
BEYOND DATA:

EFFICIENT KNOWLEDGE-GUIDED LEARNING

FOR SPARSE AND STRUCTURED DOMAINS

by

Harsha Kokel

APPROVED BY SUPERVISORY COMMITTEE:

Sriraam Natarajan, Chair

Prasad Tadepalli

Vibhav Gogate

Rishabh Iyer

Copyright © 2023

Harsha Kokel

All rights reserved

To my constant, steadfast,

unwavering, loyal, and limitless supporter,

Divya Kokel,

Mummy ¤.

BEYOND DATA:

EFFICIENT KNOWLEDGE-GUIDED LEARNING

FOR SPARSE AND STRUCTURED DOMAINS

by

HARSHA KOKEL, BTech, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2023

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor, Professor Sriraam

Natarajan. His principles, work ethic, scholarship, hard work, academic service, and dedica-

tion have been a guiding light throughout my PhD. He leads by example and has inspired

me to be my best self. His kind words have given me confidence when I doubted myself,

his staunch support has protected me from the embarrassment of being dumbfounded after

various presentations, his outlook on life and society has reminded me to be more patient

and kind, his critiques have helped me grow, and his research doctrine has shaped my work.

I am very fortunate that he moved to UT Dallas in 2017, the same year I started my mas-

ter’s program. In all honesty, when I started working with Prof. Natarajan I used to have

a really hard time understanding what he said. For more than a year, I struggled to see

how concept-learning and planning were equivalent. His statements, “this is almost exactly

the same as what we did X years ago,” baffled me countless times. However, now looking

back at it, I see that these statements and observations helped me develop an important skill

of thinking abstractly. To quote Ben Orlin, “To do good work, you’ve first got to engage

with nitty-gritty details. Then, to do great work, you’ve got to move beyond them.” Prof.

Natarajan’s mentorship and guidance have trained me to move beyond the nitty-gritty and

honed my scholarly skills. Thank you, Prof. Natarajan, for expanding your patience each

time I tested your limits.

I thank my supervisory committee, Prof. Prasad Tadepalli, Prof. Vibhav Gogate, and

Prof. Rishabh Iyer. Prof. Tadepalli guided us in rewriting the initial draft of the RePReL

paper. His direct yet polite questions helped organize the contributions of our work, and

his attention to detail helped us tie loose ends. I learned the importance of keeping the

paper crisp (without fanfare) and contributions precise. Prof. Vibhav Gogate is an excellent

teacher. I took his machine learning course in 2018 and that got me through the qualifiers.

He also graciously allowed me to sit through his PGM course, which has helped me in my

v

research. Finally, I have had the opportunity to co-author a paper with Prof. Rishabh Iyer

which benefitted me in various ways.

I thank all my collaborators throughout this journey: Prof. Ravindran Balaraman, for the

opportunity to learn the nuts and bolts of Reinforcement Learning; Dr. Shirin Sohrabi, for

mentoring and championing me during my IBM internships; Dr. Michael Katz, for engaging

me in the research discussions for hours and supporting my intuitions; and Dr. Kavitha

Srinivas, for building my confidence in my research abilities.

Past and present members of the Starling lab have helped me throughout my PhD journey,

professionally as well as personally. I express my gratitude to Alexander Hayes, Athresh

Karanam, Dr. Brian Ricks, Dr. Devendra Dhami, Dr. Gautam Kunapuli, Kaushik Roy, Dr.

Mayukh Das, Michael (Mike) Skinner M.D., Dr. Nandini Ramanan, Dr. Navdeep Kaur,

Nikhilesh Prabhakar, Dr. Phillip Odom, Ranveer Singh, Sahil Sidheekh, Saurabh Mathur,

Siwen Yan, Dr. Srijita Das, Dr. Shuo Yang, Dr. Yuqiao Chen, and Yuxin Zi. I have enjoyed

my time and discussions with all of them. A special shout out to Mike who never failed to

proofread my manuscripts and provided valuable timely feedback.

A special acknowledgment to Prof. Prasenjit Majumder at DAIICT. Born in a Sindhi busi-

ness family, my sole intention when I first met him, in the summer of 2012, was to get a

campus job that earned me a stipend to manage my expenses. Had it not been for him,

I would have never known the joy of working on a research problem. He introduced me

to the research community, funded my trip to Kolkata to attend FIRE in December 2012,

and provided me with an opportunity to conduct a hands-on tutorial at Microsoft Research

Bangalore in 2013. This research experience, his talks, and the time spent with him and the

IR lab members made a deep impression on my young mind. He is the one who recruited

me to the “cult of PhD”.

Many times during these last couple of years, especially during the pandemic, I could not

conjure even a single reason to continue with the PhD. In fact, I had multiple reasons to

vi

quit. Through all of those weak, painful, and vulnerable moments, my spouse, Dr. Abhinav

Prakash, has reasoned, encouraged, supported, manipulated, and sometimes challenged me

to continue. He has given my work equal importance as his own, respected my priorities and

choices like his own, persevered to achieve my goals as his own, and sometimes consumed

my time as if it is his own. His support and patience played a big role in my pursuit of a

PhD. The decision to spend my life with him is the wisest decision I made, I am extremely

proud of it. I am excited to see what the future holds for us.

B.J. Neblett said “We are sum total of our experiences.” Well, I disagree. We are sum total

of our experiences and the experiences of the people that surround us. I cannot even begin

to comprehend how my life has been influenced by my family. I am most grateful to my

family for my upbringing and for inculcating the values that I hold profoundly. Udhavdas

Kokel’s experiences of the 1947 partition and the dislocation of our Sindhi community incul-

cated a deep sense of community service and tireless hard work in him and then in me, his

granddaughter. Divya Kokel’s relentless attitude towards handling the never-ending work-

load and emergencies has given me, her daughter, the confidence to weather any storm with

tenacity. These values—community service, hard work, and relentless attitude—have helped

me fulfill my job as a PhD student with utmost honesty. Thank you, Mummy (Ahmedabad),

Heena didi, Mohit, Amma, Bharatu Kaka, and Mummy Patna for your love, support, and

encouragement. And, for shielding me from the burden of responsibilities. I thank the Kokel

family, the Kaku family, Ketan, and Kartik for being there. My close friends, in Dallas and

around the globe, have been the power bank when I needed a recharge. Thank you, Vidhi

and Adrita, for being my family in this foreign land. Most importantly, I would like to

thank Narendra Kokel, my father, who in his calm and unobtrusive way provided for and

supported all my aspirations. How I wish he could have been here to see them come true. I

miss him dearly.

vii

I thank the staff of the computer science department at The University of Texas at Dallas for

helping me every semester, especially, Mr. Douglas Hyde. He entertained all my requests on

time and often provided great advice in his charismatic manner. I acknowledge the support

of DARPA CwC Program Contract W911NF-15-1-0461, ARO award W911NF2010224, and

AFOSR award FA9550-18-1- 0462. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the AFOSR, ARO, DARPA, or the U.S.

government.

February 2023

viii

BEYOND DATA:

EFFICIENT KNOWLEDGE-GUIDED LEARNING

FOR SPARSE AND STRUCTURED DOMAINS

Harsha Kokel, PhD
The University of Texas at Dallas, 2023

Supervising Professor: Sriraam Natarajan, Chair

The field of AI has made great advances in recent years. Most of these advances have focused

on leveraging more data and finding new architectures to improve system performance. How-

ever, collecting data can lead to exorbitant costs. This is especially the case for structured

domains where the data conforms to some standardized format (like tabular data, relational

databases, etc.). In structured domains, an expert might be required to collect and organize

data; necessitating time and effort. Further, learning explicitly from data is neither sufficient

nor favorable. Enormous data can cause concerns for safety, lack of fairness, and a substan-

tial carbon footprint. So looking beyond learning from data, this dissertation focuses on

finding principled ways to leverage rich human knowledge for sparse and structured domains

to guide the learning procedure.

In particular, this dissertation looks at four challenges that arise when models are learned in

structured domains and propose to tackle them using explicit human knowledge. First, we

consider the challenge of learning from sparse and noisy data in the successful gradient boost-

ing framework and propose to use domain-specific trend information to improve prediction.

Second, we consider the challenge of learning to generalize across multiple tasks and ob-

jects in sequential decision making. We address this challenge by proposing a framework that

ix

takes inspiration from human’s ability to generalize by identifying compositionality and gen-

erating abstract representations. Third, we consider the challenging task of human-machine

collaborative problem solving and propose a framework that uses natural language commu-

nication for effective bi-directional interaction. Finally, the fourth challenge we consider

is the problem of a large hypothesis space when dealing with domains with heterogeneous

objects. We identify the lack of a language bias—typed object representations—in recent

neurosymbolic architectures and devise an approach to incorporate the bias.

In this dissertation, we demonstrate various ways to incorporate domain-specific knowledge

from humans in training AI systems. We conclude that using domain knowledge not only

reduces the sample complexity but also improves the performance and generalization abilities

of the model.

x

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . ix

LIST OF FIGURES . xvii

LIST OF TABLES . xxii

CHAPTER 1 INTRODUCTION . 1

1.1 Motivational example . 1

1.1.1 Problem 1: Sparse and noisy data . 2

1.1.2 Problem 2: Multi-task learning and generalization 3

1.1.3 Problem 3: Collaborative problem solving 3

1.1.4 Problem 4: Large hypothesis space 4

1.2 Dissertation overview . 5

1.2.1 Dissertation statement . 5

1.2.2 Dissertation contributions . 5

1.2.3 Dissertation outline . 6

CHAPTER 2 TECHNICAL BACKGROUND . 10

2.1 Structured data . 10

2.1.1 Tabular . 10

2.1.2 First-order logic . 11

2.2 Gradient-boosted trees . 13

2.3 Qualitative influence information . 15

2.3.1 Monotonic influence . 16

2.3.2 Synergistic influence . 17

2.3.3 QI for decision-making . 17

2.4 Sequential decision making . 18

2.4.1 Reinforcement learning . 18

2.4.2 Planning . 24

2.5 Statistical relational AI . 27

2.5.1 First-order conditional influence language 29

xi

2.6 Neurosymbolic AI . 30

PART I SPARSE AND NOISY DOMAINS . 34

CHAPTER 3 INCORPORATING QUALITATIVE INFLUENCE INFORMATION 35

3.1 Introduction . 35

3.2 Related work . 37

3.3 Knowledge-intensive gradient boosting . 38

3.3.1 Monotonic constraint . 39

3.3.2 Interpretation of the update equation 43

3.3.3 Equilibrium between advice and data 44

3.3.4 Overfitting by strict monotonicity . 46

3.3.5 KiGB algorithm . 47

3.3.6 Classification . 48

3.3.7 Extensions . 48

3.4 Experiments . 49

3.4.1 Datasets . 49

3.4.2 Standard gradient boosting baselines 51

3.4.3 Monotonic gradient boosting baselines 51

3.4.4 Robustness to the hyperparameters 53

3.4.5 Real data sets . 55

3.4.6 Learning curve . 56

3.5 Summary . 57

PART II MULTI-TASK LEARNING AND GENERALIZATION 59

CHAPTER 4 INTEGRATING RELATIONAL PLANNING AND
REINFORCEMENT LEARNING . 60

4.1 Introduction . 60

4.2 Related work . 62

4.2.1 Planner and RL combination . 62

4.2.2 Abstraction . 63

4.3 Relational planning and Learning . 63

xii

4.3.1 Motivational example . 63

4.3.2 Problem setup . 66

4.3.3 RePReL architecture . 67

4.3.4 D-FOCIs . 70

4.3.5 Example of D-FOCIs . 71

4.3.6 Abstraction using D-FOCI . 72

4.3.7 Learning . 76

4.4 Experiments . 76

4.4.1 Domains . 77

4.4.2 Sample efficiency . 80

4.4.3 Task transfer . 81

4.4.4 Generalization . 83

4.5 Conclusion . 85

CHAPTER 5 REPREL EXTENSION TO DEEP, NEURAL RL 88

5.1 Deep RePReL . 88

5.1.1 Batch learning . 89

5.1.2 Recursive abstraction with DRRL . 91

5.2 Experiments . 92

5.2.1 Deep RL . 93

5.2.2 Deep relational RL . 94

5.3 Conclusion . 98

CHAPTER 6 REPREL EXTENSION FOR HYBRID DATA 102

6.1 Introduction . 102

6.2 Hybrid deep RePReL . 103

6.3 Experiments . 108

6.3.1 Domains . 108

6.3.2 Baselines . 109

6.3.3 Sample efficiency . 110

6.3.4 Generalization . 110

xiii

6.4 Conclusion . 111

PART III COLLABORATIVE PROBLEM SOLVING 114

CHAPTER 7 PLANNING AND LEARNING VIA COMMUNICATION 115

7.1 Introduction . 115

7.2 Preliminaries . 117

7.2.1 Concept learning . 117

7.2.2 Neural parsers . 118

7.2.3 Minecraft . 118

7.3 Lara - Planning and learning via communication 118

7.3.1 Problem definition . 119

7.3.2 System setup . 121

7.3.3 System architecture . 124

7.3.4 Minecraft simulator . 124

7.3.5 NLP engine . 125

7.3.6 Planner . 127

7.3.7 Concept learner . 129

7.4 Demonstration . 133

7.5 Related work . 133

7.6 Conclusion . 134

PART IV LARGE HYPOTHESIS SPACE . 136

CHAPTER 8 LANGUAGE BIAS IN NEUROSYMBOLIC MODELS 137

8.1 Background . 137

8.1.1 ILP task . 137

8.1.2 Biases in ILP . 138

8.1.3 Biases in NeSy . 139

8.1.4 NeSy predicate invention . 141

8.2 Introducing Typed Bias . 143

8.2.1 Approach I . 143

8.2.2 Approach II: HTRI . 144

xiv

8.3 Experiments . 144

8.4 Discussion . 146

PART V OTHER EXPLORATIONS . 148

CHAPTER 9 EXTRACTING QUALITATIVE KNOWLEDGE 149

9.1 Introduction . 149

9.2 Extracting qualitative influences . 150

9.3 Evaluation on nuMoM2b study . 152

9.3.1 The nuMoM2b study . 152

9.3.2 Setup and baselines . 154

9.3.3 Results . 154

9.4 Summary . 155

CHAPTER 10 DATA SUBSET SELECTION FOR DOMAIN ADAPTATION 158

10.1 Introduction . 158

10.2 Related work . 161

10.2.1 SDA . 161

10.2.2 Subset selection methods . 162

10.3 Preliminaries . 163

10.3.1 Submodular functions . 163

10.3.2 Submodular mutual information . 164

10.3.3 SDA loss functions . 164

10.4 Orient . 165

10.4.1 Algorithm . 167

10.5 Connections to previous work . 168

10.6 Experimental evaluation . 169

10.6.1 Comparison of different SMI functions 174

10.7 Summary . 175

CHAPTER 11 CONCLUSION AND FUTURE WORK 176

PART VI APPENDIX . 180

APPENDIX A KNOWLEDGE-INTENSIVE GRADIENT BOOSTING 181

A.1 Why gradient boosted trees? . 181

xv

APPENDIX B REPREL . 186

B.1 Traditional relational RL . 186

APPENDIX C LARA . 187

C.1 Dialogue manager . 187

C.2 Background file . 189

C.3 Planner . 199

C.4 Concept Learning . 200

APPENDIX D ORIENT . 203

D.1 Concave over modular mutual information 203

D.2 Proof of the theorems . 203

D.3 SDA loss . 206

D.4 Experiment details . 208

D.5 Additional results . 210

D.5.1 Synthetic experiments . 213

D.5.2 Analysis of data subset size . 214

D.5.3 Analysis of L for subset selection . 215

D.5.4 Analysis of time taken . 215

REFERENCES . 224

BIOGRAPHICAL SKETCH . 246

CURRICULUM VITAE

xvi

LIST OF FIGURES

1.1 An illustrative autonomous food delivery system. 2

2.1 An entity-relationship diagram of Taxi domain. The domain has 2 types of entities,

passenger and location. Passengers have two boolean attributes: at dest and in taxi.

Locations have two real attributes x coord and y coord. Both entities are related by

two relations: at and dest. at relation indicates represents the current location of the

passenger and dest location represents the final destination of the passenger. 12

2.2 Illustration of monotonic influences between two random variables X and Y . (a)
Isotonic influence (b) Antitonic influence . 16

2.3 Illustration of an RL framework. 19

2.4 Comparison of actions in MDPs, SMDPs, and HRL 21

2.5 Example of a hierarchical planning task consisting of methods, operators, initial
state, and goal condition. 26

2.6 Statistical Relational AI (StarAI) combines Logic, Probability, and Learning. . . 28

2.7 (a) An instance of a domain with all the objects. (b) Grounded Bayesian network
obtained for the FOCI statement in Equation 2.15 30

2.8 Taxonomy of Neurosymbolic approaches. 33

3.1 An example to illustrate the need for equilibrium between data and advice. (a)
A toy dataset. The horizontal axis represents the feature variable A, the vertical
axis represents the feature variable B, and markers represent the target variable
Y . An expert provides a monotonic influence statement A Q`

ă Y . Region R1 and
R2 violate the advice. (b) Illustration of the decision boundary learned by stan-
dard gradient-boosting approach. (c) Illustration of decision boundary learned
by monotonic gradient-boosting approach. 45

3.2 Illustration of the decision boundaries learned by KiGB approach with different
relative importance to advice (different λ values). 45

3.3 Illustration of the overfitting by LMC. As can be seen, LGBM, without any
monotonic influence statements, learned an incorrect model due to the presence
of noisy data. With LMC, the model learns a monotonic function but it overfits
the training data. LKiGB provides a correction to the LGBM and generalizes to
a better model. 46

3.4 Analysis of sensitivity to hyperparameters: λ & ε. (a) Comparison of accuracy
with SGB and MONO for a classification task. (b) Comparison of negative mean-
squared error with LGBM and LMC for a regression task. The higher the better. 54

3.5 Learning curve for classification task in HELOC dataset with KiGB, standard
boosting, and monoensemble . 57

xvii

4.1 Motivational example of RePReL framework in Taxi domain. 1○ Relational taxi
domain. The initial state has two passengers p1 and p2. The goal is to transport
both of them to their respective destination, d1 and d2 respectively. 2○ The
high-level planner decomposes the goal into subgoals by using high-level state
representation. 3○ Low-level RL agents achieve these subgoals by using abstract
state representations. 65

4.2 RePReL architecture. 67

4.3 (a) Craft World indicating domain with eight locations: grass, wood, iron, gold,
gem, workbench, toolshed, and factory. Black cells in the grid represent walls.
(b) Office World, reproduced from Illanes et al. (2020). 78

4.4 Tasks in the Relational Box World. 79

4.5 Comparing learning curves of RePReL, TRL, HRL, and QL in Craft World
environment. Transferred policies are indicated by “+T”. Task 1 is to get wood
and iron, Task 2 is make stick, Task 3 is make axe, Task 4 is mine gem. 82

4.6 Comparing learning curves of RePReL, TRL, HRL and QL in Office World
environment. Transfer algorithms are indicated by “+T”. Task 1 is to deliver
mail, Task 2 is to deliver coffee, Task 3 is to deliver mail and coffee, and Task 4
is to visit A, B, C, D. Note that the RePReL and RePReL+T curves in Task 2
are overlapping. 83

4.7 Comparing learning curves of RePReL, TRL, HRL, and QL in the Extended
Taxi World. Task 1 is to drop passenger p1, Task 2 is to drop p1 and p2, Task 3
is to drop p1, p2, p3. 84

4.8 Comparing learning curves of RePReL and TRL with and without transfer in
Box World environment. The goal in all the tasks is to collect the gem, we
increase the number of objects to reach the gem in each task. 84

5.1 RePReL architecture. 89

5.2 Comparing learning curves of deep RL based learners in the Office World en-
vironment. RePReL compared against TRL, HDQN and DQN in (a) Task 1
deliver mail and (b)Task 2 deliver coffee. Agents are swapped after 1e6 steps.
RePReL+T compared against TRL+T, HDQN+T and DQN+T in (c) Task 1
and (d)Task 2. The shaded region depicts the standard deviation. 94

5.3 Comparing learning curves of deep RL-based learners in the Extended Taxi World.
(a)Task 1 is to drop passenger p1,(b) Task 2 is to drop p1 and p2, (c)Task 3 is
to drop p1, p2, p3. The shaded region depicts the standard deviation. 95

5.4 FetchBlockConstruction . 95

5.5 Comparing learning curves of deep relational RL-based learners in the Extended
Taxi World. (a) Task 1 is to drop passenger p1, (b) Task 2 is to drop p1 and
p2, (c) Task 3 is to drop p1, p2, and p3. The shaded region depicts the standard
deviation. 97

xviii

5.6 Comparing deep relational RL-based learners in FetchBlockConstruction. (a)

Compares learning curve on the task of moving one block (b) Evaluates general-

ization for moving 1–4 blocks. 97

6.1 (a) Taxi location and geography information available as an image. (b) Passenger

location and destination information as state predicates from a passenger’s mobile.104

6.2 Proposed HDRePReL architecture. 105

6.3 Craftworld domain. 108

6.4 Comparing learning curves of hybrid deep RePReL with DQN in Hybrid Taxi

World. (a)Task 1 is to drop passenger p1, (b) Task 2 is to drop p1 and p2,

(c)Task 3 is to drop p1, p2, p3. 110

6.5 Comparing learning curves of HDRePReL with DQN in Craft World. (a) task 1

is to make bread; (b) task 2 is to build house; (c) task 3 is to break rock. 111

7.1 (a) Minecraft builder screen showing the 3D build region and the chat interface.

(b) Example of a target structure in the oracle screen. The architect can see both

screens. 119

7.2 Target structure on the left is visible only to the architect (A). The architect

instructs the builder (B) to build a red tower. B seeks clarification about the size

and then proceeds to build the tower in the build region. 121

7.3 (a) Five of the eight primitive structures: tower, row, column, cube, and cuboid.

Block indicators that point to a single block of the structure. (b) top-end and

bottom-end, (c) left-end and right-end, (d) back-end and front-end. For complex

structures, these indicators can be combined, for example, the front-bottom-left

block of a cube. 122

7.4 Architecture of Lara. It consists of a Minecraft simulator, NLP engine, planner,

and concept learner. An example flow of building the “L” shape is illustrated.
1○ Natural language instruction by the architect to build a red tower. 2○ AMR

representation of the instruction parsed by AMR parser. 3○ Logic representation

of the instruction. 4○ Block placement plan generated by the planner. 5○ Agent

control executes the plan in the build region. 6○ Next instruction from the

architect to add a row. 7○ Agent control executes the next instruction in the

build region. 8○ Structure saved as “L”. 123

7.5 FOL representation of collaborative building task. (a) FOL language (Complete

list of predicates is deferred to Appendix) (b) Example FOL instructions. 125

7.6 (a) Goal description of the FOL instruction. (b) FOL representation of new

structure “L” and active advice queries to the architect. 128

xix

7.7 Illustration of Lara. (a) A new mission—red tower of height 4. (b) Greeting
from the builder and first instruction from the architect to build a red tower. (c)
The builder enquires about the height of the tower and the architect provides
the height value 4. (d) The builder understands the task, generates a plan, and
placed red blocks in the build region. (e) After completing the instruction the
builder asks for the next instruction and the architect says done. This ends the
mission. (f) The complete chat of this mission is here in text for clarity ‘xBy’ and
‘xAy’ indicates a message from the builder and the architect, respectively. . . . 131

7.8 Demonstration of the concept hierarchy. (a) Gamma structure (Γ) made from a
row and column. (b) Cap structure ([) made from gamma and a column. (c)
Box structure (l) made from a cap and a row. Subfigures (d), (e), and (f) present
the natural language instructions. 132

8.1 HRI architecture. 142

8.2 Learning curves comparing precision and recall, of HRI with HTRI and Masked-
HRI, for learning operator preconditions. 146

8.3 Learning curves comparing precision and recall, of Masked-HRI and Masked(T)-
HRI, for learning operator preconditions. 147

9.1 Causal network obtained by the stable PC algorithm for the nuMoM2b dataset. 154

10.1 Illustration of Orient framework. 1○ Given the target data Dt and source data Ds, a

subset A Ď Ds and model parameters θ are randomly initialized. 2○ Model parameters

θ are optimized for L epochs on the subset A with any gradient descent (GD) based

method. 3○ Subset A is updated using the SMI measure and current model parameters

θ after every Lth epoch. 4○ Model is trained for E epochs, with subset selection after

every L interval. 5○ The final model parameters are returned after E epochs. 165

10.2 Speed up vs prediction accuracy on three domains of Office31 dataset: Amazon (A),

DSLR (D), and Webcam (W). X-axis represents the speed up by the model, i.e. the

ratio of the time taken to train on complete source dataset (Full) to the time taken by

the model. Y -axis represents the prediction accuracy of the model on the target domain. 170

10.3 Convergence curves on four domains of Office-Home dataset: Art (A), Clipart (C),

Product (P), and Real World (R). X-axis presents the training time in hours and

Y -axis presents the prediction accuracy on the target domain. 172

10.4 Speed up achieved by combining d-SNE with Orient 173

10.5 GradCam (Selvaraju et al., 2017) activation maps of the models learned using
d-SNE + Full and d-SNE + Orient (FLMI) on the Office-Home dataset with
“Product” as the source domain and “Real World” as the target domain. As
evidenced by class activation maps, the Orient framework enabled the model
to learn more effective class discriminative features than Full data training. . . . 173

xx

A.1 Comparison of linear support vector regression (SVR-L), linear regressor with L1
prior as a regularizer (Lasso), support vector regressor with radial basis function
kernel (SVR-K), bagging ensemble of decision trees (Bagging), deep neural net-
work estimator (DNN), and gradient-boosted decision trees (GBT) for the task
of predicting the shipment prices in Logistics dataset. Y-axis presents the mean
absolute percentage error (MAPE) in prediction. 182

C.1 Example of concepts. 201

D.1 GradCam (Selvaraju et al., 2017) activation maps of the models learned using
d-SNE + Full and d-SNE + Orient (FLMI) on the Office-Home dataset with
“Product” as the source domain and “Real World” as the target domain. As
evidenced by class activation maps, the Orient framework enabled the model to
learn more effective class discriminative features than Full data training consistently.209

D.2 Subsets selected by different instantiations of Orient on a synthetic dataset. (a)
Synthetic data - We sample 50 examples from the target distributions for the
query set. (b) Orient (FLMI) selects samples close to the target distribution.
(c) Orient (GM) selects representative samples from the source domain. (d)
Orient (G) selects samples near the decision boundaries of the source domains.
(e) Orient(LDMI) prioritizes selection of data samples from certain classes over
others (f) Orient(GCMI) selects samples from a source domain that are very
similar and clustered together. 220

D.3 Subsets selected by different instantiations of Orient on a synthetic dataset. (a)
Synthetic data - We sample 50 examples from the target distributions for the
query set. Target domain is skewed to the right for class 0 and left for class 1
as compared to the source domain. (b) Orient (FLMI) selects samples close to
the target distribution. (c) Orient (GM) selects representative samples from
the source domain. (d) Orient (G) selects samples near the decision boundaries
of the source domains. (e) Orient(LDMI) prioritizes selection of data samples
from certain classes over others (f) Orient(GCMI) selects samples from a source
domain that are very similar and clustered together. 221

D.4 Convergence curves on four domains of Office-Home dataset: Art (A), Clipart (C),

Product (P), and Real World (R). X-axis presents the training time in hours and

Y -axis presents the Validation loss on the target domain. 222

xxi

LIST OF TABLES

3.1 Datasets used in the experiments. The first 5 datasets have binary classification
tasks, the next 10 have regression tasks and the last two are real-world datasets
described in Section 3.4.5. The second column either refers to the literature from
where we got the monotonic features and/or lists the feature names used for
experiments. Features in bold have negative influence (X Q´

ă Y) and others have
positive influence (X Q`

ă Y). 50

3.2 Standard baselines: Comparison of performance of SKiGB and SGB. The per-
formance measure used is accuracy for classification tasks (the higher the better)
and mean squared error for regression tasks (the lower the better). 52

3.3 Monotonic baselines: Comparison of accuracy of KiGB and monotonic boosting
approaches for classification tasks. 52

3.4 Monotonic baselines: Comparison of mean squared error of LKiGB and LMC for
regression tasks. 52

3.5 Comparison of KiGB with standard and monotonic baselines on real-world datasets. 55

4.1 Illustrative example of recursive unrolling of the D-FOCI statements in taxi-domain. 73

4.2 D-FOCI statments and relevant state predicates for all the domains 87

5.1 Summary of hyperparameters used in deep RL experiments (Section 5.2.1). . . . 99

5.2 Summary of hyperparameters used in deep relational RL experiment of Extended
Taxi World (Section 5.2.2). 100

5.3 D-FOCI statements and relevant features (literals) of the state that form the
abstract state. 101

6.1 Summary of the network hyperparameters . 113

8.1 Summary of the tasks . 145

9.1 Summary of the 8 variables in nuMoM2b dataset. 153

9.2 Comparision of QI from prior knowledge (PK), QuaKE, and Data Alone. X/7 rep-
resents that this relationship does/not exist respectively while ? represents un-
known influence. The three groups of rows show (1) MI, (2) SI, and (3) sub-SI.
Colors highlight rules recovered by QuaKE and show (a.) coherent with the PK
and baseline in white (b.) contradicting the baseline in green (c.) coherent with
baseline but contradict the PK in blue. 157

10.1 Instantiations of submodular mutual information functions. 166

10.2 Test accuracy for office-31 with SDA methods 171

10.3 Test accuracy for Office-Home with SDA methods 171

xxii

A.1 List of features used for the shipment price prediction task on logistics data. . . 183

D.1 Test accuracy on Office-31 dataset. 210

D.2 Training time (in hours) for 300 epochs on Office-31 dataset 210

D.3 Test accuracy on Office-31 dataset with SDA methods 211

D.4 Training time in hours on Office-31 with SDA methods 211

D.5 Test accuracy on Office-Home dataset . 212

D.6 Training time(in hours) for 300 epochs on Office-Home dataset 212

D.7 Test accuracy on Office-Home with SDA methods 212

D.8 Training time(in hours) on Office-Home with SDA methods 212

D.9 Comparison of test accuracy for office-31 with d-SNE loss function and different
fractions of subset selection. 214

D.10 Training time in hours on Office-31 with d-SNE loss function and different frac-
tions of subset selection. 214

D.11 Table showing target domain accuracy and training time taken(in hrs) achieved
on office-31 (A Ñ D) using d-SNE loss function and 30% subset. 215

D.12 Setting: R Ñ P . 216

D.13 Setting: R Ñ C . 216

D.14 Setting: R Ñ A . 216

D.15 Setting: P Ñ R . 217

D.16 Setting: P Ñ C . 217

D.17 Setting: P Ñ A . 217

D.18 Setting: C Ñ R . 218

D.19 Setting: C Ñ P . 218

D.20 Setting: C Ñ A . 218

D.21 Setting: A Ñ R . 219

D.22 Setting: A Ñ P . 219

D.23 Setting: A Ñ C . 219

D.24 Speed ups achieved by different variants of Orient when using 1.05ˆ the mini-
mum validation loss as a stopping criterion for training. 223

xxiii

CHAPTER 1

INTRODUCTION

The field of Artificial Intelligence (AI) has made great advances in recent years that have led

to the adoption of AI in various industrial use cases. While increasing model size, training on

bigger and more diverse datasets, and supplementing computational abilities may advance

AI in certain domains, we need further advancement for generalized intelligence and broader

adoption. Learning exclusively from data is neither sufficient nor favorable. Relying on

enormous data can cause concerns for safety, lack of fairness, inadequate representation of

the target population, etc, and training on large datasets results in a substantial carbon

footprint. Additionally, many problems have limited data and collecting more training data

may lead to exorbitant costs. This is especially the case for structured data, where a domain

expert might be required to annotate or collect data in a structured form. In this thesis,

we look beyond learning from data and focus on finding principled ways to leverage human

knowledge for domains that have sparse and structured data. We aim to find ways to guide,

advice, and instruct domain-specific knowledge to AI approaches and make them sample

efficient.

We look at several problems that arise when learning is performed exclusively from data

and propose to tackle them using explicit human knowledge. Consider the illustrative ex-

ample of an autonomous food delivery system in Figure 1.1.

1.1 Motivational example

An autonomous food delivery system, shown in Figure 1.1, has to provide food offerings,

coordinate with restaurants, estimate delivery time, process orders, schedule deliveries, plan

routes, deliver orders, provide personalized recommendations, etc. It consists of various

components that help in different tasks. For example, estimating delivery time requires some

1

Figure 1.1: An illustrative autonomous food delivery system.

predictive modeling, scheduling orders and planning routes require automated sequential

decision making, delivering order requires the ability to communicate with humans, and a

successful recommendation system require efficient learning of user preferences. It is very

difficult to rely only on data for all of these individual components.

1.1.1 Problem 1: Sparse and noisy data

Delivery time estimates obtained only using the historic order data may be inadequate for

a queried location L if location L is not seen before. Historic data might be sparse, biased,

imbalanced, and noisy. There might not be any orders delivered to location L before, but

if it is known that location L is beyond location K then the model should regard this

information and estimate a delivery time that is greater than the delivery time estimate

for location K. Domain-specific information such as the delivery time estimate increases

if the location is further away can be captured as a monotonic influence statement (also

called qualitative influence information). We consider the problem of using monotonic

2

influence information in the successful gradient boosting framework and develop

a unified framework, for both classification and regression settings, to improve

prediction in noisy and sparse regions of the sample space.

1.1.2 Problem 2: Multi-task learning and generalization

Humans have an innate capability to generalize from one or a small set of examples. Consider

the example of driving. Humans can easily generalize from driving in one neighborhood to

driving in another. An autonomous delivery system must also generalize similarly, without

using an exorbitant amount of data. In addition, humans leverage compositionality and

task-specific representations to generalize and transfer skills across various tasks. However,

sequential decision-making problems in multi-task domains are challenging for current AI sys-

tems. Especially so in relational settings where data can have a varying number of entities

and relations between those entities. We consider the problem of sequential-decision

making in relational domains, with multiple tasks. We propose a hierarchical

framework called RePReL that integrates AI planning and reinforcement learn-

ing to learn transferable and generalizable skills. The planner works as a deliberate,

rational, symbolic reasoning system that decomposes the task into sub-tasks. RL agents at

the lower-level act as reactive, goal-oriented policies that solve each sub-task independently.

We provide a knowledge-based approach for task-specific state abstractions that enables

efficient skill learning.

1.1.3 Problem 3: Collaborative problem solving

Consider the situation when the person delivering our order does not arrive or is lost. In

such a situation, we would call them and try to figure out where they are. We communicate

and collaborate with them to design a plan that leads them to the correct location. An

autonomous delivery system might get lost as well, so it is important to support human

3

interaction. With effective communication, humans might be able to determine where the

autonomous agent is lost and collaborate in order to get the order delivered to the preferred

location. However, human-machine communication and collaborative problem-solving are

quite challenging tasks. They require bi-directional communication, shared perception of

the world, sophisticated language parser, and contextual understanding. We consider the

problem of human-machine collaborative problem solving as a planning task

coupled with natural language communication. We propose a framework that

not only collaborates to solve the problem but also induces new, rich concepts

based on limited human interaction. We illustrate the ability of this framework on a

collaborative building task in a Minecraft-based blocks world domain.

1.1.4 Problem 4: Large hypothesis space

Finally, when the hypothesis space is large, various biases are used to prune the space. Deep

learning approaches use implicit biases in architecture. Whereas, symbolic inductive logic

programming methods learn a generalizable hypothesis from a few examples of structured

data by explicitly declaring the inductive biases in the background knowledge. This en-

ables the specification of strong domain-dependent biases. With the increasing interest in

combining neural and symbolic approaches, many neural architectures are proposed to solve

symbolic reasoning tasks. However, symbolic, structured data is more difficult to obtain,

and hence, we need ways to prune the hypothesis space without using large amounts of

data. While many inductive biases in deep learning are already encoded in the various archi-

tectures and the message-passing algorithms, more biases are required to further prune the

hypothesis space. Especially in the case of structured data. We look at symbolic methods for

inspiration on biases for structured data. We investigate the biases exercised by the

neural deep learning and symbolic ILP methods, and highlight a declarative lan-

guage bias that is missing from the neural approaches. We propose a novel way

to implicitly incorporate that declarative bias in a neuro-symbolic architecture.

4

1.2 Dissertation overview

The central thesis and contributions of this dissertation are as follows.

1.2.1 Dissertation statement

Domain knowledge not only helps AI models in case of sparse data but also improves

generalizability. Our objective is to identify how can we effectively incorporate different

types of domain-specific knowledge while learning to improve efficiency and generaliza-

tion abilities.

1.2.2 Dissertation contributions

I. Developed a method and approach (KiGB) to effectively incorporate qualitative influ-

ence information in the successful gradient-boosting framework for efficient learning

with sparse and noisy data.

II. Proposed and developed a framework (RePReL) for the successful fusion of high-level

symbolic reasoning with lower-level signal-based reasoning.

III. Proposed a method to effectively leverage different levels and kinds of abstraction for

task transfer and generalization across objects.

IV. Proposed a formal language (D-FOCI) to express conditional influence between state

variables.

V. Developed an approach for efficient sequential decision-making with multi-modal data

where the data could arrive from multiple sources.

VI. Proposed and developed a framework (Lara) for collaborative problem-solving via com-

munication.

5

VII. Developed a framework for incorporating language bias while learning a neuro-symbolic

model.

1.2.3 Dissertation outline

This dissertation is divided into five high-level parts. The four problems discussed above

form four parts of this dissertation and an additional part presents other explorations. The

dissertation is organized as follows:

Chapter 2 presents the required background for various problems addressed in this dis-

sertation. We start with a brief introduction of the structured data, which is the focus of

this dissertation. Subsequently, we discuss the preliminaries on the gradient boosted trees

and qualitative influence information, which are adapted in Chapter 3. Next, we discuss se-

quential decision making and its two fields: reinforcement learning and planning. We briefly

explain the hierarchical approaches in both these fields. Next, we present the field of Statis-

tical relational AI and explain first-order conditional influence language. These discussions

are further extended in Chapters 4–7.

Part I: Sparse and noisy domains

Chapter 3 presents our approach to addressing sparse and noisy data problems (Problem

1). We introduce a novel framework to incorporate monotonic influence in the successful

gradient boosting framework. The proposed framework is easily applicable for both types of

predictive modeling: classification and regression. We empirically evaluate the framework for

performance, sample efficiency, and robustness to hyperparameters on different benchmark

datasets as well as real-world datasets.

Part II: Multi-task learning and generalization

6

Chapter 4 presents our approach for multi-task learning and generalization problems

(Problem 2). We present a novel framework called RePReL that integrates relational plan-

ning and reinforcement learning to learn transferable skills by leveraging the compositionality

of the domain. We introduce a first-order language called D-FOCI for expressing task-specific

influence and propose to use this influence information for task-specific abstraction. We em-

pirically evaluate the proposed framework on 4 different grid world domains.

Chapter 5 extends the RePReL to deep, neural RL for continuous domains. We extend it

by proposing a batch-learning approach that can be used with an off-policy deep RL method.

The use of batch learning allows for deep relational RL agents as base learners. This allows

us to relax one of the key restrictions for abstraction used in Chapter 4. We empirically

evaluate the approach with two different deep RL-based learners, including a deep relational

RL approach, for sample efficiency, task transfer, and generalization.

Chapter 6 extends the RePReL framework for domains with multi-modal data, where

data is a fusion of information from multiple sources. Multi-modal data is generally a hybrid

collection of structured and unstructured data. To address this, we introduce a novel hybrid

deep RePReL framework that uses an input-preprocessing module for unstructured data and

a merge module to concatenate structured and unstructured data. We empirically evaluate

the proposed approach on two domains for sample efficiency and generalization.

Part III: Collaborative problem solving

Chapter 7 presents our approach to collaborative problem solving via communication

(Problem 3). In this chapter, we focus on the problem of human-machine collaboration

for a building task in a Minecraft environment. The collaborative building task requires

humans and machines to interact via a chat interface for successful completion. We present

7

the challenges in this task and propose an integrated system called Lara that uses various

modules to effectively use human knowledge to achieve the task and learn new structures.

Part IV: Large hypothesis space

Chapter 8 investigates approaches to bias neurosymbolic models for domains with large

hypothesis space. We present the existing biases in the neurosymbolic frameworks and

identify the lack of specific bias—typed object representations. We propose two approaches

to incorporate this bias and empirically evaluate it against the current approaches.

Part V: Other explorations While Parts I– IV focuses on answering the question, how

to leverage domain-knowledge to improve learning with limited data? This part delves into

possible approaches when domain knowledge is not available.

Chapter 9 presents an approach to extract the domain-knowledge, specifically qualitative

influence information, from data. We propose an approach called QuaKE that learns the

joint distribution of the domain using a graphical model and uses this joint distribution

to estimate the two types of qualitative influence: monotonic and synergistic influence. We

empirically evaluate our approach on a clinical study for early prediction of adverse pregnancy

outcomes—nuMoM2b.

Chapter 10 considers leveraging data from another related domain. We present an ef-

ficient domain adaptation approach using subset selection. We use submodular mutual

information functions to identify a subset of source data that is similar to the target data

for efficient training. We empirically evaluate our approach on two benchmark datasets for

domain adaptation and demonstrate the substantial speed-up and potential of improving

the performance by our approach.

8

Chapter 11 provides insights into our work presented in the earlier chapters. We present

our concluding remarks and discuss some future directions of research.

Part VI contains the appendix of the dissertation.

9

CHAPTER 2

TECHNICAL BACKGROUND

This chapter reviews the required backgrounds for the various problems that are addressed in

this dissertation. First, Section 2.1 describes structured data and its representations. Then,

Section 2.2 and 2.3 describe gradient-boosted trees and qualitative influence information,

respectively, which will be adapted in Chapter 3. Then, Section 2.4 describes the background

on two approaches for sequential decision-making: reinforcement learning and automated

planning, which are integrated and adapted in Chapters 4–6. Finally, Section 2.5 reviews

the necessary background of statistical relational AI and dynamic relational probabilistic

models.

2.1 Structured data

The data is called structured when it has a well-defined structure, it is in a standardized

format that conforms to a model, and each element of the data has an associated semantic

interpretable by humans. Contrary to this, unstructured data does not conform to any

model, is free form, and hard to organize. Examples of structured data include tabular data,

relational databases, graph networks, etc. Examples of unstructured data include images,

natural language text, video, audio signals, etc. In this dissertation, we use two major

representations for structured data: tabular and first-order predicate logic.

2.1.1 Tabular

The tabular representation of data consists of rows and columns. Each row represents an

independent entity and each column represents some attribute of that entity. Since many

decision-making tasks (like classification and regression tasks) are concerned with predicting

a value for one of these columns, it is common to identify one column in the table as a

10

‘label’ and refer to the remaining columns as the feature set. We use notation x to refer to

the feature set and y to refer to the label. The tabular data with N rows is represented as

tx, yuNi“1. Many real-world datasets are represented in tabular format.

Although popular, tabular representation is limited as it requires entities in the data to

be independent. It is often used when the underlying data is independent and identically

distributed (IID). When the data violates the IID assumption, specifically where the entities

are related, the tabular representation is not sufficient.

2.1.2 First-order logic

Most businesses collect their data in relational databases. A database can be represented in

first-order logic (Lloyd, 1987; Ullman, 1988). First-order logic (or predicate logic) is a rich

way of representing data and knowledge. First-order logic representations have been used

in AI since the early 1970s. The early expert systems used it for logic programming and

automated theorem proving. First-order logic programs use inference rules and axioms to

deduce facts for a given first-order theory. First-order logic representation not only allows

the following connectives: (negation), ^ (conjunction), _ (disjunction), Ñ (implication),

and Ø (bicondition)1, but also allows quantifiers: D (existential) and @ (universal).

A first-order language L consists of a finite set of constants, predicates, and free vari-

ables. Each predicate takes a fixed number of arguments—arity α—and is represented as

predicate/α. Following the Prolog notation, we represent free variables in uppercase and

constants in lowercase. A substitution θ maps variables to constants. An atom is a predi-

cate symbol followed by a parenthesized list of terms, predicate(term1, term2, ¨ ¨ ¨). A

literal is an atom or negation of an atom. If all the terms in an atom are constants it is

called a grounded atom, otherwise, it is called a lifted atom. A lifted atom can be grounded

1Like the propositional logic

11

by substitution. For example, substitution θ “ tX{p1u grounds atom a “taxi at(X) to

aθ “taxi at(p1).

Databases and First-order Logic

Relational databases can be represented in L, and vice versa; a first-order logic dataset can

be stored in a relational database (Dzeroski, 2010). Datalog, a powerful database query

language based on logic programming also uses first-order language (Abiteboul et al.,

1995). Consider the Entity-Relationship (ER) diagram shown in Figure 2.1. Passenger

and location entities can be represented by constants xp1, p2, . . . pn,y and x l1, l2, . . . ln

y, respectively. Boolean attributes of passenger, in taxi and at dest, can be represented

using unary predicates in taxi/1 and at dest/1 (for instance, in taxi(p1)). Attributes

of location, x coord and y coord can be represented using binary predicate x coord/2

and y coord/2 (for example, x coord(l1, 0.1)). Relationships at and dest, between

the passenger and location, can be represented with binary predicates at/2 and dest/2

(for instance, at(p1, l1)).

Passenger

atdest

Locationy coord x coord

in taxiat dest

1

1

1

1

Figure 2.1: An entity-relationship diagram of Taxi domain. The domain has 2 types of entities,
passenger and location. Passengers have two boolean attributes: at dest and in taxi. Loca-
tions have two real attributes x coord and y coord. Both entities are related by two relations:
at and dest. at relation indicates represents the current location of the passenger and dest

location represents the final destination of the passenger.

12

2.2 Gradient-boosted trees

Gradient Boosted Trees have significantly outperformed other ML algorithms for various

tabular and structured datasets. A study by Olson et al. (2018) compared 13 state-of-the-

art ML algorithms on 165 publically available datasets and ranked gradient-boosted trees as

the best. We use gradient-boosted models in Chapter 3, so this section provides the required

gradient-boosting background.

Boosting

Boosting (Freund and Schapire, 1996) is an ensemble learning approach where multiple

“weak” models are learned to produce a “strong” model. A model is called weak when

the prediction of the model is only slightly better than random guessing. In boosting,

weak models are learned sequentially on weighted examples. In each round higher weight

is given to examples that have larger prediction errors. This forces the new weak model

to concentrate on improving the prediction of the previous model. The final prediction is

made by combining the predictions of all the models. A major advantage of forming a strong

model using boosting is that such models have significantly low variance (as compared to

learning a single strong model). Boosting is also interpreted as a gradient descent algorithm

in function space (Breiman, 1999; Mason et al., 1999; Friedman, 2001). Friedman (2001)

extends this view and proposes a generic functional gradient boosting algorithm for different

loss functions.

Gradient Descent

The objective of a parameter estimation problem is to estimate the parameters (w) of a

function (F) that best fit the dataset (txi, yiuNi“1). “Best fit” is often measured by a loss

13

function (L), so the function estimation objective is as follows,

arg min
w

Ei
“

Lpyi, F pxi; wqq
‰

. (2.1)

Gradient descent is an optimization algorithm where the parameters are estimated in

successive increments as follows,

gm “ B
Bwm

ˆ

Ei
“

Lpyi, F pxi; wmqq
‰

˙

, Ź gradient (2.2)

pm`1 “ ´ρm gm, Ź parameter update (2.3)

wm “
m
ÿ

j“0

pj, Ź parameter estimate (2.4)

where ρm is the learning rate at iteration m and p0 is a random initialization of the

parameters.

Functional Gradient Boosting

Functional gradient boosting (Friedman, 2001), commonly known as gradient boosting, is

performing gradient descent in function space. That is, instead of computing parameter

updates in successive iterations, functional gradient boosting estimates the function. The

functional gradient-boosting algorithm starts with an initial model (ψ0) and then iteratively

adds the model to estimate the function (F “ ψ0`ψ1` ¨ ¨ ¨ψm). The objective of functional

gradient boosting is to estimate the function that best fits the dataset,

arg min
F

Ei
“

Lpyi, F pxiqq
‰

.

In functional gradient descent the functions are estimated in successive increments as follows,

rymi “ B
BFm

ˆ

Lpyi, F pxiqq
˙

, @i “ 1 ¨ ¨ ¨N Ź gradient (2.5)

ψm`1 “ ´ρm arg min
ψ

Ei
“

Lprymi, ψpxiqq
‰

, Ź function update (2.6)

Fm “
m
ÿ

j“0

ψj. Ź function estimate (2.7)

14

where ρm is the learning rate at iteration m (often estimated with line search) and ψ0

is an randomly initialized model. Essentially, the functional gradient boosting algorithm

calculates functional gradients for each example (rymi) in iteration m. The regression dataset

(txi, rymiuNi“1) is generated and a model ψm is fitted on this dataset. ψm is then added to the

final model (F). This is repeated till convergence or some fixed number of iterations.

A common optimization objective for regression tasks is to minimize an L2 loss function,

also known as squared error loss. A common objective function used for binary classification

tasks is binomial deviance (BD), also known as logistic loss. L2 loss and BD loss are defined

as follows,

L2py, F pxqq “ py ´ F pxqq2 (2.8)

BDpy, F pxqq “ log
`

1` e´2yF pxq˘ (2.9)

The functional gradient (ry) for the L2 loss is y´F pxq and for the BD loss is
y

p1` exp p2yF pxqqq .

Functional Gradient Boosted Trees

When each model ψm of the functional gradient boosting is a decision tree (CART) (Breiman

et al., 1984), it is called gradient-boosted trees, also referred to as gradient-boosting machines

(GBM). Annual survey on State of Machine Learning and Data Science by Kaggle has con-

sistently found gradient-boosting trees to be the most popular ML algorithm among complex

methods (Kaggle, 2020, 2021, 2022). One of the reasons for its popularity is the availabil-

ity of user-friendly, highly optimized, and open-source implementations of gradient-boosted

trees in Python. Popular ones include Scikit-learn (Pedregosa et al., 2011), LightGBM (Ke

et al., 2017), CatBoost (Dorogush et al., 2017), and XGBoost (Chen and Guestrin, 2016).

2.3 Qualitative influence information

Qualitative influence (QI) between two variables describes the direction of their relationship.

A QI statement indicates how a change in one variable correlates with the other variable.

15

(a) X M`
ă Y (b) X M´

ă Y

Figure 2.2: Illustration of monotonic influences between two random variables X and Y . (a)
Isotonic influence (b) Antitonic influence

Including the qualitative information in machine learning models has shown a significant

advantage in performance and speed up conversion for sparse and noisy datasets (Altendorf

et al., 2005; Yang and Natarajan, 2013). We leverage the QI information to improve the

performance of gradient-boosted trees in Chapter 3. This section required background for

the two major types of qualitative influences: monotonic and synergistic.

2.3.1 Monotonic influence

Monotonic influence describes a direct relationship between two variables. For example, a

monotonic influence statement “As BMI increases, neck circumference increases” indicates

that the probability of greater neck circumference increases with an increase in BMI.

Definition 1. A random variable X has a monotonic influence on a random variable Y

if higher values of X stochastically result in higher (or lower) values of Y . It is denoted by

X M`
ă Y (or X M´

ă Y).

The monotonic influence relation X M`
ă Y that indicates the higher value of X stochas-

tically results in a higher value of Y is called isotonic influence. Figure 2.2a illustrates an

isotonic relationship between random variables X and Y . The monotonic influence relation

X M´
ă Y that indicates the higher value of X stochastically results in a lower value of Y is

called antitonic influence. Figure 2.2b illustrates an antitonic relationship between random

variables X and Y .

16

2.3.2 Synergistic influence

A synergistic influence statement describes the interaction between the influences. Two

variables synergistically influence the third variable if their joint influence is greater than

their separate, statistically independent influences. Synergic influence can capture influences

like “An increase in BMI increases the risk of high blood pressure in patients with a family

history of hypertension more than patients without a family history.”

Definition 2. Two random variables A and B have a synergistic influence (SI) on

variable Y , denoted by A,BS`
ă Y , if increasing the value of A has a greater effect on Y for

a higher value of B than the lower value of B. Both A and B should necessarily have the

same monotonic relationship with Y .

Similarly, a sub-synergistic influence (sub-SI), denoted by A,BS´
ă Y , indicates that while

A and B have increasing monotonic influence on Y , the joint influence is lesser than their

separate, statistically independent influence.

2.3.3 QI for decision-making

While it is difficult for human experts to provide faithful probabilities, it is easier to provide

qualitative knowledge about influences between variables (Helsper et al., 2004). In most real-

world problems such as healthcare, finance, marketing, social science, etc., human experts

have a considerable amount of knowledge about QIs. This knowledge could potentially

improve the performance of the ML models in the presence of data sparsity, class imbalance,

and/or high dimensionality. Traced back to 1990 (Wellman, 1990), the QI between random

variables has a long history of being applied to decision-making models. Researchers have

studied the use of QIs in a broad variety of application areas, such as finance (Kim and Han,

2003; Chen and Li, 2014), housing (Potharst and Feelders, 2002), medical research (Yet

et al., 2014), computer vision problems (de Campos et al., 2008; Tong and Ji, 2008), etc.

17

Specifically, monotonic influences are applied to a wide range of ML models, from Support

Vector Machines (Bartley et al., 2016a) to Deep Lattice Networks (You et al., 2017). Cano

et al. (2019) surveys ML algorithms and their performance under monotonicity constraints

for the classification tasks.

2.4 Sequential decision making

A fraction of decision-making problems can be formulated as classification or regression tasks.

However, a significant fraction of problems require successive decisions and are better formu-

lated as a problem of finding optimal behavior. Such multi-step sequential decision-making

problems often require reasoning over the long-term utility and impact of a decision and the

uncertainty over future situations. Sequential decision-making problems consist of a dynamic

system that is capable of producing different states when certain actions are performed. Such

dynamic systems are mathematically formulated in two different ways, a decision process or

a transition system. These two formulations make different assumptions and have been a

major focus of research by two different subfields of AI. The subfield reinforcement learn-

ing (Sutton and Barto, 1998) focuses on stochastic, nondeterministic, partially observable,

utility-based dynamic systems formulated as Markov Decision Processes (MDPs). The sub-

field of automated planning (Ghallab et al., 2004) focuses on deterministic, fully observable,

goal-based transition systems formulated as state-transition systems. This section provides

the required background for Chapters 4–7 that focuses on sequential decision-making.

2.4.1 Reinforcement learning

The field of Reinforcement Learning (RL) concerns itself with the problem of how an au-

tonomous agent can interact with the environment and learn the desired behavior from

experience. As shown in Figure 2.3, an RL framework consists of an autonomous agent

and an environment. The agent observes the state of the environment, performs an action,

18

Environment

State,
Reward action

Figure 2.3: Illustration of an RL framework.

observes the reward and the next state, performs the next action, and so on. The goal of an

agent is to interact with the environment and learn an optimal policy that maximizes the

observed reward. At its core, the agent has to trade off between exploring the environment

and exploiting the existing knowledge to maximize the reward. This problem of learning by

interaction is framed as MDPs in RL.

Definition 3. A Markov decision process (MDP) is defined as a tuple xS,A, T,R, γy,
with a set of states S, a set of actions A, a transition function T : S ˆ A ˆ S Ñ r0, 1s, a

reward function R : S ˆ Aˆ S Ñ R, and a discount factor γ.

The solution to the MDP is an optimal policy π˚ : S ˆ A Ñ r0, 1s that yields the

maximum utility value for all the states s P S. While there can be different ways of defining

the utility value (for example, average reward, total reward, etc), in this dissertation we

define the utility value, V πpsq, of a state s as the expected discounted cumulative reward

received upon following the policy π starting from state s.

V πpstq “ EpT,πq
”

8
ÿ

i“0

γirπt`i

ı

(2.10)

where rπt “ Rpst, aπt , st`1q is the reward observed upon following the policy and expectation

is over the state transition probability distribution and the probability of the action in the

policy. A Q-value of a state and action pair, Qπps, aq, is defined as the expected cumulative

19

discounted reward received upon starting from state s, taking action a, and following the

policy π thereafter.

Qπpst, atq “ rpst, at, st`1q ` γV πpst`1q (2.11)

An optimal policy π˚ yields the optimal value, V ˚psq, and the optimal Q-value, Q˚ps, aq.
So, an action in a given state is optimal if it yields an optimal Q-value. Hence, many RL

algorithms focus on computing the optimal value or Q-value and use it to determine the

optimal policy. The computation of the Q-value is difficult when the transition function T

and the reward R are not known. In the absence of these functions, approximation algorithms

are proposed that iteratively update the value function or the Q-value function. Q-learning

by Watkins (1989) is one such iterative algorithm that we used in our experiments.

Q-Learning

The idea behind the powerful Q-learning algorithm is the following Bellman optimality con-

straint that defines the optimal Q-value at a state with respect to the optimal Q-value of

the neighboring states,

Q˚pst, atq “ rpst, at, st`1q ` γ
ÿ

st`1

T pst, at, st`1qmax
at`1

Q˚pst`1, at`1q. (2.12)

This recursive definition of Q-value provides the following iterative Q-update equation,

Q̂k`1pst, atq Ð
´

1´ α
¯

Q̂kpst, atq ` α
´

rpst, at, st`1q ` γmax
at`1

Q̂kpst`1, at`1q
¯

, (2.13)

where α is the learning rate.

The Q-learning algorithm starts with a random initialization of Q-values for each state-

action pair. An agent first observes state s of the environment, performs an exploratory

action a, observes the rewards and the next state, and updates the Q-value Qps, aq using the

above equation. This process is repeated till convergence or max number of steps is reached

in an environment. The intuition behind this iterative algorithm is that if each state-action

20

MDPs

SMDPs

SMDPS over

MDPs

time

Figure 2.4: Comparison of actions in MDPs, SMDPs, and HRL

pair is visited often enough, then the updates would converge towards optimal Q-function.

Recently, many neural variants of Q-learning were proposed for complex RL environments,

including Deep Q-Network (DQN) (Mnih et al., 2013, 2015), Double DQN (van Hasselt et al.,

2016), Dueling DQN (Wang et al., 2016), Noisy DQN (Fortunato et al., 2018), Rainbow

DQN (Hessel et al., 2018) etc.

Hierarchical RL

While RL is generally successful, it suffers from the curse of dimensionality when the action

space is too large and/or state space is infeasible to enumerate. Humans simplify complex

problems by abstracting away details and decomposing actions into hierarchies. Several

researchers have proposed to model the temporal-abstraction in RL by composing a hier-

archy over the action space (Dietterich, 1998; Sutton et al., 1998; Parr and Russell, 1998). By

modeling actions as hierarchies, researchers extended the primitive action space by adding

temporally extended actions. These approaches are broadly categorized as hierarchical RL

(HRL) approaches.

MDPs conceive time as a discrete step. A chosen action in an MDP only persists for a

single step. Semi-MDPs (SMDPs) allow temporally extended actions of varying length over

a continuous time, as represented in the first two trajectories of Figure 2.4. By extending the

21

primitive action space of the MDP by adding temporally extended actions, HRL approaches

superimpose MDPs and SMDPs as shown in the last trajectory of Figure 2.4. By leveraging

the action hierarchies, HRL methods improve the exploration of the environment. They are

efficient in learning due to their ability to decompose larger tasks into smaller sub-tasks. They

are amenable to transfer and generalization (Dietterich, 1998). They have shown significant

benefits in problems with long horizons and sparse rewards. Different HRL approaches

include the Options framework (Sutton et al., 1998), the MAXQ framework (Dietterich,

1998), hierarchical abstract machines (HAM) (Parr and Russell, 1998), etc. Among these,

we use the options framework in Chapters 4–6.

In our work, we use two HRL approaches, the options framework and the hierarchical

DQN. The options framework (Sutton et al., 1998) models temporally extended actions as

options. An option p “ xIp, πp, βpy consists of three components: a set of states where the

option can be initiated Ip, an option policy πp, and a termination condition βp : S Ñ r0, 1s
that describes the probability of option termination. A policy is learned for each option.

At each step, the agent either decides to take a primitive (single-step) action or initiate a

temporally extended option. When an option is initiated, the agent uses the respective option

policy to decide on actions until the option can be terminated. Kulkarni et al. (2016) builds

upon the options framework and proposes a hierarchical DQN (h-DQN). HDQN is a two-level

hierarchical RL framework where a meta-controller chooses the goals and a controller chooses

the actions. An internal critic provides an intrinsic reward to the controller for the chosen

goal. The controller maximizes the intrinsic reward and the meta-controller maximizes the

extrinsic, environmental reward.

Relational RL

Many structured domains have objects with different properties and relations between these

objects. Relational RL (RRL) focuses on RL in such structured domains. RRL approaches

22

learn higher-order rules for acting in a domain and are better at generalizing across similar

objects (Dzeroski et al., 2001; Tadepalli et al., 2004). In RRL, the MDP definition has been

extended to the relational MDPs (RMDPs) (Fern et al., 2006). In Chapters ?? we focus on

the relational MDPs. But before introducing them we must make a distinction between the

state predicates and the action predicates. State predicates indicate properties or relations

between the entities of the world, whereas action predicates indicate an activity, movement,

or step. For example, in a taxi domain (see Fig. 6.1a) predicate east/0 is an action predicate

and the atom east() moves the taxi in the east direction. For simplicity, we assume the

action predicates have zero arity.

Definition 4. Given a first-order language L consisting of a set of constants C, a set of

state predicates P , and a set of action predicates Y , a relational MDP (RMDP) is defined

as a tuple xS,A, T,R, γy, where:

• S is a finite set of states defined over all the ground atoms generated by constants C

and state predicates P

• A is a finite set of actions defined as a set of ground atoms generated by constants C

and action predicates Y

• T : S ˆ Aˆ S Ñ r0, 1s is a probabilistic transition function

• R : S ˆ Aˆ S Ñ R is a reward function

• γ P r0, 1q is the discount factor

RMDPs can either be converted to propositional MDPs and solved using standard RL

approaches, or they can be solved using RRL approaches. RRL approaches include sym-

bolic as well as neural approaches. Notable work using symbolic methods include relational

TILDE trees with Q-learning (Dzeroski et al., 2001), RRL-TG that replaces TILDE with

23

incremental tree learning algorithm (Driessens et al., 2001), approximate policy iteration

(API) with decision-lists (Fern et al., 2006), relational gradient-boosted Q-learning (GBQL)

and relational boosted fitted Q-learning (RBFQ) (Das et al., 2020). Neural RRL approaches

include neural logic machines (NLM) (Dong et al., 2019) that showed the ability to solve

blocks world with up to 50 blocks, neural logic reinforcement learner (NLRL) (Jiang and

Luo, 2019), off-policy differentiable logic RL (OPDLRL) (Zhang et al., 2021) that uses dif-

ferentiable ILP (BILP) (Evans and Grefenstette, 2018), the work by Kimura et al. (2021)

that used Logical Neural Network (LNN) (Riegel et al., 2020) for text-based RL games,

and various deep relational RL works that use graph-based neural networks (GNNs) archi-

tectures with off-policy learning algorithms (Li et al., 2020; Zambaldi et al., 2019; Janisch

et al., 2021).

2.4.2 Planning

Planning is the model-based approach to sequential decision making (Ghallab et al., 2004;

Geffner and Bonet, 2013). A planning agent uses a transition model of the domain to compute

how the states would evolve upon taking certain actions and selects the action that achieves

the goal. The description of the transition model is called a planning domain. A planning

domain D “ xL,Oy consists of a first-order language L and a finite set of schematic operators

O. A schematic operator is defined as c “ xhpcq, prepcq, eff `pcq, eff ´pcqy, consisting of

a lifted atom, hpcq, often referred to as the head; a first-order formula called preconditions

prepcq; and two disjoint sets of atoms, eff `pcq and eff ´pcq, describing the positive (add)

and negative (delete) effects of executing the operator. All terms that appear in the literals

in pre, eff `, and eff ´ also appear as arguments of hpcq. Hence, a schematic operator can

be grounded by substituting the head atom, hpcqθ. A ground operator cθ can be applied

in a state s if a substitution θ satisfies the precondition prepcq at s, i.e. s |ù prepcqθ. On

applying the ground operator cθ, s transitions to another state s1 “ pszeff ´pcqθq Y eff `pcqθ.

24

A classical planning task is defined as a tuple Π “ xD, s0, gy, where s0 is an initial state

and g is a goal specified as a conjunction of literals. A plan for the planning task is a

sequence of ground operators, which when executed in a state s results in a state satisfying

g. A language and syntax for planning domains called Planning Domain Definition Language

(PDDL) was released for the 1998 AI Planning Systems Competition (McDermott, 2000).

PDDL has since been revised and extended to various versions (Ghallab et al., 1998; Fox

and Long, 2002, 2003; Edelkamp and Hoffmann, 2004; Gerevini and Long, 2005) and has

become a standard input syntax for most of the existing planners.

Hierarchical Planning

Solving complex planning tasks with large state space can be very compute-intensive. To

reduce the computational cost, the powerful idea of hierarchical problem solving is adapted

in planning, which is referred to as hierarchical planning. In hierarchical planning, the goal

is decomposed into sub-goals and multiple plans are generated at different abstraction hier-

archies. Essentially, hierarchical planners first identify an abstract plan for the planning task

and then refine each abstract action in the abstract plan to find a concrete plan. Hierarchical

planning is most suitable in domains that satisfy the downward refinement assumption (Bac-

chus and Yang, 1991), where it is assumed that, given a concrete action plan exists, every

abstract plan can be refined to a concrete action plan without backtracking across the ab-

stract plan. Hierarchical Task Networks (HTN) (Erol et al., 1994; Nau et al., 1999) is one

such hierarchical planning approach.

HTN consists of two types of tasks: primitive and compound. A primitive task is defined

using preconditions and effects (equivalent to operators in classical planning). A primitive

task is a single-step action that can only be executed in a state which satisfies the task pre-

conditions. Upon executing a primitive task the propositions of the state change as dictated

by the task effects. A compound task is a temporally extended action that requires one or

25

Methods:

xt: transport(G) # PASSENGER IN TAXI

pre: DX, (at-dest(X) P G)

τ : {drop(X), transport(G)} y

xt: transport(G) # NOT AT DESTINATION

pre: DX, at-dest(X) P G ^ at -dest(X)
τ : {pickup(X), transport(G)} y

Operators:

x h: pickup(X)

pre: DL, at(X, L) ^ in -taxi(X)
eff: taxi -at(L) ^ in -taxi(X)

β: in-taxi(X) y

x h: drop(X)

pre: DL, in-taxi(X) ^ dest(X, L),

eff: taxi -at(L) ^ at -dest(X) ^ in -taxi(X)
β: at-dest(X) y

Initial State (s): {at(p1 ,r),

taxi -at(l3), dest(p1,d1),

 at -dest(p1), in -taxi(p1)}
Goal condition (g): {at -dest(p1)}

Figure 2.5: Example of a hierarchical planning task consisting of methods, operators, initial
state, and goal condition.

more primitive tasks to be executed in a partially ordered manner. One or more methods

are defined for each compound task. A method is described as a three tuple, consisting

of compound tasks, preconditions, and a sequence of partially ordered tasks (primitive or

compound). When a state satisfies the method precondition, the compound task can be

decomposed in that state to the sequence of partially ordered tasks. The problem of achiev-

ing a goal condition, starting from a given initial state, is also posed as a compound task

(or set of compound tasks). Each compound task is recursively decomposed using methods,

till a satisfying sequence of primitive tasks is identified. A sequence of primitive tasks is

considered satisfying if executing that sequence starting at the initial state results in a state

that satisfies the goal condition.

26

A hierarchical planning domain D “ xL,O,My is similar to a classical planning domain

with an additional set of methods M. A method is a triple m “ xtpmq, prepmq, τpmqy, where

t is a compound-task, pre is a precondition for the method, and τ is an ordered sequence of

compound-tasks or operators. A task tpmq can be decomposed into a sequence of sub-tasks

τpmq at a state s if a substitution θ satisfies the preconditions in s, i.e. s |ù prepmqθ.
A hierarchical planner solves the planning task by recursively decomposing the goal into a

sequence of sub-tasks. Figure 2.5 provides an example of a hierarchical planning task.

PDDL does not support compound tasks and methods. Höller et al. (2020) proposed a

Hierarchical Domain Description Language (HDDL) as an extension of the STRIPS fragment

of PDDL2.1 defined in Fox and Long (2003). Both PDDL and HDDL are first-order languages

and use first-order formulas over predicates for goal description.

2.5 Statistical relational AI

Statistical Relational AI (Raedt et al., 2016), also referred to as StarAI, is a field of AI that

deals with learning and reasoning under uncertainty in relational domains. StarAI is at the

intersection of the following three paradigms, as shown in Figure 2.6.

1. Logic, the field of logical representations deals with reasoning for relational data.

2. Probability, statistical approach to handle uncertainty, noise, and missing values.

3. Learning, the field of machine learning use data-driven approaches to learn model

structures and parameters.

Logical representations like propositional and predicate logic are useful to reason about

conjunction, negation, and implications. They capture rich relational structures of the do-

main and allow powerful generalization across different objects, but they are not great tools

for reasoning about uncertainty. Probability, on the other hand, is a great tool to rea-

son about uncertainty, beliefs, and possible worlds. The powerful idea of using structured

27

Learning

Logic Probability

StarAI

Figure 2.6: Statistical Relational AI (StarAI) combines Logic, Probability, and Learning.

graphical representations for the computation of probability and uncertainty gave rise to

the vast literature on probabilistic graphical models (Koller and Friedman, 2009), including

Bayesian networks, Markov networks, dependency networks, etc. Both the logic and graph-

ical model research have intersections with Machine learning. For instance, inductive logic

programming (?) is a research area at the intersection of computational logic and machine

learning.

Eventually, the ideas from logic, machine learning, and probabilistic graphical mod-

els started emerging together for complex domains with rich relational structures. Vari-

ous models were proposed at the intersection of logical representations and probabilistic

graphical models, for instance, probabilistic relational models (PRMs) (Friedman et al.,

1999), Bayesian logic programs (BLPs) (Kersting and Raedt, 2001), relational Markov net-

works (Taskar et al., 2002), relational dependency networks (RDNs) (Neville and Jensen,

2004), Markov logic networks (MLNs) (Richardson and Domingos, 2006) etc. These multi-

tudes of models and formalisms were collected under the umbrella of Statistical Relational

Learning (SRL) (Getoor and Tasker, 2007). The field of SRL focuses on the representation,

inference, and learning of these relational probabilistic graphical models. Motivated by the

capability of SRL approaches, researchers began looking at the use cases of SRL in various

28

AI problems and coined the term StarAI. The field of StarAI was born with the motivation

to

“explore the minimal perturbations required for each of the AI subfields to start using
statistical relational (SR) techniques” (Star-AI (2010))

2.5.1 First-order conditional influence language

Like probabilistic graphical models, SRL models also describe influences in the domains.

However, instead of specifying the influence between random variables or objects, SRL mod-

els specify the influence between attributes of classes. For instance, probabilistic graphical

models allow describing influences like “Harsha’s grades depend on Harsha’s intelligence”,

but SRL models allows specification of influences like “For all students, their grades depend

on their intelligence”. The exact syntax of modeling such influence might differ for each SRL

approach. In Chapters 4–6, we use one of the SRL languages—First-order Conditional Influ-

ence (FOCI) language. FOCI was first introduced in Natarajan et al. (2005) and described

in Natarajan and Altendorf (2005). Going beyond the classical SRL approaches like PRMs

and BLPs, FOCI allows the modeling of qualitative influences in the domain (see § 2.3 for

qualitative influence).

FOCI language consists of statements of the form,

IF <condition> THEN <influent> QINF <resultant>, (2.14)

where condition and influent are a finite set of literals, resultant is a single literal,

and QINF indicates the qualitative influence. A FOCI statement encodes the qualitative

influence (QINF) of influent on the resultant. Below is an example of a FOCI statement

encoding the following QI: “If a student takes a course, then the grade in that course is

monotonically influenced by the student’s intelligence.’

IF student(S), course(C), register(R, S, C) (2.15)

THEN intelligence(S,I) QINF grade(R,G),

29

student(amy), student(bella), student(conner),

intelligence(amy,ia), intelligence(bella, ib), intelligence(conner, ic),

course(stats), course(math), course(economics),

register(r1, amy, stats), student(r2, conner, math)

grade(r1, g1), grade(r2, g2)

(a)

ia
Amy’s

intelligence

g1
Amy’s stats grade

ic
Conner’s intelligence

g2
Conner’s math grade

(b)

Figure 2.7: (a) An instance of a domain with all the objects. (b) Grounded Bayesian network
obtained for the FOCI statement in Equation 2.15

Each FOCI statement can be associated with the conditional probability function that

describes the probability distribution of the resultant conditioned on the influents. Given a

particular instantiation of the domain, FOCI statements produce a ground Bayesian network.

Figure 2.7 demonstrates a ground Bayesian network obtained for the above FOCI statement.

2.6 Neurosymbolic AI

While neural computational and learning approaches have made significant advances in var-

ious pattern recognition and generation problems, they are shown to be limited in reasoning

capabilities. This has led the research community to combine symbolic reasoning capabilities

with neural learning approaches, giving rise to a class of approaches called Neurosymbolic

AI (d’Avila Garcez et al., 2015). In his 2020 Robert S. Engelmore Memorial Lecture, Kautz

30

(2022) proposed a taxonomy for neurosymbolic AI; surveying the various ways of combin-

ing the neural and symbolic advancements from related fields of deep learning (Goodfellow

et al., 2016), probabilistic graphical models (Koller and Friedman, 2009), graph neural net-

works (Battaglia et al., 2018), statistical relational learning (Raedt et al., 2016), etc. This

taxonomy provides a good overview of the field of Neurosymbolic AI. The taxonomy includes

the following 6 architectures.

Type 1: Symbolic Neuro Symbolic

The first category is Symbolic Neuro Symbolic. Here a symbolic entity is encoded as a

vector embedding and passed to a neural network model. The output from the neural network

is a vector that is decoded back to symbolic representation, as shown in Figure 2.8a. This

is perhaps the most common approach seen in natural language processing for language

translation or question-answering tasks.

Type 2: Symbolic[Neuro]

The second category, Symbolic[Neuro], represents the hybrid systems where a symbolic

solver employs one or more neural subroutines, illustrated in Figure 2.8b. AlphaGo (Silver

et al., 2017) is a fine illustration of this category, with Monte Carlo Tree Search using a

neural network as a subroutine for heuristic estimation.

Type 3: Neuro | Symbolic

The third category is for systems where symbolic and neural models are co-routines and are

leveraged for different tasks in a big pipeline. In Neuro | Symbolic, neural and symbolic

routines communicate with each other either to extract information or to improve individual

as well as collective performance of the system, see Figure 2.8c. DeepProbLog (Manhaeve

et al., 2018) and NeurASP (Yang et al., 2020) are illustrative examples of this category. Both

31

of these framework trains a neural network to learn probabilistic atoms, which are used in

symbolic reasoning, and the loss from reasoning is used for computing gradients.

Type 4: Neuro: Symbolic Ñ Neuro

Neuro: Symbolic Ñ Neuro is the fourth category. Here, symbolic knowledge is used to

either modify the training procedure of the Neural Network or provide an architecture or

initial weights to bias the neural network. This type is illustrated in Figure 2.8d. Knowledge-

based Artificial Neural Networks (KBANN) (Towell and Shavlik, 1994) is a great exemplar

of this category. It uses symbolic rules to define a neural network and uses backpropagation

to refine the rules. Some of the recent works in this category involve Lifted Restricted

Boltzmann Machines (LRBM) (Kaur et al., 2020), TensorLog (Cohen et al., 2020), and

Neuro-symbolic forward reasoner (Shindo et al., 2021).

Type 5: Neuro {Symbolic}

The fifth category is Neuro {Symbolic} where there is a tight coupling of symbolic data

and the neural operations. Symbols are converted to tensors for neural processing as shown in

Figure 2.8e. However, neural processing is tightly coupled with symbolic operations and ma-

nipulations. Logic Tensor Network (Serafini et al., 2017) and Neural Logic Machines (Dong

et al., 2019) fall under this category.

Type 6: Neuro[Symbolic]

Finally, the last category is Neuro[Symbolic], transpose of Type 2 (see 2.8f). Here, over-

all Neural model performs symbolic reasoning by either learning the relations between the

symbols or paying attention to selected symbols at a certain point. Graph Neural Net-

works, with message passing among neighbors and attention to selected relations, fall in this

cateogry (Lamb et al., 2020).

32

Symbols Vectors
Neural
Model

Vectors Symbols

(a) Symbolic Neuro symbolic

Symbolic

Neural

(b) Symbolic[Neuro]

Symbolic

Neural

(c) Neuro | Symbolic

Symbolic

Neural

(d) Neuro: Symbolic Ñ Neuro

Neural

Symbolic

(f) Neuro[Symbolic]

Symbols Tensor
Neural
Model

Tensor Symbols

(e) Neuro {Symbolic}

Figure 2.8: Taxonomy of Neurosymbolic approaches.

33

PART I

SPARSE AND NOISY DOMAINS

34

CHAPTER 3

INCORPORATING QUALITATIVE INFLUENCE INFORMATION

Tree-based gradient boosting methods (see §2.2) are very powerful and are successfully used

in various challenging problems (Olson et al., 2018). These methods learn the ensemble of

trees to fit the training data instances as closely as possible. Hence, while the prediction is

optimized for training data, it is unreliable in the region of the sample space where data is

scarce or not available, as well as in the region where the majority of the data is noisy. Rich

qualitative constraints such as monotonic and synergistic influences (see §2.3) can provide

additional information to improve prediction in the sparse and noisy region of the sample

space. In this chapter, we introduce an approach to incorporate rich qualitative domain

knowledge while learning tree-based gradient-boosting methods. We present the Knowledge-

intensive Gradient Boosting framework (Kokel et al., 2020) that can effectively and efficiently

incorporate qualitative influence information and improve the performance of the tree-based

gradient boosting models. KiGB uses human guidance as soft constraints to gently nudge

the leaf values to follow the qualitative influence statements.

3.1 Introduction

In many real-world domains such as healthcare and logistics, qualitative influence statements

such as monotonicities and synergies are quite natural and easy to obtain. For instance, a

physician could easily explain that “as the A1C number increases, the risk of heart attack

increases”; a domain expert in logistics could explain that “as the distance between the

source and destination increases, the price of shipping increases”. Ignoring such valuable

information while learning a model appears wasteful.

Several prior works exist on incorporating such domain knowledge in the context of learn-

ing ML models, for classification task (Cano et al., 2019) and for regression tasks such as

35

isotonic regression (Robertson et al., 1988). Including such constraints can yield significantly

faster and better convergence compared to using only data, specifically in probabilistic mod-

els like Bayesian network (Altendorf et al., 2005; Yang and Natarajan, 2013). The key

advantage of employing such constraints appears to be in the cases of noisy and sparse

domains.

Inspired by these successes, we propose a novel method to adapt the qualitative con-

straints in the successful gradient-boosted trees framework1. We develop a unified approach

that works for both classification and regression tasks. Specifically, we use the qualitative

influence between the feature and target variables, obtained from the domain expert, as a

soft constraint while learning the gradient-boosted trees. Our hypothesis, which we evaluate

empirically, is that model learned by using the qualitative influence would show significant

benefit over the model learned only from the noisy data. Especially when the data is scarce.

In this chapter, we make the following important contributions: (1) we derive the first

unified framework for gradient-boosting that can be adapted to classification and regression

settings. (2) we show how to use the constraints in the gradient updates to directly modify

the model parameters, instead of altering the data distribution. (3) Inspired by the use

of knowledge for learning SVMs (Fung et al., 2002), we provide an interpretation of the

resulting framework using margins. (4) Finally, and most importantly, we demonstrate both

the effectiveness and efficiency of the proposed approach in multiple domains—15 standard

benchmark domains for classification and regression tasks and 2 real data sets (including a

novel logistics data set).

The code and data used in this chapter are available for public use at the following

URL: https://github.com/starling-lab/KiGB. The rest of the chapter is organized as

follows. Section 3.2 reviews related work on using qualitative constraints in trees. Then

Section 3.3 presents our unified algorithm for both the classification and regression settings.

1Why gradient boosted trees? Refer to Appendix A.1

36

https://github.com/starling-lab/KiGB

It also explains the margin interpretation of the KiGB constraints. Section 3.4 presents

the empirical evaluation of the proposed algorithm on several classifications and regression

tasks. Finally, Section 3.5 concludes by summarizing the key insights and contributions and

outlines some future research directions.

3.2 Related work

A variety of approaches have been proposed to incorporate monotonic influence in trees. Ben-

David (1995) modified splitting criteria to consider both the entropy and the order-ambiguity

score. Makino et al. (1996); Potharst and Bioch (1999) append new corner-elements to

the dataset to learn monotonic function. Feelders and Pardoel (2003); Bioch and Popova

(2002) prune the non-monotonic branches after learning the tree. Bioch and Popova (2002)

proposed to relabel the dataset and remove all non-monotonic instances. van de Kamp

et al. (2009) adjusted the probability values at the leaf nodes in case of a violation by using

isotonic regression functions. González et al. (2015); Bonakdarpour et al. (2018) adapt the

above approaches to random-forest decision tree ensembles. Bartley et al. (2016b) leverages

the formulation of the random-forest decision tree ensemble as a weighted neighborhood

function and proposes a re-weighting scheme subject to monotonicity constraints. While

effective, none of these approaches have been successfully adapted to gradient boosting.

Two approaches proposed for boosted trees include González et al. (2016) and Bartley

et al. (2019). González et al. (2016) proposed a pruning mechanism for monotone Ad-

aBoost. It first learns the whole tree, compares each branch split with all other splits to

establish monotonicity, and prunes the non-monotonic branches. Hence, it is inefficient.

Another approach, Monoensemble by Bartley et al. (2019), converts each tree to mono-

tone rules and then re-calculates the leaf values (coefficients) to ensure monotonicity. They

propose two methods for coefficient recalculation: Logistic regression and Naive Bayesian

37

techniques. Monoensemble is proposed for the random forest ensemble, however, the im-

plementation extends the approach to gradient boosting for classification tasks. Random

forest Monoensemble outperforms all the previous approaches for classification tasks and

also guarantees global monotonicity. To this effect, we compare our proposed approach with

Monoensemble (MONO).

LightGBM (LGBM) (Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016) provide

an option to learn monotonic gradient-boosted trees. Both these libraries constrain the

node splits while performing a greedy search to learn a monotonic tree. At each node of

the tree, after selecting the splitting variable, the mean of the left and the right subtree

is used as the bounding constraint for future splits. The leaf values of the future split

in the left subtree are upper bounded (ď) by the mean and the leaf values of the right

subtree are lower bounded (ą) by the mean. This approach is very restrictive (as shown by

Bartley et al. (2019)), and can overfit the training data. It can be effective for problems that

require strict monotonicities and have clean data, without any noise. In our evaluations, we

also compare our proposed approach against standard gradient-boosting (LGBM) as well

as gradient-boosting with monotonicity constraints (LMC) implemented in the LightGBM

library.

3.3 Knowledge-intensive gradient boosting

KiGB leverages qualitative influences, provided by domain experts, to improve learning with

functional gradient boosting. Our focus is not to achieve strict monotonicity, rather we

aim to use the monotonic influences as advice to learn a loosely monotonic function that

yields faster and better convergence when the data is scarce and noisy. Previous approaches

(Monoensemble (Bartley et al., 2019) and LMC (Ke et al., 2017), for example) incorporate

monotonic influences as hard constraints in the target function. Instead, KiGB naturally

incorporates the influences at each iteration during boosting as soft constraints.

38

The motivation of this chapter can be illustrated with the following example. Consider

a typical case in the logistics domain where even though the monotonic advice like “as

the distance between the source and destination increases, the price of shipping increases”

holds in general, a trucking company might charge a lower price for some particular long-

distance shipping. Various reasons could lead to such scenarios, e.g. driver returning to the

home base, convenient parking, next scheduled pick-up, etc. So we do not aim to learn a

strictly monotonic function. Rather, we propose an approach to learning a loosely monotonic

function that allows the trade-off between the data and the advice. Our approach does not

guarantee monotonicity but as shown by the experimental results, for most of the datasets,

it has clear benefits over approaches that guarantee monotonicity.

3.3.1 Monotonic constraint

As we aim to use monotonic influence for classification and regression tasks, we only con-

sider the monotonic influence between a feature and a target variable. Given an increasing

monotonic (isotonic) influence between a feature variable A and target variable Y (A Q`
ă Y),

Monotonicity definition (see Def. 1) indicates the following order restriction in the expecta-

tion,

A “ a1 ď A “ a2 ùñ ErY | A “ a1,C “ cs ď ErY | A “ a2,C “ cs. (3.1)

The above equation indicates that given A “ a1 is less than A “ a2 the expected value of Y

for samples with A “ a1 is less than A “ a2 in the same context, that is when all the other

assignments to the other random variables (C) is same. The context encodes the ceteris

paribus2 condition.

We extend this order restriction to trees. Consider a tree ψt that splits at node n with

variable A. The expected values of the left subtree of n should be no more than the expected

2Ceteris paribus is a Latin phrase that roughly translates to “all else being equal”.

39

value of the right subtree of n.

ErψpnLqs ď ErψpnRqs (3.2)

where nL (resp. nR) is the set of all examples assigned to the left (resp. right) subtree at n.

All the variables that appear in any of the ancestors of the node n can be seen as the context.

KiGB uses this expectation as a constraint on the leaf values and incorporates it into the

objective function. The ceteris paribus condition is relaxed in this constraint. Instead, an

assumption is made that the variables appearing in the ancestor of the node n are sufficient

context.

Inspired by the work of Fung et al. (2002), we incorporate an ε-margin in the constraint

as follows,

ErψtpnLqs ´ ErψtpnRqs ď ε (3.3)

The ε-margin in the constraint ensures that the monotonicity is robustly enforced up to

a (potentially user-specified) tolerance of ε. We define a slack variable ζn to measure the

violation of the ε-margined monotonicity constraints at node n,

ζn “ ErψtpnLqs ´ ErψtpnRqs ´ ε (3.4)

We modify the standard objective of squared-error loss to include a penalty (ζ2n) when the

advice constraint is violated (ζn ą 0). So the objective function is defined as,

argmin
ψt

N
ÿ

i“1

pryi ´ ψtpxiqq2
looooooooomooooooooon

loss function w.r.t data

` λ

2

ÿ

nPN pXcq

max pζn ¨ |ζn|, 0q
looooooooooooooomooooooooooooooon

loss function w.r.t. advice

(3.5)

where N pXcq is the set of all non-leaf nodes that split on the monotonic features (Xc)

influencing the target variable and parameter λ expresses the relative importance of the

advice constraint in the problem. The loss function w.r.t. the advice is a form of hinge loss

and is activated only on violation of the advice constraint (ζn ą 0).

40

On taking derivation of the modified objective function, we get the following leaf update

equation,

ψ`t “
1

|`|
N
ÿ

i“1

ryi ¨ Ipxi P `q
loooooooooomoooooooooon

mean

` λ

2

ÿ

nPN pXcq

Ipζn ą 0qζn ¨
´Ip` P nRq

|nR| ´ Ip` P nLq
|nL|

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

penalty for advice violation

(3.6)

where, Ip` P nRq represents whether leaf ` belongs to the right subtree of node n and |`|
represents number of examples at the leaf node `.

Derivation of the update equation

The leaf update equation (Equation 3.6) is derived from the modified objective function

(Equation 3.5) as follows.

Let us represent each tree as a sum of its leaves (j).

ψtpxq “
ÿ

jPψt

ψjt ¨ Ipx P jq

where, Ipx P jq represents whether example x is captured in leaf j. Using this in the

modified objective function (Equation 3.5), we obtain the following equation,

N
ÿ

i“1

˜

ryi ´
ÿ

jPψt

ψ`t ¨ Ipxi P jq
¸2

` λ

2

ÿ

nPN pXcq

max pζn ¨ |ζn|, 0q

We take the partial derivative of this objective with respect to the model parameters (leaf

values).

N
ÿ

i“1

B
Bψ`t

˜

ryi ´
ÿ

jPψt

ψjt ¨ Ipxi P jq
¸2

` λ

2

ÿ

nPN pXcq

B
Bψ`t

pmax pζn ¨ |ζn|, 0qq

41

The derivation of maxpζn ¨ |ζn|, 0q is,

B
Bψ`t

max pζn ¨ |ζn|, 0q “

$

’

&

’

%

B

Bψ`
t
pζnq2 , if Ipζn ą 0q

0, otherwise

Plugging this in the previous equation we get,

´2
N
ÿ

i“1

˜

ryi ´
ÿ

jPψt

ψjt ¨ Ipxi P jq
¸

¨ Ipxi P `q ` λ

2

ÿ

nPN pXcq

Ipζn ą 0q B
Bψ`t

pζnq2 ,

´2
N
ÿ

i“1

˜

ryi ´
ÿ

jPψt

ψjt ¨ Ipxi P jq
¸

¨ Ipxi P `q ` λ

2

ÿ

nPN pXcq

Ipζn ą 0q 2ζn
B
Bψ`t

pζnq .

Substituting ζn,

´2
N
ÿ

i“1

`

ryi ´ ψ`t
˘ ¨ Ipxi P `q ` λ

ÿ

nPN pXcq

Ipζn ą 0q ¨ ζn B
Bψ`t

pErψtpnLqs ´ ErψtpnRqs ´ εq

Substituting Erψtpnqs,

´ 2
N
ÿ

i“1

pryi ¨ Ipxi P `qq ` 2ψ`t

N
ÿ

i“1

Ipxi P `q`

λ
ÿ

nPN pXcq

Ipζn ą 0q ¨ ζn
˜

B
Bψ`t

˜

1

|nL|
ÿ

xiPnL

ψtpxiq
¸

´

B
Bψ`t

˜

1

|nR|
ÿ

xiPnR

ψtpxiq
¸¸

Here,
řN
i“1 Ipxi P `q is the number of samples at leaf node `, we use the notation |`| for

it.

´ 2
N
ÿ

i“1

pryi ¨ Ipxi P `qq ` 2ψ`t ¨ |`| `

λ
ÿ

nPN pXcq

Ipζn ą 0q ¨ ζn
˜

1

|nL|
ÿ

xiPnL

Ipxi P `q ´ 1

|nR|
ÿ

xiPnR

Ipxi P `q
¸

42

řN
xiPnL

Ipxi P `q is true only if the ` P nL and it is equal to |`|.

´ 2
N
ÿ

i“1

pryi ¨ Ipxi P jqq ` 2ψ`t ¨ |`| ` λ
ÿ

nPN pXcq

Ipζn ą 0q ¨ ζn
ˆ

Ip` P nLq ¨ |`|
|nL| ´

Ipj P nRq ¨ |`|
|nR|

˙

Now, equating the derivation with zero will give us the following equation for leaf values:

ψ`t “
1

|`|
N
ÿ

i“1

ryi ¨ Ipxi P `q
loooooooooomoooooooooon

mean

` λ

2

ÿ

nPN pXcq

Ipζn ą 0qζn ¨
´Ip` P nRq

|nR| ´ Ip` P nLq
|nL|

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

penalty for advice violation

where, Ip` P nRq represents whether leaf ` belongs to the right subtree of node n and |`|
represents number of examples at the leaf node `.

3.3.2 Interpretation of the update equation

Intuitively, if the advice constraint is violated for the node n then the penalty applies a total

correction of λ ¨ζn on all the leaves in the subtrees. It is worth noting that the penalty applied

to each subtree is inversely proportional to the number of examples in that subtree. So, when

there is significant data available, the advice is scaled down. The tree is first constructed

by evaluating the splitting variable w.r.t the standard squared-error loss and then the leaf

values are updated as per the modified objective.

High values of λ force aggressive advice-based updates when a constraint is violated and

the influence of data is reduced. Alternately, small values of λ make the advice constraint

less strict, and the trees depend more on data. When λ “ 0, the objective is a standard

tree learning that relies only on the data. Negative values of ε enforce strict margins while

positive values allow overlapping margins. In extreme cases, to enforce the expected value

of the left subtree to be strictly less than the expected value of the right subtree by some

k, i.e. ErψtpnLqs ` k ď ErψtpnRqs, we set ε “ ´k. In other cases, to allow margin of k for

43

violation, i.e. ErψtpnLqs ď ErψtpnRqs ` k, we set ε “ k. These interpretations of λ and ε

are also evident in the experiments with hyperparameters.

3.3.3 Equilibrium between advice and data

Given the different degrees of the plausibility of expert advice and levels of noise in the data,

an ideal approach should allow for different extents to which the monotonic constraints

can influence ψ. This section illustrates the significance of achieving such an equilibrium

between the experts’ knowledge and data. Consider the noisy dataset shown in Figure 3.1a

with feature A on the horizontal axis, B on the vertical axis, and different colors representing

different regression values of the target Y . Assume that an expert provided the monotonic

influence advice A Q`
ă Y for this data. The noisy data clearly violates this constraint in region

R1 & R2. Different use cases may require treating this anomaly as conflict or noise. In some

cases, this anomaly might be an important conflicting pattern in the data that should be

captured by the model, while in others, advice is more significant and the anomaly may be

overlooked as noisy observations. The latter case is especially when it is known that some

sensors collecting the data are not sensitive enough or have failed.

Figure 3.1b illustrates the decision boundaries of a gradient-boosted model (with 2 trees)

learned with a vanilla gradient-boosting algorithm that does not incorporate the monotonic

constraints. In this case, as can be seen, the model can possibly become incorrect due to

two specific reasons—missing data (as in region R5) or noisy data (as in R1). Figure 3.1c

illustrates the decision boundaries learned by an LMC model with split-constrained boosted

trees. LMC overfits the training data by finding an unnatural split that best optimizes the

objective. This phenomenon is further elaborated in Section 3.3.4.

Figure 3.2 illustrate the decision boundaries learned by the KiGB approach that uses

monotonic constraints. As the λ values indicate the relative importance given to the advice,

upon increasing λ the regression value in the regions on the right (R2 and R3) are gradually

44

(a) A toy dataset (b) Standard gradient-boosting (c) LMC

Figure 3.1: An example to illustrate the need for equilibrium between data and advice.
(a) A toy dataset. The horizontal axis represents the feature variable A, the vertical axis
represents the feature variable B, and markers represent the target variable Y . An expert
provides a monotonic influence statement A Q`

ă Y . Region R1 and R2 violate the advice. (b)
Illustration of the decision boundary learned by standard gradient-boosting approach. (c)
Illustration of decision boundary learned by monotonic gradient-boosting approach.

(a) KiGB with λ “ 3 (b) KiGB with λ “ 6 (c) KiGB with λ “ 8

Figure 3.2: Illustration of the decision boundaries learned by KiGB approach with different
relative importance to advice (different λ values).

increased and the regression value in the left regions (R1 and R4) are decreased. This shows

that as the importance of the advice increases (λ increases), the function learned is increas-

ingly positive monotonic w.r.t. A, i.e. biased by advice. We specifically see the advantage

of advice for the predicted regression value in the region R5, where no training examples are

available.

45

(a) data (b) LMC

(c) LightGBM standard boosting (LGBM) (d) KiGB

Figure 3.3: Illustration of the overfitting by LMC. As can be seen, LGBM, without any
monotonic influence statements, learned an incorrect model due to the presence of noisy
data. With LMC, the model learns a monotonic function but it overfits the training data.
LKiGB provides a correction to the LGBM and generalizes to a better model.

3.3.4 Overfitting by strict monotonicity

When a model is fitted w.r.t data under strict monotonicity constraints, as done by LMC, it

may overfit the data. We illustrate this with an example in this section. Consider the noisy

data shown in Figure 3.3a, with feature A on the horizontal axis, B on the vertical axis, and

different colors representing different regression values of the target Y . Assume that some

expert provided the monotonic influence advice between A and Y—A Q`
ă Y—for this data.

The noisy data clearly violates this constraint in regions R1 & R2. In the scenario where

the advice is significantly more important than the noisy data, it might seem reasonable to

46

use the strict monotonic boosting provided by LightGBM (LMC). However, as seen in Figure

3.3b the LMC overfits the training data by splitting horizontally in the region R1 & R2. The

standard boosting method (LGBM) (Figure 3.3c), on the other hand, uses natural splits but

has no way of correcting the noise. Our LKiGB approach (Figure 3.3d) uses the monotonic

influence information from the expert to provide correction and learn a monotonic function.

3.3.5 KiGB algorithm

We propose to learn a KigB model in two stages. That is we first fit a tree to the dataset

and then adjust the leaf values by adding appropriate penalties. Algorithm 1 presents the

complete procedure for learning a KiGB model for a regression task. Algorithm 1 starts

with a mean value as an initial estimate in Line 2 for optimizing the mean-squared error

(Equation 2.8) and iteratively adds a model fitted to data and advice. In line 4 standard

functional gradient is computed. In Line 5, a tree is fit to the computed gradient w.r.t. the

data, accounting for the mean from Equation 3.6. Then, for each leaf of the regression tree,

the penalty term from Equation 3.6 is evaluated (w.r.t. the monotonic features Xc, relative

Algorithm 1 Knowledge-intensive Gradient Boosting

INPUT: Data (x, y), # trees M , monotonic features Xc, λ, ε
OUTPUT: ψpxq

1: function KiGB(x, y, M,Xc, λ, ε)
2: ψpxq “ ψ0pxq “ meanpyq
3: for m “ 1 to M do
4: ry “ y ´ ψpxq Ź Compute gradient
5: ψmpxq “ treepry,xq Ź Learn the next tree
6: for ` in ψm do
7: ψ`mpxq “ ψ`mpxq ` penalty`pXc, λ, εq Ź From equation 3.6
8: end for
9: ψpxq “ ψpxq ` ψmpxq Ź Update the function

10: end for
11: return ψpxq
12: end function

47

importance λ, and margin ε) and applied in Line 7. Finally, the tree is added to the current

model (Line 9). The updated leaf values (ψ`m) guide the gradients (ry) in the next iteration

and help achieve faster convergence. Note that while the algorithm takes the number of trees

M as input, it is easy to use any convergence criteria such as a change in the likelihood to

create the ensembles. Thus, the non-parametric property of the gradient-boosting algorithm

can still be preserved.

3.3.6 Classification

The modified KiGB objective function, Equation 3.5, can be easily adapted to any other loss

function like deviance or exponential-loss to extend it for classification. Our experiments for

the classification tasks used mean-squared error loss to fit the tree and binomial deviance

(BD, Equation 2.9) for the functional gradient. So, our classification experiments follow the

same process as shown in Algorithm 1 with modification of lines 2 and 4. The initial estimate

(ψ0) is the medianpyq and gradients (ry) are computed for BD as mentioned in Section 2.2.

3.3.7 Extensions

Since the KiGB modifies the tree learning objective function w.r.t the qualitative constraint

and not the functional gradient objective, it is easy to use this approach on any tree-based

learning methods like a decision tree, random forests, AdaBoost, relational regression trees,

etc. Additionally, Odom and Natarajan (2018) shows that there exists a close connection

between qualitative constraints and preferences. In specific cases, preferences can be reduced

to qualitative constraints. Hence, the KiGB framework can be leveraged with preferences

as well. Consider the example advice shown in Odom and Natarajan (2018), if any car

passes an agent on the right, then the agent should move into the right lane. This advice

is represented as a preference rule r “ xF, l`, l´y with preferred label l` “ move right

and avoid label l´ “ stay. This can be converted to monotonic influence as F Q`
ă l` and

48

F Q´
ă l´. Once converted, the framework can be directly applied while learning the model.

Theoretically analyzing the convergence properties of our framework, on the other hand,

remains an interesting future direction.

3.4 Experiments

Our evaluations explicitly aim to answer the following questions:

Q1. Can KiGB effectively utilize monotonic knowledge?

Q2. How does KiGB compare against previous boosting with the monotonicity approach

for classification?

Q3. How does KiGB compare against a monotonic ensemble method for regression?

Q4. How sensitive are the learned models to the KiGB hyperparameters?

Q5. How effective is KiGB on real data (potentially noisy)?

Q6. Does the use of advice benefit when data is scarce?

3.4.1 Datasets

We perform thorough evaluations of KiGB over 15 standard datasets. All of these standard

datasets were obtained from the UCI Machine Learning repository3 (Dua and Graff, 2017),

except the following: Boston and California housing datasets were obtained from StatLib

datasets archives4 (Vlachos and Meyer, 2005) and Windsor housing dataset were obtained

3UCI ML repository: https://archive.ics.uci.edu/ml/index.php

4StatLib datasets archives: http://lib.stat.cmu.edu/datasets/

49

https://archive.ics.uci.edu/ml/index.php
http://lib.stat.cmu.edu/datasets/

Table 3.1: Datasets used in the experiments. The first 5 datasets have binary classification
tasks, the next 10 have regression tasks and the last two are real-world datasets described
in Section 3.4.5. The second column either refers to the literature from where we got the
monotonic features and/or lists the feature names used for experiments. Features in bold
have negative influence (X Q´

ă Y) and others have positive influence (X Q`
ă Y).

Dataset Monotonic Features pXcq

Classification datasets

Adult You et al. (2017)

Australian Duivesteijn and Feelders (2008)

Car Bartley et al. (2016b)

Cleveland Bartley et al. (2016b)

Ljubljana Bartley et al. (2016b) + age

Regression datasets

Abalone Length,Diameter, Height, Shell weight

Autompg Cano et al. (2019)

Autoprice
horsepower, peak-rpm,

city-mpg, highway-mpg

Boston RM, CRIM, PTRATIO

California Total Rooms, Total Bedrooms

CPU Cano et al. (2019)

Crime

population, racepctblack, racepctWhite,

agePct65up, pctWPubAsst, PctKids2Par,

PctKids2Par, PctYoungKids2Par

Redwine
volatile acidity, citric acid,

sulphates, alcohol

Whitewine
volatile acidity, citric acid,

sulphates,alcohol

Windsor lot

Realworld datasets

Logistics
miles, team driver, holiday, new year,

average fuel price

HELOC FICO (2018)

50

from JAE Data Archive5 (Anglin and Gencay, 1996). We utilize qualitative constraints

discussed in previous literature when available. Table 3.1 overviews the datasets and the

monotonic constraints used in our evaluations for each dataset.

Across all of the domains, the test sets for the experiments were created by randomly

selecting 20% of the available data. Five iterations were performed by sampling 80% of

the remaining data as the training set. The same training and test sets were used across

different methods. These splits are made available publicly on the project Github.6 We fixed

the number of tree estimators to 30 for our experiments and report all the results with a

learning rate of 0.1.

3.4.2 Standard gradient boosting baselines

First, we compare the gradient boosting implementation of Scikit-learn (SGB) (Pedregosa

et al., 2011) against our KiGB framework implemented in Scikit-learn (SKiGB). The results

in Table 3.2 show that for 4 out of 5 classification datasets and for 6 out of 10 regression

datasets SKiGB yields significantly better performance. In other domains, the performance

of SKiGB is comparable to SGB. Values in bold font indicate statistical significance at

p-value = 0.1. Thus, we affirmatively answer Q1—using monotonic influences while learning

has added advantage over learning only from the data in the majority of domains, for both

the tasks of regression and classification.

3.4.3 Monotonic gradient boosting baselines

Next, we compare our KiGB framework against two approaches that incorporate monotonic

constraints for boosting: Monoensemble (MONO) and LightGBM monotonic constraints

5JAE Data Archive, Anglin and Gencay (1996): http://qed.econ.queensu.ca/jae/1996-v11.6/

anglin-gencay/

6Training and test splits of the 10 standard dataset: https://github.com/starling-lab/KiGB/tree/

master/datasets

51

http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/
http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/
https://github.com/starling-lab/KiGB/tree/master/datasets
https://github.com/starling-lab/KiGB/tree/master/datasets

Table 3.2: Standard baselines: Comparison of performance of SKiGB and SGB. The per-
formance measure used is accuracy for classification tasks (the higher the better) and mean
squared error for regression tasks (the lower the better).

Dataset SKiGB SGB Dataset SKiGB SGB

Classification tasks
Adult 0.855 0.853 Cleveland 0.737 0.677

Australian 0.855 0.83 Ljubljana 0.696 0.621
Car 0.984 0.982

Regression tasks
Abalone 5.377 5.491 CPU 0.185 0.204
Autompg 9.793 13.623 Crime 2.211 2.296
Autoprice 8.866 8.945 Redwine 0.381 0.419

Boston 24.065 21.493 Whitewine 0.426 0.439
California 47.159 47.468 Windsor 3.9 4.626

Table 3.3: Monotonic baselines: Comparison of accuracy of KiGB and monotonic boosting
approaches for classification tasks.

Dataset SKiGB MONO LKiGB LMC

Classification tasks
Adult 0.855 0.857 0.865 0.863

Australian 0.855 0.884 0.878 0.867
Car 0.984 0.765 0.971 0.959

Cleveland 0.737 0.74 0.757 0.73
Ljubljana 0.696 0.611 0.721 0.718

Table 3.4: Monotonic baselines: Comparison of mean squared error of LKiGB and LMC for
regression tasks.

Dataset LKiGB LMC Dataset LKiGB LMC

Regression tasks
Abalone 4.786 4.797 CPU 0.206 0.208
Autompg 8.047 8.33 Crime 1.834 1.847
Autoprice 14.953 15.614 Redwine 0.382 0.397

Boston 15.496 16.292 Whitewine 0.45 0.467
California 48.517 50.94 Windsor 2.524 2.634

52

(LMC). Since there is a significant difference in the implementation of gradient-boosted

trees in Scikit-learn and LightGBM7, we compare MONO which was implemented in the

Scikit-learn library with SKiGB and LMC with our KiGB framework implemented in Light-

GBM (called LKiGB). Bartley et al. (2019) proposed MONO for binary and multi-class

classification, so we could only compare MONO with SKiGB for classification datasets. Ta-

ble 3.3 shows that for 2 of the 5 datasets, SKiGB outperforms MONO significantly and in one

dataset, Australian Credit, MONO surpasses SKiGB. LightGBM (Ke et al., 2017), one of the

popular libraries for gradient boosting trees, has the ability to define monotonic constraints

for regression as well as classification settings. Tables 3.3 and 3.4 compare our LKiGB with

LightGBM’s monotonic constraints (LMC) for standard datasets. LKiGB achieves better

or comparable performance for most of the datasets. These comparisons with MONO and

LMC answer Q2 and Q3 positively.

3.4.4 Robustness to the hyperparameters

From our experiments, we find that KiGB achieves consistent performance in the following

ranges: ε P r´1, 1s and λ P r0, 5s, but this range may vary based on the range of the regression

value of the target variable. We demonstrate the robustness of the KiGB framework with

respect to the hyperparameters on two datasets—Ljubljana and Autompg. We picked one

classification and one regression dataset, for which KiGB showed significant improvement

over both baselines.

Figures 3.4a and 3.4b compare a standard vanilla gradient boosting and a monotonic

boosting baseline against KiGB for various values of the hyperparameters. Standard gradient

boosting with LightGBM is referred to as LGBM. It is visible from the figures that KiGB

provides consistent improvement regardless of the hyperparameters used. These figures are

7LightGBM additionally uses exclusive feature bundling and gradient-based one-side sampling (Ke et al.,
2017)

53

0 1 2 3 4 5

0.55

0.6

0.65

0.7

λ

ac
cu
ra
cy

ljubaljana

ε : ´0.5
ε : ´0.3
ε : 0
ε : 0.3
ε : 0.5
SGB
MONO

(a)

0 1 2 3 4 5

´8.3

´8.2

´8.1

´8

λ

n
eg
at
iv
e
M
S
E

autompg

ε : ´0.5
ε : ´0.3
ε : 0
ε : 0.3
ε : 0.5
LGBM
LMC

(b)

Figure 3.4: Analysis of sensitivity to hyperparameters: λ & ε. (a) Comparison of accuracy
with SGB and MONO for a classification task. (b) Comparison of negative mean-squared
error with LGBM and LMC for a regression task. The higher the better.

representative of the trend we see across datasets. When λ “ 0, KiGB is equivalent to vanilla

boosting, which relies only on the data. For negative ε, lower λ values show improvement but

higher λ values reduce the performance. This is in unison with our understanding of reduced

performance when we enforce wider margins. For positive ε, we see regular performance

even for higher λ. For datasets that do not have noise, or there is no violation of the

advised constraints, there will be no penalty and hence the performance for positive ε will

be equivalent to the standard gradient boosting. Autompg is one such dataset and hence the

ε “ 0.3 and ε “ 0.5 lines in Figure 3.4b overlap with the LGBM line. With this, we answer

Q4. KiGB framework is robust to hyperparameters in noisy datasets and when the dataset

is not noisy, it will perform equivalent to the standard gradient boosting for positive ε. We

recommend using cross-validation to tune these parameters for different problems.

54

Table 3.5: Comparison of KiGB with standard and monotonic baselines on real-world
datasets.

Dataset LKiGB LGBM LMC
Logistics (MSE) 1.851 1.898 1.889

Dataset SKiGB SGB MONO
HELOC (accuracy) 0.717 0.7 0.688

3.4.5 Real data sets

To evaluate the utility of KiGB on real-world noisy data we perform experiments on two

non-standard data sets: Logistics and HELOC. First, we describe both these data sets and

then present the results.

In the Logistics dataset, we consider a regression task of predicting the price of shipping

goods by trucks. 859 records for shipments from South Carolina to Florida were collected

between June 2017 and May 2018 by a logistics platform, Turvo Inc8. These records included

10 different cities and furnished the following information: pickup location, delivery location,

distance in miles, pickup and delivery date, average fuel price, load-to-truck ratios, and price

of the shipment. We use a subset of these features and some derived features for these

experiments. The dataset is made available along with the code. Subject matter experts

(SMEs) from Turvo apprised us of general trends in the logistics industry. Specifically, Turvo

SMEs provided advice such as market trends dictate that shipping prices will increase (1)

around major holidays; (2) when the shipment has to be driven continuously by alternating

drivers day and night; (3) when the miles driven by the driver exceeds a certain threshold; (4)

finally when the fuel prices have surged; etc. These generalized advice statements that model

the domain trends were then converted to monotonic influences between various random

variables.

8Turvo Inc, https://turvo.com

55

https://turvo.com

The second dataset is the Home Equity Line of Credit (HELOC) applications made by

real homeowners, released as part of the FICO explainable machine learning (xML) challenge

(FICO, 2018)9. The classification task here is to predict whether applicants will repay their

HELOC account within 2 years and classify them into bad or good categories. Consumers

who have made at least one payment past the due date of 90 days, in 24 months since the

credit account was opened were labeled “bad”. Conversely, the consumers who made all the

payments within the due date were labeled “good”. FICO also released expected patterns

of monotonicity for many feature variables. In our experiments, we use these monotonic

constraints to compare KiGB with other models.

Table 3.5 displays the capability of KiGB in comparison with the vanilla gradient boosting

and monotonic boosting approaches and answers Q5. For the regression task in the Logistics

dataset, we report the mean-squared error and compare LKiGB with LGBM and LMC. For

the classification task in the HELOC dataset, we report the accuracy values of SKiGB as

compared with SGB and MONO.

3.4.6 Learning curve

One major advantage of knowledge-based learning is that it requires fewer training examples

as compared to models which learn only from data. We test this hypothesis for the KiGB

framework to answer Q6. The learning curve presented in Figure 3.5 compares the per-

formance of KiGB, vanilla gradient boosting, and Monoensemble on the real-world data

set of HELOC. We sample specified fractions of training data and evaluate all three ap-

proaches on the same training/test set. We see that the knowledge-based models (KiGB

and MONO) converge to better performance even with fewer training samples while the

vanilla gradient boosting (GB) converges gradually with the increasing number of samples.

9FICO xML challenge, https://community.fico.com/s/explainable-machine-learning-challenge.

56

https://community.fico.com/s/explainable-machine-learning-challenge

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.62

0.64

0.66

0.68

0.7

0.72

fraction of training samples
ac
cu
ra
cy

HELOC

KiGB
GB
MONO

Figure 3.5: Learning curve for classification task in HELOC dataset with KiGB, standard
boosting, and monoensemble

Specifically, KiGB is significantly better than just using the data and the default mono-

tonicity method. This clearly shows that when available, qualitative knowledge can not only

accelerate learning but could also converge to superior performance.

3.5 Summary

We considered the problem of providing rich domain knowledge to the successful gradient-

boosting algorithm. Specifically, we presented the use of qualitative constraints such as

monotonicities and synergies in learning a robust, generalized model. There are a few im-

portant takeaways: (1) KiGB is better than learning from only data in most of the

domains and is never worse. This clearly shows that even in cases where the knowledge

is not well-informed or is imperfect (such as wine datasets), KiGB does not suffer. (2) When

the knowledge is indeed relevant as in the case of HELOC, KiGB achieves a jump start,

better slope for learning, and most importantly, a higher asymptote in perfor-

mance. This clearly illustrates the need for knowledge injunction in learning systems.

This chapter focused on using the monotonic influence information but the framework

and the penalty function can equivalently incorporate the synergistic influence information.

Instead of penalizing the violation of expectation for the nodes with monotonic features

57

(Xc), synergy constrain can penalize the violation of the expectation for the branches which

have both the features exhibiting synergic influence on the target. Our initial evaluations of

synergic constraints on the benchmark datasets did not find the synergic features together

in the same branch. So we were not able to evaluate the synergic formulation.

Our KiGB framework is general-purpose, one that can be adapted easily for both classi-

fication and regression tasks. Our comprehensive evaluations across several benchmarks and

real-world data sets demonstrate the efficiency and effectiveness of the proposed approach.

However, the underlying assumption in KiGB is that the monotonic influences in the domain

are available from a domain expert. In some cases, this assumption might not hold. So in

a follow-up work (described in Chapter 9), we propose an algorithmic approach to identify

the qualitative influences.

58

PART II

MULTI-TASK LEARNING AND GENERALIZATION

59

CHAPTER 4

INTEGRATING RELATIONAL PLANNING AND

REINFORCEMENT LEARNING

A major challenge in the field of sequential decision-making (see §2.4) is to generalize to mul-

tiple tasks (multi-task learning) and a varying number of objects in the domain. Explicitly

modeling the compositionality of a problem structure provides a tremendous advantage in

generalization capabilities (Lake et al., 2015; Huang et al., 2019; Li et al., 2019; Devin et al.,

2019). Additionally, state abstractions also enable sample-efficient learning and better task

transfer in complex environments (Andre and Russell, 2002a; Nitti et al., 2015; Konidaris,

2019). In this work, we attempt to bring both of these approaches—compositionality and

state abstraction—together by integrating AI planning (Ghallab et al., 2004) and Reinforce-

ment Learning (Sutton and Barto, 1998). We describe an integrated architecture we call

“RePReL,” which combines relational planning (ReP) and reinforcement learning (ReL) in

a way that exploits their complementary strengths and not only speeds up the convergence

compared to a traditional RL solution but also enables the effective transfer of the skills to

multiple tasks and generalization across different numbers of objects (Kokel et al., 2021b,a).

4.1 Introduction

Automated planning and RL have been two major thrusts of AI aimed at sequential decision-

making (see §2.4.1–2.4.2). While classical planning focuses on composing sequences of actions

offline before execution, RL interleaves planning and execution. Planning is typically associ-

ated with domains where dynamics are known and describable, while RL is associated with

reactive domains with unknown dynamics. Most prior work in combining planning and RL

falls under the general paradigm of “model-based reinforcement learning” (MBRL). Here

explicit dynamic models of actions are learned via exploration and used either offline to

60

compute approximately optimal policies (Brafman and Tennenholtz, 2002; Guestrin et al.,

2002) or online in look-ahead search (Silver et al., 2018). Critically, both planning and re-

inforcement learning components employ the same state-space, while the main motivation

for the combination comes from the benefits of efficiency and cost-savings due to offline

computation or look-ahead search.

However, in many real-world domains, e.g., driving, the state space of offline planning

is rather different from the state space of online execution. Planning typically occurs at

the level of deciding the route, while online execution needs to take into account dynamic

conditions such as locations of other cars and traffic lights. Indeed, the agent typically does

not have access to the dynamic part of the state at the planning time, e.g., future locations

of other cars, nor does it have the computational resources to plan an optimal policy in

advance that works for all possible traffic events.

The key principles that enable agents to deal with these informational and computational

challenges are abstraction and composition. In the driving example, while the lower-level

state space consists of a more precise location and velocity of the car, the high-level state

space consists of abstract, coarse locations such as “O’hare airport”. While the lower-level

action space consists of precise actions such as turning the steering wheel by some amount

and applying brakes, the high-level actions composite actions such as taking “Exit 205,”.

Excepting occasional unforeseen failures, the two levels operate independently of each other

and depend on different kinds of information available at different times. This allows the

agent to tractably plan at a high level without needing to know the exact state at the time

of the execution, and behave appropriately during plan execution by only paying attention

to a small dynamic part of the state.

In this chapter, we aim to combine planning and RL with the motivation of exploiting

the compositionality in the domain and inducing effective task-specific state abstractions for

efficient learning. An important assumption that we make is the availability of a

61

relational planner designed by a human expert. If the planner is a hierarchical one,

the human expert is used to construct the task-subtask hierarchy, otherwise, the human

expert’s guidance is used to define the sequence of high-level tasks for solving the problem.

In addition, as we explain later, knowledge from humans is employed to provide safe and

effective abstractions.

We make the following key contribution in this chapter: (1) we propose the RePReL

architecture that enables multi-level abstractions; (2) we adapt the first-order conditional

influence (FOCI) statements (Natarajan et al., 2008, 2005) to determine safe and effec-

tive abstractions; (3) we demonstrate the effective transfer of learned skills from one task

to another and effective generalization to a different number of objects. Our results in 4

compelling domains show that RePReL significantly outperforms the state-of-the-art Plan-

ner+RL combination while achieving better generalization and transfer.

The code and the data used in this chapter are available for public use at the following

URL: https://github.com/starling-lab/RePReL. The rest of the chapter is organized

as follows. Section 4.2 discusses the related work. Then, Section 4.3 describes the RePReL

architecture in detail. Section 4.4 describes experiments in 4 different domains that demon-

strate generalization and transfer capabilities. Finally, Section 4.5 concludes by summarizing

the key insights.

4.2 Related work

4.2.1 Planner and RL combination

The RePReL framework consists of a symbolic planner at the higher level and various RL

agents at the ground level. Several prior works have explored the idea of combining a planner

and RL agents to solve complex problems which have some notion of temporally extended

actions or task hierarchies (Grounds and Kudenko, 2005; Yang et al., 2018; Lyu et al.,

62

https://github.com/starling-lab/RePReL

2019; Jiang et al., 2019; Eppe et al., 2019). Among these, RePReL is closely related to the

Taskable RL framework of Illanes et al. (2020). Similar to Taskable RL, RePReL employs a

planner to generate useful instructions (task definitions) for the RL agent. RePReL extends

the Taskable RL framework in three key ways: (1) it generalizes the Taskable RL to solving

RMDP, (2) it provides an approach to define task-specific state abstraction in this framework,

and (3) it can handle both discrete and continuous domains. Thus, Taskable RL is a natural

baseline in our evaluations.

4.2.2 Abstraction

Safe and efficient state abstraction techniques have been studied extensively in RL (Li

et al., 2006). They have been particularly useful for multi-task and transfer learning prob-

lems (Walsh et al., 2006; Sorg and Singh, 2009; Abel et al., 2018). We are inspired by the

task-specific, model-agnostic state abstractions of MAXQ (Dietterich, 2000b) and the bisim-

ulation conditions (Ravindran and Barto, 2003; Givan et al., 2003) to define abstractions

in relational settings using first-order probabilistic models (Raedt et al., 2016). Andre and

Russell (2002b) introduces ALisp language to assert (ir)relevant variable. Our work diverges

from their work as we consider the relational setting. Another work by Finzi and Lukasiewicz

(2006) leverages situation calculus for explicating the abstraction in a relational setting. We,

however, approach this problem using a relational probabilistic model.

4.3 Relational planning and Learning

4.3.1 Motivational example

In many real-world domains, the exact dynamics of the domain are difficult to provide.

However, partial, high-level domain dynamics are readily available from domain experts.

Consider a relational taxi domain shown in Figure 4.1 1○. This domain has one or more

63

passengers and a taxi. Six actions available in this domain are: east, west, north, south,

pick, drop. The goal is to transport passenger(s) from their current location to their des-

tination location. Only 1 passenger can hire the taxi at a time. While it might be difficult

to provide complete dynamics of the domain, high-level domain dynamics like “Taxi can

only drop a passenger after pickup” and “Only one person can hire the taxi at a time” are

easy to provide. In the RePReL framework, we consider such a class of problems where the

high-level domain description is readily available.

We use a high-level planner to first decompose the goal into appropriate subgoals. In

the example, the goal of transporting p1 and p2 is decomposed into 4 subgoals: pickup p1,

drop p1, pickup p2, and drop p2 by the high-level planner (Figure 4.1 2○). Different RL

agents at a lower level then achieve these subgoals by navigating in the grid and picking

up or dropping off the passenger (Figure 4.1 3○). To decompose the goal into subgoals, the

high-level planner does not need the complete grid map. Similarly, RL agents do not need

complete information about the state to achieve the goal. For e.g., the RL policy that is

performing pickup p1 subgoal needs to know the location of p1 and whether the taxi is free,

but passenger p2 and destination of p1 are irrelevant. Similarly, the RL policy performing

drop p2 needs to ensure the taxi is hired by p2, but the pickup location of p2 is irrelevant.

It has been argued that for human-level general intelligence, the two abilities (1) to

detect compositional structure in the domain (Lake et al., 2015) and (2) to form task-specific

abstractions (Konidaris, 2019) are necessary. In RePReL architecture, we aim to provide

these two abilities for efficient task transfer and generalization.

64

p
ic
k

p
ic
k
u
p

p
1

tr
an

sp
or
t

p
1

tr
an

sp
or
t
p
2

tr
an

sp
or
t

p
1

an
d
p
2

d
ro
p
p
1

d
ro
p

p
ic
k

p
ic
k
u
p

p
2

d
ro
p
p
2

d
ro
p

1 ○
R
el
at
io
n
al

T
ax

i
D
om

ai
n

2○ high-level planner
3○ low-level
RL agents

m
et
h
o
d
s

op
ti
on

s

R
L
ag
en
ts

p
2

p
1 d
1

d
2

fr
ee

ta
x
i

h
ir
ed

ta
x
i

p
1

d
2

d
1

p
2

F
ig

u
re

4.
1:

M
ot

iv
at

io
n
al

ex
am

p
le

of
R

eP
R

eL
fr

am
ew

or
k

in
T

ax
i
d
om

ai
n
.

1 ○
R

el
at

io
n
al

ta
x
i
d
om

ai
n
.

T
h
e

in
it

ia
l
st

at
e

h
as

tw
o

p
as

se
n
ge

rs
p1

an
d
p2

.
T

h
e

go
al

is
to

tr
an

sp
or

t
b

ot
h

of
th

em
to

th
ei

r
re

sp
ec

ti
ve

d
es

ti
n
at

io
n
,
d
1

an
d
d
2

re
sp

ec
ti

ve
ly

.
2 ○

T
h
e

h
ig

h
-l

ev
el

p
la

n
n
er

d
ec

om
p

os
es

th
e

go
al

in
to

su
b
go

al
s

b
y

u
si

n
g

h
ig

h
-l

ev
el

st
at

e
re

p
re

se
n
ta

ti
on

.
3 ○

L
ow

-l
ev

el
R

L
ag

en
ts

ac
h
ie

ve
th

es
e

su
b
go

al
s

b
y

u
si

n
g

ab
st

ra
ct

st
at

e
re

p
re

se
n
ta

ti
on

s.

65

4.3.2 Problem setup

To address a multi-task setting, we first restrict the RMDP definition (see Def. 4) to a goal-

directed RMDP (GRMDP), M “ xS,A, T,R, γ,Gy, by introducing a set of goals G that the

agent may be asked to achieve. Different tasks are formulated in a GRMDP by choosing

different goals from the set G. The reward function in this multi-task setting is incognizant

of the goal. It provides a domain-specific reward, like a negative reward for invalid actions

or step costs. The solution to a GRMDP is a policy π : S ˆGˆAÑ r0, 1s, such that when

following π from any state s for goal g the probability of eventually reaching the goal is 1.

We assume that partial high-level domain knowledge of the problem is specified in the

form of a high-level planner. Unlike the classical planning domains D “ xL,Oy where

a schematic operator is a single action, in the high-level planning domain D “ xL,Oy
schematic operators are temporally extended. This is to say that, in classical planning,

applying a grounded operator to state results in a single step or transition from one state

to another. In high-level planning, applying a grounded operator to a state usually requires

multiple steps or multiple subsequent state transitions before it terminates. The termination

condition β is also defined for each schematic operator. Given the resemblance to the options

framework (Sutton et al., 1998), we refer to these temporally extended operators as options.

A high-level plan consists of a sequence of grounded options.

We address a class of GRMDPs that combines a high-level symbolic planner with low-

level RL policies. Inspired by an earlier work (Illanes et al., 2020), we define this class of

GRMDPs as taskable GRMDPs.

Definition 5. A GRMDP xS,A, T,R, γ,Gy is taskable if a high-level planning domain D

can be defined such that all the goals in G can be composed as some combination of the

options in D.

66

E
n
v
iron

m
en
t

High-level
planner

Reinforcement
Learners

State
Abstractor

RePReL initial state

state,
reward

abstract
state

action

D-FOCI

Figure 4.2: RePReL architecture.

The key idea here is that high-level symbolic domain knowledge can be leveraged to

identify the compositionality in the domain and individual policies can be learned to solve

each composition. So a solution to a taskable GRMDP is a compositional policy.

4.3.3 RePReL architecture

Given a taskable GRMDP problem, the RePReL framework obtains the high-level plan from

a symbolic planner and then learns RL policies at the low level to achieve each of the options

in the high-level plan. The architecture of the RePReL framework is shown in Figure 4.2.

It consists of three stacked modules: symbolic planner, state abstractor, and reinforcement

learners.

The symbolic planner uses the high-level planning domain D to decompose the goal

into a sequence (or set, if unordered) of grounded options. It must be mentioned that our

RePReL framework is independent of the planner. If the planner is a hierarchical one,

we assume that high-level tasks (methods) are decomposed recursively until low-level options

are constructed. If the planner is a non-hierarchical one, the high-level decomposition yields

67

a set of options. The state abstractor generates a task-specific abstract state representation.

Finally, multiple reinforcement learners at the lowest level learn separate RL policies for

each option in the abstract state space. For each option o P O in the high-level planning

domain, we define a subgoal RMDP as follows.

Definition 6. The subgoal RMDP Mo for an option o is a tuple xS,A, Po, Ro, γy consisting

of abstract states S, actions A, transition function Po, reward function Ro, and discount

factor γ. The action space remains the same as for the original GRMDP. The reward

function Ro and transition probability distribution function Po are defined as follows:

Rops, a, s1q “

$

’

’

’

’

&

’

’

’

’

%

tR `Rps, a, s1q if s1 P βpoq & s R βpoq
0 if s1 P βpoq & s P βpoq
Rps, a, s1q otherwise

Pops, a, s1q “

$

’

’

’

’

&

’

’

’

’

%

0 if s P βpoq & s1 R βpoq
1 if s P βpoq & s1 P βpoq
P ps, a, s1q otherwise

with R and P from the original GRMDP, and a fixed terminal reward tR.

This subgoal RMDP is solved by the low-level RL agents in abstract state space. We

next describe how the state space is abstracted safely by the state abstractor.

The state abstractor determines the set of state variables that are necessary and sufficient

given the current task and provides a task-specific abstract representation of the state for

the low-level RL agents. We adopt the bisimulation framework of Givan et al. (2003) and

Ravindran and Barto (2003) to define model agnostic abstraction.

68

Definition 7. A model-agnostic abstraction φpsq is such that for any action a and an

abstract state s, φps1q “ φps2q if and only if

ÿ

ts11|φps
1
1q“su

Rops1, a, s11q “
ÿ

ts12|φps
1
2q“su

Rops2, a, s12q

ÿ

ts11|φps
1
1q“su

Pops1, a, s11q “
ÿ

ts12|φps
1
2q“su

Pops2, a, s12q

The first condition states that the two states s1 and s2 have the same immediate reward

distribution with respect to the abstraction, and the second condition states that they have

the same transition dynamics. Essentially, the value function of the original MDP is main-

tained in the abstract MDP. So, the model agnostic abstraction is safe. That is, an optimal

policy learned with model-agnostic abstraction is also optimal in the original MDP (Li et al.,

2006).

To define such a safe model agnostic abstraction function φ, we need to identify state

literals that neither influence the reward function nor the transition function—they are

irrelevant. In this framework, we capitalize on explicit domain knowledge to identify the

relevant state literals from irrelevant ones. This domain knowledge is captured using a novel

formal language called D-FOCI.

Why do we need a novel language?

Dietterich (2000a) defines irrelevant state variables for an MDP as variables that never

influence the reward function or the relevant state variables. Formally,

Definition 8. State variables Y are irrelevant in an MDP, if state variables can be

partitioned into two disjoint subsets X and Y such that

1. P px1, y1|x, y, aq “ P px1|x, aqP py1|x, y, aq

2. Rps, a, s1q “ Rpxx, yy, a, xx1, y1yq “ Rpx, a, x1q

69

Given a Dynamic Bayesian Network (DBN) representation (Murphy, 2002) of the

transition function of an MDP, the set of relevant variables can be identified by starting

at the reward variable and collecting all the variables that influence the collected vari-

ables. This set of relevant variables forms a “model-agnostic state abstraction”. Such

abstractions ensure that the reward distribution and the transition dynamics in the ab-

stract MDP and the original MDP are the same. Hence, model-agnostic abstraction is

safe.

The transition function of a GRMDP is first-order/relational and hence a simple DBN

does not suffice. Previous works have used a 2-timeslice Probabilistic Relational Model

(PRM) (Guestrin et al., 2003) to capture the transition function in relational MDP.

However, PRMs are not suitable for capturing GRMDPs. Hence, the RePReL framework

used an extension of the First-Order Conditional Influence (FOCI) language (Natarajan

et al., 2008) called Dynamic FOCI (D-FOCI).

4.3.4 D-FOCIs

First-order conditional influence statements (FOCI), introduced by Natarajan et al. (2005)

consist of statements of the form,

IF <condition> THEN <influent> QINF <resultant>, (4.1)

where condition and influent are a finite set of literals and resultant is a single literal.

A FOCI statement encodes the qualitative influence (QINF) of influent on the resultant.

Refer to Section 2.5.1 for further details. Dynamic-FOCI (D-FOCI) statements extend FOCI

statements by adding representation to capture influence over time. The syntax of a D-FOCI

statement is as follows,

r<option>] : <influent>
r`1sÝÑ <resultant>, (4.2)

70

where the option is a temporally extended operator from the high-level planning domain,

and influent and resultant are set of literals. D-FOCI statement states that when execut-

ing the given option, the resultant literal is influenced by literals in influent. Following

the standard dynamic Bayesian network (DBN) representation of an MDP, we allow action

variables in influent and reward variables in resultant. D-FOCIs denote direct influences

between literals in the same time step by an arrow symbol (ÝÑ) and direct influences of

the literals in the current time step on the literals in the next time step by a ‘`1’ symbol

above the arrow. Non-mandatory components of the D-FOCI statement are denoted within

square brackets r s. Omitting the option encodes the influences between literals is perpetual

(for example, Equation 4.3a encodes that the action and taxi at always influence taxi at,

regardless of the option).

4.3.5 Example of D-FOCIs

In the relational taxi domain (Figure 4.1 1○), he location of the taxi is influenced by its

previous location and the action performed, which is captured in the D-FOCI statement in

Equation 4.3a1. Further, when executing the task of picking up a passenger, if we assume

that the taxi is going to be empty, then we can safely say that only the passenger’s location,

the passenger in the taxi, and the taxi’s location influence the completion of the task. This

influence is captured in Equations 4.3b and 4.3c. Similarly, the influence information while

dropping passenger P is captured in Equation 4.3d–4.3f.

1Variables are uppercase. Constants and predicates are lowercase. X,Y,D,K are variables for location
and P a variable for passenger.

71

taction, taxi atpXqu `1ÝÑ taxi atpXq (4.3a)

pickpP q : taction, taxi atpXq, atpP, Y q, in taxipP qu `1ÝÑ in taxipP q (4.3b)

pickpP q : tin taxipP quÝÑReward (4.3c)

droppP q : tat destpP quÝÑReward (4.3d)

droppP q : tatpP,Xq, destpP,Dq, at destpP quÝÑ at destpP q (4.3e)

droppP q : taction, taxi atpXq, atpP, Y q, in taxipP qu `1ÝÑ atpP,Kq (4.3f)

4.3.6 Abstraction using D-FOCI

The state abstractor in the RePReL architecture (Figure 4.2) uses D-FOCIs to generate

model-agnostic state abstractions. A task-specific model-agnostic abstract representation

of the state can be derived from D-FOCI by recursively unrolling and collecting the state

literals that influence the relevant state literals, starting from the reward variables. Table

4.1 illustrates this recursive unrolling process.

Given a state s and a grounded option, the unrolling process begins by grounding the

relevant D-FOCI statements2 that have the Reward variable on the right-hand side (RHS).

To ground a D-FOCI statement, a substitution θ is identified that unifies the literals on the

left-hand side (LHS) with state s. Then the literals in the LHS are collected in a relevant

literals set ŝ. Then the relevant D-FOCI statements that have RHS in ŝ are grounded and

substitution θ is refined and literals on LHS are added to ŝ. Note that the substitution is

a superset of the previous substitution, that is the existing variable assignment remains the

same. This process is repeated recursively. The recursion ends at a fixed depth or when no

new literals can be added to ŝ.

2with matching or null option

72

Table 4.1: Illustrative example of recursive unrolling of the D-FOCI statements in taxi-
domain.

Given:

a. D-FOCI statements from Equation 4.3

b. state s “ { at(p1,r), taxi at(l3), dest(p1,d1),

 at dest(p1) in taxi(p1), at(p2,b),

 at dest(p2), in taxi(p2)}
c. grounded optionoθ: pick(P) {P/p1}

Output: A set of relevant state literals: ŝ

Depth 1 unrolling:

1. Find a substitution that grounds relevant D-FOCI

statements that have reward on RHS

pick(p1): in taxi(p1) ÝÑReward
θ “ {P/p1}

2. Collect LHS in relevant literals set ŝ

ŝÐ {in taxi(p1)}

Depth 2 unrolling:

1. Find a substitution that grounds relevant D-FOCI

statements that have a relevant literal on RHS

pick(P): { action, taxi at(l3), at(p1, r),

in taxi(p1) } ÝÑ in taxi(p1)

θ “ {P/p1, X/l3, Y/r}
2. Collect LHS in set ŝ

ŝÐ {in taxi(p1), action, taxi at(l3), at(p1, r)}

Depth 3 unrolling:

1. Ground applicable D-FOCI statements

that have a relevant literal (ŝ) on RHS

{action, taxi at(l3) } `1ÝÑ taxi at(l3)

pick(p1): { action, taxi at(l3), at(p1, r),

in taxi(p1) } ÝÑ in taxi(p1)

θ “ {P/p1, X/l3, Y/r}
2. Collect LHS in set ŝ

ŝÐ {in taxi(p1), action, taxi at(l3), at(p1, r)}

73

While the planner works in relational representations, reinforcement learning operates

at a propositional level. The gap is bridged by computing an appropriate propositional

abstraction of the state for each operator with the parameters, e.g., p1, bound to generic

objects (Skolem constants in logic). To keep the size of the propositional representation

bounded, we bound the depth of the inference chain through D-FOCI statements to k. We

limit this unrolling process to at most k “ 2 levels and at most 1 time step to keep the size

of the propositionalization bounded. The set of all such literals forms the final abstraction.

The unrolling depth will impact the time complexity of computing the abstractions.

Theorem 1. If the MDP satisfies the D-FOCI statements with a fixed depth unrolling, then

the corresponding model-agnostic abstraction has the same optimal value function as the fully

instantiated MDP.

Proof (sketch): Fixed depth grounding of the D-FOCI statements would create a propo-

sitional DBN with maximum width equal to the depth. If the MDP satisfies the influence

information in this DBN then collecting all the variables influencing the reward and the

relevant variables provides model agnostic abstraction (Ravindran and Barto, 2003). The

grounding and fixed-depth unrolling of the D-FOCI statement begins with the reward vari-

able and collects all the grounded literals influencing the reward and the relevant grounded

literals. So the set of grounded state literals collected by this process is identical to col-

lecting all the relevant state variables in the aforementioned propositional DBN. Hence, the

grounding and unrolling provide a model-agnostic abstraction.l

RePReL, so far

In this problem setup, it is assumed that a high-level symbolic planner is available that can

decompose the goal into a high-level plan, i.e. sequence of grounded option, as described

in Section 4.3.2. In RePReL architecture, the initial state of the world is provided as

74

input to a symbolic planner and a high-level plan is obtained as its output. This high-

level plan is executed by different RL agents at the lower level. A separate RL agent

is trained for each option. The MDP of each RL agent is defined in Definition 6. For

each RL agent, the state abstractor provides a task-specific abstraction, as described in

Section 4.3.6. The state abstractor uses the D-FOCI statements to derive model-agnostic

abstraction. The next section explains how the RePReL architecture is learned.

Algorithm 2 RePReL Learning Algorithm

INPUT: env, goal g, domain D “ xL,Oy, terminal reward tR, D-FOCI statements F ,
OUTPUT: RL policies πo, @o P O

1: πo, @o P O Ź initialize RL policy for each operator
2: for each episode do
3: sÐ get state from env
4: Π Ð getPlanps, g,Dq
5: for oθ in Π do
6: π Ð πo Ź get resp. RL policy
7: ŝÐ GetAbstractStateps, oθ, F q
8: done Ð ŝ P βpoθq) Ź check terminal state
9: while not done do

10: aÐ πpŝq Ź get action
11: s1 Ð env.steppaq Ź take a step in env
12: r Ð Rps, a, s1q Ź get step reward
13: ŝ1 Ð GetAbstractStateps, oθ, F q
14: done Ð ŝ1 P βpoθq Ź check terminal next state
15: if done then
16: r “ r ` tR Ź add terminal reward
17: end if
18: π.updatepŝ, a, ŝ1, rq Ź update policy
19: s, ŝÐ s1, ŝ1

20: end while
21: end for
22: end for
23: return πo, @o P O

75

4.3.7 Learning

Given the GRMDP environment env, planner P and D-FOCI statements F , we now discuss

the RePReL learning procedure from Algorithm 2. First, for each operator, an RL policy

is initialized in line 1. Next for each episode, in line 4, we get the high-level plan Π from

the planner P. For every option in the plan, we train the RL policy πo (lines 6–20). To

train the RL policy, we get an abstract propositional state representation ŝ from state s

as described in previous paragraphs. In lines 10–19, we obtain action a from the current

policy, perform that action, observe the next state s1 and reward. If s1 is a terminal state

for the ground operator oθ, then we add a terminal reward tR (line 16) before updating

the policy/q-value (line 18). In our experiments, we employ tabular q-learning over the

propositional state space for updating the values and consequently, the policy. We repeat

the process for a fixed budget of episodes for our evaluation, but various other stopping

criteria can also be used.

The low-level RL agents learn optimal policies for the subgoal RMDP. As the original GR-

MDP is decomposed into the subgoal RMDP by the high-level planner, the resulting RePReL

agent is recursively optimal (Dietterich, 1998) assuming the high-level planner and the GR-

MDP decompositions are optimal. Note that recursively optimal policies are not necessarily

globally optimal. Rather, recursively optimal policies ensure that lowest-level policies are

locally optimal for the assigned task without any context of the high-level task (Dietterich,

1998). This makes them ideal for multi-task and transfer-learning setups.

4.4 Experiments

We now empirically evaluate the RePReL framework by comparing it with tabular Q-

Learning (QL), hierarchical RL (HRL), and taskable RL (TRL). All our experiments aim at

assessing the sample efficiency and effectiveness of transfer across tasks and generalization

76

across objects. We aggregate results over 5 runs with different random seeds. We employ

the Pyhop planner3 in our experiments. We aim to answer the following questions.

Q1. Sample Efficiency: Do the abstractions induced in RePReL improve sample effi-

ciency?

Q2. Transfer: Do these abstractions allow for effective transfer?

Q3. Generalization: Does RePReL efficiently generalize to varying number of objects?

4.4.1 Domains

We evaluate our approach on four multi-task domains with discrete state and action spaces.

The D-FOCI statements used in each domain are presented in Table 4.2

1. Craft World

This is a Minecraft-inspired multitask grid-world from Andreas et al. (2017). Figure 4.3a

presents an example state. It is an 11ˆ 11 grid with 8 points of interest, grass, wood, iron,

gold, gem, workbench, toolshed, and factory, as highlighted in Figure 4.3a. There are four

tasks in this environment: 1. get wood and iron, 2. make sticks, 3. make axe, 4. mine gem.

These tasks can be viewed as curriculum learning since they are incremental. To mine the

gem, an agent needs an axe, and an axe is built by visiting the toolshed with a stick and iron.

Sticks are built by first collecting wood and then visiting the workbench. The environment

provides a reward of ´1 for every step and 100 for a goal state. We use terminal reward

tR “ 100 for each subtask.

3An HTN planner (Nau et al., 1999) written in python, https://bitbucket.org/dananau/pyhop

77

(a) (b)

Figure 4.3: (a) Craft World indicating domain with eight locations: grass, wood, iron, gold,
gem, workbench, toolshed, and factory. Black cells in the grid represent walls. (b) Office
World, reproduced from Illanes et al. (2020).

2. Office World

This is a multitask grid-based environment from Illanes et al. (2020). Figure 4.3b reproduces

the office world image from Illanes et al. (2020) for convenience. It has inaccessible and

accessible locations. Plants are indicated by ‘*’ in the map, these locations are inaccessible

to the agent. Walls in the map are indicated by a bold black line. Any step toward a wall or

inaccessible locations will keep the agent in the same location. Accessible locations include

two coffee rooms, one office desk, and one mail room. Coffee room locations are indicated

by blue coffee mugs, the mail room is indicated by a green envelope, and the office desk is

highlighted with a hand. Locations A, B, C, and D are also accessible locations, they are

marked in the figure. The four tasks include: 1. deliver mail to office, 2. deliver coffee

to office, 3. deliver mail and coffee, and 4. visit locations A, B, C, D. This environment

has a reward of ´1 for every step, 100 for the goal state, ´10 for an attempt of going to

inaccessible locations. and terminal reward tR “ 100.

78

(a) Task 1 (b) Task 2 (c) Task 3

Figure 4.4: Tasks in the Relational Box World.

3. Extended Taxi World

We extend the Taxi domain by Dietterich (2000b) with three passengers and the relational

representation as shown in the earlier example (Figure 4.1 1○). The taxi can be hired by

one passenger at a time. The task in this environment is to drop all passengers in sequence.

Task 1 is to drop one passenger (p1), Task 2 is to drop two passengers (p1, p2), and Task 3

is to drop all three passengers (p1, p2, and p3) to their respective destinations in that order.

This domain has higher complexity than both of the previous domains. In both the Craft

and Office World, every object except the agent has a fixed location. Here, along with the

agent taxi location, the passenger pick-up and drop locations are also randomly sampled at

the beginning of each episode from R, G, B, or Y . Hence, there are 36 possible combinations

of passenger pickup and drop locations. Like the office world, every step has a reward of ´1,

the goal state has a reward of 100, and the step in an invalid direction has a reward of ´10.

We used 100 for the terminal reward.

4. Relational Box World

This environment is inspired by Box World from Zambaldi et al. (2019). There are 4 types

of objects: lock, key, gem, wall with an associated color. A lock can be opened with a key of

79

the same color and the player has to open a lock to reach the key inside that box. The player

is equipped with sensors on each of its 8 directions (NE,E, S, ...), which detects the relative

direction of the objects. Unlike the image representation, in our setting, the complete grid is

not visible to the agent. The goal, for each task, is to collect the gem. Figure 4.4 represents

the three tasks evaluated in the Relational Box World. The gem is represented with white

color in the grid, the wall with black, and the player with gray. The pair of colored cells

represent a box; the cell on right is a lock and the cell on left is either a key or a gem. The

owned key is represented on the top right corner of the grid. Locks and keys are sampled

from 18 different colors. The locations of the boxes are also sampled at the beginning of

each episode. Task 1 has a lock containing the gem, the player is initialized with the key to

open the lock. In Task 2 player has to first collect the free key and then open the lock to

collect the gem. Task 3 requires the player to collect the key and open two locks in sequence

to reach the gem. The environment provides a reward of ´0.1 for every step, ´0.2 for an

invalid step, and 1 for collecting a key or gem. We use terminal reward tR “ 1.

4.4.2 Sample efficiency

To evaluate the effect of RePReL abstractions, we compare it against the seq variant of the

Taskable RL. We pick this variant for two reasons: (1.) seq variant performed best in all

their experiments, (2.) We aim to evaluate the effectiveness of abstractions and thus do not

learn the meta-controller introduced by the partially ordered plans. We set a budget on the

number of steps for learning in each task and evaluate the performance of RePReL against

Taskable RL (TRL), option-based Hierarchical RL (HRL), and q-learning (QL).

Fig. 4.5 presents the performance of RePReL and the baselines in Craft World environ-

ment with 50K steps budget (consider only the methods without “+” in the graphs. “+T”

denotes with transfer). All the Figures report aggregated results over 5 runs. Here, TRL

and HRL have 8 distinct options, one for each location in the domain. RePReL has two

80

policies; one for each operator shown in Table 4.2. RePReL significantly outperforms

the baselines in all the tasks.

Figure 4.6 compares the learning curves of RePReL in Office World with a 30K budget.

While TRL and HRL use 7 different options for traveling to each location in the domain,

our RePReL framework uses only two options; one each for pickup and deliver operator.

We define a common operator for pickup and visit operation as they do not have any pre-

conditions and have the same effects. Figure 4.6a shows that RePReL achieves the optimal

reward for Task 1 in less than 10K steps, while the baseline methods TRL and HRL do

not achieve optimality even after 30K steps. Similarly in all the other tasks, we see that

RePReL consistently outperforms TRL and HRL by converging to the optimal policy in less

than 15K steps. Hence, we answer Q1 affirmatively in that RePReL abstractions help in

statistically significantly outperforming the state-of-the-art hybrid planner-RL architecture,

Taskable RL.

4.4.3 Task transfer

To evaluate the transfer, we modify the RePReL learning algorithm. Specifically, the RL

policies are not initialized randomly (line 1 in Algorithm 2), and instead, we transfer the

learned policies from Task 1 to Task 2, refine the policy on Task 2, transfer it to Task 3,

and so on, in increasing order. We indicate the transferred RePReL agent performance as

RePReL+T in the plots. Similarly, transferred taskable RL and hierarchical RL baselines

are indicated by TRL+T and HRL+T respectively. We use the same budget as the previous

set of experiments.

Our experiments (Fig. 4.5 and 4.6) clearly demonstrate that transferring the RePReL

policies across different tasks has a distinct advantage in terms of sample efficiency. This

advantage is more pronounced in tasks that are closely related to prior tasks. For e.g., in

Craft World, tasks are incremental in nature, and consequently, the significant advantage of

81

0 1 2 3 4 5

·104

−1

−0.8

−0.6

−0.4

−0.2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL
TRL
HRL
QL

(a) Task 1

0.5 0.6 0.7 0.8 0.9 1

·105

−1

−0.8

−0.6

−0.4

−0.2

0

·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL+T RePReL
TRL+T TRL
HRL+T HRL
QL+T QL

(b) Task 2

1 1.1 1.2 1.3 1.4 1.5

·105

−1

−0.8

−0.6

−0.4

−0.2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL+T RePReL
TRL+T TRL
HRL+T HRL
QL+T QL

(c) Task 3

1.5 1.6 1.7 1.8 1.9 2

·105

−1

−0.8

−0.6

−0.4

−0.2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL+T RePReL
TRL+T TRL
HRL+T HRL
QL+T QL

(d) Task 4

Figure 4.5: Comparing learning curves of RePReL, TRL, HRL, and QL in Craft World
environment. Transferred policies are indicated by “+T”. Task 1 is to get wood and iron,
Task 2 is make stick, Task 3 is make axe, Task 4 is mine gem.

RePReL+T over RePReL and other baselines in Tasks 2, 3, and 4 can be clearly observed.

In Office World, the Task 4 is independent of Task 1, 2, and 3, and thus, the gain due to

transfer is not significant. Yet, RePReL+T converges faster than TRL+T due to the state

abstractions. This allows us to answer Q2 affirmatively.

The significant advantage of RePReL over TRL in Craft World when compared to the

Office World, is because Craft World has more objects (11 vs 9). We hypothesize and

verify (in the next section) that the advantage of state abstraction is more appar-

82

0 0.5 1 1.5 2 2.5 3

·104

−6

−4

−2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL
TRL
HRL
QL

(a) Task 1

3 3.5 4 4.5 5 5.5 6

·104

−6

−4

−2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(b) Task 2

6 6.5 7 7.5 8 8.5 9

·104

−8

−6

−4

−2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(c) Task 3

0.9 0.95 1 1.05 1.1 1.15 1.2

·105

−8

−6

−4

−2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(d) Task 4

Figure 4.6: Comparing learning curves of RePReL, TRL, HRL and QL in Office World
environment. Transfer algorithms are indicated by “+T”. Task 1 is to deliver mail, Task 2
is to deliver coffee, Task 3 is to deliver mail and coffee, and Task 4 is to visit A, B, C, D.
Note that the RePReL and RePReL+T curves in Task 2 are overlapping.

ent in the relational domains where the number of objects is higher and effective

transfer requires generalization across objects.

4.4.4 Generalization

We present, in Fig. 4.7, the comparison of the RePReL with baselines in the Extended

Taxi World. Here, both TRL and HRL use 4 options for each location R, G, B, and Y ,

while RePReL uses only two options, one for each operator: pickup and drop a passenger.

83

The results clearly show that RePReL consistently outperforms both baselines. RePReL

with transfer can perform Task 2 and 3 seamlessly without any additional learning. This

demonstrates the generalization capability of the RePReL agent across different passengers.

0 20 40 60 80 100

·103

−4

−3

−2

−1

0

·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL
TRL
HRL
QL

(a) Task 1

100 120 140 160 180

·103

−4

−3

−2

−1

0

·103

steps in env

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(b) Task 2

200 220 240 260 280

·103

−4

−3

−2

−1

0

·103

steps in env

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(c) Task 3

Figure 4.7: Comparing learning curves of RePReL, TRL, HRL, and QL in the Extended
Taxi World. Task 1 is to drop passenger p1, Task 2 is to drop p1 and p2, Task 3 is to drop
p1, p2, p3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

¨106

´50

´40

´30

´20

´10

0

steps in env

ep
is
od
e
re
w
ar
d

RePReL
TRL

(a) Task 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

−50

−40

−30

−20

−10

0

steps in env

RePReL+T RePReL
TRL+T TRL

(b) Task 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

−50

−40

−30

−20

−10

0

steps in env

RePReL+T RePReL
TRL+T TRL

(c) Task 3

Figure 4.8: Comparing learning curves of RePReL and TRL with and without transfer in
Box World environment. The goal in all the tasks is to collect the gem, we increase the
number of objects to reach the gem in each task.

Our experiments in the Relational Box World domain are presented in Fig. 4.8.

Here, we use two subtask policies for both the TRL and RePReL: one for opening a lock and

another for collecting a key or a gem. Since the locations of the lock and key are not fixed, we

84

cannot use different options for each location in taskable RL. Each learning agent is provided

a budget of 1.5M for training steps in each task. We see that RePReL is significantly more

efficient than TRL, in all three tasks. Here, Task 2 involves opening one box (i.e. collecting

a key and opening a lock) to reach the gem and Task 3 requires opening two boxes. It can

be clearly observed that RePReL+T is able to generalize across a number of objects when

going from Task 2 to Task 3. These transfer results in Extended Taxi World and Relational

Box World allow us to answer Q3 affirmatively in that RePReL allows for generalizing across

varying numbers of objects and is best suited for relational domains.

We also employed two relational RL baselines: Q-tree (Dzeroski et al., 2001) and Gradient

Boosted Q-Learning (Das et al., 2020). However, with the number of time steps that we used

for the other planner-based methods, these RRL methods could not converge to an optimal

policy. We hypothesize that this is due to the fact that they learn on fixed goal domains

while our domains have varying goals (See Appendix B.1). Investigating the extension of

RRL to goal-directed methods is an interesting future direction.

4.5 Conclusion

We introduced RePReL, a unified framework that enables efficient learning to act in struc-

tured domains. The framework consists of three specific components—a high-level planner,

a state abstractor, and RL agents. The planner decomposes the tasks into smaller options,

the state abstractor computes the appropriate abstractions for the lowest level MDP, and

finally, an RL agent learns quickly and effectively given the smaller MDP. Our experiments

demonstrate that the RePReL is not only effective and efficient but generalizes to unseen

tasks and a larger number of objects.

It is important to note one of the significant differences between the RePReL learning

algorithm and the Taskable RL learning algorithm. Taskable RL learns a different policy for

each goal location R,G,B, Y i.e. πRpsq, πGpsq, πBpsq, πY psq, while RePReL learns policy

85

for pickup and drop operators i.e. πpickuppsq, πdroppsq. These policies are equivalent (i.e., the

action selected by TRL would be the same as RePReL), the difference lies in the way state s

is represented. Taskable RL uses the complete state representation while RePReL generates

abstract state representations. Further, RePReL learning algorithm proposed here is that

the Taskable RL updates all the subtask policies for every step in the environment, while

RePReL only updates the active subtask policy for each step. With these observations, our

empirical results should make stronger cases for sample efficiency and generalization abilities

for RePReL.

While our empirical evaluation of RePReL is quite successful, the current work has a few

limitations. First, it is limited to discrete domains and traditional RL. Second, the current

work requires propositional state representation at the low level. Third, RePReL assumes the

state spaceflight of the MDPs is structured. Forth, RePReL assumes downward refinement

property (Bacchus and Yang, 1991). That is, we assume that a lower-level solution exists

for every high-level plan and it can be achieved without backtracking on the high-level plan.

Fifth, the current work assumes that the high-level domain description and the D-FOCI

statements are specified in advance by the human expert, and most importantly, they are

precise and correct. In the following couple of chapters, we address a few of these limitations.

86

T
ab

le
4.

2:
D

-F
O

C
I

st
at

m
en

ts
an

d
re

le
va

n
t

st
at

e
p
re

d
ic

at
es

fo
r

al
l

th
e

d
om

ai
n
s

D
om

ai
n

D
-F

O
C

I
st

at
em

en
ts

O
p

er
at

or
s

S
et

of
re

le
va

n
t

st
at

e
p

re
d

ic
at

es

C
ra

ft
W

or
ld

{a
ge

n
t-

at
(L

1)
,

m
ov

e(
D

ir
)}

`
1 ÝÑ

ag
en

t-
at

(L
2)

p
ic

k
u

p
(X

)
{a

ge
n
t-

at
(L

1)
,

at
(X

,
L

),
w

it
h

-a
ge

n
t(

X
),

m
ov

e(
D

ir
)}

{a
ge

n
t-

at
(L

1)
,

m
ov

e(
D

ir
)}
ÝÑ

R

{w
it

h
-a

ge
n
t(

Y
),

re
q
u

ir
e(

X
,

Y
)}

`
1 ÝÑ

re
q
u

ir
e(

X
,

Y
)

p
ic

k
u

p
(X

):
w

it
h

-a
ge

n
t(

X
)
ÝÑ

R
o

p
ic

k
u

p
(X

):
{a

ge
n
t-

at
(L

1)
,

at
(X

,
L

),
w

it
h

-a
ge

n
t(

X
)}

ÝÑ
w

it
h

-a
ge

n
t(

X
)

b
u

il
d

(X
)

{a
ge

n
t-

at
(L

1)
,

w
it

h
-a

ge
n
t(

X
),

b
u

il
d

-a
t(

X
,

L
),

re
q
u

ir
e(

X
,

Y
),

w
it

h
-a

ge
n
t(

Y
),

m
ov

e(
D

ir
)}

b
u

il
d

(X
):

{a
ge

n
t-

at
(L

1)
,

b
u

il
d

-a
t(

X
,

L
),

re
q
u

ir
e(

X
,Y

),

w
it

h
-a

ge
n
t(

Y
)}

`
1 ÝÑ

w
it

h
-a

ge
n
t(

X
)

b
u

il
d

(X
):

w
it

h
-a

ge
n
t(

X
)
ÝÑ

R
o

O
ffi

ce
W

or
ld

{a
ge

n
t-

at
(L

1)
,

m
ov

e(
D

ir
)}

`
1 ÝÑ

ag
en

t-
at

(L
2)

p
ic

k
u

p
(X

)
{a

ge
n
t-

at
(L

1)
,

at
(X

,
L

),
w

it
h

-a
ge

n
t(

X
),

m
ov

e(
D

ir
)}

{a
ge

n
t-

at
(L

1)
,

m
ov

e(
D

ir
)}
ÝÑ

R
p

ic
k
u

p
(X

):
{a

ge
n
t-

at
(L

1)
,

at
(X

,
L

),
w

it
h

-a
ge

n
t(

X
)}

`
1 ÝÑ

w
it

h
-a

ge
n
t(

X
)

p
ic

k
u

p
(X

):
w

it
h

-a
ge

n
t(

X
)
ÝÑ

R
o

d
el

iv
er

(X
):

{a
ge

n
t-

at
(L

1)
,

w
it

h
-a

ge
n
t(

X
),

offi
ce

(L
),

d
el

iv
er

(X
)

{a
ge

n
t-

at
(L

1)
,

w
it

h
-a

ge
n
t(

X
),

offi
ce

(L
),

m
ov

e(
D

ir
),

d
el

iv
er

ed
(X

)}
d

el
iv

er
ed

(X
)}

`
1 ÝÑ

d
el

iv
er

ed
(X

)
d

el
iv

er
(X

):
d

el
iv

er
ed

(X
)
ÝÑ

R
o

E
x
te

–
n

d
ed

T
ax

i

{t
ax

i-
at

(L
1)

,
m

ov
e(

D
ir

)}
`
1 ÝÑ

ta
x
i-

at
(L

2)

p
ic

k
u

p
(P

)
{t

ax
i-

at
(L

1)
,

at
(P

,L
),

in
-t

ax
i(

P
),

m
ov

e(
D

ir
)}

{t
ax

i-
at

(L
1)

,
m

ov
e(

D
ir

)}
ÝÑ

R
p

ic
k
u

p
(P

):

{t
ax

i-
at

(L
1)

,
at

(P
,

L
),

in
-t

ax
i(

P
)}

`
1 ÝÑ

in
-t

ax
i(

P
)

p
ic

k
u

p
(P

):
in

-t
ax

i(
P

)
ÝÑ

R
o

d
ro

p
(P

)
{t

ax
i-

at
(L

1)
,

in
-t

ax
i(

P
),

d
es

t(
P

,L
),

at
-d

es
t(

P
),

m
ov

e(
D

ir
)}

d
ro

p
(P

):
{t

ax
i-

at
(L

1)
,

in
-t

ax
i(

P
),

d
es

t(
P

,L
),

at
-d

es
t(

P
)}

`
1 ÝÑ

at
-d

es
t(

P
)

d
ro

p
(P

):
at

-d
es

t(
P

)
ÝÑ

R
o

R
el

at
–

io
n

al
B

ox
W

or
ld

{n
ei

gh
b

or
(D

ir
,C

),
ag

en
t-

at
(L

2)
,

m
ov

e(
D

)}

p
ic

k
ke

y
(K

)
{n

ei
gh

b
or

(D
ir

,C
),

ag
en

t-
at

(L
1)

,
d

ir
ec

ti
on

(K
,

D
ir

2)
,

ow
n

(K
),

m
ov

e(
D

)}

`
1 ÝÑ

ag
en

t-
at

(L
1)

{n
ei

gh
b

or
(D

ir
,C

),
ag

en
t-

at
(L

1)
,

m
ov

e(
D

)}
ÝÑ

R
p

ic
k
ke

y
(K

):
ow

n
(K

)
ÝÑ

R
o

p
ic

k
ke

y
(K

):
{a

ge
n
t-

at
(L

1)
,

d
ir

ec
ti

on
(K

,
D

ir
2)

,

ow
n

(K
)}

`
1 ÝÑ

ow
n

(K
)

u
n

lo
ck

(L
)

{n
ei

gh
b

or
(D

ir
,C

),
ag

en
t-

at
(L

1)
,

d
ir

ec
ti

on
(L

,
D

ir
2)

,
op

en
(L

),
m

ov
e(

D
)}

u
n

lo
ck

(L
):

op
en

(L
)
ÝÑ

R
o

u
n

lo
ck

(L
):

{a
ge

n
t-

at
(L

1)
,

d
ir

ec
ti

on
(L

,
D

ir
2)

,

op
en

(L
)}

`
1 ÝÑ

op
en

(L
)

87

CHAPTER 5

REPREL EXTENSION TO DEEP, NEURAL RL

In Chapter 4, we proposed an integrated planner and RL architecture—RePReL—that uses

task-specific state abstractions from the D-FOCI statements. However, we only handled

discrete domains in that chapter, with tabular Q-learning. In this chapter, we extend the

formalism and present a batch-learning approach that is compatible with deep RL and

handles both discrete and continuous states and actions (Kokel et al., 2022b,a).1 Further,

while Chapter 4 generated the ground state abstractions by unrolling the D-FOCI to a fixed

depth (which limits its use), in this chapter we allow for richer recursion and relational state

representations by employing graph neural networks.

The rest of the chapter is organized as follows. Section 5.1 proposes the deep extension

for the RePReL framework. Section 5.2 evaluates the proposed deep RePReL algorithm with

Double Deep Q-Network (van Hasselt et al., 2016) and Soft-Actor Critic (SAC) (Haarnoja

et al., 2018) as base learners. Finally, Section 5.3 concludes by summarizing the key insights.

The code used in this chapter is available for public use at the following URL: https:

//github.com/starling-lab/DeepRePReL.

5.1 Deep RePReL

To extend the RePReL framework to deep, neural reinforcement learning methods, we use

neural reinforcement learners at the low level. Essentially, replacing the Reinforcement

Learners in the RePReL architecture (Figure 4.2) with Deep Reinforcement Learners. The

updated RePReL architecture is shown in Figure 5.1. The updated architecture cannot be

1The work appearing in this chapter was first published in Neural Computing and Applications,
2022 by Springer Nature. The Version of Record is available online at: https://doi.org/10.1007/

s00521-022-08119-y

88

https://github.com/starling-lab/DeepRePReL
https://github.com/starling-lab/DeepRePReL
https://doi.org/10.1007/s00521-022-08119-y
https://doi.org/10.1007/s00521-022-08119-y

E
n
v
iron

m
en
t

High-level
planner

Deep Reinf.
Learners

State
Abstractor

RePReL initial state

state,
reward

abstract
state

action

D-FOCI

Figure 5.1: RePReL architecture.

learned in an online fashion and, hence, requires a batch-learning algorithm. The modi-

fied RePReL Batch Learning algorithm is presented next. We use the same notations as

Chapter 4.

5.1.1 Batch learning

Given a taskable GRMDP environment env with the high-level planning domain D and the

D-FOCI statements F , we now discuss the batch learning procedure of the RePReL presented

in Algorithm 3. First, for each option, an RL policy πo and a replay buffer BO are initialized

in line 1. Next, for the current instance of the GRMDP problem, a high-level plan Π is

obtained from the planner in line 5. For every grounded option in the plan, training samples

are collected in the respective buffer Bo (lines 6–22). An abstract state representation ŝ is

obtained in line 8 and if it is not a terminal state then samples are collected in the buffer

till a terminal state is reached (lines 10–21). To collect samples, an action a is obtained

from the current policy, that action is performed, and the next state s1 and the reward r

are observed. If s1 is a terminal state for the ground option oθ, then a terminal reward tR is

89

added (line 17) before pushing it to the buffer (line 19). Once enough samples are collected

in the buffer, the option policy πo is updated for each option by sampling a batch from buffer

Bo (lines 25–28). The process is repeated for a fixed budget of episodes during evaluation

but various other stopping criteria can also be used.

Algorithm 3 Deep RePReL Batch Learning Algorithm

INPUT: env, goal g, domain D “ xL,Oy, terminal reward tR, D-FOCI statements F , num
of iterations i, num of episodes in each iteration k, batch size b
OUTPUT: RL policies πo, @o P O

1: πo,Bo, @o P O Ź initialize a policy and a buffer for each option
2: for iteration P i do
3: for episode P k do
4: sÐ get state from env

5: Π Ð getPlanps, g,Dq
6: for oθ in Π do
7: π Ð πo Ź get resp. policy
8: ŝÐ GetAbstractStateps, oθ, F q
9: done Ð ŝ P βpoθq Ź check terminal state

10: while not done do
11: aÐ πpŝq Ź get action
12: s1 Ð env.steppaq Ź take a step in env
13: r Ð Rps, a, s1q Ź get step reward
14: ŝ1 Ð GetAbstractStateps, oθ, F q
15: done Ð ŝ1 P βpoθq Ź check terminal next state
16: if done then
17: r “ r ` tR Ź add terminal reward
18: end if
19: Bo Ð Bo Y tŝ, a, r, ŝ1, oθu Ź push to the buffer
20: s, ŝÐ s1, ŝ1

21: end while
22: end for
23: end for
24: for o P O do Ź Update all the policies
25: πo Ð UpdatePolicypπo, SampleBatchpBo, bqq
26: end for
27: end for
28: return πo, @o P O

90

With batch learning, the RePReL framework can support any off-policy RL algorithm.

Additionally, the batch learning algorithm can be adapted to any of the sampling and replay

strategies to speed up the training. In our evaluations, we employ a hindsight experience

replay buffer (Andrychowicz et al., 2017) with Soft Actor-Critic (Haarnoja et al., 2018)

learner.

5.1.2 Recursive abstraction with DRRL

The batch learning algorithm is also compatible with the DRRL approaches (Zambaldi et al.,

2019; Li et al., 2020; Jiang et al., 2021). DRRL approaches use graph-based neural networks

and support relational state representation that allow varying number of objects across states

(see §2.4.1). By using DRRL as low-level learners, RePReL can use a relational representa-

tion of the state at the low-level. This eliminates the need for fixed object representations

in the abstract state. Hence, RePReL can now allow for varying the unrolling depth.

The recursive abstraction process for the relational representation remains the same as

described in Section 4.3.6. The recursion ends only when no new literals can be added to ŝ.

Theorem 2. If the MDP satisfies the influence information of the D-FOCI statements then

the above procedure that recursively collects the set of state literals that influence the relevant

state literals and reward variables is a model agnostic abstraction.

Proof (sketch): Complete grounding of the D-FOCI statements would create a propo-

sitional DBN with all the grounded literals as variables. If the MDP satisfies the influence

information in this DBN then collecting all the variables influencing the reward and the

relevant variables provides model agnostic abstraction (Ravindran and Barto, 2003). The

recursive grounding and unrolling of the D-FOCI statement begins with the reward variable

and collects all the grounded literals influencing the reward and the relevant grounded liter-

als. So the set of grounded state literals collected by this process is identical to collecting all

91

the relevant state variables in the propositional DBN. Hence, the recursive grounding and

unrolling provide a model-agnostic abstraction.l

5.2 Experiments

We now empirically evaluate our approach on four multi-task domains with discrete as well

as continuous state and action spaces. We compared the RePReL framework with traditional

tabular RL, tabular hierarchical RL, and tabular taskable RL approaches in Chapter 4. Here,

we compare the Deep RePReL framework with double deep Q-Network (DQN) (van Hasselt

et al., 2016), hierarchical DQN (HDQN) (Kulkarni et al., 2016), deep taskable RL, and deep

relational RL. We consider two different representations :

1. Tensor, we use tensor representation to evaluate RePReL with double DQN as the

base learner.

2. Graph, we use graph representation to evaluate RePReL with deep relational RL-

based learners.

The high-level planner remains the same for all these representations. This demonstrates

the generality of our proposed framework.

All the experiments aim at assessing the sample efficiency and effectiveness of transfer

across tasks and generalization across objects. The results are aggregated over 5 runs with

different random seeds. We employ the Pyhop planner2 in our experiments. We aim to

demonstrate the following key aspects of the proposed framework:

A1. RePReL framework demonstrates a significant advantage in sample efficiency.

A2. RePReL framework facilitates effective transfer across tasks.

2An HTN planner (Nau et al., 1999) written in python, https://bitbucket.org/dananau/pyhop

92

https://bitbucket.org/dananau/pyhop

A3. RePReL framework efficiently generalizes across multiple objects.

A4. RePReL handles both discrete and continuous state-action spaces, making it a versatile

framework for learning in real domains.

A5. RePReL batch learning algorithm adapts easily to different off-policy deep RL algo-

rithms.

5.2.1 Deep RL

In this section we evaluate deep RePReL on two domains Office World and Extended Taxi

World from Chapter 4. We used Task 1 and 2 of Office World to evaluate the transfer

efficiency and Task 1–3 of the Extended Taxi World to evaluate generalization capability.

We use double DQN implementation available in the RL-kit package3 as base learners. We

compare our deep RePReL agent against a double Deep Q-Network (DQN), a Hierarchical

DQN (HDQN), and a Taskable-RL (TRL) agent. Hyperparameters and network architecture

were tuned for the DQN agent and used verbatim for other agents. These hyperparameter

values are summarized in Table 5.1 and D-FOCI statements are presented in Table 5.3. We

set a budget of 1e6 on the number of steps that can be taken in the training environment

for learning in each task.

Figures 5.2 and 5.3 compare the learning curves of the four agents on two tasks in

Office World and three tasks in Extended Taxi World. While the RePReL, TRL and DQN

agents achieve comparable performance in Task 2 of Office world (Fig. 5.2b) and Task 1

of Extended Taxi World (Fig. 5.3a), their performance significantly differs in the remaining

tasks. Solid lines with “+T” are transferred agents. We see that all the transferred agents

start at a higher average reward, but the RePReL agent has the steepest learning curve.

Hence, Figures 5.2 and 5.3 demonstrate sample efficiency (A1), effective transfer (A2), and

generalization across objects (A3) respectively.

3https://github.com/rail-berkeley/rlkit

93

0 0.2 0.4 0.6 0.8 1

·106

−1

−0.8

−0.6

−0.4

−0.2

0
·104

steps in env

A
ve
ra
ge

R
ew

ar
d

RePReL
TRL
HDQN
DQN

(a) Task 1

0 0.2 0.4 0.6 0.8 1

·106

−1

−0.8

−0.6

−0.4

−0.2

0
·104

steps in env

RePReL
TRL
HDQN
DQN

(b) Task 2

0 0.2 0.4 0.6 0.8 1

·106

−6

−4

−2

0

·102

steps in env

A
ve
ra
ge

R
ew

ar
d

RePReL+T
TRL+T
HDQN+T
DQN+T

(c) Transfer to Task 1

0 0.2 0.4 0.6 0.8 1

·106

−8

−6

−4

−2

0

·102

steps in env

RePReL+T
TRL+T
HDQN+T
DQN+T

(d) Transfer to Task 2

Figure 5.2: Comparing learning curves of deep RL based learners in the Office World envi-
ronment. RePReL compared against TRL, HDQN and DQN in (a) Task 1 deliver mail and
(b)Task 2 deliver coffee. Agents are swapped after 1e6 steps. RePReL+T compared against
TRL+T, HDQN+T and DQN+T in (c) Task 1 and (d)Task 2. The shaded region depicts
the standard deviation.

5.2.2 Deep relational RL

We evaluate the RePReL framework with DRRL as base learners on two domains. The

relational state is represented as a fully-connected graph in both domains. The first domain

is the Extended Taxi World (from Chapter 4). The graph representation of a state is

obtained as follows. Each passenger in the state is considered a node of the graph, passenger

94

0.0 0.2 0.4 0.6 0.8 1.0

·106

−50
−40
−30
−20
−10

0
10
20
30

steps in env

av
er
ag
e
re
w
ar
d

RePReL
TRL
HDQN
DQN

(a) Task 1

0.0 0.2 0.4 0.6 0.8 1.0

·106

−80

−60

−40

−20
0

20

40

60

steps in env

RePReL RePReL+T TRL
TRL+T HDQN HDQN+T
DQN DQN+T

(b) Task 2

0.0 0.2 0.4 0.6 0.8 1.0

·106

−100

−50

0

50

100

steps in env

RePReL RePReL+T TRL
TRL+T HDQN HDQN+T
DQN DQN+T

(c) Task 3

Figure 5.3: Comparing learning curves of deep RL-based learners in the Extended Taxi
World. (a)Task 1 is to drop passenger p1,(b) Task 2 is to drop p1 and p2, (c)Task 3 is to
drop p1, p2, p3. The shaded region depicts the standard deviation.

Figure 5.4: FetchBlockConstruction

features are encoded as node attributes, and the taxi location is encoded as a global attribute

of the graph. The graph is fully connected.

To demonstrate that RePReL can handle both continuous and discrete spaces (A4) we in-

clude a 3-dimensional robotics multi-object manipulation domain with continuous state and

action spaces called FetchBlockConstruction (Li et al., 2020). FetchBlockConstruction,

shown in Figure 5.4 is based on FetchPickAndPlace (Plappert et al., 2018) domain. This

domain has multiple blocks and the task is to move each block to its goal location. Each

95

block is represented as a node in the fully-connected graph with an 18D vector consisting

of block position, orientation, relative position, cartesian velocity, angular velocity, and goal

location. Features of the robotic gripper (10D vector) are treated as global attributes of

the graph. The action space is 4D, consisting of relative change in the 3D position of the

two-fingered parallel jaw gripper and the distance between two fingers of the robotic arm.

The complete list of D-FOCI statements and the relevant state abstractions are provided in

Table 5.3.

We compare the RePReL framework against double DQN in Extended Taxi World. In

FetchBlockConstruction, we use a state-of-the-art DRRL method Relational Neural Net-

work (ReNN) by Li et al. (2020). ReNN uses a Soft Actor-Critic (SAC) learner with hind-

sight experience replay (HER) strategy. In both domains, the network architecture consists

of an attention-based message passing module, an attentive graph pooling module, and a

multi layer perceptron module. This also demonstrates that the RePReL framework can be

adapted to any off-policy RL algorithm, aspect A5. For FetchBlockConstruction we use the

same network parameters and experiment settings as Li et al. (2020), except for one change.

Instead of using 35 parallel workers, we used 16 workers because of resource constraints.

Table 5.2 summarizes the network parameters for the Extended Taxi World.

Figure 5.5 presents the comparison of the RePReL with GNN based DQN agent. Both the

agents have comparable performance in Task 1, but RePReL shows a significant advantage

over DQN in the remaining tasks (A1 and A3). The transferred DQN agents took longer

to converge than learning DQN from scratch on Task 2 and 3. This might be explained

by the mechanism called capacity loss, whereby networks trained to predict a sequence of

target values lose their ability to quickly fit new functions over time (Lyle et al., 2022;

Igl et al., 2021; Ash and Adams, 2020). Figure 5.6a presents the comparison of learning

curves of the RePReL agent and the ReNN agent on the task of moving a block to its goal

location. While RePReL and ReNN have comparable performance on this task, we present

96

0 1 2 3 4 5

·106

−80

−60

−40

−20

0

20

steps in env

av
er
ag
e
re
w
ar
d

RePReL
DQN

(a) Task 1

0 0.2 0.4 0.6 0.8 1

·107

−500

−400

−300

−200

−100

0

steps in env

RePReL
RePReL+T
DQN
DQN+T

(b) Task 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107
−1

−0.8

−0.6

−0.4

−0.2

0

·103

steps in env

RePReL
RePReL+T
DQN
DQN+T

(c) Task 3

Figure 5.5: Comparing learning curves of deep relational RL-based learners in the Extended
Taxi World. (a) Task 1 is to drop passenger p1, (b) Task 2 is to drop p1 and p2, (c) Task
3 is to drop p1, p2, and p3. The shaded region depicts the standard deviation.

0 1 2 3 4 5 6

·105

−40

−20

0

steps in env

av
er
ag
e
re
w
ar
d
s

RePReL
ReNN

(a)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of Blocks

su
cc
es
s
ra
te

RePReL
ReNN

(b)

Figure 5.6: Comparing deep relational RL-based learners in FetchBlockConstruction. (a)
Compares learning curve on the task of moving one block (b) Evaluates generalization for
moving 1–4 blocks.

the generalization results to 2–4 blocks in Figure 5.6b. As can be seen, the RePReL agent

can easily generalize to multiple objects while being statistically significantly better than the

baselines (demonstrating aspect A3).

97

5.3 Conclusion

We extended RePReL for deep, neural, and relational RL agents. Collectively, the empirical

evaluations clearly demonstrate our central hypothesis that RePReL allows for better

generalization while exploiting effective abstractions for efficient learning. The

results further demonstrate another important aspect of this formalism—the ability to learn

in continuous as well as discrete structured domains. Learning in this setting is generally

considered a hard task, and our work takes a small step toward this goal. This work assumes

states of the MDP are structured and can be represented as a predicate or graph. In the

following chapter, we relax this assumption and allow structured as well as unstructured

representation of the state.

98

Table 5.1: Summary of hyperparameters used in deep RL experiments (Section 5.2.1).

Hyperparameters Values

Learning rate 0.003
Batch size 128
Max steps 1e6
Max buffer size 1e5
Hidden layers 2
Hidden units 256
Discount rate 0.99
Intrinsic reward on subgoals 30

Office World

Input size (baseline) 11
Input size (RePReL) 4 pickup & 5 drop
Output size (# of Actions) 4
Output size (metacontroller) 3
Max episode length 1000
Epsilon decay True

Extended Taxi World

Input size (baseline) 91
Input size (RePReL) 69
Output Size (# of Actions) 6
Output Size (metacontroller) 2
Max episode length (Task 1) 150
Max episode length (Task 2) 200
Max episode length (Task 3) 300
Epsilon decay false

99

Table 5.2: Summary of hyperparameters used in deep relational RL experiment of Extended
Taxi World (Section 5.2.2).

Hyperparameters Values

Number of graph layers 2
Attention embedding 125

Number of attention heads 3
Number of MLP layers 2

MLP embedding 256
Activation function Leaky ReLU

Batch size 128
Task 1 max episode length 500
Task 2 max episode length 1000
Task 3 max episode length 1500

Epsilon decay True
Learning rate 0.003

Buffer size 1e6

100

Table 5.3: D-FOCI statements and relevant features (literals) of the state that form the
abstract state.

D-FOCI statements Option: Abstract state

Office World

{agent-at(L1), move(Dir)} `1ÝÑ agent-at(L2)

pickup(X):
{agent-at(L1), at(X, L), with-agent(X),

move(Dir)}
{agent-at(L1), move(Dir)} ÝÑ R
pickup(X): {agent-at(L1), at(X, L), with-agent(X)}

`1ÝÑ with-agent(X)
pickup(X): with-agent(X) ÝÑ Ro

deliver(X): {agent-at(L1), with-agent(X), office(L),
deliver(X):

{agent-at(L1), with-agent(X), office(L),
move(Dir), delivered(X)}delivered(X)} `1ÝÑ delivered(X)

deliver(X): delivered(X) ÝÑ Ro

Extended Taxi World

{taxi-at(L1), move(Dir)} `1ÝÑ taxi-at(L2)

pickup(P):
{taxi-at(L1), at(P,L), in-taxi(P),

move(Dir)}
{taxi-at(L1), move(Dir)} ÝÑ R
pickup(P):

{taxi-at(L1), at(P, L), in-taxi(P)} `1ÝÑ in-taxi(P)
pickup(P): in-taxi(P) ÝÑ Ro

drop(P):
{taxi-at(L1), in-taxi(P), dest(P,L),

at-dest(P), move(Dir)}
drop(P): {taxi-at(L1), in-taxi(P), dest(P,L),

at-dest(P)} `1ÝÑ at-dest(P)
drop(P): at-dest(P) ÝÑ Ro

FetchBlockConstruction
{armfeat1(AF1), ..., armfeat10(AF10)

, action(A)} `1ÝÑ armfeat1(AF1),

place(X):
{ armfeat1(AF1), ... armfeat10(AF10),

blockfeat1(X, BF1), ... blockfeat18(X, BF18),
action(A)}

...
{armfeat1(AF1), ..., armfeat10(AF10)

, action(A)} `1ÝÑ armfeat10(AF10),
place(X): {blockfeat1(X, BF1), ...,

blockfeat18(X, BF18) } `1ÝÑ blockfeat1(X, BF1),
....

place(X): {blockfeat1(X, BF1), ...,

blockfeat18(X, BF18) } `1ÝÑ blockfeat1(X, BF1),
place(X): {armfeat1(AF1), ..., armfeat10(AF10),

action(A) } `1ÝÑ blockfeat1(X, BF1),
...

place(X): {armfeat1(AF1), ..., armfeat10(AF10)

, action(A) } `1ÝÑ blockfeat18(X, BF18),
place(X): {blockfeat1(X, BF1), ...,

blockfeat18(X, BF18) ÝÑ Ro

101

CHAPTER 6

REPREL EXTENSION FOR HYBRID DATA

In the previous chapter, we presented the deep RePReL framework, which is a combination

of a high-level symbolic reasoner and lower-level neural reasoners. It assumes that the state

representation is structured, that is each state variable is symbolic and has clear seman-

tics. However, in many real-world domains, the state has sub-symbolic elements. Data is

heterogeneous, a hybrid of structured and unstructured representation. In this chapter, we

introduce a novel neuro-symbolic system, Hybrid Deep RePReL (Kokel et al., 2022) that is

able to learn policies in a hybrid environment.

6.1 Introduction

Building a two-level neurosymbolic system that combines a higher-order symbolic reasoner

with a lower-level fast deep learner is not only a long cherished dream but is one of the

more popular research directions inside AI (Booch et al., 2021). Particularly, exploring the

combination of learning and neurosymbolic processing in the context of sequential decision-

making is quite natural (Nilsson and Ziemke, 2007; Anderson et al., 2020; Mitchener et al.,

2022) given the recent success of DRL methods on large-scale tasks (Silver et al., 2016,

2017, 2018). The RePReL system takes a first step in the direction of combining (relational)

planning and RL in solving structured problems by using the planner to define a smaller set

of (abstract) state-action spaces to allow for efficient learning by the lower level RL agent.

The key success of the RePReL method lies in its capability of generalization to a varying

number of objects.

While RePReL was successful, it had an important assumption—the underlying state

variables are symbolic. The higher-order symbolic planner operated at the level of predicates

defined in first-order logic and then constructed appropriate grounded predicates as features

102

for the RL agent. This assumption restricts the RePReL framework in two specific ways.

First is that the power of DRL methods is not effectively exploited, as DRL works best

in image or tensor representations. Second, the approach cannot fully exploit the fusion

of multi-modal data where the data could arrive from multiple sources—images, text, and

potentially a feature-based descriptor.

This chapter relaxes the symbolic feature assumption and extends the RePReL framework

to construct a Hybrid Deep Relational Planning and Reinforcement Learning (HDRePReL)

architecture that fuses multi-modal information from two or more sources. In this chapter,

we make the following contributions.

1. We extend the standard RePReL architecture to handle multi-modal data by fusing

information from multiple sources.

2. The resulting HDRePReL framework is a neurosymbolic architecture that leverages

the deliberative nature of a higher-level planner with the fast learning nature of the

lower-level deep network.

3. Finally, our empirical evaluations on two domains clearly demonstrate the effectiveness

of learning and the efficiency of generalization and transfer across related tasks.

The rest of the chapter is organized as follows. Section 6.2 presents the HDRePReL

architecture, Section 6.3 present our empirical evaluations, and Section 6.4 concludes the

chapter by presenting the directions for future research.

6.2 Hybrid deep RePReL

To address multi-task hybrid RL problems, with structured and unstructured data, there

is a need to incorporate data from different sources. For convenience, the proposed ap-

proach assumes the unstructured data is an image, but it can be extended to other forms of

unstructured data verbatim.

103

Given: A combination of structured (object descriptions as predicate logic representa-

tions) and unstructured (images or text) data.

To Do: Develop a hybrid architecture that learns to act.

Consider the scenario of a ride-sharing app, the information required for booking and

riding a passenger arrives from different sources. The local geography of the region is obtained

from a map, the location of the cab can be obtained from the cab driver’s mobile, and the

location of the rider and the destination of the ride are obtained from the rider’s mobile. In

such cases, the information required for a ride can be a conglomeration of many varied types

of data coming from different sources.

As a more concrete example, consider a hybrid taxi domain, shown in Figure 6.1. There

are two passengers in this domain and one taxi. Six actions available in this domain are:

east, west, north, south, pick, drop. The task is to transport passenger(s) from their

current location to their destination location. Only one passenger can hire the taxi at a time.

We consider three different sources of information in this domain, the taxi location

and the geography of the region are available as an image from one source (see Figure

(a)

atpp1, l1q, destpp1, d1q
atpp2, l2q, destpp1, d2q

(b)

Figure 6.1: (a) Taxi location and geography information available as an image. (b) Passenger
location and destination information as state predicates from a passenger’s mobile.

104

E
n
v
iron

m
en
t

Symbolic planner

RL agents

State
Abstractor

initial state

state

abstract state

action

D-FOCI
Input

pre-processor

Merge

reward
subgoal

Figure 6.2: Proposed HDRePReL architecture.

6.1a); the current location and the destination location of the passenger p1 are available

from p1’s mobile as state predicates; and similarly the current location and the destination

of the passenger p2 is available from p2’s mobile (see Figure 6.1b). Hence, the state or

the observation from the environment is hybrid—consisting of the structured data from

passengers’ mobile and unstructured image data with taxi location.

For such hybrid RL domains, we extend the RePReL framework and introduce hybrid

deep RePReL (HDRePReL). Figure 6.2 presents the proposed HDRePReL architecture. The

HDRePReL differs from the previous deep RePReL framework in the following ways.

1. We extend the D-FOCI language in HDRePReL to allow for latent predicates.

2. We add two extra modules, an input preprocessing module and a merge module, to

handle the combination of structured and unstructured information.

The symbolic planner and the low-level reinforcement learner remain the same. Next, we

explain each of these differences in greater detail.

105

D-FOCI extension

D-FOCI language (see §4.3.4) consist of statements of the form,

[<option>] : <influent>
r`1sÝÑ <resultant> (6.1)

where influents is a finite set of literals, resultant is a single literal, and the option is a

temporally extended operator from the symbolic planner. Additionally, action variables are

allowed in the influent and reward variables are allowed in resultant. D-FOCI statement

states that when executing the given option, the resultant literal in time-step t ` 1 is

influenced by literals in influents in time-step t.

Inspired by the work of Manhaeve et al. (2018), we extend the first-order language used

by D-FOCI to include latent predicates for hybrid, and heterogeneous domains. Latent

predicate literals are allowed in the influents as well as the resultant.

For example, in the hybrid taxi domain, the location of the taxi is available from the

image so a latent predicate is introduced to represent the taxi location—Img:taxi at. The

passenger location and destination are available as state predicates, so they are represented

using the standard first-order logic notation. The location of the taxi is influenced by its

previous location and the action performed, which is captured in the D-FOCI statement in

Equation 6.2a. Further, when executing the task of picking up a passenger, if one assumes

that the taxi is empty, then it can be safely inferred that the passenger’s location, the

passenger in the taxi, and the taxi’s location are the only influents of the completion of

the task. This influence is captured in Equations 6.2b and 6.2c. Similarly, the influence

information while dropping passenger P is captured in Equation 6.2d–6.2f.

106

taction, Img:taxi atpXqu `1ÝÑ Img:taxi atpXq (6.2a)

pickpP q : taction, in taxipP q, atpP, Y q, Img:taxi atpXqu `1ÝÑ in taxipP q (6.2b)

pickpP q : tin taxipP qu ÝÑ Reward (6.2c)

droppP q : tat destpP qu ÝÑ Reward (6.2d)

droppP q : tatpP,Xq, destpP,Dq, at destpP qu ÝÑ at destpP q (6.2e)

droppP q : taction, Img:taxi atpXq, atpP, Y q, in taxipP qu `1ÝÑ atpP,Kq (6.2f)

The process of identifying the abstract state representations using the D-FOCI statements

with latent predicates remains the same as presented in Section 4.3.6. Note that the extracted

abstract state might have latent predicates.

Input Pre-processor

This module processes the unstructured part of the state observation and provides latent

state embeddings to the merge module. The input pre-processing module can be a Convolu-

tional Neural Network (CNN) for image data, a transformer for text data, or a combination of

both (we employ CNNs in our experiments). The neural network of the input pre-processor

can be chosen based on the type of unstructured data.

Merge module

The relevant state variables obtained from the state abstractor and the latent predicates

obtained from the input pre-processor serve as inputs to the merge module. The relevant

state predicates from the state abstractor would include the latent predicates. The merge

module would replace the latent predicates with the respective latent embedding using the

D-FOCI statements. The derived abstract state then serves as the input to the RL agent.

107

HDRePReL Learning

HDRePReL learning procedure is the same as the deep RePReL batch learning (see §5.1.1).

However, instead of just updating the RL agent network while training, in HDRePReL we

update the input preprocessor as well as the RL agent network.

6.3 Experiments

We evaluate HDRePReL in two domains, Taxi and Craft World. We design our experiments

to explicitly answer the following questions.

Q1. Sample Efficiency: Do the abstractions induced in HDRePReL improve sample ef-

ficiency?

Q2. Generalization: Does HDRePReL efficiently generalize to varying number of objects?

6.3.1 Domains

The first domain that we consider is the hybrid taxi domain. This is an 8ˆ 8 grid, shown

in Figure 6.1a, with one taxi and 4 special locations: xR,G,B, Y y. There can be more than

Figure 6.3: Craftworld domain.

108

one passenger at a time in the grid, but the taxi can be hired only by a single passenger.

In every episode, the pickup and drop locations of each passenger are sampled from the 4

special locations. The agent can perform 6 actions: up, down, right, left, pick, drop. The

taxi location and the grid are provided as a grayscale image and the passenger information

is provided as a vector. The environment provides a reward of ´0.1 for every step and ´1

for pick or drop action in wrong locations. We consider the following three tasks in this

domain: task 1, drop a passenger to their destination; task 2, drop two passengers to the

respective destinations; and task 3, drop three passengers to their destination. The D-FOCI

statements used in this domain are presented in Equation 6.2.

The second domain is a Minecraft-inspired grid-world domain called Craftworld (Devin

et al., 2019). This environment contains a 10x10 grid, as shown in Figure 6.3. This domain

has 7 different objects, some of which are holdable. The six actions available in this domain

are the same as that of the hybrid Taxi domain. In this domain, the agent’s location and the

map are available as unstructured data—as an image, whereas all the objects’ locations are

available as state predicates. We consider three tasks in this domain: Task 1, make bread

by bringing an axe to the wheat’s location; Task 2, build a house by bringing a hammer to

the wood’s location; Task 3, break a rock by bringing a hammer to the rock’s location. The

set of D-FOCI statements used in this domain is presented in Equation 6.3.

6.3.2 Baselines

We evaluate our HDRePReL agent against a double Deep Q-Network (DQN) (van Hasselt

et al., 2016), a state-of-the-art DRL method. The DQN agent learns a single end-to-end

policy for completing the task. The network architecture of the DQN agent includes a CNN

module—equivalent to the input pre-processor. The CNN module receives the unstructured

part of the state observation. Then, the output of the CNN module is concatenated with the

structured part of the state representation and passed through a multi-layered perceptron.

109

The network parameters are summarized in Table 6.1. For honest comparison, we employed

the same network parameters in HDRePReL and DQN.

6.3.3 Sample efficiency

To evaluate the efficiency of the HDRePReL architecture, we compare it against the DQN

agent. We compare the learning curves of these two agents on three tasks of the hybrid taxi

domain in Figure 6.4 and on the three tasks of the craft world in Figure 6.5. Ignore the

dashed lines with ‘+T’ for now. While both the HDRePReL and the DQN agent achieve the

optimal reward after 200K steps in Taxi task 1; their performance significantly differs in the

five remaining tasks. In these tasks, it can be clearly seen that the efficiency of HDRePReL

is significantly better than the baseline thus demonstrating that the abstractions defined by

the reasoner enable efficient learning. Hence, we answer Q1 affirmatively in that HDRePReL

significantly improves the sample efficiency when compared to an end-to-end RL agent that

does not use any domain-specific knowledge.

(a) Task 1 (b) Task 2 (c) Task 3

Figure 6.4: Comparing learning curves of hybrid deep RePReL with DQN in Hybrid Taxi
World. (a)Task 1 is to drop passenger p1, (b) Task 2 is to drop p1 and p2, (c)Task 3 is to
drop p1, p2, p3.

6.3.4 Generalization

We evaluate the generalization capability of the HDRePReL agent in the hybrid taxi do-

main. We transfer the HDRePReL and the DQN agent trained on task 1 and train them

110

(a) Task 1 (b) Task 2 (c) Task 3

Figure 6.5: Comparing learning curves of HDRePReL with DQN in Craft World. (a) task 1
is to make bread; (b) task 2 is to build house; (c) task 3 is to break rock.

on task 2. Subsequently, we transfer the agents from task 2 to task 3. Figures 6.4b and

6.4c present the learning curves of these transferred agents indicated by ‘+T’. While both

the transferred agents have steeper learning curves than their respective base models, the

transferred RePReL agent converges significantly faster than the transferred DQN agent.

In many of the tasks, this is achieved with no learning in the new domain. This is due to

the inherent generalization capabilities of the HDRePReL agent. These transfer results in

the hybrid taxi domain allow us to answer Q2 affirmatively in that HDRePReL allows for

successful generalization across a varying number of objects and is best suited for relational

domains.

6.4 Conclusion

To summarize, the experiments conclusively demonstrate the most important observation

about the HDRePReL agent – that it leverages the generalization power of the symbolic

planner with the efficient learning ability of the underlying DRL agent. The resulting com-

bination is a powerful neurosymbolic system that not only learns efficiently but generalizes

to a larger number of objects by bootstrapping on its prior learned policies. The general-

ization ability is particularly important when learning occurs with different starting states,

differing numbers of objects, different domain configurations, or different target states. In

111

the real world, assuming that the data arrives only from a single source can lead to disastrous

results. Hence, using architectures that support heterogeneous data that have the ability to

generalize to different numbers of objects is crucial for a system to be deployed in real-time.

HDRePReL takes a step in this direction.

This chapter presented a novel neurosymbolic system that is capable of learning in the

presence of heterogeneous (discrete and continuous), hybrid (structured and unstructured),

and relational (objects and relations) data. HDRePReL combines the advantage of a delib-

erate relational planner with a fast DRL agent. The resulting combination demonstrated

both effective learning and efficient generalization across different numbers of objects. More

rigorous evaluation of the system on larger problems is an immediate future direction. Al-

lowing for the DRL agent to communicate back to the planner in order to refine the planner

based on new and interesting observations is a high-impact direction that could allow for

a fully differentiable end-to-end system. Finally, given the use of a symbolic planner, the

resulting decompositions and abstractions are explainable. Thus allowing for richer human

interaction with the given system remains an interesting direction for future research.

taction, Img:agent atpXq, holdablepY q, holdingpY qu `1ÝÑ Img:agent atpXq
tholdablepY q, holdingpY q, atpY, Lqu `1ÝÑ holdingpY q
tat(rock,L1), at(tree,L2)u `1ÝÑ Img:agent atpXq (6.3)

tat(tree,L), Img:agent atpLq, holdingphammerqu ÝÑ at(tree,L), at(wood, L)

tat(wheat,L), Img:agent atpLq, holdingpaxequ ÝÑ at(wheat,L), at(bread, L)

tat(wood, L), Img:agent atpLq, holdingphammerqu ÝÑ at(wood, L), at(house, L)

tat(rock,L), Img:agent atpLq, holdingphammerqu ÝÑ at(rock,L)

pickpP q : holdingpP q ÝÑ Ro

go topP q : tatpP,Lq, Img:agent atpLqu ÝÑ Ro

112

Table 6.1: Summary of the network hyperparameters

Hyperparameters Values

Learning rate 0.003
Batch size 128
Max steps 1e6
Max buffer size 1e5
Discount rate 0.99
Intrinsic reward on subgoals 30
Number of CNN Layers 2
CNN Kernel Size 4
CNN Stride 1
CNN Activation Function relu
Epsilon decay True
Output Size (# of Actions) 6
RL Hidden layers 2
RL Hidden units 256

Craftworld

Image size 10x10x1
Structured Input Size 48
Max episode length 500

Hybrid Taxi Domain

Image Size 8x8x1
Structured Input Size 27
Max episode length (Task 1) 500
Max episode length (Task 2) 1000
Max episode length (Task 3) 1000

113

PART III

COLLABORATIVE PROBLEM SOLVING

114

CHAPTER 7

PLANNING AND LEARNING VIA COMMUNICATION

In this chapter, we consider the problem of human-machine collaboration in the context of

a collaborative building task in Minecraft. To this effect, we present an integrated system

(Lara) that builds on advancements in several related fields - NLP, knowledge representation,

inductive logic programming, planning, and statistical relational AI. Specifically, Lara con-

sists of a language parser and generator for effective communication, a rich representation

based on first-order logic that allows for generalization, a concept learner that is capable

of generalizing from a small number of instances by effectively exploiting human guidance

and a planner capable of exploiting domain knowledge effectively. The resulting integrated

system is presented and demonstrated in detail here.

7.1 Introduction

It is well known that human-machine collaborative planning and problem-solving are quite

challenging as it requires a shared perception of the world, sophisticated language under-

standing, glitch-free execution, bi-directional communication, and contextual understanding.

Specifically, we consider the task of collaborative building in Minecraft (Kokel et al., 2021,

2022) and develop an integrated system that builds on several different areas – hierarchical

planning (Bercher et al., 2019; Erol et al., 1994; Nau et al., 1999), knowledge representation

and reasoning (Brachman and Levesque, 2004), inductive logic programming (Cropper and

Dumancic, 2022; Muggleton and Raedt, 1994; Raedt and Kersting, 2008), knowledge-based

learning (Towell and Shavlik, 1994; Kokel et al., 2020), natural language processing (Ba-

narescu et al., 2013; Bahdanau et al., 2015; Sutskever et al., 2014) and generation (Gatt and

Krahmer, 2018), and statistical relational AI (Raedt et al., 2016).

It is natural to focus on the modality of communication such as gestures, or natural

language when building human-AI collaborative systems. However, it is also essential to

115

establish a common vocabulary for communication. This is especially important in a complex

domain such as Minecraft, where given the basic definitions of elementary shapes and sizes,

higher-order concepts should be built. The key requirement is that the common vocabulary

of concepts keeps growing as more tasks are solved and the interactions increase. The set

of concepts should be easily learnable (with a small number of examples) and generalizable.

To this effect, we assume the existence of a basic vocabulary and build upon an inductive

logic programming based concept learner (Das et al., 2020). This concept learner learns a

set of hierarchical concepts based on a very small (possibly one) number of examples using

domain knowledge as an inductive bias.

While learning these generalized concepts, there is a necessity for the system to continue

interacting in the environment and modifying its interactions based on the induced concepts

and the feedback both from the environment and the human. The induced concept must

be both generalizable and compositional. Generalizable to different dimensions, sizes, and

colors and compositional so as to effectively employ the hierarchies of concepts that are

induced by the concept learner. The induced concepts are used as preconditions to guide

a hierarchical task planner (Das et al., 2018) in our framework. The planner uses domain

knowledge and actively seeks human guidance in the form of knowledge constraints that are

then used for both efficient and effective planning.

Finally, for effective communication, both the modality and the representation need to

be established. For modality, we employ the use of NLP parsers (both rule-based and neural-

based parsers) to translate the commands from the humans in natural language to a formal

internal representation. And for the reverse communication from the internal representation

to natural language, we restrict ourselves to specific forms and templates. Extending this to

allow for richer neural language generators is our envisioned future work. For the internal

representation, we employ the use of abstract meaning representations (Banarescu et al.,

2013) that allow for capturing generalized knowledge.

116

We make the following key contributions: (1) we present an integrated system called

Lara (Planning and learning via communication), that obtains instructions and knowledge

in rich natural language, reasons with the observations and knowledge, and executes the plan

automatically; (2) the system is capable of obtaining human “advice” as constraints both to

learn the hierarchical concepts and to perform planning; (3) most importantly, the system

is capable of soliciting this advice in an active manner, thus reducing the effort needed from

the human in collaborative planning and execution.

The remaining chapter is organized as follows. Section 7.2 introduces the necessary

background of the components in the system. Section 7.3 presents the overall system design

with example scenarios. Section 7.4 demonstrates the system. Section 7.5 reviews the

related work. Finally, Section 7.6 concludes the chapter by discussing the salient features of

the system and outlining areas of future research.

7.2 Preliminaries

7.2.1 Concept learning

Inductive logic programming (ILP) learns rules or relations inductively from the given set

of background knowledge and positive as well as negative examples (Muggleton and Raedt,

1994). The rules or relations in ILP are learned as decLarative logic programs, often as

horn clauses. Concept learning in ILP, essentially, reduces to learning a clausal theory (a

first-order logic program) that covers as many positive examples of the target concept as

possible and as few negative examples as possible (Raedt, 1997). ILP employs background

knowledge as a search bias to constrain the space of the hypothesis. Golem (Muggleton

and Feng, 1990), FOIL (Quinlan, 1990), Progol (Muggleton, 1995), TILDE (Blockeel and

Raedt, 1998), Aleph (Srinivasan, 1999), FOCL (Pazzani et al., 1991) are some examples

of ILP systems that learn the target concept by induction. One important aspect of a

117

cogent concept learning framework is that it should represent concept hierarchies, allowing

us to induce more complex concepts given previously learned ones, as opposed to learning

traditional logic programs with one level of abstraction (Fu and Buchanan, 1985)

7.2.2 Neural parsers

Abstract Meaning Representation (AMR) is a semantic representation of natural language (Ba-

narescu et al., 2013), where concepts are represented as nodes and relations between concepts

are represented with edges. AMR can be systematically translated to first-order logic (Bos,

2016) and, hence, is a suitable representation for integration with ILP systems. With the

tremendous success of neural networks to solve various sequence-to-sequence problems (Bah-

danau et al., 2015; Sutskever et al., 2014), multiple neural models are proposed for parsing

text to AMRs (Xu et al., 2020; Konstas et al., 2017; Zhang et al., 2019; Peng et al., 2017).

7.2.3 Minecraft

Minecraft is a popular computer-based game developed by Mojang Studios and released in

2011, https://minecraft.net. Minecraft exposes a virtual 3D world where player avatars

can explore the world, travel on adventures, build structures, hunt for food, harvest raw

materials, craft tools, and kill zombies. It poses many challenging problems which have

intrigued researchers to use it as a test bed for various open problems in AI (Kanervisto

et al., 2021; Salge et al., 2020; Shah et al., 2021). Project Malmo (Johnson et al., 2016),

built on top of Minecraft, exposes an API for flexible AI experiments.

7.3 Lara - Planning and learning via communication

We now present the details of our collaborative problem-solving system and discuss each of

the components in detail.

118

https://minecraft.net

(a) (b)

Figure 7.1: (a) Minecraft builder screen showing the 3D build region and the chat interface.
(b) Example of a target structure in the oracle screen. The architect can see both screens.

7.3.1 Problem definition

This work considers the problem of human-machine collaboration in a Minecraft environ-

ment. A collaborative building task (Jayannavar et al., 2020; Kokel et al., 2021; Narayan-Chen

et al., 2019; Narayan-Chen, 2020) is defined in the context of Minecraft where a human and

a machine have to collaborate to build a target structure by block placements. Blocks are

restricted to be one of six colors: red, blue, green, purple, orange, and yellow. A fixed 3D

grid of size 11 ˆ 9 ˆ 11 is defined as a build region, as shown in Figure 7.1a. The avatar

can only move and place blocks in this build region. The task is to build a target structure

in this stipulated build region. The target structure candidate is sampled from a preset

list of complex shapes and displayed in a separate oracle window. An example of a target

structure is shown in Figure 7.1b. Two players, an architect and a builder, collaborate and

communicate using natural language via the chat interface. The architect and the builder

take turns on the chat window.

The architect can view the target structure in the oracle window and can also see the

current state of the build region. The builder can not see the oracle window. It can move in

119

the build region to place and remove blocks. The role of the architect is played by humans

and the role of the builder is played by Lara. The game begins with a simple target structure

in the oracle window and a greeting from the builder Lara to the architect (as seen in Figure

7.1a).

For a successful target structure construction and most importantly, generalization of

the learned concepts, the architect must decompose the target structure into smaller struc-

tures and instruct Lara to achieve those subtasks. Lara must parse the instructions, seek

clarifications as appropriate, and execute the subtask(s). A sample interaction between an

architect and the builder Lara is shown in Figure 7.2, where the target structure is a red L.

The challenges posed by the Minecraft-based blocks world task are as follows:

1. The communication between the architect and the builder is inherently bi-directional

(see for example Figure 7.2).

2. The builder should be able to seek clarifications as required.

3. Both players must share some initial structures in the vocabulary, expand the vo-

cabulary with experience, agree upon the changes and reuse the learned higher-level

concepts as appropriate. This requires an effective reasoning process over the learned

concepts.

These problems of the proposed task highlight the key challenges of the collaborative

planning problem: bi-directional communication, contextual understanding, composable vo-

cabulary, and a powerful concept learner that can induce new, rich concepts based on limited

interaction and experience.

Our key contribution in this work is the demonstration of our collaborative

planning and problem-solving agent that addresses these key challenges. Our sys-

tem has the capability to understand, quantify and measure “what-it-doesn’t-know” (dearth

120

Figure 7.2: Target structure on the left is visible only to the architect (A). The architect
instructs the builder (B) to build a red tower. B seeks clarification about the size and then
proceeds to build the tower in the build region.

of relevant information) and leverage that understanding to elicit “advice/knowledge/con-

straints” at the most appropriate decision points from the humans and potentially learn

better plans for increasingly complex structures. Some recent works (for e.g. Narayan-Chen

et al. 2019 and Köhn et al. 2020) introduced a similar Minecraft environment, but focused

on the dialogue generation and instruction giving; instead of the dialogue understanding,

concept induction, and planning challenges we focus on here.

7.3.2 System setup

For the collaborative building task in Minecraft, a few essential pieces of prior knowledge

(domain information) are assumed to exist in both the builder and the architect. These

essentials include directions, primitive structures, block indicators, and six colors. For sim-

plicity, we only use the directions w.r.t the architect’s viewpoint. Eight primitive structures

include a block, tower, row, column, cube, cuboid, square, and rectangle. Five of them are

shown in Figure 7.3a. Three primitive shapes not shown here include a single block, a square

lying on the floor, and a rectangle lying on the floor. Block indicators include guides for

pointing to a single block that is a component of the structure, a few examples are shown

in Figure 7.3b–7.3d. Additionally, the terms height, width, and length are used to represent

121

(a)

(b) (c) (d)

Figure 7.3: (a) Five of the eight primitive structures: tower, row, column, cube, and cuboid.
Block indicators that point to a single block of the structure. (b) top-end and bottom-
end, (c) left-end and right-end, (d) back-end and front-end. For complex structures, these
indicators can be combined, for example, the front-bottom-left block of a cube.

the size of the structure from top-end to bottom-end, left-end to right-end, and front-end

to back-end, respectively. So, the tower size is its height, the row size is its width, and the

column size is its length. These elements of initial knowledge primitives of the domain are

later expanded upon by the learner.

With this initial knowledge, the architect instructs the builder to build the target struc-

ture. In our system, the architect can either write a natural language text to instruct the

builder or write “UNDO” to revoke the last instruction. Upon receiving the instruction, the

builder can either execute the instruction or seek additional information for clarification (see

for e.g. Fig. 7.2), provide prompts so that the architect can provide instruction in a fashion

that is comprehensible to the builder. Once the target structure is constructed, the architect

states “done”. This would instruct the builder that the task of building the target structure

is accomplished in the build region. When the structure building is completed, the builder

122

offers to remember the structure for reuse. The architect can then provide a name for the

structure and describe its height, width, and length to the builder. The builder might ask

some yes/no questions to induce a generalized concept of the structure (Das et al., 2020).

If the builder is successful, the new structure is then added to the builder’s capabilities and

can then be treated as a lower-level structure. The process continues so that more complex

concepts are introduced as needed.

Minecraft

simulator

logic
parser

hierarchical

planner

repository
dialogue
manager

agent
control

template-based

parser

AMR

parser

NLP-engine Planner

ILP
learner

Concept learner

Build a tower
of 4 red blocks

tower(a) ∧ height(a,4) ∧
color(a,red)

2

1

((place b1 0 0 0 red)
(place b2 0 0 1 red)
(place b3 0 0 2 red)
(place b4 0 0 3 red))

4

(vv1 / build-01
:ARG0 (vv3 / you)
:ARG1 (vv4 / tower :consist-of
(vv5 / block :color (vv7 / red) :quant 4))
:mode imperative)

3

Add a row of
size 2 on the
right

5

6

7

Remember this structure as Ell.
8

Figure 7.4: Architecture of Lara. It consists of a Minecraft simulator, NLP engine, planner,
and concept learner. An example flow of building the “L” shape is illustrated. 1○ Natural
language instruction by the architect to build a red tower. 2○ AMR representation of the
instruction parsed by AMR parser. 3○ Logic representation of the instruction. 4○ Block
placement plan generated by the planner. 5○ Agent control executes the plan in the build
region. 6○ Next instruction from the architect to add a row. 7○ Agent control executes the
next instruction in the build region. 8○ Structure saved as “L”.

123

7.3.3 System architecture

The architecture of our system Lara is illustrated in Figure 7.4 that integrates different

research components to develop a human-machine collaborative system. It primarily consists

of four key components: Minecraft simulator, NLP engine, Planner, and Concept learner.

The Minecraft system and the interfacing APIs form the Minecraft simulator. The module

processing natural language text forms the NLP engine. The module generating the action

plan for the Minecraft avatar constitutes the planner. Finally, the module learning new

structures forms the concept learner component. We now describe each of these components

in greater detail.

7.3.4 Minecraft simulator

Project Malmo (Johnson et al., 2016) is extended for our collaborative building task by

adding a dialogue manager and agent control module. The dialogue manager has two

major responsibilities, 1. to triage the messages from the architect and 2. to generate

natural language text for bi-directional communication. A message from the architect could

either be a build instruction, a clarification, a concept explanation, or an UNDO operation.

Dialogue Manager would accordingly pass forward the request to either the NLP engine, the

planner, the concept learner, or the agent-control module, respectively. For bi-directional

communication, the dialogue manager maintains a fixed set of template sentences with slots.

These slots are then populated accordingly as required and sent via the chat interface. The

set of template sentences maintained by the dialogue manager is provided in Appendix C.1.

The agent control module processes the plan generated by the planner and sends the action

commands to MALMO API for execution in the Minecraft environment.

124

7.3.5 NLP engine

The main job of the NLP engine is to parse the natural language instructions from the

architect and provide a generalized semantic representation of such instructions for

processing. We leverage first-order logic (FOL) to encode this semantic representation. We

choose this for two specific practical reasons. First, FOL representation is compatible with

the ILP-based concept learner. Second, Planning Domain Description Language (PDDL) is

also a first-order predicate representation. Given the compatibility of FOL representation

with the two components (the concept learner and the planner), it was a natural choice.

While the above two reasons are from a pragmatic point of view, the use of FOL is necessary

as there is a necessity to learn conceptual knowledge at multiple levels of abstraction –

individual object level (ex., the red block), sets of objects (ex., the red blocks) or over all

Predicates:
{block/1, tower/1, row/1,

cube/1, cuboid/1, square/1,

rectangle/1, width/2 height/2,

length/2, size/2, color/2,

spatial rel/3,

top end/2, bottom end/2,¨ ¨ ¨ }

Objects:
{red, blue, green, purple,

orange, yellow, east, west,

north, south, top, bottom,

a, b,¨ ¨ ¨ , z, aa, ab,¨ ¨ ¨ , zz, 0,

1, 2, ¨ ¨ ¨ , 10}

Build a tower of 4 red blocks.
tower(a) ^ height(a,4) ^
color(a,red)

Build a tower of 4 red blocks
and add a row of size 2 on the right.
tower(a) ^ color(a,red) ^
height(a,4) ^ row(b) ^
color(b,red) ^ width(b,2)

^ block(b1) ^ block(b2) ^
bottom end(a,b1) ^ left end(b,b2)

^ spatial rel(west,b1,b2)

(a) (b)

Figure 7.5: FOL representation of collaborative building task. (a) FOL language (Complete
list of predicates is deferred to Appendix) (b) Example FOL instructions.

125

the objects. Learning and reasoning in such a rich space of abstractions is facilitated by the

use of ILP and relational planners.

However, while it is possible to represent the complete semantics of the natural language

instruction in FOL, it is also clear that for the purposes of this task, a restricted form of

FOL would suffice. This restriction is necessary to maintain the tractability of learning

and reasoning. The essential knowledge discussed earlier in Section 7.3.2 comprises the

predicates of this language. Figure 7.5a presents the first-order language used to describe

the collaborative building tasks. Figure 7.5b shows examples of FOL representations of

natural language instructions.

To translate the natural language to FOL, we developed two independent NLP parsers:

template-based and AMR-based. Our domain-specific template-based parser uses a fixed

set of templates consisting of slots. These slots are filled by the parser by going through the

sentence and looking for matching short phrases. Once the slots are filled, the template is

translated into the logic format. It is similar in spirit to Template Matcher parser by Jackson

et al. (1991), with output in FOL. While our parser is quite fast, it has a few limitations. This

parser maintains a fixed list of structures known to the builder and their dimensions and thus

has quite a limited vocabulary. It does not support all possible phrasing of instruction and

requires manual updates of templates to support new sentence formulations. To overcome

these limitations, we built an AMR-based parser.

While the template-based parser uses predefined templates for the translation of simpler

sentences, the AMR-based parser supports free-form sentences of varying complexity. As

AMRs can be systematically translated to FOL (Bos, 2016), we use a neural parser to parse

natural language text to AMRs. Figure 7.4 2○ shows the AMR representation of the sample

natural language instruction presented earlier. AMR annotation had not been approached

with spatial semantics in mind. Bonn et al. (2020) extends AMR with a spatial addendum,

which enables more expressive representation for spatial relationships required in the three-

dimensional domain of Minecraft. Minecraft-specific 3D structure building dialogues were

126

collected between human architect and human builder and annotated with the new inven-

tory of spatial rolesets (Narayan-Chen et al., 2019). A state-of-the-art neural AMR parser,

STOG (Zhang et al., 2019), was trained on this Minecraft spatial AMR corpus (Bonn et al.,

2020).

7.3.6 Planner

This component is responsible for providing the action sequence of placing blocks in the

Minecraft environment. Wichlacz et al. (2019) show that a hierarchical planner (see §2.4.2)

is better suited than a classical planner for the Minecraft building task. Consequently, a

hierarchical planner, JSHOP2 (Ilghami, 2006), is employed in this system to generate

build plans. JSHOP2 uses a restricted version of HDDL, the same as SHOP2 (Nau et al.,

2003), and expects the goal description as a logical combination of predicates defined in

the planning domain. For a concise representation, we use the following format to define

predicates for all the primitive structures,

(structure-name x-location y-location z-location

[height] [width] [length] color).

Following a LISP format, the predicate name is the first element of the tuple which defines

the name of the structure. The first three arguments are the X, Y, and Z coordinates of

a pivotal block of the structure. The next three arguments represent the three dimensions

of the structure. These dimensions, denoted within square brackets are not mandatory for

all. Different structures have different dimensions, so the mandatory arguments change

accordingly. For example, height is mandatory for a tower. So, the tower predicate has 5

arguments. "(tower 0 0 0 4 red)" represents a tower with height 4. color red, and the

pivotal block (i.e. lowest block) at the p0, 0, 0q location in the grid. A complete list of

predicates in the planning domain is presented in the Appendix.

127

tower(a) ^ height(a,4) ^
color(a,red)

(tower 0 0 0 4 red)

tower(a) ^ color(a,red) ^
height(a,4) ^ row(b) ^
color(b,red) ^ width(b,2)

^ block(b1) ^ block(b2)

^ bottom end(a,b1)

^ left end(b,b2) ^
spatial rel(west,b1,b2)

(tower 0 0 0 4 red)

(row 0 1 0 2 red)

L(c) ^ color(c,red) ^
height(c,4) ^ width(c,3)

Active advice queries to the
architect (responses):

1. Is the new height same as the height
of the tower? (yes)

2. Is the new width one more than the
width of the row? (yes)

3. Should the height of an L be one
more than the width of the L? (no)

(a) (b)

Figure 7.6: (a) Goal description of the FOL instruction. (b) FOL representation of new
structure “L” and active advice queries to the architect.

The logic parser, translates the FOL instruction to the goal description in the above

format. Location coordinates are explicitly constrained within grid boundaries while achiev-

ing spatial relations. Figure 7.6 presents example goal descriptions of two FOL instructions

presented earlier. When any of the required dimensions are missing, the planner returns an

INCOMPLETE GOAL DESCRIPTION error highlighting the missing dimension. In that

case, the dialogue manager generates a natural language question for that dimension and

completes the goal description from the response.

The repository contains all the concept representations known to the builder. Initially,

the repository only contains the mapping between the 8 primitive structures and dimensions;

identifying the required argument for each primitive structure. Gradually, representations of

new structures are also added to the repository (Further details in Section 7.3.7). A complete

goal description and an initial state (description of the current build region) are provided

to the planner. The hierarchical planner then provides a sequence of block placement or

128

removal actions to transform the current build region to the goal description. An example

plan is presented in Figure 7.4 4○.

7.3.7 Concept learner

While there exist various ILP systems that learn concepts (Muggleton and Feng, 1990; Mug-

gleton, 1995; Quinlan, 1990), they all require multiple (positive and negative) examples for

each concept. Our collaborative building task, on contrary, requires the agent to learn a

new structural concept from just one positive example of the structure. To this effect, we

leverage the Guided One-shot Concept Induction (GOCI) framework (Das et al., 2020). At

its core, GOCI does use an ILP engine to propose candidate hypotheses for a concept. But

learning a suitably generalized concept representation from a single example, where infinitely

many generalizations are possible, is complex. GOCI uses a powerful inter-representational

distance as well as actively solicits advice from humans to prune such a hypothesis space. In

our context, queries to obtain advice are posed as simple yes/no questions to the architect.

For instance, Figure 7.6b illustrates the FOL representation and the queries by GOCI for

an example structure “L” of red color, height of 4, and width of 3, composed of a tower and

a row of sizes 4 and 2, respectively. Note that GOCI poses a minimum possible number of

queries subject to the complexity of the structure. However, as shown in Das et al. (2020),

GOCI poses an average of 5.5˘3 queries in Minecraft experiments, which is significantly less

than the sample complexity for learning the structural concepts outlined here with vanilla

ILP.

On receiving responses from the architect, GOCI prunes the hypothesis space and finds

the most suitable hypothesis which represents the generalized concept of L which is a com-

position over existing structures. In this current example, the concept L is learned as the

129

following horn clause,

L(X) :- tower(A) ^ color(A,C) ^ height(A,H) ^ row(B) ^

color(B,C) ^ width(B,W) ^ block(R) ^ block(S) ^

bottom end(A,R) ^ left end(B,S) ^ spatial rel(west,R,S) ^

color(X,C) ^ height(X,H) ^ width(X,V) ^ one more(V, W).

Uppercase indicates variables and the only constant in this horn clause is west. Clausal

representations of new structures are stored in the repository. On encountering such non-

primitive structures in the instruction, the logical parser would first replace the non-primitive

structure with the primitive structures from the clausal theory and then generate a goal

description.

Generalization is an important factor here. It is not merely a composition of the

representations of the sub-concepts, but includes complex decisions about parameter tying,

shared logical variables, and partial grounding such that we end up learning a suitable

generalization of the given structure and not other relatively similar structures. For instance,

the spatial rel() predicate represents at which relative position the tower and the row

connect and in which direction. Hence the clause does not represent other concept classes

like “inverted L”. Sammut and Banerji (1986) have, precisely, outlined the nuances of such

generalization via logic programs. Another aspect of generalization is learning to grow

concept hierarchies in GOCI. For example, once an L structure is learned as a combination

of a tower and a row, a U structure can be learned as a combination of an L and a tower.

So, the generalization of ‘U’ to a composition of 2 towers and a row is achieved by resolving

the hierarchy graph. We demonstrate a concept hierarchy in Section 7.4s. If needed, the

architect can also ask the system to forget a learned concept. This can be done by the

following command in the chat interface, “Forget xstructure-namey”.

130

(a) (b)

(c) (d)

(e)

xBy Hello Architect, I’m ready!
xAy build a red tower
xBy What is the height of the tower?
xAy 4
xBy Okay, now what?
xAy done
xBy Thanks!
xBy This session is complete! Please
start a new mission to continue playing.

(f)

Figure 7.7: Illustration of Lara. (a) A new mission—red tower of height 4. (b) Greeting
from the builder and first instruction from the architect to build a red tower. (c) The builder
enquires about the height of the tower and the architect provides the height value 4. (d) The
builder understands the task, generates a plan, and placed red blocks in the build region. (e)
After completing the instruction the builder asks for the next instruction and the architect
says done. This ends the mission. (f) The complete chat of this mission is here in text for
clarity ‘xBy’ and ‘xAy’ indicates a message from the builder and the architect, respectively.

131

(a) Gamma structure (Γ) (b) Cap structure ([) (c) Box structure (l)

Build an orange row of
size 4.
Place an orange column
of size 3.
The first block of the
column is in front of the
left end of the row.
done

This is an orange
Gamma of length 4 and
width 4.

Build a blue gamma of
size 4 by 6.
Place a blue column of
size 3 in front of gamma.
The backend of the
column is in front of the
left end of the gamma.
done

This is a Cap of length
4 and width 6 in blue
color.

Build a red cap of size 2
by 6.
Place a red row of size 6
in front of the cap.
The rightend of the row
is in front of the right
end of the cap.
done

This is a box of length
4 and width 6 in blue
color.

(d) Instructions for Gamma (e) Instructions for Cap (f) Instructions for Square

Figure 7.8: Demonstration of the concept hierarchy. (a) Gamma structure (Γ) made from a
row and column. (b) Cap structure ([) made from gamma and a column. (c) Box structure
(l) made from a cap and a row. Subfigures (d), (e), and (f) present the natural language
instructions.

GOCI adapts Normalized Compression Distance (NCD) (Goldman and Kuter, 2015) to

measure the similarity between concept representations. While successful in a few important

domains, NCD is limited. Appendix C.4 discusses the limitations of NCD and how they were

overcome in Lara.

132

7.4 Demonstration

Figure 7.7 demonstrates our system. We present screenshots of a mission of building a red

tower from the beginning till the end. Figure 7.7f reproduces the complete natural language

conversation between the builder and the architect.

Further capabilities of Lara are demonstrated in the videos available from the following

URL: https://starling.utdallas.edu/papers/lara/. Here we illustrate the capability

of Lara to learn concept hierarchies using the GOCI framework. Figure 7.8 presents three

different concepts, at three different levels of the hierarchy. The first structure Gamma (Fig-

ure 7.8a) is built as a composition of a row and a column. The natural language instructions

for this structure are shown in Figure 7.8d. The next structure, Cap (Figure 7.8b) is com-

posed of a gamma and a column. This forms the second level of the hierarchy. Further,

Figure 7.8c shows the third level of the hierarchy where the concept Box is composed of a

cap and a row.

7.5 Related work

Blocks world and its variants have been used as toy examples in developing AI and automated

planning systems for a long time (Nau et al., 1999). Prominently, Winston (1970) used blocks

world for learning structural description from examples. SHRDUL, a dialog system by Wino-

grad (1972), used blocks world for natural language understanding in a 3-dimensional world.

While many follow-up works have used blocks world in various human-machine interaction

settings, our work simulates the blocks world domain in a popular Minecraft environment.

Human-robot interaction has been addressed in the context of collaborative task achieve-

ment by various prior works (Blaylock et al., 2003; Clodic et al., 2008; Fiore et al., 2014;

Devin and Alami, 2016; Lemaignan et al., 2017; Krishnaswamy et al., 2020). Of these, we

find Lemaignan et al. (2017) and Krishnaswamy et al. (2020) most relevant. Lemaignan et al.

133

https://starling.utdallas.edu/papers/lara/

(2017) identifies and characterizes the challenges in building a cognitive robot that shares

space and tasks with humans. While a few challenges in their setting are similar to ours (for

eg. communication and shared vocabulary), in our work humans and robots do not share

the space. That is, only robots are able to modify the environment and humans can only

monitor it. Krishnaswamy et al. (2020) presents a situated multimodal interactive agent,

Diana. Diana understands vocal instructions, gestures, and facial expressions. Like Lara,

Diana is situated in a virtual world and interacts with humans to achieve a task. However,

Diana’s tasks are limited and do not require long-term planning.

7.6 Conclusion

We have considered the problem of human-machine collaboration in the context of a Minecraft

task. Our proposed system Lara, is an integration of several important areas of related re-

search. Specifically, it uses NLP for communication with humans, knowledge representation

for representing and reasoning with generalized knowledge, inductive logic programming

for efficiently learning higher-order concepts, and hierarchical task planning for effective

problem-solving. Lara has the following salient features:

• It allows for rich natural language instructions from a human architect by employing

an NLP-based parser.

• It represents common knowledge in a rich FOL based knowledge-base that allows for

effective generalization while not sacrificing efficient reasoning.

• It uses an ILP-based concept learner that efficiently learns hierarchical, generalized

concepts from a very small number of (potentially single) examples.

• It uses a hierarchical planner that constructs plans in a stage-wise manner to effectively

exploit the concepts learned in earlier interactions.

134

• It computes its uncertainty over its plans/concepts and queries the human expert for

additional knowledge.

In effect, the system knows-what-it-knows and solicits information about what it does not

know. This additional information is then used to guide the concept learner and the planner

in their tasks.

While successful, the system can potentially be improved in several directions. The

richness of natural language interaction can be improved by adding more recent neural-

based parsers and generators. Allowing for multiple modalities of communication including

gestures is an important future direction. Extending the planner and concept learner to

handle complex hybrid data by allowing for them to be differentiable is a necessary step.

Finally, large-scale evaluation in more complex domains is an interesting future direction.

135

PART IV

LARGE HYPOTHESIS SPACE

136

CHAPTER 8

LANGUAGE BIAS IN NEUROSYMBOLIC MODELS

Inductive Logic Programming (ILP) (Muggleton, 1992) tasks focus on learning interpretable

rules (or logic programs) that can classify a set of positive and negative examples in a

data-efficient manner. With the advent of neurosymbolic approaches (d’Avila Garcez et al.,

2015), there is a renewed interest in addressing ILP tasks with neural architectures. Various

approaches have been proposed that convert logical connectives to neural operations for

efficient differentiable learning (Yang et al., 2017; Evans and Grefenstette, 2018; Campero

et al., 2018; Dong et al., 2019; Sen et al., 2022; Glanois et al., 2022; Badreddine et al.,

2022). These approaches have shown to be effective not only in ILP tasks, but also for visual

question answering tasks and reinforcement learning tasks (Dong et al., 2019; Glanois et al.,

2022). While successful, we note that they are evaluated only on ILP tasks with homogeneous

objects. However, many ILP tasks have heterogeneous objects, that is, domains have objects

with different types. In this work, we evaluate the neurosymbolic approaches on ILP tasks

with heterogeneous objects, identify the lack of type biases, and devise an approach to

incorporate it.

8.1 Background

8.1.1 ILP task

A first order language L consists of a finite number of extensional1 predicates (P), objects

or constants (C), types (T), and variables (V). Every predicate has a fixed arity and each

argument of the predicate is associated with a type. All of the objects and the variables are

associated with a type and the association is defined as a function D : T ÞÑ 2C . There is a

special type t0 that encapsulates all the objects, Dpt0q “ C. For every pair of types ti, tj P T ,

1As opposed to intensional predicates that are derived by a set of clauses.

137

either Dptiq Ď Dptjq, or Dptiq Ě Dptjq, or DptiqYDptjq “ H. An atom is a predicate symbol

followed by a parenthesized list of arguments, predicatepterm1, term2, ...q. The arguments

of the predicate can be constants or variables. A task in ILP is then defined over the first

order language as a four tuple ppt,B,P ,N q, where pt P P is a target concept or predicate

to be learned, B is a set of ground atoms representing the domain information (often called

as background knowledge), P is a set of ground atoms representing positive examples of the

target concept, and N is a set of ground atoms representing negative examples of the target

concept. Given the ILP task, a learning algorithm has to learn a hypothesis—an inductive

logic program—to correctly classify the examples.

8.1.2 Biases in ILP

As the hypothesis space of the inductive logic program can be too large to handle, language

or search biases are used to prune the hypothesis space (or the search space). These biases

include various syntactic and semantic restrictions, for example, defining maximum predicate

arity, limiting logic programs to definite clauses (or horn clause; clauses with exactly one

positive literal), defining the maximum number of literals in the body of a clause, limiting

the number of new terms used in the clause, etc. Tausend (1994) studied the use of different

biases in ILP and their effects on hypothesis space.

To scale the ILP and relational learning methods for larger domains, with heterogeneous

objects, stronger biases are used. Specifically, types and modes are declared over predi-

cate defintions (Muggleton, 1992; Raedt, 2008). Type declarations bind each argument of

a predicate to a fixed type. For example, authors(A:person, B:paper)2 declares the first

argument of the authors predicate has to be a person and the second argument has to

be a paper. Conforming to type declaration restricts the hypothesis space. For example,

2Following the prolog notation, we use lowercase for constant identifiers and uppercase for variable iden-
tifiers.

138

given authors(A:person, B:paper) and venue(X:paper, Y:publication) a clause like

‘authors(P, Q), venue(P, R)’ is prohibited as a variable P cannot simultaneously bind

to type person and paper.

Mode declarations restrict the terms in a clause. In ILP and relational learning, a clause

is constructed by collecting literals one by one, so literals have an inherent order. The mode

declarations indicate the restriction on the terms of the candidate literal (the one being

added next) given the terms in the clause so far. Modes are declared by assigning one of the

three mode symbols to each term of a predicate. Three mode symbols include: input mode

`, output mode ´, and ground mode #. The input mode restricts the term in the new literal

to an existing variable. The output mode indicates that the term in the new literal can be an

existing variable or a new variable. The ground mode # indicates that the term in the literal

can be a ground object or a constant. As type and mode declarations provide significant

bias, which enables scaling ILP and relational learning approaches to large domains, various

approaches have been proposed to automatically generate these biases (Cabral et al., 2005;

Hayes et al., 2017; Picado et al., 2021).

8.1.3 Biases in NeSy

Inductive biases are embedded in the neural network architectures to restrict the space of

functions. For example, Convolutional neural networks embody a locality bias, recurrent

neural networks assume temporal invariance, and graph neural networks assume permuta-

tion invariance (d’Ascoli et al., 2019; Cohen and Shashua, 2017; Battaglia et al., 2018). NeSy

architectures (where a neural net is used for differentiable ILP) as well embody various bi-

ases by borrowing ideas from ILP literature. For example, differentiable ILP (BILP) (Evans

and Grefenstette, 2018) and Neural Logic Machines (NLMs) (Dong et al., 2019) restricts the

maximum predicate arity, Lifted Relational Neural Networks (LRNN) (Sourek et al., 2018)

restricts the hypothesis space to definite clauses, Logical Rule Induction (LRI) (Campero

139

et al., 2018) and Hierarchical Rule Induction (HRI) (Glanois et al., 2022) frameworks restrict

the maximum number of literals in the body of a clause, etc. Most importantly, NeSy archi-

tectures use different types of templates and meta-rules to define the neural architectures,

embodying a language bias in the architecture.

Some NeSy architectures used rules (or inductive logic programs) to define the net-

work structure (Towell and Shavlik, 1994; Sourek et al., 2016; Hu et al., 2016; Kazemi

and Poole, 2018), while others relied on templates. Evans and Grefenstette (2018) intro-

duced template constraints to generate multiple rules (or clauses) of length two and learn

the weights for each rule in BILP. Each template constraint is of the form τ ip “ pv, intq
where p is the head predicate, i counter for the template, v is the number of existential

variables, and int is a boolean indicator if intensional (or auxiliary) predicates allowed

in the body of the clause. Campero et al. (2018) uses proto-rule templates in their Log-

ical Rule Induction (LRI) framework. These proto-rule templates restrict combinations

of variable arguments in the clause. Like second-order horn clauses, the proto-rule tem-

plates use variables for predicates that are assigned to intensional or extensional predicates

while training. For example, a chain proto-rule template HpX, Y q Ð B1pX,Zq ^ B2pZ, Y q
allows clause grandfatherpbill, annq Ð fatherptom, maryq ^ motherpmary, annq but not

grandfatherpbill, annq Ð fatherptom, annq ^ motherpmary, annq.
While such templates and clauses are strong biases, they need some hand-engineering and

some knowledge of the domain as well as ILP for successful declarations. Various approaches

have been proposed in the literature to avoid the hand-engineering of rules. Kaur et al. (2019)

used lifted relational random walks to generate multiple rules. Kaur et al. (2020) proposed

learning tree-structured clauses using a statistical relational learning approach. Glanois et al.

(2022) proposed a general set of proto-rule R0 (in Equation 8.1) and show that it generates

a hypothesis space that is exactly the set of function-free definite horn-clause fragment

140

composed of clauses with at-most two body atoms involving unary and binary predicates.

R0 “

$

’

’

’

’

&

’

’

’

’

%

A : HpXq Ð B1pX, Y q ^ B2pY,Xq
B : HpX, Y q Ð B1pX,Zq ^ B2pZ, Y q
E : HpX, Y q Ð B1pX, Y q ^ B2pY,Xq

,

/

/

/

/

.

/

/

/

/

-

(8.1)

This proto-rule template is similar to LRI. However, unlike LRI where a predicate variable in

proto-rule can only correspond to (intensional or extensional) predicates of the same arity, a

predicate variable in proto-rule of HRI can correspond to (intensional or extensional) predi-

cates of the same or lower arity. For example, a proto-rule template HpX, Y q Ð B1pX, Y q ^
B2pX, Y q allows clause grandfatherpbill, annq Ð malepbillq ^ grandparentpbill, annq.

8.1.4 NeSy predicate invention

While various NeSy approaches have been proposed for predicate invention, we build up

on the current state-of-the-art approach, HRI by Glanois et al. (2022). The representation

model used by HRI is similar to the one used by Rocktäschel and Riedel (2017) and Campero

et al. (2018), however, they significantly improve the training procedure. A predicate p P P
is represented as a d dimensional embedding θp P Rd. An atom a “ pps, oq is represented

as a four tuple pθp, s, o, vaq, where θp is the predicate embedding, s and o are objects in

the atom, and va P r0, 1s is the valuation that estimates the belief of a being True. The

soft unification is computed using cosine renormalized with a softmax transformation. The

similarity between two (intensional or extensional) predicates p and B1 is computed as,

αp,B1 “
exp pcos pθp,θB1q {τq

ř

p1 exp pcos pθp1 ,θB1q {τq
, (8.2)

where p1 are all the candidate predicates and τ is temperature hyperparameter that controls

the renormalization. A hierarchical architecture is defined with one extensional predicate at

each layer for every proto-type template, as shown in the Figure 8.1. A proto-rule template

(like A from Equation 8.1) is represented as a tuple of embedding R “ pθ1R, θ2R, θ3Rq P Rd ˆ

141

Target

A1

p2 p3 p4p1

B1 C1

A2 B2 C2

θ1A2 θ1B2 θ1C2

θ2A2 θ3A2 θ2B2 θ3B2 θ2C2 θ3C2

θ1A1

θ2A1 θ3A1

θ1B1

θ2B1 θ3B1

θ1C1

θ3C1 θ3C1

intensional predicates

extensional predicates

θp1 θp2 θp3 θp4

θt

Figure 8.1: HRI architecture.

Rd ˆ Rd, with one predicate embedding for each predicate in the head and the body. Each

body predicate in the proto-rule is connected with the head of the extensional predicates

appearing at the same or lower level as well as all the intensional predicates.

A rule can be evaluated for two facts f1 “ pθp1, sf1, of1, vf1q and f2 “ pθp2, sf2, of2, vf2q
if they satisfy the variable arguments combination specified in the rule. When it does, the

value of this evaluation is defined as follows,

vpR, f1, f2q “ αp1B1 ¨ αp2B2 ¨ ANDpvf1, vf2q (8.3)

The valuation of an extensional atom is, however, computed by pooling across different

combinations of the facts and merging with the old valuation. Hence,

voutpRq “ MERGE
`

voutold ,POOLf1,f2 pαp1B1 ¨ αp2B2 ¨ ANDpvf1, vf2qq
˘

(8.4)

142

The POOl operator involves maximizing over the existential variable (if any) and summing

over the different facts. The MERGE operator is implemented as max. The valuation of the

target predicate is computed similarly, by merging and pooling the extensional predicate at

the last layer (Pl),

vt “ MERGE
`

vtold,POOLPPPl
pαPpt ¨ vPq

˘

. (8.5)

The model is trained with binary cross entropy loss with a regularization that encourages

interpretability. We refer the readers to Glanois et al. (2022) for further details.

8.2 Introducing Typed Bias

We first describe two different ways of introducing type bias in the model, and then evaluate

the approaches.

8.2.1 Approach I

The first approach is inspired by the invalid action masking (Huang and Ontañón, 2022)

technique used in Reinforcement Learning. In complex RL with large discrete actions, many

actions are invalid in specific states. In such cases, policy gradient algorithms use invalid

action masking technique to mask out the invalid action and only consider the scores of the

valid action for sampling. This technique has been widely adopted in many RL frameworks.

Huang and Ontañón (2022) shows that the mask can be considered as a state-dependent

differentiable function and the masking of the invalid actions is equivalent to making the

gradients of the invalid actions zero. Inspired by this, we consider the masking of target atoms

with invalid constant types. For example, if a binary target predicate pt has argument types

ti and tj, then the valuation vt is masked out (set to zero) for all combinations of constants

that do not conform to the specified types, tps, oq|s R Dptiq, o R Dptjqu. We call this approach

Masked-HRI.

143

8.2.2 Approach II: HTRI

The second approach uses type embeddings for hierarchical typed rule induction (HTRI).

Here, every type in the first-order language is represented as an embedding δ P R|T |. The

similarity between two predicates is indicated as a similarity between the predicate embed-

ding concatenated with type embedding, as follows,

αp,B1 “
exp

`

cos
`

θp||δsp||δop, θB1 ||δsB1
||δoB1

˘ {τ˘
ř

p1 exp
`

cos
`

θp1 ||δsp1 ||δop1 ,θB1 ||δsB1
||δoB1

˘ {τ˘ , (8.6)

Proto-rules are redefined as follows with types as shown in Equation 8.7. Each rule is

represented as R “ pθ1R, θ2R, θ3R, δ1R, δ2R, δ3Rq P Rd ˆ Rd ˆ Rd ˆ R|T | ˆ R|T | ˆ R|T |. Hence, each

rule-learning involves learning body predicates as well as the associated types.

R0 “

$

’

’

’

’

&

’

’

’

’

%

A : HpXq : pT1q Ð B1pX, Y q : pT1, T2q ^ B2pY,Xq : pT2, T1q
B : HpX, Y q : pT1, T2q Ð B1pX,Zq : pT1, T3q ^ B2pZ, Y q : pT3, T2q
E : HpX, Y q : pT1, T2q Ð B1pX, Y q : pT1, T2q ^ B2pY,Xq : pT2, T1q,

,

/

/

/

/

.

/

/

/

/

-

(8.7)

We use the following binary cross entropy loss as the training objective with a regularizer

that encourages unification scores to be closer to 0 or 1.

ÿ

s,o

´Gptps,oq log
`

vptps,oq
˘´ `

1´Gptps,oq

˘

log
`

1´ vptps,oq
˘` λ

ÿ

P,P 1

αP,P 1p1´ αP,P 1q (8.8)

8.3 Experiments

In our experiments, we aim to evaluate the following questions:

Q1. Are approaches that use type-information effective?

Q2. Can we remove the mask during the evaluation?

We evaluate the framework for five tasks of learning operator preconditions. We used

the initial state of 100 planning problems for training. Our implementation uses pyper-

planner(Alkhazraji et al., 2020) to parse the planning problem and generate the dataset.

144

We train the model on small problem sets and evaluate it on larger problems. The target

predicate, problem sizes, and background predicate details are provided in Table 8.1.

Figure 8.2 compares the hierarchical rule induction (HRI) with the two proposed ap-

proaches, Masked-HRI and HTRI on the five tasks. We compare approaches for Recall and

Precision, as the task is significantly imbalanced. Our initial experiments reveal that while

the HTRI approach performs similarly to HRI in most tasks, the Masked-HRI approach is

significantly better. To answer Q1, while using the type information is effective in Masked-

HRI, it was not significantly effective in the HTRI approach. Hence, further investigation

into different approaches to using the type-information is required.

Further, to investigate the effectiveness of the masking approach, we remove the masking

during evaluation. That is, we only mask the invalid valuations during training but do not

mask it during testing. Figure 8.3 compares Masked-HRI (that uses mask for training and

evaluation) with Masked(T)-HRI (that uses mask only during training). As evident in the

Table 8.1: Summary of the tasks

Bg. Predicates Objects Task Precondition

L
og

is
ti

cs

{in-city, at, in,
truck, airplane,
package, vehicle,
airport, location,
city, place,
physobj}

Train: 41
Eval: 56

drive-truck(X, Y) {truck(X), location(Y),
at(X, Z), in-city(Z, C),
in-city(Y, C)}

fly-airplane(X, Y) {airplane(X), airport(Y)}

load-truck(X, Y) {package(X), truck(Y)
(at X L), (at Y L)}

S
at

el
li

te

{ on board, supports,
pointing, power avail,
power on, calibrated,
calibration target,
satellite, direction,
instrument, mode,
have image }

Train: 19
Eval: 56

turn to(X, Y) {satellite(X), direction(Y)}

switch on(X, Y) {instrument(X), satellite(Y),
power avail(Y), on board(X, Y)}

145

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on

HTRI
Masked-HRI
HRI

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

R
ec
al
l

HTRI
Masked-HRI
HRI

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on HTRI

Masked-HRI
HRI

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

R
ec
al
l

HTRI
Masked-HRI
HRI

(a.1) Drive Truck (P) (a.2) Drive Truck (R) (b.1) Fly Airplane (P) (b.2) Fly Airplane (R)

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on

HTRI
Masked-HRI
HRI

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

R
ec
al
l

HTRI
Masked-HRI
HRI

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on HTRI

Masked-HRI
HRI

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Training iterations

R
ec
al
l

HTRI
Masked-HRI
HRI

(c.1) Load Truck (P) (c.2) Load Truck (R) (d.1) Turn To (P) (d.2) Turn To (R)

0 500 1,000 1,500 2,000

0.6

0.8

1

Training iterations

P
re
ci
si
on

HTRI
Masked-HRI
HRI

0 500 1,000 1,500 2,000
0.6

0.7

0.8

0.9

1

Training iterations

R
ec
al
l

HTRI
Masked-HRI
HRI

(e.1) Switch On (P) (e.2) Switch On (R)

Figure 8.2: Learning curves comparing precision and recall, of HRI with HTRI and Masked-
HRI, for learning operator preconditions.

results, using the mask for training alone results in a significant reduction of precision. This

answers Q2 in that masking should not be removed during evaluation.

8.4 Discussion

Our initial experiments suggest that using type information to mask the invalid predicates is

more effective than using type as embedding. However, as evident from results in Figure 8.3,

the rules induces by masking the invalid type predicates are not inherently better. That is the

mask is still required for evaluation. So we aim to further modify the learning objective and

146

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Training iterations

R
ec
al
l

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0.8

0.85

0.9

0.95

1

Training iterations

R
ec
al
l

Masked-HRI
Masked(T)-HRI

(a.1) Drive Truck (P) (a.2) Drive Truck (R) (b.1) Fly Airplane (P) (b.2) Fly Airplane (R)

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Training iterations

R
ec
al
l

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Training iterations

P
re
ci
si
on

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0.9

0.95

1

Training iterations

R
ec
al
l

Masked-HRI
Masked(T)-HRI

(c.1) Load Truck (P) (c.2) Load Truck (R) (d.1) Turn To (P) (d.2) Turn To (R)

0 500 1,000 1,500 2,000

0.6

0.8

1

Training iterations

P
re
ci
si
on

Masked-HRI
Masked(T)-HRI

0 500 1,000 1,500 2,000

0.7

0.8

0.9

1

Training iterations

R
ec
al
l

Masked-HRI
Masked(T)-HRI

(e.1) Switch On (P) (e.2) Switch On (R)

Figure 8.3: Learning curves comparing precision and recall, of Masked-HRI and Masked(T)-
HRI, for learning operator preconditions.

explore different similarity measures for unification to improve the rule-induction. Further,

we plan to add qualitative analysis of the induced rules.

147

PART V

OTHER EXPLORATIONS

148

CHAPTER 9

EXTRACTING QUALITATIVE KNOWLEDGE

Qualitative influence statements are often provided a priori to guide learning (see §2.3). In

this chapter, we answer a challenging reverse task of automatically extracting qualitative

influence statements from data. We propose an approach, called QuaKE (Karanam et al.,

2021), to learn a probabilistic model from the data and then compute the qualitative influ-

ences. We apply our qualitative knowledge extraction method to a clinical study for early

prediction of adverse pregnancy outcomes—nuMoM2b. Our empirical results demonstrate

that the extracted rules are both interpretable and valid.

9.1 Introduction

The nuMoM2b (Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be) study

(Haas et al., 2015) aims to identify early warning signs of adverse pregnancy outcomes,

design interventions, and assist with decision-making. Since 2010, eight research sites in

the United States followed up with women throughout their pregnancies—collecting routine

clinical information, exercise data, and food they ate. Using this data, we consider learning

to explain the relationship between gestational diabetes mellitus (GDM) and some common

risk factors.

A common way to employ knowledge in machine learning and AI is via the use of quali-

tative relationships that express how changes in a feature or a risk factor affect the target.

These rules were mainly used as “inductive bias” apriori to learning since they are both intu-

itive and natural in many domains. We address the challenging “reverse task” of extracting

these rules from the data. To this effect, in the context of nuMoM2b, we propose a two-step

process. First, we learn a joint probability distribution over all the variables including the

target (GDM). In the second step, the constraints are extracted by reasoning over this joint

149

probability distribution. We demonstrate in our experiments that such an approach yields

rules that are both intuitive and valid (as validated by our clinical expert Dr. David Haas).

The rest of the chapter is organized as follows. In Section 9.2 we outline our approach

called QuaKE. In Section 9.3 we describe the nuMoM2b data and present the extracted

rules. Finally. Section 9.4 concludes the chapter with a summary.

9.2 Extracting qualitative influences

Given: A data set D consisting of examples in the form of risk factors X and binary

target Y (in this case GDM).

To Do: Learn a set of QIs that explain the effect of X on Y .

We use Xa to denote the ath variable in the feature set X. xia denotes a particular value

of variable Xa and |Xa| denotes the number of discrete values Xa takes. We assume that

the joint distribution (P) over the set of random variables X is known (we learn this joint

distribution in our empirical evaluation using a causal learning algorithm). For brevity, we

restrict the description of our method to extracting positive MIs and SIs, ăM` and ăS`.

The degree of monotonic influence, δa, of Xa PX on Y is defined as

δa “ IpCaą0q ¨
ÿ

j

ÿ

j1ąj

ÿ

k

P pY ď k|Xa “ xjaq ´ P pY ď k|Xa “ xj
1

a q
|Xa| (9.1)

where,

Ca “
ź

j

ź

j1ąj

ź

k

maxpP pY ď k|Xa “ xjaq ´ P pY ď k|Xa “ xj
1

a q ` εm, 0q (9.2)

For monotonicity to hold, we require P pY ď k|Xa “ xjaq ` εm ě P pY ď k|Xa “ xj
1

a q
for all pairs of configurations of Xa, pj, j1q with j1 ą j at any given threshold value k. Here

the monotonic slack εm allows violating a constraint within a chosen margin. The degree of

MI, δa, in Equation 9.1 measures the cumulative difference in the probability that the target

variable Y is less than a threshold k given Xa at two different values xja and xj
1

a .

150

We extend the concept of degree of MI to SI by conditioning on a pair of variables instead

of a single variable. First, consider the difference in the effect of changing Xa from xia to xi
1

a

on Y under the context of two different values of Xb (xjb and xj
1

b). We define this as

φi,i
1,j,j1

a,b “
ÿ

k

P pY ď k|Xa “ xia, Xb “ xjbq ´ P pY ď k|Xa “ xi
1

a , Xb “ xjbq´

P pY ď k|Xa “ xia, Xb “ xj
1

b q ` P pY ď k|Xa “ xi
1

a , Xb “ xj
1

b q
(9.3)

For synergy to hold, we require φi,i
1,j,j1

a,b ` εs to be non-negative for all i1 ą i and j1 ą j.

Where εs is the synergistic slack. We define the degree of synergistic influence, δa,b, of

variables Xa PX and Xb PX on Y PX as the cumulative difference in degrees of context-

specific influence of Xa on Y in the context of Xb. It is given by

δa,b “ IpCa,bą0q ¨
ÿ

i

ÿ

i1ąi

ÿ

j

ÿ

j1ąj

φi,i
1,j,j1

a,b

|Xa| ¨ |Xb| (9.4)

where,

Ca,b “
ź

i

ź

i1ąi

ź

j

ź

j1ąj

maxpφi,i1,j,j1a,b ` εs, 0q (9.5)

We employ both definitions to learn QIs in Algorithm 4, Qualitative Knowledge Extrac-

tion (QuaKE). The algorithm assumes the existence of a joint distribution (Pearl, 1988) over

ordinal features, which we learn using a causal probabilistic learning algorithm (PC) (Spirtes

and Glymour, 1991; Colombo and Maathuis, 2014). We chose the PC algorithm to verify

our hypothesis that the use of a causal model will yield causally interpretable qualitative

relationships. We calculate the degree of MI of every variable Xa P X on Y and SI of

every pair of variables Xa, Xb P X on Y . The MI rules XM`
aă Y are extracted if their cor-

responding degree of MI δa is above a pre-defined threshold Tm. Similarly, the synergistic

rules Xa, Xb
S`
ă Y are extracted if their corresponding degree of SI δa,b are above a pre-defined

threshold Ts.

151

Algorithm 4 QuaKE

INPUT: Probabilistic model P , Target variable Y , Features X, monotonic slack εm,
synergistic slack εs, monotonic threshold Tm, synergistic threshold Ts
OUTPUT: Rules R

1: function QuaKE(P, Y,X, εm, εs, Tm, Ts)
2: RÐH Ź Initialize rules
3: for aÐ 0 to p|X| ´ 1q do
4: compute δa using Eq. 9.1 Ź compute the degree of monotonic influence
5: if δa ě Tm then
6: R Ð (XM`

aă Y) Y R Ź If higher than threshold, add it to rules
7: end if
8: for bÐ a` 1 to p|X| ´ 1q do
9: compute δa,b using Eq. 9.4 Ź degree of synergistic influence

10: if δa,b ě Ts then
11: R Ð (Xa, Xb

S`
ă Y) Y R Ź If higher than threshold, add it to rules

12: end if
13: end for
14: end for

(similarly for decreasing cases)
15: return R
16: end function

9.3 Evaluation on nuMoM2b study

In our evaluations we aim to answer the following two questions:

Q1. Does QuaKE extract high-quality rules that align with background knowledge in this

domain?

Q2. Does QuaKE help uncover QI statements in cases where prior knowledge is uncertain?

9.3.1 The nuMoM2b study

The nuMoM2b study tracked pregnancies of 10, 037 women near 8 sites in the United States.

We excluded 817 cases where women were already diagnosed with diabetes and studied

the remaining 9, 220 women. The database contained more than 7, 000 variables across the

152

Table 9.1: Summary of the 8 variables in nuMoM2b dataset.

Attribute Type Categories
GDM Diagnosed Boolean True or False
Gravidity Ordinal 1, 2, 3+
Ever used tobacco Boolean True or False
Smoked in the last three months Boolean True or False
Highest education level completed Ordinal Six levels from

High School to post-graduate
Race Category Category Non-Hispanic White, Non-Hispanic Black,

Hispanic, American Indian, Asian,
Native Hawaiian, Other, Multiracial.

Age Ordinal ă 21, 21–25, 25–29, 29–32,ě 32
BMI Ordinal low, medium, high

study participants. It’s unlikely that specific knowledge exists for every factor’s influence

on Gestational Diabetes Mellitus (GDM), so we first performed feature selection. We took

the intersection of features selected for discriminatively predicting P pY “ GDM |Xq with

recursive feature elimination and those found by Lasso—then added Gravidity and Education

to this set. Gravidity was an influential variable in a previous study that mined electronic

health records for GDM risk factors,1 Education can be a weak indicator of socioeconomic

status and we believed there could be background knowledge of how it influenced other

factors. This resulted in the set of 8 features in Table 9.1.

We interpreted all variables as ordinal since monotonicity and synergy deal with increas-

ing values (e.g. “BMI increasing implies GDM increasing”). For ordinal variables, this was

implicit. For the boolean variables, increasing meant False Ñ True. We assume Race

is categorical, but use an ordering based on previous studies (Hedderson et al., 2010) on

the effect of Race on GDM. This ordering was: Non-Hispanic White, Non-Hispanic Black,

Hispanic, American Indian, Asian, Native Hawaiian, Other, and Multiracial.

1Gravidity did not appear to be an informative factor during our feature selection. The study mentioned
focused on GDM risk factors for women with parity ě 0, whereas the nuMoM2b population was nulliparous
(parity “ 0). Combining these two pieces of information may suggest that gravidity is only informative in a
parity ą 0 population, but we cannot verify this with the data we have available.

153

9.3.2 Setup and baselines

Algorithm 4 has four hyperparameters. We chose the following settings: εm “ 0.003, εs “
0.02, TM “ 0.005, TS “ 0.001 We compare learned rules with those from our clinical expert,

Dr. Haas. W.r.t GDM, these could either be increasing, decreasing, no effect, or unknown.

Since Algorithm 4 assumes a complete joint distribution P is available, we consider two

factorizations of P . The first learns a causal model (Colombo and Maathuis, 2014) and the

other (baseline) estimates the probabilities directly from data. Alternative baselines might

have included rules extracted from decision trees, rule mining, or Bayesian rule learning—

but each induces conjunctive rules of the form px1^x2^ ...^xnq ùñ y, making their exact

connection to the QI statements tenuous.

9.3.3 Results

Age

Ever used
tobacco

Smoked in

last 3 months

Race

GDM

BMI

Gravidity

Education

Figure 9.1: Causal network obtained by the stable PC algorithm for the nuMoM2b dataset.

154

Figure 9.1 shows the causal network obtained by the stable PC algorithm. We use this

causal network to learn the joint probability distribution. The rules learned by the QuaKE

framework are presented in Table 9.2. The “Prior” knowledge refers to the rules provided

by our expert. We compare these to the rules extracted by QuaKE and baseline (Data

Alone). QuaKE’s precision compared to expert advice is 0.923˘ 0; whereas the precision of

our unstructured baseline is 0.636 ˘ 0. The precision of each method was consistent across

five stratified cross-validation folds. This affirms Q1—QuaKE can extract high-quality rules

aligning with prior knowledge.

Since we have formalized the degree of the QIs in Equations 9.1 and 9.4, we can analyze

rules that were highly uncertain according to the prior knowledge. Two of the synergis-

tic relations involving smoking and education had an unknown effect in relation to GDM.

Education, Smoked in 3 monthsS`ă GDM was a high-confidence rule extracted by QuaKE

and the baseline. We speculate that this could be either due to the high correlation between

Education and Age, or related to an unobserved relationship between education and socioe-

conomic status. Note that both these results are especially interesting since we found only

a weak monotonic relationship between smoking and GDM more generally. We use this to

answer Q2—our approach can identify potentially interesting cases where prior knowledge

is uncertain.

9.4 Summary

We considered the problem of learning interpretable and explainable qualitative rules for

modeling GDM. To this effect, we learned a causal (probabilistic) model and recovered the

knowledge by applying the rules. Our results indicate that most of our rules are in line

with the prior knowledge of our expert and some interesting influence relationships appear

that are worth investigating. Incorporating richer domain knowledge, automatically refining

155

the rules, identifying broader relationships, and scaling to larger feature sets are interesting

future research directions.

156

Table 9.2: Comparision of QI from prior knowledge (PK), QuaKE, and Data Alone. X/7 rep-
resents that this relationship does/not exist respectively while ? represents unknown influ-
ence. The three groups of rows show (1) MI, (2) SI, and (3) sub-SI. Colors highlight rules
recovered by QuaKE and show (a.) coherent with the PK and baseline in white (b.) con-
tradicting the baseline in green (c.) coherent with baseline but contradict the PK in blue.

Rule Prior Knowledge QuaKE Data Alone

BMIM`ă GDM X X X

AgeM`ă GDM X X X

RaceM`ă GDM X X 7

EducationM`ă GDM X X 7

GravidityM`ă GDM X X 7

Smoked in 3 monthsM`ă GDM X 7 7

Used TobaccoM`ă GDM X 7 7

Age,BMIS`ă GDM X X X

Age, Smoked in 3 monthsS`ă GDM X X X

BMI,Used TobaccoS`ă GDM X X X

Education, Smoked in 3 monthsS`ă GDM ? X X

BMI,GravidityS`ă GDM X X 7

BMI, Smoked in 3 monthsS`ă GDM X 7 X

Age,Used TobaccoS`ă GDM X 7 7

BMI,EducationS`ă GDM 7 X X

Education,Used TobaccoS`ă GDM ? 7 7

Age,EducationS´ă GDM X X X

BMI, Smoked in 3 monthsS´ă GDM 7 X 7

Age,Used TobaccoS´ă GDM 7 7 X

BMI,GravidityS´ă GDM 7 7 X

Gravidity,Used TobaccoS´ă GDM 7 7 X

Education,Used TobaccoS´ă GDM ? 7 X

Age,GravidityS´ă GDM X 7 7

157

CHAPTER 10

DATA SUBSET SELECTION FOR DOMAIN ADAPTATION

Real-world machine-learning applications require robust models that generalize well to distri-

bution shift settings, which is typical in real-world situations. Domain adaptation techniques

aim to address this issue of distribution shift by minimizing the disparities between domains

to ensure that the model trained on the source domain performs well on the target domain.

Nevertheless, the existing domain adaptation methods are computationally very expensive.

In this work, we aim to improve the efficiency of existing supervised domain adaptation

(SDA) methods by using a subset of source data that is similar to target data for faster

model training. Specifically, we propose Orient, a subset selection framework that uses the

submodular mutual information (SMI) functions to select a source data subset similar to

the target data for faster training. Additionally, we demonstrate how existing robust subset

selection strategies, such as Glister, GradMatch, and Craig, when used with a held-out

query set, fit within our proposed framework and demonstrate the connections with them.

Finally, we empirically demonstrate that SDA approaches like d-SNE, CCSA, and standard

Cross-entropy training, when employed together with Orient, achieve a) faster training and

b) better performance on the target data.

10.1 Introduction

The recent success of deep learning frameworks in applications such as image classifica-

tion (Ciresan et al., 2012), speech recognition (Hershey et al., 2010), and object detec-

tion (Geirhos et al., 2018) stems primarily from the availability of large amounts of labeled

data. However, due to enormous labeling costs and the need for specialists in specific do-

mains such as medical imaging, it is not always possible to obtain vast amounts of labeled

data in all situations. On the contrary, training deep models on limited amounts of data

158

can lead to poor performance due to overfitting (Arpit et al., 2017). Consequently, where

obtaining large amounts of labeled data is difficult for the target domain, closely related

domain (source domain) is used to train the model. However, this may result in a deep

model with suboptimal performance on the target domain as a result of the distribution

shift (Shimodaira, 2000; Ben-David et al., 2010; Ben-David et al., 2006; Torralba and Efros,

2011), i.e., change of data distribution from source domains to target domains. A change in

the data distribution often renders the features learned by the model on the source domain

irrelevant in the target domain.

To address the problem of distribution shift, many domain adaptation (Wang and Deng,

2018; Patel et al., 2015) and domain generalization (Muandet et al., 2013) techniques have

been proposed in recent years. Domain adaptation methods assume that some target domain

information is available (usually target data), whereas domain generalization methods do not.

Domain adaptation (DA) methods can be categorized into unsupervised (Gong et al., 2012;

Ganin and Lempitsky, 2015; Liu and Tuzel, 2016; Tzeng et al., 2017) (using unlabeled target

data), semi-supervised (Guo and Xiao, 2012; Yao et al., 2015; Saito et al., 2019; Singh, 2021)

(using labeled and unlabeled target data), and supervised (Motiian et al., 2017; Xu et al.,

2019; Morsing et al., 2020; Hedegaard et al., 2021) (using labeled target data) methods.

UDA methods that do not require any labeled target data assume access to large volumes of

unlabeled target data. When providing the same amount of target data, SDA methods are

more effective than UDA methods (Motiian et al., 2017). As it is not difficult to obtain a

few samples (as less as 2 examples per class) of labeled target data in practice, SDA methods

are an attractive approach in scenarios with limited target data. Hence, in this work, we are

explicitly focused on the SDA setting.

Recently, various effective SDA methods are proposed (Motiian et al., 2017; Xu et al.,

2019; Morsing et al., 2020). However, they are usually compute-intensive. For example,

using one of the state-of-the-art SDA methods, d-SNE (Xu et al., 2019), to train a ResNet50

159

model (He et al., 2016) on the Office-Home dataset (Venkateswara et al., 2017) with 3022

samples of the source data and 338 samples a target data for 300 epochs takes ą 18 hours

using a GTX 1080 Ti GPU. To put that in perspective, training a ResNet50 model on the

larger CIFAR100 dataset with 45000 training samples for 300 epochs on the same machine

for standard cross-entropy loss takes only 14 hours. The increase in training time not only

increases energy consumption and CO2 emissions but also restricts the use of SDA methods

in resource-constrained environments. We address this problem by seeking an answer to the

following question: Can we improve the efficiency of SDA methods by training on subsets of

source data to ensure faster adaptation and reduction in training time?

To this end, we propose Orient, a subset selection framework that utilizes Submodular

Mutual Information (SMI) measures (Iyer et al., 2022; Gupta and Levin, 2020) to select

subsets of source data that are similar to target data for training. Our key insight is that

by training the model on data points that are similar to the target data, we can speed

up the training. The Orient framework, illustrated in Figure 10.1, complements existing

SDA methods and can be effectively combined with any of them, enabling us to achieve a

reduction in training times, energy costs, and CO2 emissions.

The key contributions of this chapter include (1) Orient, an SMI-based subset selec-

tion framework for efficient and effective supervised domain adaptation. (2) In Section 10.5,

we illustrate that Orient unifies three existing subset selection methods: CRAIG (Mirza-

soleiman et al., 2020), GLISTER (Killamsetty et al., 2021), and GradMatch (Killam-

setty et al., 2021). Specifically, these methods fit into Orient’s framework when used with

a held-out validation set from the target domain. (3) We empirically show the effective-

ness of Orient when used with existing SDA methods like CCSA (Motiian et al., 2017),

d-SNE (Xu et al., 2019), and Standard Cross-entropy training on two real-world datasets:

Office-31 (Saenko et al., 2010) and Office-Home (Venkateswara et al., 2017). Our experiments

also demonstrate that a model learns better class discrimination features with Orient, re-

sulting in better classification performance.

160

The rest of the chapter is organized as follows. Section 10.2 discusses the related work for

SDA and subset selection. Section 10.3 reviews the required preliminaries for the proposed

Orient pipeline. Then, Section 10.4 describes the proposed method. Section 10.5 discusses

the connection of Orient with outer subset selection approaches. Section 10.6 presents the

empirical evaluation of the proposed method. Finally, Section 10.7 concludes the chapter.

10.2 Related work

10.2.1 SDA

When the labeled training data is scarce for a domain τ (or a task), a powerful way to

boost performance is by pretraining a model on a related domain and fine-tuning it in

the target domain (Girshick et al., 2014; Yosinski et al., 2014; Chu et al., 2016). SDA

techniques have been investigated for various distribution shift settings where the target

domain (τ t “ tX t, Y tu) has different marginal or conditional distributions than the source

domain (τ s “ tXs, Y tu). In this work, we consider covariate shift (Shimodaira, 2000),

wherein the marginal distibution is different
`

i.e. P pXsq ‰ P pX tq˘, but the conditional

distribution remains the same
`

i.e. P pY s|Xsq “ P pY t|X tq “ P pY |Xq˘. A notable body of

work for covariate shift SDA has focused on identifying a latent feature space that is domain-

invariant (Motiian et al., 2017; Xu et al., 2019; Morsing et al., 2020; Hedegaard et al., 2021).

This line of work train a network consisting of a feature extractor and a classifier end-to-

end. The feature extractor learns a non-linear transformation of the samples from different

domains to a shared latent space, and the classifier learns to assign class labels. Different

researchers have proposed different optimization objectives and loss functions to encourage

domain confusion and class separability.

Tzeng et al. (2015) designed a domain-confusion loss to optimize for domain invariance

and match the distribution over classes in the source domain to the soft label in the target

161

domain. Motiian et al. (2017) propose a classification and contrastive semantic alignment

loss (CCSA). CCSA uses contrastive loss with Siamese Network to encourage the same class

samples from different distributions to be nearby in the latent space (semantic alignment

loss), and the different class samples from different distributions to be far apart (separa-

tion loss). Few-shot adversarial domain adaptation (FADA) (Motiian et al., 2017) proposes

to learn similar latent space with adversarial training. Domain-adaptation using stochastic

neighborhood embedding (d-SNE) (Xu et al., 2019) proposes to maximize the smallest dis-

tance between the samples of different classes and minimizes the largest distance between

the samples of the same class while being domain invariant. Another approach, Second- or

Higher-order Transfer of Knowledge (So-HoT) (Koniusz et al., 2017), aims to align the with-

in-class scatters and maintain separation of between-class scatters. Finally, Morsing et al.

(2020) propose domain adaptation using graph embedding (DAGE) and show that CCSA

and d-SNE can also be expressed as graph embedding methods (Hedegaard et al., 2021).

10.2.2 Subset selection methods

Submodular function (Lovász, 1982; Fujishige, 2005) is one of the effective approaches of

data subset selection which is used in a variety of applications (Bilmes, 2022). For example,

it has been employed for efficient training in speech recognition (Wei et al., 2014,?), machine

translation (Kirchhoff and Bilmes, 2014), computer vision (Kaushal et al., 2019), supervised

classification (Mirzasoleiman et al., 2020; Killamsetty et al., 2021,?), semi-supervised clas-

sification (Killamsetty et al., 2021), active learning methods (Wei et al., 2015; Sener and

Savarese, 2018; Ash et al., 2020; Killamsetty et al., 2021), and hyper-parameter optimiza-

tion (Killamsetty et al., 2022). Another widely used method for selecting subsets is coreset

construction. The coresets (Feldman, 2020) are weighted subsets of the data that approxi-

mate the semantic characteristics of the entire dataset (e.g., loss, marginal probability, etc.).

A number of recent coreset selection-based methods (Mirzasoleiman et al., 2020; Killamsetty

162

et al., 2021) have demonstrated the promise to efficiently and robustly train deep models.

Coresets are used for other deep learning applications like continual learning, active learning,

and data summarization (Borsos et al., 2021; Tiwari et al., 2022).

Subset selection plays a significant role in robust learning under realistic scenarios, such

as imbalances or rare classes, out-of-distribution(OOD) data, or redundancy. Axelrod et al.

(2011) propose a simple cross-entropy-based data selection method for effective domain

adaptation in statistical machine learning. Kothawade et al. (2021) employed SMI mea-

sures for active learning in realistic scenarios tackling imbalance, OOD, and redundancy.

PRISM (Kothawade et al., 2022) employed SMI measures for targeted data summariza-

tion. GLISTER (Killamsetty et al., 2021) and GradMatch (Killamsetty et al., 2021)

show that using a clean held-out validation set with SMI mitigates the label noise and class

imbalance in the training set. Mirzasoleiman et al. (2020) showed the data samples with

clean labels cluster together, whereas the ones with noisy labels spread out in the gradient

space, thus making k-medoid clustering an effective method for reducing noise in labeled

data. Furthermore, Killamsetty et al. (2021) tackles OOD and imbalance in the unlabeled

data in semi-supervised learning setting through data subset selection. We show how these

previous subset selection strategies including a modified version of Craig (Mirzasoleiman

et al., 2020) were also using instantiations of SMI measures in Section 10.5.

10.3 Preliminaries

In this section, we introduce submodular functions, SMIs, and SDA loss functions.

10.3.1 Submodular functions

Let D be a set of n data points D “ t1, ¨ ¨ ¨ , nu and f : 2D Ñ R be a set function returning

real-value for any subset of set D. A function f is submodular (Fujishige, 2005) if fpA Y
txuq ´ fpAq ě fpB Y txuq ´ fpBq, @x P D, @A Ď B Ď D and x R B. Monotone Submodular

163

functions, when maximized for a cardinality constraint using a simple greedy algorithm,

admit a constant factor of 1 ´ 1
e
. This can be done in near-linear time using a stochastic-

greedy algorithm.

10.3.2 Submodular mutual information

Submodular mutual information (SMI) between two sets A,B Ď D, instantiated with a

submodular function f , is defined as If pA;Bq “ fpAq ` fpBq ´ fpAYBq (Iyer et al., 2022).

In this work, we aim to select data points A Ă D that maximize the SMI between A and B.

Intuitively, this allows the selection of data points that are similar to B while being diverse.

10.3.3 SDA loss functions

For supervised domain adaptation, specialized loss functions are introduced as described in

the previous section. Here we highlight two state-of-the-art domain adaptation loss functions,

CCSA and d-SNE, which are used in our experiments.

In CCSA, the classifier is modeled as a composition of two functions–h ˝ g. Here, g :

X Ñ Z is a feature extractor that transforms the input from the feature space X to an

embedding space Z, and h : Z Ñ Y is a predictor function. The CCSA loss for supervised

domain adaptation is defined as,

LCCSAph ˝ gq “ LCEph ˝ gq ` LSApgq ` LSpgq,

where LCEph ˝ gq is the cross-entropy loss for multi-class classification, LSA is a semantic

alignment loss encouraging the samples from different domains but the same label to map

nearby in the embedding space, and LS is a separation loss encouraging the samples from

different domains and different labels to map far away in the embedding space.

The d-SNE loss function for SDA is defined as

Ld-SNEph ˝ gq “ L̃pgq ` αLsCEph ˝ gq ` βLtCEph ˝ gq,

164

θ

A

Repeat
E

L
times

SMI subset
selection

θ

source data Ds,
target data Dt,
subset A,
parameters θ

· · ·GD GD GD

Optimize θ with
subset A for
L epochs

1○
2○ 3○

4○

5○

Figure 10.1: Illustration of Orient framework. 1○ Given the target data Dt and source data Ds,
a subset A Ď Ds and model parameters θ are randomly initialized. 2○ Model parameters θ are
optimized for L epochs on the subset A with any gradient descent (GD) based method. 3○ Subset
A is updated using the SMI measure and current model parameters θ after every Lth epoch. 4○
Model is trained for E epochs, with subset selection after every L interval. 5○ The final model
parameters are returned after E epochs.

where LsCE and LtCE are the cross-entropy loss on the source and the target domain exam-

ples, respectively, and L̃ minimizes the largest distance between the samples from different

domains with the same label and maximizes the smallest distance between the samples from

a different domain with a different label in the embedding space. SDA loss functions are

further elaborated in Appendix D.3.

10.4 Orient

For our SDA setting, we assume a small amount of labeled data (as less as 2 examples per

class) is available from the target domain τ t and sufficient labeled data is available from the

source domain τ s. We denote the source dataset as Ds “ pxi, yiq|DS |

i“1 and the target dataset

as Dt “ pxi, yiq|Dt|

i“1 . The source dataset is used for training the model M using an SDA loss

function L. We will introduce other necessary notations in the remainder of the chapter, as

necessary.

First, we extend the SMI measure to incorporate data subsets from different domains.

For a source domain subset A Ď Ds and the target domain data set Dt, we denote the

165

Table 10.1: Instantiations of submodular mutual information functions.

Name fpAq If pA;Dtq

FLMI
ř

iPDt

max
jPA

Sij
ř

iPDt

max
jPA

Sij ` η
ř

iPA

max
jPDt

Sij

LOGDETMI log det pSAq log detpSAq ´ log detpSA ´ η2SA,DtS´1DtSTA,Dtq
GCMI

ř

iPA,jPDs

Sij ´ λ
ř

i,jPA

Sij 2λ
ř

iPA,jPDt

Sij

COM Appendix Eq. D.1 η
ř

iPA

ψp ř
jPDt

Sijq `
ř

jPDt

ψpř
iPA

Sijq

SMI measure as If pA;Dtq. Essentially, assuming that both the domains form a set D, and

A Ď Ds Ă D and Dt Ă D. With S denoting the similarity matrix defined over a subset A

and Dt, Table 10.1 presents the mathematical expression of the SMI functions for different

instantiations of submodular functions (f) (Kothawade et al., 2022). We defer the readers

to Kothawade et al. (2022) for more details. Note that the FLMI, GCMI, and COM only

need the pairwise similarities of the data points in A and Dt. Consequently, the similarity

kernel is of size |A| ˆ |Dt|, making it very efficient to optimize.

For efficient SDA, we want to select a subset A of the source domain τ s such that training

a model on A results in a classifier that is proficient on the target domain τ t. To this effect,

we use the gradients χ of the current model to represent the data points and use it to

compute the similarity matrix. Specifically, we define the pairwise similarity between two

data points as the cosine similarity between the gradients,

Sij “ χi χi
|χi| |χj| (10.1)

where, χi “ ∇θLpxi, yiq and χj “ ∇θLpxj, yjq

Given a set size b, we select a diverse subset A of the source data Ds that is similar to the

target data Dt by maximizing the following SMI measure,

arg max
AĎDs,|A|ďb

If pA;Dtq (10.2)

166

If pA;Dtq is an instance of cardinality-constrained monotone submodular maximization

for all SMI functions except for LogDetMI. Therefore, we can achieve a 1´ 1
e

approximation

using the lazy greedy algorithm (Minoux, 1978). Even though LogDetMI is not submodular,

previous works (Kothawade et al., 2022, 2021) have reported good empirical performance

using the lazy greedy algorithm for maximization of the LogDetMI function. Following

the footsteps of Kothawade et al. (2022, 2021), we also use the lazy greedy algorithm to

maximize the LogDetMI function. However, as the number of parameters in the deep learning

model can be extremely high, our gradients χ can be very high dimensional. Following

the success of targeted subset selection approaches, GLISTER (Killamsetty et al., 2021),

SIMILAR (Kothawade et al., 2021), CRAIG (Mirzasoleiman et al., 2020) and BADGE (Ash

et al., 2020), we circumvent this problem by using last-layer gradient approximations to

represent the data point in the similarity matrix S. Further, we select a new subset every L

epochs as the model is trained, and the subsets chosen are adapted accordingly.

10.4.1 Algorithm

We present the complete training procedure of Orient in Algorithm 5. We first randomly

initialize the training subset A and the model parameters θ in line 1 and 2, respectively.

For each epoch, we update the model parameters by optimizing a gradient-descent (GD)

based loss L on the current training subset A in line 4. After a fixed interval of L epochs,

we update the subset A (line 5–11). To do this, we compute the gradients χs and χt for

all the datapoints in Ds and Dt, in line 6 and 7,respectively. Next, we use the gradients

to compute the similarity matrix S in line 8, as described in Equation 10.1. In line 9 we

instantiate the SMI function If with S and update the subset A in line 10 using Equation

10.2. Our implementation is made available online1.

1https://github.com/athresh/orient

167

https://github.com/athresh/orient

Algorithm 5 Orient

Input: source domain data Ds, query data Dt, batch size b, total epochs E, subset
selection interval L, SMI function If .

Output: Final model parameters θ

1: AÐ RandomSubsetpDsq Ź Randomly initialize a subset
2: θ Ź initial model parameters
3: for epoch e in E do Ź for each epoch
4: θ Ð mini-batch-gdpθ,LpAqq Ź mini-batch gradient descent
5: if e mod L ““ 0 then Ź perform subset selection every L epochs
6: χs Ð ∇θLpDsq Ź compute gradients for source data
7: χt Ð ∇θLpDtq Ź compute gradients for query data
8: S Ð Similaritypχs,χtq Ź compute the similarity matrix
9: Instantiate If with S

10: AÐ arg max
AĎDs,|A|ďb

If pA;Dtq Ź update subset A

11: end if
12: end for

Figure 10.1 illustrates the Orient workflow. The general framework of Orient can

incorporate any gradient descent (GD) based SDA technique. It can train any model with

loss function L by using a subset of the source data, selected every L epochs. In our

experiments, we demonstrate the effectiveness of our method in conjunction with standard

cross-entropy loss as well as two state-of-the-art domain adaptation losses, CCSA (Motiian

et al., 2017) and d-SNE (Xu et al., 2019).

10.5 Connections to previous work

Orient generalizes three approaches, GLISTER (Killamsetty et al., 2021), GradMatch

(Killamsetty et al., 2021), and a slightly adapted version of CRAIG (Mirzasoleiman et al.,

2020), which were initially proposed for efficient and robust subset selection. Specifically,

these subset selection approaches maximize a submodular function corresponding to a differ-

168

ent instantiation of SMI functions for subset selection. The following theorems summarize

the connection of SMI functions with these subset selection approaches.

Theorem 3. When the outer level loss of the discrete bi-level optimization problem of GLIS-

TER is hinge loss, logistic loss, and perceptron loss, then the optimization problem becomes

an instance of Concave over Modular (COM) SMI function.

Theorem 4. When the optimization problem of GradMatch is used to match gradients of

a held-out validation set, it becomes an instance of the summation of GCMI and a diversity

function.

Theorem 5. When the optimization problem of Craig is adapted to match gradients of a

held-out validation set, it becomes an instance of the FLMI function with η “ 0.

Proofs of these theorems are presented in Appendix D.2. In conclusion, SMI measures

have been used in previous subset selection strategies for robust learning to deal with the

class imbalance and noisy labels in training data sets and achieved comparable performance

to current state-of-the-art robust supervised learning approaches.

10.6 Experimental evaluation

Our experiments explicitly aim at answering the following questions,

Q1. Does the proposed Orient approach substantially reduce the training time while main-

taining comparable performance to training on complete source dataset?

Q2. Can the proposed Orient approach augment the existing domain adaptation ap-

proaches?

We evaluate our proposed approach on two domain adaptation datasets: Office-31 (Saenko

et al., 2010) and Office-Home (Venkateswara et al., 2017). Office-31 dataset consists of 4110

169

(a.1) A Ñ D (a.2) A Ñ W (b.1) D Ñ A

(b.2) D Ñ W (c.1) W Ñ A (c.2) W Ñ D

Figure 10.2: Speed up vs prediction accuracy on three domains of Office31 dataset: Amazon (A),
DSLR (D), and Webcam (W). X-axis represents the speed up by the model, i.e. the ratio of the
time taken to train on complete source dataset (Full) to the time taken by the model. Y -axis
represents the prediction accuracy of the model on the target domain.

images of 31 object categories from three different domains: Amazon (A), DSLR (D), and

Webcam (W). For our experiments, we used all the images from the source domain in the

training set (Ds) and two examples of each category in the query set (Dt). Office-Home

dataset consists of 10812 images of 65 object categories from four different domains: Art

(A), Clipart (C), Product (P), and Real-world (R). Here, the target data (Dt) consists of

about 20% of the images from the target domain. We use L “ 20, that is, we sample the

subset after every 20 epochs and use b “ 0.3%, that is, we sample 30% of the source domain

for training.

170

Table 10.2: Test accuracy for office-31 with SDA methods

A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D
C

C
S
A Full 0.78 0.72 0.55 0.93 0.55 0.97

Random 0.76 0.72 0.54 0.81 0.54 0.92
Orient 0.77 0.76 0.55 0.89 0.55 0.96

d
-S

N
E Full 0.77 0.69 0.53 0.93 0.54 0.98

Random 0.76 0.68 0.53 0.86 0.53 0.94
Orient 0.78 0.71 0.55 0.90 0.56 0.97

Table 10.3: Test accuracy for Office-Home with SDA methods

R Ñ P R Ñ C P Ñ R P Ñ C C Ñ R C Ñ P A Ñ P A Ñ R A Ñ C R Ñ A P Ñ A C Ñ A

C
C

S
A Full 0.74 0.55 0.62 0.46 0.56 0.67 0.70 0.64 0.48 0.57 0.49 0.41

Random 0.71 0.47 0.62 0.45 0.54 0.66 0.69 0.57 0.48 0.5 0.47 0.45
Orient 0.78 0.54 0.65 0.5 0.61 0.71 0.71 0.65 0.51 0.59 0.54 0.47

d
-S

N
E Full 0.77 0.53 0.62 0.50 0.60 0.71 0.72 0.63 0.49 0.52 0.44 0.40

Random 0.75 0.50 0.60 0.45 0.57 0.69 0.68 0.59 0.49 0.46 0.43 0.40
Orient 0.77 0.52 0.63 0.50 0.60 0.71 0.71 0.61 0.51 0.52 0.44 0.42

To answer the first question, we use Orient to train a ResNet50 architecture using the

stochastic gradient descent (SGD) algorithm with the momentum of 0.9 and the weight de-

cay ratio of 5e4. We compare our approach against three baselines: Full—training on the

source data and the target data, i.e. Ds Y Dt; Random—a random subset of the source

dataset and the target set, i.e. RYDt, R “ RandomSubsetpDsq; and CRAIG—a coreset of

the source dataset, i.e coresetpDtq, without any information of the target dataset. We use

standard categorical cross-entropy loss function (for multi-class classification) and five differ-

ent instantiations of the submodular mutual information function: Facility Location Mutual

Information (ORIENT (FLMI)), Graph Cut Mutual Information (ORIENT (GCMI)),

Log Determinant Mutual Information (ORIENT (LDMI)), GLISTER (ORIENT (G)),

and GradMatch (ORIENT (GM)).

Figure 10.2 presents the scatter plot of the speed up against the prediction accuracy of

the Office-31 dataset using cross-entropy loss. In all our experiments, we use a 0.3 fraction of

the source data as the subset and see ą 2.5ˆ speed up. Figure 10.3 presents the convergence

171

(a.1) A Ñ C (a.2) A Ñ P (a.3) A Ñ R

(b.1) C Ñ A (b.2) C Ñ P (b.3) C Ñ R

(c.1) P Ñ A (c.2) P Ñ C (c.3) P Ñ R

(d.1) R Ñ A (d.2) R Ñ C (d.3) R Ñ P

Figure 10.3: Convergence curves on four domains of Office-Home dataset: Art (A), Clipart (C),
Product (P), and Real World (R). X-axis presents the training time in hours and Y -axis presents
the prediction accuracy on the target domain.

172

(a) Office-31 dataset (b) Office-Home dataset

Figure 10.4: Speed up achieved by combining d-SNE with Orient

(a) d-SNE + Full
(b) d-SNE + Orient
(FLMI) (c) d-SNE + Full

(d) d-SNE + Orient
(FLMI)

Figure 10.5: GradCam (Selvaraju et al., 2017) activation maps of the models learned using
d-SNE + Full and d-SNE + Orient (FLMI) on the Office-Home dataset with “Product” as
the source domain and “Real World” as the target domain. As evidenced by class activation
maps, the Orient framework enabled the model to learn more effective class discriminative
features than Full data training.

curves of the Office-Home dataset using cross-entropy loss. It is evident from these charts

that our proposed approach Orient can achieve better or comparable performance to the

Full training in significantly less amount of time, indicating better efficiency. This analysis

helps us answer our Q1. Orient reduces the training time substantially, and the speed up

achieved is reciprocal to the fraction of the subset used, without trading the performance.

Rather, in some combinations, we observe that Orient outperforms Full.

Figure 10.4 presents the bar plots of the speed up when Orient(FLMI) is used in con-

junction with d-SNE loss function on Office-31 and Office-Home datasets. Here, we see a

consistent 3ˆ speed up as compared to full model training with d-SNE loss. These bar

plots demonstrate that our proposed approach Orient can augment existing domain adap-

tation approaches and substantially reduce the training times. Additionally, Tables 10.2

173

and 10.3 present the test accuracy while using d-SNE and CCSA loss in conjunction with

Orient(FLMI) on Office-31 and Office-Home datasets, respectively. It’s evident that aug-

menting existing domain adaptation approaches with Orient achieves better or comparable

performance to the Full training. These two observations help us answer our Q2 in the affir-

mative. Precise values of prediction accuracy and training time for all the experiments are

provided in Appendix D.5. Further, in Appendix D.5.2 and Appendix D.5.3, we analyze the

effect of different subset sizes and subset sampling frequencies.

Figure 10.5 presents the GradCam (Selvaraju et al., 2017) class-activation maps of trained

models on the Office-Home dataset (P Ñ R setting) using d-SNE loss for both Full and

Orient (FLMI). These activation maps show that the model trained with the Orient

framework learned better class discrimination features than the model trained with Full.

This might explain why the Orient framework performs better sometimes than Full.

10.6.1 Comparison of different SMI functions

Domain adaptation results on Office31 (Figure 10.2) and OfficeHome (Figure 10.3) datasets

show that Orient(GCMI) performs suboptimally compared to ORIENT using other SMI

functions in terms of target domain accuracy. Although Orient(LDMI) achieves reason-

able target domain accuracy, it is computationally expensive and does not achieve the best

performance-speedup trade-off. In comparison to the Orient using remaining SMI func-

tions, i.e., Orient(GM), Orient(G), and Orient(FLMI), Orient(FLMI) consistently

achieves the best performance versus speed-up trade-off. We further present synthetic ex-

periments to provide intuitions on how different SMI functions selects data subsets in Ap-

pendix D.5.1

To summarize, our experiments on two adaptation datasets suggest that our proposed

approach Orient can substantially reduce the training time while maintaining comparable

performance to training on complete source data. Additionally, our experiments using d-SNE

174

and CCSA loss functions suggest that Orient can be used in conjunction with existing

SDA methods to achieve significant speed ups in training time, while maintaining or im-

proving the prediction accuracy. In particular, two instantiations of our proposed approach,

Orient(FLMI) and Orient(GM) consistently achieve comparable or better performance

compared to Full training while being „ 3ˆ faster to train.

10.7 Summary

We introduce Orient, a subset selection framework based on SMI functions for supervised

domain adaptation. The submodularity of SMI functions allows us to use scalable greedy

algorithms to select the data subsets efficiently. In addition, we demonstrate how Orient

is a unified framework that integrates previous approaches based on subset selection for ro-

bust learning. Empirically, we show that Orient is very effective for SDA. Specifically, it

achieves „ 3ˆ speed up over existing SDA approaches like d-SNE and CCSA while achieving

comparable or better performance. Our findings confirm that Orient has a significant so-

cial impact by making existing SDA algorithms significantly faster and more energy-efficient,

reducing CO2 emissions and energy consumption incurred during training, thus contributing

to a Green AI (Schwartz et al., 2020). The main limitation of our work is that although

Orient significantly reduces the training time, it requires more memory to store the sim-

ilarity kernel required for subset selection. This makes running Orient harder on devices

with low memory.

175

CHAPTER 11

CONCLUSION AND FUTURE WORK

For an effective and efficient adaptation of AI and ML approaches in real-world use cases,

approaches must be able to interact with, learn from, and teach humans. This dissertation

contributes to interact with and learn from humans part. We looked beyond learning from

data and explored ways to leverage rich human knowledge to guide the learning procedure.

We also proposed a system that can interact with humans in natural language.

In Part I (Chapter 3), we considered the challenge of learning from sparse and noisy

data in the successful gradient-boosting framework. We proposed the Knowledge-intensive

Gradient Boosting (KiGB) framework to use the qualitative influence information to improve

prediction. KiGB uses the monotonicity information as soft constraints to gently nudge the

leaf values in the direction of the influence. Our experiments show that KiGB with its domain

knowledge is better than learning from data alone. In some cases, the knowledge does not

help, but it never hurts. We specifically encountered two scenarios where the knowledge does

not help. First, when the data conforms to the knowledge, that is, data is clean and never

gives a contradictory signal to the model while training. Second, is when the knowledge is less

relevant. That is when the monotonic influence is about a feature that is correlated with the

target feature. In that case, the influent feature may or may not appear in the tree. Hence,

the KiGB soft constraints do not influence the predictions. When the knowledge is indeed

relevant, KiGB observes a jump start and better slope for learning, and more importantly,

it also achieves a higher asymptote in performance. Our empirical evaluations show that

knowledge is most helpful when the data is sparse or noisy. A compelling future research

direction would be to investigate how to estimate the quality of knowledge and evaluate the

impact of knowledge quality on learning.

Then we consider the challenge of learning to generalize across multiple tasks and objects

in sequential decision making. We address this challenge by proposing the RePReL frame-

176

work and its extension in Part II (Chapter 4–6). RePReL framework integrates relational

planning and reinforcement learning. It takes inspiration from human’s ability to generalize

by identifying compositionality and leveraging task-specific abstract representations. In the

RePReL framework, we proc strives to incorporate such domain knowledge. RePReL uses a

high-level domain description to decompose the task into subtasks and leverages task-specific

influence information for generating abstract representations. Our empirical evaluations, on

discrete, continuous, and hybrid domains (in Chapter 4, 5, and 6, respectively), indicate that

the RePReL framework not only demonstrates a significant advantage in sample efficiency

but also shows the ability to generalize across multiple objects. RePReL facilitates the effec-

tive transfer of skills across tasks and the batch algorithm can adapt to any off-policy deep

RL algorithm. Although transferred policy in general showed a better slope on the learning

curves, we see that transferring neural policies may be slow sometimes. This phenomenon of

a trained neural network losing the ability to quickly fit a new function is called capacitive

loss (Lyle et al., 2022; Igl et al., 2021; Ash et al., 2020). It would be interesting to study

when a policy or skill transfers seamlessly and when it shows resilience to transfer. Further,

the current RePReL framework assumes the influence information provided by humans to

be accurate. To quantify the influence and measure its uncertainty is an important next step

to ensure the robustness of RePReL. One follow-up research question that we are currently

pursuing is can the RePReL framework be used in collaborative multi-agent environments.

In Part III, we consider the challenging task of human-machine collaborative problem-

solving in a Minecraft building task. This task is challenging as it requires sophisticated

language understanding, contextual understanding, bi-directional communication, and com-

posable vocabulary. We present an integrated system, Lara (see Chapter 7), that uses a

rich natural language instruction from humans and maintains a first-order logic representa-

tion of knowledge that allows effective generalization while not sacrificing efficient reasoning.

Lara uses an ILP engine to learn hierarchical, generalized concepts from a single example by

177

asking questions to humans to reduce uncertainty. Our system demonstrates that current

advancements in NLP, planning, and ILP can be leveraged for the challenging collaborative

problem-solving task. In our study, we used two types of NLP parsers a template-based based

and an AMR-based parser. While the template-based parser was quite fast, it was limited in

the instructions it could handle. We hoped for the AMR-based parser to support free-form

sentences, however, found logic representation generated from AMR did not match the logic

representation expected by the planner. In the current work, we ended up using rules to

map the logic representation from AMR to the expected logic representation of the planner.

However, bridging the gap between logic representations and extending planners to work

with multiple logic representations can be an interesting future direction. Lara uses guided

one-shot concept induction (GOCI) framework. While GOCI is shown to be successful in

some important domains, it is limited. The GOCI framework uses a normalized compression

distance (NCD) as a metric to compute the similarity between concepts. However, NCD is

sensitive to the size of the plan and the characters used to represent the action. Devising an

appropriate metric to compute concept similarity is an interesting future direction. Finally,

with the latest advancements in the sequence-to-sequence models and the success of GPT

architecture in natural language generation, it would be interesting to consider how these

models perform bi-directional communication for collaborative problem-solving.

In Part IV, we considered the challenging task of learning rules in domains with het-

erogeneous objects. We looked at current neurosymbolic approaches and the various biases

infused in their architectures. We propose two approaches in Chapter 8 to incorporate type-

information as bias and evaluate these approaches against a current state-of-the-art. We

found that while masked shows significant improvement, learning typed representations do

not improve the rules. We plan to further investigate a few variants of similarity measures.

Lastly, in Part V, we looked at scenarios where the domain knowledge is not readily avail-

able. We specifically explore two directions in this scenario. One is to extract knowledge

178

from data, and another is to use data from related domains. In Chapter 9, we considered

extracting the qualitative influence information from the data. We proposed QuaKE frame-

work that extracts influence information by estimating joint distribution. We conclude that

learning join distribution using a causal model is much more effective and can provide rich

insights into the qualitative influence between variables. Extending QuaKE framework—to

learn the influence between random variables in a sequential decision making systems—would

allow us to learn the D-FOCI statements used in Chapter 4. We leave this for future re-

search. In Chapter 10, we consider using supervised domain adaptation techniques to train

the model on related domains. We propose Orient framework that uses submodular mutual

information measure for subset selection. Orient with the existing SDA approach is sig-

nificantly faster and more efficient. However, the Orient approach computes the similarity

kernel over the complete dataset. This might be limiting as it requires more memory.

In summary, this dissertation explored ways of incorporating human knowledge into dif-

ferent AI and ML approaches. We observe that using domain knowledge improves sample

efficiency across the board and, more importantly, can improve the performance and gener-

alization abilities of the model.

179

PART VI

APPENDIX

180

APPENDIX A

KNOWLEDGE-INTENSIVE GRADIENT BOOSTING

A.1 Why gradient boosted trees?

While different machine learning approaches have shown success for different problems, we

specifically decided to incorporate qualitative knowledge in gradient-boosted trees. We made

this decision as in our target domain of logistics the gradient-boosted trees consistently

outperformed other models. This section of the appendix provides details of our analysis for

making this decision.

We obtained a shipment price prediction dataset from a logistics company, Turvo1. For 20

different combinations of relevant feature sets, we analyzed the prominent implementations

of the standard machine learning models. Specifically, we compared the Sklearn (Pedregosa

et al., 2011)’s implementation of linear support vector machine (SVR-L), linear regression

with L1 prior as regularizer (Lasso), support vector machine with radial basis function kernel

(SVR-K), bagging ensemble of decision trees (Bagging), and gradient-boosted decision trees

(GBT) and Tensorflow (Abadi et al., 2016)’s implementation of deep neural network regressor

(DNN).

We used various domain-specific feature engineering techniques in this evaluation. The

complete list of the 20 feature sets used is provided in Table A.1. Across all these feature

sets, over 5 runs, we found that the gradient-boosted trees consistently outperformed the

other models in terms of mean absolute percentage error (MAPE). The aggregated results

are presented in Figure A.1.

1Turvo Inc. https://turvo.com

181

https://turvo.com

SVR-L Lasso SVR-K Bagging DNN GBT
0

10

20

30

40
37.6113

4.8538
5.54294

3.66026

6.16419

2.17593

M
A
P
E

Figure A.1: Comparison of linear support vector regression (SVR-L), linear regressor with L1
prior as a regularizer (Lasso), support vector regressor with radial basis function kernel (SVR-
K), bagging ensemble of decision trees (Bagging), deep neural network estimator (DNN),
and gradient-boosted decision trees (GBT) for the task of predicting the shipment prices in
Logistics dataset. Y-axis presents the mean absolute percentage error (MAPE) in prediction.

182

Table A.1: List of features used for the shipment price prediction task on logistics data.

Features
1 equipment temp, equipment type, equipment size, equipment weight,

lane end state, lane start state, lane start, lane end, miles, creation month,
creation day, start month, start day, end month, end day, end of year,
end of month, end of week, lead time, transport time, delivery time, holi-
day, customer id, carrier id, national average fuel price, average fuel price,
fuel surcharge, count stops, count items, count customer orders, inter-
state shipment, round trip, ltr start state, ltr end state, low line haul rate,
avg line haul rate, high line haul rate, fuel surcharge dat, new year, cross ratio,
head haul, back haul, team driver

2 lane end state, lane start state, lane start, lane end, miles, creation month, cre-
ation day, start month, start day, end month, end day, end of year, end of month,
end of week, lead time, transport time, delivery time, holiday, customer id, car-
rier id, national average fuel price, average fuel price, fuel surcharge

3 lane start, lane end, miles, creation month, creation day, start month,
start day, end month, end day, end of year, end of month, end of week,
lead time, transport time, delivery time, holiday, customer id, carrier id, na-
tional average fuel price, average fuel price, fuel surcharge

183

Table A.1 continued

Features
4 lane start, lane end, miles, end of year, end of month, end of week,

lead time, transport time, delivery time, holiday, customer id, carrier id, na-
tional average fuel price, average fuel price, fuel surcharge

5 lane start, lane end, miles, end of year, end of month, end of week, holiday, cus-
tomer id, carrier id, national average fuel price, average fuel price, fuel surcharge

6 lane start, lane end, miles, end of year, end of month, end of week, holiday, cus-
tomer id, carrier id, average fuel price, fuel surcharge

7 lane start, lane end, miles, end of year, end of month, end of week, holiday, cus-
tomer id, carrier id, average fuel price

8 lane start, lane end, miles, end of year, end of month, end of week, holiday, cus-
tomer id, carrier id, average fuel price, round trip, ltr start state, ltr end state,
avg line haul rate, new year, cross ratio, team driver

9 lane start, lane end, miles, end of year, creation month, start month,
end of month, end of week, holiday, carrier id, average fuel price, round trip,
ltr start state, ltr end state, avg line haul rate, new year, cross ratio, team driver,
customer id

10 lane start, lane end, miles, end of year, creation month, start month, end month,
end of month, end of week, lead time, transport time, delivery time, holi-
day, carrier id, average fuel price, round trip, ltr start state, ltr end state,
avg line haul rate, new year, cross ratio, team driver, customer id

11 lane start, lane end, miles, end of year, creation month, start month, end month,
end of month, end of week, lead time, transport time, delivery time, holi-
day, carrier id, average fuel price, round trip, ltr start state, ltr end state,
avg line haul rate, new year, cross ratio, team driver, customer id, head haul,
back haul

12 lane start, lane end, miles, end of year, creation month, start month, end month,
end of month, end of week, lead time, transport time, delivery time, holiday, car-
rier id, average fuel price, count stops, round trip, ltr start state, ltr end state,
avg line haul rate, new year, cross ratio, team driver, customer id, head haul,
back haul

13 lane start, lane end, miles, end of year, end of month, end of week, holiday, cus-
tomer id, carrier id, average fuel price, round trip, ltr start state, ltr end state,
avg line haul rate, new year, cross ratio, team driver, head haul, back haul

14 equipment temp, equipment type, equipment size, equipment weight,
lane end state, lane start state, lane start, lane end, miles, creation month, cre-
ation day, start month, start day, end month, end day, end of year, end of month,
end of week, lead time, transport time, delivery time, holiday, customer id,
carrier id, national average fuel price, average fuel price, fuel surcharge

184

Table A.1 continued

Features
15 equipment temp, equipment type, equipment size, equipment weight,

lane end state, lane start state, lane start, lane end, miles, creation month,
creation day, start month, start day, end month, end day, end of year,
end of month, end of week, lead time, transport time, delivery time, holi-
day, national average fuel price, average fuel price, fuel surcharge, count stops,
count items, interstate shipment, round trip, ltr start state, ltr end state,
low line haul rate, avg line haul rate, high line haul rate, fuel surcharge dat,
new year, cross ratio, team driver

16 equipment temp, equipment type, equipment size, equipment weight,
lane end state, lane start state, lane start, lane end, miles, start month,
start day, end day, lead time, transport time, delivery time, holiday, aver-
age fuel price, fuel surcharge, count stops, count items, count customer orders,
interstate shipment, round trip, low line haul rate, avg line haul rate,
high line haul rate, fuel surcharge dat, head haul, back haul

17 equipment temp, equipment type, equipment size, equipment weight,
lane end state, lane start state, lane start, lane end, miles, start month,
start day, end month, end day, end of year, end of month, end of week, lead time,
transport time, delivery time, holiday, average fuel price, fuel surcharge,
count stops, count items, count customer orders, interstate shipment,
round trip, ltr start state, ltr end state, low line haul rate, avg line haul rate,
high line haul rate, fuel surcharge dat, head haul, back haul, team driver

18 equipment temp, equipment type, equipment size, equipment weight,
lane end state, lane start state, lane start, lane end, miles, creation month,
creation day, start month, start day, end month, end day, end of year,
end of month, end of week, lead time, transport time, delivery time,
holiday, national average fuel price, average fuel price, fuel surcharge,
count stops, count items, count customer orders, interstate shipment,
round trip, ltr start state, ltr end state, low line haul rate, avg line haul rate,
high line haul rate, fuel surcharge dat, new year, cross ratio, team driver

19 miles
20 All

185

APPENDIX B

REPREL

B.1 Traditional relational RL

To compare the performance of RePReL against traditional relational RL (RRL), we per-

severed to implement two RRL approaches: Q-tree (Dzeroski et al., 2001) and Gradi-

ent Boosted Q-Learning (Das et al., 2020). The code implemented as part of this effort

is made public at the following GitHub repository: https://github.com/harshakokel/

Relational-Q-Learning. We tried to train an RRL policy for the extended taxi domain

(see § 4.4) as well as the stack, unstack, on, and logistics domain from Das et al. (2020).

While the Bellman error of the policies seemed to reduce with training, the success rate of

these policies did not improve. This can perhaps be explained by the phenomenon studied

by Fujimoto et al. (2022), that shows bellman errors are poor estimators for value functions.

Another observation worth noting is that the stack, unstack, on, and logistics domains

have the same goal state for all the episodes. However, in the taxi domain, the goal state

is different in every episode as the passenger destinations are sampled. Hence, the extended

taxi domain is a little harder problem.

186

https://github.com/harshakokel/Relational-Q-Learning
https://github.com/harshakokel/Relational-Q-Learning

APPENDIX C

LARA

C.1 Dialogue manager

Dialogue manager in LARA maintains a fixed set of template sentences with slots shown

below. As required the slots are populated and the natural language sentence generated is

sent to the architect.

Unknown shape

I do not understand this shape. Try building it using tower or row.

Was the shape misspelled? May be try building a row

System does not support this shape. Do you wanna build a row instead?

missing spatial relation

(Can you describe—Could you tell me—Can you tell me) where the {new structure} is

placed with respect to the {existing structure} (we just built)?

missing dimension

(What is the—What’s the—Can you describe the—Could you tell me the)

{missing dimension} of the {new structure}?

Parse error for spatial relation

Could not understand the spatial relationship. Can you say something like: The left-end

of the row is on the east of the top-end of tower

Embarassed, I do not understand that.

187

Parse error

Sorry, I had trouble understanding that. Could you explain it differently?

Sorry, I don’t understand. Can you try again?

Sorry, I’m having trouble understanding. Could you reword that?

Planning error

Sorry, I’m not able to do that. Could we try again?

Sorry, I’m not able to build that. Could you reword that?

Sorry, I can’t do that. Could you explain it differently?

Parse Clarification

Sorry, I had trouble understanding that.

Sorry, I don’t understand.

Sorry, I’m having trouble understanding.

Initial Greeting

Hi Architect, what are we building today?

I’m ready! What are we building?

Hello! What are we building?

Hello Architect, I’m ready!

Next Greeting

Hi Architect, what are we building today?

I’m ready! What are we building?

Hello! What are we building?

188

Hello Architect, I’m ready!

Next Prompts

Okay, what’s next?

Okay, now what?

What are we doing next?

C.2 Background file

The complete list of predicates used in the FOL language can be found in the background

file furnished below.

setParam: nodeSize =100.

setParam: loadAllBasicModes & false.

// Parts

// Shapes

mode: row(+Part).

mode: column (+Part).

mode: tower (+Part).

mode: square (+Part).

mode: rectangle (+Part).

mode: cube(+Part).

mode: cuboid (+Part).

189

mode: block (+ Block).

mode: blockS (+Part).

// Dimensions

mode: width (+Part , #FloatPart).

mode: height (+Part , #FloatPart).

mode: length (+Part , #FloatPart).

mode: size(+Part ,# FloatPart).

// Properties

mode: color (+Part , #ColorPart).

mode: spatial_rel (&rel ,+Loc ,+Loc).

mode: location (+Part).

// relation

mode: top_behind_left (+Part ,-Block).

mode: top_left_behind (+Part ,-Block).

mode: behind_top_left (+Part ,-Block).

mode: behind_left_top (+Part ,-Block).

mode: left_behind_top (+Part ,-Block).

mode: left_top_behind (+Part ,-Block).

mode: top_behind_right (+Part ,-Block).

mode: top_right_behind (+Part ,-Block).

190

mode: behind_top_right (+Block ,-Block).

mode: behind_right_top (+Part ,-Block).

mode: right_behind_top (+Part ,-Block).

mode: right_top_behind (+Part ,-Block).

mode: top_front_left (+Part ,-Block).

mode: top_left_front (+Part ,-Block).

mode: front_top_left (+Part ,-Block).

mode: front_left_top (+Part ,-Block).

mode: left_front_top (+Part ,-Block).

mode: left_top_front (+Part ,-Block).

mode: top_front_right (+Part ,-Block).

mode: top_right_front (+Part ,-Block).

mode: front_top_right (+Part ,-Block).

mode: front_right_top (+Part ,-Block).

mode: right_front_top (+Part ,-Block).

mode: right_top_front (+Part ,-Block).

mode: bottom_behind_left (+Part ,-Block).

mode: bottom_left_behind (+Part ,-Block).

mode: behind_bottom_left (+Part ,-Block).

mode: behind_left_bottom (+Part ,-Block).

mode: left_behind_bottom (+Part ,-Block).

mode: left_bottom_behind (+Part ,-Block).

mode: bottom_behind_right (+Part ,-Block).

mode: bottom_right_behind (+Part ,-Block).

mode: behind_bottom_right (+Part ,-Block).

191

mode: behind_right_bottom (+Part ,-Block).

mode: right_behind_bottom (+Part ,-Block).

mode: right_bottom_behind (+Part ,-Block).

mode: bottom_front_left (+Part ,-Block).

mode: bottom_left_front (+Part ,-Block).

mode: front_bottom_left (+Part ,-Block).

mode: front_left_bottom (+Part ,-Block).

mode: left_front_bottom (+Part ,-Block).

mode: left_bottom_front (+Part ,-Block).

mode: bottom_front_right (+Part ,-Block).

mode: bottom_right_front (+Part ,-Block).

mode: front_bottom_right (+Part ,-Block).

mode: front_right_bottom (+Part ,-Block).

mode: right_front_bottom (+Part ,-Block).

mode: right_bottom_front (+Part ,-Block).

mode: behind_left (+Part ,-Block).

mode: left_behind (+Part ,-Block).

mode: behind_right (+Part ,-Block).

mode: right_behind (+Part ,-Block).

mode: front_left (+Part ,-Block).

mode: left_front (+Part ,-Block).

mode: front_right (+Part ,-Block).

mode: right_front (+Part ,-Block).

mode: left_end (+Part ,-Block).

mode: right_end (+Part ,-Block).

192

mode: front_end (+Part ,-Block).

mode: behind_end (+Part ,-Block).

mode: top_end (+Part ,-Block).

mode: bottom_end (+Part ,-Block).

mode: block_location (+Block ,-Loc).

// Bridgers

bridger: contains /2.

bridger: spatial_rel /3.

// Precomputes

mode: sameColor (+ColorShape ,+ ColorPart).

mode: sameSP (+ FloatShape ,+ FloatPart).

mode: sameSS (+ FloatShape ,+ FloatPart).

//mode: samePP (+FloatPart ,+ FloatPart).

mode: oneMoreSP (+FloatShape ,+ FloatPart).

mode: oneMorePS (+FloatPart ,+ FloatShape).

//mode: oneMorePP (+FloatPart ,+ FloatPart).

mode: oneMoreSS (+FloatShape ,+ FloatShape).

precompute: sameColor(X, Y) :- colorShape(Shape ,X), color(Part ,

Y), X is Y.

precompute: sameSP(X, Y) :- heightShape(Shape ,X), height(Part ,Y

), sameAs(X, Y).

193

precompute: sameSP(X, Y) :- widthShape(Shape ,X), width(Part ,Y),

sameAs(X, Y).

precompute: sameSP(X, Y) :- lengthShape(Shape ,X), length(Part ,Y

), sameAs(X, Y).

precompute: sameSP(X, Y) :- sizeShape(Shape ,X), size(Part ,Y),

sameAs(X, Y).

precompute: sameSS(X, Y) :- heightShape(Shape ,X), widthShape(

Shape ,Y), sameAs(X, Y).

precompute: sameSS(X, Y) :- heightShape(Shape ,X), lengthShape(

Shape ,Y), sameAs(X, Y).

precompute: sameSS(X, Y) :- heightShape(Shape ,X), sizeShape(

Shape ,Y), sameAs(X, Y).

precompute: sameSS(X, Y) :- widthShape(Shape ,X), lengthShape(

Shape ,Y), sameAs(X, Y).

precompute: sameSS(X, Y) :- widthShape(Shape ,X), sizeShape(

Shape ,Y), sameAs(X, Y).

precompute: sameSS(X, Y) :- lengthShape(Shape ,X), sizeShape(

Shape ,Y), sameAs(X, Y).

// precompute: samePP(X, Y) :- height(Part1 ,X), width(Part2 ,Y),

sameAs(X, Y).

// precompute: samePP(X, Y) :- height(Part1 ,X), width(Part2 ,Y),

sameAs(X, Y).

// precompute: oneMorePP(X, Y) :- height(Part1 ,X), width(Part2 ,Y

), minus(X, Y, Z), Z is 1.

194

// precompute: oneMorePP(X, Y) :- height(Part1 ,X), height(Part2 ,

Y), minus(X, Y, Z), Z is 1.

// precompute: oneMorePP(X, Y) :- width(Part1 ,X), height(Part2 ,Y

), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- heightShape(Shape ,X),

heightShape(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- heightShape(Shape ,X), widthShape

(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- heightShape(Shape ,X),

lengthShape(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- heightShape(Shape ,X), sizeShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- widthShape(Shape ,X), heightShape

(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- widthShape(Shape ,X), widthShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- widthShape(Shape ,X), lengthShape

(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- widthShape(Shape ,X), sizeShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- lengthShape(Shape ,X),

heightShape(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- lengthShape(Shape ,X), widthShape

(Shape ,Y), minus(X, Y, Z), Z is 1.

195

precompute: oneMoreSS(X, Y) :- lengthShape(Shape ,X),

lengthShape(Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- lengthShape(Shape ,X), sizeShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- sizeShape(Shape ,X), heightShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- sizeShape(Shape ,X), widthShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- sizeShape(Shape ,X), lengthShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSS(X, Y) :- sizeShape(Shape ,X), sizeShape(

Shape ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- heightShape(Shape ,X), height(

Part ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- heightShape(Shape ,X), width(Part

,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- heightShape(Shape ,X), length(

Part ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- heightShape(Shape ,X), size(Part ,

Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- widthShape(Shape ,X), height(Part

,Y), minus(X, Y, Z), Z is 1.

196

precompute: oneMoreSP(X, Y) :- widthShape(Shape ,X), width(Part ,

Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- widthShape(Shape ,X), length(Part

,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- widthShape(Shape ,X), size(Part ,Y

), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- lengthShape(Shape ,X), height(

Part ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- lengthShape(Shape ,X), width(Part

,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- lengthShape(Shape ,X), length(

Part ,Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- lengthShape(Shape ,X), size(Part ,

Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- sizeShape(Shape ,X), height(Part ,

Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- sizeShape(Shape ,X), width(Part ,Y

), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- sizeShape(Shape ,X), length(Part ,

Y), minus(X, Y, Z), Z is 1.

precompute: oneMoreSP(X, Y) :- sizeShape(Shape ,X), size(Part ,Y)

, minus(X, Y, Z), Z is 1.

197

precompute: oneMorePS(Y, X) :- heightShape(Shape ,X), height(

Part ,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- heightShape(Shape ,X), width(Part

,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- heightShape(Shape ,X), length(

Part ,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- heightShape(Shape ,X), size(Part ,

Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- widthShape(Shape ,X), height(Part

,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- widthShape(Shape ,X), width(Part ,

Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- widthShape(Shape ,X), length(Part

,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- widthShape(Shape ,X), size(Part ,Y

), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- lengthShape(Shape ,X), height(

Part ,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- lengthShape(Shape ,X), width(Part

,Y), minus(Y, X, Z), Z is 1.

198

precompute: oneMorePS(Y, X) :- lengthShape(Shape ,X), length(

Part ,Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- lengthShape(Shape ,X), size(Part ,

Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- sizeShape(Shape ,X), height(Part ,

Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- sizeShape(Shape ,X), width(Part ,Y

), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- sizeShape(Shape ,X), length(Part ,

Y), minus(Y, X, Z), Z is 1.

precompute: oneMorePS(Y, X) :- sizeShape(Shape ,X), size(Part ,Y)

, minus(Y, X, Z), Z is 1.

C.3 Planner

Below we present the list of predicates in the JSHOP2 planner.

(row ?x-loc ?y-loc ?z-loc ?width ?color)

(tower ?x-loc ?y-loc ?z-loc ?height ?color)

(column ?x-loc ?y-loc ?z-loc ?length ?color)

(square ?x-loc ?y-loc ?z-loc ?width ?color)

(rectangle ?x-loc ?y-loc ?z-loc ?width ?height ?color)

(cube ?x-loc ?y-loc ?z-loc ?width ?color)

(cuboid ?x-loc ?y-loc ?z-loc ?height ?width ?length ?color)

(block ?x-loc ?y-loc ?z-loc ?color)

199

C.4 Concept Learning

Das et al. (2020) uses normalized compression distance (NCD) as a metric to compute

concept similarity. Goldman and Kuter (2015) proposed NCD as a measure to compute

diversity in the plans. NCD is computed as

NCDpx, yq “ Cpxyq ´minpCpxq, Cpyqq
maxpCpxq, Cpyqq , (C.1)

where Cp.q is the length of the compressed file containing the string. NCD is able to capture

the diversity of the plans. For example, consider the following plans.

p1 “ (drive t1 a b), (drive t1 b c)

p2 “ (drive t2 a b), (drive t2 b c)

p3 “ (fly a1 a b), (drive, t3, b, c)

NCD captures the expectation that the plan pair pp1, p3q is more diverse than the pair

pp1, p2q, that is NCDpp1, p3q ą NCDpp1, p2q. However, as the NCD metric relies on the

compression measure, it depends on the characters used in the plan. It fails to capture

the diversity when the operator names are changed. For example, NCD fails to capture

NCDpc1, c3q ą NCDpc1, c2q when the above plans are re-written as follows.

c1 “ (action1 1 a b), (action1 1 b c)

c2 “ (action1 2 a b), (action1 2 b c)

c3 “ (action2 3 a b), (action1 2 b c)

To overcome this limitation, we implemented the following workarounds.

200

L U L

Figure C.1: Example of concepts.

1. Initialized the concepts with the same parameters for comparisons. Consider

an L shape of size 10ˆ6, a U shape of 6ˆ3 and an L of size 4ˆ3, shown in Figure C.1.

As the number of blocks placed in the build plan of L is closer to the number of blocks

in U than the L, the NCDpplanpLq, planpLqq ą NCDpplanpUq, planpLqq. To overcome

this, we ensure the same sizes are used when two plans are compared.

2. Actions in the plan had to be in same order. NCD metric is sensitive to the

order of actions in the plan. So an L shape constructed by placing a tower and then

a row is considered different from an L shape constructed by placing a row and then

a tower. To overcome this, we ensured the planner always plans to place blocks from

bottom to top and left to right.

3. Colors had to be removed before concept comparisons. As the NCD measure

is sensitive to the string, two identical plans with different colored blocks could be

considered diverse. Hence, we removed the colors from the plan before comparison.

4. Block numbers ranges were made to overlap. As indicated above, the NCD

measure was sensitive to the symbols used to represent the objects. Two identical

201

plans with block identifiers ranging from b1–b10 were considered different from plans

with block identifiers in the range b22–b32. So for faithful comparison, we used the

same block identifier ranges when comparing plans.

In light of these workarounds, we do not recommend the NCD measure for concept learning.

Devising an appropriate measure for concept learning is an important avenue of research.

202

APPENDIX D

ORIENT

D.1 Concave over modular mutual information

fηpAq is a restricted submodular function (Kothawade et al., 2022) defined over sets V, V 1

and ψ is a concave function. Let n be the size of set A.

fηpAq “η
ÿ

iPV 1

max

˜

ψ

˜

ÿ

jPAXV

Sij

¸

, ψ

˜

?
n

ÿ

jPAXV 1

Sij

¸¸

`
ÿ

iPV

max

˜

ψ

˜

ÿ

jPAXV 1

Sij

¸

, ψ

˜

?
n

ÿ

jPAXV

sij

¸¸ (D.1)

D.2 Proof of the theorems

Theorem. When the outer level loss of the discrete bi-level optimization problem of GLIS-

TER is hinge loss, logistic loss, and perceptron loss, then the optimization problem becomes

an instance of maximization of Concave over Modular (COM) SMI function.

Proof. Given, training loss LT , validation loss LV , training set D, subset S, subset size k,

and validation set V , the objective of Glister can be written as follows:

min
SĎD,|D|“k

LV pθ˚,Vq

where θ˚ “ arg min
θ

LT pθ,Sq
(D.2)

Loss on the subset denoted by LT pθ,Sq is the summation of the losses of individual data

samples in the subset. i.e., LT pθ,Sq “
ř

px,yqPS LT pθ, x, yq. Using the one-step gradient

approximation of Glister, the above optimization problem can be written as:

min
SĎD,|D|“k

LV pθ ´ η∇θLT pθ,Sq,Vq

min
SĎD,|D|“k

LV pθ ´ η
ÿ

px,yqPS
∇θLT pθ, x, yq,Vq

where η is the learning rate.

(D.3)

203

We can convert the above minimization problem to a maximization problem as the fol-

lowing:

max
SĎD,|D|“k

´LV pθ ´ η
ÿ

px,yqPS
∇θLT pθ, x, yq,Vq (D.4)

Using the Proof of Theorem-1 in Glister (Killamsetty et al., 2021), the optimization

problem in Equation D.4 for different validation losses can be written as follows:

Case 1. When LV is hinge loss or perceptron loss, the optimization problem of Glister is:

max
SĎD,|D|“k

|V|
ÿ

i“1

minp0, Ci `
ÿ

jPS
ĝijq

where
ÿ

jPS
ĝij ě 0

(D.5)

We can write the above optimization problem as,

max
SĎD,|D|“k

|V |Ci `
|V|
ÿ

i“1

minp´Ci,
ÿ

jPS
ĝijq (D.6)

max
SĎD,|D|“k

|V|
ÿ

i“1

minp´Ci,
ÿ

jPS
ĝijq (D.7)

Note that in the above equation, minpC, xq is a concave function in x and
ř

jPS ĝij is

a non-negative modular function. Hence, the above formulation is submodular and is an

instance of concave over modular function.

Case 2. When LV is logistic loss, the optimization problem of Glister is:

max
SĎD,|D|“k

|V|
ÿ

i“1

C ´ log p1` Ci exp pα
ÿ

jPS
ĝijqq (D.8)

Note that in the above equation, ´ log p1` C exp´xq is concave in x and
ř

jPS ĝij is

modular. Hence, the above formulation of set function is submodular and is an instance of

concave over modular function. In our setting, we use labeled target data Dt as the validation

set. Furthermore, the above given formulations of Glister corresponds to instantiation of

maximization of COM MI function (η
ř

iPA

ψp ř
jPDt

Sijq `
ř

jPDt

ψpř
iPA

Sijq) with η “ 0.

204

Theorem. When the optimization problem of GradMatch with equal sample weights is

used to match gradients of a held-out validation set, it becomes an instance of maximization

of summation of GCMI and a diversity function.

Proof. Given, training loss LT , validation loss LV , training set D, and validation set V . Let

us denote loss of ith sample in the training dataset as LiT pθq and the loss of jth sample in the

validation dataset as LjV pθq.
The objective of GradMatch with equal sample weights can be written as follows:

min
SĎD,|S|“k

›

›

›

›

›

1

k

ÿ

iPS
∇θL

i
T pθtq ´

1

|V |
ÿ

jPV
∇θL

j
V pθq

›

›

›

›

›

2

(D.9)

Without the loss of generality we assumed sample weights to be 1 in the above equation.

We can convert this to a maximization problem as follows:

max
SĎD,|S|“k

´
›

›

›

›

›

1

k

ÿ

iPS
∇θL

i
T pθtq ´

1

|V |
ÿ

jPV
∇θL

j
V pθq

›

›

›

›

›

2

(D.10)

max
SĎD,|S|“k

´1

k2

›

›

›

›

›

ÿ

iPS
∇θL

i
T pθq

›

›

›

›

›

2

` ´1

|V |2
›

›

›

›

›

ÿ

jPV
∇θL

j
V pθtq

›

›

›

›

›

2

` 2
1

k|V |
ÿ

iPS,jPV
∇θL

i
T pθqT ¨∇θL

j
V pθq
(D.11)

In the above equation second term is not dependent on S and can be ignored during

optimization. Following which the above optimization problem can be written as:

max
SĎD,|S|“k

´1

k2

›

›

›

›

›

ÿ

iPS
∇θL

i
T pθq

›

›

›

›

›

2

` 2
1

k|V |
ÿ

iPS,jPV
∇θL

i
T pθqT ¨∇θL

j
V pθq (D.12)

Note that in our setting, labeled target data Dt is used as the validation set. In the above

equation, the second term corresponds to GCMI function(2λ
ř

iPA,jPDt

Sij) with λ “ 1.

Expanding on the first term we have,

´1

k2

›

›

›

›

›

ÿ

iPS
∇θL

i
T pθq

›

›

›

›

›

2

“ ´1

k2

ÿ

iPS

›

›∇θL
i
T pθq

›

›

2 ´ 2

k2

ÿ

i,jPS|i‰j
∇θL

i
T pθqT ¨∇θL

j
T pθq (D.13)

205

The function given in Equation D.13 is a diversity function.

Hence, the optimization problem of GradMatch with equal sample weights when

matched with validation set is a instance of maximization of summation of the GCMI func-

tion and diversity function.

Theorem. When the optimization problem of Craig is adapted to match gradients of a

held-out validation set, it becomes an instance of maximization of the FLMI function with

η “ 0.

Proof. Given, training loss LT , validation loss LV , training set D, and validation set V . Let

us denote loss of ith sample in the training dataset as LiT pθq and the loss of jth sample in the

validation dataset as LjV pθq.
The objective of Craig matching gradients of a held-out validation set is as follows:

max
SĎD,|S|“k

ÿ

iPV
max
jPS

∇θL
i
V pθqT ¨∇θL

j
T pθq (D.14)

Note that in our setting, labeled target data Dt is used as the validation set. The set

function in the above equation corresponds to FLMI function(
ř

iPDt

max
jPA

Sij ` η
ř

iPA

max
jPDt

Sij)

with η “ 0.

Hence, the optimization problem of Craig adapted to match gradients of a held-out

validation set is an instance of maximization of the FLMI function with η “ 0.

D.3 SDA loss

CCSA: In CCSA, the classifier is modeled as a composition of two functions–h ˝ g. Here,

g : X Ñ Z is a feature extractor that transforms the input from the feature space X to an

embedding space Z, and h : Z Ñ Y is a predictor function. Let Xs
y and X t

y denote the source

206

and the target domain samples with label y P Y , respectively. The semantic alignment loss

(LSA) for CCSA is defined as,

LSApgq “
ÿ

yPY

d
`

P
`

g
`

Xs
y

˘˘

, P
`

g
`

X t
y

˘˘˘

,

where dp.q indicates a distance measure between the distributions of Xs
y and X t

y in the

embedding space and P p.q indicates the distribution. LSA encourages the samples from

different domains and the same label to map nearby in the embedding space. The separation

loss (LS) is defined as

LSpgq “
ÿ

a,bPY |a‰b

k
`

P pg pXs
aqq , P

`

g
`

X t
b

˘˘˘

,

where k is a similarity measure that returns a higher value when the distribution of Xs
a

and X t
b is close in the embedding space. Hence, LS encourages the samples from different

domains and different labels to map far away in the embedding space. Overall the CCSA loss

is defined as a combination of cross-entropy loss, semantic alignment loss, and separation

loss,

LCCSAph ˝ gq “ LCEph ˝ gq ` LSApgq ` LSpgq.

The distance measure (d) in the semantic alignment loss and the similarity measure (k)

in the separation loss are computed as average of pairwise similarities and distances between

all the samples from the source and the target domain, respectively. Further assumptions

on d and k lends them into a well known contrastive loss function (cf. Motiian et al. (2017)

for details).

d-SNE: Instead of minimizing the average of distances between all pairs of samples,

Xu et al. (2019), in d-SNE, proposes to minimize the largest distance of the samples from

207

different source with same label, and maximizing the smallest distance of the samples from

different source and different labels. Let Ds
y denote the subset of source data with label y,

then the loss function L̃pgq is defined as,

L̃pgq “
ÿ

xjPDt

˜

sup
xPDs

yj

a | a P d`gpxq, gpxjq
˘(´ inf

xPDszDs
yj

b | b P d`gpxq, gpxjq
˘(

¸

.

The complete d-SNE loss is defined as a combination of L̃ and cross-entropy loss on

source and target domain.

Ld-SNEph ˝ gq “ L̃pgq ` αLsCEph ˝ gq ` βLtCEph ˝ gq.

D.4 Experiment details

We use a common training process and hyperparameters for all our experiments. We use

the following hyperparameters:

• Optimization Algorithm: SGD with Momentum

• Learning Rate: 0.001 with Cosine Annealing

• Momentum: 0.9

• Weight Decay: 5e-4

• SMI query diversity hyperparameter(η): 1

• Number of epochs: 300

We use a single GTX 1080 Ti GPU for experiments.

208

Full d-SNE+Orient Full d-SNE+Orient

Figure D.1: GradCam (Selvaraju et al., 2017) activation maps of the models learned using
d-SNE + Full and d-SNE + Orient (FLMI) on the Office-Home dataset with “Product” as
the source domain and “Real World” as the target domain. As evidenced by class activation
maps, the Orient framework enabled the model to learn more effective class discriminative
features than Full data training consistently.

209

Table D.1: Test accuracy on Office-31 dataset.

A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D

Full 0.77˘ 0.02 0.71˘ 0.02 0.62˘ 0.01 0.95˘ 0.01 0.61˘ 0.01 0.98˘ 0.01
Random 0.63˘ 0.03 0.57˘ 0.04 0.54˘ 0.02 0.86˘ 0.02 0.5˘ 0.03 0.91˘ 0.02
Orient (FLMI) 0.79˘ 0.02 0.73˘ 0.01 0.62˘ 0.01 0.93˘ 0.01 0.59˘ 0 0.96˘ 0.01
Orient (GC) 0.52˘ 0.12 0.5˘ 0.08 0.39˘ 0.07 0.69˘ 0.11 0.42˘ 0.09 0.72˘ 0.08
Orient (L) 0.74˘ 0.03 0.72˘ 0.02 0.63˘ 0.01 0.93˘ 0.01 0.58˘ 0.01 0.97˘ 0.01
Orient (G) 0.75˘ 0.01 0.72˘ 0.01 0.61˘ 0.01 0.92˘ 0.01 0.58˘ 0.01 0.96˘ 0
Orient (GM) 0.77˘ 0.02 0.73˘ 0.02 0.61˘ 0.01 0.93˘ 0.01 0.61˘ 0.01 0.97˘ 0.01

Table D.2: Training time (in hours) for 300 epochs on Office-31 dataset

A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D

Full 3.13˘ 0.02 3.04˘ 0.02 1.47˘ 0.52 1.37˘ 0 1.81˘ 1.12 1.25˘ 0.01
Random 0.95˘ 0.01 0.92˘ 0 0.77˘ 0.04 0.48˘ 0.13 0.73˘ 0.01 0.39˘ 0
Orient (FLMI) 1.04˘ 0.09 0.82˘ 0.18 0.89˘ 0.01 0.46˘ 0.01 0.34˘ 0.01 0.43˘ 0
Orient (GC) 1.02˘ 0.02 0.97˘ 0 0.84˘ 0.01 0.46˘ 0 0.7˘ 0.02 0.43˘ 0.01
Orient (L) 1.53˘ 0 1.48˘ 0.02 0.81˘ 0.01 0.46˘ 0 0.71˘ 0.01 0.45˘ 0
Orient (G) 1.04˘ 0.02 0.99˘ 0 0.55˘ 0.11 0.47˘ 0 0.35˘ 0.01 0.43˘ 0
Orient (GM) 1.16˘ 0.03 1.08˘ 0.01 0.86˘ 0.22 0.56˘ 0.02 0.35˘ 0 0.49˘ 0.01

D.5 Additional results

Figure D.1 presents the GradCam (Selvaraju et al., 2017) class-activation maps of trained

models on the Office-Home dataset (P Ñ R setting) using d-SNE loss for both Full and Ori-

ent (FLMI). These activation maps show that the model trained with Orient framework

learn effective class discriminative features more consistently than Full.

We present the test accuracy of models trained using cross-entropy loss on a combination

of source and target domain data, DsYDt, of Office-31 and Office-Home datasets in D.1 and

D.5, respectively. We performed 3 runs of each experiment using different initial training

data subset each time. We see that Orient(FLMI) and Orient(GM) perform similar to

Full and outperform Random across all experiments. Tables D.2 and D.6 show the training

times for these settings. We see that all instantiations of Orient except Orient(L) achieve

„ 3ˆ speed-up compared to Full.

210

Table D.3: Test accuracy on Office-31 dataset with SDA methods

A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D

C
C

S
A

Full 0.78˘ 0 0.72˘ 0 0.55˘ 0 0.93˘ 0 0.55˘ 0 0.97˘ 0
Random 0.76˘ 0.01 0.72˘ 0.01 0.54˘ 0.02 0.81˘ 0.02 0.54˘ 0.01 0.92˘ 0.02
Orient (G) 0.78˘ 0.03 0.73˘ 0.02 0.55˘ 0.04 0.92˘ 0.01 0.56˘ 0 0.97˘ 0.01
Orient (GM) 0.78˘ 0.01 0.74˘ 0.51˘ 0.04 0.88˘ 0.02 0.55˘ 0.02 0.97˘ 0.02
Orient (FLMI) 0.77˘ 0 0.76˘ 0.01 0.55˘ 0 0.89˘ 0.02 0.55˘ 0.02 0.96˘ 0.01

d
-S

N
E

Full 0.77˘ 0 0.69˘ 0 0.53˘ 0.01 0.93˘ 0 0.54˘ 0 0.98˘ 0
Random 0.76˘ 0.02 0.68˘ 0.02 0.53˘ 0.02 0.86˘ 0.02 0.53˘ 0.01 0.94˘ 0.02
Orient (G) 0.73˘ 0 0.69˘ 0.01 0.52˘ 0.02 0.93˘ 0.01 0.54˘ 0 0.97˘ 0.01
Orient (GM) 0.76˘ 0.01 0.69˘ 0.52˘ 0.04 0.89˘ 0.02 0.54˘ 0.02 0.97˘ 0.01
Orient (FLMI) 0.78˘ 0 0.71˘ 0.01 0.55˘ 0 0.90˘ 0.02 0.56˘ 0.02 0.97˘ 0.01

Table D.4: Training time in hours on Office-31 with SDA methods

A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D

C
C

S
A

Full 24.11˘ 0.02 27.81˘ 1.0 7.16˘ 0.1 7.84˘ 0.01 10.46˘ 0.01 10.54˘ 1.15
Random 14.71˘ 2.5 14.64˘ 0.19 3.37˘ 0.02 2.64˘ 0.39 4.11˘ 0.08 3.25˘ 0.77
Orient (G) 16.59˘ 0.42 15.53˘ 1.2 3.63˘ 0 3.45˘ 0.48 4.53˘ 0.21 4.14˘ 0.77
Orient (GM) 17.11˘ 1.11 15.6˘ 3.14˘ 0.95 4.1˘ 0.34 5.33˘ 0.6 5.21˘ 1.29
Orient (FLMI) 13.93˘ 8.85 13.24˘ 8.47 3.79˘ 0.65 3.53˘ 1.3 5.34˘ 1.27 5.21˘ 1.25

d
-S

N
E

Full 11.57˘ 0.02 8.33˘ 0.5 2.01˘ 0.1 2.21˘ 0.1 2.18˘ 0.1 3.42˘ 0.2
Random 3.49˘ 0.05 2.48˘ 0.01 0.61˘ 0.02 0.65˘ 0.013 0.69˘ 0.01 1.04˘ 0.02
Orient (G) 3.53˘ 0.05 2.5072˘ 0.02 0.66˘ 0.05 0.69˘ 0.01 0.72˘ 0.01 1.06˘ 0.01
Orient (GM) 3.56˘ 0.01 2.56˘ 0.01 0.68˘ 0.02 0.71˘ 0.03 0.73˘ 0.03 1.10˘ 0.02
Orient (FLMI) 3.55˘ 0.01 2.53˘ 0.04 0.66˘ 0.01 0.69˘ 0.01 0.72˘ 0.02 1.06˘ 0.02

211

Table D.5: Test accuracy on Office-Home dataset

R Ñ P R Ñ C P Ñ R P Ñ C C Ñ R C Ñ P A Ñ P A Ñ R A Ñ C R Ñ A P Ñ A C Ñ A

Full 0.79 0.5 0.62 0.49 0.59 0.68 0.71 0.63 0.5 0.58 0.48 0.43
Random 0.69 0.39 0.58 0.37 0.5 0.58 0.61 0.55 0.38 0.46 0.42 0.34
Orient (G) 0.77 0.5 0.66 0.48 0.61 0.67 0.71 0.63 0.49 0.55 0.53 0.42
Orient (GM) 0.76 0.5 0.64 0.47 0.59 0.71 0.73 0.67 0.48 0.57 0.5 0.46
Orient (FLMI) 0.79 0.52 0.63 0.48 0.62 0.69 0.72 0.65 0.5 0.55 0.45 0.46

Table D.6: Training time(in hours) for 300 epochs on Office-Home dataset

R Ñ P R Ñ C P Ñ R P Ñ C C Ñ R C Ñ P A Ñ P A Ñ R A Ñ C R Ñ A P Ñ A C Ñ A

Full 44.28 61.58 37.72 57.2 18.47 59.6 14.86 13.96 9.61 27.55 23.97 20.32
Random 6.92 21.34 13.8 11.72 7.16 17.5 7.6 7.11 5.79 10.32 14.3 10.27
Orient (G) 14.41 13.65 15.57 9.95 6.93 12.61 8.46 8.29 6.8 11.49 16.28 11.42
Orient (GM) 15.88 26.15 17 22.78 10.02 13.18 9.77 9.23 7.38 12.48 17.34 12.02
Orient (FLMI) 7.78 25.84 15.73 13.33 7.02 19.97 8.85 8.45 6.62 11.47 16.33 11.31

Table D.7: Test accuracy on Office-Home with SDA methods

R Ñ P R Ñ C P Ñ R P Ñ C C Ñ R C Ñ P A Ñ P A Ñ R A Ñ C R Ñ A P Ñ A C Ñ A

C
C

S
A

Full 0.74 0.55 0.62 0.46 0.56 0.67 0.70 0.64 0.48 0.57 0.49 0.41
Random 0.71 0.47 0.62 0.45 0.54 0.66 0.69 0.57 0.48 0.5 0.47 0.45
Orient(G) 0.78 0.54 0.63 0.5 0.59 0.7 0.72 0.62 0.5 0.57 0.49 0.5
Orient(GM) 0.75 0.5 0.63 0.48 0.59 0.69 0.69 0.63 0.49 0.51 0.5 0.46
Orient(FLMI) 0.78 0.54 0.65 0.5 0.61 0.71 0.71 0.65 0.51 0.59 0.54 0.47

d
-S

N
E Full 0.77 0.53 0.62 0.50 0.60 0.71 0.72 0.63 0.49 0.52 0.44 0.40

Random 0.75 0.50 0.60 0.45 0.57 0.69 0.68 0.59 0.49 0.46 0.43 0.40
Orient(G) 0.75 0.51 0.62 0.49 0.59 0.7 0.72 0.62 0.5 0.54 0.44 0.41
Orient(GM) 0.76 0.52 0.62 0.50 0.59 0.70 0.71 0.61 0.49 0.51 0.46 0.42
Orient(FLMI) 0.77 0.52 0.63 0.50 0.60 0.71 0.71 0.61 0.51 0.52 0.44 0.42

Table D.8: Training time(in hours) on Office-Home with SDA methods

R Ñ P R Ñ C P Ñ R P Ñ C C Ñ R C Ñ P A Ñ P A Ñ R A Ñ C R Ñ A P Ñ A C Ñ A

C
C

S
A

Full 17.73 17.53 18.23 14.93 17.25 16.42 10.32 9.45 16.13 17.67 8.29 11.35
Random 5.57 5.17 4.74 4.87 5.57 4.62 3.48 3.12 4.25 5.88 2.52 3.45
Orient (G) 6.01 6.94 5.78 5.15 6.61 5.92 3.71 3.41 4.61 6.13 2.87 4.12
Orient (GM) 5.73 5.69 5.15 5.39 6.12 5.34 3.78 3.85 4.66 6.27 3.17 3.95
Orient (FLMI) 6.12 6.13 5.73 6.17 5.56 5.99 3.94 3.34 4.89 6.72 2.78 4.23

d
-S

N
E Full 16.84 16.68 17.42 9.55 17.05 9.60 6.64 9.94 6.29 18.81 11.69 11.27

Random 5.23 5.31 5.26 2.87 5.12 2.88 1.99 3.11 1.90 5.85 3.55 3.41
Orient (G) 5.48 5.61 5.42 2.98 5.32 2.96 2.11 3.48 1.95 6.21 3.63 3.53
Orient (GM) 6.08 6.01 5.50 3.09 5.51 3.12 2.17 3.65 2.08 6.62 3.81 3.93
Orient (FLMI) 5.56 5.48 5.44 3.01 5.34 2.98 2.07 3.44 2.04 6.23 3.67 3.58

We present test accuracy of models trained using SDA loss on source domain data, Ds,

of Office-31 dataset in D.3. Again, we see that all instantiations of Orient perform similar

212

to Full while outperforming Random. Table D.4 shows the training times for this setting.

Again, we see that all instantiations of Orient achieve „ 2.5ˆ speed-up compared to Full.

Finally, Table D.7 presents the test accuracy of models trained using SDA loss on source

domain data, Ds, of Office-Home dataset. Here, we see that instantiations of Orient

perform substantially better than Full and Random in some experiments and perform similar

to Full in the rest. In particular, Orient(FLMI) outperforms Full in the settings of RÑ P ,

C Ñ R, C Ñ P and P Ñ A. Table D.8 presents the corresponding training times. Once

again, we see that instantiations of Orient achieve „ 3ˆ speed-up compared to Full.

D.5.1 Synthetic experiments

To provide better intuition into how different SMI functions select data subsets, we present

a comparison of the subset selected for two toy datasets in Figures D.2 and D.3. Figure

D.2a and D.3a presents the synthetic dataset with 5000 samples in the source domain. The

target domain consists of the 500 data points highlighted with a different color. The query

set is of size 50. We present the subset selected by ORIENT with Facility Location Mutual

Information (ORIENT (FLMI)), GradMatch (ORIENT (GM)), GLISTER (ORIENT

(G)), Log Determinant Mutual Information (ORIENT (LDMI)), and Graph Cut Mutual

Information (ORIENT (GCMI)). From the results, it is evident that the FLMI function

selects sample sources closer to the target domain than other SMI functions. In contrast, the

GM function selects representative samples from the source domain. Our results show that

the G function selects samples near the decision boundaries of the source domain data. The

GCMI function selects samples from a source domain that are very similar and clustered

together. In synthetic results, we found that the LDMI function tends to prioritize the

selection of data samples from certain classes compared to others.

213

D.5.2 Analysis of data subset size

Table D.9 presents the target domain accuracies achieved using different subset sizes on the

office-31 dataset using d-SNE loss, and Table D.10 presents the training times taken by using

different subset sizes on the office-31 dataset using d-SNE loss. As seen, on reducing the

subset size from 0.3 fraction to 0.1, model experiences loss of accuracy but gains in terms of

training time. Hence, there is a trade-off between training time and accuracy of the model.

Higher fraction of the data would lead to better performance in accuracy but also require

more training time. Where as, lower fraction would require less training time but might

result in lower accuracy.

Table D.9: Comparison of test accuracy for office-31 with d-SNE loss function and different
fractions of subset selection.

Fraction A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D

Full 1.0 0.77 0.69 0.53 0.93 0.54 0.98
Random 0.1 0.65 0.58 0.43 0.62 0.48 0.72
Random 0.3 0.76 0.68 0.53 0.86 0.53 0.94

Orient(FLMI) 0.1 0.70 0.67 0.50 0.77 0.48 0.92
Orient(FLMI) 0.3 0.78 0.71 0.55 0.90 0.56 0.97
Orient(G) 0.1 0.75 0.60 0.42 0.70 0.48 0.89
Orient(G) 0.3 0.76 0.66 0.50 0.87 0.52 0.96

Table D.10: Training time in hours on Office-31 with d-SNE loss function and different
fractions of subset selection.

Fraction A Ñ D A Ñ W D Ñ A D Ñ W W Ñ A W Ñ D

Full 1.0 11.57 8.33 2.01 2.21 2.18 3.42
Random 0.1 1.18 0.83 0.20 0.22 0.23 0.34
Random 0.3 3.49 2.48 0.61 0.65 0.69 1.04

Orient (FLMI) 0.1 1.25 0.89 0.25 0.26 0.26 0.38
Orient (FLMI) 0.3 3.55 2.53 0.66 0.69 0.72 1.06
Orient (G) 0.1 1.21 0.87 0.25 0.26 0.25 0.37
Orient (G) 0.3 3.53 2.51 0.66 0.69 0.72 1.06

214

D.5.3 Analysis of L for subset selection

We present comparison of target domain accuracy achieved by ORIENT (FLMI) for different

L values of 5, 10, 20, 40 on Office 31 (AÑD) using d-SNE loss and 30% subset in Table D.11.

Note that smaller the value of L is, greater the frequency of subset selection. Results demon-

strate that using L “ 5, 10 (i.e., more frequent subset selection) results in higher training

time with no improvement in accuracy. Whereas using L “ 40(i.e., less frequent subset

selection) results in lower target domain accuracy with not much significant improvement in

training time. Hence, we used L “ 20 in our experiments.

Table D.11: Table showing target domain accuracy and training time taken(in hrs) achieved
on office-31 (A Ñ D) using d-SNE loss function and 30% subset.

Method Epoch Interval (L) Target domain accuracy Time Taken(in hrs)
Orient(FLMI) 5 0.78 3.75
Orient(FLMI) 10 0.78 3.61
Orient(FLMI) 20 0.78 3.55
Orient(FLMI) 40 0.77 3.51

D.5.4 Analysis of time taken

Additionally, we present the convergence curve of training time against the validation loss

in Fig. D.4. As different methods use different losses, the absolute values of loss are not

directly comparable. But we still like to present these plots to show that even though the

Full starts with reasonable performance in terms of accuracy (in Fig. D.4), it does not start

with lowest validation loss, and multiple training epochs are necessary before it converges.

The plots show that the training time required by the ORIENT methods to converge is

consistently lower than the training time required by Full to converge.

Tables D.12, D.13, D.14, D.15, D.16, D.17, D.18, D.19, D.20, D.21, D.22, and D.23

present ratio of time taken by subset selection methods with respect to Full training to

achieve test accuracy in the range of (0.3, 0.8) with increments of 0.05. We could see that

215

Table D.12: Setting: R Ñ P

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Random 6.31 6.31 6.31 6.31 6.31 6.31 6.31 3.13 0.51 0.0 0.0
CRAIG 4.78 4.78 4.78 4.78 4.78 4.78 0.27 0.0 0.0 0.0 0.0
ORIENT (FLMI) 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17 1.92 6.21 3.21
ORIENT (G) 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 0.22 2.01 0.0
ORIENT (GM) 3.93 3.93 3.93 3.93 3.93 3.93 3.93 1.29 0.43 3.53 0.0

Table D.13: Setting: R Ñ C

Accuracy threshold 0.3 0.35 0.4 0.45 0.5
Random 3.22 3.22 1.62 0.0 0.0
CRAIG 0.58 0.0 0.0 0.0 0.0
ORIENT (FLMI) 3.18 3.18 1.48 1.48 0.35
ORIENT (G) 7.58 7.58 7.58 0.72 0.45
ORIENT (GM) 4.83 4.83 2.04 0.97 0.3

Table D.14: Setting: R Ñ A

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55
Random 3.38 3.38 3.38 3.38 3.38 0.0
CRAIG 4.7 4.7 4.7 4.7 0.0 0.0
ORIENT (FLMI) 3.42 3.42 3.42 3.42 0.75 0.42
ORIENT (G) 3.4 3.4 3.4 3.4 0.31 0.26
ORIENT (GM) 3.35 3.35 3.35 3.35 3.35 0.9

Speedups achieved by different subset selection strategies w.r.t Full training to reach different
accuracy thresholds for different combinations using R as source domain on the Officehome
dataset in the augmented setting.

Orient(FLMI) achieves a performance threshold faster than Full in 70 out of 82 cases,

Orient(GM) achieves a performance threshold faster than Full in 65 out of 82 cases, Ori-

ent(G) achieves a performance threshold faster than Full in 60 out of 82 cases, whereas

CRAIG achieves a performance threshold faster than Full in 27 out of 82 cases and Random

achieves a performance threshold faster than Full in 56 out of 82 cases consisting only of

lower accuracy thresholds. Furthermore, Random always fails to achieve similar accuracy to

216

Table D.15: Setting: P Ñ R

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Random 3.31 3.31 3.31 3.31 3.31 3.31 0.37 0.0
CRAIG 6.24 6.24 6.24 6.24 0.39 0.0 0.0 0.0
ORIENT (FLMI) 3.38 3.38 3.38 3.38 3.38 3.38 0.48 1.62
ORIENT (G) 3.25 3.25 3.25 3.25 3.25 3.25 0.32 1.54
ORIENT (GM) 3.39 3.39 3.39 3.39 3.39 3.39 1.38 1.72

Table D.16: Setting: P Ñ C

Accuracy threshold 0.3 0.35 0.4 0.45 0.5
Random 9.46 9.46 4.47 0.0 0.0
CRAIG 0.0 0.0 0.0 0.0 0.0
ORIENT (FLMI) 9.72 4.02 4.02 1.48 Improved
ORIENT (G) 8.88 8.88 1.27 0.91 0.0
ORIENT (GM) 4.02 4.02 4.02 0.47 0.0

Table D.17: Setting: P Ñ A

Accuracy threshold 0.3 0.35 0.4 0.45 0.5
Random 3.31 3.31 3.31 3.31 0.0
CRAIG 8.32 8.32 0.0 0.0 0.0
ORIENT (FLMI) 3.34 3.34 1.54 0.74 Improved
ORIENT (G) 3.3 3.3 3.3 0.36 Improved
ORIENT (GM) 3.28 3.28 3.28 1.39 Improved

Speedups achieved by different subset selection strategies w.r.t Full training to reach different
accuracy thresholds for different combinations using P as source domain on the Officehome
dataset in the augmented setting.

Full. From this, it is evident that Orientachieves faster performance thresholds than FULL

in most cases.

Table D.24 presents the ratio of time taken by subset selection methods with respect

to Full training to achieve validation loss withing 105% of the minimum validation loss.

Even with this impractical stopping criterion we see average speedups of 2.26, 2.37 and

1.85 for Orient(FLMI), Orient(G) and Orient(GM), respectively. Similarly, speedups

217

Table D.18: Setting: C Ñ R

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Random 3.38 3.38 3.38 3.38 1.69 0.0 0.0
CRAIG 2.26 2.26 0.17 0.0 0.0 0.0 0.0
ORIENT (FLMI) 3.33 3.33 3.33 3.33 1.49 1.49 2.99
ORIENT (G) 3.29 3.29 3.29 3.29 3.29 0.24 1.81
ORIENT (GM) 3.29 3.29 3.29 3.29 3.29 0.5 1.54

Table D.19: Setting: C Ñ P

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Random 2.22 2.22 2.22 2.22 2.22 0.44 0.0 0.0 0.0
CRAIG 9.98 9.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ORIENT (FLMI) 2.46 2.46 2.46 2.46 2.46 1.1 0.7 0.29 Improved
ORIENT (G) 3.09 3.09 3.09 3.09 3.09 0.37 0.3 0.24 0.0
ORIENT (GM) 3.2 3.2 3.2 3.2 3.2 1.34 0.69 0.69 Improved

Table D.20: Setting: C Ñ A

Accuracy threshold 0.3 0.35 0.4 0.45
Random 3.34 1.66 0.0 0.0
CRAIG 0.0 0.0 0.0 0.0
ORIENT (FLMI) 3.38 3.38 0.75 Improved
ORIENT (G) 3.33 1.52 0.28 Improved
ORIENT (GM) 3.34 3.34 0.89 Improved

Speedups achieved by different subset selection strategies w.r.t Full training to reach different
accuracy thresholds for different combinations using C as source domain on the Officehome
dataset in the augmented setting.

achieved in reaching 1.1ˆ minimum validation loss for Orient(FLMI), Orient(G) and

Orient(GM) are 2.28, 2.38 and 1.85, respectively.

218

Table D.21: Setting: A Ñ R

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Random 3.28 3.28 3.28 3.28 3.28 1.64 0.0 0.0
CRAIG 5.26 5.26 5.26 5.26 0.45 0.29 0.0 0.0
ORIENT (FLMI) 3.34 3.34 3.34 3.34 3.34 3.34 1.48 0.0
ORIENT (G) 3.34 3.34 3.34 3.34 3.34 3.34 0.28 Improved
ORIENT (GM) 3.29 3.29 3.29 3.29 3.29 3.29 1.34 Improved

Table D.22: Setting: A Ñ P

Accuracy threshold 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Random 3.77 3.77 3.77 3.77 3.77 3.77 1.8 0.0 0.0
CRAIG 15.32 15.32 2.53 0.32 0.0 0.0 0.0 0.0 0.0
ORIENT (FLMI) 3.77 3.77 3.77 3.77 3.77 3.77 1.6 0.98 0.33
ORIENT (G) 3.76 3.76 3.76 3.76 3.76 3.76 0.37 0.37 0.24
ORIENT (GM) 3.74 3.74 3.74 3.74 3.74 3.74 1.41 0.5 0.36

Table D.23: Setting: A Ñ C

Accuracy threshold 0.3 0.35 0.4 0.45 0.5
Random 3.4 1.67 0.0 0.0 0.0
CRAIG 0.0 0.0 0.0 0.0 0.0
ORIENT (FLMI) 3.39 1.52 1.52 0.5 0.22
ORIENT (G) 3.36 3.36 0.36 0.36 0.0
ORIENT (GM) 3.32 3.32 1.35 0.41 0.19

Speedups achieved by different subset selection strategies w.r.t Full training to reach different
accuracy thresholds for different combinations using A as source domain on the Officehome
dataset in the augmented setting.

219

(a) Synthetic data (b) Orient(FLMI)

(c) Orient(GM) (d) Orient(G)

(e) Orient(LDMI) (f) Orient(GCMI)

Figure D.2: Subsets selected by different instantiations of Orient on a synthetic dataset.
(a) Synthetic data - We sample 50 examples from the target distributions for the query
set. (b) Orient (FLMI) selects samples close to the target distribution. (c) Orient (GM)
selects representative samples from the source domain. (d) Orient (G) selects samples near
the decision boundaries of the source domains. (e) Orient(LDMI) prioritizes selection of
data samples from certain classes over others (f) Orient(GCMI) selects samples from a
source domain that are very similar and clustered together.

220

(a) Synthetic data (b) Orient(FLMI)

(c) Orient(GM) (d) Orient(G)

(e) Orient(LDMI) (f) Orient(GCMI)

Figure D.3: Subsets selected by different instantiations of Orient on a synthetic dataset.
(a) Synthetic data - We sample 50 examples from the target distributions for the query
set. Target domain is skewed to the right for class 0 and left for class 1 as compared to
the source domain. (b) Orient (FLMI) selects samples close to the target distribution.
(c) Orient (GM) selects representative samples from the source domain. (d) Orient (G)
selects samples near the decision boundaries of the source domains. (e) Orient(LDMI)
prioritizes selection of data samples from certain classes over others (f) Orient(GCMI)
selects samples from a source domain that are very similar and clustered together.

221

(a.1) A Ñ C (a.2) A Ñ P (a.3) A Ñ R

(b.1) C Ñ A (b.2) C Ñ P (b.3) C Ñ R

(c.1) P Ñ A (c.2) P Ñ C (c.3) P Ñ R

(d.1) R Ñ A (d.2) R Ñ C (d.3) R Ñ P

Figure D.4: Convergence curves on four domains of Office-Home dataset: Art (A), Clipart (C),
Product (P), and Real World (R). X-axis presents the training time in hours and Y -axis presents
the Validation loss on the target domain.

222

T
ab

le
D

.2
4:

S
p

ee
d

u
p
s

ac
h
ie

ve
d

b
y

d
iff

er
en

t
va

ri
an

ts
of

O
r
ie
n
t

w
h
en

u
si

n
g

1.
05
ˆ

th
e

m
in

im
u
m

va
li
d
at

io
n

lo
ss

as
a

st
op

p
in

g
cr

it
er

io
n

fo
r

tr
ai

n
in

g.

C
Ñ

P
C
Ñ

R
R
Ñ

A
P
Ñ

R
R
Ñ

P
A
Ñ

C
C
Ñ

A
R
Ñ

C
P
Ñ

A
A
Ñ

P
A
Ñ

R
P
Ñ

C
A

ve
ra

ge
sp

ee
d
u
p

O
R

IE
N

T
(F

L
M

I)
3.

58
2.

81
1.

25
2.

1
3.

1
1.

28
1.

8
2.

41
1.

36
1.

77
1.

9
3.

8
2.

26
O

R
IE

N
T

(G
)

4.
46

2.
86

1.
32

2.
12

1.
36

1.
24

1.
86

4.
33

1.
28

1.
56

1.
69

4.
3

2.
37

O
R

IE
N

T
(G

M
)

4.
49

1.
84

1.
56

1.
83

1.
25

1.
22

1.
74

2.
39

1.
27

1.
34

1.
55

1.
68

1.
85

223

REFERENCES

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-
ing, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zhang (2016). Tensor-
flow: A system for large-scale machine learning. CoRR abs/1605.08695.

Abel, D., D. Arumugam, L. Lehnert, and M. L. Littman (2018). State abstractions for
lifelong reinforcement learning. In ICML, Volume 80 of Proceedings of Machine Learning
Research, pp. 10–19. PMLR.

Abiteboul, S., R. Hull, and V. Vianu (1995). Foundations of Databases. Addison-Wesley.

Alkhazraji, Y., M. Frorath, M. Grützner, M. Helmert, T. Liebetraut, R. Mattmüller,
M. Ortlieb, J. Seipp, T. Springenberg, P. Stahl, and J. Wülfing (2020). Pyperplan.
https://doi.org/10.5281/zenodo.3700819.

Altendorf, E., A. C. Restificar, and T. G. Dietterich (2005). Learning from sparse data by
exploiting monotonicity constraints. In UAI, pp. 18–26. AUAI Press.

Anderson, G., A. Verma, I. Dillig, and S. Chaudhuri (2020). Neurosymbolic reinforcement
learning with formally verified exploration. In NeurIPS.

Andre, D. and S. J. Russell (2002a). State abstraction for programmable reinforcement
learning agents. In AAAI/IAAI, pp. 119–125. AAAI Press / The MIT Press.

Andre, D. and S. J. Russell (2002b). State abstraction for programmable reinforcement
learning agents. In AAAI, pp. 119–125.

Andreas, J., D. Klein, and S. Levine (2017). Modular multitask reinforcement learning with
policy sketches. In ICML, Volume 70 of Proceedings of Machine Learning Research, pp.
166–175. PMLR.

Andrychowicz, M., D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, P. Abbeel, and W. Zaremba (2017). Hindsight experience replay. In NeurIPS, pp.
5048–5058.

Anglin, P. M. and R. Gencay (1996). Semiparametric estimation of a hedonic price function.
Journal of Applied Econometrics 11 (6).

Arpit, D., S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. C. Courville, Y. Bengio, and S. Lacoste-Julien (2017). A closer look at
memorization in deep networks. In ICML, Volume 70, pp. 233–242. PMLR.

Ash, J. T. and R. P. Adams (2020). On warm-starting neural network training. In NeurIPS.

224

https://doi.org/10.5281/zenodo.3700819

Ash, J. T., C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal (2020). Deep batch
active learning by diverse, uncertain gradient lower bounds. In ICLR. OpenReview.net.

Axelrod, A., X. He, and J. Gao (2011). Domain adaptation via pseudo in-domain data
selection. In EMNLP, pp. 355–362. ACL.

Bacchus, F. and Q. Yang (1991). The downward refinement property. In J. Mylopoulos and
R. Reiter (Eds.), IJCAI, pp. 286–293. Morgan Kaufmann.

Badreddine, S., A. d’Avila Garcez, L. Serafini, and M. Spranger (2022). Logic tensor net-
works. Artif. Intell. 303, 103649.

Bahdanau, D., K. Cho, and Y. Bengio (2015). Neural machine translation by jointly learning
to align and translate. In ICLR.

Banarescu, L., C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer, and N. Schneider (2013). Abstract meaning representation for
sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, LAW-ID@ACL, pp. 178–186.

Bartley, C., W. Liu, and M. Reynolds (2016a). Effective monotone knowledge integration in
kernel support vector machines. In ADMA, Volume 10086 of Lecture Notes in Computer
Science, pp. 3–18.

Bartley, C., W. Liu, and M. Reynolds (2016b). A novel technique for integrating monotone
domain knowledge into the random forest classifier. In AusDM, Volume 170 of CRPIT.
Australian Computer Society.

Bartley, C., W. Liu, and M. Reynolds (2019). Enhanced random forest algorithms for
partially monotone ordinal classification. In AAAI, pp. 3224–3231. AAAI Press.

Battaglia, P. W., J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Mali-
nowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre, H. F. Song, A. J.
Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu (2018).
Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261.

Ben-David, A. (1995). Monotonicity maintenance in information-theoretic machine learning
algorithms. Machine Learning 19 (1), 29–43.

Ben-David, S., J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Vaughan (2010). A
theory of learning from different domains. Machine Learning 79, 151–175.

Ben-David, S., J. Blitzer, K. Crammer, and F. Pereira (2006). Analysis of representations
for domain adaptation. In NIPS, pp. 137–144. MIT Press.

225

Bercher, P., R. Alford, and D. Höller (2019). A survey on hierarchical planning - one abstract

idea, many concrete realizations. In IJCAI, pp. 6267–6275. ijcai.org.

Bilmes, J. A. (2022). Submodularity in machine learning and artificial intelligence.

CoRR abs/2202.00132.

Bioch, J. C. and V. Popova (2002). Monotone decision trees and noisy data. Technical

report, Erasmus Research Institute of Management.

Blaylock, N., J. Allen, and G. Ferguson (2003). Managing Communicative Intentions with

Collaborative Problem Solving, pp. 63–84. Dordrecht: Springer Netherlands.

Blockeel, H. and L. D. Raedt (1998). Top-down induction of first-order logical decision trees.

Artif. Intell. 101 (1-2), 285–297.

Bonakdarpour, M., S. Chatterjee, R. F. Barber, and J. Lafferty (2018). Prediction rule

reshaping. In ICML, Volume 80 of Proceedings of Machine Learning Research, pp. 629–

637. PMLR.

Bonn, J., M. Palmer, Z. Cai, and K. Wright-Bettner (2020). Spatial AMR: expanded spatial

annotation in the context of a grounded minecraft corpus. In LREC, pp. 4883–4892.

European Language Resources Association.

Booch, G., F. Fabiano, et al. (2021). Thinking fast and slow in AI. In AAAI, pp. 15042–

15046.

Borsos, Z., M. Mutný, M. Tagliasacchi, and A. Krause (2021). Data summarization via

bilevel optimization. CoRR abs/2109.12534.

Bos, J. (2016). Expressive Power of Abstract Meaning Representations. Computational

Linguistics 42 (3), 527–535.

Brachman, R. J. and H. J. Levesque (2004). Knowledge Representation and Reasoning.

Elsevier.

Brafman, R. I. and M. Tennenholtz (2002). R-MAX - A general polynomial time algorithm

for near-optimal reinforcement learning. J. Mach. Learn. Res. 3, 213–231.

Breiman, L. (1999, 10). Prediction Games and Arcing Algorithms. Neural Computa-

tion 11 (7), 1493–1517.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification and

Regression Trees. Wadsworth.

226

Cabral, J., R. C. Kahlert, C. Matuszek, M. J. Witbrock, and B. Summers (2005). Converting
semantic meta-knowledge into inductive bias. In ILP, Volume 3625 of Lecture Notes in
Computer Science, pp. 38–50. Springer.

Campero, A., A. Pareja, T. Klinger, J. Tenenbaum, and S. Riedel (2018). Logical rule
induction and theory learning using neural theorem proving. CoRR abs/1809.02193.

Cano, J. R., P. A. Gutiérrez, B. Krawczyk, M. Wozniak, and S. Garćıa (2019). Monotonic
classification: An overview on algorithms, performance measures and data sets. Neuro-
computing 341, 168–182.

Chen, C. and S. Li (2014). Credit rating with a monotonicity-constrained support vector
machine model. Expert Systems with Applications 41 (16), 7235–7247.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting system. In KDD, pp.
785–794. ACM.

Chu, B., V. Madhavan, O. Beijbom, J. Hoffman, and T. Darrell (2016). Best practices for
fine-tuning visual classifiers to new domains. In ECCV Workshops (3), Volume 9915 of
Lecture Notes in Computer Science, pp. 435–442.

Ciresan, D. C., U. Meier, and J. Schmidhuber (2012). Multi-column deep neural networks
for image classification. In CVPR, pp. 3642–3649. IEEE Computer Society.

Clodic, A., H. Cao, S. Alili, V. Montreuil, R. Alami, and R. Chatila (2008). SHARY: A
supervision system adapted to human-robot interaction. In ISER, Volume 54 of Springer
Tracts in Advanced Robotics, pp. 229–238. Springer.

Cohen, N. and A. Shashua (2017). Inductive bias of deep convolutional networks through
pooling geometry. In ICLR (Poster). OpenReview.net.

Cohen, W. W., F. Yang, and K. Mazaitis (2020). Tensorlog: A probabilistic database
implemented using deep-learning infrastructure. J. Artif. Intell. Res. 67, 285–325.

Colombo, D. and M. H. Maathuis (2014). Order-independent constraint-based causal struc-
ture learning. Journal of Machine Learning Research 15 (1), 3741–3782.

Cropper, A. and S. Dumancic (2022). Inductive logic programming at 30: A new introduc-
tion. J. Artif. Intell. Res. 74, 765–850.

Das, M., P. Odom, M. R. Islam, J. R. Doppa, D. Roth, and S. Natarajan (2018). Preference-
guided planning: An active elicitation approach. In AAMAS, pp. 1921–1923.

Das, M., N. Ramanan, J. R. Doppa, and S. Natarajan (2020). Few-shot induction of gener-
alized logical concepts via human guidance. Frontiers Robotics AI 7, 122.

227

Das, S., S. Natarajan, K. Roy, R. Parr, and K. Kersting (2020). Fitted q-learning for
relational domains. CoRR abs/2006.05595.

d’Ascoli, S., L. Sagun, G. Biroli, and J. Bruna (2019). Finding the needle in the haystack
with convolutions: on the benefits of architectural bias. In NeurIPS, pp. 9330–9340.

d’Avila Garcez, A. S., T. R. Besold, L. D. Raedt, P. Földiák, P. Hitzler, T. Icard,
K. Kühnberger, L. C. Lamb, R. Miikkulainen, and D. L. Silver (2015). Neural-symbolic
learning and reasoning: Contributions and challenges. In AAAI Spring Symposia. AAAI
Press.

de Campos, C. P., Y. Tong, and Q. Ji (2008). Constrained maximum likelihood learning
of bayesian networks for facial action recognition. In ECCV (3), Volume 5304 of Lecture
Notes in Computer Science, pp. 168–181. Springer.

Devin, C., D. Geng, P. Abbeel, T. Darrell, and S. Levine (2019). Compositional plan vectors.
In NeurIPS, pp. 14963–14974.

Devin, S. and R. Alami (2016). An implemented theory of mind to improve human-robot
shared plans execution. In HRI, pp. 319–326. IEEE/ACM.

Dietterich, T. G. (1998). The maxq method for hierarchical reinforcement learning. In ICML,
pp. 118–126.

Dietterich, T. G. (2000a). An overview of hierarchical reinforcement learning. In Interna-
tional Symposium on Abstraction, Reformulation, and Approximation. Springer.

Dietterich, T. G. (2000b). State abstraction in maxq hierarchical reinforcement learning. In
NeurIPS, pp. 994–1000.

Dong, H., J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou (2019). Neural logic machines. In
ICLR.

Dorogush, A. V., V. Ershov, and A. Gulin (2017). Catboost: gradient boosting with cate-
gorical features support. In Workshop on ML Systems at NeurIPS.

Driessens, K., J. Ramon, and H. Blockeel (2001). Speeding up relational reinforcement
learning through the use of an incremental first order decision tree learner. In ECML,
Volume 2167 of Lecture Notes in Computer Science, pp. 97–108. Springer.

Dua, D. and C. Graff (2017). UCI ML Repository. http://archive.ics.uci.edu/ml.

Duivesteijn, W. and A. Feelders (2008). Nearest neighbour classification with monotonicity
constraints. In ECML/PKDD (1), Volume 5211 of Lecture Notes in Computer Science,
pp. 301–316. Springer.

228

http://archive.ics.uci.edu/ml

Dzeroski, S. (2010). Relational data mining. In Data Mining and Knowledge Discovery
Handbook, pp. 887–911. Springer.

Dzeroski, S., L. D. Raedt, and K. Driessens (2001). Relational reinforcement learning. Mach.
Learn. 43 (1/2), 7–52.

Edelkamp, S. and J. Hoffmann (2004). Pddl2.2: The language for the classical part of the 4th
international planning competition. Technical report, Technical Report 195, University of
Freiburg.

Eppe, M., P. D. H. Nguyen, and S. Wermter (2019). From semantics to execution: Integrating
action planning with reinforcement learning for robotic causal problem-solving. Frontiers
Robotics AI 6, 123.

Erol, K., J. A. Hendler, and D. S. Nau (1994). HTN planning: Complexity and expressivity.
In AAAI, pp. 1123–1128. AAAI Press / The MIT Press.

Evans, R. and E. Grefenstette (2018). Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64.

Feelders, A. J. and M. Pardoel (2003). Pruning for monotone classification trees. In IDA,
Volume 2810 of Lecture Notes in Computer Science, pp. 1–12. Springer.

Feldman, D. (2020). Core-sets: Updated survey. In Sampling Techniques for Supervised or
Unsupervised Tasks, pp. 23–44. Springer.

Fern, A., S. W. Yoon, and R. Givan (2006). Approximate policy iteration with a policy
language bias: Solving relational markov decision processes. J. Artif. Intell. Res. 25,
75–118.

FICO (2018). Explainable machine learning challenge. https://community.fico.com/s/

explainable-machine-learning-challenge.

Finzi, A. and T. Lukasiewicz (2006). Adaptive multi-agent programming in gtgolog. In KI,
Volume 4314, pp. 389–403.

Fiore, M., A. Clodic, and R. Alami (2014). On planning and task achievement modalities for
human-robot collaboration. In ISER, Volume 109 of Springer Tracts in Advanced Robotics,
pp. 293–306. Springer.

Fortunato, M., M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg (2018). Noisy networks for
exploration. In ICLR (Poster). OpenReview.net.

Fox, M. and D. Long (2002). Pddl+: Planning with time and metric resources. Technical
report, Tech. rep. Department of Computer Science, 21/02, University of Durham, UK.

229

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

Fox, M. and D. Long (2003). PDDL2.1: an extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res. 20, 61–124.

Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm. In
ICML, pp. 148–156. Morgan Kaufmann.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The
Annals of Statistics 29 (5), 1189 – 1232.

Friedman, N., L. Getoor, D. Koller, and A. Pfeffer (1999). Learning probabilistic relational
models. In IJCAI, pp. 1300–1309. Morgan Kaufmann.

Fu, L. and B. G. Buchanan (1985). Learning intermediate concepts in constructing a hier-
archical knowledge base. In IJCAI, pp. 659–666. Morgan Kaufmann.

Fujimoto, S., D. Meger, D. Precup, O. Nachum, and S. S. Gu (2022). Why should I trust
you, bellman? the bellman error is a poor replacement for value error. In ICML, Volume
162 of Proceedings of Machine Learning Research, pp. 6918–6943. PMLR.

Fujishige, S. (2005). Submodular functions and optimization. Elsevier.

Fung, G., O. L. Mangasarian, and J. W. Shavlik (2002). Knowledge-based support vector
machine classifiers. In NeurIPS, pp. 521–528. MIT Press.

Ganin, Y. and V. S. Lempitsky (2015). Unsupervised domain adaptation by backpropagation.
In ICML, Volume 37 of JMLR Workshop and Conference Proceedings, pp. 1180–1189.
JMLR.org.

Gatt, A. and E. Krahmer (2018). Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170.

Geffner, H. and B. Bonet (2013). A Concise Introduction to Models and Methods for Au-
tomated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Geirhos, R., C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A. Wichmann
(2018). Generalisation in humans and deep neural networks. In NeurIPS, pp. 7549–7561.

Gerevini, A. and D. Long (2005). Plan constraints and preferences in pddl3. Technical report,
Technical Report 2005-08-07, Department of Electronics for Automation, University of
Brescia, Brescia, Italy.

Getoor, L. and B. Tasker (Eds.) (2007). Introduction to statistical relational learning. MIT
press.

230

Ghallab, M., A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins (1998). Pddl — the planning domain definition language. Technical Report,
Tech. Rep..

Ghallab, M., D. S. Nau, and P. Traverso (2004). Automated planning - theory and practice.
Elsevier.

Girshick, R. B., J. Donahue, T. Darrell, and J. Malik (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In CVPR, pp. 580–587. IEEE
Computer Society.

Givan, R., T. Dean, and M. Greig (2003). Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence 147 (1-2), 163–223.

Glanois, C., Z. Jiang, X. Feng, P. Weng, M. Zimmer, D. Li, W. Liu, and J. Hao (2022).
Neuro-symbolic hierarchical rule induction. In ICML, Volume 162, pp. 7583–7615.

Goldman, R. P. and U. Kuter (2015). Measuring plan diversity: Pathologies in existing
approaches and A new plan distance metric. In AAAI, pp. 3275–3282. AAAI Press.

Gong, B., Y. Shi, F. Sha, and K. Grauman (2012). Geodesic flow kernel for unsupervised
domain adaptation. In CVPR, pp. 2066–2073. IEEE Computer Society.

González, S., F. Herrera, and S. Garćıa (2015). Monotonic random forest with an ensemble
pruning mechanism based on the degree of monotonicity. New Gener. Comput. 33 (4),
367–388.

González, S., F. Herrera, and S. Garćıa (2016). Managing monotonicity in classification by
a pruned adaboost. In HAIS, Volume 9648 of Lecture Notes in Computer Science, pp.
512–523. Springer.

Goodfellow, I. J., Y. Bengio, and A. C. Courville (2016). Deep Learning. Adaptive compu-
tation and machine learning. MIT Press.

Grounds, M. and D. Kudenko (2005). Combining reinforcement learning with symbolic
planning. In AAMAS III, Volume 4865, pp. 75–86.

Guestrin, C., D. Koller, C. Gearhart, and N. Kanodia (2003). Generalizing plans to new
environments in relational mdps. In IJCAI, pp. 1003–1010. Morgan Kaufmann.

Guestrin, C., R. Patrascu, and D. Schuurmans (2002). Algorithm-directed exploration for
model-based reinforcement learning in factored mdps. In ICML, pp. 235–242. Morgan
Kaufmann.

Guo, Y. and M. Xiao (2012). Cross language text classification via subspace co-regularized
multi-view learning. In ICML. icml.cc / Omnipress.

231

Gupta, A. and R. Levin (2020). The online submodular cover problem. In SODA, pp.
1525–1537. SIAM.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018). Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In ICML, Volume 80
of Proceedings of Machine Learning Research, pp. 1856–1865. PMLR.

Haas, D. M., C. B. Parker, D. A. Wing, S. Parry, W. A. Grobman, B. M. Mercer, H. N.
Simhan, M. K. Hoffman, R. M. Silver, P. Wadhwa, J. D. Iams, M. A. Koch, S. N. Caritis,
R. J. Wapner, M. S. Esplin, M. A. Elovitz, T. Foroud, A. M. Peaceman, G. R. Saade,
M. Willinger, and U. M. Reddy (2015). A description of the methods of the nulliparous
pregnancy outcomes study: monitoring mothers-to-be (nuMoM2b). American journal of
obstetrics and gynecology 212 (4), 539.e1–539.e24.

Hayes, A. L., M. Das, P. Odom, and S. Natarajan (2017). User friendly automatic construc-
tion of background knowledge: Mode construction from ER diagrams. In K-CAP, pp.
30:1–30:8. ACM.

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition.
In CVPR, pp. 770–778. IEEE Computer Society.

Hedderson, M. M., J. A. Darbinian, and A. Ferrara (2010). Disparities in the risk of gesta-
tional diabetes by race-ethnicity and country of birth. Paediatric and Perinatal Epidemi-
ology 24 (5), 441–448.

Hedegaard, L., O. A. Sheikh-Omar, and A. Iosifidis (2021). Supervised domain adaptation:
A graph embedding perspective and a rectified experimental protocol. IEEE Trans. Image
Process. 30, 8619–8631.

Helsper, E. M., L. C. van der Gaag, and F. Groenendaal (2004). Designing a procedure for
the acquisition of probability constraints for bayesian networks. In EKAW, Volume 3257
of Lecture Notes in Computer Science, pp. 280–292. Springer.

Hershey, J. R., S. J. Rennie, P. A. Olsen, and T. T. Kristjansson (2010). Super-human multi-
talker speech recognition: A graphical modeling approach. Comput. Speech Lang. 24 (1),
45–66.

Hessel, M., J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. G. Azar, and D. Silver (2018). Rainbow: Combining improvements in deep
reinforcement learning. In AAAI, pp. 3215–3222. AAAI Press.

Höller, D., G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, and R. Alford (2020).
HDDL: an extension to PDDL for expressing hierarchical planning problems. In AAAI,
pp. 9883–9891.

232

Hu, Z., X. Ma, Z. Liu, E. H. Hovy, and E. P. Xing (2016). Harnessing deep neural networks
with logic rules. In ACL (1). The Association for Computer Linguistics.

Huang, D., S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles (2019).
Neural task graphs: Generalizing to unseen tasks from a single video demonstration. In
CVPR, pp. 8565–8574. Computer Vision Foundation / IEEE.

Huang, S. and S. Ontañón (2022). A closer look at invalid action masking in policy gradient
algorithms. In FLAIRS.

Igl, M., G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson (2021). Transient non-
stationarity and generalisation in deep reinforcement learning. In International Conference
on Learning Representations.

Ilghami, O. (2006). Documentation for jshop2. Tech Report .

Illanes, L., X. Yan, R. T. Icarte, and S. A. McIlraith (2020). Symbolic plans as high-level
instructions for reinforcement learning. ICAPS , 540–550.

Iyer, R. K., N. Khargonkar, J. A. Bilmes, and H. Asnani (2022). Generalized submodular
information measures: Theoretical properties, examples, optimization algorithms, and
applications. IEEE Trans. Inf. Theory 68 (2), 752–781.

Jackson, E., D. E. Appelt, J. Bear, R. C. Moore, and A. Podlozny (1991). A template
matcher for robust NL interpretation. In HLT. Morgan Kaufmann.

Janisch, J., T. Pevný, and V. Lisý (2021). Symbolic relational deep reinforcement learning
based on graph neural networks. RL4RealLife @ ICML2021 .

Jayannavar, P., A. Narayan-Chen, and J. Hockenmaier (2020). Learning to execute instruc-
tions in a minecraft dialogue. In ACL, pp. 2589–2602.

Jiang, Y., F. Yang, S. Zhang, and P. Stone (2019). Task-motion planning with reinforcement
learning for adaptable mobile service robots. In IROS, pp. 7529–7534.

Jiang, Z. and S. Luo (2019, 09–15 Jun). Neural logic reinforcement learning. In ICML,
Volume 97, pp. 3110–3119. PMLR.

Jiang, Z., P. Minervini, M. Jiang, and T. Rocktäschel (2021). Grid-to-graph: Flexible spatial
relational inductive biases for reinforcement learning. In AAMAS, pp. 674–682. ACM.

Johnson, M., K. Hofmann, T. Hutton, and D. Bignell (2016). The malmo platform for ai
experimentation. In IJCAI.

Kaggle (2020). State of data science and machine learning survey. https://www.kaggle.

com/kaggle-survey-2020.

233

https://www.kaggle.com/kaggle-survey-2020
https://www.kaggle.com/kaggle-survey-2020

Kaggle (2021). State of data science and machine learning survey. https://www.kaggle.

com/kaggle-survey-2021.

Kaggle (2022). State of data science and machine learning survey. https://www.kaggle.

com/kaggle-survey-2022.

Kanervisto, A., S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu,
W. Yang, W. Hong, Z. Huang, H. Chen, G. Zeng, Y. Lin, V. Micheli, E. Alonso, F. Fleuret,
A. Nikulin, Y. Belousov, O. Svidchenko, and A. Shpilman (2021). Minerl diamond 2021
competition: Overview, results, and lessons learned. In NeurIPS (Competition and De-
mos), Volume 176 of Proceedings of Machine Learning Research, pp. 13–28. PMLR.

Karanam, A., A. L. Hayes, H. Kokel, D. M. Haas, P. Radivojac, and S. Natarajan (2021). A
probabilistic approach to extract qualitative knowledge for early prediction of gestational
diabetes. In AIME, Volume 12721 of Lecture Notes in Computer Science, pp. 497–502.
Springer.

Kaur, N., G. Kunapuli, S. Joshi, K. Kersting, and S. Natarajan (2019). Neural networks for
relational data. In ILP, Volume 11770 of Lecture Notes in Computer Science, pp. 62–71.
Springer.

Kaur, N., G. Kunapuli, and S. Natarajan (2020). Non-parametric learning of lifted restricted
boltzmann machines. Int. J. Approx. Reason. 120, 33–47.

Kaushal, V., R. K. Iyer, S. Kothawade, R. Mahadev, K. Doctor, and G. Ramakrishnan
(2019). Learning from less data: A unified data subset selection and active learning
framework for computer vision. In WACV, pp. 1289–1299. IEEE.

Kautz, H. A. (2022). The third AI summer: AAAI robert s. engelmore memorial lecture. AI
Mag. 43 (1), 93–104.

Kazemi, S. M. and D. Poole (2018). Relnn: A deep neural model for relational learning. In
AAAI, pp. 6367–6375. AAAI Press.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu (2017). Lightgbm:
A highly efficient gradient boosting decision tree. In NeurIPS, pp. 3146–3154.

Kersting, K. and L. D. Raedt (2001). Towards combining inductive logic programming
with bayesian networks. In ILP, Volume 2157 of Lecture Notes in Computer Science, pp.
118–131. Springer.

Killamsetty, K., G. S. Abhishek, Aakriti, A. V. Evfimievski, L. Popa, G. Ramakrishnan, and
R. Iyer (2022). AUTOMATA: Gradient based data subset selection for compute-efficient
hyper-parameter tuning. In NeurIPS.

234

https://www.kaggle.com/kaggle-survey-2021
https://www.kaggle.com/kaggle-survey-2021
https://www.kaggle.com/kaggle-survey-2022
https://www.kaggle.com/kaggle-survey-2022

Killamsetty, K., D. Sivasubramanian, G. Ramakrishnan, A. De, and R. K. Iyer (2021).
GRAD-MATCH: gradient matching based data subset selection for efficient deep model
training. In ICML, Volume 139, pp. 5464–5474. PMLR.

Killamsetty, K., D. Sivasubramanian, G. Ramakrishnan, and R. K. Iyer (2021). GLISTER:
generalization based data subset selection for efficient and robust learning. In AAAI, pp.
8110–8118. AAAI Press.

Killamsetty, K., X. Zhao, F. Chen, and R. K. Iyer (2021). RETRIEVE: coreset selection for
efficient and robust semi-supervised learning. In NeurIPS, pp. 14488–14501.

Kim, M. and I. Han (2003). The discovery of experts’ decision rules from qualitative
bankruptcy data using genetic algorithms. Expert Systems with Applications 25 (4), 637–
646.

Kimura, D., M. Ono, S. Chaudhury, R. Kohita, A. Wachi, D. J. Agravante, M. Tatsubori,
A. Munawar, and A. Gray (2021). Neuro-symbolic reinforcement learning with first-order
logic. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 Novem-
ber, 2021, pp. 3505–3511. Association for Computational Linguistics.

Kirchhoff, K. and J. A. Bilmes (2014). Submodularity for data selection in machine trans-
lation. In EMNLP, pp. 131–141. ACL.

Köhn, A., J. Wichlacz, C. Schäfer, Á. Torralba, J. Hoffmann, and A. Koller (2020). MC-
saar-instruct: a platform for Minecraft instruction giving agents. In SIGDIAL, pp. 53–56.

Kokel, H., M. Das, R. Islam, J. Bonn, J. Cai, S. Dan, A. Narayan-Chen, P. Jayannavar,
J. R. Doppa, J. Hockenmaier, S. Natarajan, M. Palmer, and D. Roth (2021). Human-
guided collaborative problem solving: A natural language based framework. ICAPS (Demo
Track).

Kokel, H., M. Das, R. Islam, J. Bonn, J. Cai, S. Dan, A. Narayan-Chen, P. Jayannavar,
J. R. Doppa, J. Hockenmaier, S. Natarajan, M. Palmer, and D. Roth (2022). Lara –
human-guided collaborative problem solver: Effective integration of learning, reasoning
and communication. The Tenth Annual Conference on Advances in Cognitive Systems
(ACS).

Kokel, H., A. Manoharan, S. Natarajan, B. Ravindran, and P. Tadepalli (2021a). Dynamic
probabilistic logic models for effective abstractions in RL. StarAI Workshop @ AAAI .

Kokel, H., A. Manoharan, S. Natarajan, B. Ravindran, and P. Tadepalli (2021b, May).
RePReL: Integrating relational planning and reinforcement learning for effective abstrac-
tion. ICAPS 31 (1), 533–541.

235

Kokel, H., S. Natarajan, B. Ravindran, and P. Tadepalli (2022a). Dynamic probabilistic
logic models for effective abstractions in RL (Abstract). 5th Multidisciplinary Conference
on Reinforcement Learning and Decision Making (RLDM).

Kokel, H., S. Natarajan, B. Ravindran, and P. Tadepalli (2022b). RePReL: a unified frame-
work for integrating relational planning and reinforcement learning for effective abstraction
in discrete and continuous domains. Neural Computing and Applications .

Kokel, H., P. Odom, S. Yang, and S. Natarajan (2020). A unified framework for knowledge
intensive gradient boosting: Leveraging human experts for noisy sparse domains. In AAAI,
Volume 34, pp. 4460–4468. AAAI Press.

Kokel, H., N. Prabhakar, B. Ravindran, E. Blasch, P. Tadepalli, and S. Natarajan (2022).
Hybrid deep reprel: Integrating relational planning and reinforcement learning for infor-
mation fusion. IEEE 25th International Conference on Information Fusion (FUSION).

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press.

Konidaris, G. (2019). On the necessity of abstraction. Current Opinion in Behavioral
Sciences 29, 1–7.

Koniusz, P., Y. Tas, and F. Porikli (2017). Domain adaptation by mixture of alignments of
second-or higher-order scatter tensors. In CVPR, pp. 7139–7148. IEEE Computer Society.

Konstas, I., S. Iyer, M. Yatskar, Y. Choi, and L. Zettlemoyer (2017). Neural AMR: sequence-
to-sequence models for parsing and generation. In ACL (1), pp. 146–157.

Kothawade, S., N. Beck, K. Killamsetty, and R. K. Iyer (2021). SIMILAR: submodular
information measures based active learning in realistic scenarios. In NeurIPS, pp. 18685–
18697.

Kothawade, S., V. Kaushal, G. Ramakrishnan, J. A. Bilmes, and R. K. Iyer (2022). PRISM:
a rich class of parameterized submodular information measures for guided subset selection.
AAAI 36.

Krishnaswamy, N., P. Narayana, R. Bangar, K. Rim, D. Patil, D. G. McNeely-White, J. Ruiz,
B. A. Draper, J. R. Beveridge, and J. Pustejovsky (2020). Diana’s world: A situated
multimodal interactive agent. In AAAI, pp. 13618–13619. AAAI Press.

Kulkarni, T. D., K. Narasimhan, A. Saeedi, and J. Tenenbaum (2016). Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
NeurIPS, pp. 3675–3683.

Lake, B. M., R. Salakhutdinov, and J. B. Tenenbaum (2015). Human-level concept learning
through probabilistic program induction. Science 350 (6266), 1332–1338.

236

Lamb, L. C., A. S. d’Avila Garcez, M. Gori, M. O. R. Prates, P. H. C. Avelar, and M. Y.
Vardi (2020). Graph neural networks meet neural-symbolic computing: A survey and
perspective. In IJCAI, pp. 4877–4884.

Lemaignan, S., M. Warnier, E. A. Sisbot, A. Clodic, and R. Alami (2017). Artificial cognition
for social human-robot interaction: An implementation. Artif. Intell. 247, 45–69.

Li, A., T. Luo, Z. Lu, T. Xiang, and L. Wang (2019). Large-scale few-shot learning: Knowl-
edge transfer with class hierarchy. In CVPR, pp. 7212–7220. Computer Vision Foundation
/ IEEE.

Li, L., T. J. Walsh, and M. L. Littman (2006). Towards a unified theory of state abstraction
for mdps. In AI&M.

Li, R., A. Jabri, T. Darrell, and P. Agrawal (2020). Towards practical multi-object manip-
ulation using relational reinforcement learning. In ICRA, pp. 4051–4058. IEEE.

Liu, M. and O. Tuzel (2016). Coupled generative adversarial networks. In NeurIPS, pp.
469–477.

Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition. Springer.

Lovász, L. (1982). Submodular functions and convexity. In ISMP, pp. 235–257. Springer.

Lyle, C., M. Rowland, and W. Dabney (2022). Understanding and preventing capacity loss
in reinforcement learning. In International Conference on Learning Representations.

Lyu, D., F. Yang, B. Liu, and S. Gustafson (2019). SDRL: interpretable and data-efficient
deep reinforcement learning leveraging symbolic planning. In AAAI, pp. 2970–2977. AAAI
Press.

Makino, K., T. Suda, K. Yano, and T. Ibaraki (1996). Data analysis by positive decision
trees. In CODAS, pp. 257–264. World Scientific.

Manhaeve, R., S. Dumancic, A. Kimmig, T. Demeester, and L. D. Raedt (2018). Deep-
problog: Neural probabilistic logic programming. In NeurIPS, pp. 3753–3763.

Mason, L., J. Baxter, P. L. Bartlett, and M. R. Frean (1999). Boosting algorithms as gradient
descent. In NIPS, pp. 512–518. The MIT Press.

McDermott, D. V. (2000). The 1998 AI planning systems competition. AI Mag. 21 (2),
35–55.

Minoux, M. (1978). Accelerated greedy algorithms for maximizing submodular set functions.
In Optimization techniques, pp. 234–243. Springer.

237

Mirzasoleiman, B., J. A. Bilmes, and J. Leskovec (2020). Coresets for data-efficient training
of machine learning models. In ICML, Volume 119, pp. 6950–6960. PMLR.

Mirzasoleiman, B., K. Cao, and J. Leskovec (2020). Coresets for robust training of deep
neural networks against noisy labels.

Mitchener, L., D. Tuckey, M. Crosby, and A. Russo (2022). Detect, understand, act: A
neuro-symbolic hierarchical reinforcement learning framework. Volume 111, pp. 1523–
1549.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller (2013). Playing atari with deep reinforcement learning. CoRR abs/1312.5602.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis (2015).
Human-level control through deep reinforcement learning. Nature 518 (7540), 529–533.

Morsing, L. H., O. A. Sheikh-Omar, and A. Iosifidis (2020). Supervised domain adaptation
using graph embedding. In ICPR, pp. 7841–7847. IEEE.

Motiian, S., Q. Jones, S. M. Iranmanesh, and G. Doretto (2017). Few-shot adversarial
domain adaptation. In NIPS, pp. 6670–6680.

Motiian, S., M. Piccirilli, D. A. Adjeroh, and G. Doretto (2017). Unified deep supervised
domain adaptation and generalization. In ICCV, pp. 5716–5726. IEEE Computer Society.

Muandet, K., D. Balduzzi, and B. Schölkopf (2013). Domain generalization via invariant
feature representation. In ICML (1), Volume 28 of JMLR Workshop and Conference
Proceedings, pp. 10–18. JMLR.org.

Muggleton, S. and C. Feng (1990). Efficient induction of logic programs. In New Generation
Computing. Academic Press.

Muggleton, S. H. (1992). Inductive logic programming. Morgan Kaufmann (38).

Muggleton, S. H. (1995). Inverse entailment and progol. New Gener. Comput. 13 (3&4),
245–286.

Muggleton, S. H. and L. D. Raedt (1994). Inductive logic programming: Theory and meth-
ods. J. Log. Program. 19/20, 629–679.

Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, Inference and Learning.
Ph. D. thesis.

238

Narayan-Chen, A., P. Jayannavar, and J. Hockenmaier (2019). Collaborative dialogue in
minecraft. In ACL.

Narayan-Chen, A. Y. (2020). Towards collaborative dialogue in Minecraft. Ph. D. thesis,
University of Illinois at Urbana-Champaign.

Natarajan, S. and E. E. Altendorf (2005). First order conditional influence language. Tech-
nical report, Technical Report CS05-30-01, September 23, School of EECS, Oregon State
University, USA.

Natarajan, S., P. Tadepalli, E. Altendorf, T. G. Dietterich, A. Fern, and A. C. Restificar
(2005). Learning first-order probabilistic models with combining rules. In ICML, Volume
119 of ACM International Conference Proceeding Series, pp. 609–616. ACM.

Natarajan, S., P. Tadepalli, T. G. Dietterich, and A. Fern (2008). Learning first-order
probabilistic models with combining rules. Ann. Math. Artif. Intell. 54 (1-3), 223–256.

Nau, D. S., T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman (2003).
SHOP2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404.

Nau, D. S., Y. Cao, A. Lotem, and H. Muñoz-Avila (1999). SHOP: simple hierarchical
ordered planner. In IJCAI, pp. 968–975. Morgan Kaufmann.

Neville, J. and D. D. Jensen (2004). Dependency networks for relational data. In ICDM,
pp. 170–177. IEEE Computer Society.

Nilsson, M. and T. Ziemke (2007). Information fusion: a decision support perspective. In
FUSION, pp. 1–8. IEEE.

Nitti, D., V. Belle, T. D. Laet, and L. D. Raedt (2015). Sample-based abstraction for hybrid
relational mdps. In European Workshop on Reinforcement Learning.

Odom, P. and S. Natarajan (2018). Human-guided learning for probabilistic logic models.
Frontiers Robotics AI 5, 56.

Olson, R. S., W. L. Cava, Z. Mustahsan, A. Varik, and J. H. Moore (2018). Data-driven
advice for applying machine learning to bioinformatics problems. In PACIFIC SYMPO-
SIUM ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium, pp. 192–203.
World Scientific.

Parr, R. and S. J. Russell (1998). Reinforcement learning with hierarchies of machines. In
NeurIPS.

Patel, V. M., R. Gopalan, R. Li, and R. Chellappa (2015). Visual domain adaptation: A
survey of recent advances. IEEE Signal Process. Mag. 32 (3), 53–69.

239

Pazzani, M. J., C. Brunk, and G. Silverstein (1991). A knowledge-intensive approach to
learning relational concepts. In ML, pp. 432–436. Morgan Kaufmann.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn: Machine learning in
python. J. Mach. Learn. Res. 12, 2825–2830.

Peng, X., C. Wang, D. Gildea, and N. Xue (2017). Addressing the data sparsity issue in
neural AMR parsing. In EACL (1), pp. 366–375.

Picado, J., A. Termehchy, A. Fern, S. Pathak, P. Ilango, and J. Davis (2021). Scalable and
usable relational learning with automatic language bias. In SIGMOD Conference, pp.
1440–1451. ACM.

Plappert, M., M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schnei-
der, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and W. Zaremba (2018). Multi-
goal reinforcement learning: Challenging robotics environments and request for research.
CoRR abs/1802.09464.

Potharst, R. and J. C. Bioch (1999). A decision tree algorithm for ordinal classification. In
IDA, Volume 1642 of Lecture Notes in Computer Science, pp. 187–198. Springer.

Potharst, R. and A. J. Feelders (2002). Classification trees for problems with monotonicity
constraints. SIGKDD Explor. 4 (1), 1–10.

Quinlan, J. R. (1990). Learning logical definitions from relations. Mach. Learn. 5, 239–266.

Raedt, L. D. (1997). Logical settings for concept-learning. Artif. Intell. 95 (1), 187–201.

Raedt, L. D. (2008). Logical and relational learning. In SBIA, Volume 5249 of Lecture Notes
in Computer Science, pp. 1. Springer.

Raedt, L. D. and K. Kersting (2008). Probabilistic inductive logic programming. In Proba-
bilistic Inductive Logic Programming, Volume 4911 of Lecture Notes in Computer Science,
pp. 1–27.

Raedt, L. D., K. Kersting, S. Natarajan, and D. Poole (2016). Statistical relational artificial
intelligence: Logic, probability, and computation.

Ravindran, B. and A. G. Barto (2003). Smdp homomorphisms: An algebraic approach to
abstraction in semi markov decision processes. In IJCAI, pp. 1011–1018.

240

Richardson, M. and P. M. Domingos (2006). Markov logic networks. Mach. Learn. 62 (1-2),

107–136.

Riegel, R., A. G. Gray, F. P. S. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian,

R. Fagin, F. Barahona, U. Sharma, S. Ikbal, H. Karanam, S. Neelam, A. Likhyani, and

S. K. Srivastava (2020). Logical neural networks. CoRR abs/2006.13155.

Robertson, T., F. T. Wright, and R. Dykstra (1988). Order restricted statistical inference.

New York: Wiley.

Rocktäschel, T. and S. Riedel (2017). End-to-end differentiable proving. In NIPS, pp.

3788–3800.

Saenko, K., B. Kulis, M. Fritz, and T. Darrell (2010). Adapting visual category models

to new domains. In ECCV (4), Volume 6314 of Lecture Notes in Computer Science, pp.

213–226. Springer.

Saito, K., D. Kim, S. Sclaroff, T. Darrell, and K. Saenko (2019). Semi-supervised domain

adaptation via minimax entropy. pp. 8049–8057.

Salge, C., M. C. Green, R. Canaan, F. Skwarski, R. Fritsch, A. Brightmoore, S. Ye, C. Cao,

and J. Togelius (2020). The AI settlement generation challenge in minecraft. Künstliche

Intell. 34 (1).

Sammut, C. and R. B. Banerji (1986). Learning concepts by asking questions (pp. 167-191).

Machine learning: An artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Schwartz, R., J. Dodge, N. Smith, and O. Etzioni (2020). Green ai. Communications of the

ACM 63, 54 – 63.

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra (2017). Grad-

cam: Visual explanations from deep networks via gradient-based localization. In ICCV,

pp. 618–626. IEEE Computer Society.

Sen, P., B. W. S. R. de Carvalho, R. Riegel, and A. G. Gray (2022). Neuro-symbolic inductive

logic programming with logical neural networks. In AAAI, pp. 8212–8219.

Sener, O. and S. Savarese (2018). Active learning for convolutional neural networks: A

core-set approach. In ICLR. OpenReview.net.

Serafini, L., I. Donadello, and A. S. d’Avila Garcez (2017). Learning and reasoning in logic

tensor networks: theory and application to semantic image interpretation. In SAC, pp.

125–130. ACM.

241

Shah, R., S. H. Wang, C. Wild, S. Milani, A. Kanervisto, V. G. Goecks, N. R. Waytowich,
D. Watkins-Valls, B. Prakash, E. Mills, D. Garg, A. Fries, A. Souly, J. S. Chan, D. del
Castillo, and T. Lieberum (2021). Retrospective on the 2021 minerl BASALT competition
on learning from human feedback. In NeurIPS (Competition and Demos), Volume 176 of
Proceedings of Machine Learning Research, pp. 259–272. PMLR.

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and inference 90 (2), 227–244.

Shindo, H., D. S. Dhami, and K. Kersting (2021). Neuro-symbolic forward reasoning.
CoRR abs/2110.09383.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis (2016). Mastering the game of go with deep neural networks and tree search.
Nat. 529 (7587), 484–489.

Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis (2018). A gen-
eral reinforcement learning algorithm that masters chess, shogi, and go through self-play.
Science 362 (6419), 1140–1144.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis (2017). Mastering the game of go without human
knowledge. Nat. 550 (7676), 354–359.

Singh, A. (2021). CLDA: contrastive learning for semi-supervised domain adaptation. In
NeurIPS, pp. 5089–5101.

Sorg, J. and S. Singh (2009). Transfer via soft homomorphisms. In AAMAS (2), pp. 741–748.
IFAAMAS.

Sourek, G., V. Aschenbrenner, F. Zelezný, S. Schockaert, and O. Kuzelka (2018). Lifted
relational neural networks: Efficient learning of latent relational structures. J. Artif.
Intell. Res. 62, 69–100.

Sourek, G., S. Manandhar, F. Zelezný, S. Schockaert, and O. Kuzelka (2016). Learning
predictive categories using lifted relational neural networks. In ILP, Volume 10326 of
Lecture Notes in Computer Science, pp. 108–119. Springer.

Spirtes, P. and C. Glymour (1991). An algorithm for fast recovery of sparse causal graphs.
Social Science Computer Review 9 (1), 62–72.

242

Srinivasan, A. (1999). The aleph manual. https://www.cs.ox.ac.uk/activities/

programinduction/Aleph/aleph.

Star-AI (2010). Statistical relational AI (Star-AI) workshop at AAAI. https://www.

biostat.wisc.edu/~natarasr/starAI/starai.html.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning with neural
networks. In NeurIPS, pp. 3104–3112.

Sutton, R. S. and A. G. Barto (1998). Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press.

Sutton, R. S., D. Precup, and S. Singh (1998). Intra-option learning about temporally
abstract actions. In ICML, pp. 556–564. Morgan Kaufmann.

Tadepalli, P., R. Givan, and K. Driessens (2004). Relational reinforcement learning: An
overview. In ICML workshop on relational reinforcement learning, pp. 1–9.

Taskar, B., P. Abbeel, and D. Koller (2002). Discriminative probabilistic models for relational
data. In UAI, pp. 485–492. Morgan Kaufmann.

Tausend, B. (1994). Biases and their effects in inductive logic programming. In ECML,
Volume 784 of Lecture Notes in Computer Science, pp. 431–434. Springer.

Tiwari, R., K. Killamsetty, R. K. Iyer, and P. Shenoy (2022). GCR: gradient coreset based
replay buffer selection for continual learning.

Tong, Y. and Q. Ji (2008). Learning bayesian networks with qualitative constraints. In
CVPR. IEEE Computer Society.

Torralba, A. and A. A. Efros (2011). Unbiased look at dataset bias. In CVPR, pp. 1521–1528.
IEEE Computer Society.

Towell, G. G. and J. W. Shavlik (1994). Knowledge-based artificial neural networks. Artificial
Intelligence 70 (1-2), 119–165.

Tzeng, E., J. Hoffman, T. Darrell, and K. Saenko (2015). Simultaneous deep transfer across
domains and tasks. In ICCV, pp. 4068–4076. IEEE Computer Society.

Tzeng, E., J. Hoffman, K. Saenko, and T. Darrell (2017). Adversarial discriminative domain
adaptation. In CVPR, pp. 2962–2971. IEEE Computer Society.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, Volume I, Vol-
ume 14 of Principles of computer science series. Computer Science Press.

243

https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph
https://www.biostat.wisc.edu/~natarasr/starAI/starai.html
https://www.biostat.wisc.edu/~natarasr/starAI/starai.html

van de Kamp, R., A. Feelders, and N. Barile (2009). Isotonic classification trees. In IDA,
Volume 5772 of Lecture Notes in Computer Science, pp. 405–416. Springer.

van Hasselt, H., A. Guez, and D. Silver (2016). Deep reinforcement learning with double
q-learning. In AAAI, pp. 2094–2100.

Venkateswara, H., J. Eusebio, S. Chakraborty, and S. Panchanathan (2017). Deep hashing
network for unsupervised domain adaptation. In CVPR, pp. 5385–5394. IEEE Computer
Society.

Vlachos, P. and M. Meyer (2005). Statlib datasets archive. http://lib.stat.cmu.edu/

datasets.

Walsh, T. J., L. Li, and M. L. Littman (2006). Transferring state abstractions between
mdps. In ICML Workshop on Structural Knowledge Transfer for Machine Learning.

Wang, M. and W. Deng (2018). Deep visual domain adaptation: A survey. Neurocomput-
ing 312, 135–153.

Wang, Z., T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas (2016).
Dueling network architectures for deep reinforcement learning. In ICML, Volume 48 of
JMLR Workshop and Conference Proceedings, pp. 1995–2003. JMLR.org.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, Cambridge Uni-
versity, Cambridge, England .

Wei, K., R. K. Iyer, and J. A. Bilmes (2015). Submodularity in data subset selection and
active learning. In ICML, Volume 37, pp. 1954–1963. JMLR.org.

Wei, K., Y. Liu, K. Kirchhoff, C. D. Bartels, and J. A. Bilmes (2014). Submodular subset
selection for large-scale speech training data. In ICASSP, pp. 3311–3315. IEEE.

Wei, K., Y. Liu, K. Kirchhoff, and J. A. Bilmes (2014). Unsupervised submodular subset
selection for speech data. In ICASSP, pp. 4107–4111. IEEE.

Wellman, M. P. (1990). Fundamental concepts of qualitative probabilistic networks. Artificial
Intelligence 44 (3), 257–303.

Wichlacz, J., A. Torralba, and J. Hoffmann (2019). Construction-planning models in
minecraft. ICAPS workshop on HPlan.

Winograd, T. (1972). Understanding natural language. Cognitive Psychology 3 (1), 1–191.

Winston, P. H. (1970). Learning structural descriptions from examples.

244

http://lib.stat.cmu.edu/datasets
http://lib.stat.cmu.edu/datasets

Xu, D., J. Li, M. Zhu, M. Zhang, and G. Zhou (2020). Improving AMR parsing with
sequence-to-sequence pre-training. In EMNLP (1), pp. 2501–2511. Association for Com-
putational Linguistics.

Xu, X., X. Zhou, R. Venkatesan, G. Swaminathan, and O. Majumder (2019). d-sne: Domain
adaptation using stochastic neighborhood embedding. In CVPR, pp. 2497–2506. Computer
Vision Foundation / IEEE.

Yang, F., D. Lyu, B. Liu, and S. Gustafson (2018). PEORL: integrating symbolic planning
and hierarchical reinforcement learning for robust decision-making. pp. 4860–4866.

Yang, F., Z. Yang, and W. W. Cohen (2017). Differentiable learning of logical rules for
knowledge base reasoning. In NIPS, pp. 2319–2328.

Yang, S. and S. Natarajan (2013). Knowledge intensive learning: Combining qualitative
constraints with causal independence for parameter learning in probabilistic models. In
ECML/PKDD (2), Volume 8189 of Lecture Notes in Computer Science, pp. 580–595.
Springer.

Yang, Z., A. Ishay, and J. Lee (2020). Neurasp: Embracing neural networks into answer set
programming. In IJCAI, pp. 1755–1762. ijcai.org.

Yao, T., Y. Pan, C. Ngo, H. Li, and T. Mei (2015). Semi-supervised domain adaptation
with subspace learning for visual recognition. In CVPR, pp. 2142–2150. IEEE Computer
Society.

Yet, B., Z. B. Perkins, T. E. Rasmussen, N. R. M. Tai, and D. W. R. Marsh (2014). Com-
bining data and meta-analysis to build bayesian networks for clinical decision support. J.
Biomed. Informatics 52, 373–385.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). How transferable are features in
deep neural networks? In NeurIPS, pp. 3320–3328.

You, S., D. Ding, K. R. Canini, J. Pfeifer, and M. R. Gupta (2017). Deep lattice networks
and partial monotonic functions. In NeurIPS, pp. 2981–2989.

Zambaldi, V., D. Raposo, et al. (2019). Deep reinforcement learning with relational inductive
biases. In ICLR.

Zhang, L., X. Li, M. Wang, and A. Tian (2021). Off-policy differentiable logic reinforcement
learning. In ECML/PKDD (2), Volume 12976 of Lecture Notes in Computer Science, pp.
617–632. Springer.

Zhang, S., X. Ma, K. Duh, and B. V. Durme (2019). AMR parsing as sequence-to-graph
transduction. In ACL (1), pp. 80–94.

245

BIOGRAPHICAL SKETCH

Harsha Kokel is a PhD Candidate in the department of Computer Science (CS) at The

University of Texas at Dallas. She is advised by Professor Sriraam Natarajan. Harsha’s

research focuses on efficient knowledge-guided learning in structured, relational domains.

She is also interested in sequential decision-making problems and, specifically, exploring the

combination of planning and reinforcement learning. Her research has been published in

the following conferences: AAAI, ICAPS, NeurIPS, and ACS. Her work has been presented

at various workshops at AAAI, NeurIPS, IJCNN, ICAPS, and RLDM. She has reviewed

papers for various journals, conferences, and workshops, including AAAI, IJCAI, SDM, and

DMKD. She is a co-organizer for the PRL workshop at ICAPS 2023. She serves as an

assistant electronic publishing editor for JAIR.

She received a master’s degree in CS from The University of Texas at Dallas in 2021. She was

a research intern at IBM T. J. Watson Research Center in the summer of 2021 and 2022. In

the summer of 2018, she was a Machine Learning intern at Turvo Inc, CA. Before pursuing

graduate school, Harsha provided content management solutions as a software engineer for

four years; three years at Publicis Sapient Consulting and a year at Amadeus Software

Labs. She received her bachelor’s degree in Information and Communication Technology

(ICT) from Dhirubhai Ambani Institute of ICT, Gandhinagar, India in 2012. During her

bachelor’s study, she was a research assistant with Prof. Prasenjit Majumder, working on

Sandhan, a cross-lingual search engine for Indian languages. She co-organized a Morpheme

Extraction Task at Forum for Information Retrieval and Extraction (FIRE) in 2012 and

2013. She also conducted a tutorial on Information Retrieval at Microsoft Research, India

in 2013 as a part of Pre-FIRE Workshop.

246

CURRICULUM VITAE

Harsha Kokel

Contact Information

Department of Computer Science Email: hkokel@utdallas.edu

The University of Texas at Dallas Website: www.harshakokel.com

800 W. Campbell Rd.

Richardson, TX 75080-3021, U.S.A.

Education

University of Texas at Dallas
“

Fall '18 - present
‰

PhD, Computer Science,

Advisor: Prof. Sriraam Natarajan

Thesis: Beyond Data: Efficient Knowledge-guided Learning for Sparse and Structured
Domains

University of Texas at Dallas
“

Fall '17 - Spring'21
‰

MS, Computer Science (GPA: 3.961),

Advisor: Prof. Sriraam Natarajan

Dhirubhai Ambani Institute of ICT (DA-IICT), Gandhinagar, India
“

May '13
‰

BTech, Information and Communication Technology (GPA: 3.4),

Advisor: Prof. Prasenjit Majumder

Thesis: Language identification for short text in transliterated space

Employment History

Research Assistant, UT Dallas, TX (Spring '19–Fall '22)

Instructor, UT Dallas, TX (Fall '21)

Research Intern, IBM T. J. Watson Research Center, NY (Summer '21 & '22)

Teaching Assistant, UT Dallas, TX (Fall '18)

ML Intern, Turvo Inc., CA (Summer '18)

Senior Software Engineer, Amadeus Software Labs, Bangalore, India (2016–2017)

Associate Technology, Publicis Sapient Consulting, Bangalore, India (2013–2016)

Research Assistant, DA-IICT, Gandhinagar, India (2012–2013)

Professional Service

Co-organizing a workshop on Bridging the Gap Between AI Planning and Reinforcement
Learning (PRL) at ICAPS 2023.

Assistant Electronic Publishing Editors for JAIR (2020 - present).

Reviewer for journals, including Data Mining and Knowledge Discovery Journal and Big
Data Journal.

PC Member for conferences, including AAAI-23 (main track and AI for social good track),
IJCAI 2022 (Demo Track), CODS-COMAD 2020, and SDM 2020.

Reviewed papers for workshops, including ML Reproducibility Challenge 2021 Fall, Women
in Machine Learning (WiML) 2021, Workshop on Graphs and more Complex structures
for Learning and Reasoning (GCLR) 2022, and I Can’t Believe It’s Not Better (ICBINB)
Workshop 2021.

Conducted a tutorial on Information Retrieval in Microsoft Research India & IRSI Pre-
FIRE workshop, 2013.

Co-organized Morpheme Extraction Task at FIRE 2012–2013.

Publications

Book Chapters

Kokel, H., Ramanan, N., Odom, P., Blasch, E., and Natarajan, S., Human-Allied Learn-
ing of Probabilistic Models from Relational Data, Chapter in Handbook on Dynamic Data
Drive Application Systems (DDDAS) (Vol. II) (to appear).

Journal Papers

Kokel, H., Balaraman, R., Tadepalli, P., and Natarajan, S., RePReL: A Unified Frame-
work for Integrating Relational Planning and Reinforcement Learning for Effective Ab-
straction in Discrete and Continuous Domains , Neural Computing and Applications
2022, Special Issue on Human-aligned Reinforcement Learning for Autonomous Agents
and Robots.

Conference Papers

Kokel, H., Das, M., Islam, R., Bonn, J., Cai, J., Dan, S., Narayan-Chen, A., Jayannavar,
P., Doppa, J.R., Hockenmaier, J., Natarajan, S., Palmer, M., and Roth, D., LARA –
Human-guided collaborative problem solver: Effective integration of learning, reasoning
and communication, In Advances in Cognitive Systems (ACS) 2022.

Karanam, A.˚, Killamsetty, K.˚, Kokel, H.˚, and Iyer, R. Orient: Submodular Mutual
Information Measures for Data Subset Selection under Distribution Shift, In NeurIPS
2022 (˚Joint first authors).

Kokel, H., Prabhakar, N., Balaraman, R., Blasch, E., Tadepalli, P., and Natarajan, S.,
Hybrid Deep RePReL: Integrating Relational Planning and Reinforcement Learning for
Information Fusion, In FUSION 2022.

Kokel, H., Das, M., Islam, R., Bonn, J., Cai, J., Dan, S., Narayan-Chen, A., Jayannavar,
P., Doppa, J.R., Hockenmaier, J., Natarajan, S., Palmer, M., and Roth, D., Human-guided
Collaborative Problem Solving: A Natural Language based Framework, In ICAPS (demo
track) 2021.

Karanam, A., Hayes, A., Kokel, H., Haas, D., Radivojac, P., and Natarajan, S., A Prob-
abilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational
Diabetes, In AIME 2021.

Kokel, H., Manoharan, A., Natarajan, S., Balaraman, R., and Tadepalli, P., RePReL :
Integrating Relational Planning and Reinforcement Learning for Effective Abstraction, In
ICAPS 2021.

Kokel, H., Odom, P., Yang, S., and Natarajan, S., Unified Framework for Knowledge
Intensive Gradient Boosting: Leveraging Human Experts for Noisy Sparse Domains, In
AAAI 2020.

Sankepally, R., Kokel, H., Agarwal, K., and Majumder, P., Morpheme Extraction Task
at FIRE 2012-2013, In Post-Proceedings of FIRE 2012 and 2013, ACM

Workshop Papers

Kokel, H., Lee, J., Katz, M., Sohrabi, S., and Srinivas, K. Action Space Reduction for
Planning Domains, Planning and RL (PRL) Workshop at ICAPS 2022.

Kokel, H., Manoharan, A., Natarajan, S., Balaraman, R., and Tadepalli, P., Deep
RePReL–Combining Planning and Deep RL for acting in relational domains, In Deep
RL Workshop at NeurIPS 2021.

Kokel, H., Manoharan, A., Natarajan, S., Balaraman, R., and Tadepalli, P., Dynamic
probabilistic logic models for effective abstractions in RL, In Statistical Relational AI
(StarAI) Workshop at IJCLR 2021.

Kokel, H., Manoharan, A., Natarajan, S., Balaraman, R., and Tadepalli, P., RePReL:
Integrating Relational Planning and Reinforcement Learning for Effective Abstraction, In
Planning and RL (PRL) Workshop at ICAPS 2021. ‹(Contributed talk, 11/25
accepted paper)

Wan, G. and Kokel, H., Graph Sparsification via Meta-Learning, In Deep Learning for
Graphs (DLG) Workshop at AAAI 2021. ‹Contributed talk (4/22 accepted paper)

Abstracts

Kokel, H., Natarajan, S., Balaraman, R., and Tadepalli, P., Dynamic probabilistic logic
models for effective task-specific abstractions in RL (Abstract), In RLDM 2022.

Kokel, H., Lee, J., Katz, M., Sohrabi, S., and Srinivas, K. How to Reduce Action Space for
Planning Domains?, As Student Abstract in AAAI 2022. ‹Oral presentation (19/111
accepted abstracts)

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivational example
	Problem 1: Sparse and noisy data
	Problem 2: Multi-task learning and generalization
	Problem 3: Collaborative problem solving
	Problem 4: Large hypothesis space

	Dissertation overview
	Dissertation statement
	Dissertation contributions
	Dissertation outline

	Technical Background
	Structured data
	Tabular
	First-order logic

	Gradient-boosted trees
	Qualitative influence information
	Monotonic influence
	Synergistic influence
	QI for decision-making

	Sequential decision making
	Reinforcement learning
	Planning

	Statistical relational AI
	First-order conditional influence language

	Neurosymbolic AI

	Part I: Sparse and Noisy Domains
	Incorporating Qualitative Influence Information
	Introduction
	Related work
	Knowledge-intensive gradient boosting
	Monotonic constraint
	Interpretation of the update equation
	Equilibrium between advice and data
	Overfitting by strict monotonicity
	KiGB algorithm
	Classification
	Extensions

	Experiments
	Datasets
	Standard gradient boosting baselines
	Monotonic gradient boosting baselines
	Robustness to the hyperparameters
	Real data sets
	Learning curve

	Summary

	Part II: Multi-task learning and generalization
	Integrating Relational Planning and Reinforcement Learning
	Introduction
	Related work
	Planner and RL combination
	Abstraction

	Relational planning and Learning
	Motivational example
	Problem setup
	RePReL architecture
	D-FOCIs
	Example of D-FOCIs
	Abstraction using D-FOCI
	Learning

	Experiments
	Domains
	Sample efficiency
	Task transfer
	Generalization

	Conclusion

	RePReL Extension to Deep, Neural RL
	Deep RePReL
	Batch learning
	Recursive abstraction with DRRL

	Experiments
	Deep RL
	Deep relational RL

	Conclusion

	RePReL Extension for Hybrid Data
	Introduction
	Hybrid deep RePReL
	Experiments
	Domains
	Baselines
	Sample efficiency
	Generalization

	Conclusion

	Part III: Collaborative Problem Solving
	Planning and Learning via Communication
	Introduction
	Preliminaries
	Concept learning
	Neural parsers
	Minecraft

	Lara - Planning and learning via communication
	Problem definition
	System setup
	System architecture
	Minecraft simulator
	NLP engine
	Planner
	Concept learner

	Demonstration
	Related work
	Conclusion

	Part IV: Large Hypothesis Space
	Language bias in Neurosymbolic Models
	Background
	ILP task
	Biases in ILP
	Biases in NeSy
	NeSy predicate invention

	Introducing Typed Bias
	Approach I
	Approach II: HTRI

	Experiments
	Discussion

	Part V: Other explorations
	Extracting Qualitative Knowledge
	Introduction
	Extracting qualitative influences
	Evaluation on nuMoM2b study
	The nuMoM2b study
	Setup and baselines
	Results

	Summary

	Data Subset Selection for Domain Adaptation
	Introduction
	Related work
	SDA
	Subset selection methods

	Preliminaries
	Submodular functions
	Submodular mutual information
	SDA loss functions

	Orient
	Algorithm

	Connections to previous work
	Experimental evaluation
	Comparison of different SMI functions

	Summary

	Conclusion and Future Work
	Part VI: Appendix
	Appendix A: Knowledge-intensive Gradient Boosting
	Why gradient boosted trees?

	Appendix B: RePReL
	Traditional relational RL

	Appendix C: Lara
	Dialogue manager
	Background file
	Planner
	Concept Learning

	Appendix D: Orient
	Concave over modular mutual information
	Proof of the theorems
	SDA loss
	Experiment details
	Additional results
	Synthetic experiments
	Analysis of data subset size
	Analysis of L for subset selection
	Analysis of time taken

	References
	Biographical Sketch
	Curriculum Vitae

