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Increasingly, machine learning (ML) applications are developed and become an integral part

of many real-world applications. Especially, ML techniques are heavily used in research

and industry to help make effective decisions. Despite the apparent recent success of ML

techniques, there exist some domain-specific challenges that require in-depth investigations

with respect to predictive accuracy, privacy protection and cybersecurity.

In this dissertation, we start with understanding the usability of ML techniques in the

cryptocurrency transaction domain (e.g., Bitcoin) where there is no privacy concern (i.e.,

all Bitcoin transaction information is public) and show how to use ML techniques to make

better predictions in real-time.

For application domains that involve sensitive data, collecting, sharing and refining of these

sensitive data may raise serious privacy concerns. To address these concerns, we propose a

privacy preserving synthetic data generation technique that leverages deep learning. The

proposed technique allows participants to share the synthetic datasets freely without worrying

about the individual privacy. Furthermore, we compare our proposed technique with the

existing synthetic data generation algorithms, and investigate the utility of these algorithms

under different use cases.
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Finally, we explore the usage of the generated synthetic data to improve the cybersecurity

posture of the organizations. Basically, we show that the generated synthetic data not

only protect individual privacy but can be used to deceive (i.e., the synthetic data is

indistinguishable from the real data) the potential cyberattackers. This in return could be

used to reduce sensitive data leakage under successful cyberattacks where an attacker could

be deceived to target synthetic data instead of the real, and sensitive data.
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CHAPTER 1

INTRODUCTION

Machine Learning (ML) has a profound influence on a wide range of applications that involve

analyzing and generating data in many emerging domains. Companies increasingly rely on

machine learning based software applications to make better decisions and predictions. The

essence of machine learning techniques is analyzing, detecting, and interpreting patterns

and structures in data to enable prediction, reasoning, and decision making without human

intervention. As machine learning techniques continue to advance, they are increasingly

deployed in critical real-world applications such as financial market, security, and health

care domains. However, careless usage of ML techniques may cause inaccurate prediction or

inherent risk to individual privacy. Depending on the application domain, there are different

concerns that need to be addressed, such as predictive accuracy, privacy protection and

cybersecurity.

This dissertation provides solutions to the aforementioned concerns regarding the use

of machine learning models. We first propose to apply machine learning models in the

cryptocurrency domain where all the data is public and there is no privacy concern. The

goal is to make accurate predictions of the cryptocurrency price that is highly volatile. Next,

for domains where ML techniques need to access sensitive data, we show how to develop ML

based techniques, more specifically deep learning techniques, to generate synthetic data that

is suitable for public sharing for ML while preserving individual privacy. Finally, we present

data deception techniques for cybersecurity systems that can be used to generate ”honeyfiles”

to fool and track potential attackers.

Our first challenge is to apply machine learning models in real-time cryptocurrency

analysis for predicting Bitcoin prices. Bitcoin is a cryptocurrency, a type of digital cash. It is

a decentralized currency without any central authorities that can be sent from user-to-user

on top of the peer-to-peer Bitcoin network. For Bitcoin, each transaction is recorded on a
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distributed public ledger called blockchain. The transactions recorded on the blockchain can

be accessed and analyzed publicly. Furthermore, all of the transactions could be represented

by a graph which we refer to as the “blockchain graph”. Unlike other financial networks, such

as stock and currency trading, blockchain based cryptocurrencies have the entire transaction

graph accessible to the public (i.e., all transactions can be downloaded and analyzed).

In this real-time cryptocurrency predictive model, we investigate the impact of the

blockchain graph structure on cryptocurrency price by proposing different approaches to

representing blockchain graph patterns; and we use these patterns to build machine learning

models for price prediction. Bitcoin networks have been studied heavily to quantify the

dynamics of the Bitcoin transaction network. Existing approaches leverage global blockchain

graph structure to extract traditional graph features such as degree distribution, motif counts

and clustering coefficients, and use these graph features in machine learning models such as

random forest for assessment of their utility in price forecasting. As already observed by

previous studies (e.g., (Swanson, 2014; Greaves and Au, 2015)), and also confirmed by our

experimental results, these standard global graph based features fail to capture important

properties such as transaction volumes, transaction amounts, and their relationships with

the underlying local graph structure. Since these basic approaches do not provide conclusive

insights into the blockchain graph dynamics and its impact on cryptocurrency price, we

propose novel techniques inspired by topological data analysis and, particularly, persistent

homology that can capture these higher order interactions. Here, we introduce the power of

topological data analysis, particularly, persistent homology and associated network filtrations,

to the analysis of blockchain graphs. Our experiment results show that the proposed

persistent homology based machine learning models can significantly outperform (i.e., up

to 38% improvement in root mean squared error) models that use only past price and

standard features such as total transaction count. Finally, using these insights, we propose a

cryptocurrency predictive model that can identify the financial market changes earlier with

persistent homology.
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For domains where ML techniques need to access sensitive data, collection and sharing of

sensitive data with the third parties might cause privacy leakage. To address this privacy

challenge, solutions have been proposed in two broad categories. In the first category, the

data anonymization based approaches (e.g., (Sweeney, 2002)) try to use various definitions

to sanitize data so that it cannot be easily re-identified. Although these approaches have

some important use cases, they are not usually based on rigorous privacy definitions that

can withstand various types of re-identification attacks. In the second category, synthetic

data generation approaches have been proposed to generate realistic synthetic data using

rigorous differential privacy definition (Dwork et al., 2014). Although these approaches have

been shown to work in some limited cases, they have not been extensively tested on different

types of use cases with different requirements (e.g., high dimensionality, correlation among

features). Therefore, it was not clear which technique works well under what conditions for

what type of data sets. We answer these questions by conducting extensive experimentation.

Furthermore, we provide a new differentially private deep learning based synthetic data

generation technique to address the limitations of the existing techniques. Our aim is to

provide data generation tool for ML applications that protects both the privacy of individual

and high data utility in terms of different ML metrics.

We also investigate the utility of data generation under the context of the cyber deception,

to show ”deceptivity” of the generated data when an adversary has some insight about

the real data. To achieve this, honeypots are used to simulate the test cases. Creating

deceptive data (i.e., HoneyFiles) has many challenges. For different settings, we may need

different types of HoneyFiles. For example, to deceive an attacker and feed false information,

deceptive technical plans (e.g., technical drawings of an airplane) could be generated. On

the other hand, to make HoneyFiles more believable, fake text data could be added to

such files. Since addressing all these different types of data require different techniques, we

focus on generating deceptive HoneyFiles using our privacy preserving data generation tool,
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and evaluate “deceptivity” rate of the generated data. Still, generating realistic relational

HoneyFiles while not disclosing sensitive information is a significant challenge. In this part

of the dissertation, we evaluate the effectiveness of relational HoneyFiles on real datasets,

and show under what conditions differentially private deep learning techniques could be used

to generate relational HoneyFiles.

The remainder of this dissertation is organized as follows. We start by discussing the

related work to the problems we investigate in this dissertation in Chapter 2. After that, we

review the tools and the techniques that we use in this dissertation in Chapter 3. In Chapter 4,

we investigate the predictive accuracy of the machine learning techniques in cryptocurrency

system, Bitcoin. Chapter 5 proposes the privacy preserving data generation algorithm for

limiting the leakage of individual privacy. In Chapter 6 we present the decoy data generation

algorithm for cybersecurity systems to enchance the computer security. Finally, in Chapter 7

we conclude the dissertation.
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CHAPTER 2

RELATED WORK

In this chapter, we summarize the literature work related to the topics we studied in this

dissertation. In Section 2.1 we review the works on Blockchain Networks on machine learning

models. Section 2.2 contains an overview of different privacy preserving data generation

techniques. In Section 2.3 we describe the previous works on decoy file generation for

honeypots.

2.1 Blockchain Networks

The success of Bitcoin (Nakamoto, 2008) has encouraged hundreds of similar digital coins (Tschorsch

and Scheuermann, 2016). The underlying Blockchain technology has been adopted in many

use cases and applications. With this rapidly increasing activity, there have been numerous

studies analyzing the blockchain technology from different perspectives.

The earliest works aimed to track the transaction network to locate coins used in illegal

activities, such as money laundering and blackmailing (Androulaki et al., 2013; Ober et al.,

2013). These findings are known as the taint analysis (Di Battista et al., 2015).

The Bitcoin network itself has also been studied from multiple aspects. Dyhrberg

(Dyhrberg, 2016) studied Bitcoin’s similarities to gold and the dollar, finding hedging ca-

pabilities and advantages as a medium of exchange. From a graph perspective, Baumann

et al. (Baumann et al., 2014) analyzed centralities, and (Lischke and Fabian, 2016) found

that since 2010 the Bitcoin network can be considered a scale-free network. Furthermore,

(Kondor et al., 2014) tracked the evolution of the Bitcoin transaction network, and modeled

degree distributions with power laws. Although these studies analyzed the Bitcoin graphs,

the primary focus was on global graph characteristics.

Kristoufek (Kristoufek, 2015) analyzed potential drivers of Bitcoin prices, such as the

impact of speculative and technical sources. A number of recent studies show the utility of
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global graph features to predict the price (Kondor et al., 2014; Greaves and Au, 2015; Madan

and Zhao, 2015). For instance, (Sorgente and Cibils, 2014) studied the impact of average

balance, clustering coefficient, and number of new edges on the Bitcoin price. These findings

suggest that certain network features are correlated with price; for example, the number of

transactions put into a block indicates a price increase.

Community detection on weighted networks (Jog and Loh, 2015) has not been applied

to blockchains yet, but two network flow measures were recently proposed by (Yang and

Kim, 2015) to quantify the dynamics of the Bitcoin transaction network and to assess the

relationship between flow complexity and Bitcoin market variables. Furthermore, (Madan

and Zhao, 2015) identified 16 features (e.g., number of Tx) for 30, 60 or 120 minute intervals

and used random forest models to predict the price. The core idea behind all these approaches

is to extract certain global network features and to employ them for predictions. However

interactions of features (Henelius et al., 2016) are not widely studied. Most recently, (Akcora

et al., 2018) introduced the notion of chainlet motifs to understand the impact of local

topological structures on Bitcoin price dynamics, and showed that employing aggregated

chainlet information leads to more competitive price prediction mechanisms. In contrast to

global network features, chainlets provide a finer grained insight at the network transactions.

In practice, chainlets can be used to refine the above-mentioned models. However, the

chainlet approach is limited to analysis of transaction types and does not account for critical

information such as the transferred amounts.

In Chapter 4, we remedy some of these short comings using persistent homology based

features, which bring significant performance gains over the results reported in (Akcora et al.,

2018).
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2.2 Differentially Private Data Generation Models

Extensive research has been conducted on publishing private data for preserving privacy. In

this section, we discuss the related techniques with their strengths and limitations.

In statistical analysis, publishing a marginal table while preserving the privacy has been

a fundamental research goal. One of the initial efforts in addressing this problem is proposed

by Barak et al. (Barak et al., 2007). In this method, a full contingency table constructed on

the original data is represented by the Fourier coefficients. The noise is then added to these

coefficients in order to construct the desired k-way marginal tables, instead of perturbing the

original data. Despite its feasibility and widespread use in low dimensional data, the number

of Fourier coefficients, 2d, grows exponentially with increased dimensionality. This results in

intractable computational cost when working with high dimensional data. Another method

is designed by Ding et al. (Ding et al., 2011) to work with high dimensional data such as

online analytical processing (OLAP). In this framework, strategic cuboids that are useful to

generate other cuboids are chosen first, and a private version of these cuboids is constructed

by using differential privacy. The main limitation of this study arises while constructing the

strategic cuboids. As all possible cuboids are iteratively traversed and selected, the number

of the cuboids grows with the dimensions of the data, resulting in an increased complexity. A

more practical and efficient approach, known as PriView, addresses the high dimensionality

problem (Qardaji et al., 2014). PriView also constructs the private k-way marginal tables for

k ≥ 3. While constructing private marginal tables, PriView first extracts low-dimensional

marginal views from the flat data and adds noise to the views. Next, PriView applies a

reprocessing technique to ensure the consistency of the noisy views. Afterwards, PriView

applies maximum entropy optimization on the views to obtain the k-way marginal tables.

PriView is reported as a more efficient technique in terms of time and space complexity;

however, it can be employed on binary data only.
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There are other frameworks, designed particularly for differential optimization problems.

First, Dwork et al. (Dwork et al., 2006) propose an output perturbation technique that

directly add noise to the regularized objective function after optimization. This technique is

outperformed by the objective perturbation technique proposed by Chaudhuri et al. (Chaud-

huri et al., 2011) which adds noise to the objective function before optimization. We denote

this work as PrivateSVM and compare its results to those of DP-SYN in the experiments

section.

Differential privacy has been implemented in a number of data analysis tasks, including

regression models (Chaudhuri and Monteleoni, 2009; Zhang et al., 2012), classification

models (Jagannathan et al., 2009; Rubinstein et al., 2009; Vaidya et al., 2013) and association

rule mining (Li et al., 2012; Zeng et al., 2012).

Generating artificial data from the original one is another privacy preserving technique

for data publication. Here, instead of using the sanitization models discussed previously,

Rubin (Rubin, 1993) introduces repetitive perturbation of the original data as a substitute

to the original data. To execute this technique, Zhang et al. (Zhang et al., 2014) present a

synthetic data generation technique, PrivBayes. PrivBayes is defined as a differential

generative model that decomposes high dimensional data into low dimensional marginals

by constructing a Bayesian network. Afterwards, noise is injected into these learned low

dimensional marginals to ensure differential privacy and the synthetic data is inferred from

these noised marginals. Although PrivBayes is credited as an effective technique, as we

will show in our experiments, our proposed technique has a significant improvement over

PrivBayes.

Acs et al. (Ács et al., 2017) model generative neural networks to produce synthetic samples.

The authors first cluster the original datasets into k clusters with private kernel k-means.

Afterwards, they use generative neural networks for each cluster to create synthetic data. In

our experiments, we denote this work with DP-VAE and compare its results to our method.
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Bindschaedler et al. (Bindschaedler et al., 2017) present another differential generative

framework. The authors introduce an idea of plausible deniability, rather than adding noise

to the generative model directly. Plausible deniability is ensured by a privacy threshold in

releasing synthetic data. Here, an adversary cannot tell whether a particular input belongs

to the original data by observing synthetic records.

Park et al. (Park et al., 2016a) propose a private version of the iterative expectation

maximization algorithm. They effectively combine differential privacy and expectation

maximization algorithm to cluster datasets. Here, we use this approach to discover patterns

in latent space. We observed an improvement in the performance of this technique when used

with partitioning the original dataset into unique data label groups. We use this modified

version in our experiments (Park et al., 2016a) as DP-EM(SYN) and compare its results in

the experiments section.

In some cases, combining differentially private algorithms has been proven to be useful

in formulating more complex privacy solutions. However, such combinations may result in

degradation of the privacy protection as more information is leaked by multiple usage of

the private techniques. To track the total privacy loss while executing such mechanisms,

Dwork et al. (Dwork et al., 2014) propose basic and advanced composition theorems. Abadi

et al. (Abadi et al., 2016) propose another advanced composition theorem known as the

moments accountant and verify that it has the best overall privacy bound in the literature.

Abadi et al. also utilize moment accountant while constructing a deep learning technique to

classify images.

Despite their success in data utility measures, most of the proposed methods in the

literature are impractical to be implemented for high dimensional data. In Chapter 5, we

compare existing techniques on different datasets using different utility metrics moreover,

we present a novel approach that utilizes deep learning techniques coupled with an efficient

analysis of privacy costs to generate differentially private synthetic datasets with higher data

utility.

9



2.3 Decoy File Generation

Cyber deception mechanisms have been heavily studied to enhance the computer security.

However, most of the existing techniques are not focused on generating deceptive data. Here,

we review the existing cyber deception techniques with their limitations and strengths.

Honeypots are a prominent cyber deception mechanism to investigate and analyze the

unauthorized intrusions (Spitzner, 2003). Honeypots are designed as trap based isolated

systems that appear vulnerable to attackers. Legitimate users are not supposed to interact with

them and any interaction with honeypots is considered an illicit attempt. While interacting

with intruders, honeypots gather information of cyberattackers to disclose intruders’ behavior

for forensic analysis. Although honeypots are a notable cyber deception technique, they

have limitations. Since honeypots are fake environments, they might fail to simulate the real

services. As attackers become more sophisticated, they ensure their safety by using more

advanced systems to distinguish “fake” and real system to avoid honeypots (Holz and Raynal,

2005). Moreover, honeypots might create irredeemable risks for the real user environment

when the attacker can use honeypots as a bridge to the real user environment (Almeshekah

and Spafford, 2016).

In addition to Honeypots, decoy injection mechanisms evolved to integrate real systems

in aiding defensive computer deception. These mechanisms serve as a decoy to intruders

to mitigate unauthorized threats by distracting attackers from a target that have sensitive

information.

Yuill et al. (Yuill et al., 2004) presents an intrusion detection system that installs decoy

files on file servers with enticing names to capture the attention of attackers. These decoy

files are constantly monitored and when accessed by any intruder, the system will trigger an

alarm to notify system administrator. However, in some cases, decoy files fail to influence

the perception of attackers since published data (e.g., password file stolen from LinkedIn 1)

1https://www.cnet.com/news/linkedin-confirms-passwords-were-compromised/
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provide attackers insight to distinguish between real and fabricated data. Attackers can

enhance their technique and re-attack again. To circumvent attacker insight, Juels et al. (Juels

and Rivest, 2013) proposes Honeywords to defend hashed password databases by generating

“fake passwords” that seem real to attackers. In their work, they preserve N-1 “fake passwords”

referred as honeywords for each legitimate user password in the database. If any of the

honeywords is submitted for logging into databases, attack has been detected and system

administrator is notified that database has been hacked. Although honeywords are useful

to detect the unauthorized intruders, in some cases it may deteriorate system performance

because each submitted password is compared with all previously generated honeywords

which slows down the authentication process for legitimate users. Also, generating and

preserving the honeywords increases the storage requirement N times. Still this approach is

only applicable for password setting.

Our approach proposes decoy data generation to fool attackers without degrading system

performance. Although, decoy files are used in a cyber defensive system to entice attackers,

they may reveal sensitive information if care is not taken during data generation. To preserve

individual privacy, the decoy files require sanitization of sensitive information. Dwork (Dwork,

2006) proposes a data privacy model as ε-differential privacy to ensure the protection of

private data from leakage by perturbing the data with random noise based on ε. Differential

privacy has been implemented in a number of data analysis tasks, including regression mod-

els (Chaudhuri and Monteleoni, 2009; Zhang et al., 2012), classification models (Rubinstein

et al., 2009; Vaidya et al., 2013) and privacy preserving data publishing (Bindschaedler

et al., 2017; Ács et al., 2017; Zhang et al., 2014). In some cases, it is required to combine

differentially private algorithms to formulate complex privacy solutions. To track the total

privacy loss while executing these repetitive mechanisms, Abadi et al. (Abadi et al., 2016)

proposes the advanced composition theorem known as the moment accountant and verify

that it has the best overall privacy bound in the literature. In this work, we also employ the

moment accountant to bound privacy of the proposed technique to generate decoy files.
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To balance both utility and user privacy, Rubin (Rubin, 1993) introduces repetitive

perturbation of the original data as a substitute to the original data. However, data

generation may suffer from curse of dimensionality when the data has more than dozen

attributes. To overcome the curse of dimensionality, Zhang et al. (Zhang et al., 2014) presents

PrivBayes as a private generative model that decomposes high dimensional data into low

dimensional marginals by constructing a Bayesian network. Afterwards, noise is injected

into previously constructed low dimensional marginals to ensure differential privacy and

the synthetic data is inferred from these sanitized marginals. Acs et al. (Ács et al., 2017)

models another generative approach to produce synthetic samples. First, the original data is

partitioned into k clusters with private kernel k-means. Then, each previously clustered data

is inputted to private generative neural networks to create synthetic data.

Park et al. (Park et al., 2016b) proposes DpEm as a private version of the iterative

expectation maximization algorithm. They combine differential privacy and expectation

maximization algorithm to cluster datasets. Here, we use this approach to discover patterns

in latent space. We observed an improvement in the performance of this technique when

used with partitioning the original dataset into unique data label groups. Here, we use this

modified version in our experiments (Park et al., 2016b) as DpEm+ and compare its results

in the experiments section.

Similar to the clustering approach, in Chapter 5, new generative deep learning method

is proposed that produces synthetic data from a dataset while preserving the utility of

the original dataset. The original data is partitioned into groups, and then the private

auto-encoder (a type of deep learning model) is employed for each group. Auto-encoder

learns the latent structure of each group, and uses expectation maximization algorithm to

simulate them. In Chapter 6, the applicability of these techniques in the context of generating

relational honey data is investigated.
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CHAPTER 3

BACKGROUND FOR RELATED CONCEPTS

In this chapter, the concepts and techniques utilized in this dissertation are described.

3.1 Topological Data Analysis

In this subsection we provide a general overview of the associated mathematical apparatus to

bring the persistent homology tools to the analysis of blockchain networks.

Let X = {X1, . . . , Xn} be a set of data points in a metric space (e.g., the Euclidean space

or a manifold). Select a threshold εk and form a graph Gk with the associated adjacency

matrix A = 1dij≤εk , where dij is the distance between points Xi and Xj. Changing the

threshold values ε1 < ε2 < . . . < εN results in a hierarchical nested sequence of graphs

G1 ⊆ G2 ⊆ . . . ⊆ GN that is called a graph filtration. That is, we glean the intrinsic geometry

of {Xi}ni=1 from a multi-lens perspective, associated with a graph filtration. The main idea is

to assess which geometric features remain persistent over the set of thresholds and, hence,

are likely to play a significant role in functionality of the blockchain network.

Since it is generally hard to extract meaningful topological and geometric information

from a discrete set of points, we associate an abstract simplicial complex with each Gk,

k = 1, . . . , N , which, in turn, allows to approximate the geometry underlying {Xi}ni=1 with a

combinatorial structure. Furthermore, by quantifying all topological invariants associated with

a simplicial complex, we bypass subjective selection of features, or feature engineering. For

instance, the Vietoris-Rips (VR) combinatorial complex is one of the the most popular choices

in TDA due to its simplicity and computational advantages (Carlsson, 2009; Zomorodian,

2010).

Definition 3.1.1 (Vietoris-Rips complex). A Vietoris-Rips complex at threshold ε, de-

noted by V Rε, is the abstract simplicial complex consisting of all k-element subsets of

13



X = {X1, . . . , Xn}, called (k − 1)-simplices, k = 1, . . . , K, whose points are pairwise within

distance of ε. If X ⊆ Rd, a 0-simplex can be identified with a point, a 1-simplex with a

segment, a 2-simplex is a triangle and a 3-simplex is a tetrahedron.

Armed with the associated VR filtration, V R1 ⊆ V R2 ⊆ . . . ⊆ V RN , we can track quali-

tative topological features such as connected components, 1-dimensional holes, 2-dimensional

holes and their higher-order analogs, that appear and disappear with an increasing threshold

ε.

Persistent Homology. Systematic evaluation of patterns and dynamics of multiscale

network geometry can be approached via persistent homology. Homology studies shapes in

data, whereas the word persistent implies a focus on shapes that persist (do not disappear)

in some notion of continuum. We simulate this continuum by increasing a threshold εk by

very small steps in the graph filtration. As the threshold increases, more edges are added to

the graph and certain shapes (e.g., loops) start to appear. We use Betti numbers to count

these shapes for the graph at a given threshold.

Betti numbers represent counts of p-dimensional holes where p = 0, 1 . . . ,∞. Lower

Betti numbers have a simple interpretation on networks. For instance, β0 is the number of

connected components; β1 is the number of 1-dimensional holes (loops), etc. We formally

define a Betti number as follows:

Definition 3.1.2 (Betti numbers). The p-th Betti number βp, p ∈ Z+, of a simplicial complex

is the rank of the associated p-th homology group defined as the quotient group of the cycle

and boundary groups. The p-th Betti number of the VR complex at threshold ε is denoted by

βp(ε).

A convenient way to visualize persistent-homology-based summaries is by a barcode plot

which is closely related to Betti numbers. A barcode is a set of stacked horizontal intervals
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Figure 3.1: Barcode of a Vietoris-Rips complex built over 18 points in the plane. The top
four figures are the snapshots of the evolving complex as threshold ε increases. The ε values
corresponding to the two ends of horizontal bars mark the birth and death of topological
features. To find Betti numbers, we count the number of times respective horizontal bars
intersect the vertical line through ε. For example, for ε = 7, β0 = 4 and β1 = 1 (Topaz et al.,
2015).

(or bars), called persistent intervals, representing the birth and death of topological features

of various dimensions (see Figure 3.1).

Betti Numbers for a Blockchain Network

The complexity of learning on large networks is a known issue (Shervashidze et al., 2009).

Although Betti numbers provide a non-parametric solution to combine information on

edge distance with node connectedness, the computational complexity of Betti calculations

prohibits their usage in large networks. For example, for 2-simplicial complexes, “currently no

upper bound better than a constant times n3 is known” (Edelsbrunner and Parsa, 2014). For

Betti numbers βp>3, the complexity becomes too restrictive. This problem is compounded in

the Bitcoin network because address reuse is discouraged. As such, every day brings more

than 500K new nodes to the network. Betti number computations on such large networks is

unfeasible.
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To solve the complexity issues, we propose a novel approach that computes Betti numbers

on a network of N ×N nodes where N is the size of the amount matrix A. Each of the N2

unique chainlets (e.g., C2→3) creates a node in the new network, where edge distance between

two nodes is computed with a suitable ’distance’ d. We describe the main steps as follows:

Given a heterogeneous Blockchain network with transferred bitcoins on edges,

1. All the transferred amounts are converted from Satoshis to bitcoins (dividing by 108),

then added one (so that the values after taking logarithm are non-negative) and

log-transformed: a′ = log(1 + a/108), where a is an amount in Satoshis.

2. For each chainlet of a given time period, we compute the sample q-quantiles for the

associated log-transformed amounts (Hyndman and Fan, 1996): a k-th q-quantile,

k = 0, 1, . . . , q, is the amount Q(k) such that

τ∑
i=1

1yi<Q(k) ≈
τk

q
and

τ∑
i=1

1yi>Q(k) ≈
τ(q − k)

q
,

where τ is the total number of transactions. The (dis)similarity metric dij between

chainlet nodes i and j is defined as the quantile-based distance

dij =

√√√√ q∑
k=0

[Qi(k)−Qj(k)]2.

3. We construct a sequence of thresholds ε1 < ε2 < . . . < εS covering a range of distances

during the entire 365-day period. For each threshold εk, we build the corresponding

Vietoris-Rips complex whose 0-simplices are single chainlets and 1-simplices are pairs

of chainlets with distance less than or equal to εk. Thus, we obtain the filtration of VR

complexes V R1 ⊆ V R2 ⊆ . . . ⊆ V RS.

4. We compute xt = {β0(ε1), . . . , β0(εS); β1(ε1), . . . , β1(εS)} on VR filtrations.
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In constructing the new network, we use and hence retain the amount information from

the Blockchain network. Furthermore, each node type (chainlet) encodes the number of inputs

and outputs in a transaction. This way, we combine distance (computed from transferred

coins) with edge connectedness while restricting the network size. Our new TDA approach

can work with networks of any size, and our experimental results show predictive power of

its topological features.

Betti derivatives

When we consider the Betti numbers of dimension p against increasing filtration thresholds,

we obtain a discrete curve which we refer to as the p-th Betti curve. Functional analysis of

Betti curves allows us to assess dynamics of essential mesoscopic features as a function of

thresholds. Furthermore, we introduce a novel concept of Betti derivatives up to order ` > 0

on VR filtrations:

∂βp(εk) = βp(εk+1)− βp(εk)

∂2βp(εk) = ∂βp(εk+1)− ∂βp(εk),

. . .

∂`βp(εk) = ∂`−1βp(εk+1)− ∂`−1βp(εk),

where k = 1, 2, . . . , S − 1, p = {0, 1, . . .} values are determined by how many Betti numbers

we choose to use, and S is the number of filtration steps. These finite difference are analogues

of derivatives for smooth functions. The inclusion of the rates of change of the Betti curves is

intended to systematically capture dynamics of essential topological features and to enhance

the predictive power. In (Hofer et al., 2017) the topological features of dimension zero are

split into the essential (persisting till the end of filtration) and non-essential. However, there

could be features that persist over a significant range of threshold values but disappear right

before the filtration ends and thus fall under the category of non-essentials. In contrast, our
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approach considers the Betti curves along with their shape rate derivatives as a whole and

thereby allows to view such features under a more general umbrella of the essential features.

3.2 Differential Privacy

In this subsection we provide a general overview of Differential privacy. Differential privacy

is the formal mathematical model that ensures privacy protection, and it is primarily used to

analyze and release sensitive data statistics (Dwork et al., 2006). Differential privacy utilizes

randomized algorithms to sanitize sensitive information while bounding the privacy risk of

revealing sensitive information.

Theorem 1 ((ε, δ)-Differential Privacy (Dwork et al., 2006)). For two non-negative numbers

ε, δ, a randomized algorithm, F , satisfies (ε, δ) -differential privacy iff for any neighboring

pair d, d′ and S ⊆ Range(F), the following formula holds:

Pr[F(d) ∈ S] ≤ exp εPr[F(d′) ∈ S] + δ. (3.1)

Here, the neighboring pair differ from each other with only one entry while the re-

maining entries are identical. In Theorem 3.1 (Dwork et al., 2006), δ is a relaxation to

ε-differential privacy that formulates the probability of privacy leakage. However, to avoid

such leakage, Dwork et al. (Dwork et al., 2014) shows that δ must be chosen smaller than

1/n for a data of n samples.

Our proposed technique sanitizes sensitive data based on a widely used differentially

private technique, the Gaussian mechanism (Blum et al., 2005). The deterministic function

f takes d as input. f(d) perturbs the input with noise sampled from the normal distribution

N , based on ε, δ, and sf which is the sensitivity of f defined as follows:
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Definition 3.2.1 (Sensitivity (Dwork et al., 2006)). For a given function f, the sensitivity

of f is defined as a maximum absolute distance between two neighboring pairs (d,d’)

sf = max
(d,d′)

‖f(d)− f(d′)‖, (3.2)

where ‖.‖ is L1 norm.

The (ε, δ) -differential privacy of function f over data d is guaranteed by F(d) with the

Gaussian mechanism:

F(d) = f(d) + z, (3.3)

where z is a random variable from distribution N (0, σ2sf
2). Here, when ε ∈ [0, 1], the relation

among the parameters of Gaussian mechanism (Dwork et al., 2014) is such that

σ2ε2 > 2 ln 1.25/δs2f .

3.3 Deep Learning

Deep learning is a subfield of machine learning that can be either supervised or unsuper-

vised (Hinton et al., 2012). The power of deep learning comes from discovering essential

concepts of data as nested hierarchy concepts where simpler concepts are refined to obtain

complex concepts. We focus on the auto-encoder, an unsupervised deep learning technique

that outputs a reconstruction of its input.

An auto-encoder is trained by optimizing an objective function. Stochastic gradient

descent (SGD) (Song et al., 2013) is used to solve this optimization problem. Rather than

iterating over every training instance, SGD iterates over a mini-batch of the instances. For a

given training set of m samples, D={xi}mi=1 and xi ∈ Rd, the objective function is given as:

min
w
L(w) =

1

|B|
∑
xi∈B

`(w;xi), (3.4)

where B is the mini-batch, w is auto-encoder model parameter and ` is the discrepancy cost

of example xi and its reconstruction x̃i.
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At each step t, model gradient is computed for a given batch Bt and learning parameter

η. Then, the model parameter is updated for the next step as follows:

wt+1 = wt − η

(
1

|Bt|
∑
xi∈Bt

∇w `(w;xi)

)
. (3.5)

Figure 3.2 presents two main phases of an auto-encoder: the encoder and the decoder.

x̃ . . . . . .

z . . .

x . . . . . .

w

wT

σ (w.x)

σ
(
wT .σ (w.x)

)
Decoder

Encoder

1

Figure 3.2: One hidden layer auto-encoder that encodes the input to the latent space, and
decode the latent space to the reconstruction of input.

The encoder maps its input to a hidden intermediate layer that usually has less neurons

than the input size to get a latent representation of the input. Here, the element-wise

activation function σ maps x ∈ Rd into z ∈ Rd′ where d′ < d. On the other hand, the

decoder takes the latent representation z, and reconstructs x̃ ∈ Rd.
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CHAPTER 4

CHAINNET: LEARNING ON BLOCKCHAIN GRAPHS WITH

TOPOLOGICAL FEATURES 1

4.1 Introduction

In financial markets, machine learning applications has become more prominent to draw

insights and make predictions in calibrating trading decisions. For those applications, accurate

and robust prediction is paramount to decrease risk in companies’ investments. To achieve

it, many different predictive models are proposed to financial systems, however, existing

approaches are failed to identify the stock market trends and patterns due to high volatility

of the financial systems. To better predict the market changes, we propose a cryptocurrency

predictive model with topological features. To evaluate the contribution of our approach, we

use Bitcoin data as a use case in this dissertation. Here, we use Bitcoin as a use case since

future of Bitcoin and cryptocurrencies and its potential impact in financial markets have

created discussions (Mattila et al., 2016). One interesting aspect of popular cryptocurrencies

such as Bitcoin is that each transaction is recorded on a distributed public ledger called

blockchain. The transactions recorded on the blockchain can be accessed and analyzed by

anyone. Furthermore, all of the transactions could be represented by a graph which we refer

to as the “blockchain graph”. Existence of the blockchain graph raises important questions

such as “How does the blockchain graph structure impact the underlying cryptocurrency

price?”

In this chapter, we focus on answering this question by proposing different approaches to

represent blockchain graph patterns; and we use these patterns to build machine learning

models for price prediction.

1 c©2019 IEEE. Reprinted, with permission, from Nazmiye Ceren Abay, Cuneyt G. Akcora, Yulia R. Gel,
Umar D. Islambekov, Murat Kantarcioglu, Yahui Tian, Bhavani Thuraisingham, ”ChainNet: Learning on
Blockchain Graphs with Topological Features”, To Appear in the 2019 IEEE International Conference on
Data Mining (ICDM), Nov 2019.

21



To draw conclusive insights into the blockchain graph dynamics and its impact on

cryptocurrency price, we propose novel techniques inspired by topological data analysis and,

particularly, persistent homology that can capture these higher order interactions.

Persistent homology, or analysis of properties of progressively finer simplicial complexes,

unveils some critical characteristics behind functionality of a blockchain graph and interac-

tions of its components at multi-scale levels, which are otherwise largely inaccessible with

conventional analytical methods. Such an approach provides a number of important benefits.

First, we systematically account for mesoscopic changes in the blockchain graph geometry,

both in terms of transaction patterns and associated transaction volumes. Second, analysis of

the combinatorial structure of the abstract simplicial complexes associated with a blockchain

graph allows bypassing a stage of feature engineering – we no longer need to subjectively

select topological features, such as degree distribution, but instead use an exhaustive knowl-

edge on topological invariants of the blockchain graph and evaluate its predictive utility for

cryptocurrency price dynamics. Furthermore, the limited studies on application of topological

data analysis to other types of networks show that persistent homology features outperform

conventional graph features such as betweenness centrality, clustering coefficient and nodal

degree in network classification and segmentation (Garg et al., 2016). In this dissertation,

we introduce the power of topological data analysis, particularly, persistent homology and

associated network filtrations, to the analysis of blockchain graphs.

The contributions in this approach can be summarized as follows:

• To our knowledge, we are the first ones to introduce the persistent homology tools to

cryptocurrency predictive analytics. Furthermore, we couple mesoscopic topological

features of Blockchain with Machine Learning techniques to predict Bitcoin prices.

• Using extensive empirical analysis, we show that our proposed persistent homology based

machine learning models can significantly outperform (i.e., up to 38% improvement in
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root mean squared error) models that use only past price and standard features such

as total transaction count.

4.2 Problem Definition

Problem Statement: Let xt ∈ Rd be a set of features computed on the Bitcoin blockchain.

Let (x1, y1), . . . , (xt, yt) be the observed data where Y = {y1, . . . , yt} are the corresponding

Bitcoin prices in dollars. At a time point t, estimate the Bitcoin price yt′ where t′ > t.

Before solving this problem, we need to address these additional questions:

• How can real world Bitcoin prices be determined by blockchain network activity? Can

the causality be proven?

� Our hypothesis is that input and output based structure of Bitcoin transactions

encode various buyer and seller motivations that reflect market sentiment, which in turn

determines price movements. For example, investments in the currency are encoded

in transactions that contain more inputs than outputs. Similarly, selling behaviour

creates transactions with more outputs than input addresses. Already, our previous

results (Akcora et al., 2018) offer evidence for a causality between blockchain activity

and Bitcoin price. In this chapter we offer further evidence for the causality.

• Most Bitcoin transactions on online exchanges are handled in-house by exchanging

private/public keys pairs between users. How can we account for these missing transac-

tions?

� We are aware that in-house transactions can be as many as 3 to 30 times (See

Figure 4 in (Antulov-Fantulin et al., 2018)) the number of transactions published in the

blockchain. However, we claim that in-house transactions are still periodically published

to the blockchain in batches. Transaction histories of exchange addresses, such as the
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Coinbase Bitcoin address, 2 contain evidence to support our claim. Otherwise a data

loss would bring about huge losses, as happened to the Mt. Gox exchange in 2014.

Although they contain a lagged version of data, exchange transactions still contain

useful information, and their amounts can be utilized in a predictive model.

• From a methodological perspective, why is the price prediction problem important?

� Price prediction is important as it impacts a billion dollar industry in cryptocurrencies.

However, we would like to point out another aspect. We argue that price, which is

arbitrated off-chain in real world, is a unique external validator for testing the power

of machine learning models on a complex system that is created worldwide by real

actors. For example, we use the price to validate the predictive power of topological

data analysis tools and constructs, e.g., Betti numbers. As price is inherently related to

real life phenomena, such as network growth and influential user behaviour, we envision

that many network growth, scaling and influence models (Gionis et al., 2012) can be

validated by using settings similar to ours.

We provide two solutions to our research problem: graph filtration (FL) and Betti signatures.

The first approach is based on graph filtration. That is, we filter the transaction network

with increasing thresholds of Bitcoin amounts, and create multiple realizations of the network.

Afterwards, we merge these realizations to train a model. The second approach uses topological

signatures to capture persistent features in terms of Betti numbers and Betti derivatives.

The Betti approach is based on rigorous mathematical foundations of algebraic topology

and provides a mesoscopic view of the system, whereas the graph filtration is a heuristic that

allows manually selecting amount thresholds and associated filtering of the network. Next,

we describe these two approaches in details.

2https://www.blockchain.com/btc/address/1LQTXi1iWULMd4aKn5tKpcgT3xgJiTV5Dm
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4.3 Learning Graph Based and Topological Features

4.3.1 Learning Graph Representations

We first introduce existing blockchain network models and explain their shortcomings. Next

we give our chainlet model, and extract graph filtration features using the chainlets.

In a typical blockchain graph such as the one used by Bitcoin, an owner of multiple

addresses (i.e., each address represents an account, each person may have many address-

es/accounts) can combine them in a transaction and send coins to multiple output addresses.

Therefore, the Bitcoin blockchain consists of two types of nodes: transactions, and addresses

that are input/output of transactions. Earlier results on Blockchain analysis are based on

constructing graphs with a single type of node: transactions (Ron and Shamir, 2013) or

addresses (Filtz et al., 2017) constituted nodes and currency transfers created edges between

nodes. By choosing a single type of node, these approaches omit either address or transaction

information in the graph. In our approach we construct a heterogeneous Blockchain graph

with both address and transaction nodes. Figure 4.1 shows a blockchain graph with trans-

actions as rectangle and addresses as circle shaped nodes, respectively. Each directed edge

connects an address to a transaction, and the edge direction denotes a transfer of currency.

Blockchain edges are naturally ordered in time with respect to the block they appear in.

Once the graph is constructed, shapes of transactions, and how they connect addresses

conveys information on how the graph further extends in time. For all purposes, a Blockchain

graph can be thought as a forever forward branching forest where transaction nodes appear

only once, and address nodes may appear multiple times (but in practice address reuse is

discouraged on Bitcoin and other blockchains).

With its input and output addresses, each transaction represents an immutable decision

that is encoded as a subgraph on the blockchain graph. Recently graph chainlets were

proposed to encode and aggregate this information (Akcora et al., 2018). On the directed,
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heterogeneous blockchain graph G = (V,E,B), V is a set of vertices, and E ⊆ V × V is a

set of directed edges. The set B ={ Address, Transaction} represents node types. On the

blockchain graph G, k-chainlets are defined as follows:

Definition 4.3.1 (The k-Chainlet). A blockchain subgraph G ′ = (V ′, E ′, B) is a subgraph

of G (i.e., G ′ ⊆ G), if V ′ ⊆ V and E ′ ⊆ E. Let Gk = (Vk, Gk, B) be a subgraph of G with k

nodes of type {Transaction}. The Gk is called a graph k-chainlet.

As the k value increases, k-chainlets encode higher order structures on the graph and the

number of distinct shaped chainlets also increases. As each transaction can have thousands

of inputs and outputs, even for the most basic case of k = 1, k-chainlets can have millions of

distinct shapes.

For simplicity, k = 1-chainlets are referred to as chainlets. We encode chainlets with two

dimensions: for |i| input addresses and |o| output addresses, the chainlet is denoted as Ci→o.

The example Figure 4.1 shows three distinct chainlets: 2 of shape C2→2 (around t1 and t4), 1

of shape C3→1 (around t2) and 1 of shape C1→3 (around t3).

In motif analysis of networks (Milo et al., 2002), each motif (such as a triangle among

three nodes) is counted on the network, and network dynamics are linked to motif densities.

Chainlet analysis provides a similar role on Blockchain graphs; by counting the occurrence of

certain shapes, a graph can be summarized with chainlet densities.

Occurrence and Amount Matrices: For a graph chainlet if there exists a Gk ∈ G, we

say that there exists an occurrence, or embedding of Gk in G. Another aspect of a chainlet

is the amount of currency that is transferred from its inputs to outputs.

With occurrence and amount information of chainlets, the blockchain graph is represented

with [imax × omax] dimensional occurrence and amount matrices, where the cell of i-th row

and o-th column represents information on the chainlet Ci→o.
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Figure 4.1: A Bitcoin graph with 4 transactions and 13 addresses. Amounts on edges show
currency transfers. The difference between input and outputs amounts, if exists, shows the
transaction fee collected by miners.

Example 1. Consider the toy example in Figure 4.1, where both imax = 3 and omax = 3.

Resulting 3× 3 occurrence and amount matrices are given below as O and A, respectively.

In total, there are four chainlets but only three distinct shapes. C1→3 and C3→1 occurs once

(O13 = O31 = 1), and C2→2 occurs twice (O22 = 2). The total amounts transferred by each

chainlet are given as A13 = 0.8, A22 = 4.1 + 2 and A31 = 3.8.

O =


0 0 1

0 2 0

1 0 0

 and A =


0 0 0.8

0 6.1 0

4 0 0


Graph Filtration (FL). Given the amount and occurrence information, a natural combi-

nation of them entails filtering the occurrence matrix with user defined thresholds on amounts,

or filtering the amount matrix with user defined thresholds on occurrences. In both cases,

the user defined threshold implies a heuristic aspect.

FL creates multiple occurrence matrices of a Bitcoin network at a given time period, and

uses them as the feature set to train a prediction model. Algorithm 1 represents the main

steps. At a given time period t, chainlets of the time period are iterated over with a set of

thresholds. A chainlet Ci→j’s occurrence is recorded in the associated occurrence matrix Oε
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Algorithm 1 FL: Graph Filtration

Input: G: Blockchain graph, time t, ε1,..S: set of S filtration thresholds.
1: for ε ∈ ε1,..S do
2: Oε ← [] //initialize occurrence matrix
3: end for
4: for chainlet Ci→j ∈ Gt do
5: for each threshold ε ∈ ε1,...,S do
6: if ε ≤ amount(Ci→j) then
7: Oεij ← 1 +Oεij
8: end if
9: end for
10: end for
11: return xt = [Oε1 . . .OεS ]// concatenated occ. matrices

if the amount transferred by the chainlet amount(Ci→j) ≥ ε. The process is repeated for all

inputted data. Resulting occurrence matrices are row-wise concatenated and output as the

FL feature set for time period t (i.e., xt).

The FL captures persistent graph structures by retaining edges among nodes according

to a set of threshold values. For a threshold value ε ∈ ε1,...,S, we only record the occurrence of

chainlet, if the amount transferred by the chainlet is ≥ ε.

4.3.2 Learning Topological Representations

In this section, we introduce topological data analysis and define two types of information on

network topological signatures. The first type, Betti numbers (e.g.,β0, β1), are computed on

the network after using an increasing distance threshold and filtering out edges with distances

above the threshold. The second information, Betti derivatives, encodes the rate of change in

the computed Betti numbers for increasing thresholds.

Topological data analysis (TDA) and, persistent homology, in particular, is an emerging

methodology at the intersection of algebraic topology, statistics and machine learning that

allows to systematically infer qualitative and quantitative mesoscopic geometric structures

directly from the data and to enhance our understanding on the hidden role of geometry in
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functionality of a complex system (Carlsson, 2009; Chazal and Michel, 2017). The limited

studies on application of TDA to random graphs indicate that analysis of topological invariants,

(e.g., Betti numbers), outperform methods based on conventional graph features (Garg et al.,

2016). Our goal is to bring the persistent homology tools to the analysis of blockchain

networks; and the details of TDA, Betti Numbers and Betti Derivatives are provided at 3.1

4.4 Experiments

In this section, we show the performance of predictive models in our ChainNet framework. A

detailed technical report on ChainNet is available at (Abay et al., 2019).

We begin by describing our dataset. Section 4.4.2 explains how we train the models on

the time series of the learned features. Next, we introduce our machine learning models and

define multiple baseline approaches for performance comparison purposes.

4.4.1 Data

We downloaded and parsed the entire Bitcoin transaction graph from 2009 January to 2018

December. Using a time interval of 24 hours, we extracted daily transactions on the network

and created the Bitcoin graph. Our datasets are available online. 3 Our Bitcoin price (USD)

data is downloaded from blockchain.com which aggregates prices from worldwide online

exchanges. 4

Filtration data. We analyzed Bitcoin transactions to find an appropriate dimension N

for the occurrence matrix. On the Bitcoin graph % 90.50 of the chainlets have N of 5 (i.e.,

Ci→o s.t., i < 5 and o < 5) in average for daily snapshots. This value reaches % 97.57 for N

3Please see: https://github.com/Cakcora/coinworks

4Due to the extreme divergence in prices from the rest of the world, Korean exchanges are excluded in
Bitcoin price arbitration.

29



of 20. We chose N = 20, because it can distinguish a sufficiently large number (i.e., 400) of

chainlets, and still offer a dense matrix. Our models achieved a satisfactory performance with

ε ∈ {0, 10, 20, 30, 40, 50} thresholds in the graph filtration. However we note that ε partitions

can be further improved.

Betti and Betti Derivative Data. We use the Betti numbers estimation routine of

the Perseus (Nanda, 2017) software which provides an efficient algorithm to compute Betti

numbers β0 and β1 and persistent intervals using discrete Morse theory.

We used ε ∈ {50, 100, 200 and 400} as ε thresholds in calculating Betti features. Overall,

we find no improvement in prediction accuracy for ε > 400. Furthermore, there is no single

optimal ε value to be used in all statistical and machine learning models. In the technical

report, for each model’s best performance we detail the used ε values.

The dynamics of Betti values is depicted in Figures 4.2 and 4.3 for 25 thresholds. Figure 4.2

reveals visible variation in β0 and β1 numbers across 365 days. In the present study, we focus

on VR complexes of dimension one. This implies that 1-dimensional holes are formed by three

or more nodes, which in turn leads to a general negative association between the β0 and β1

curves – as ε increases, more simplices are added to the complex, thereby reducing the number

of connected components and increasing the number of 1-dimensional holes. For the same

reason, we see in Figure 4.3 that the spikes in average β0 curves match the plummets of the

corresponding β1 curves and vice versa. On July 20, 2017 the Bitcoin Improvement Proposal

91, to trigger Segregated Witness (SegWit) activation, is locked in. This has resulted in the

start of the new bullish wave. Remarkably, we find that the spike in Bitcoin in mid July 2017

have been preceded by an increase in β0, and decreases in β1 and average daily transactions.

Moreover, the extrema of β0, β1 curves and average daily transactions in July 2017 are well

aligned.

In addition to FL and Betti related features, we also experimented with basic features:

price, mean degree of addresses (MeanDegree), number of new addresses (NumNewAddress),
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Figure 4.2: Boxplots of β0 and β1 numbers for various threshold ε values.

Figure 4.3: Time series of daily log returns, transactions, average β0 and β1 numbers in 2017.
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mean and total coin amount transferred in transactions (meanTxAmount and TotalTxAmount,

respectively) and address network average clustering coefficient (ClusCoeff). Among these,

we only found Price and TotalTx to be useful predictors and included them in our models.

Table 4.1 shows all the considered features.

Table 4.1: Features used in Machine Learning models for a given day.

Approach Feature Set
Basic features Price, TotalTx,MeanDegree,NumNewAddress

MeanTxAmount, TotalTxAmount, ClusCoeff
Filtration Price, TotalTx,Oε1 . . .OεS
Betti (Sec. 3.1) Price, TotalTx, β0(ε1), . . . , β0(εS), β1(ε1), . . . , β1(εS)
Betti derivative (Sec. 3.1) Price, TotalTx, β0(ε1), . . . , β0(εS), β1(ε1), . . . , β1(εS),

β′0(ε1), . . . , β
′
0(εS), β′1(ε1), . . . , β

′
1(εS)

4.4.2 Setting for Feature Time Series

training=5 prediction

window=3 horizon

tt-1t-2t-3t-4 t+1 t+2

1 2

Figure 4.4: The sliding window based regressor model. The example model trains with data
from the last m = 5 days, and uses the data from t, t− 1 and t− 2 (window=3) to make a
prediction for either day t+ 1 (horizon=1) or day t+ 2 (horizon=2).

Given the features, we employ a time based approach to predict the Bitcoin price, as

shown in Figure 4.4. Our goal is to catch trends in the price data, based on the observation

that price movements in the preceding days are a good indicator of future prices.

ChainNet employs three time related concepts: training length, window (lag) and horizon.

Training length is the number of past time periods whose data we use to train our model.
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Window is the number of past time periods whose data we use to predict Bitcoin price.

Horizon is the number of days whose price we predict ahead.

In the most basic case of prediction horizon h = 1 and prediction window w = 1, the

model learns to predict the price of day ŷt+1 by using the data xt of day t. Similarly, for any

window w, the model uses data from {xt−w, . . . , xt} to predict the price ŷt+h.

Details of the sliding prediction approach is given in Algorithm 2. Input is time indexed

data points and output is the model parameters trained on the given input. For given window

w and horizon h values, time series data is processed to utilize the history of the current day,

t (Line 2-5 in Alg. 2). Each xt is replaced by the successive values of time series between

t− w − h and t− h (Line 3 in Alg. 2). Newly generated x̂t is and its corresponding price, yt,

is appended to the train list (Line 4-5 in Alg. 2). After all days are iterated on, dimension

reduction is applied to the generated x̂train to obtain compensated data (Line 6 in Alg. 2).

At the end, model is optimized with the previously obtained train data and the algorithm

returns the obtained model parameters for out-of-sample predictions (Line 7-8 in Alg. 2).

Algorithm 2 SPred: Sliding prediction

Input: Data:{(xt, yt): t ∈ T} where xt ∈ Rd; yt: the daily bitcoin price in dollars; l: training
length; w: sliding window length; h: prediction horizon; d2: pca dimension

Output: θ: Model Parameters.
1: xtrain, x̂train, ytrain ← {}
2: for each t ∈ [h+ w : l] do
3: x̂t ← [xt−w−h+1, . . . , xt−h; yt−w−h+1, . . . , yt−h] // row-wise
4: x̂train ← x̂train ∪ x̂t
5: ytrain ← ytrain ∪ ŷt
6: end for
7: xtrain ← PCA(d2, x̂train)
8: θ = model.fit(xtrain, ytrain)
9: return θ

We consider the following two parameters in all predictive models: window w ∈ {3, 5, 7},

horizon h ∈ {1, 2, 5, 7, 10, 15, 20, 25, 30}, training length l ∈ {25, 50, 100, 200}. As the interac-

tion of horizon, window and training length parameters may exhibit nonlinear effects on the
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prediction, we conduct a grid search by varying all parameters, and report the predicted price

values for the best model. The technical report contains the used values of all parameters in

models.

An important point in our sliding prediction approach is that, we train a model per each

prediction. As a result, we train a model 365 times to predict Bitcoin prices in 2017. We

chose this setting because gain results improved over a batch prediction model. As we model

data with low dimensional features, the cost of this approach was negligible.

4.4.3 Statistical and Machine Learning Models Used

We evaluate ChainNet performance by using one statistical (ARIMAX) and four machine

learning models:

ARIMAX refers to the Auto-Regressive Integrated Moving Average model (with exogeneous

variable) that is a conventional benchmark model in time series analysis and forecasting

that accounts for data non-stationarity (Box et al., 2015).

XGBT is the eXtreme Gradient Boosting which applies gradient boosting algorithms to

decision trees (Chen and Guestrin, 2016).

RF stands for Random Forest which is a supervised ensemble of multiple simple decision

trees to estimate the dependent variables of the data (Ho, 1995).

GP presents Gaussian Process based Regression technique which is designed to estimate the

regressor parameters with the maximum likelihood principle (Williams and Rasmussen,

1996).

ENET refers to the elastic net model which is designed as a regularized linear regression

model with the L1 and L2 penalties of the lasso and ridge methods (Zou and Hastie,

2005).
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Deep Learning Models. Given the recent popularity of Deep Learning, we initially

considered Recurrent Neural Networks and Long Term Short Memory models in ChainNet.

However, our experiments did not yield satisfactory results. We hypothesize that these models

require more training data to achieve convergence than we can possibly supply at this point.

Parameter Setting for Models. For the hyper-parameter tuning of ARIMAX, the orders

for auto-regression and moving average terms are chosen from {0, 1, 2}. For the tree based

approaches such as XGBT, RF, generated number of trees are chosen from {10, 50, 100, 200,

300, 400, 500, 1000}. For the learning rate of XGBT, we tried values from {0.01, 0.1, 1.0}.

ENET regularization parameters for L1 and L2 and penalty constants are selected from

{0.0001, 0.001, 0.01, 0.1, 1.0, 10.0} and {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. In hyper-

parameter tuning of GP, regression types, correlation types, and regularization parameters

are chosen from {constant, linear, quadratic}, {absolute exponential, squared exponential,

generalized exponential, cubic, linear}, {0.001, 0.01, 0.1, 1.0, 10.0} respectively.

High Dimensionality. Since we use a windowed (lagged) history of the data, dimension-

ality of the training data increases rapidly.

For example, consider the Betti model with S = 50 filtrations. In addition to Price

and TotalTx, each day has 50 β0 and 50 β1 Betti values. For w = 3, the model uses

(3 · (100 + 2) = 306) features, whereas there can be at most (2018 − 2009) ∗ 365 training

instances if we use the entire Bitcoin history. Decreasing the number of thresholds (e.g.,

S = 5) can reduce dimensionality, but this approach reduces the power of Betti models as

well, due to decreased threshold granularity.

We apply Principal Component Analysis (PCA (Jolliffe, 2011)) to the lagged feature sets

of FL, Betti and Betti derivative; in Algorithm 2 Line 7 PCA maps the high dimensional

data into low dimensional data with the dimension of d2 ∈ {5, 10, 15, 20}.
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4.4.4 Baseline Performance

The simplest baseline for ChainNet can be constructed by training models on Price and

TotalTx in a sliding window prediction scheme. We did not use other baseline features

such as mean degree (see discussion in Section 4.4.1) since adding those features reduces

the performance of the baseline models. We train baseline models without reducing the

dimensionality (d2=d in Alg. 2), because input features are very few; for w = 3, the models

use 6 features in training. We assess model performance with root mean squared error

(RMSE) as follows:

RMSE =

√
1

|T |
∑
t∈T

(yt − ŷt)2, (4.1)

where |T | is the number of days, ŷt is the predicted price and yt is the true observed price on

the tth day.
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Figure 4.5: RMSE of sliding window based predictions of 2017 Bitcoin prices in different
window and horizon values.

In our rolling predictive framework, we achieve the best results with a training length of

100 days, that is, each considered model is adaptively re-estimated for each yt using data

from the previous 100 days. We only report the best results from each model with the

hyper-parameter optimization.

Figure 4.5 shows the performance of the five models in prediction. ARIMAX has the

worst performance for h > 7, whereas Gaussian Process (GP) has the best RMSE values
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overall. We note that as the window value increases, performance does not improve. This

implies that considering past information on price and total number of transactions does not

deliver improvement in forecasting accuracy. In fact, from window 3 to 7, the RMSE values

of the best model, GP, is approximately similar while h < 10. For h > 10, the RMSE values

decrease 13% from window 3 to 7.

Other Baseline Research Studies. Our previous work on the utility of Chainlets consti-

tutes a baseline for ChainNet; for horizon h = 7, ChainNet gains (38%) are higher than what

we have achieved in ( 5%) (Akcora et al., 2018). The closest scholarly work to ChainNet is

detailed in a report by Greaves et al. (Greaves and Au, 2015), where the authors extract

both graph centric features (e.g., mean degree) and transaction features (e.g., mean amount)

from the Bitcoin address graph, and use support vector machines to predict the Bitcoin

price. As the authors also note at the end of their study, these features do not bring more

information over a model that uses price data only. Indeed our experiments showed high

error rates for predictions with the authors’ experimental setting. More powerful models

have been used in (Kondor et al., 2014; Shah and Zhang, 2014) with better results. We adopt

similar machine learning models in this work, but in addition to the traditional features (see

Table 4.1) ChainNet utilizes novel feature sets in FL, Betti and Betti derivative models.

4.4.5 ChainNet Model Performance

In this section, we provide performance of the predictive models built with FL, Betti and

Betti derivative features. Our hypothesis is that adding these features will increase model

performance, i.e., RMSE in predictions will decrease over their associated baseline values.

Performance Gain. In our analysis, we report the percentage predictive gain, or decrease

in RMSE for a specific machine learning model m w.r.t. its baseline model m0 as

∆m(w, h) = 100×
(

1− RMSEm(w, h)

RMSEm0(w, h)

)
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where RMSEm0(w, h) and RMSEm(w, h) are delivered by a baseline model m0 and a

competing model m, respectively.
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Figure 4.6: Elastic Net model performance.

Enet performance results are shown in Figure 4.6, which indicate that up to seven days,

models do not improve when trained with ChainNet features. A similar trend is visible in the

Random Forest(RF) results, as given in Figure 4.7. However, in RF results, for increasing

horizons gain values dip below 0%, whereas Enet gains stay above 0%. In both models

h = 1, . . . , 5 predictions have negative gains. These results indicate that for immediate future,

these machine learning models perform better when trained on price and transaction counts

(TotalTx) only.

Intuitively, if Bitcoin price increases/decreases consistently in the last w days, we expect

the trend to continue in the following days. RF and ENET models capture this trend better

without the ChainNet features in short horizons.

Figures 4.8 and 4.9 show that XGBT and GP predictions improve for increasing horizons,

but decrease for h > 15. Specifically h = 1 predictions reach a positive gain only in XGBT

w = 7. XGBT also offers the best gains for h = 2, but its performance deteriorates for

h > 15.

In constructing the XGBT model, the boosting approach focuses on examples that increase

the error rate of objective function at each step. We hypothesize that this specific focus is

the reason for XGBT’s better performance.
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Figure 4.7: Random Forest Performance.

The highest gain values for h ≤ 7 are achieved in XGBT Betti models for w = 7 (38% in

Figure 4.9c). Our heuristic approach, FL, has an interesting trend; its usage in models lead to

better gains for higher horizons. On the other hand Betti models achieve better gain values

for short horizons. Considering these results, ChainNet can use Betti and Betti derivatives

for short (h < 10) term prediction, and use FL for h > 15.

An important result is that next day predictions (h = 1) do not improve significantly (i.e.,

at most 2% in Figure 4.9c) with ChainNet features. In other words, topological and graph

based signals in the blockchain have a negligible causal affect on the next immediate day.

Our results offer evidence for the hypothesis that considering topological features in

predictive models bring a significant gain. ChainNet uses Betti models and FL for short and

long term predictions, respectively.
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Figure 4.8: Gaussian Process (GP) based regression performance.
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Figure 4.9: Extreme Gradient Boosting (XGBT) performance.
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CHAPTER 5

PRIVACY PRESERVING SYNTHETIC DATA RELEASE

USING DEEP LEARNING 1

5.1 Introduction

In today’s world, machine learning applications have been heavily used to almost every aspect

of human life. These applications are continuously tracking our daily crucial activities thereby

making our life easier and faster. To draw robust and accurate insight with these applications,

machine learning applications collect and refine privacy sensitive micro-data, i.e., information

at the level of individual respondents to build machine learning models. However, sharing

micro data carries inherent risks to individual privacy. For example, a municipal dataset that

contains information about bike sharing application has been used to identify individuals

and their transit patterns (Vogel et al., 2011). Similarly, a taxi ride data set from New York

have been used to identify certain individuals’ addresses and their trips to certain night

clubs (Wong, 2017). These examples show that there is an important societal need in sharing

micro data with machine learning application while protecting individual privacy to offer

important services and facilitate.

To address this privacy challenge, solutions have been proposed in two broad categories.

In the first category, the data anonymization based approaches (e.g., (Sweeney, 2002)) try to

use various definitions to sanitize data so that it cannot be easily re-identified. Although

these approaches have some important use cases, they are not usually based on rigorous

privacy definitions that can withstand various types of re-identification attacks. In the

second category, synthetic data generation approaches have been proposed to generate

1 c©2018 ECML. Reprinted, with permission, from Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu,
Bhavani Thuraisingham, Latanya Sweneey, ”Privacy Preserving Synthetic Data Release Using Deep Learning”,
2018 The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD), Jun 2018.
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realistic synthetic data using rigorous differential privacy definition (Dwork et al., 2014).

Although these approaches have been shown to work in some limited cases, they have not

been extensively tested on different types of use cases with different requirements (e.g., high

dimensionality, correlation among features). Therefore, it was not clear which technique

works well under what conditions for what type of data sets. We answer these questions by

conducting extensive experimentation. Furthermore, we provide a new differentially private

deep learning based synthetic data generation technique to address the limitations of the

existing techniques.

In this chapter, we propose an auto-encoder technique (DP-SYN), a generative deep

learning technique that generates privacy preserving synthetic data for machine learning

applications. We test our approach on benchmark datasets and compare the results with

other state-of-the-art techniques. We show that our proposed technique outperforms them in

terms of three evaluation metrics.

Our contributions can be summarized as follows:

• We test existing techniques using different datasets with different properties using three

utility metrics. We show that none of the existing techniques consistently outperforms

others on all types of data sharing tasks and datasets.

• We propose a novel differentially private deep learning based synthetic data generation

technique that is shown to be robust under different utility metrics with respect to

different synthetic data generation tasks.

• We show that our approach does not deteriorate when faced with imbalanced or high

dimensional datasets. Due to an inner partitioning of the latent structure, our approach

gives more robust results in noise addition and works with both relational and image

data.
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5.2 Privacy Preserving Data Generation Model

This section describes the main components of our differentially private synthetic data

generation approach. We first introduce our private auto-encoder and explain the private

expectation maximization algorithm. Next, we present the privacy analysis of the proposed

technique.

5.2.1 Differentially Private Synthetic Data Generation Algorithm

Our main framework aims to generate synthetic data without sacrificing the utility. A similar

approach is proposed in (Abadi et al., 2016) which designs a private convolutional neural

network on supervised learning. However, this method can only be used in classification tasks.

We combine this method with DP-EM and to create a generative deep learning model.

Assume that we have the sensitive dataset D = {(x1, y1) , . . . , (xm, ym)}, where every

instance x ∈ Rd has a label y ∈ {1, . . . , k}. We partition the sensitive dataset D into k

groups denoted as D̂1 . . . D̂k such that every instance x in a group D̂i ∈ D has the same label

y. The value of k is limited by the number of unique labels in dataset D.

Figure 5.1 shows the two main steps of our approach. For each data group we build a

private generative auto-encoder which are denoted with DP-SYN. The lower pane of the

figure shows the inner working of a DP-SYN.

The details of our technique are shown in Algorithm 3. After partitioning the dataset

D into k groups (Line 1 in Alg. 3), the noise injected to each group is also partitioned

(Line 4 in Alg. 3), as specified in the sequential composition theorem (Dwork et al., 2006).

For each previously obtained group we build one private auto-encoder (Line 5 in Alg. 3),

which is detailed in Algorithm 4. Next, we obtain the private latent representation of the

group (Line 6 in Alg. 3), and inject it into a differentially private expectation maximization

(DP-EM) function. The DP-EM function is detailed in (Park et al., 2016a). The main task

of DP-EM is to detect different latent patterns in the encoded data and to generate output
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Figure 5.1: Differentially Private Synthetic Data Generation DP-SYN

Algorithm 3 DP-SYN: Differentially Private Synthetic Data Generation

Input: D: {(x1, y1) , . . . , (xm, ym)} where x ∈ Rd, y ∈{1,. . . ,k}; η: learning rate; T : iteration

number; ε: privacy budget; δ: gaussian delta; σ: standard deviation; C: clipping constant.

Output: S: Synthetic data.

1: {D̂1 . . . D̂k} ← Partition data records in D based on associated labels

2: S ← {}
3: for i = 1 to k do

4: Partition ε into εA = ε/2, εH = ε/2 and δ into δA = δ/2, δH = δ/2

5: W ← DP-Auto
(
D̂i, η,T, εA, δA, σ,C

)
// see Alg. 4

6: E ′← encode
(
W, D̂i

)
7: E ′′← DP-EM (E ′, εH , δH) // see (Park et al., 2016a)

8: D̃i ← decode (W,E ′′)

9: S ← S ∪D′i
10: end for

11: return S

data with similar patterns. Here, DP-EM is used to sample encoded data (Line 7 in Alg. 3)

and newly sampled encoded data is decoded with using the model parameter W (Line 8 in
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Alg. 3) . D̃i is the synthetic data associated with an inputted group D̂i and appended to the

S to be output (Line 9 in Alg. 3).

Algorithm 4 DP-Auto: Differentially Private Auto-encoder

Input: η: Learning rate; T : iteration number; εA: privacy budget; δ: gaussian delta; σ:

standard deviation; C: clipping constant.

Output: w: Model parameter.

1: ` is the objective function

2: ∇` is the gradient of objective function

3: initialize w0 randomly

4: ε′A = 0

5: for t = 1 to T do

6: if ε′A < εA then

7: Bt ← random batch

8: it ∼ b where xit ∈ Bt

9: zit ∼ N (0, σ2C2)

10: wt+1 ← wt − η ·
(

1

|Bt|
∑
it

(∇`(wt;xit) + zit)

)
11: ε′A← calculate privacy loss with moments accountant

12: end if

13: end for

14: return w

5.2.2 Building a Private Auto-Encoder

In this section, we discuss the private auto-encoder given in Algorithm 4.

Our private auto-encoder employs steps to improve the optimization process with gradient

computation and clipping. While a gradient is computed for a batch in the standard stochastic

training techniques, we compute the gradient for each training instance instead. This approach

improves the optimization process since it reduces the sensitivity of the gradient present at

each instance (Goodfellow, 2015). Norms of the gradients define the direction that optimizes

the network parameters. However, in some deep networks, the gradients can be unstable

and fluctuate in a large range. Such fluctuations can inhibit the learning process due to the
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increased vulnerability of the networks. To avoid this undesired situation, we bound norms

of the previously computed gradients by a clipping constant C (Pascanu et al., 2013).

After clipping the gradients, noise is sampled from the Gaussian distribution with zero

mean and standard deviation of σ C and added to the previously clipped gradients (Line

9—10 in Alg. 4). At the end of each batch, model parameters of the network are updated

with the negative direction of the learning rate η multiplied by the averaged noisy gradients.

At the end of this step, the private auto-encoder outputs the model parameter w (Line 11 in

Alg. 4).

5.2.3 Privacy Analysis

The privacy analysis of our proposed technique employs the moments accountant approach

developed by Abadi et. al. (Abadi et al., 2016) to keep track of the privacy cost in mul-

tiple iterations. Moments accountant is a combination of both the strong composition

theorem (Dwork et al., 2010) and the privacy amplification theorem (Beimel et al., 2010).

Moments accountant has an improvement on estimating of the privacy loss for composing

differentially private Gaussian mechanisms, and it is the best for overall estimation of privacy

budget in literature (Abadi et al., 2016).

In our proposed work, while training the auto-encoder, we track the privacy loss at the

end of each batch iteration. As given in Lines 5—11 of Alg. 4, we compute the value of

current privacy loss ε′ that has been spent on private auto-encoder in a given iteration t ∈ T .

Training ends when ε′ reaches the final privacy budget ε.

According to moments accountant, Algorithm 4 is (ε, δ)-differentially private if the privacy

loss for any ε′ < k1(|B| /n)2T is such that for some constants k1, k2:

ε′ ≥ k2
|B| /n

√
T log[][]1/δ

σ
,
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where T is the number of training steps and |B| is the mini-batch for a data of n samples

with a given privacy budget ε, gaussian delta δ and standard deviation σ of the Gaussian

distribution.

5.3 Experiments

In this section, we present the experimental results to demonstrate the efficiency of our

proposed approach. We compare our results with other state-of-the-art techniques. To ensure

fairness, we also employ the Gaussian mechanism in these techniques.

We start the evaluation by explaining the experimental settings. We evaluate the perfor-

mance with statistical measures, accuracy in machine learning models and agreement rate.

For each task, 70% of the data is used as a training set, while the rest is used for testing.

5.3.1 Experimental Settings

Datasets. We test the proposed approach on nine real datasets. The following is a brief

description of each dataset:

1. The Adult (Lichman, 2013) dataset contains the information of 45222 individuals,

extracted from the 1994 US census. The dataset shows whether the income of the

individuals exceeds fifty thousand US dollars. The dataset contains 15 features.

2. The Lifesci (Lichman, 2013) dataset contains 26733 records and 10 principal

components from chemistry and biology experiments.

3. The Optical Digit Recognition (ODR) (Lichman, 2013) dataset contains 5620

handwritten digits of 10. Each instance is represented by 64 numeric features.

4. The Spambase (Lichman, 2013) dataset contains 4601 emails, each of which is labeled

as spam or non-spam. Each instance has 58 attributes.

47



5. The Contraceptive Method Choice (CMC) (Lichman, 2013) dataset contains 9

features of 1473 married women to predict their current contraceptive method

choice.

6. The German Credit (Lichman, 2013) dataset contains the anonymized information of

1000 customers with 20 features. Each customer is classified as good or bad credit

risk.

7. The Mammographic Mass (Lichman, 2013) dataset contains the information of 961

patients’ mammographic masses of with 5 attributes. The class value shows that

patient has breast cancer or not based on mammographic mass.

8. The Diabetes (Lichman, 2013) dataset contains the information of female patients

who are at least 21 years old. Each patient is classified as diabetic or not diabetic. The

dataset has 768 records with 8 features.

9. The BreastCancer (Lichman, 2013) dataset contains the information about whether

a patient has breast cancer or not. It has 699 patient records with 10 features.

In all experiments, we compare our results with four state-of-the-art techniques: Pri-

vateSVM (Chaudhuri et al., 2011), PrivBayes (Zhang et al., 2014), DP-EM(SYN) (Park

et al., 2016a) and DP-VAE (Ács et al., 2017).

We repeat each experiment 10 times for each task and report the average measurements

in our experimental results. In total, our experiments consist of 7840 runs of the mentioned

techniques. Here, we only report the best results from each algorithm.

5.3.2 Accuracy in Machine Learning Models

In this set of experiments, we evaluate the accuracy in a Support Vector Machine (SVM) (Hearst

et al., 1998) task. More specifically, we report the percentage of incorrectly classified tuples
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as the misclassification rate. For the PrivateSVM, out of two proposed approaches we only

report results from the objective perturbation approach because it outperforms the output

perturbation approach.

For each training set, we generate synthetic data by using each method and construct

SVM models on the synthetic data. Performance of these models is evaluated on the test

set. PrivateSVM has a regularization parameter λ for the objective function. We run

PrivateSVM with λ ∈ {10−3, 10−4, 10−5, 10−6, 10−8} and pick the model that reports the

lowest misclassification rate.

Figure 5.2 presents the misclassification rate of the techniques for a given (ε, δ) pair. In

the figure, the black straight line shows the misclassification rate on the original dataset, i.e.,

without privacy. Here, it presents the best case to aim for. We now compare the performance

of DP-SYN with respect to each state-of-the-art method.

Figure 5.2 shows that DP-SYN has better performance than PrivBayes for eight out of

the nine datasets. Only for the Adult dataset, PrivBayes performs slightly better than our

DP-SYN approach. DP-SYN outperforms DP-VAE for seven datasets. For BreastCancer

and Diabetes, DP-VAE has better performance; however, it fails to classify any instance in

the GermanCredit dataset. For high dimensional datasets such as Spambase and ODR, the

misclassification rate of DP-EM(SYN) is two times bigger than that of DP-SYN. A reason

for this high misclassification rate shows that DP-EM(SYN) fails in generating synthetic

data task when the dimension of data is more than two dozens. DP-SYN also outperforms

PrivateSVM in five datasets. PrivateSVM is specifically designed for SVM, and it is

expected to have lower misclassification rates in SVM tasks. However, PrivateSVM cannot

be employed in other machine learning tasks easily.

Consequently, we point out that on datasets of different types, no single method gives

the best misclassification rate consistently. As shown in Figure 5.2-c with the absence of

DP-VAE, some algorithms cannot even classify a dataset if the dataset is highly imbalanced.
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Considering these issues, Figure 5.2 shows that DP-SYN can be employed on all datasets

and reports competitive results.
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Figure 5.2: Misclassification rates for the nine datasets.
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5.3.3 Statistical Measures

We evaluate the quality of synthetic data in terms of statistical utility. We generate k-way

marginals of the dataset and compare the probability distribution of the noisy and original

marginals. Total variation distance (Shah, 2009) is used to report the statistical difference

between the noisy and original marginals. The datasets used in the experiments are large,

leading to prohibitively large queries. Hence, considering this problem, we generate only

2-way and 3-way marginals as used in (Zhang et al., 2014).

Figure 5.3 shows that DP-SYN performs better than PrivBayes, DP-VAE and DP-

EM(SYN) for the 3-way marginals of BreastCancer and Diabetes datasets. In 2-way

marginals of BreastCancer and Diabetes datasets, our method performs better than state-of-

the-art with the exception of PrivBayes. However, for 2-way marginals of Mammographic,

our results are competitive with those of PrivBayes. Overall, DP-SYN preserves the

statistical information better than comparable to the state-of-the-art techniques in all datasets.

5.3.4 Agreement Rate

In this section, we evaluate the quality of the synthetic data in terms of the agreement rate

in an SVM label prediction task. Specifically the agreement rate is defined as the percentage

of records for which the two classifiers make the same prediction (Bindschaedler et al., 2017).

Figure 5.4 shows the performance of four techniques in terms of SVM agreement rate and

its standard deviation which indicates the certainty and consistency in model predictions.

For the BreastCancer dataset, our approach has the highest agreement rate for privacy

loss ε ∈ {0.8, 1.2, 1.6}. For the remaining two cases where ε ∈ {2.4, 3.2}, our approach

outperforms DP-VAE and PrivBayes and it has slightly lower agreement rate than DP-

EM(SYN). PrivBayes has the lowest agreement rate and the highest standard deviation

in most cases. This is expected since PrivBayes does not have much improvement on SVM

classification of BreastCancer as previously shown in Section 5.3.2.
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Figure 5.3: Statistical difference between the noisy and original k-way marginals.

For the Spambase and Mammographic datasets, our technique achieves significantly higher

agreement rate than that of other state-of-art approaches. For Spambase DP-SYN has

lowest standard deviation which indicates high consistency with the SVM classifier that runs

on original Spambase training set. We expect such a highest agreement rate because the

proposed approach outperforms other techniques in terms of SVM accuracy in Figure 5.2.

For the Adult dataset, the proposed method outperforms DP-VAE, PrivBayes when

ε ∈ {0.8, 1.2}. For the remaining cases, the performance of DP-SYN is better than DP-VAE

and comparable to DP-EM(SYN) and PrivBayes.

In conclusion, our approach exhibits a significant improvement in the majority of the test

cases as evident from SVM agreement rate.
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Figure 5.4: SVM agreement rate of the four methods reported on the four datasets.

5.3.5 Impacts on Minority Groups

In the synthetic data generation process, the majority population of the data can be over-

presented. In such cases, the generated data may not preserve adequate information about

the racial/ethnic minorities of the population.

We evaluate our method in terms of its performance in preserving the minority population

information in the data. More specifically, we compute the percentage of misclassified

minorities in each dataset. To this end, we create synthetic Adult and CMC datasets, and

compare performance results on them. The Adult dataset has three minorities (i.e., Black,

Eskimo, Asian) that comprise 13% of the data instances, whereas in the CMC dataset the

only minority (i.e., Non-Islam) appears in 14% of the data.

Figure 5.5 shows the minority misclassification rates for all methods. For this task, SVM

models are trained on synthetic data generated by DP-SYN, PrivateSVM, PrivBayes,
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DP-EM(SYN) and DP-VAE. In the figure, the black straight line shows the minority

misclassification rate on the original dataset, i.e., without privacy. In both datasets, synthetic

data generation increases the minority misclassification rate as much as 3.8 times; in the

Adult dataset, misclassification rate for the Eskimo minority increases from 9% to 34% when

privacy loss ε = 2.4 for DP-VAE.

In Figure 5.5-b, the Black minority of the Adult dataset shows the lowest increase in

misclassification; from the NoPrivacy case to a privacy loss of 0.8, the misclassification rate

increases from 9% to less than 15%. We hypothesize that this is due to the high percentage

of Blacks (9%) in the population. In Figures 5.5-c and 5.5-d, the rates increase to higher

values and show bigger variance because Asian and Eskimo minorities are only 3% and 1%

of the Adult dataset; their low percentage coupled with the added privacy result in worse

performance.

Our DP-SYN has lower misclassification rates than DP-VAE in all the datasets. Similarly,

DP-SYN has better performance than PrivBayes for privacy loss values lower ε = 1.6.

The DP-EM(SYN) results are similar or slightly better than those of DP-SYN, but these

better results are only available with our modifications to the DP-EM algorithm.
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Figure 5.5: Minority misclassification rate for CMC and Adult datasets.
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CHAPTER 6

USING DEEP LEARNING TO GENERATE

RELATIONAL HONEYDATA 1

6.1 Introduction

Despite the widespread use of Machine Learning applications, there are many privacy-related

problems which have not been addressed so far. To increase the cybersecurity posture of

the machine learning applications, in this chapter, we will investigate the generated data

in terms of ”deceptivity” aspect. Machine learning applications hold our crucial activities

(i.e., passwords, credit cards, images) and they are exposed to many adversarial attacks.

To enhance the security of the machine learning applications, privacy preserving synthetic

data can be also used to deceive the potential cyberattackers. To simulate the test cases,

we generate the decoy files with privacy preserving data generation tool and use those files

with honeypot environment to track the adversarial behaviours under different scenarios.

Honeypots (e.g., (Spitzner, 2003)) have been proposed to provide deceptive targets (i.e.,

servers) for attackers. Similarly, HoneyFiles (e.g., (Yuill et al., 2004)) have been proposed to

lure attackers to spend time in searching files and potentially disclose their intent. Still, to

our knowledge, none of the previous work tries to create deceptive ’data’ (i.e., HoneyFile) to

fool potential attackers. Unfortunately, lack of realistic deceptive data may make it easier for

an attacker to detect deception. For example, without good HoneyFile, it may be easier to

spot a fake database hosted on a honeypot.

The main purpose of this line of work is to preserve individual privacy while providing

data utility. Therefore, it is not clear whether they could be applicable for generating

1 c©2018 ARO. Reprinted, with permission, from Nazmiye Ceren Abay, Cuneyt G. Akcora, Yan Zhou,
Murat Kantarcioglu, Bhavani Thuraisingham, ”Using Deep Learning to Generate Relational HoneyData”,
2018 Autonomous Cyber Deception, Publisher: Springer (ARO), Sep 2018.
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good HoneyFile. In the context of cyber deception, it is important that the HoneyFile is

indistinguishable from real data so that it can easily fool the attacker.

Creating deceptive data (i.e., HoneyFile) has many challenges. For different settings,

we may need different types of HoneyFile. For example, to deceive an attacker and feed

false information, deceptive technical plans (e.g., technical drawings of an airplane) could be

generated. On the other hand, to make HoneyFiles more believable, fake text data could

be added to such files. Since addressing all these different types of data require different

techniques, in this chapter, we focus on generating deceptive HoneyFile that is relational

data. The main differentiating factor for relational data is that the number of columns and

the types of the columns in a given dataset are known in advance. Still, generating realistic

relational HoneyFile while not disclosing sensitive information is a significant challenge.

We need to answer questions, such as, 1) how to automatically generate relational

HoneyFile? 2) how to measure whether the generated relational HoneyFile is deceptive

enough? In this chapter, we try to answer these questions by leveraging existing work in

differentially private synthetic data generation and explore its effectiveness for generating

relational HoneyFile.

As a part of this chapter, we propose an important measure for understanding the

effectiveness of HoneyFile. Basically, given the available information, a potential attacker

may not build an effective machine learning model to distinguish between real vs HoneyFile.

We evaluate the effectiveness of relational HoneyFile on real datasets, and show under what

conditions differentially private deep learning techniques could be used to generate relational

HoneyFile.

6.2 Decoy File Data Generation Model

This section describes the main components of our differentially private synthetic data

generation approach. We first introduce our private auto-encoder and explain the private
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expectation maximization algorithm. Next, we present the privacy analysis of the proposed

technique.

6.2.1 Decoy File Data Generation Algorithm

6.2.2 Differentially Private Synthetic Data Generation Algorithm

DpSyn has the primary purpose of generating synthetic data that is indistinguishable from the

real data from the attacker’s perspective given background knowledge. DpSyn also preserves

the privacy by bounding the privacy loss with differential privacy. Abadi et al. (Abadi et al.,

2016) applies the moment accountant on differentially private deep learning. Here, we make

several modifications to this work and extend it as a data generative model.

DP_SYN( , ε,δ)D1 DP_SYN( , ε,δ)D... DP_SYN( , ε,δ)Dk

D''

Merge
generated files

Partition D into
k groups

D1 D... Dk

D

Figure 6.1: Differentially Private Synthetic Data Generation DpSyn

Fig. 6.1 shows the fundamental steps of DpSyn. The dataset D contains a sequence of

n training examples (x1, y1) , . . . , (xm, ym) where x ∈ Rd and y ∈ R. Our learning approach

partitions the dataset D into k groups denoted as {D1, . . . , Dk}. Partitioning of training

examples is employed based on label y ∈ R associated with training example x ∈ Rd. Group

58



number k is identified by the unique label number. After partitioning the dataset into k

groups {D1, . . . , Dk}, for each group private generative autoencoder is constructed to generate

synthetic data.

More details regarding the aforementioned algorithm has been presented in Chapter 5.

6.3 Experiments

In this section, we explain our experimental setting and discuss our results. First we briefly

introduce our datasets and detail parameter settings for the used machine learning models.

Afterwards, we give our results for two cyber deception tasks: i) attacker with no synthetic

knowledge and ii) attacker with synthetic knowledge.

6.3.1 Datasets

Datasets. We evaluate the proposed differentially private deep learning based honeydata

generation approach on four real datasets. The following is a brief description of each dataset:

1. The Diabetes (Lichman, 2013) dataset contains the information of 768 female

patients who are at least 21 years old. Each patient is classified as diabetic or

non-diabetic. The dataset contains 8 features.

2. The Adult (Lichman, 2013) dataset contains the information of 45222 individuals.

The dataset shows whether the income of the individuals exceeds 50K US dollars. The

dataset contains 15 features.

3. The BreastCancer(Diagnostic) (Lichman, 2013) dataset contains the information

about whether a patient has breast cancer or not. It has 569 patient records with

32 features.

4. The Spambase (Lichman, 2013) dataset contains 4601 emails, each of which is labeled

as spam or non-spam. Each instance has 58 attributes.
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6.3.2 Parameter Settings

Parameter setting for Data Generation. Our DpSyn technique generates synthetic

data by using Deep Auto-encoders (Baldi, 2012). An auto-encoder is trained on n data points.

Once a model is learned, the auto-encoder can be used to generate any number of data points

(e.g., honeydata). For n training samples, we report the results of the privacy loss (i.e., the

measure of potential leakage to an attacker) using differential privacy with (ε, δ) parameters

that is computed from the noise level σ. We fix the δ as 1
n
, and compute the value of ε for

each iteration t ∈ T . In moment accountant, we use several noise levels to obtain consistent

results. The large noise level (σ = 6.0) is implemented for small ε = 1.0 and the small noise

level (σ = 4.0) is implemented for large ε ∈ {2.0, 4.0}. In these settings with the increasing ε

values synthetic data generation techniques are perturbed less since small noise is added to

these techniques.

In all synthetic datasets (i.e., the generated relational honeydata), biases are initialized to

zero, while the initial values of the weights θ are randomly chosen from a zero-mean normal

distribution with a standard deviation of 0.05. For each dataset, we form a new auto-encoder

to generate its corresponding honeydata.

Parameter setting for Machine Learning Models. We employ four machine learning

models in measuring the efficiency of our approach in synthetic data generation for cyber

deception: One-class SVM (Schölkopf et al., 2001), two-class SVM (Hearst et al., 1998),

Logistic Regression (LR) (Nerlove and Press, 1973) and Random Forest (RF) (Breiman,

2001). We chose to employ these methods because they are widely used for classification

tasks (Kotsiantis et al., 2007). Furthermore, these machine learning models will be used to

explore whether an attacker can distinguish between the real data vs the honeydata easily.

For the hyper parameter of one-class SVM, we experiment with {linear, poly, rbf} and

gamma values {1.0, 0.1, 0.01, 0.001}. We select the most consistent results of one-class SVM

with different (ε, δ) pairs. For two class SVM, we employ the LinearSVM (Fan et al., 2008).
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6.3.3 Benchmark Techniques

In the first task, we assume that the attacker has knowledge about real data where we model

the background knowledge as the number (i.e., {50, 100, 200, 400}) of data points known to

the attacker. This approach is similar to the setting reported in (Bindschaedler et al., 2017).

In this scenario, the attacker does not have access to honeydata samples. We evaluate the

quality of the generated honeydata by observing whether the attacker can distinguish the

real vs honeydata by leveraging the obtained real data. In these experiments, the attacker

employs a one-class SVM model that is built on the {50, 100, 200, 400} real data points.

We measure the success of DpSyn by the attacker’s failure to separate honeydata and real

data by using the classifier. The test data is an equal mix of 50% real and 50% honeydata. A

honeydata generation technique achieves best results if the attacker’s SVM model labels all

synthetic data as real, which results in a 50% accuracy.

Fig. 6.2 shows the performance of techniques in deceiving the attacker on the four real

datasets. In Fig. 6.2a, we show performance for various training number sizes 50, 100, 200

and 400.

Each training set is used by increasing noise additions, which is calibrated to ε = 1.0, 2.0

and 4.0, where ε = 4.0 shows the least amount of added noise in the model. As training size

increases, performance of all three techniques improve and accuracy values approach 50%.

In Spambase and BreastCancer datasets PrivBayes and DpEm+ perform worse compared

to Adult and Diabetes datasets. We hypothesize that PrivBayes and DpEm+ are more

vulnerable to the curse of high dimensionality; both Adult and Diabetes datasets have less

than 15 attributes, whereas BreastCancer and Spambase have more than 32 attributes.

DpSyn results are comparable with those of DpEm+ and PrivBayes in the Adult

dataset. In Diabetes and Spambase datasets, DpSyn has better accuracy. PrivBayes has

its worst results in the BreastCancer dataset. In all figures, increasing ε values result in

values closer to the desired 50% accuracy value.
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Figure 6.2: [Color online]. Accuracy results of one-class SVM classifiers of attackers that
are modeled on different percentages of real data with varying privacy budgets. The desired
accuracy is 50%.

In the first task, the attacker had access to real data only. In this second task, the attacker

has access to both real and honeydata, which may help the attacker in distinguishing

honeydata. The knowledge of honeydata implies that attacker was fooled into accepting

some honeydata previously; when the attacker fails while using the honeydata (e.g., could
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not use the honeydata for identity theft), he/she may start analyzing other stored data files

to authenticate them.

The attacker employs three binary classification models (i.e., two-class SVM, LR and

RF) that are built on a mix of 50% real and 50% synthetic data. The classifier is trained to

learn two labels: real and synthetic (i.e., honeydata). The classifier is tested on a mix of 50%

real and 50% honeydata. The accuracy of a model is given as the percentage of correctly

classified data points. For the best performance in honeydata generation, the attacker must

wrongly classify all honeydata points as real, which results in a 50% accuracy.

In this set of experiments, we report our results for each of the three Machine Learning

classification models separately. We begin by demonstrating the Random Forest results.

Fig. 6.3 demonstrates accuracy of the three techniques for the Random Forest classifier.

The honeydata generated by DpSyn is more similar to real data when compared to the

synthetic data generated from PrivBayes for Diabetes, Spambase and BreastCancer datasets.

For the Adult dataset DpEm+ results are closer to the desired 50% level. DpSyn performs

better than DpEm+ for Diabetes and Spambase. The failure of DpEm+ and PrivBayes on

Spambase and Diabetes datasets is expected since the attacker can already distinguish the

difference between synthetic and real data with one-class SVM. DpSyn exhibits remarkable

improvement for the majority of the RF test cases when compared to DpEm+ and DpSyn.

The performance of the attacker with Logistic Regression (LR) is demonstrated in Fig. 6.4.

The test results of LR is consistent with the other machine learning models previously shown

in Figs. 6.3 and 6.2. In fact, on average, LR results are highly correlated (0.94) with RF

results in all datasets. However, it is noticeable that attacker with RF is better able to

distinguish between real and honeydata when compared to LR; accuracy levels are lower in

the LR results. DpSyn outperforms PrivBayes in three out of four datasets. For Adult

dataset PrivBayes has slightly better results than DpSyn. For this set of experiments

with LR, DpSyn results are similar to those of DpEm+ in the Diabetes, Spambase and

BreastCancer datasets.
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Figure 6.3: [Color online]. Accuracy results of RF classifiers of attackers that are modeled on
different percentages of real data with varying privacy budgets. The desired accuracy is 50%.

The performance of the attacker with two-class SVM is demonstrated in Fig. 6.5. Results

are consistent with those of LR and RF in Figs. 6.4 and 6.3. Only in the Adult dataset, we

see a slight increase of difference between PrivBayes and DpEm+ performances with the

increase of training numbers.
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Figure 6.4: [Color online]. Accuracy results of LR classifiers of attackers that are modeled on
different number of real data with varying privacy budgets. The desired accuracy is 50%.

In all Machine Learning models, our method DpSyn generates honeydata that has

better indistinguishability (i.e., the attacker has less accuracy in distinguishing real vs

honeydata) for cyber deception. With increasing training dataset size, the classifiers that

could be used by the attacker perform better in all data generation techniques. Except

for the Adult dataset, DpSyn outperforms PrivBayes significantly in all experimental
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Figure 6.5: [Color online]. Accuracy results of binary SVM classifiers of attackers that are
modeled on different percentages of real data with varying privacy budgets. The desired
accuracy is 50%.

settings. Compared to DpEm+, DpSyn generates better or comparable synthetic data for the

Spambase, BreastCancer and Diabetes datasets. For the majority of the test cases, increasing

ε values harm the attacker machine learning model. However, increasing ε values result in

less added noise which may cause the leakage of sensitive data. Hence, there is a trade-off

between the quality of honeydata and the prevention of sensitive data leakage.
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CHAPTER 7

CONCLUSION

This dissertation addresses the predictive accuracy, privacy protection and cybersecurity

issues in machine learning applications.

First, we started by developing the crypto-currency price prediction machine learning

(ML) models to predict the Bitcoin price. To have accurate Bitcoin price prediction, our

proposed ChainNet utilizes topological characteristics of a blockchain graph. ChainNet

extracts topological constructs over a graph and computes quantitative summaries in the

form of Betti numbers and Betti derivatives which are then used in model building for the

Bitcoin price prediction.

Our results on the full Bitcoin network show that in less than 7 day ahead predictions,

Betti models bring a prediction gain of almost 40% over baseline approaches.

In the second part of our research, for ML applications that need to access the sensitive

information, we propose a new generative deep learning method, DP-SYN, that produces

privacy-preserving synthetic data from a dataset while preserving the utility of the original

dataset. Our generative auto-encoder method partitions the original data into groups, and

then employs the private auto-encoder for each group. Auto-encoder learns the latent structure

of each group, and uses expectation maximization algorithm to generate synthetic data. This

approach eliminates impurity of groups and results in more accurate representations for

each latent group. We test DP-SYN on nine datasets and compare to four state-of-the art

methods reported for privacy-preserving synthetic data generation. Our evaluation process

uses statistical, ML based and agreement rate based metrics. Although not a single method

outperforms others consistently in all tasks, our experiments show that DP-SYN gives robust

results across all datasets, and performs better than state-of-the-art in multiple settings for

both relational and image based datasets. Furthermore, DP-SYN performance does not

deteriorate when the original dataset is imbalanced or high dimensional.
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Finally, we explore the applicability of privacy-preserving deep learning based synthetic

data generation techniques for creating HoneyData that can fool potential cyber-attackers.

We define a ML based metric (i.e., the accuracy of any ML model in distinguishing real vs

HoneyData) to measure the goodness of generated deceptive HoneyData. Although, our

results indicate that existing techniques could be leveraged for HoneyData generation, care

must be taken in setting the privacy parameters used in HoneyData generation.
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Henelius, A., A. Ukkonen, and K. Puolamäki (2016). Finding statistically significant attribute
interactions. arXiv preprint arXiv:1612.07597 .

Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. (2012). Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine 29 (6), 82–97.

Ho, T. K. (1995, Aug). Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, Volume 1, pp. 278–282 vol.1.

Hofer, C., R. Kwitt, M. Niethammer, and A. Uhl (2017). Deep learning with topological
signatures. Advances in Neural Inf. Processing Systems 30 , 1634–1644.

71



Holz, T. and F. Raynal (2005). Detecting honeypots and other suspicious environments. In
Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE
SMC, pp. 29–36. IEEE.

Hyndman, R. J. and Y. Fan (1996). Sample quantiles in statistical packages. The American
Statistician 50 (4), 361–365.

Jagannathan, G., K. Pillaipakkamnatt, and R. N. Wright (2009). A practical differentially
private random decision tree classifier. In Data Mining Workshops, 2009. ICDMW’09.
IEEE International Conference on, pp. 114–121. IEEE.

Jog, V. and P. Loh (2015). Recovering communities in weighted stochastic block models. In
53rd Annual Allerton Conference on Communication, Control, and Computing, Monticello,
USA, pp. 1308–1315.

Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical
science, pp. 1094–1096. Springer.

Juels, A. and R. L. Rivest (2013). Honeywords: Making password-cracking detectable. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security,
pp. 145–160. ACM.
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