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ARTICLE

Reconstructing cell cycle pseudo time-series via
single-cell transcriptome data
Zehua Liu 1, Huazhe Lou2, Kaikun Xie2, Hao Wang2, Ning Chen2, Oscar M. Aparicio3, Michael Q. Zhang1,4,

Rui Jiang1 & Ting Chen2,3

Single-cell mRNA sequencing, which permits whole transcriptional profiling of individual cells,

has been widely applied to study growth and development of tissues and tumors. Resolving

cell cycle for such groups of cells is significant, but may not be adequately achieved

by commonly used approaches. Here we develop a traveling salesman problem and

hidden Markov model-based computational method named reCAT, to recover cell cycle

along time for unsynchronized single-cell transcriptome data. We independently test reCAT

for accuracy and reliability using several data sets. We find that cell cycle genes cluster into

two major waves of expression, which correspond to the two well-known checkpoints, G1 and

G2. Moreover, we leverage reCAT to exhibit methylation variation along the recovered cell

cycle. Thus, reCAT shows the potential to elucidate diverse profiles of cell cycle, as well as

other cyclic or circadian processes (e.g., in liver), on single-cell resolution.
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Cell cycle studies, a long-standing research area in biology,
are supported by transcriptome profiling with traditional
technologies, such as qPCR1, microarrays2, and RNA-seq3,

which have been used to quantitate gene expression during
cell cycle. However, these strategies require a large amount
of synchronized cells, i.e., microarray and bulk RNA-seq, or
they may lack observation of whole transcriptome, i.e., qPCR.
Moreover, in the absence of elaborative and efficient cell cycle
labeling methods, a high-resolution whole transcriptomic profile
along an intact cell cycle remains unavailable.

Recently, single-cell RNA-sequencing (scRNA-seq) has become
an efficient and reliable experimental technology for fast and
low-cost transcriptome profiling at the single-cell level4, 5. The
technology is employed to efficiently extract mRNA molecules
from single cells and amplify them to certain abundance for
sequencing6. Single-cell transcriptomes facilitate research to
examine temporal, spatial and micro-scale variations of cells. This
includes (1) exploring temporal progress of single cells and their
relationship with cellular processes, for example, transcriptome
profiling at different time phases after activation of dendritic
cells7, (2) characterizing spatial-functional associations at single-
cell resolution which is essential to understand tumors and
complex tissues, such as space orientation of different brain cells8,
and (3) unraveling micro-scale differences among homogeneous
cells, inferring, for example, axonal arborization and action
potential amplitude of individual neurons9.

One of the major challenges of scRNA-seq data analysis
involves separating biological variations from high-level technical
noise, and dissecting multiple intertwining factors contributing to
biological variations. Among all these factors, determining cell
cycle stages of single cells is critical and central to other analyses,
such as determination of cell types and developmental stages,
quantification of cell–cell difference, and stochasticity of
gene expression10. Related computational methods have been
developed to analyze scRNA-seq data sets, including identifying
oscillating genes and using them to order single cells for cell cycle
(Oscope)11, classifying single cells to specific cell cycle stages
(Cyclone)12, and scoring single cells in order to reconstruct a
cell cycle time-series manually13. Besides, several computational
models have been proposed to reconstruct the time-series of
differentiation process, including principal curved analysis
(SCUBA)14, construction of minimum spanning trees (Monocle15

and TSCAN16), nearest-neighbor graphs (Wanderlust17 and
Wishbone18) and diffusion maps (DPT)19. In fact, even before
scRNA-seq came into popular use, the reconstruction of cell
cycle time-series was accomplished using, for example,
a fluorescent reporter and DNA content signals (ERA)20,
and images of fixed cells (Cycler)21. However, despite these
efforts, accurate and robust methods to elucidate time-series
of cell cycle transcriptome at single cell resolution are still
lacking.

Here we propose a computational method termed reCAT
(recover cycle along time) to reconstruct cell cycle time-series
using single-cell transcriptome data. reCAT can be used to
analyze almost any kind of unsynchronized scRNA-seq data set to
obtain a high-resolution cell cycle time-series. In the following,
we first show one marker gene is not sufficient to give reliable
information about cell cycle stages in scRNA-seq data sets. Next,
we give an overview of the design of reCAT, followed by an
illustration of applying reCAT to a single cell RNA-seq data set
called mESC-SMARTer, and the demonstration of robustness and
accuracy of reCAT. At the end, we give detailed analyses of
several applications of reCAT. All data sets used in this study are
listed in Table 1.

Results
High variation of expression measures within cells. We found
that the expression level of one marker gene was insufficient to
reveal the cell cycle stage of a single cell as a result of high
stochasticity of gene expression and heterogeneity of cell samples.
Therefore, we propose to use a group of cell cycle marker genes,
combined with proper computational models, to reconstruct
pseudo cell cycles from scRNA-seq data with high accuracy.

Using a mouse embryonic stem cells (mESC) scRNA-seq data
set developed by Buttener et al. (2015)22, we showed that the
expression of cell cycle marker genes has high stochasticity. The
data set, termed mESC-SMARTer, consists of 232 eligible samples
labeled according to cell cycle stages by Hoechst staining.
We examined several high-confidence cell cycle marker genes,
as shown in Fig. 1a. The cell cycle stages in which these genes
have maximum mean relative expression levels are consistent
with their existing records29, but the distribution of expression
levels between two cell cycle stages showed high overlap (Fig. 1a),
indicating that a single marker gene is insufficient to determine
the cell cycle stage for a single cell. In addition, we showed that
mean gene expression levels, averaging over 20 cell samples,
remain highly stochastic (Supplementary Fig. 1).

We further examined the consistency of cell cycle stages of
maximum mean expression levels of cell cycle marker genes
between different cell populations. We selected six single-cell
transcriptome sample groups from different tissues and
experimental conditions (Table 1), and performed four pairwise
comparisons, showing the results in Fig. 1b. Assuming con-
sistency between maximum mean expression levels of marker
genes and their corresponding cell cycle stages, all drops should
be located along the diagonal. In fact, however, many counts
spread into off-diagonal entries, showing apparent relatively low
consistency (Fig. 1b).

An overview of the reCAT approach. Given an scRNA-seq data
set, reCAT reconstructs cell cycle time-series and predicts cell

Table 1 A list of the single cell transcriptome data sets.

No. Abbreviation Tissue Cell cycle stage labeled

1 mESC-SMARTer22 mESC YES
2 mESC-Quartz23 mESC YES
3 3Line-qPCR24 H9, MB, PC3 YES
4 hESC11 hESC YES
5 mHSC13 Long term-HSC (LT-HSC), short term-HSC (ST-HSC), multi-potent progenitor (MPP) NO
6 mESC-Cmp25 mESC (in 2i, Serum and a2i medium) NO
7 hMyo15 Differentiating myoblasts (0 h, 24 h, 48 h, 72 h) NO
8 mDLM26 Distal lung epithelium cells (E14.5, E16.5, E18.5, adult AT2) NO
9 hMel27 Human metastatic melanoma (Mel78, Mel79 et al.) NO
10 mESC-MT28 mESC NO
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cycle stages along the time-series. The reconstructed time-series
generally consists of multiple cell cycle phases (e.g., ≥10), each of
which may contain one or multiple cells. Two fundamental
assumptions underlie the cell cycle model: (1) different cell cycle
phases form a cycle and (2) transcriptome at a certain cell cycle
phase would have a smaller difference relative to that of its most
adjacent phase compared to a more distant phase. Hence, reCAT
models the reconstruction of the time-series as a traveling
salesman problem (TSP), which herein finds the shortest possible
cycle by passing through each cell/cluster exactly once and
returning to the start.

As shown in Fig. 1c, reCAT can be described as a process
consisting of four steps. The first step is data processing,
including quality control, normalization, and clustering of single
cells using the Gaussian mixture model (GMM) according to a
user-defined phase number k. We defined the distance between
two clusters as the Euclidian distance between their means. In the
second step, the order of the clusters was recovered by finding a

traveling salesman cycle. Since TSP is a well-known NP-hard
problem, we developed a novel and robust heuristic algorithm,
termed consensus-TSP, to find the solution. For the third step,
we designed two scoring methods, Bayes-scores and mean-scores,
to discriminate among cycle stages (G0, G1, S, or G2/M). Finally,
in the fourth step, we designed a hidden Markov model (HMM)
based on these two scoring methods to segment the time-series
into G0, G1, S and G2/M, and a Kalman smoother to estimate the
underlying gene expression levels of the single-cell time-series
(Methods).

An illustration of reCAT working principles. The mESC-
SMARTer data set (Buettner, et al. 2015) was used to illustrate the
principles underlying the reCAT approach. Only cell cycle genes
listed in Cyclebase31 (378) were used in reCAT to get the
expression matrix, while other genes were excluded based on the
risk of adding noise to the model. The samples were clustered into

10

16

13

7

6

10

5

14

29

G1

S

G2M

G1 S G2M

H
9-

qP
C

R

MB-qPCR

15

14

11

2

5

12

1

4

36

G1

S

G2M

G1 S G2M

m
E

S
C

-S
M

A
R

T
er

PC3-qPCR

S

m
E

S
C

-S
M

A
R

T
er

7

11

4

4

2

14

G1

G2M

G1 S G2M

hESC-SMARTer

7

4

5

3

3

10

2

6

14

G1

S

G2M

G1 S G2M

m
E

S
C

-S
M

A
R

T
er

mESC-Quartz
a

c

G1

S

G2M

Processing Rearrangment Scoring Analysis

Bayes-scores
Mean-scores

Consensus-TSPPreprocessing
GMM clustering

Kalman smoother
HMM segmentation

0.87

1 2 3 4

0.67
0.53
0.91

G
en

e1

phases arrangement

Generating K clusters

…

K sequential clusters

Each cell

100

200

G1 S G2M

N
or

m
al

iz
ed

 c
ou

nt
s

Ccne1

100

200

G1 S G2M

N
or

m
al

iz
ed

 c
ou

nt
s

Cdc6

50

100

G1 S G2M

N
or

m
al

iz
ed

 c
ou

nt
s

Hjurp

�=0.34

�=0.25

�=0.33

�=0.55

200

400

G1 S G2M

N
or

m
al

iz
ed

 c
ou

nt
s

Pcna
b

v v

7 5 0

…
…

Fig. 1 High uncertainty of marker gene expression in single cells and the workflow of reCAT. a Violin plots of distributions of normalized relative expression
levels of cell cycle genes, including Ccne1, Pcna, Cdc6 and Hjurp, at three stages (G1, S, G2M) using 232 mESCs. b A 3 × 3 drop density plot for comparison
of two groups of cells based on the number of cell cycle-related genes with maximum mean expression at each of the three cell cycle stages. At the two top
panels, a set of 60 high-confidence cell cycle related genes (Supplementary Table 1), with a comparable number from each cell cycle stage at which they
are known to have maximum expression levels, were used for comparisons. The size of each disk in the matrix is proportional to the number of genes in the
entry. The hESC cell group consists of 228 human embryonic stem cells labeled by FUCCI30, and the mESC-Quartz consists of 21 single mESCs labeled by
Hoechst staining for cell cycle stages and sequenced by Quartz-seq23. The two bottom panels show comparisons among three cell lines, including H9, MB
and PC3 from a data set marked as 3Line-qPCR, and mESC-SMARTer. Cells in 3Line-qPCR were labeled by Hoechst staining, and expression levels of 110
cell cycle related genes were measured by qPCR24. All 110 cell cycle-related genes were used for the comparisons. Pearson’s correlation coefficient (ρ) was
calculated for each pair of groups. c The overview of reCAT
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eight classes (k= 8), and the mean expression levels of these eight
clusters were arranged into the optimal traveling salesman cycle.
Fig. 2a displays all single cells and a cycle formed by eight cluster
centers in a two-dimensional plot using principal component
analysis (PCA), in which colors correspond to experimentally
determined cell cycle stages. In Fig. 2b, we linearized the traveling
salesman cycle into a pseudo time-series of eight phases and
plotted the composition of single cells at each phase. The figure
shows agreement between the predicted pseudo time-series and
the experimentally determined cell cycle stage labels, thereby
supporting the validity of the TSP model. In summary, both plots
demonstrate a gradual and smooth transition of labeled single-cell
components along the pseudo time-series. In the Supplementary
Material, we showed that the expression trends of well-studied
cell cycle marker genes (Supplementary Table 2) are coherent
with the order of the clusters (Supplementary Fig. 2). Moreover,
we converted the covariance matrices of each cluster into a vector
(Methods) and computed a traveling salesman cycle using these
cluster vectors. The generated time-series (Supplementary Fig. 3a)
is also consistent with the above one (Fig. 2a), demonstrating that
the traveling salesman cycle is inherent within the data.

Components of reCAT and their validation. At the center of
reCAT is a novel heuristic algorithm, termed consensus-TSP
(Methods), to solve TSP robustly. It should be noted that no
known polynomial time algorithm can solve the TSP problem for
every case. On the other hand, scRNA-seq data are highly noisy;
even the optimal traveling salesman cycle may not represent the
correct cell cycle order. To overcome these problems, we designed
a two-step strategy. In the first step, consensus-TSP groups a set
of n single cells into k clusters for various values of k≤ n, and for

each set of k clusters, it generates one TSP route using the
arbitrary insertion algorithm32. Then the second step of
consensus-TSP integrates these routes to produce a consensus
traveling salesman cycle (Supplementary Fig. 4, Supplementary
Note 2).

Consensus-TSP was shown to outperform Oscope7, the
arbitrary insertion algorithm (Fig. 2c), and other well-known
TSP algorithms (Supplementary Figs 5 and 6) according to the
correlation-score, a Pearson correlation coefficient (PCC)-based
scoring function that measures the agreement between a
predicted pseudo time-series and experimentally determined cell
cycle stage labels (Methods). In Fig. 2d, we demonstrated that
consensus-TSP also outperformed current single-cell pseudo time
reconstruction methods, including SCUBA14, Monocle15,
TSCAN16, Wanderlust17/Wishbone18 and DPT19 (also in Sup-
plementary Fig. 7 and Supplementary Note 4). The comparisons
were based on the correlation-scores and change-index values
(Methods). The latter index measures how frequent experimen-
tally determined single cell labels change along the time-series.
Consensus-TSP is not only robust (Fig. 2c, Supplementary
Note 4) but also scales up well for thousands of single cells
(Supplementary Fig. 4f). We observed similar results using the
cell cycle stage-labeled mouse embryonic stem cell Quartz-seq
(mESC-Quartz) data set23 (the left panel of Fig. 3a) and the cell
cycle stage-labeled human embryonic stem cell SMART-seq
(hESC) data set11 (Supplementary Fig. 8a). Of course, the scoring
methods of evaluation may have their own limitations. In
addition, one point should be noted about the data generation, if
cells with the same cell cycle labels were processed and sequenced
in the same batch, these cells can be clustered together nicely
because of the batch effects, which leads to high scoring values,
but cells within each cell cycle stage may not be properly ordered.
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Fig. 2 Illustration and evaluation of reCAT using the mESC-SMARTer data. a PCA visualization of mESC-SMARTer data using expression profiles of the
Cyclebase genes (378). Each single cell is colored according to its experimentally determined cell cycle stage. A cycle linking eight black triangles represents
the shortest traveling salesman cycle of eight cluster means, as computed by reCAT. b The bar plot at the top shows the composition of single cells at each
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We designed two scoring methods, called ‘Bayes-scores’ and
‘mean-scores’, to discriminate among the cell cycle stages
(Methods). The Bayes-score is a supervised learning method,
which computes Naive Bayesian likelihood values using expres-
sion level comparisons of pre-selected gene pairs as input
features. The model uses a training data set to determine a fixed
number of informative gene pairs33. This Naive Bayesian design
is able to decrease the effect of stochasticity in scRNA-seq data
(Supplementary Fig. 9, Supplementary Note 2). The mean-score
is an unsupervised method, which computes the mean of log
expression levels of a selected set of marker genes specific to each
cell cycle stage. The values of these scores reveal membership of a
cluster (or a cell) to a certain cell cycle stage.

We trained the Bayes-scores using the mESC-SMARTer data,
and we tested both Bayes-scores and mean-scores on the
mESC-Quartz, mESC-SMARTer (only mean-scores) and hESC
data sets. The curves of these scores are shown in Fig. 3a,
Supplementary Figs 7a and 8b,c, respectively. We observe clear
cyclic variations of these curves along cell cycle. In practice, the
Bayes-scores performed especially well in distinguishing G0/G1/S
from G2/M. The peak for the G1/S mean-score values is usually
near the start site of the S stage (Supplementary Figs 7a, 8b
and 10), while the peak for the G2/M mean-score values is often
near the late G2 stage. For each kind of mean-score, the values at
the G0 stage are significantly lower than those at the other stages
(Supplementary Note 3), which can be combined into the HMM
to discriminate G0 from the other cell cycle stages.

Identification of cell cycle-related genes. The noise of gene
expression measurements of single cells is high. Therefore, to
better observe gene expression variation along the cell cycle time-
series computed by reCAT, we designed a Kalman smoother to
estimate the sequential expression levels for a gene (Methods).
We employed two statistics, distance correlation (dCor)34 and
K nearest neighbors (KNN)-mutual information (KNN-MI)35,
to test the significance of the associations between the

sequential expression levels of a gene and the pseudo time-series,
in order to identify cell cycle-related genes not listed in
Cyclebase.

We applied the Kalman smoother to the multi-potent
progenitor cells from young mice (young-MPP) in the mouse
hematopoietic stem cell SMART-seq (mHSC) dataset (Table 1)
which contain several groups of mouse hematopoietic stem cells,
tested all genes and ranked them according to their significance
scores (Supplementary Table 3, Supplementary Fig. 11).
Afterwards, the sequential expression levels of the top five
non-Cyclebase genes by dCor and KNN-MI were plotted in
Fig. 3b. Eight out of the ten genes were confirmed to be strongly
related to cell cycle by published literature, although functions of
the other two were not clearly recorded (Supplementary Table 4).
For instance, Ncapd2 (non-SMC condensin I complex subunit
D2), a protein coding gene, has high expression levels at S and
G2 stages (Fig. 3b). It belongs to a large protein complex involved
in chromosome condensation, and it is annotated as a cell cycle-
related gene by Gene Ontology36. However, it was not included in
Cyclebase.

Decomposing proportions of cell cycle stages for mHSCs.
Leveraging Bayes-scores and mean-scores along the pseudo cell
cycle time-series, reCAT applies an HMM to segment the
time-series into cell cycle stages of G0, G1, S and G2/M
(Methods, Supplementary Fig. 12). We applied reCAT to mHSC
data, and at the G1 stage, results showed that young individuals
had a higher proportion of long-term HSCs (LT-HSC), 41 out
of 167 cells, when compared to old individuals with 10 out of
183 cells (Fig. 4a). This is an independent and quantitative
confirmation of the original findings by using the staining
approach.

High-resolution transcription atlas of cell cycle in mESCs. We
next applied reCAT to the mESC samples, termed mESC-Cmp,
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which were cultured in serum, 2i and a2i medium, respectively25

for comparison (Kolodziejczyk et al. 2015). Previously,
Granovskaia et al.37 built a high-resolution transcription profile
using synchronized budding yeast cells. Similarly, we obtained a
high-resolution transcription atlas of the mitotic cell cycle in
mESCs (Fig. 4b, Supplementary Fig. 13) from scRNA-seq data
without synchronization through an in silico approach.
Two adjacent cells on the recovered pseudo time-series have a
time gap theoretically less than 5 min on average according to the
doubling time of about 20 h, which shows a higher resolution
than that produced by Granovskaia et al. for budding yeast.
During the cell cycles, known cell cycle related genes, arranged by
their recorded peak time in Cyclebase (Supplementary Table 5),
display two main types of expression waves (Fig. 4b,
Supplementary Figs 2 and 13), which correspond to the two
well-known checkpoints, G1 and G2. We can also observe
decreased expression of cell cycle genes at the end of the cell cycle,
which may be caused by degradation of mRNA molecules38.
We leveraged the decreased expressions to estimate the doubling
time of the 2i and serum samples and found it consistent
with the values reported in the original paper (Supplementary
Fig. 14).

Changes of stage proportions during differentiation. We
examined scRNA-seq data of human myoblast (hMyo)15, as
developed by Trapnell, et al. (2014), termed hMyo, which consist
of differentiating myoblasts sampled at 0th, 24th, 48th, and 72nd
hour time points, respectively. We applied reCAT to reconstruct a
pseudo cell cycle time-series for each of the four sample groups.
Fig. 4c shows the proportions of different cell cycle stages
estimated at each sampling time point using the HMM model.
A strong negative correlation is shown between differentiation
progress and cell cycle activity, as a higher proportion of cells are
found in cell cycle at the start of differentiation compared to later
differentiation time points. The relatively low proportion of cells
in cell cycle at the 72-h time-point is also consistent with the
reduced proportion of differentiated cells to divide, as previously
documented (Fig. 4c, Supplementary Fig. 15). We obtained a
similar result using the mouse distal lung epithelium (mDLM)
SMART-seq data set26, termed mDLM, which consists of four
groups of cells sampled at four different developmental stages
(Supplementary Fig. 16). In the absence of synchronization pro-
cedures during differentiation, each of the four cell groups con-
tains slight inner heterogeneity, further proving that reCAT is
unaffected by that factor. Even in a cancer cell data set of human
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Fig. 4 Reassessing cell cycle along the recovered pseudo time-series. a In the mHSC data, LT-HSCs from young mice have a much higher fraction of
G1 stage cells (41 out of 167) than LT-HSCs from old mice (10 out of 183) according to cell cycle stages determined by the HMMmodel. The curves for G1,
G1/S and G2/M dimensions of the mean-scores are plotted along the pseudo time-series. b Gene expression along the recovered cell cycle of the mESCs
cultured in 2i medium of the mESC-Cmp data. The genes on the vertical axis were arranged according to the recorded peak time from top to bottom. The
data were processed by Kalman smoother, DESeq normalization specific to each gene (not each cell) and logarithm of 2, in order to get better visualization.
The color bars above each panel indicate the cell cycle stages inferred by the HMMmodel of reCAT. c For the differentiating myoblast samples in the hMyo
data, four groups of cells were taken at 0th, 24th, 48th, and 72nd hour. reCAT decomposed each sample group into cell cycle stages, and the proportion of
each cell cycle stage is shown for each sample group. d The upper panel shows the smoothed curve for whole genome methylation levels along the pseudo
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G1 and G2/M peak gene sets

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00039-z

6 NATURE COMMUNICATIONS | 8:  22 |DOI: 10.1038/s41467-017-00039-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


metastatic melanoma27, termed hMel, with cancer cell hetero-
geneity in each sample group, reCAT clearly identified cell cycle
status of single cells (Supplementary Fig. 17).

Recovery of methylation profile along cell cycle. Using a parallel
single-cell genome-wide methylome and transcriptome sequen-
cing data set28, termed mESC-MT, we show that reCAT is able to
recover time-series epigenome along cell cycle via scRNA-seq
data. The 61 mESCs were concurrently processed by both
SMART-seq for scRNA-seq data and bisulfite sequencing (BS) for
single-cell methylation data. We processed the scRNA-seq data
first using reCAT to obtain the pseudo time-series (Supplemen-
tary Fig. 18) and associated the methylation data with the time-
series. We scanned the whole genome methylation levels along
the cell cycle (Methods) and discovered that the methylation rate
was higher at G1/S phase compared to other cell cycle stages
(Fig. 4d). The observation agrees with and extends the conclusion
by Brown, et al. (2007)39, but it contradicts the conclusion of
Vandiver, et al. (2015)40. Furthermore, we calculated the mean
methylation level for promoter regions of gene sets with peak
gene expression levels in G1 and G2/M, respectively (Methods).
The results imply that the methylation levels for promoter regions
of the cell cycle genes vary along cell cycle (Fig. 4d).

Discussion
Aiming to obtain a high-resolution transcriptomic change that
occurs along cell cycle, we developed an scRNA-seq data analysis
approach called reCAT. In basic cell cycle studies, reCAT can (1)
recover transcriptome change without cell synchronization,
which might otherwise alter the native processes, and (2) examine
those cells in a developing population or tissue, e.g., during
differentiation, that have entered G0 vs. those that continue to
divide, thus linking transcriptional changes during development
to cell cycle. Therefore, as a novel computational approach to
reconstruct cycle along time for unsynchronized single-cell
transcriptome data, reCAT is a promising tool with a number
of merits. With higher quality and quantity41 of sequencing
samples, more delicate time-series profiles can be modeled in
general. Moreover, reCAT has the potential to observe various
epigenomics42, 43 along cell cycle, leveraging parallel sequencing
of RNA and DNA44, which has been demonstrated in this work.
Even further, reCAT method can be used in research of other
cyclic or circadian expression (e.g., in liver)45.

reCAT could be refined in several ways. Instead of the pre-
selected gene set (378 genes), we would prefer semi-supervised
selection of cell cycle genes from the data, as this could lead
to better performance in future analysis. The scoring metrics
(i.e., Bayes-scores and mean-scores) to indicate cell cycle stages
also need improvements to be less noisy and more informative.
Additionally, in a given cell cycle, variation of cell cycle-related
gene expression predominates over that of the corresponding
differentiation. Accordingly, reCAT separates cell cycle analysis
from differentiation, which may introduce some bias, but this,
too, can be further improved by a combined model. On the
contrary, although some reported studies treated cell cycle as
noises to be filtered, cell cycle has considerable influence on
the investigated biological processes, e.g. myogenesis and
embryogenesis. Thus, a model is needed for considering multiple
processes simultaneously.

Methods
Data set selection. Ten data sets were used for analysis (Table 1). Among them,
four data sets have experimentally derived cell cycle stage labels: the mouse
embryonic stem cell RNA-seq data (mESC-SMARTer), mESC-Quartz, hESC, and
three cell lines, H9, MB and PC3, sequenced by qPCR. The hESC samples were

labeled by fluorescent ubiquitination-based cell-cycle indicators (FUCCI)30, while
others were labeled by Hoechst staining.

The six unlabeled data sets include mHSC, mESCs scRNA-seq samples from
different culture conditions (mESC-Cmp), hMyo cells sampled at four different
time points, mDLM cells sampled at four different time points, hMel scRNA-seq
samples, and the mESCs processed by scRNA-seq and bisulfite in parallel
(mESC-MT). The mHSC, mESC-Cmp and mESC-MT data sets consist
homogeneous cells within each group, while the hMyo, mDLM and hMel data
sets were sampled from heterogeneous cells.

Quality control, normalization and preprocessing. We processed scRNA-seq
data in the following procedure. For data with FPKM or TPM expression levels,
we considered samples having more than 4000 genes with expression levels
exceeding 2, as eligible. For data with counts for expression levels, we followed
existing procedures22 for quality control. Then we deleted genes whose mean
expressions were excessively low, e.g., lower than 2 for mean TPM, in order to
focus on informative genes. We used the normalization step developed in DESeq46

to obtain relative expression levels. After quality control and normalization, the
expression levels of the 378 cell cycle genes, as defined in Cyclebase, were extracted
for downstream analysis. Finally, all gene expression levels were transformed by
log2(Exp + 1) to prevent domination of highly expressed genes.

For methylation data, methylation status of a CpG site was considered a binary
value in a single cell, unlike a rate in bulk BS. The binary value for single-cell BS
data was determined by comparing methylated and unmethylated counts of a CpG
site. We generated two results from methylation data of the mESC-MT data set in
our analysis. The first result is overall methylation level of whole genome, which is
the ratio of the number of methylated sites over the number of all measured sites.
The second result is mean methylation levels for promoter regions of two gene sets,
which contain Cyclebase genes labeled with G1 and G2/M peak expression,
respectively. A gene promoter region was defined as a +/−3 kbp window centered
on the transcriptional start site. After methylation levels were obtained, the curves
of methylation levels along the pseudo time-series were drawn using an average
smoother of nine points.

Definition of gene sets. We mainly use four gene sets correlated with cell cycle.
(A) The first gene set was obtained from Cyclebase 3.0 which collected 378 genes
from dozens of cell cycle-related papers. For genes in Cyclebase, expression peak
time, significance and source organisms, for example, are documented. (B) The
second set (Supplementary Table 1) consists of 60 highest ranked Cyclebase genes,
with 20 having their maximum expression levels at each of three cell cycle stages
(G1, S, and G2/M). (C) The third set (Supplementary Table 2) contains 15 high
confidence cell cycle related genes selected according to published literatures.
(D) The fourth gene set (Supplementary Table 5) includes 120 highest ranked
Cyclebase genes, with 20 having their maximum expression levels at each of six cell
cycle stages (G1, G1/S, S, G2, G2/M and M).

Clustering method. Assume that we are given n single cells, each with an observed
expression vector ei= (ei1,… ,eim) for m genes and i= 1,2,… ,n. Considering that
negative binomial distribution is widely used to model gene expression levels,
we approximate the logarithm of the negative binomial distribution by a Gaussian
distribution (lognormal). Thus, we used the GMM to model clusters of gene
expression profiles of single cells. A GMM with k clusters can be described as:

gmm eið Þ :¼
Xk
r¼1

πrN ei μr ;Φrjð Þ; ð1Þ

where N �jμ;Φð Þ denotes the Gaussian pdf with mean gene expression vector μ and
covariance matrix Φ, and {π1,… ,πk} are mixture weights satisfying

Pk
r¼1 πr ¼ 1

where 0 ≤ πr ≤ 1, r∈{1,… ,k}. The mixture model can be solved by an expectation
maximization algorithm.

Modeling as a TSP. We cluster n single cells into K clusters through the GMM
whose mean gene expression vectors are μ1,… , μK, each representing a cell cycle
phase. Using these K mean vectors, we construct an undirected weighted complete
graph G, where nodes correspond to the K mean vectors, and the edges that
connect every pair of nodes are weighted by the Euclidean distance between the
two vectors. Our goal is to find a Hamilton cycle CK in this graph such that every
node appears in the cycle exactly once, and the total edge weight of the cycle is
minimized. This describes the TSP, which is the classic NP-hard problem in
computer algorithm theory.

In our case, the TSP is actually a Euclidean TSP because it satisfies three criteria:
non-negative distances, symmetry of distances, and triangle inequality of distances.
It should be noted that the Euclidean TSP is also an NP-hard problem, and no
known polynomial time algorithm can solve this problem for every case. We
therefore designed a heuristic algorithm, called consensus-TSP, which is based on
an arbitrary insertion algorithm, to solve the TSP problem32. The arbitrary
insertion algorithm is a randomized algorithm with O(n2)-running time for a graph
with n nodes, and for the worst case, it gives a 2ln(n)-approximation. We chose this
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algorithm because it can produce a more robust solution than the greedy nearest
neighbor algorithm.

Given the generated K clusters, there are two steps for the heuristic TSP
algorithm. The first step is to compute traveling salesman cycles for different k
(e.g., k= 7,8,… , K), and the second step is to merge the cycles into a consensus
cycle. In the first step, for each k, it takes the k clusters computed from the GMM as
input, runs the arbitrary insertion algorithm nfold · k times, and selects the shortest
TSP cycle among these nfold · k cycles. In the second step, it merges the K
−6 shortest cycles generated in the first step into a consensus-TSP cycle
(Supplementary Methods, Supplementary Fig. 4).

Time-series scoring metrics. The goal is to develop a quantitative measure of
accuracy of computed TSP cycle Ck using known cell cycle stage labels. Our idea
is to compute the PCC between Ck and experimentally determined cell cycle labels.

Let an n-dimensional vector ~l ¼ ð~l1 ; ¼ ;~ln Þ denote the experimentally
determined cell cycle labels for given n single cells, where ~l 2 1; 2; 3f g with 1, 2,
and 3 indicating the G0/G1, S, and G2/M cell cycle stages, respectively. If cells are
labeled by other stages, e.g., G0 or M, the label numbers can be adjusted.

Then we transform the generated traveling salesman cycle Ck into an
n-dimensional vector l as follows. Assume that Ck consists of a circle of k clusters,
c1 − c2 − ⋯ − ck − c1. Without loss of generality, we cut the edge ck − c1 to open the
cycle and form a linear path, c1 − c2 − ⋯ − ck, which represents a pseudo-time
series with c1 and ck as the start and the end of a cell cycle, respectively. We assign a
sequential index j to every cell in j-th cluster: li= j if the i-th single cell belongs to
the j-th cluster along the time-series. Thus we obtain a vector l= (l1,… ,ln) where
li∈{1,2,… ,k}. We then calculate the PCC between ~l and l to measure how well the
linear path c1 − c2 − ⋯ − ck fits with the experimental data.

Since Ck has k edges, it can be cut into k different linear paths: c1 − c2 − … − ck,
c2 − c3 −… − ck − c1,…, and ck − c1 −… − ck − 1, and their k reverse paths: ck − ck−1
− … − c1, c1 − ck − ck − 1 − … − c2,…, and ck−1 − ck−2 − … − c1 − ck. For each of
these 2k paths, we can compute a PCC score and select the maximum PCC score ρ
to represent the correlation-score between the traveling salesman cycle Ck and the
experimentally determined cell cycle labels ~l.

The second metric is called “change-index”, which measures how frequent an
experimentally determined single cell labels changes along the time-series. Ideally,
a perfect time-series would change labels twice, G1 to S and S to G2/M. Thus, we
define the change-index as 1−(sc−2)/(N−3), where sc means the sum of the label
changes between two adjacent cells. A perfect time-series would have change-index
value of 1, while the worst time-series where sc=N−1would have a value of 0.

Bayes-scores and mean-scores to assess cell cycle phases. Given a traveling
salesman cycle Ck computed from single cell data, we want to determine where the
cell cycle stages are located. We designed two methods for this purpose: a super-
vised Naive Bayes model to compute the probability that a cluster belongs to each
of three cell cycle stages, including ‘G1’, ‘S’, and ‘G2/M’ (Bayes-scores), and an
unsupervised method to compute the mean expression of a selected subset of cell
cycle genes for each of six cell cycle stages, including ‘G1’, ‘G1/S’, ‘S’, ‘G2’, ‘G2/M’,
‘M’ (mean-scores) (Supplementary Methods). Thus Bayes-scores consist of three
dimensions and mean-scores consist of six dimensions.

We used the cell cycle-labeled mESC-SMARTer data to train the Bayes-scores.
Following the literature33, we selected a set of informative gene pairs specific to
each of the three cell cycle stage; then the gene pairs selected for each stage were
unified with Np pairs (Supplementary Methods). Without loss of generality, we
focused on the G1 stage and converted expression of each cluster (or single cell)
into a binary vector as follows. For the i-th of the Np pairs, i.e., gene a and gene b,
we assign a value −1 if their expression levels satisfy ea< eb, and 1 otherwise. Let
the probability pi be the fraction of G1 stage clusters with value 1 for the i-th gene
pair, and let the probability 1−pi be that with value −1. The Naive Bayes model can
be expressed as follows: Let x ¼ x1; ¼ ; xNp

� �
be the binary vector computed from

the gene pairs for an unlabeled cluster. The posterior probability that x belongs to
G1 can be expressed as

P G1 xjð Þ / P x G1jð ÞP G1ð Þ ¼ P G1ð Þ
YNp

i¼1

P xi G1jð Þ ¼ P G1ð Þ
YNp

i¼1

pxii 1� pið Þ1�xi

ð2Þ

Thus the Bayes-scores are log10(P(x|G1)P(G1)), log10(P(x|S)P(S)), and
log10(P(x|G2M)P(G2M)), respectively, with the prior P(G1)= P(S) = P(G2M).
We also tested the Lasso-Logistic regression (Supplementary Note 2,
Supplementary Methods), but the Naive Bayes had better performance.

To determine the mean-scores of a cluster, which is based on the mean of
log2(TPM + 1) of cell cycle genes, we compute the expression mean of a selected
subset of marker genes for each cell cycle stage. We selected six gene sets with
recorded ‘Peaktime’ as ‘G1’, ‘G1/S’, ‘S’, ‘G2’, ‘G2/M’, and ‘M’ stage from the
Cyclebase genes (378) and then computed the corresponding scores for each cluster
(single cell).

HMM for segmentation. Given a traveling salesman cycle of K clusters, we applied
a HMM (Supplementary Fig. 12) to determine cell cycle stages. Let H= {G0,G1,S,
G2/M} denote the set of hidden states (cell cycle stages) and A= (aij)N × N be the

matrix of transition probabilities between the stages, where N= 4 denotes the
number of stages. If no obvious sign indicates the existence of G0 cells, we only
consider G1, S and G2/M. Thus, a state transition exists only when it is from a cell
cycle stage to itself or to a physiologically subsequent stage. Along the generated
time-series, we characterize a cell i∈{1,2,… , n} using a nine-dimensional scoring
vector oi= (oi1,oi2,… ,oi9), which includes three Bayes-scores and the six mean-
scores to describe membership of a cell to a specific cell cycle stage. Therefore,
when a cell is at a stage h∈H, it emits a nine-dimentional scoring vector described
by a multivariate Gaussian distribution N μh;Σhð Þ.

Provided with this formulation, we first estimate the parameters Θ= (A,μh,Σh)
from the observed scores of cells O= (o1,o2,… ,on) along the time-series using the
Baum–Welch (BW) algorithm. To determine the cell cycle starting point, we tried
each cell in the cycle as a starting point, and selected the one that has the highest
likelihood for observation. In the implementation of the BW algorithm47, we
adopted logarithm transformation to small intermediate probabilities to avoid
underflow. We then implement the Viterbi algorithm to obtain the most likely
assignment of the cells, thereby partitioning the time-series into cell cycle stages
(Supplementary Methods).

Kalman smoother and correlation detection. As scRNA-seq expression noise
obeys negative binomial distribution48, it can be regarded as normal distribution
after logarithm. Hence, time-series expression of single cells can be modeled as a
random walk plus (RWP) noise model, which is one of the simplest dynamic linear
models. Each cell i has a time-series index ti ∈{1,2,… n}; hence, the cells can be
arranged as (1,2,… ,T) with n = T here. For a selected gene, cells have the observed
expression et (t= 1,2,… ,T) and the real expression zt (t= 1,2,… ,T) along the cell
cycle time-series. Hence, the RWP model can be expressed as:

et ¼ zt þ v; v � N 0; σeð Þ
zt ¼ zt�1 þ w; w � N 0; σzð Þ

�
ð3Þ

In other words, two adjacent cells have a first-order Markov correlation along
the time-series, and the observed expression is generated by adding a normally
distributed noise of zero mean to the real expression. In practice, we use Kalman
smoother equations, or the Rauch–Tung–Striebel equations (Rauch et al. (1965)) to
estimate the real expression ẑt .

With the noise filtered out, we are able to determine whether the expression of a
gene exhibits a time-series pattern along the cell cycle by correlating the estimated
expression values ẑt with the time-series index t. Apparently, neither Pearson’s nor
Spearman’s correlation coefficients can work here, owing to the
non-monotonic property of expression along a time series. Therefore, we adopted
three statistical methods (dCor28, KNN-MI29, MIC49) capable of detecting the
nonlinear relationship between two variables.

Code availability. The open source implementation of reCAT in R is available on
GitHub: https://github.com/tinglab/reCAT.

Data availability. No new data was generated in this study. All the data sets used
can be find through the accession numbers provided in the original publications
cited in Table 1.
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