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ABSTRACT This paper presents a deep learning-based pansharpening method for fusion of panchromatic
and multispectral images in remote sensing applications. This method can be categorized as a component
substitution method in which a convolutional autoencoder network is trained to generate original panchro-
matic images from their spatially degraded versions. Low resolution multispectral images are then fed into
the trained convolutional autoencoder network to generate estimated high resolution multispectral images.
The fusion is achieved by injecting the detail map of each spectral band into the corresponding estimated high
resolution multispectral bands. Full reference and no-reference metrics are computed for the images of three
satellite datasets. These measures are compared with the existing fusion methods whose codes are publicly
available. The results obtained indicate the effectiveness of the developed deep learning-based method for
multispectral image fusion.

INDEX TERMS Multispectral image fusion by convolutional autoencoder, fusion of panchromatic and
multispectral images in remote sensing, convolutional autoencoder-based pansharpening.

I. INTRODUCTION
Pansharpening [1]–[9] or fusion of spectral and spatial image
attributes is commonly used in remote sensing. The fusion
process is done in order to address the limitation of bandwidth
in capturing image data by satellites at a certain Signal-
to-Noise Ratio (SNR). Two types of data are captured by
satellites: PANchromatic (PAN) image data providing spatial
information and MultiSpectal (MS) image data providing
spectral information. After the preprocessing steps of regis-
tration and noise reduction, the fusion process is applied to
merge the spectral content of MS image data with the spatial
content of PAN image data. The effectiveness of fusion is
often assessed by the level of artifacts and inconsistencies in
the fused outcome [10].

A number of pansharpening methods have been intro-
duced in the literature that can be grouped into three cat-
egories: (1) Component Substitution (CS), e.g. [11]–[15],
(2) Multi-Resolution Analysis (MRA), e.g. [16]–[20], and
(3) Model-Based (MB), e.g. [21]–[23]. In the first two cate-
gories, the Low Resolution MS (LRMS) image data are used
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while different procedures are used to extract the detail map.
Most CS-based methods are based on the difference between
PAN image data and a linear combination of LRMS bands.
Depending on the weights in the linear combination, different
methods are resulted such as Adaptive Intensity Hue Satu-
ration (AIHS) and its improved version (IAIHS) [24], [25],
Weighted Least Square (WLS) [26] and Nonlinear Intensity
Hue Saturation (NIHS) [27]. Due to the fact that different
spectral bands do not share the same detail map, adaptive
injection gains were developed in [28]. In IAIHS, an edge
detector was derived from both PAN and MS image data
which was then applied to the detail map extracted by AIHS.
In [29], a fractional-order edge detector on the detail map was
used to obtain a refined detail map. In MRA-based methods,
the detail map is derived from PAN image data and by apply-
ing high frequency filters. In MB methods, pansharpening
is formulated as an optimization problem based on a prior
model which is normally considered to be Bayesian [30].

The past few years have witnessed an increasing use of
deep neural networks in remote sensing. As far as pansharp-
ening is concerned, the convolutional neural network (CNN)
architecture was utilized in [31]. In [32], the Denoising
AutoEncoder (DAE) architecture was used as part of a
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MRA-based method leading to enhanced fusion outcomes.
In [33], the Deep Residual Network (DRN) architecture
was used to achieve multispectral image fusion. In [34],
the DAE architecture was considered as part of a CS-based
method where LRMS images were computed via a Gaus-
sian filter. More recently, in [35], the Generative Adversarial
Network (GAN) architecture was used for pansharpening.
A comprehensive study of deep learning-based pansharpen-
ing methods is provided in [36].

In this paper, a new deep learning-based method for mul-
tispectral image fusion is introduced based on the convo-
lutional autoencoder architecture. The fusion outcome of
the developed method is then compared with a representa-
tive set of existing methods using both full reference and
no-reference objective measures.

The rest of the paper is organized as follows: section II
describes the proposed fusion method in detail. In section
III, the datasets and the performance measures used are men-
tioned. The experimental results and their discussion are also
covered in section III. Finally, the conclusion is stated in
section IV.

II. DEVELOPED CONVOLUTIONAL AUTOENCODER
FUSION METHOD
A. FUSION FRAMEWORK
The general framework of CS-based methods can be stated as
the following equation [6]

MH
i =ML

i + gi (P− I) (1)

where MH
i and ML

i denote the high and low resolution MS
image data in the ith band, respectively, gi the ith injection
gain of the detail map which is represented by the difference
between the PAN image P and a linear combination of LRMS
bands I expressed as:

I =
N∑
i=1

wiML
i (2)

with wis as weights and N as the number of spectral bands
covering the spectral range of the PAN image. Optimal
weights are found via solving the following optimization
problem

w∗i = argmin
wi

∥∥∥∥∥P−
N∑
i=1

wiML
i

∥∥∥∥∥
2

(3)

where w∗i s denote the optimal weights. The detail map D is
then obtained as follows:

D = P−
N∑
i=1

w∗i M
L
i (4)

Considering that different MS bands do not share the same
detail map, the injection gains are adjusted according to this
equation [26]

gi =
cov

(
ML

i , I
)

var(I)
(5)

B. CONVOLUTIONAL AUTOENCODER
Convolutional AutoEncoder (CAE) is a type of CNN that
reconstructs the input at the output and can be used as a
feature extractor with 2D images as its input. The architecture
of a CAE consists of twomain parts: encoding part for feature
representation or providing a compressed version of the input
and a decoding part for reconstructing the input from the
compressed version. The encoding part includes convolution
and max pooling layers, while the decoding part consists
of deconvolution and upscaling layers. Fig. 1 exhibits an
illustration of the CAE architecture.

FIGURE 1. Architecture of the convolutional autoencoder network used.

1) ENCODER
To capture structural attributes of the input image data across
Q dimensions K = {K1,K2, . . . ,KQ}, n convolution filters
F (1)

= {F (1)
1 ,F (1)

2 , . . . ,F (1)
n } are considered to generate n

intermediate features expressed by the following equation

Tm = s
(
K ∗ F (1)m + b

(1)
m

)
m = 1, 2, . . . , n (6)

where s denotes the sigmoid activation function and b(1)m is
the bias for the mth feature map. The intermediate feature
maps correspond to the compressed version of the input data.
Several convolution layers are normally concatenated.

2) DECODER
Decoding involves reconstructing the input image K from its
n intermediate feature maps. The reconstructed input image
K̃ is obtained via the convolution of the intermediate feature
maps T = {Tm}nm=1 with the convolutional filters F (2)

=

{F (2)
1 ,F (2)

2 , . . . ,F (2)
n } expressed by the following equation

K̃ = s(T ∗ F (2)m + b
(2)
m ) (7)

With the output having the same dimension as the input,
any loss function L(.) such as Mean Square Error (MSE)

L
(
K , K̃

)
=

1
2

∥∥∥K − K̃∥∥∥2
2

(8)

can be used to update the network weights during the training
phase.

C. DEVELOPED CAE-BASED METHOD
A CAE network is used in this paper to improve the spatial
information of the LRMS bands by learning the nonlinear
relationship between a PAN image and its spatially degraded
version. The steps involved in this process are described next.
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FIGURE 2. Input and output of the convolutional autoencoder network.

TABLE 1. Geographical areas of the datasets examined.

A PAN image is considered to be the reference spatial
image. A spatially degraded version of the PAN image is
first generated using an interpolation filter. The original and
degraded PAN images are partitioned into p × p patches
with r overlapping pixels. A CAE network is used to learn
the nonlinear relationship between the original PAN patches
and corresponding degraded PAN patches as its output and
input, respectively. After training, the CAE network generates
estimated high resolution LRMS patches as its output in
response to LRMS patches as its input.

Mathematically, let the original PAN patches, denoted by{
XH
i

}C
i=1 , and spatially degraded PAN patches, denoted by{

XL
i

}C
i=1, form the target and the input of the CAE network,

respectively, where C indicates the number of patches. The
network is effectively designed to learn how to inject the
spatial information into the degraded image. At each iteration,
the output patches of the CAE network are computed as
follows: {

Y L
i

}C
i=1
= FDecode(FEncode

({
XL
i

}C
i=1

)
) (9)

where
{
Y L
i

}C
i=1 denotes the output and FEncode and FDecode

correspond to the encoding and decoding operations. The
weights at each iteration are updated based on the MSE
between the original PAN patches and their reconstructed
versions

L
({
Y L
i

}C
i=1
,
{
XH
i

}C
i=1

)
=

1
2

C∑
i=1

∥∥∥Y L
i − X

H
i

∥∥∥2
2

(10)

The backpropagation algorithm is then employed for train-
ing the network. To test the effectiveness of the trained

FIGURE 3. Steps involved in the developed fusion method.

FIGURE 4. Sample images of the datasets examined.

network, the LRMS image is partitioned into patches across

N bands, that is
{
ZL
i,j

}C
i=1

for j = 1 : N.
Next, the patch-wised LRMS bands are fed into the CAE

trained network. Due to the similarity in the spectral char-
acteristics of PAN and MS images, the trained network is
expected to improve the spatial information of the LRMS
bands. The input and output of the CAE network are illus-
trated in Fig. 2. From this figure, it can be seen that an
estimated high resolution LRMS is obtained at the output of
the network for each band. In fact, not only the reconstructed
version preserves the spectral information of LRMS bands
but also it carries more spatial information in comparison
with the input patches. What makes the proposed approach
different than the previous approaches is that the estimated
high resolution LRMS is used instead of LRMS in Eq. (1).
After tiling the estimated high resolution LRMS bands, the
fusion process is carried out via the following equation:

MH
i = M̂H

i + gi(P− I) (11)
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FIGURE 5. Average and percentile performance measures of PAN-MS pairs for QuickBird dataset images correspond to the full reference
protocol.

FIGURE 6. Average and percentile performance measures of PAN-MS pairs for Pleiades-1A dataset images corresponding to the full reference
protocol.

where M̂H
i denotes the ith estimated high resolution LRMS

band obtained from the trained CAE network. Fig. 3 provides
an illustration of the steps involved in the developed method.

As illustrated in Fig. 3, the optimal weights derived from
Eq. (3) are applied to the LRMS bands in order to obtain
an estimation of the low resolution PAN image. Then, the
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FIGURE 7. Average and percentile performance measures of PAN-MS pairs for GeoEye-1 dataset images corresponding to the full reference protocol.

TABLE 2. Average performance measures for QuickBird dataset images; the last row shows the ideal value for each measure and the best values are
bolded with the second best values underlined.

primitive detail map is obtained via Eq. (4). Next, the injec-
tion gains noted in Eq. (5) are used to acquire the refined
detail map. After obtaining and tiling the estimated high res-
olution LRMS patches, the first term of Eq. (11) is computed.
The fusion is achieved by combining its two components,
see Fig. 3.

III. EXPERIMENTAL RESULTS
In this section, the datasets used are first described followed
by the performance measures examined. A quantitative as
well as a visual comparison with a representative set of
existing methods are then reported for the conventional full

reference (reduce-resolution) and no-reference (full resolu-
tion) protocols.

A. DATASETS
Three datasets are examined in this paper: (a) The QuickBird
dataset which includes LRMS images at 2.44-2.88m resolu-
tion as well as PAN images at 0.61-0.72m resolution taken
from a rural area. (b) The Pleiades-1A dataset which includes
0.5m resolution images that are taken from an urban area.
(c) The GeoEye-1 dataset which includes 0.46m resolution
images taken from a forest area. In all of these datasets,
4 bands (blue, green, red, and near infrared) are available,

VOLUME 7, 2019 35677



A. Azarang et al.: Convolutional Autoencoder-Based Multispectral Image Fusion

TABLE 3. Average performance measures for Pleiades-1A dataset images; the last row shows the ideal value for each measure and the best values are
bolded with the second best values underlined.

TABLE 4. Average performance measures for GeoEye-1 dataset images; the last row shows the ideal value for each measure and the best values are
bolded with the second best values underlined.

FIGURE 8. Fusion outcomes for a sample QuickBird dataset image: (I) LRMS, (II) PAN, (III) PCA, (IV) GIHS, (V) Indusion, (VI) GLP, (VII)
AIHS, (VIII) FDIF, (IX) DAE, (X) CAE.

covering the visible and near-infrared regions of the spec-
trum. The geographical areas associated with the datasets are
listed in Table 1. For the experimentations, 8 × 8 patches

of the spatially degraded version of PAN and the original
PAN images consisting of 500,000 patch pairs were used to
serve as the input and target of the CAE network, respectively.
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FIGURE 9. Fusion outcomes for a sample Pleiades-1A dataset image: (I) LRMS, (II) PAN, (III) PCA, (IV) GIHS,
(V) Indusion, (VI) GLP, (VII) AIHS, (VIII) FDIF, (IX) DAE, (X) CAE.

TABLE 5. Average no-reference performance measures for QuickBird
dataset images; the last row shows the ideal value for each measure and
the best values are bolded with the second best values underlined.

To get the estimated high resolution LRMS, 8 × 8 patches
were used separately on each band on the trained CAE
network.

B. PERFORMANCE MEASURES
An issue of concern in pansharpening involves the unavail-
ability of High Resolution MS (HRMS) images. That is
why two protocols are often considered in remote sens-
ing. In the first protocol, which is called full reference or
reduced-resolution [37], the intact MS image is considered
to be the reference. In the second protocol, which is called
no-reference or full resolution [38], the reference MS image
is upsampled to the size of the PAN image.

Here, the outcome of our method is compared to a repre-
sentative set of pansharpening methods including PCA [12],
GIHS [39], Indusion [16], GLP [17], AIHS [24], FDIF [29]
and DAE [32]. Both the full reference and no-reference pro-
tocols are considered. The results reported next correspond
to the averages and percentiles of the entire QuickBird and

TABLE 6. Average no-reference performance measures for Pleiades-1A
dataset images; the last row shows the ideal value for each measure and
the best values are bolded with the second best values underlined.

Pleiades-1A dataset images and 50% of the GeoEye-1 dataset
images (randomly selected).

1) FULL REFERENCE
Several measures have been utilized in the literature for eval-
uating the spatial and spectral distortions of fused images
with respect to an available reference image. According to
the first or Wald’s protocol, both scalar (i.e., measurements
on a single spectral band) and vector (i.e., jointly considering
all the spectral bands) (dis)similarity indices are computed.
The ones that are widely used are Erreur Relative Glob-
ale Adimensionnelle de Synthese (ERGAS) [39], Spectral
Angle Mapper (SAM) [40], Relative Average Spectral Error
(RASE) [41], Root Mean Square Error (RMSE) [42], Univer-
sal Image Quality Index (UIQI) [43] and Correlation Coeffi-
cient (CC) [44]. RMSE denotes the square mean root error
between the fused and original MS images. ERGAS is a nor-
malized version of RMSE indicating a measure of distortion.
SAM provides the angle between the corresponding pixels in
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FIGURE 10. Fusion outcomes for a sample GeoEye-1 dataset image: (I) LRMS, (II) PAN, (III) PCA, (IV) GIHS, (V) Indusion,
(VI) GLP, (VII) AIHS, (VIII) FDIF, (IX) DAE, (X) CAE.

the original MS and the pansharpened images. RASE cap-
tures the average performance of different methods in terms
of spectral bands. CC reflects spectral distortion based on the
correlation coefficient between the original MS bands and
the fused image bands. UIQI is another measure of spectral
distortion obtained by the product of correlation, luminance
distortion, and contrast distortion.

2) NO-REFERENCE
In order to perform the quality evaluation at the original
image or data resolution, the Quality of No Reference (QNR)
index was proposed in [38]. The QNR index is defined as

QNR = (1− Dλ)α (1− DS)
β (12)

where Dλ and Ds denote quantifications of the spectral and
spatial distortions, respectively, with α and β as weight
factors.

C. COMPARISON RESULTS
1) FULL REFERENCE
a: QUANTITATIVE COMPARISON
The performance measures of our method and the existing
methods for the three datasets of QuickBird, Pleiades-1A,
and GeoEye-1 are provided in Figs. 5 through 7, respectively.
To make the quantitative comparison easy to see, the average
values of the measures are also reported in Tables 2 through
4. The ideal values of each measure are shown in the last row
of these tables with the best values bolded. From the above
figures and tables, it can be observed that when the perfor-
mance measures are considered collectively, on average, our
method generated the best performance measures with the
least amounts of variance.

b: VISUAL COMPARISON
Figs. 8 through 10 illustrate sample LRMS and PAN images
as well as corresponding pansharpened results. From these

TABLE 7. Average no-reference performance measures for
GeoEye-1 dataset images; the last row shows the ideal value for each
measure and the best values are bolded with the second best values
underlined.

figures, it can be seen that all the pansharpened images did
better than LRMS in terms of the spatial content. The PCA,
GIHS and Indusion methods suffered from spectral intensity
distortions and colors also got slightly distorted in LRMS.
On the other hand, the AIHS and FDIF methods did not
capture the spatial details more than the other methods, in par-
ticular near the edges. It can be observed that the strength of
our method lies in the preservation of colors.

For better visualization, a small area of each dataset is
zoomed and shown on the bottom side of the images. As seen
in the figures, the PCA, GIHS and Indusion methods suffered
from spectral distortions. The GLP and AIHS methods led to
some loss of the spectral information. Although the FDIF and
DAE methods preserved the spectral and spatial information
in the fused outcome, some areas, in particular near the edges,
got blurred. Our method did not generate local artifacts and
provided spectral and spatial consistency.

The measures reported reflect the average distortion for an
entire fused image and not local area distortions. The error
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FIGURE 11. Error maps - for visualization purposes, the original error maps are linearly mapped to [0,255]: (I)-(VIII) QuickBird, (IX)-(XVI) Pleiades-1A,
(XVII)-(XXIV) GeoEye-1.

FIGURE 12. Full resolution fusion outcomes for a sample QuickBird
image (for better visual comparison, a cropped part of the entire image is
shown).

maps, i.e. the difference between the fused image and the
reference image (HRMS), can be examined in order to see the
structural uniformity and edges. As shown in the error maps
in Fig. 11, our method achieved better performance in most
areas of the image compared to the other methods.

2) NO-REFERENCE
a: QUANTITATIVE COMPARISON
Table 5 compares the result of our method (CAE) with the
other methods for the QuickBird dataset in terms of DS, Dλ
and QNR which represent the spatial, spectral and overall
distortions, respectively. As seen in this table, our CAE
method achieved better performance in all the cases. Simi-
larly, Tables 6 and 7 show our CAE method outperformed

FIGURE 13. Full resolution fusion outcomes for a sample Pleiades-1A
image (for better visual comparison, a cropped part of the entire image is
shown).

the othermethods for the Pleiades-1A andGeoEye-1 datasets,
respectively.

b: VISUAL COMPARISON
The no-reference fused sample images are shown in Figs. 12
through 14 for the three datasets QuickBird, Pleiades-1A
and GeoEye-1, respectively. The PCA and GIHS methods
performed poorly, mostly because of the spectral distortion,
while the Indusion and AIHS methods generated blurri-
ness. The FDIF and DAE methods produced good spectral
information but suffered from a lack of spatial information in
some areas. Our CAE method performed similar to the GLP
method, but it produced more spatial information while pre-
serving the spectral information. As an example, in Fig. 12,
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FIGURE 14. Full resolution fusion outcomes for a sample Pleiades-1A
image (for better visual comparison, a cropped part of the entire image is
shown).

FIGURE 15. Fusion outcome corresponding to an unseen area: (I)-(III) the
reference data and (IV) – (VI) the processed data.

the white squares in the PCA andGIHSmethods became gray
although the spatial information was injected into the fused
image. The edges of the white squares in our method can be
seen more clearly here in comparison with the other methods.

D. NETWORK GENERALIZATION
In this section, the generalization capability of the trained net-
work on the Pleiades-1A dataset is considered. This was done
by training the network on one area of the image and testing
it for other areas. For this purpose, three non-overlapping
areas of the Pleiades-1A dataset were chosen to serve as
unseen data corresponding to vegetation and urban areas.
The LRMS bands of these areas were then fed into the
trained network after being patched by the same size as used
in the training. The output patches were reconstructed and
fed into the fusion framework with the results appearing
in Fig. 15. As can be seen from this figure, the network

was still able to inject the spatial information into the LRMS
patches although they were chosen from different areas of the
image. As an example, for the white area in the middle of the
image in Fig. 15(IV), the spatial information was effectively
injected into the fusion outcome without distorting any color
information.

IV. CONCLUSION
In this paper, a pansharpening method has been developed
based on a convolutional autoencoder network. A spatially
degraded PAN image is first obtained via an interpolation
filter. The original PAN images and their degraded versions
are used to train a convolutional autoencoder network in a
patch-wise manner. The LRMS bands are partitioned and
fed into the trained network to obtain an estimation of high
resolution LRMS images. It has been shown that this network
can effectively inject the spatial information by learning the
nonlinear mapping of degraded and clean PAN patches. The
above approach is then used as part of the component sub-
stitution fusion framework to generate fused images. Objec-
tive performance measures were computed for three public
domain datasets and the results obtained have demonstrated
the effectiveness of the introduced fusion method relative to
a representative set of existing fusion methods.

ACKNOWLEDGMENT
The authors would like to thank Prof. H. Ghassemian who
provided valuable discussions during this work.

REFERENCES
[1] G. Khademi and H. Ghassemian, ‘‘A multi-objective component-

substitution-based pansharpening,’’ in Proc. IEEE 3rd Int. Conf. Pattern
Recog. Image Anal. (IPRIA), Apr. 2017, pp. 248–252.

[2] H. R. Shahdoosti and H. Ghassemian, ‘‘Combining the spectral PCA and
spatial PCA fusion methods by an optimal filter,’’ Inf. Fusion, vol. 27,
pp. 150–160, Jan. 2016.

[3] M. Ghamchili and H. Ghassemian, ‘‘Panchromatic and multispectral
images fusion using sparse representation,’’ in Proc. IEEE Artif. Intell. Sig.
Process. Conf. (AISP), Oct. 2017, pp. 80–84.

[4] G. Khademi and H. Ghassemian, ‘‘Incorporating an adaptive image prior
model into Bayesian fusion of multispectral and panchromatic images,’’
IEEE Geosci. Remote Sens. Lett., vol. 15, no. 6, pp. 917–921, Jun. 2018.

[5] A. Azarang and H. Ghassemian, ‘‘An adaptive multispectral image fusion
using particle swarm optimization,’’ in Proc. Iranian Conf. Elec. Eng.
(ICEE), May 2017, pp. 1708–1712.

[6] G. Vivone et al., ‘‘A critical comparison among pansharpening algo-
rithms,’’ IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2565–2586,
May 2015.

[7] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, ‘‘Boosting the accuracy of multi-
spectral image pansharpening by learning a deep residual network,’’ IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1795–1799, Oct. 2017.

[8] S. Vitale, G. Ferraioli, and G. Scarpa, ‘‘A CNN-based model for pansharp-
ening of worldview-3 images,’’ in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2018, pp. 5108–5111.

[9] M. Gargiulo, A. Mazza, R. Gaetano, G. Ruello, and G. Scarpa, ‘‘A CNN-
based fusionmethod for super-resolution of sentinel-2 data,’’ inProc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2018, pp. 4713–4716.

[10] H. Ghassemian, ‘‘A review of remote sensing image fusion methods,’’ Inf.
Fusion, vol. 32, pp. 75–89, Nov. 2016.

[11] Y. Yang, L. Wu, S. Huang, J. Sun, W. Wan, and J. Wu, ‘‘Compensation
details-based injection model for remote sensing image fusion,’’ IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 734–738, May 2018.

35682 VOLUME 7, 2019



A. Azarang et al.: Convolutional Autoencoder-Based Multispectral Image Fusion

[12] X. Li, Y. Pan, A. Gao, L. Li, S. Mei, and S. Yue, ‘‘Pansharpening based
on joint Gaussian guided upsampling,’’ in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jun. 2018, pp. 7184–7187.

[13] P. Liu, L. Xiao, and T. Li, ‘‘A variational pan-sharpening method based
on spatial fractional-order geometry and spectral-spatial low-rank pri-
ors,’’ IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1788–1802,
Mar. 2018.

[14] H. R. Shahdoosti and N. Javaheri, ‘‘Pansharpening of clustered MS and
Pan images considering mixed pixels,’’ IEEE Trans. Geosci. Remote. Lett.,
vol. 14, no. 6, pp. 826–830, Jun. 2017.

[15] J. Choi, K. Yu, andY. Kim, ‘‘A new adaptive component-substitution-based
satellite image fusion by using partial replacement,’’ IEEE Geosci. Remote
Sens. Lett., vol. 49, no. 1, pp. 295–309, Jan. 2011.

[16] M. M. Khan, J. Chanussot, L. Condat, and A. Montanvert, ‘‘Indusion:
Fusion of multispectral and panchromatic images using the induction scal-
ing technique,’’ IEEE Geosci. Remote Sens. Lett., vol. 5, no. 1, pp. 98–102,
Jan. 2008.

[17] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, ‘‘MTF-
tailored multiscale fusion of high-resolution MS and Pan imagery,’’ Pho-
togramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, May 2006.

[18] H. Li and L. Jing, ‘‘Improvement of MRA-based pansharpening methods
through the considerasion of mixed pixels,’’ in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Jul. 2018, pp. 5112–5115.

[19] Y. Xing,M.Wang, S. Yang, and K. Zhang, ‘‘Pansharpening with multiscale
geometric support tensor machine,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 5, pp. 2503–2517, May 2018.

[20] X. Lu, J. Zhang, and Y. Zhang, ‘‘An improved non-subsampled contourlet
transform-based hybrid pan-sharpening algorithm,’’ in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 3393–3396.

[21] H. AanÆs, J. R. Sveinsson, A. A. Nielsen, T. Bovith, and J. A. Benedik-
tsson, ‘‘Model-based satellite image fusion,’’ IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 5, pp. 1336–1346, May 2008.

[22] X. Kang, S. Li, and J. A. Benediktsson, ‘‘Pansharpening with mat-
ting model,’’ IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8,
pp. 5088–5099, Aug. 2014.

[23] F. Palsson, J. R. Sveinsson, M. O. Ulfarsson, and J. A. Benediktsson,
‘‘Model based pansharpening method based on TV and MTF deblurring,’’
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015,
pp. 33–36.

[24] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and T. Wittman,
‘‘An adaptive IHS Pan-sharpening method,’’ IEEE Geosci. Remote Sens.
Lett., vol. 7, no. 4, pp. 746–750, Oct. 2010.

[25] Y. Leung, J. Liu, and J. Zhang, ‘‘An improved adaptive intensity-hue-
saturation method for the fusion of remote sensing images,’’ IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 5, pp. 985–989, May 2014.

[26] Y. Song,W.Wu, Z. Liu, X. Yang, and K. Liu, andW. Lu, ‘‘An adaptive pan-
sharpening method by using weighted least squares filter,’’ IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 1, pp. 18–22, Jan. 2016.

[27] M. Ghahremani andH. Ghassemian, ‘‘Nonlinear IHS: A promisingmethod
for pan-sharpening,’’ IEEE Geosci. Remote Sens. Lett., vol. 13, no. 11,
pp. 1606–1610, Nov. 2016.

[28] M. R. Vicinanza, R. Restaino, G. Vivone, M. Dalla Mura, and
J. Chanussot, ‘‘A pansharpening method based on the sparse representation
of injected details,’’ IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1,
pp. 180–184, Jan. 2015.

[29] A. Azarang and H. Ghassemian, ‘‘Application of fractional-order differ-
entiation in multispectral image fusion,’’ Remote Sens. Lett., vol. 9, no. 1,
pp. 91–100, Jan. 2018.

[30] T. Wang, F. Fang, F. Li, and G. Zhang, ‘‘High-quality Bayesian pansharp-
ening,’’ IEEE Trans. Image Process., vol. 28, no. 1, pp. 227–239, Jan. 2019.

[31] G. Scarpa, S. Vitale, and D. Cozzolino, ‘‘Target-adaptive CNN-based
pansharpening,’’ IEEE Trans. Geosci. Remote Sens., vol. 56, no. 9,
pp. 5443–5457, Sep. 2018.

[32] A. Azarang and H. Ghassemian, ‘‘A new pansharpening method using
multi resolution analysis framework and deep neural networks,’’ in Proc.
IEEE 3rd Int. Conf. Pattern Recog. Image Anal. (IPRIA), Apr. 2017,
pp. 1–6.

[33] Y. Rao, L. He, and J. Zhu, ‘‘A residual convolutional neural network
for pan-shaprening,’’ in Proc. IEEE Int. Workshop Remote Sens. Intell.
Process. (RSIP), Sep. 2017, pp. 1–4.

[34] W. Huang, L. Xiao, Z. Wei, H. Liu, and S. Tang, ‘‘A new pan-sharpening
method with deep neural networks,’’ IEEE Geosci. Remote Sens. Lett.,
vol. 12, no. 5, pp. 1037–1041, May 2015.

[35] X. Liu, Y. Wang, and Q. Liu. (2018). ‘‘PSGAN: A generative adversarial
network for remote sensing image pan-sharpening.’’ [Online]. Available:
https://arxiv.org/abs/1805.03371

[36] Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and X. Wang,
‘‘Deep learning for pixel-level image fusion: Recent advances and future
prospects,’’ Inf. Fusion, vol. 42, pp. 158–173, Jul. 2018.

[37] L. Wald, Data Fusion: Definitions and Architectures Fusion of Images of
Different Spatial Resolutions. Paris, France: Presses des MINES, 2002.

[38] J. Zhou, D. L. Civco, and J. A. Silander, ‘‘A wavelet transform method to
merge Landsat TM and SPOT panchromatic data,’’ Int. J. Remote Sens.,
vol. 19, no. 4, pp. 743–757, 1998.

[39] H. Hallabia, A. Kallel, A. Ben Hamida, and S. Le Hégarat-Mascle,
‘‘High spectral quality pansharpening approach based on MTF-matched
filter banks,’’ Multidimensional Syst. Signal Process., vol. 27, no. 4,
pp. 831–861, Oct. 2016.

[40] C. B. Hsu, J. C. Lee, and T. M. Tu, ‘‘Generalized IHS-BT framework for
the pansharpening of high-resolution satellite imagery,’’ J. Appl. Remote
Sens., vol. 12, no. 4, Oct. 2018, Art. no. 046008.

[41] H. Li, W. Li, G. Han, and F. Liu, ‘‘Coupled tensor decomposition for
hyperspectral pansharpening,’’ IEEE Access, vol. 6, pp. 34206–34213,
Jun. 2018.

[42] Y. Yang, L. Wu, S. Huang, W. Wan, and Y. Que, ‘‘Remote sensing image
fusion based on adaptively weighted joint detail injection,’’ IEEE Access,
vol. 6, pp. 6849–6864, 2018.

[43] Z. Wang and A. C. Bovik, ‘‘A universal image quality index,’’ IEEE Signal
Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

[44] M. Imani, ‘‘Band dependent spatial details injection based on collaborative
representation for pansharpening,’’ IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 12, pp. 4994–5004, Jul. 2018.

ARIAN AZARANG (S’15) received the B.S.
degree from Shiraz University, Iran, in 2015, and
the M.S. degree from Tarbiat Modares University,
Iran, in 2017. He is currently pursuing the Ph.D.
degree with The University of Texas at Dallas,
all in electrical engineering. His research interests
include signal and image processing, deep learn-
ing, remote sensing, and chaos theory. He received
the first rank award for the B.S. degree.

HAFEZ E. MANOOCHEHRI (S’15) received the
M.S. degree in computer science from The Uni-
versity of Texas at Dallas, in 2015, where he
is currently pursuing the Ph.D. degree. Since
2018, he has been with the Bioinformatics Depart-
ment, UT Southwestern Medical Center, Dallas,
as a Research Collaborator. His research interests
include image analysis and machine learning in
biological applications.

NASSER KEHTARNAVAZ (S’82–M’86–SM’92–
F’12) is currently an Erik Jonsson Distinguished
Professor with the Department of Electrical and
Computer Engineering and the Director of the
Signal and Image Processing Laboratory, The Uni-
versity of Texas at Dallas. His research inter-
ests include signal and image processing, machine
learning, and real-time implementation on embed-
ded processors. He has authored or co-authored ten
books and more than 380 journal papers, confer-

ence papers, patents, manuals, and editorials in these areas. He is a Fellow
of SPIE and a Licensed Professional Engineer. He is currently serving as an
Editor-in-Chief of the Journal of Real-Time Image Processing.

VOLUME 7, 2019 35683


	INTRODUCTION
	DEVELOPED CONVOLUTIONAL AUTOENCODER FUSION METHOD
	FUSION FRAMEWORK
	CONVOLUTIONAL AUTOENCODER
	ENCODER
	DECODER

	DEVELOPED CAE-BASED METHOD

	EXPERIMENTAL RESULTS
	DATASETS
	PERFORMANCE MEASURES
	FULL REFERENCE
	NO-REFERENCE

	COMPARISON RESULTS
	FULL REFERENCE
	NO-REFERENCE

	NETWORK GENERALIZATION

	CONCLUSION
	REFERENCES
	Biographies
	ARIAN AZARANG
	HAFEZ E. MANOOCHEHRI
	NASSER KEHTARNAVAZ




