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Abstract

Pathological estimation of tumor necrosis after chemotherapy is essential for patients with

osteosarcoma. This study reports the first fully automated tool to assess viable and necrotic

tumor in osteosarcoma, employing advances in histopathology digitization and automated

learning. We selected 40 digitized whole slide images representing the heterogeneity of

osteosarcoma and chemotherapy response. With the goal of labeling the diverse regions of

the digitized tissue into viable tumor, necrotic tumor, and non-tumor, we trained 13 machine-

learning models and selected the top performing one (a Support Vector Machine) based on

reported accuracy. We also developed a deep-learning architecture and trained it on the

same data set. We computed the receiver-operator characteristic for discrimination of non-

tumor from tumor followed by conditional discrimination of necrotic from viable tumor and

found our models performing exceptionally well. We then used the trained models to identify

regions of interest on image-tiles generated from test whole slide images. The classification

output is visualized as a tumor-prediction map, displaying the extent of viable and necrotic

tumor in the slide image. Thus, we lay the foundation for a complete tumor assessment pipe-

line from original histology images to tumor-prediction map generation. The proposed pipe-

line can also be adopted for other types of tumor.

Introduction

Examination of resected cancer specimens after delivery of chemotherapy allows pathologists

to interpret the responsiveness of patient tumors and successfully influences patient outcomes

by stratifying treatment administration to individual patient risk [1]. For high-grade osteosar-

coma, tumor necrosis in response to pre-operative therapy has been a highly significant prog-

nostic indicator for four decades [2]. Repeated international series emphasized the value of

necrosis in predicting treatment outcome [3–5], and led to an extensive international study

(EURAMOS-1) randomizing patients with high-grade resectable osteosarcoma to therapy
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based on tumor necrosis [6]. However, patient outcomes were not significantly improved by

randomized therapy in the EURAMOS-1 trial [7, 8], leading some to challenge the validity of

necrosis as a predictor in this disease [9]. It is clear from these data that limitations exist in the

current approach to treating patients with osteosarcoma and while fundamentally this includes

the need for novel therapies it also emphasizes the need for an effective indicator of treatment

response to allow greater opportunity for personalized treatments. Non-invasive imaging with

CT-PET [10, 11] and both diffusion-weighted and dynamic contrast-enhanced MRI [12, 13]

might also be employed as biomarkers of therapy, but each are variably successful in predicting

tumor response in high-grade osteosarcoma [9]. Limitations, therefore, in the predictive

capacity of histological interpretation of necrosis and radiological interpretation of response

suggest the opportunity to optimize both methods toward the development of an effective bio-

marker. These limitations include the fact that the histological estimation is typically available

only after 10 weeks of pre-operative chemotherapy potentially too late to make meaningful

adjustments in patient therapy. Limitations in histological assessment also include that the tis-

sue processing protocol for resected specimens has not been significantly modified since it was

initially described [2], and histological specimen preparation is time intensive. In fact process-

ing requires manual handling and interpretation of as many as 50 histology slides per case yet

it represents only a single plane of a large three-dimensional tumor. Radiological imaging for

osteosarcoma typically does not include the use of enhanced MRI imaging sequences in rou-

tine care, and voxel level interrogation of large 3-dimensional tumors is not performed where

the primary purpose is delineation of tumor margins for surgical planning.

Recent technology advances, in which histological tumor slides are converted to digital

image datasets and in machine learning which can interrogate patterns in digital images of

MRI and digitized histology may address some of these limitations. Specifically, for response

evaluation in osteosarcoma, digital histopathology is made possible by scanning hematoxylin

and eosin (H&E) stained microscopic slides [14] using commercially available scanning tech-

nology. The scanning converts a glass slide to a digital Whole Slide Image (WSI) that preserves

image resolution up to 40X magnification. Although each WSI represents a very large digital

file, interpretation is now feasible using image processing algorithms, while the advent of

machine and deep-learning models make automated diagnostic systems a possibility.

The goals of this study are (1) to demonstrate the successful development of automated

learning tools for the classification of osteosarcoma WSIs into regions of non-tumor, necrotic

tumor, and viable tumor, and (2) to report areas of tumor and necrosis with high accuracy. It

is critical in any machine learning operation that the automated learner be able to differentiate

normal tissue from tumor tissue since there are elements of normal tissue in all resected can-

cer. The identified regions serve as a preparatory phase for calculating the percent of tumor

necrosis in resected specimens. Ultimately our aim will be to combine the digital data from

histology to co-registered planes of enhanced MRI sequences and using image pattern detec-

tion use MRI imaging to enhance the ability to individualize care for patients since 45% of all

newly-diagnosed patients with osteosarcoma ultimately die of the disease. Advances in treat-

ment is critically dependent on the development of novel methods [15], that can be assessed

through automated tools, and our work demonstrates the first successful step toward such a

tool.

The manuscript has been organized as follows. The section Materials and Methods breaks

down the step by step construction of our image analysis pipeline for osteosarcoma. It gives a

detailed account of the stages of data preparation and classification using machine-learning

and deep-learning models. The Results section provides a comparison between feature catego-

ries, and analyzes the outcomes of machine-learning and deep-learning methods, using vari-

ous performance evaluation metrics. The Discussion section summarizes the overall
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PLOS ONE | https://doi.org/10.1371/journal.pone.0210706 April 17, 2019 2 / 19

(CPRIT) award RP150164 (URL: https://www.cprit.

state.tx.us/grants-funded/grants/rp150164). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0210706
https://www.cprit.state.tx.us/grants-funded/grants/rp150164
https://www.cprit.state.tx.us/grants-funded/grants/rp150164


accomplishments in this study, establishes the context in which the results will be used, and

concludes by sharing thoughts on future directions.

Materials and methods

The various stages carried out in this study include the preparation of data, followed by learn-

ing and classification for machine-learning and deep-learning models. The results are then

analyzed in a number of sub-steps on various performance evaluation metrics.

Data preparation

Archival tumor samples, taken at the time of osteosarcoma resection from 50 patients treated

between 1995 and 2015, were retrieved from the pathology archives at Children’s Medical Cen-

ter, Dallas. From these samples, 942 histology glass slides (mean: 19 slides per patient; range: 4

to 51 slides per patient) were digitized into whole slide images (WSI).

Selecting image tiles for investigation. From the digitized images, 40 WSIs representing

the heterogeneity of tumor and response characteristics under study, were manually selected

by two pathologists. Thirty 1024 x 1024 pixels image tiles at 10X magnification factor were ran-

domly selected from each WSI. Our choice of magnification was made following a discussion

with the pathologists who confirmed that it is the best level to identify features separating the

three classes of interest in a WSI image. A lower magnification for WSIs will loose the spatial

information, while a higher magnification will include sub-cellular regions that are not rele-

vant to the task and may negatively affect the segmentation process. From the resulting 1,200

image tiles, 1,144 were selected after removing irrelevant tiles such as those falling in non-tis-

sue, ink-mark regions, and also blurry images. The randomization of tile-generation removes

any bias in selection of dataset for the purposes of feature- generation and subsequent

machine/deep-learning steps. Furthermore, from each image tile, a number of 128 × 128 size

overlapping image patches were generated for input to the deep-learning model, which

resulted in a total of 56,929 image patches. The generated 128 × 128 patches are manually

annotated again with class labels based on the mask annotation by the pathologists on the tiles.

A high-level view of the data preparation procedure is presented in Fig 1.

Ground truth for classification. The pathologists were provided with the generated

image tiles, uniquely identified by a Tile Identification Number (TIN), for image annotation

procedure. A tool was built in-house, specifically for the task of manual image-annotation by

pathologists (S1 Fig). An appropriate class label was assigned, from the provided options, to

each input tile. Color annotations were used for identifying the regions and were subsequently

used for training the deep-learning model. All image tiles were divided between two patholo-

gists for the annotation activity. Each image tile had a single annotation as any given tile was

annotated by only one pathologist. The results were exported to a comma separated value

(CSV) file, while the images with annotations were saved to separate image files. Each record

of the CSV file contained a TIN and its corresponding classification result.

The three main regions used in all classification tasks are namely Viable tumor (VT), Non-

tumor (NT) and Necrotic tumor (NEC). Expert annotation by two pathologists of 1,144 tiles

resulted in classification as follows: 536 (47%) non-tumor tiles, 263 (23%) necrotic tumor tiles

and 345 (30%) viable tumor tiles.

Generating features for machine-learning

The image-tiles from the preceding stage were used as input for generating features. The

images were processed through a number of steps, first by an application developed in-house

Viable and necrotic tumor assessment from osteosarcoma WSIs using machine- and deep-learning
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[16] and then by CellProfiler [17]. The generated features were grouped into Expert-guided
and CellProfiler generated categories.

Expert-guided features. The properties that pathologists look for in WSIs are emulated as

expert-guided features, using the steps described in [16]. Each image tile was subject to three

levels of segmentation, namely color, shape, and density. The tiles were converted to LAB

color space which divided the color channels into three dimensions L,a�,b�. A threshold of δ�
64 (selected empirically), applied along a� dimension removed pixels that were part of the

bone, red blood cells, and other false positive regions. Subsequently, a color and threshold seg-

mentation method, based on Otsu thresholding [18], divided the stained images into fore-

ground and background pixels, respectively marked as blue and red (Fig 2). A shape

segmentation step identified nuclei and computed their shape properties such as circularity,

area, perimeter, and center. Then the average number of nuclei in a 32x32 window was com-

puted as a derived feature resulting in a total of eight features overall, generated from the data-

set. Algorithm 1 details the steps involved in image segmentation and feature generation

processes described above.

Fig 1. Data preparation process. Step 1 shows the assembly of patient archival samples of 50 cases, resulting in 942 WSIs. Step 2 involves the selection

of 40 handpicked WSIs by a pathologist. In step 3, 1144 image tiles of size 1024x1024 are generated from WSIs identified in step 2. From each image tile

in step 3, a number of image patches of size 128x128 are generated.

https://doi.org/10.1371/journal.pone.0210706.g001

Fig 2. Expert-guided features. The result of Otsu thresholding method (right) for an image segment (left) is

presented. The foreground pixels are marked in blue and the background pixels in red. The outcome was a number of

shape and density properties for each image tile.

https://doi.org/10.1371/journal.pone.0210706.g002
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Algorithm 1 Expert-guided feature generation method
Input: A set of H&E stained images, Î = {I1, I2. . .In}
Output: Set of features, X̂ ¼ fX1;X2 . . .X8g

1: for image Ik 2 Î do
2: Convert Ik into LAB colorspace, and remove objects beyond

threshold δ > 64 in a� dimension, resulting image denoted as I�.
3: Segment I� using Otsu thresholding and divide pixels into red and

blue color, resulting in image IO.
4: From the previous step result, IO, run flood fill algorithm to

compute clusters
5: Count the number of clusters, number of blue and red pixels, area

of each cluster, perimeter and circularity/ eccentricity, and add
to X̂

6: return X̂
CellProfiler features. Texture features are important descriptors in any image processing

task. Hence, to identify more image properties relevant to digital image analysis, we built an

image-processing pipeline using CellProfiler [17]. The following steps detailed in Algorithm 2,

were configured to process every image tile.

A color deconvolution [19] was performed on each image tile using Unmix colors module.

The staining options for this step were set to hematoxylin and eosin stains. The result was a set

of hematoxylin and eosin stained images in grayscale. The hematoxylin images were further

processed through a texture segmentation filter using Measure Texture module. Haralick fea-

tures [20] were calculated from the images by creating a Gray Level Co-occurrence Matrix

(GLCM) which computed co-occurrence values based on values of adjacent pixels. Thirteen

features were computed on the image by performing mathematical computation on the

GLCM. Next, a color segmentation process by Otsu thresholding [18] used CellProfiler’s

Apply Threshold module. The parameter was set to ‘Automatic’, and the threshold method was

set to ‘Otsu’. The resulting image, after threshold segmentation, was subjected to a shape seg-

mentation process using Measure Primary Objects module, which calculated the number of

nuclei present in the image. A minimum diameter of 30 pixels and a maximum diameter of

120 pixels were configured as the size of objects to be identified. The primary objects identified

from the previous step were used as a reference to identify secondary objects such as cells, cyto-

plasm, and portions of stroma using Measure Secondary Objects module. Count of objects,

weighted variance between neighboring pixels, and sum of entropies between foreground and

background were calculated as features from the above two steps. A density segmentation

approach using Measure Object Neighbors module calculated the number of neighboring

nuclei clusters in the identified primary and secondary objects from each tile. In total, a set of

53 features generated from CellProfiler were provided as input feature set for machine-learn-

ing models. The expert-guided feature set and the cellprofiler feature set are mutually exclu-

sive. Only textural features with high information gain are retained from the cell profiler and

overlapping features such as nuclei count are dropped.

Algorithm 2 CellProfiler feature generation
Input: A set of H&E stained images, Î = {I1, I2. . .In}
Output: Set of features, F̂ ¼ ff1; f2 . . . fng
1: for image Ik 2 Î do
2: Perform color deconvolution using Unmix Colors module to separate

the image into hematoxylin (Ih) and eosin (Ie) stain components
respectively

3: Ih grayscale image is analyzed for texture segmentation using
Measure Texture module.

4: The properties generated from Haralick texture method from the
previous step are saved.

Viable and necrotic tumor assessment from osteosarcoma WSIs using machine- and deep-learning
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5: Ih is processed again using Otsu thresholding, from the module
Apply Threshold. The parameter is set to Automatic. The result is
stored in an image IO.

6: From the resulting IO, primary objects like nuclei and lymphocytes
are identified, using Measure Primary Objects module. The minimum
and maximum diameter values are set to 30 and 120 respectively. An
automatic thresholding strategy is used.

7: From identified primary objects, secondary objects are identified
using Identify Secondary Objects module. The module calculates
secondary objects such as cytoplasm, cell, portion of stroma etc.

8: Perform density segmentation using Measure Object Neighbors, to
calculate the number of objects clumped together

9: Save the values generated in the previous step for each feature
10: return X̂

Machine-learning

Machine-learning models have been successfully used in various studies for accurate tumor

prediction [21, 22]. The combined set of 61 features (53+8), generated in the previous step,

were given as input for 13 machine-learners. We used three categories of models, namely

Complex Decision Trees, Support Vector Machines, and Ensemble Learners, with an aim to

identify the one with the best fit on the provided feature set.

Decision trees. Decision trees are one of the non-parametric approaches that divide input

data points into axis-parallel hyper-rectangles and assign a response variable for each identi-

fied region [23]. For each feature Xi from our combined feature set, entropy is calculated using

the following equation.

HðXiÞ ¼
XjCj

j¼1

� PðxjÞlogPðxjÞ ð1Þ

where H(Xi) is the entropy of feature Xi, C is the set of values of target variable viable tumor,

necrotic tumor and non-tumor, and P(xj) is the proportion of Xi belonging to a class under

consideration. A feature Xi’s relevance is found using the following equation.

GðC;XiÞ ¼ HðCÞ �
X

x2valuesðXiÞ

jCxj

jCj
HðXiÞ

( )

ð2Þ

where G(C,Xi) is the information gain for class variable C and attribute X, values(Xi) is the set

of values that Xi takes, and Cx is the subset of C (i.e., one of the values of viable tumor, necrotic

tumor, non-tumor) for which the value of Xi is x (i.e., Cx = c, Xi(c) = x). The algorithm runs

for many iterations, until convergence. In each iteration, the attribute with the highest gain

value, G(C,Xi), is selected and the input set is partitioned based on this attribute. The process

of tree building runs until only one class remains for the input partition or until the termina-

tion conditions are satisfied.

Support vector machines. Support vector machine (SVM) [24] is a supervised learning

method that maximizes a margin between the classification boundaries among different clas-

ses. Given a set of input features (X), their corresponding weights (W), and class labels (Y),

SVM fits a hyper-plane between points by minimizing the following function (with slack vari-

ables).

1

2
kW2 k þC

Xn

i¼1

εi ð3Þ
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subject to the inequality, yi(wT.xi + b) − 1 + εi� 0 (8i 2 n), where n represents the number of

data samples, C is a parameter to control over-fitting, and εi is a slack variable. The above

equation is transformed to include Lagrangian multipliers (αi) in order to handle inequalities

better and introduce dot product between vectors. The objective of the transformed dual for-

mulation becomes,

maximize
X

i¼1

ai �
1

2

X

i¼1

X

j¼1

aiajyiyjx
T
i xj

 !

ð4Þ

subject to 0� αi� C and ∑i αi.yi = 0. Higher dimensional feature sets can be handled by con-

figuring a kernel objective function (Eq 5) that can be linear, quadratic, cubic, Gaussian, poly-

nomial etc. The resulting equation becomes

maximize
Xn

i¼1

ai �
1

2

X

i¼1

X

j¼1

aiajyiyjKðx
T
i xjÞ

 !

ð5Þ

where KðxiTxjÞ is a kernel function that maps vectors xi and xj to a higher dimension, based on

the type of kernel configured. Kernels such as polynomial, Gaussian, Laplacian, and exponen-

tial are used whenever the data is not linearly separable. In our experiments, among all config-

urations of SVM learners, the best performing model under the automatic operating point

selection criteria was a kernel with a cubic polynomial function (degree 3) in the classification

task, described below

KðxTi ; xjÞ ¼ ðx
T
i :xj þ 1Þ

d
ð6Þ

In the above equation, d represents the degree of the polynomial and the kernel used a d = 3

setting for our hierarchical classification task.

Ensemble learning. Bagging and Boosting are two ensemble learning methods that can

reduce variance and bias, respectively [25]. Bagging is a bootstrapping method that uses

repeated random sampling with replacement of data, increasing the data samples, hence

reducing variance. Boosting selects a subset of data and trains on it against weak classifiers in a

series of iterations. The output of one iteration serves as the input for next iteration. The

weights of points misclassified in an iteration are improved for use in the next iteration, using

a weight update function. In the experimental setup considered, decision trees were used as

the base classifiers for learning and classification in the bagging and boosting models.

Parameter configuration for machine-learning models. We used four different complex

tree models by varying the number of splits between 30 and 100. We changed the splitting cri-

teria between Gini’s diversity index and maximum deviance reduction. We applied six config-

urations of support vector machines from MATLAB’s classification learner application

settings, the main difference being the kernel function, which alternated between quadratic,

cubic, and Gaussian kernels. We used one-vs-one and one-vs-all approaches for handling

multi-class variables. For ensemble learners, we used three models of bagged and boosted trees

in our trials. The core algorithm was decision trees over which we used the AdaBoost [26]

algorithm for training. The parameters were selected by evaluating the models with a 5 fold

cross-validation set. It follows that our analysis of machine-learning models performance

across the main classes was quite extensive, allowing us to select the best performer overall. All

experiments were carried out in MatLab’s classification learner package [27].

Viable and necrotic tumor assessment from osteosarcoma WSIs using machine- and deep-learning
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Deep-learning

In recent years, deep-learning using neural networks has proved to be very successful in image

classification. After ResNet [28], a residual block neural network won the Large Scale Visual

Recognition Challenge, the focus on deep-learning for solving image classification tasks has

increased. It was not long before deep-learning was used to solve medical imaging problems.

Ciresan et al. [29] were among the first to apply Convolutional Neural Network (CNN) to

mitosis counting for primary breast cancer grading. Histopathology image processing soon

caught up with deep-learning when Litgens [30] et al. applied a CNN to breast cancer detec-

tion. Other implementations of deep neural networks include a fast scanning deep CNN for

breast cancer detection [31]. The above works bear testament to the fact that deep-learning is a

reliable method of image classification. To leverage the power of this technique, we built a

deep-learning CNN model [32] as an extension of AlexNet [33] and LeNet [34]. The model

includes three convolution layers, three sub-sampling layers, and two fully connected multi-

layer perceptrons. The fully trained network can classify all the three tumor subclasses, viable,

necrosis, and non-tumor (VT, NEC, and NT), with high accuracy. The model requires only

annotated image data, from which it can learn abstract features as described in Rashika et al.

[32].

Configuring the CNN. The architecture for the CNN based neural network consists of

three convolution layers, three sub-sampling layers, and two fully connected multi-layer per-

ceptrons (Fig 3). There is an input layer that accepts raw image pixel values of RGB. Each

input is a sub-tile patch of size 128 x 128 pixels. A convolution layer computes the dot product

of raw input values that are connected to local neurons and their corresponding weights. Max

pooling layer follows the convolution layer and down-samples the volume along the spatial

dimensions to 62x62x4. The Convolution and max-pooling layers are alternated three times in

our architecture, a choice made through extensive experimentation. The first two pairs of lay-

ers have a filter size of 5x5 and a down-sampling scale of 2, while the last layer pair has a filter

size of 3x3 and a down-sampling size of 2. There are two fully connected multi-layer percep-

trons (MLP) that follow the three-layer pairs, containing a number of hidden layers. A logistic

regression is used as the activation function. The second layer of MLP has three output neu-

rons that produce a probability value for each of the three output classes. The network is

trained via stochastic gradient descent with nesterov momentum (gamma value set to 0.9)

where all weights are initialized with small random numbers from a gaussian distribution of

N(0, 0.01). The model hyper-parameters are set using the “babysitting approach” in which

they are manually tuned through various runs of the deep learning model. Based on the con-

vergence of gradient descent from the various runs, the model is run for 20 epochs with learn-

ing rate and batch size set to 10−3 and 100 respectively.

Fig 3. Deep-learning architecture. Image shows the deep-learning convolutional neural network architecture used in this study.

https://doi.org/10.1371/journal.pone.0210706.g003
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Data preprocessing. All image patches were processed to remove patches with insignifi-

cant information by converting the image to binary and calculating its Euler value. The Euler

value is the total number of objects in the image minus the total number of holes in those

objects. It identifies images that contain mostly background (white) pixels. An Euler threshold

of e� -3 (selected through experimentation) was used to identify significant image patches for

training. This value was reached by testing euler threshold values in (−15 < e< 15) range on a

validation set of 1000 patches containing 300 examples with only background. The remaining

patches were then normalized to alleviate the effect of illumination and contrast conditions

while scanning the histology slides. This was done by transforming the RGB channel input

into Lab color space and normalizing the L (lightness) parameter of the L�a�b color space.

Data augmentation. Data augmentation is the method of adding more data samples

pooled from the already available data through transformation methods that preserve or alter

properties of data. This has particular use in deep neural network learning since every model

requires a large amount of data to train. It also plays a major role in avoiding over-fitting of

data in our architecture. We considered two augmentation techniques. The first was a trans-

formation operation through rotation of the image by 90˚,180˚and 270˚, in addition to flip-

ping/mirroring the image along vertical and horizontal axes. Each image snip resulted in eight

transformations that are added to the dataset. The second technique applied a principal com-

ponent analysis on each pixel along each RGB channel. If for each image pixel, Ixy = {pr, pg, pb}
(x and y are the pixel locations), pr, pg, pb are red, green and blue channel values respectively,

then the principal component, φ is calculated as

φðx; yÞ ¼ ½q1 q2 q3�:½l1a1 l2a2 l3a3�
T ð7Þ

where qi and λi are the Eigen-vectors and Eigen-values of 3x3 co-variance matrix of RGB pixel

values, and αi is a random value drawn from a Gaussian distribution N(1,0.1). The image

matrix is of size 128 × 128 × 3. Let the number of training images before augmentation be

n = 56, 929. Then the covariance matrix is calculated on an input matrix of size n × (128 ×
128) × 3. We then calculate the eigen vectors and eigen values of the covariance matrix. We

sort the eigen values in descending order and select the corresponding eigen vectors to the

sorted eigen values as our features. We then find the principal components of the input data

through multiplication and add a value α to each pixel of the image using Eq 7. This results in

output images with perturbed principal color while still maintaining the original features.

Results

The ultimate goal of this study is to demonstrate the ability of automated learners to identify

viable-tumor and necrotic-tumor regions. The experimental results are analyzed in a sequence

of steps effectively as follows.

1. We assess the information content of the generated features and compare expert-guided

and CellProfiler features.

2. We present the results of 13 machine-learning models that led to selecting the one with the

best fit for the provided features.

3. We evaluate the performances of best machine-learning model and deep-learner based on

their ability to discriminate tumor from non-tumor and then viable from necrotic tumor.

4. We generate image-tiles from a WSI and use the learners to predict the classes. The classifica-

tion outcome is then mapped to an eye-fit view of the WSI to create a tumor-prediction map.
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Performance evaluation metrics

The results shared in the succeeding paragraphs were reported based on the following standard

metrics of performance evaluation.

K-fold cross-validation. Entire data is divided into K sets, each containing N/K samples,

where N is the total number of data points. The training and validation are repeated for K iter-

ations. In every trial K-1 sets serve as training data and one set serves as test data. The error

reported is the average error over K iterations, and represents final classifier performance.

The accuracy and error reported give a good approximation of a classifier’s decision making

ability. K-fold cross validation is a commonly accepted way of measuring the performance of a

classification model.

Holdout cross-validation. The data is divided into training and test set based on a per-

centage split decided beforehand. The learners are trained on the training set and evaluated on

the test set. In this study, we employ an 80-20 split for training and testing sets. In order to

reduce bias, we use a stratification approach, which preserves the original distribution of class

samples in training and test sets.

Accuracy computation. The machine-learning models are compared on their ability to

accurately identify the three classes. The overall accuracy (O) is calculated as

O ¼
TNT þ TNEC þ TVT

NNT þ NNEC þ NVT
ð8Þ

where TNT, TNEC and TVT are the correctly classified samples in each class and NNT, NNEC and

NVT are the total number of samples in specific classes.

The class specific accuracy (Cc) is calculated by the following equation.

Cc ¼
Tc

Nc
ð9Þ

where c represents the class variables (NT, NEC, VT).

Analyzing feature importance

Expert guidance by two pathologists, differentiating histological features of non-tumor, viable

tumor, and necrotic tumor, resulted in 8 programmable expert-guided features. An automated

image processing tool, CellProfiler [17], was used to generate an extensive set of features, out

of which we have retained the top 53. All these selected features were textural features. Features

from both these sources informed the machine-learning models. We performed a comparative

analysis of expert-guided and CellProfiler features by studying their information gain values.

Information gain of a particular feature is the difference in information available for predicting

the target class with or without that feature, with information reflecting how the predicted

probabilities are distributed among target classes. Information gains of individual expert-

guided and top CellProfiler features are summarized in Table 1. Expert-guided features had

lower gains by themselves than features generated by CellProfiler. For example, the highest

gain value for expert-guided features was 0.2014, for the feature ‘Total clusters’ in the image,

while for CellProfiler it was 1.8406, for the feature ‘Texture Gabor’.

To develop insight into the relative contributions of the expert-guided and CellProfiler fea-

tures, we trained the top configurations of the machine-learners using only the expert-guided

features or CellProfiler features. The overall accuracy achieved by these learners is reported

in Table 2. Although features from CellProfiler alone achieve higher overall accuracy than

expert-guided features alone, it is evident that learning from both sets of features is better than

learning from one or the other (Table 2). Removal of the expert-guided features decreases the
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final accuracy of the model by almost 7%. It can be argued that the expert-guided features

encodes subtle image properties that the pathologists use to distinguish between different

types of tissues.

Reporting overall and class-specific accuracies

The overall and class-specific accuracy of the machine-learners from combined features is

reported in Table 2. Accuracy was estimated using 5-fold cross-validation of the data set. Over-

all accuracy ranged from 80.2% to 89.9%. SVMs achieved the highest overall accuracy (range

83.0%–89.9%) followed by ensemble learners (81.1%–86.8%) and complex trees (80.2%-

Table 1. Comparison of information gain ratio of top features from expert-guided and CellProfiler categories.

Feature IG Description

Expert-guided features

Total clusters (0.2014) The number of nuclei clusters computed in an image tile

Average clusters (0.2014) The average number of nuclei clusters computed in a 32x32 window

Red count (0.1572) The number of background pixels in an image tile

Red percentage (0.1572) The percentage of red pixels among foreground and background pixels

Blue count (0.1523) The number of foreground pixels in an image tile

Blue percentage (0.1523) The percentage of blue pixels among foreground and background pixels

Area (0.0874) The average area of identified nuclei clusters in an image tile

Circularity (0.0425) The average circularity of identified nuclei clusters in an image tile

CellProfiler features

Texture Gabor (1.8406) The Gabor feature measures striped texture in an object

Texture sum Entropy (1.8406) The sum of entropy of all pixel values in GLCM

Texture sum variance (1.8406) The variance of entropy values in GLCM

Texture variance (1.8406) The variance of GLCM elements in the matrix

Texture sum average (1.8406) Sum of product of entries with probability of co-occurrence of values in

GLCM

Texture correlation (1.8406) Gray level linear independence between pixels

Texture angular second

moment

(1.8406) Measure of homogeneity in an image

IG—Information Gain

GLCM—Gray Level Co-occurrence Matrix

https://doi.org/10.1371/journal.pone.0210706.t001

Table 2. Comparison of accuracy of best machine-learners on various feature categories.

Complex trees (CT) Support Vector Machine (SVM) Ensemble Learners (ENS)

Total accuracy using only expert-guided or CellProfiler features

Expert-guided 65.7 70.5 68.0

CellProfiler 77.4 82.7 80.2

Class specific and total accuracy using combination of expert-guided and CellProfiler features

Viable tumor (VT) 77 91 88

Necrotic tumor (NEC) 75 87 80

Non-tumor (NT) 87 91 90

Overall accuracy (O) 80.9 89.9 86.8

https://doi.org/10.1371/journal.pone.0210706.t002
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80.9%). For any particular learner, class-specific accuracy was greatest for non-tumor, followed

by viable, and necrotic tumor.

The overall and class-specific accuracy of the deep-learner was also evaluated on the same

data set (Table 3). The deep-learner achieved overall accuracy of 93.3% and class-specific accu-

racies of 91.9% for non-tumor, 95.3% for viable tumor, and 92.7% for necrotic tumor.

Hierarchical receiver-operator characteristics

The 1,144 selected image tiles were randomly divided 80/20 into training and testing sets for

hierarchical evaluation. The training set of 914 tiles included 428 (47%) non-tumor tiles, 210

(23%) necrotic tumor tiles and 276 (30%) viable tumor tiles. The testing set of 230 tiles

included 108 (47%) non-tumor tiles, 53 (23%) necrotic tumor tiles and 69 (30%) viable tumor

tiles. The above information is presented in Table 4.

After retraining, the performance of SVM3 and the deep-learner in discrimination of non-

tumor from tumor, followed by conditional discrimination of necrotic from viable tumor, was

further assessed on the test data set by constructing the corresponding hierarchical receiver-

operator characteristics. Receiver operating characteristic (ROC) curve analysis is widely used

in biomedical research to assess the performance of diagnostic tests. The ROC curve depicts

the quality of a diagnostic marker in a two-class classification problem. It illustrates the trade-

off between sensitivity and specificity as a cut-off point for decision making. Area Under the

ROC Curve (AUC) is the most widely used index for the quantification of the performance of

a diagnostic marker in the two-class setting. Fig 4 shows the ROC curves for Tumor vs. Non-

Tumor for the SVM classifier and deep-learner. For a 3-class setting, the Volume Under the

Surface (VUS) was proposed as an index for the assessment of the diagnostic accuracy of the

marker under consideration [35]. These surfaces are shown in Fig 5.

The AUC values for tumor and non-tumor graph are� 0.98. This high value states that

the SVM and deep-learner are able to separate tumor from non-tumor regions with a high

confidence. But AUC values in a 3-class setting do not show the complete picture for positive

class vs. negative class. Hence we compute VUS values as explained in the following section.

The VUS value for SVM and the deep-learner were 0.922 and 0.959, respectively, which indi-

cate both learners performed exceptionally well (VUS = 1 for perfectly informed classifica-

tion; VUS = 0.167 for uninformed classification) in their respective classification tasks. VUS

Table 3. Deep-learning classification results.

Tumor sub-type No. of annotated patches (128x128) Patch accuracy

in %

Tile accuracy

in %Total Training Testing

VT 15231 10662 4569 95.3 92.6

NEC 14827 10379 4448 92.7 91.5

NT 20806 14564 6242 91.9 89.5

Overall accuracy (O) 93.3 91.2

https://doi.org/10.1371/journal.pone.0210706.t003

Table 4. Table of ground truth for comparative evaluation. The representation of image tiles of all class labels in training and test sets is presented below.

Classification label No. of image tiles Per class distribution of tiles (%)

Training set (80%) Test set (20%)

NT 428 108 47%

NEC 210 53 23%

VT 276 69 30%

https://doi.org/10.1371/journal.pone.0210706.t004
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Fig 4. Area under the curve (AUC). Receiver operating characteristic curves presented for (a) SVM3 and (b) deep-learner shows AUC values� 0.98

for both the learning models.

https://doi.org/10.1371/journal.pone.0210706.g004

Fig 5. Volume under the surface. Receiver-operating characteristic surface for discrimination of non-tumor from tumor followed by conditional

discrimination of necrotic from viable tumor with volume under surface (VUS) for (a) SVM3, (b) deep-learner. True positive rates (TPR) are

within-class fractions of correctly classified image tiles/patches.

https://doi.org/10.1371/journal.pone.0210706.g005
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values are more robust towards small changes in a 3-class setting as compared to surface

area.

Visualization of output. The trained models were used to analyze whole slide histology

images and segment the WSI into different regions. From each WSI, 1000 to 1800 image-tiles

of size 1024 X 1024 were generated. These tiles were then classified by the models and the

results were mapped back to the original WSI at eye-fit level to generate tumor-prediction

map. The map displays viable tumor in red, necrotic tumor in green and non-tumor regions

in blue. The mapping step and the final tumor-prediction map are shown in Fig 6.

Fig 6. Tumor-prediction map. The figure shows the output for 3 WSIs. Image-tiles generated from a WSI (a) were provided as input to the learning

models. The output of the classification task was used to create a tumor-prediction map (b), red signifying VT, green, NEC and blue, NT. The final

images shows the overlaid tumor map on the WSI (c).

https://doi.org/10.1371/journal.pone.0210706.g006
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Discussion

Osteosarcoma is a highly heterogeneous tumor and histological estimation of tumor response

after ten weeks of therapy is time intensive and limited in its value. In this paper we present

the first automated, accurate classification of WSIs (representing post-therapy resection speci-

mens with osteosarcoma,) into viable tumor, non-tumor, and necrotic tumor. This is also the

first study in osteosarcoma where necrotic tumor is automatically assessed from WSIs. We

have generated digital histology properties based on nuclei features, spatial features, distance-

based features and textural features from the input image tiles, for three categories of tissue

within histology images, viable tumor / necrotic tumor/ areas of non-tumor. We have config-

ured and tested traditional machine-learning models by combining expert identified features

with CellProfiler features as a single input set, and selected the best performing model, an

SVM. In parallel, we also built a deep-learning neural network based on the Alexnet [33] and

LeNet architectures [34], which used a gradient-based learning with back-propagation algo-

rithm. On our test data set, the accuracies and VUS reported by both traditional (selected

SVM) and deep-learning models are comparable and very significant. The fact that both mod-

els, based on completely different approaches for tile classification, achieve similar results, is in

itself a validation of the strength of this work.

Machine-learning has been implemented in many spheres of medicine with varying accep-

tance [36, 37]. Within the field of histopathology for cancer, automated learning algorithms

have been successfully evaluated in renal clear cell carcinoma, glioma, gastric carcinoma,

breast cancer, prostate cancer, and non-small cell lung cancer [21, 22, 38–41]. Specifically,

deep-learning convolutional neural networks (CNN) accurately identified micro-metastasis in

lymph node biopsies and prostate biopsies [30]. machine-learning tools identified histopatho-

logical features in non-small cell and squamous cell lung cancer and using these features,

investigators were able to separate prognostic subgroups [22, 41], while CNN identified vari-

ous subtypes of glioma with 90-96% accuracy [38]. Each of these reports utilized the ability of

automated learning algorithms to recognize and segment cellular and environmental details.

Identification of tissue necrosis, as noted in this report, represents a different level of complex-

ity. Data describing deep-learning analysis of gastric carcinoma report 81% accuracy in detect-

ing tumor necrosis [39] while data in glioblastoma both highlights the evolutionary features of

necrosis and confirms the suitability of deep neural networks in histopathology image inter-

pretation [42].

Limitations of this work include that the pathological evaluation of tissue samples is prone

to inter-observer variability [43] and some of the features we used as input to the automated

machine-learner depended on pathologist identified features. To adjust for this we identified

textural features using an image analysis platform and in parallel developed a neural network

that functions independently of expert-guided or textural feature input.

To our knowledge, the data presented in this report represent the first description using

automated learner tools in the histological classification in high-grade osteosarcoma. We have

optimized a pipeline for this interpretation, and highlighted multiple novel achievements

toward this end. We developed an annotation tool for expert pathology review of osteosarcoma

tiles for classification purpose, which allowed efficient and expert review of 1,144 image tiles,

while simultaneously generating data for our machine-learning and deep-learning algorithms.

We have optimized an image-processing platform using the Cellprofiler software, and identi-

fied 53 features in addition to those distilled and extrapolated from expert pathology examina-

tion. The high VUS value for both learners prove the robustness of the learned models on the

blind test dataset.
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As a final validation step, tumor-prediction maps were generated to display the classified

tumor regions. These maps can be used to calculate the percentage of tumor necrosis in a

patient and also visualize the extent of osteosarcoma over the whole slide image.

The work presented in this paper lays the complete framework for histopathological image

analysis in osteosarcoma. We have demonstrated that the provided framework perform excep-

tionally well in the classification task. The same framework can also be adopted for other types

of tumor.

Supporting information

S1 Fig. Screen-shot of the annotation software. The screen-shot shows an example region

annotation regions on a histology image.

(TIF)
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