would then store that

value.

Registry 2 would also respond with a message for every patient

which satisfies the query. In the example of Figure 3, Registry 2

also selects Aggregator 1. By going through the same sequence of

messages Aggregator 1 also gets H R1z,H Rz2,IDj

� �� �
for the

patient from Registry 2. If the same patient exists in both

responses from Registry 1 and Registry 2, then

H Rz2,H R1z,IDið Þð Þ~H R1z,H Rz2,IDj

� �� �
and Aggregator

1 would be able to determine that the same patient appeared in

both registries within the cell making up the intersection of the

queries. This is illustrated in Table 8. In this case Aggregator 1

matched two patients, and therefore its matched count would be 2.

Because each Registry selects an Aggregator at random, no

Aggregator will have a total count for a particular cell. This

ensures that neither Aggregator will know with certainty if the cell

has a small count. Therefore, Aggregator 19s count of 2 is not a

complete count of all Aboriginals with positive HPV results. There

are two patients who were not matched by Aggregator 1 and it is

not possible for Aggregator 1 to know whether these two patients

exist in Aggregator 29s table. Aggregator 2 had 3 patients

matched. Therefore, in total we have 5 matched patients.

However, the patient with an ID of 2 would not be matched

because its values are split between the two Aggregators. The

patient with ID number 3 would not be matched because there is

no information on the ethnicity of that individual in Registry 2.

Once both registries have sent all of their hashed values to the

Aggregators, the Aggregators need to reconcile their lists.

Specifically, Registry 1 may have sent its value for a patient to

Aggregator 1 and Registry 2 sent its value for the same patient to

Aggregator 2. Therefore, it is not possible for either Aggregator to

know that the patient exists in that cell. In our example,

reconciliation would reveal that the patient with ID 2 is also

matched.

Figure 2. The public health unit sends a query for a particular cell within the desired contingency table.
doi:10.1371/journal.pone.0039915.g002
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The two Aggregators need to reconcile their lists and compute the

final counts for the cell. Aggregator 1 knows that it already has a set of

S1 matching hashes and Aggregator 2 knows that it has a set of S2

matching hashes. In our example we have S1~ H Rz2,ðf
H R1z,ID1ð ÞÞ,H Rz2,H R1z,ID4ð Þð Þg and S2~ H Rz2,H R1z,ððf
ID5ÞÞ,H Rz2,H R1z,ID6ð Þð Þ,H Rz2,H R1z,ID7ð Þð Þg. However,

the union of these sets does not give us all of the matching patients.

Define a set of patients from Registry 1 who are not matched in

either Aggregator:

X~ xD Vi : H Rz2,H R1z,IDið Þð Þf g\ S1|S2f g~1f g ð6Þ

and similarly from Registry 2:

Y~ yD Vj : H R1z,H Rz2,IDj

� �� �� �
\ S1|S2f g~1

� �
ð7Þ

Consider the notation for the contingency table in Table 9. Let us

assume that we are computing the count n12. This consists of two

counts, one from each of the aggregators, summed together

n1,12zn2,12. Below are the steps for computing n1,12 and n2,12:

1. On all xi|yj pairs, xi[X and yj[Y , the Aggregators run a

secure two-party subtraction. At the end of each secure two-

party subtraction Aggregator 1 will have a value vi computed,

and Aggregator 2 will have a value wj computed such that

xi{yj~vi|wj mod n (see equation (4)). According to the

secure two-party addition protocol, if Aggregator 1 initiates the

protocol and xi~yj , then vi~0. Otherwise if Aggregator 2

initiates the protocol and xi~yj , then wj~0. It does not matter

which Aggregator initiates the protocol, but only one should do

it to ensure that matches are not double counted. If either of vi

is zero or wj is zero, then the two values match.

2. Let c1 be the number of vi’s where vi~0, and let c2 be the

number of wj ’s where wj~0.

3. Aggregator 1 computes:

n1,12~DS1Dzc1 ð8Þ

and Aggregator 2 computes:

n2,12~DS2Dzc2 ð9Þ

Note that no single aggregator will know the value of n12 at the

end of this protocol; it can only be computed by combining the

values from both aggregators.

Figure 3. An example showing how a registry responds for a
request for counts. A sequence of messages is generated for each
patient.
doi:10.1371/journal.pone.0039915.g003

Table 8. Example of the matching performed by Aggregator
1 and Aggregator2 based on the hash values that they
receive.

Aggregator 1 Matching Table

Registry 1 Registry 2

H Rz2,H R1z,ID1ð Þð Þ H R1z,H Rz2,ID1ð Þð Þ
H R1z,H Rz2,ID2ð Þð Þ

H Rz2,H R1z,ID3ð Þð Þ
H Rz2,H R1z,ID4ð Þð Þ H R1z,H Rz2,ID4ð Þð Þ

Aggregator 2 Matching Table

Registry 1 Registry 2

H Rz2,H R1z,ID2ð Þð Þ
H Rz2,H R1z,ID5ð Þð Þ H R1z,H Rz2,ID5ð Þð Þ
H Rz2,H R1z,ID6ð Þð Þ H R1z,H Rz2,ID6ð Þð Þ
H Rz2,H R1z,ID7ð Þð Þ H R1z,H Rz2,ID7ð Þð Þ

doi:10.1371/journal.pone.0039915.t008

Table 9. Notation for computing statistics.

Any HPV

-ve +ve

Ethnicity Aboriginal n11 = n1,11+n2,11 n12 = n1,12+n2,12

White n21 = n1,21+n2,21 n22 = n1,22+n2,22

doi:10.1371/journal.pone.0039915.t009
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Analysis Phase
The Aggregators can now jointly compute the appropriate

statistics. As illustrated in Figure 4, the Aggregators then each send

partial results of their statistical computations to the PHU, which

combines the partial results to obtain the final result.

The count in each cell in the contingency table is split between

the two Aggregators. Suppose we have a 262 contingency table as

in Table 5. Below we go through the steps of calculation for the

odds ratio. The computation of other bivariate statistics, such as

chi-square, relative risk, and the confidence intervals for the odds

ratio and relative risk, are described in Appendix S1.

In Table 9, n1:ij is available to Aggregator 1 and n2,ij is available

to Aggregator 2 for every i and j. We can compute the odds ratio

as follows:

h~
n11n22

n12n21
ð10Þ

which can be defined as:

h~
n1,11zn2,11ð Þ n1,22zn2,22ð Þ
n1,12zn2,12ð Þ n1,21zn2,21ð Þ ð11Þ

To separate the above fraction such that each of the two

Aggregators owns her final private values for the odds ratio we will

apply secure two-party addition. In the equations below we will

not show the ‘‘mod n’’ to simplify the presentation. The steps of

the protocol are as follows:

1. Aggregator 1 and Aggregator 2 run secure two-party

additions for their following pairs:

n1,11 and n2,11 such that: n1,11zn2,11~a1,1|a2,1

n1,22 and n2,22 such that: n1,22zn2,22~a1,2|a2,2

n1,12 and n2,12 such that: n1,12zn2,12~a1,3|a2,3

n1,21 and n2,21 such that: n1,21zn2,21~a1,4|a2,4

Therefore, the odds ratio will be converted to:

h~
a1,1|a2,1ð Þ a1,2|a2,2ð Þ
a1,3|a2,3ð Þ a1,4|a2,4ð Þ~

a1,1|a1,2ð Þ
a1,3|a1,4ð Þ|

a2,1|a2,2ð Þ
a2,3|a2,4ð Þ

2. Aggregator 1 and Aggregator 2 then compute the two

fractions
b1

c1
and

b2

c2
, respectively, such that:

b1~a1,1|a1,2 b2~a2,1|a2,2

c1~a1,3|a1,4 c2~a2,3|a2,4

3. Aggregator 1 and Aggregator 2 send their private values

b1,b2,c1,c2 to the PHU. The PHU then computes h~
b1|b2ð Þ
c1|c2ð Þ.

A summary of the inputs and outputs, including for the statistics

described in more detail in Appendix S1, are provided in Table10.

Empirical Performance Measurement
The challenge with secure computation protocols is that they

are slower than non-secure ones. This makes the assessment of

performance an important determinant of their practicability. We

describe the communication costs in our analysis in Appendix S1.

Here we focus on an empirical assessment of computation time.

The objectives of the evaluation were to determine: (a) the time

to perform the computations under the different conditions, (b)

how the protocol scales as the number of patients returned by the

queries increases, and (c) how the protocol scales as the number of

cells in the contingency table increases.

We assume that all queries return the same number N:: of

patients. Let a be the time it takes to perform a single encryption

or decryption and let t be the time it takes to perform a single

commutative hash. Table 11 shows the total computation time

range (matching and analysis tasks) for each of the statistics based

on the detailed analysis in Appendix S1. Matching within the

Aggregator is not considered as that computation time would be

negligible compared to the computations requiring encryption and

decryption. We consider the general case for the number of cells in

the contingency table, which is denoted by C in Table 10. By

examining Table 11, we would expect that computation time

scales linearly with the number of patients and the number of cells.

To evaluate the computation time performance of the protocol

we empirically determined the values for t and a over 100

iterations for random values of the same integer size. The average

hash time gave us an estimate for t. We then encrypted the hashed

values and the average encryption time gave us a. Using these two

values we could determine the computation time for the

implementation of the protocol. The timing was computed on a

Windows machine running the XP operating system with an Intel

Figure 4. The flow of information between the Aggregators and the PHU.
doi:10.1371/journal.pone.0039915.g004
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dual core CPU running at 2.4 GHz and 2 GB of RAM. The key

size used was 1024 bits.

We assume that m hashed values will be matched within an

aggregator for all cells. In presenting the results, the value of m is

expressed as a percentage of N:: and varied from 0% to 100%,

with the computation time in seconds calculated each time for a

different number of patients. We let the total number of patients

returned by each query requested from the two registries be 5,000,

10,000, 50,000, and 100,000. The value of C indicating the

number of cells was varied from 4 to 16 in increments of 2.

Results

The average time to perform an encryption using the Paillier

cryptosystem is 1.721 ms, and decryption takes 1.882 ms. The

secure multiplication and addition take 2.581 ms on average, and

the average time to hash a value is 3.07 ms. The performance of

the whole protocol was driven by the performance of the matching

phase. The matching phase was driven by the size of the data set

and the number of cells in the contingency table.

Figure 5 illustrates the computation times for different

percentage of matching records within each Aggregator, m$.

The computation time is smallest when m~100% since that’s

when all of the matching can be done within the Aggregator. For a

contingency table with 4 cells and each query returning 100,000

patients, the total computation is just under one hour. With 16

cells it is just under 4 hours.

The graph in Figure 6 shows how the computation time

increases linearly as the number of records returned by a query

increases. The graph in Figure 7 shows how the computation time

increases linearly as the number of cells increases.

The difference between chi-square and odds ratio and relative

risk, and their confidence intervals, is negligible because the total

computation time is driven by the matching phase rather than the

analysis phase. Thus, the computation time for the two latter ones

are almost identical as that for chi-square and are not shown here.

Discussion

Summary
In this paper we have described a secure protocol for linking

records from multiple registries that can be used to monitor the

effectiveness of the HPV vaccine. We have shown that this

protocol is the only one, thus far, that can meet all five

requirements that were derived from actual current constraints

for sharing patient information. The protocol can provide specific

statistics, and is therefore most useful when the statistics to be

computed are known in advance. This fits well with the disease

surveillance context where the same statistics would need to be

computed on an on-going basis.

The performance of this protocol is acceptable even for large

data sets. For example, for a 16 cell contingency table where each

of the queries returns 100,000 patients and none of the matches

can be performed within an Aggregator, the total computation

time is less than 4 hours. This is a worse case assumption, but

nevertheless would still be acceptable performance for a surveil-

lance application since the data set will not change at a faster rate

than 4 hours. It exhibits a linear increase in computation time as

the number of records in the data set grows and as the size of the

contingency table grows.

Details on issues that would need to be addressed during the

deployment of this protocol in practice, such as dealing with small

cells and zero-sized cells, are addressed in Appendix S1.

HIPAA and the Common Rule
While our initial deployment of this protocol was intended for a

Canadian context, its deployment in the US requires special

considerations of current legislation and regulations.

The HIPAA Privacy Rule defines two standards for de-

identifying health information (45 CFR 164.514(b)). The first

one is called the Safe Harbor standard. Under Safe Harbor any

unique identifying number, characteristic, or code must be

Table 11. Summary of the computation time range for each
of the statistics.

Statistic Total Computation Time (max R min)

Chi-square 2t C|N::ð Þz2 a|C|N::ð Þz20 a|Cð Þ?
2t C|N::ð Þz20 a|Cð Þ

Odds Ratio 2t C|N::ð Þz2 a|C|N::ð Þz8 a|Cð Þ?
2t C|N::ð Þz8 a|Cð Þ

Relative Risk 2t C|N::ð Þz2 a|C|N::ð Þz8 a|Cð Þ?
2t C|N::ð Þz8 a|Cð Þ

doi:10.1371/journal.pone.0039915.t011

Table 10. Summary of the inputs and outputs for the
building block and analysis protocols.

Protocol Inputs Outputs Equation

Two-party
addition

a1,a2 b1,b2 b1|b2

Two-party
multiplication

a1,a2 b1,b2 b1zb2

Odds Ratio n1,11,n2,11 b1,b2 h~
b1|b2

c1|c2

n1,12,n2,12 c1,c2

n1,21,n2,21

n1,22,n2,22

Chi-square n1,11,n2,11 c1,c2 x2~
c1|c2

d1|d2

n1,12,n2,12 d1,d2

n1,21,n2,21

n1,22,n2,22

Relative Risk n1,11,n2,11 b1,b2
r~

b1|b2

c1|c2

n1,12,n2,12 c1,c2

n1,21,n2,21

n1,22,n2,22

Confidence
Interval for
Odds Ratio

n1,11,n2,11 i1,i2
CIln (OR)~ ln hð Þ+z|

ffiffiffiffiffiffiffiffiffiffiffiffi
i1|i2

j1|j2

r

n1,12,n2,12 j1,j2

n1,21,n2,21

n1,22,n2,22

Confidence
Interval for
Relative Risk

n1,11,n2,11 d1,d2

CIln (RR)~ ln RRð Þ+z|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1|d2

g1|g2

s

n1,12,n2,12 g1,g2

n1,21,n2,21

n1,22,n2,22

doi:10.1371/journal.pone.0039915.t010
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removed from the data set, otherwise it would be considered

personal health information.

In our protocol we used a hash function to perform the

matching. If a simple hash function was used then it could be

reverse engineered using a dictionary attack. For example, if we

are using an individual’s social security number and that number is

hashed, then an adversary would only need to hash all possible

numbers of the same length and compare it to the targeted value

until a match is found.

A special type of dictionary attack has also been proposed and

utilized to reduce the computation time at the cost of more data

storage capacity – the so-called rainbow tables [60]. In this

method, a table of hash chains is pre-computed for reversing the

hash function by using a reduction function. The chains which

create the items in the rainbow table are chains of one way hash

functions and reduction functions starting at a certain plaintext,

and ending at a certain hashed value. However, only the starting

plaintext and ending hashed value are stored in the rainbow table.

By comparing against only the stored values a significant reduction

in computation can be gained during an attack.

In practice one always adds some randomness to the hash value,

as we do in our commutative hash function. This random value is

called a ‘‘salt’’ or a ‘‘key’’. This makes the range of possible values

that would need to be checked in a dictionary attack, even with a

rainbow table, computationally unattainable in any reasonable

amount of time.

Is a hashed value with a salt considered a uniquely identifying

code under Safe Harbor?

The HIPAA Privacy Rule requires that ‘‘The code or other

means of record identification is not derived from or related to

information about the individual’’ and that the the covered entity

does not use or disclose the code for other purposes or disclose the

mechanism for re-identification (45 CFR 164.514(c)). In our

protocol we can satisfy the second requirement since the random

values used for hashing (the keys) are never shared by the

registries. However, a hash value, with or without a salt, is derived

from identifiable information and would therefore still be

considered personal information under this definition.

The Privacy Rule allows the disclosure of information

containing such coded information as a Limited Data Set (45

CFR 164.514(e)). A Limited Data Set would require a data sharing

agreement with the data recipient, and the data can only be used

for specific purposes: research, public health, or healthcare

operations. For users of our protocol, this means that the purpose

of the linking and analysis would have to be one of the above. For

example, if our protocol is used for public health surveillance or

research and a data use agreement is in place between the

registries and between the registries and Aggregators, then the

requirements for a Limited Data Set would be met.

If our protocol is used for research purposes, then the Common

Rule would also apply. Under the Common Rule, which guides

IRBs, if the user of the information has no means of getting the

key, for example, through an agreement with the other party

prohibiting the sharing of keys under any circumstances or

through organizational policies prohibiting such an exchange,

then this would not be considered human subjects research and

would not require an IRB review [61,62]. In our protocol, if each

of the registries has a policy against the sharing of the salt values

used, then no IRB approval would be required for the linking

project, according to the Common Rule, since the hash values

Figure 5. The average computation times for the chi-square test when the total number of records returned by the queries varies
from the two registries are 5,000, 10,000, 50,000, and 100,000 for a 4 cell and a 16 cell contingency table.
doi:10.1371/journal.pone.0039915.g005
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exchanged would not be considered personally identifying

information.

This inconsistency between HIPAA and the Common Rule is

well documented [63,64].

However, the Privacy Rule does provide a mechanism for an

expert with appropriate statistical knowledge to certify that the

data exchanged has a very small risk of re-identification (45 CFR

164.514(a)), at which point it would not be considered personal

health information [65]. Therefore, should an expert deem that

the (salted) hashed value cannot be reversed and that adequate

legal mechanisms exist prohibiting the exchange of the salt

represent a very small risk of re-identification, then the data

exchanges in our protocol would not be considered identifiable.

In other jurisdictions, such precise prescriptions on the

interpretability of coded information are absent, making it easier

to argue that the exchange of hashed information (with a salt) for

the purpose of matching, with prohibitions on the sharing of that

random value, would not constitute an exchange of personal

health information.

Limitations
Our protocol only allows for deterministic matching of patients

in the two registries. Therefore, the linking field value that is

hashed needs to be a reliable unique identifier across the registries.

We focused on surveillance where the computed statistics are on

a contingency table. Where the variable are continuous and

cannot be meaningfully discretized into categorical variables, the

approach we present will not be suitable.

Future Work
Extensions of our protocol to allow probabilistic linkage would

be expected to result in a higher match rate when there are errors

in the variables making up the linking field. For example, the

inclusion of names in the set of linking fields would be expected to

improve the match rate.

Additional statistics may be added to our protocol to cover more

tests that a PHU may wish to use for evaluation of effectiveness or

other analytical purposes. We consider two examples of more

sophisticated analyses below.

The basic structure of our protocol can also support the

computation of population size estimates using a capture-

recapture (CR) model. A CR model can estimate the total

population of individuals with a particular disease when the

registries have an incomplete listing of that population. A secure

CR protocol would allow the estimation of population size when

the registries are unable to share data. CR models have been used

in the biological sciences to estimate the size of animal populations

[66,67], and in epidemiology to estimate birth and death rates

[68,69], as well as the size of diseased populations [70]. The basic

principle is that animals are caught on multiple occasions and

marked/identified. Using the information on the number of

animals caught/not caught on the multiple occasions, a complete

capture history of animal capture is known. Methods have been

developed to estimate the total population size from such capture

histories. When applied to human populations, the overlap across

multiple disease registries is used to mimic recaptures. The

matching phase of our protocol can compute the number of

overlapping individuals between the two registries. An appropriate

Figure 6. The average computation times for the chi-square test as the proportion of records matching varies for different data set
sizes for contingency tables with 4 and 16 cells.
doi:10.1371/journal.pone.0039915.g006
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CR model would then be used to estimate the total population

size.

Moving beyond surveillance, multivariate models would need to

be constructed to answer questions about whether individuals and

populations can be protected against infection and the cervical/

anal/oral HPV-associated cancers. They can also be used to better

understand HPV vaccine effectiveness through various endpoints

[71–73], including changes in type-specific HPV prevalence,

changes in lesions (via pap test results/colposcopy results), and

over a longer period of time, changes in cervical and other HPV-

related cancer rates. However, all these may be somewhat

impacted by factors such as SES, ethnicity (in the context of

accessing care), age of sexual debut, number of sexual partners,

parity, smoking, and other factors. It would therefore be important

to control for these factors. Future work would need to take our

basic surveillance framework and extend it to allow more general

secure multivariate modeling, such as for general linear models.

Supporting Information

Appendix S1 Description of the commutative hashing
function, the protocols for computing other statistics, as
well as practical considerations when deploying the
protocol.
(PDF)

Acknowledgments

We wish to thank Dr. Karim Keshavjee for his feedback on an earlier

version of this paper, and the anonymous reviewers for their helpful

comments and suggestions.

Author Contributions

Conceived and designed the experiments: KEE SS JH LP CE TW GJ MK

FD. Performed the experiments: KEE SS JH. Analyzed the data: KEE SS

JH MK FD. Wrote the paper: KEE SS JH LP TW GJ CE MK FD AE.

References
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