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Sensitivity of estimated elastic moduli to completeness of wave
type, measurement type, and illumination apertures
at a receiver in multicomponent VSP data

Herurisa Rusmanugroho1 and George A. McMechan1

ABSTRACT

Inversion of phase slowness and polarization vectors mea-
sured from multicomponent vertical seismic profile data can
yield estimates of all 21 density-normalized elastic moduli for
anisotropic elastic media in the neighborhood of each 3C
geophone. Synthetic test data are produced by direct evalua-
tion of the Christoffel equation, and by finite-difference solu-
tion of the elastodynamic equations. Incompleteness of the
data, with respect to illumination (polar and azimuth angle)
apertures (qP and/or qS) wave types, wave-propagation direc-
tions, and the amount of data (e.g., with or without horizontal
slowness components), produces solutions with variations in
quality, as revealed by the distribution of model parameter
correlations. In a good solution, with all parameters well con-

strained by the data, the correlation matrix is diagonally
dominant. qP-only and qS-only solutions typically produce
complementary distributions in their correlation matrices, as
they are orthogonal in their sampling of the medium with
respect to polarization. The elastic moduli become less inde-
pendent as the data apertures decrease. If the other input data
are relatively complete, the horizontal components of the
slowness vector are not needed as the information they con-
tain is redundant. The main consequence of omitting horizon-
tal slowness components is slower convergence. When
modest amounts of random noise are added to the slowness
and polarization data, in otherwise adequately sampled aper-
tures, the solution is still very close to the correct model, but
with larger residual variance.

INTRODUCTION

General anisotropy, parameterized by 21 density-normalized
elastic moduli, provides a comprehensive characterization of an
anisotropic elastic medium, from the measured polarizations and
phase slowness vectors of propagating waves. Below, the terms
modulus and moduli should everywhere be understood to be
density-normalized, and hence have units of velocity2 (km2∕s2).
Methods of extracting local anisotropy information can be grouped
into phase slowness methods, or slowness + polarization methods.
The phase slowness methods include Miller and Spencer (1994),
who show an exact inversion from qP or qS data, assuming that
the axial shear velocity is known, Miller et al. (1994) who show
a field application to a marine walkaway vertical seismic profile
(VSP), and Horne et al. (2008) who extend it to 3D. The slownessþ
polarization methods include de Parscau and Nicloetis (1989),

Hsu et al. (1991), and Leaney and Hornby (2007), and Grechka and
Mateeva (2007). VSP data are commonly used for inversion for
anisotropic moduli as the VSP geometry provides wider propaga-
tion angle apertures than surface survey data for the same offset, and
wide azimuth apertures. Maximizing angular recording apertures is
important because inversion for all 21 elastic moduli requires that
the anisotropic medium be sampled by waves propagating in many
independent directions; 3C geophones in a borehole can record
waves in all incident directions.
Both theoretical and experimental approaches for calculating the

21 independent moduli have been proposed by previous authors.
Arts et al. (1992) solve the Christoffel equation, by generalized lin-
ear inversion, for the moduli in terms of polarizations and phase
velocties. Arts and Rasolofosaon (1992) expand the method to
the complex moduli of a general viscoelastic anisotropic medium.
Vestrum (1994) performs a least-squares inversion for the best fit to
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the observed group and phase velocities from laboratory measure-
ments; the group velocity inversion is computationally more
difficult and its result is less accurate than that based on the phase
velocity; below, we use phase velocities only. Dellinger et al. (1998)
improve and stabilize Vestrum’s algorithm by parameterizing the
elastic modulus matrix using eigenstiffnesses and eigentensors,
as described by Helbig (1994).
Many inversion algorithms and examples of inversion of VSP

data can be found in the literature (e.g., Bona and Slawinski,
2008; Kochetov and Slawinski, 2009). Most have restrictions with
regard to polar and azimuth angle apertures in the data, are limited
in the wave types considered (usually qP waves), or measurement
type (polarization or phase slowness vectors, or both). For example,
van Buskirk et al. (1986), Norris (1989) and Ditri (1994) assume
homogeneity. Horne and Leaney (2000) invert qP and qSV polar-
ization and slowness component measurements obtained from a
walkway VSP experiment in the Java Sea region using an adaptive
simulated annealing to minimize the misfit function over Thomsen-
like parameters and phase velocities for a VTI model. Zheng and
Pšenčík (2002) assume arbitrary anisotropy symmetry and invert
the polarization vector and the vertical component of the slowness
vector of the qP-wave to determine locally weak anisotropy param-
eters; as horizontal components of the slowness vector are not
independent of polarization, the former can be substituted by the
latter, and the solution is relatively insensitive to the structural com-
plexities in the overburden.
Dewangan and Grechka (2003) provide procedures to estimate all

21 moduli from 9C VSP data by solving the Christoffel equation.
Gomes et al. (2004) apply an approach, similar to that of Zheng and
Pšenčík (2002), to walkway VSP data acquired in the Java Sea re-
gion (Horne and Leaney, 2000), and show that the area is neither
isotropic nor VTI, but are not able to establish the symmetry of the
medium because only qP-wave data along one radial line of sources
are used. They also show that slowness vector components esti-
mated from downgoing waves are more accurate than those from
upgoing, for qP and qS waves.
Each of the above studies is limited in certain ways by the survey

geometry, data apertures, the wave types, or the model parameter-
ization. The effects of these limitations on information content and
its distribution in the data have implications for experiment design
and the ability for subsequent recovery of elastic moduli. A few
papers, notably Norris (1989), Jech (1991), Ditri (1994), and
Dewangan and Grechka (2003) have made significant analyses
and provide technology for systematic investigation of these rela-
tions, but the task is far from complete.
The distribution of information in the data is an important con-

sideration in optimizing data acquisition. Ditri (1994) shows that 15
of the 21 elastic moduli can be determined from data in a single
recording plane, and 20 can be determined from data in two planes,
provided that the angular apertures are sufficient; theoretically,
slowness and polarization components of qP and qS waves mea-
sured in only six optimally chosen wave-propagation directions
are enough to determine all 21 moduli (Norris, 1989). Unfortu-
nately, these optimal directions are not known a priori, so many
more measurements always have to be made in practice.
Jech (1991) shows that a qP wave velocity depends on each of 21

the elastic moduli with sensitivity depending on the propagation
direction, so it is theoretically possible to solve for all the 21 moduli
from qP data alone, provided that the data apertures are sufficiently

wide. However, Jech also points out that if a linearized solution is
used, then only nine independent moduli are uniquely recoverable;
the others appear in six composite parameters, each of which is a
combination of two. Adding qS data (e.g., Dewangan and Grechka,
2003) or solving the nonlinear problem resolves these limitations.
Gomes et al. (2004) take a different approach; they restructure the
inversion by expressing the two horizontal slowness components in
terms of polarizations so the former are only implicitly included.
Given that the anisotropic symmetry and orientation are not

known a priori, in this paper, we perform linearized inversions
for 21 elastic moduli for a variety of data subsets for a single model,
to illustrate how various amounts and types of data incompleteness
influence the ability to recover the elastic moduli. The inversions are
based on the Christoffel equation (e.g., Ditri, 1994; Dewangan and
Grechka, 2003), which is the relation between the measured slow-
ness and polarization components (as a function of direction, for qP,
qS1, and qS2 waves), and the elastic moduli. We specifically con-
sider solutions for 21 elastic moduli using wide and limited ranges
of polar and azimuth angles, with and without noise, with approx-
imate and with no horizontal slowness components, and for qP
waves only and qS waves only. Parameter correlation matrices com-
puted from the Jacobian at convergence assist in evaluation the
quality of the solutions, and reveal the number of independent para-
meters that are recovered from the various subsets of the data. Cer-
tainly the inversions would be more efficient if the anisotropy
symmetry was known a priori so that the model parameterization
could be optimized. Examples are constructed directly from the
Christoffel equation, and also from slowness and polarization com-
ponents measured from synthetic 3D, 9C elastic data.
The elastic moduli have embedded in them, information on

lithology, fluid content, fracture orientation and density, and the
anisotropy symmetry. Recovery of the elastic moduli is the first step
in estimating the petrophysical properties for potential use in pro-
duction strategy, time-lapse fluid replacement monitoring, and
hydraulic fracture evaluation.

METHODOLOGY

In anisotropic media, wave-propagation velocities are a function
of direction, wave type, and the elastic moduli. For a given propa-
gation direction (defined by a polar angle and azimuth), the Chris-
toffel equation (Appendix A) produces three sets of the phase
velocities and polarizations corresponding to the P-wave, and
two S-waves. In anisotropic media, there are quasi-P (qP), faster
quasi-S1 (qS1), and slower quasi-S2 (qS2) modes which are not
purely longitudinal or shear (Tsvankin, 2001). The Christoffel equa-
tion is obtained by substituting a harmonic plane wave into the elas-
todynamic equation; thus it is a plane wave approximation
(Tsvankin, 2001), and so works best at sufficiently large distances
from the source that the wavefront curvature is negligible.

Phase slowness and polarization vector data

Inputs to inversion for elastic moduli consist of components of
phase slowness and polarization vectors for qP, qS1, and qS2 waves
incident at a 3C borehole geophone. The depth derivative dt∕dz of
the traveltime t in the vertical direction z is the vertical component
of the phase slowness vector at the current receiver; this vertical
slowness is local and so is independent of the overburden. The ver-
tical phase slowness range is sampled by repeating for all azimuths

R2 Rusmanugroho and McMechan



and offsets for sources at the surface. The horizontal phase slow-
nesses cannot be measured in a vertical hole, and so may be ap-
proximated if the overburden is homogeneous, by invoking
reciprocity by selecting pairs of sources at the surface, for a fixed
receiver in the borehole (Gaiser, 1990). The horizontal components
of the slowness vector measured at the surface are the same as those
at a fixed receiver in the borehole for a laterally homogeneous (e.g.,
VTI) medium. If the overburden is not homogeneous, reciprocity is
not maintained (e.g., Grechka and Mateeva, 2007), and horizontal
slowness components determined at the surface will not be reliable.
Taking local horizontal spatial derivatives dt∕dx and dt∕dy gives
components of the phase (not group) slowness vector (Gaiser,
1990; Dellinger, 1991). This is important as the Christoffel equation
requires phase slowness components.
The vertical component of slowness and all the polarization

measurements are local to the 3C borehole geophone (within
1–2 wavelengths; Nistala and McMechan, 2005). The measure-
ments and the inverted moduli apply only to the neighborhood
of the geophone. If horizontal slowness components are approxi-
mated by measurements across sources at the surface (Gaiser,
1990), the approximation gets poorer as the complexity of the over-
burden structure increases (Dewangan and Grechka, 2003; Nistala
and McMechan, 2005). The incident angle will be affected by the
actual propagation path in complicated structure in the overburden,
but the slowness and polarization vector for each arrival will be lo-
cally consistent at the geophone, and that is the input data for
inversion.
Similarly, all three components of polarization can be measured

by a single 3C borehole geophone. The 3C polarizations for qP,
qS1, and qS2 waves are obtained by singular value decomposition
(SVD) and Alford rotation as summarized by Michaud (2001). The
polarization vectors are required to be normalized for input to the
Christoffel equation (Appendix A).

Inversion

The inverse problem (Appendix B) of estimating elastic moduli
from polarization and slowness vectors (e.g., Dewangan and
Grechka, 2003) is also based on the Christoffel equation. We im-
plement the inverse problem with the iterative Levenberg-
Marquardt algorithm (e.g., Menke, 1989). Moré’s (1977) modifica-
tion to the Levenberg-Marquardt method is robust, efficient, and
shows strong convergence properties. The model parameter vector
at iteration nþ 1 is

mnþ1 ¼ mn þ ½JTnJn þ ϵ2I�−1JTnKnðdobs − dcaln Þ; (1)

wherem is the model parameter vector and d is the data vector. The
model parameter vector contains the density-normalized elastic
moduli, and the data vector contains the polarizations and slow-
nesses for each of the qP, qS1, and qS2 waves. J is a Jacobian matrix
containing the first derivatives of the Christoffel equation with
respect to the model vector, and K is a diagonal matrix containing
the derivative of the Christoffel equation with respect to the data
vector. ϵ is a damping factor used to avoid local minima, and I
is an identity matrix. Superscripts −1 and T denote inverse and
transpose operations, respectively. Superscripts “obs” and “cal” de-
note the observed and calculated data, respectively. The solution is
obtained by minimizing the objective function of the root mean
square misfit

Φrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðdobsi − dcali Þ2
vuut ; (2)

between the observed and calculated slowness and polarization
vectors, where N is the number of observed data.

Parameter covariance and the model
correlation matrix

Covariance measures how two parameters change together. The
larger the magnitude of a covariance, the stronger the relationship
between the corresponding model parameters. Normalizing the co-
variance matrix elements by the product of the standard deviations
of the corresponding model parameters gives the correlation matrix
(e.g., Rodgers and Nicewander, 1988; Menke, 1989). Menke (1989)
shows that the normalized covariance matrix of the model param-
eters also defines the error amplification resulting from mapping the
data into the model. The correlation matrix for an estimated model
is a numerical tool that can be used in experiment design even
before acquiring data (Menke, 1989) because it is independent of
the actual magnitudes and variances contained in the data. The cor-
relation matrix can be calculated from the Jacobian of the inversion
at any iteration, but the most salient information is at convergence.
An ideal inverse problem is parameterized in terms of, and solved

for, parameters that are independent of each other. In the present
context, there are potentially 21 independent moduli. If the inverse
problem is well-posed, the solution converges to a model that is
close to the correct model, the normalized covariance matrix will
be a unit diagonal matrix, interpreted as having no correlation
between the estimated moduli. If the problem was not correctly
parameterized and the parameters are interdependent, this will man-
ifest as nonzero amplitudes in off-diagonal locations in the correla-
tion matrix (where the row and column indices indicate the
parameters that are correlated). Correlations can be positive or
negative, and range between −1 and þ1. So the quality of an in-
version can be ascertained by viewing the pattern in the correlation
matrix. We identify three main situations; for independent param-
eters, for interaction between parameters, and for unsolved param-
eters, depending on the information that is recoverable from the data
that are available. This is a key component of the analysis of the
examples below.

GENERATION OF SYNTHETIC DATA FOR
INVERSION EXAMPLES

Winterstein (1990) notes that a triclinic model with 21 indepen-
dent elastic moduli can be generated by adding a third set of cracks
into a model with monoclinic symmetry, if the normal to the added
crack set is neither parallel, nor perpendicular to, the normals of the
two crack planes in the host monoclinic medium. The monoclinic
symmetry itself can be defined by two crack sets with different
crack density, whose normals make an angle of neither 0° nor
90° with each other.
Elastic moduli for a triclinic medium are calculated using the

high-order T-matrix model (Jakobsen et al., 2003) to represent
the contributions of cracks and their interactions. The elastic moduli
for the isotropic host rock are given in equation C-1. The seismic
properties of the host rock and of the gas contained in the cracks in
the model are from Maultsch et al. (2003). The T-matrix crack
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parameters (with a crack aspect ratio of 0.05 and an aspect ratio of
the crack distribution of 0.1), are the same for all the crack sets.
Figure 1 shows the triclinic crack geometry distribution used, in
Cartesian coordinates; the crack sets 1, 2, and 3 have crack densities
of 0.03, 0.04, and 0.02, respectively. For clarity, each crack set is
represented by only a single plane in Figure 1. The corresponding
matrix of density-normalized elastic moduli (km2∕s2) specifying a
homogeneous triclinic medium used for the generation of the
synthetic “observed” data is given in equation C-2.
The synthetic examples below are divided into two groups; all

use the same modulus model. The first group uses multicomponent,
multiazimuth examples generated using deterministic forward
modeling of polarization and slowness vectors calculated directly
by the Christoffel equation. The second group uses polarization
and slowness components extracted from a 3D, 9C wide azimuth
synthetic elastic data set generated by finite-differencing. Some
of the examples are noise-free and some have random noise added.
The noise added to the slowness data has mean zero and variance of
�2% of the maximum slowness magnitude in the noise-free data.
The noise added to the polarization has mean zero, and deviation of
10° randomly oriented from the noise-free polarization direction.
The modeling algorithm used in the second group of examples is

the particle velocity-stress formulation of the 3D elastodynamic
equations (e.g. Tessmer, 1995), implemented by eighth-order,
staggered-grid, finite-differencing to solve for 3C particle velocities
(Ramos-Martínez et al., 2000). The software is able to generate seis-
mograms for anisotropic symmetries up to triclinic (with 21 inde-
pendent elastic moduli). We use absorbing boundary conditions
(Cerjan et al., 1985) at the top of the model to eliminate generation
of free-surface multiples to facilitate clarity in understanding the
results, although multiples of all types are valid for input to the
inversions.
For computational efficiency, all the examples are calculated

numerically by exciting three orthogonal 1C sources sequentially
in the subsurface and saving the responses for each on a grid of
3C receivers on the surface which, by reciprocity for a homoge-
neous medium, creates the same slowness and polarization vectors

as a field VSP geometry with a single 3C receiver in a borehole and
3C sources distributed on the surface. In all subsequent references
to the survey geometry, we treat the data as being equivalent to a
single 3C downhole receiver, and 3C sources on the surface. The
same procedure can be used for simulating test data for laterally
heterogeneous media.

CHRISTOFFEL EQUATION EXAMPLES

Generating test data

In this section, we generate synthetic phase slowness and
polarization data vectors (Figure 2) by SVD of the classical Chris-
toffel matrix (Appendix A) for a triclinic model (Appendix C); see
for example, Helbig (1994). For the forward problem, the inputs to
the Christoffel matrix (equation A-1a) are the directionally depen-
dent elastic moduli produced by the T-matrix formulation (Jakobsen
et al., 2003), from the host rock and crack properties and orienta-
tions (given in the previous section and Appendix C), along with the
propagation directions for various polar and azimuth angles. For the
forward problem, we use the SVD routine DSVD from LINPACK
(Dongarra et al., 1979) to decompose the Christoffel matrix. Then,
the eigenvectors of the SVD are the polarization vectors, and the
eigenvalues are the phase velocities squared (Jech, 1981; Ditri,
1994; Carcione, 2007).
Figure 2 shows projections, onto the horizontal plane, of slow-

ness and polarization vectors, respectively, for qP, qS1, and qS2,
calculated by the Christoffel equation. The black dots in Figure 2
indicate 60 3C source positions distributed over the model surface
with apertures of polar angle [15°–75°] and azimuth [0°–360°]; the
3C borehole receiver position is at ðx; y; zÞ ¼ ð1665; 1665; 250Þ m.
The slownesses vectors for all the waves (Figure 2a, 2b, and 2c)
show radial patterns. The horizontally projected polarizations for
qP (Figure 2d) are approximately radial around the receiver posi-
tion. The horizontally projected polarizations near the borehole for
the faster S-wave (qS1) (Figure 2e) are dominated by the orientation
of crack set 2 (Figure 1) which has the highest crack density (0.04).
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Figure 1. 3D elastic homogeneous triclinic model
used to create the data for all the synthetic exam-
ples. Line X (black line) contains representative
3C source positions at depth z ¼ 10 m. The
solid black circle is a 3C receiver position at
ðx; y; zÞ ¼ ð1665; 1665; 250Þ m.
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The horizontally projected polarizations near the borehole for the
slower S-wave (qS2) (Figure 2f) are orthogonal to those for qS1.

Inversion results for wide aperture data

In any physically realizable (isotropic or anisotropic) medium,
there are general patterns in the distribution of magnitudes between
groups of moduli that constrain their relative values. The “qP-wave
diagonal” values c11, c22, and c33 are the largest, the “qP-wave
off-diagonal” values c12, c13, and c23 are typically about half of
the “qP-wave diagonal” values, the “qS-wave diagonal” values
c44, c55, and c66 are typically about half the “pP-wave off-diagonal”
values, and the rest are typically 10% or less of the “qS-wave
diagonal” values. Particular patterns also depend on axis rotations
and the anisotropy symmetry. These relations may be used to apply
approximate constraints in defining appropriate starting models for
inversion. The starting model for the elastic moduli, for all the
inversions below, is equation C-4 in Appendix C. This is the iso-
tropic (unfractured) host model (equation C-1) with random noise
(equation C-3) added. It qualitatively satisfies the required pattern in
the relative modulus values, and so is an acceptable starting model.
During the inversions, no explicit constraints are applied.
Figure 3 shows the inversion results for the 21 independent

elastic moduli with wide polar angle [15°–75°] and azimuth
[0°–360°] apertures after six iterations with 60 data locations
(Figure 3a), each with 3C polarization and 3C slowness for qP,
qS1, and qS2 for noise-free and noisy data. The inversion procedure
is described in Appendix B. The polar angle coverage from 15° to
75° is referred to below as the wide polar angle aperture as we con-
sider only downgoing incident (direct) waves. If up-going (re-
flected) waves are included, the maximum polar aperture will be
180°. There is a good fit between the exact and inverted elastic mod-
uli (Figure 3b). Inversion of the noise-free data (the red circles) con-
verges in four iterations (Figure 3d). The green circles show the
result from the noisy slowness and polarization components; this
also converges in four iterations. In Figure 3d, the final rms residual
calculated from the difference between the inverted and exact mod-
els for the noisy data is larger than that for the noise-free data by the
amount of the noise.
Figure 3c and 3e shows the normalized model covariances (the

correlation matrices) across all 21 elastic moduli for the noise-free
and noisy data, respectively. The correlation matrix of the solution
with noise is similar to that without noise as only internally con-
sistent data contribute to the solution; random noise is not fitted
and remains in the residual at all iterations (Figure 3d). The model
correlation depends only on the relations between the model
parameters, which are not affected by random noise (which cancels
when the solution is fitted across all the data). At convergence,
incoherent noise remains in the residual, so contributes to the un-
certainty in the solution, but the solution itself is robust (Xu et al.,
1995; Chang and McMechan, 2009). Coherent noise could distort
the solution as well as the model correlation matrix.
For the noise-free and the noisy data, the dark red (high positive)

covariance values on the diagonal indicate positive strong correla-
tion of all the elements with themselves, and more importantly,
independence from each other. The green and blue (low
values) in the off-diagonal positions indicate weak relationships
of among elements. Thus, the solution is completely and suffi-
ciently achieved with wide polar angle [15°–75°] and azimuth
[0°–360°] apertures. Note that the correlation matrix is consistent

with the close fit between the estimated and the correct modulus
values in Figure 3b; because the correct solution is known, we have
an absolute criterion for the performance of the inversion. What is
more important is that computing a correlation matrix does not
require any knowledge of the correct solution, and so it provides
an independent measure of parameter independence at convergence.
Solutions with diagonally dominant correlation matrices are com-
plete and reliable. We will see below that greater or lesser diagonal
dominance correlates with the reliability of each parameter or group
of parameters.

Inversion results for data with limited
polar angle aperture

Figure 4b shows the inversion results for the noisy data distrib-
uted with azimuths of [0°–360°], and fixed polar angles of 15° (red)
or 75° (green) (Figure 4a). These are extreme examples, designed to
illustrate particular characteristics of the correlation matrices; they
are not recommended field geometries. The results show that both
solutions are incomplete and insufficient as indicated by elements
that converge to local minimum values away from the correct solu-
tion (Figure 4b). The inversion procedure converges in three itera-
tions (for polar angle of 15°) and four (for polar angle of 75°),
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Figure 2. Horizontally-projected slowness and polarization vectors,
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qS1 (b and e), and for qS2 (c and f) calculated by the Christoffel
equation. The black dots indicate 3-C source positions distributed
with apertures of polar angle [15°–75°] and azimuth [0°–360°] at
z ¼ 10 m, and the circular dot in the center of each plot is a
3-C receiver position at ðx; y; zÞ ¼ ð1665; 1665; 250Þ m.

Elastic moduli from 9C VSP data R5



indicated by flattened rms residuals (Figure 4d) which are much
larger than the final residuals of the previous example with noise
added. Figure 4d shows rms residuals ∼7.90 km2∕s2 and
∼1.89 km2∕s2 for polar angles of 15° and 75°, respectively. The
final rms residuals are mostly associated with c11, c22, and c66
for polar angle of 15°, and c33 for polar angle of 75° (Figure 4b).
In Figure 4c, the model correlations for the solution for the data

propagating at the (near-vertical) polar angle of 15° (but over all
azimuths) shows that only the moduli c33, c34, c36, c44, c55, c56,
and c66 are solvable, but of these only c34, c56, and c66 are relatively
independent. For example, the near-vertical P-wave velocity c1∕233 is
solvable, but is correlated with c11 through c16, and with c22
through c26. Similarly, in Figure 4e, the model correlations for
the solution for the data propagating at the (near horizontal) polar
angle of 75°, show that the moduli c11, c22, and c66 are solvable, but
are not independent; they interact strongly with many other moduli,
as indicated by the vertical and horizontal lines through these
points. For example, c11 interacts only with c12, but c66 interacts
with all the other moduli. This contamination is caused by interde-
pendence of estimated moduli associated with insufficient con-
straints; the result is that their values are apparent, not exact.
Poorly constrained parameters are not independent of each other.

This is the classic trade-off between resolution and variance
(e.g., Jackson, 1972; Menke, 1989).

Inversion results for data with limited azimuth
aperture

Figure 5b shows the inversion results for the noisy data
distributed with polar angles of [15°–75°], and azimuth apertures
of either [0°–90°] (green) or [90°–180°] (red) (Figure 5a); both
solutions are close to the correct model; that for the [90°–180°]
data is slightly better than that for [0°–90°]. Figure 5d shows
that both inversion procedures converge with rms residuals
∼0.21 km2∕s2, which is consistent with the noise level contained
in the data (compare with Figure 3d). Figure 5c and 5e show the
model correlations across all 21 elastic moduli with azimuths of
[0°–90°] and [90°–180°], respectively. The correlation matrices
show high correlations along the diagonals (dark red), showing that
reliable solutions can be obtained with these survey geometries.
Comparing Figure 5c and 5e with the model correlations of the
wider azimuth aperture data (Figure 3c and 3e), we see substantially
larger off-diagonal values here, and they are biased toward
either negative (Figure 5c) or positive (Figure 5e) values as the
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Figure 3. (a) a receiver position (the circular dot in
the center of the plot) and 60 surrounding source
locations to give wide apertures of polar angle
(15°–75°) and azimuth (0°–360°) in the data used
as inputs to inversion. (b) the inversion results for
21 elastic tensor elements, for noise-free and noisy
data, after six iterations. (d) the corresponding rms
residual distributions over six iterations. (c) and (e)
the model correlations across all 21 elastic moduli
for the noise-free and noisy data, respectively.
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corresponding data are directionally-biased samples (Figure 5a).
As the amount of information in the data decreases, through polar
angle or azimuth aperture decreases, the interparameter dependence
increases as the solution attempts to fit across all the parameters;
that is, less data lead to less unique solutions (less diagonal
dominance) and less parameter independence (higher off-diagonal
values). The off-diagonal value clusters in Figure 5c and 5e corre-
spond to interactions between different groups of moduli, as a con-
sequence of the different sampling of the moduli by waves
propagating at different azimuths. The parameter interactions shift
in correlation space as the azimuth window changes. Note that,
although the parameter correlations do not directly depend on
the data, the model at convergence does depend on the sampling
of the model by the data.

Convergence behavior for limited polar
and azimuth angle apertures

Figure 6 shows the composite rms residuals across all 21 elastic
moduli as a function of either the polar angle (open circles) or the
azimuth (closed circles) aperture, while keeping the other aperture

at its widest extent, both for the noisy data. The residuals are ob-
tained by taking the rms of the difference between the inverted and
correct moduli; rms residuals decrease as the polar angle or azimuth
aperture increases. The largest residuals (>7.90 km2∕s2) are for in-
versions using data apertures of polar angle of 15° and azimuth of
[0°–360°], or polar angles of [15°–75°] and azimuth of 0°; these
apertures are not enough to constrain the solution as they do not
adequately sample the elastic moduli. The smallest residuals
(<0.21 km2∕s2) result from the inversions using the data apertures
of polar angle of >45° and azimuth of [0°–360°], or polar angles of
[15°–75°] and azimuth aperture of >90°; these apertures are suffi-
cient to constrain the solution. Use of the full polar angle and azi-
muth apertures are strongly recommended for estimating all 21
elastic moduli. A full polar angle aperture with partial azimuth aper-
ture is preferred over a full azimuth aperture and only a small polar
angle aperture; for this example. For field VSP data, the polar angle
aperture may be relatively full as direct and reflected (downgoing
and upgoing) waves are both present, and direct waves with incident
angles near, and beyond, 90° are produced by turning in a positive
velocity gradient.
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Figure 4. (b) Inversions for 21 elastic moduli
using the noisy data distributed with azimuths
of [0°–360°], and fixed polar angle of 15° (red cir-
cles) or 75° (green circles) in (a). (d) The corre-
sponding rms residual distributions over six
iterations. (c) and (e) The model correlations
across all 21 elastic moduli obtained by inversion
of data with polar angles of 15° and 75°,
respectively.
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Figure 5. (b) Inversions for 21 elastic moduli
using the noisy data distributed in (a) with polar
angles of [15°–75°], and azimuth apertures of
[0°–90°] (green circles) or [90°–180°] (red circles).
(d) The corresponding rms residual distributions
over six iterations. (c) and (e) The model
parameter correlation matrices across all 21
elastic moduli with azimuths of [0°–90°] and
[90°–180°], respectively.
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only downgoing waves, the maximum possible po-
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Solutions without horizontal components
of slowness data

One of the limitations of the examples above is that they all
include the horizontal components of the slownesses (calculated
analytically via the Christoffel equation). This implicitly assumes
that these are approximated by computing time derivatives on
the surface, which in turn will be accurate only if the material above
the geophone is homogeneous or nearly so (Bona and Slawinski,
2008). This restriction is a consequence of the necessity to be able
to tie the horizontal slowness components measured at the surface to
those that would be measured in the subsurface; as the slowness
depends on the incident direction, this tie is unique only if the
propagation path is straight, or if the velocity model is known in
detail. Thus, it is important to consider solutions that do not require
horizontal slowness components as input. One approach is that of
Dewangan and Grechka (2003) who move the horizontal slow-
nesses from the data vector of the linear system, to the unknown
vector, and solve for them along with the moduli; this makes the
inversion nonlinear. A second approach is the linearlized formula-
tion given by Gomes et al. (2004) who also remove horizontal slow-
nesses from both the data parameterization, by using the
interdependence of the horizontal slowness components and the
polarization (Zheng and Pšenčík, 2002).
For the next example, we use the formulation of Dewangan and

Grechka (2003) (their Scenario 3), which assumes 3-C geophones
in a vertical borehole, so vertical slownesses and 3-C polarization
can be extracted from qP, qS1, and qS2 data, but no horizontal slow-
ness components. The latter removes all assumptions of homoge-
neity above the geophone. The input data are the vertical slownesses
and 3-C polarizations for qP, qS1, and qS2 waves for all 60 sources
in the wide aperture geometry in Figure 3a. The solution is for the
six missing horizontal phase slownesses along with the 21 elastic
moduli.

The solutions for noise-free and noisy data are in Figure 7. The
results are very similar to those in Figure 3 (which correspond to
Dewangan and Grechka’s Scenario 1); the residuals (Figure 7c) are
a little higher, as are the off-diagonal correlations (Figure 7b and
7d). The two noise-free solutions, with and without the horizontal
slownesses (Figures 3b and 7a) are virtually identical and the two
noisy solutions have similar, small residuals. The correlation
matrices (Figure 7b and 7d) show that all 21 moduli are recovered
and are fairly independent of each other. A difference is that the
solutions without horizontal slownesses take longer to converge
(from the same starting model); nine iterations versus five. The main
cause of this difference is probably the fact that, when horizontal
slowness components are not included in the input data, that the
solution becomes underdetermined because of the larger number
of unknowns (Dewangan and Grechka, 2003); this accounts for
the slower convergence and the larger final residuals for some of
the moduli for the noisy data.
The main practical observation is that, while the horizontal com-

ponents of the slowness vector are (at least implicitly) required for
the computation of the 21 elastic moduli, when polarizations are
used, it is not necessary to observe the horizontal slowness compo-
nents. This is important as it means that all the required data for a
complete solution can be obtained from 3C borehole measurements;
horizontal slowness components do not have to be estimated at the
surface (although this is still a viable way to get starting values of
horizontal slownesses for the inversion).

Inversion results using qP waves only
and qS waves only

The examples above illustrate the results of varying the polar and
azimuth angle apertures when 3C slownesses and 3C polarizations
for qP and qS waves are present, or with or without the horizontal
slownesses. Now consider inversion of the wide aperture data
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Figure 7. (a) Inversion results for noise-free and
noisy input that do not include horizontal slow-
nesses, after 14 iterations. (c) The corresponding
rms residuals as a funtion of iteration number.
(b) and (d) The model parameter correlation ma-
trices across all 21 elastic moduli for the noise-free
and noisy data, respectively.
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(Figure 3a) when only the qP-wave data, or only the qS-wave data,
is available.
For the qP-wave inversion, in this example, three noise-free

components of qP-wave slowness and polarization are input, for
each of the 60 sources, and inverted for the 21 elastic moduli.
For the qS waves, there are two wave types, qS1 and qS2, so there
are six components of slowness and six components of polarization,
per source location; for qS waves, there are twice as many input data
as for the qP waves. The data are generated using the Christoffel
equation; the inversions use the algorithm in Appendix B to facil-
itate comparison with the results in Figure 3.
The inversion results for the 21 moduli are shown in Figure 8 for

the separate qP- and qS-wave inversions. The residuals at conver-
gence (Figure 8c) for the qS-wave data are about half of those for
the qP-wave data, as there are two qS waves and only one qP wave.
Even though there is no noise added to the data, the residuals
are significantly higher than those for inversion of the combined
qP- and qS-wave data in Figure 3c. The individual solutions
(Figure 8a) are also worse than that for the combined data in
Figure 3b, with the qP residuals being smaller for the moduli that
mainly influence the qP propagation (in the left half of Figure 8a)
and the qS residuals being smaller for the moduli that mainly
influence the qS propagation (in the right half of Figure 8a).
The model correlations for the qP and qS solutions (Figure 8b
and 8d, respectively) show the same information in a different, more
detailed, form. The correlation patterns for the qP and qS solutions
are complementary; where one is high, the other is low, and vice
versa because of the orthogonality of the qP and qS polarizations.
This complementarity is also seen in Figure 4c and 4e where
the solutions are for nearly orthogonal propagation directions.
The qS-wave solution gives reliable moduli for c34 through c66
(Figure 8d). (Compare with Figure 3d and 3e).

FINITE-DIFFERENCE EXAMPLES

Generating test data

The examples above use data generated analytically from the
Christoffel equation, and so are fairly complete and accurate. In this
section we measure the phase slowness and polarization compo-
nents from 9C synthetic seismograms generated to simulate a
VSP experiment for a triclinic model (equation C-2) and invert
for the 21 elastic moduli from these data. This finite-difference
example illustrates procedures needed for field data, and
allows a specific evaluation of how well the inverted moduli can
account for the seismic observations. The modeling algorithm is
a particle velocity-stress formulation implemented by eighth-order,
staggered-grid, finite-differencing (Ramos-Martínez et al., 2000).
The dimensions of the model in the x-, y-, and z-directions are
331 × 331 × 111 grid points with 10 m spacing (3300 × 3300 ×
1100) (Figure 1). The dominant frequency of the Gaussian source
wavelet is 26 Hz. For creating the synthetic test data, all six model
boundaries are set to absorbing by using the tapering
algorithm of Cerjan et al. (1985), with tapering zone widths of
60, 20, 40 grid points at the top, bottom, and vertical sides, respec-
tively. The time sample increment is 0.85 ms, and the total record
length is 2.125 s. The 3C receiver is located at ðx; y; zÞ ¼
ð1665; 1665; 250Þ m and the 3C sources are distributed over the
top of the model in a 331 × 331 array at depth z ¼ 10 m. The data
used for the inversions span apertures of polar angle [15°–75°] with
15° increment and azimuth [0°–360°] with 30° increment.
Figure 9 shows representative direct arrivals in the unrotated 9C

VSP data, simulated for recording along the Line X (the black line
parallel to the x-axis in Figure 1). In Figure 9, the first letter at the
upper right corner of each panel corresponds to the source orienta-
tion, and the second corresponds to the receiver orientation. For
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Figure 8. (a) Inversions for 21 elastic moduli ob-
tained using only noise-free qP (red circles) and qS
(green circles) data computed by the Christoffel
equation, and distributed over the wide slowness
and polarization angle apertures (Figure 3a). (c)
The corresponding convergence behavior for six
iterations. (b) and (d) The model parameter corre-
lation matrices across all 21 elastic moduli from
qP- and and qS-wave data, respectively.
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example, XY means that the data are generated from the horizontal
force component of the source oriented parallel to the x-axis, and
recorded on the horizontal receiver component oriented parallel to
the y-axis (Figure 1). Figure 9 is one slice through the 9C data
volumes. For the subsequent inversion, the data distribution in
Figure 10 is used.
The seismogram sections in Figure 9 are complicated because of

the triclinic structure and the raw data are not rotated into their prin-
ciple components (Adam, 2003). Responses at other azimuths show
energy partitions, across the nine components that are different from
those along the Line X because of the relative rotation between the
wavefronts in the data and the geophone orientations.
For this example, horizontal and vertical components of the phase

slownesses are obtained by taking the first derivatives of traveltimes
with respect to the source and receiver positions, respectively (e.g.,
Gaiser, 1990), assuming homogeneity of the overburden. The recei-
ver is located at 250 m depth. Three-component polarizations of qP
and qS waves are calculated by SVD, as described in the “Phase
slowness and polarization data” subsection. The inputs to inversion
are nine components of slowness and nine components of polariza-
tion (three of each, for each incident qP, qS1, and qS2 wave). After
inversion (Appendix B), the 21 inverted elastic moduli are input to

full wavefield finite-difference modeling and the resulting predicted
seismograms are compared with the input “observed” seismograms.
A final example uses Dewangan and Grechka’s (2003) Scenario 3,
which solves for, rather than inputting the horizontal slownesses.
Figure 10 shows projections, onto the horizontal plane, of three

sets of polarization vectors; those measured from the synthetic data
(in the left column), calculated by the Christoffel equation from the
inverted elastic moduli with horizontal slownesses in the input data
(in the center column), and calculated by the Christoffel equation
from the inverted elastic moduli without horizontal slownesses in
the input data (in the right column), for qP, qS1, and qS2 waves.
Comparing with the polarizations for the correct solution in
Figure 2d, 2e, and 2f shows only small differences between them.
The difference may be caused by errors in calculating the polariza-
tions from the data, which propagate as an uncertainty into the in-
verted elastic moduli. The corresponding slowness vector
components are not shown; they are essentially identical to each
other and look like those in Figure 2a, 2b, and 2c. The measured
polarizations in Figure 10a, 10b, and 10c, along with the corre-
sponding 3C slownesses, are input to the inversion, whose results
are in Figure 11a, 11b, and 11c. The corresponding results, when
only vertical slownesses are input, are in Figure 11d, 11e, and 11f.
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Figure 9. Representative raw (unrotated) 3D, 9C synthetic VSP data, recorded on a 3C receiver at ðx; y; zÞ ¼ ð1665; 1665; 250Þ m, for 3C
sources along the Line X (above the receiver, parallel to the x-axis) in Figure 1. Some of the main downgoing waves are labelled.
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Inversion results

Two configurations are presented; the left column of Figure 11
shows the results when the input data include horizontal slowness
components estimated at the earth’s surface, and the right column
has the results when they are not. The polarization and slowness
components that are input to the inversion are measured from
the synthetic seismograms, and so have measurement uncertainties
in them. Figure 11a shows the inversion results for the 21 elastic
moduli for the noise-free synthetic data generated for wide polar
angle and azimuth apertures. Figure 11b shows corresponding
rms residual over six iterations. The inverted model (Figure 11a and
equation C-5) fits well with the exact model (equation C-2). The
inversion converged in four iterations, with rms residuals of the
density-normalized elastic moduli of ∼0.11 km2∕s2 (Figure 11b).
The residuals in the inverted model are caused by numerical
noise in the data, and uncertainties in calculating the polarizations
and phase slowness components from the data. These errors propa-
gate as uncertainties into the inverted elastic moduli. The dark red
(high positive) covariance values near the diagonal (Figure 11c) in-
dicate strong positive correlation of all the elements with
themselves; the solution is well constrained by the wide polar
angle [15°–75°] and azimuth [0°–360°] apertures of the finite-
difference data.
Figure 11d, 11e, and 11f contains the inversion results for the

same data as that used in Figure 11a, 11b, and 11c, except
that the horizontal slownesses are solved for (via Dewangan and
Grechka’s (2003) Scenario 3 approach), rather than being input.

The results, especially the diagonal dominance of the correlation
matrix, are essentially the same as those when the horizontal slow-
ness components were also input. As in Figures 3 and 7, the omis-
sion of horizontal slowness results in slightly larger residuals at
convergence, and takes more iterations to converge (eight versus
four), but not having to approximate the horizontal slownesses is
an overriding advantage for field data.
Results of inversion of 3C slownesses and 3C polarizations of qP

data alone are in the left column of Figure 12 and for inversion of
the qS1 and qS2 waves alone are in the right column. The results
again are very similar to those using the same inversion procedure in
Figure 8, which used noise-free data calculated by the Christoffel
equation. The general patterns in the correlation matrices in
Figures 8 and 12 are similar, and the qP and qS correlation distribu-
tions are complementary because of the orthogonality of the qP and
qS polarizations.
To close the loop, the left column of Figure 13 shows the

synthetic seismograms calculated from the elastic moduli obtained
by inversion without horizontal slowness components in the input
(Figure 11d); the right column shows their residuals from the cor-
responding input seismograms in Figure 9. Only the representative
components XX, YY, and ZZ recorded on Line X (Figure 1) are
shown. The residuals approach zero for qP in all three components.
Small residuals remain for qS in YY, and are associated with small
time and amplitude differences in the predicted seismograms that
are a consequence of imperfect recovery of some of the small mod-
uli, such as c14, c24, and c34 (Figure 11d).
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Figure 10. Horizontally-projected polarization
vectors measured from the synthetic data (the left
column), calculated by the Christoffel equation
from the elastic moduli inverted from the noise-
free synthetic data volumes with horizontal slow-
nesses (the center column) and without (the right
column). The upper, middle, and lower rows are
for qP, qS1, and qS2. Compare with the correct
values in Figure 2. The corresponding slowness
components are not shown; they are visually indis-
tiguishable from each other and look like those in
Figure 2a, 2b, and 2c.
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Figure 14 shows normalized rms residuals (circles) calculated
from the difference between each of the 9C synthetic seismogram
volumes calculated from the inverted elastic moduli (when horizon-
tal slownesses are not in the input data) and the corresponding the
input data volumes. The value used for normalization of all nine
input data volumes is the maximum across all nine volumes. Each
rms residual represents the misfit for its respective volume. The
horizontal dashed line shows the maximum-value-normalized
rms residual (0.0036) over all the 9C synthetic seismogram
volumes. The corresponding value for the solution in Figure 11a
(with horizontal slownesses) is 0.0035, so there is no significant
difference between the data fits of these two models.

DISCUSSION

For field data, for a given incident angle for any wave type, the
vertical components of phase slowness and all the polarization
measurements are local to the downhole receivers, and therefore
relatively independent of the complexity of the overburden (e.g.,
Dewangan and Grechka, 2003; Nistala and McMechan, 2005). For

field data, we also need to determine the 3C geophone orientation
(e.g., DiSiena et al., 1984; Zeng and McMechan, 2006), and to
ensure vector fidelity for the polarization data (e.g., Gaiser,
2003, 2007; Burch et al., 2005). In the current project, the correct
solution is known, so we have an absolute criterion for the cor-
rectness of the inversion solutions; this is not the case for
field data.
Although quite complete information is potentially obtained, the

cost of acquiring 3D, 9C seismic/VSP data remains a disadvantage
that restricts its practical use compared to 3C and 1C data (Kendall
and Davis, 1996). Thus, the potential for obtaining anisotropic so-
lutions from reduced data sets (Jech, 1991; Gomes, et al., 2004) is
attractive. Rusmanugroho and McMechan (2010) note some sym-
metries of 3D, 9C seismic data which potentially reduce the acqui-
sition cost in simple anisotropies.
The polar angle illumination aperture can be increased by includ-

ing upcoming (reflected) waves as well as the downgoing (direct)
waves in the polarization and slowness measurements (e.g., Gomes
et al., 2004). However, the direct waves provide the strongest
amplitudes and are easier to use than the reflected waves as these
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Figure 11. Inversion results for the noise-free syn-
thetic data in Figure 8 with horizontal slowness
components (in the left column), and without
(in the right column). The data are for the wide
angle apertures of slownesses and polarizations
(Figure 3a). (a and d) The output of the inversions;
(b and e) The residuals as a function of iteration
number; (c and f) The model parameter correlation
matrices, respectively.
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are first arrivals. Including reflected waves adds more observations,
and hence more constraints to the solution. The use of 9C VSP data
gives an advantage as strong qP and qS waves are directly generated
by surface sources. In the conventional seismic using an explosive
source with a single or 3C receiver, qS waves are often obtained as
converted qP-qS waves, but these are limited in their radiation
patterns. Hardage et al. (2003) note that particular polarizations
in 9C data characterize some anisotropic parameters better than
3C data do. Specifically, the apertures in which usable polarization
and slowness information is present, are increased by using 9C data.
While 3C data are theoretically sufficient to invert for the 21 elastic
moduli, the polarization and slowness spaces are more reliably
sampled by the broader range of amplitudes contained in 9C data.
A key practical application is comprehensive characterization of a
fractured reservoir in the vicinity of a borehole by inversion for the
complete set of elastic moduli. Although it is beyond the scope of
the present paper, this is the initial step in recovering anisotropic
symmetry (Kochetov and Slawinski, 2009), fracture orientation,
fracture density, and the properties of fracture-filling fluids for

use in defining production strategy, time-lapse fluid replacement
monitoring, and hydrofracture evaluation. For example, Davis et
al. (2003) examine qP- and qS-wave reflected amplitudes from
time-lapse (4D), 9C surface seismic data for monitoring CO2 injec-
tion. The next step is application to VSP field data.
Although we have constructed examples for a number of config-

urations of interest, much more can be done in future research. One
example is to use only one component (e.g., vertical) sources; a
source with a single force component reduces the reliable (usable
incident angle) ranges of slowness and polarizations, but also
reduces the acquisition cost. It should be noted that some of the
examples above are given only for data generated with the Chris-
toffel equation, or only for the finite-difference data, but both use
the same recording geometry, so the results are generalizable from
one to the other. More detailed studies can be made of the responses
of specific anisotropic symmetries and their orientations to specific
survey geometries (Helbig, 1994) and vertical changes in anisotro-
tropy can be defined with data from geophones at a sequence of
depths in the borehole (Adam, 2003).
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Figure 12. (a and d) The inversion results for the
synthetic qP- and qS-wave (qS1 and qS2) data, re-
spectively, with horizontal slownesses, both with
the wide apertures of polar and azimuth angles
as in Figure 3a. (b and e) The corresponding
rms residual distributions over six iterations. (c
and f) The corresponding model parameter corre-
lation matrices.
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CONCLUSIONS

The quality and completeness of the inversion of slowness and
polarization data for the 21 elastic moduli in the neighborhood of a
3C borehole geophone depend on the number and angular apertures
of the observations, the noise level, wave types, the apertures of the
polar and azimuth angles and the parameterization and algorithm
chosen for inversion. Solutions using synthetic slowness and polar-
ization components calculated directly from the Christoffel equa-
tion illustrate the procedures and tradeoffs. Nine-component
elastic synthetic seismograms for a model with triclinic symmetry
calculated by finite-differencing in a VSP geometry illustrate esti-
mation of the elastic moduli. All the required data for inversion of
all 21 elastic moduli are potentially available from downhole 3C
geophones. The moduli become less independent as the sampling
of the anisotropic moduli by the data geometry decreases. Horizon-
tal slownesses are not required to be input, with the acceptable
trade-off of slower convergence of the solution caused by having
fewer data, not less independent information. The qP and qS waves
in any given incident direction constrain the estimation of different
elastic moduli as they have orthogonal polarizations; similarly,
windows in azimuth and/or polar illumination angles correspond
to selective sampling of the modulus solution space.
Calculation and use of correlation matrices is valuable in inter-

pretation of solutions. For any particular data subset, they reveal
which moduli are solved as independent parameters, which are
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Figure 14. Normalized rms residuals (circles) calculated from the
difference between each of the 9C synthetic seismogram volumes
computed from the inverted elastic tensor elements, and the corre-
sponding 9C input seismogram volume. Normalization is to the
maximum value over all of the 9C input component data volumes.
The seismogram data differences for one representative slice
through three of the 9C volumes are shown in Figure 13.
The dashed line shows the maximum value-normalized rms resi-
dual, from the input data, over all the 9C synthetic seismogram
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correlated, and which are unsolveable for lack of relevant con-
straints in the data.
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APPENDIX A

THE CHRISTOFFEL EQUATION

The classical definition of the 3 × 3 Christoffel matrix is

Γik ¼ Cijklnjnl; (A-1a)

where Cijkl contains the stiffness elements of the modulus tensor
and nj and nl are components of a unit vector that specifies the
normal to the wavefront of a considered wave (e.g., Helbig,
1994). The Christoffel equation corresponding to matrix A-1a is

½Γik − ρðvðQÞÞ2δik�AðQÞ
k ¼ 0; (A-1b)

where Γik is given by equation A-1a, ρ is density, and ðvðQÞÞ2 is the
square of the phase velocity of wave type Q, where Q ¼ qP, qS1,
or qS2 (e.g., Musgrave, 1970; Tsvankin, 2001). For the forward
problem, the wave-propagation vector direction (with components
nj and nl) are input to A-1a, and then doing the singular value
decomposition of Γik. The resulting three eigenvalues are the phase
velocities squared ðvðQÞÞ2 of the three wave types (Q) and the
eigenvectors AðQÞ

ik are their corresponding polarizations. Finally,
slownesses pðQÞ, are the reciprocals of phase velocities vðQÞ.
Červený (1972, 2001) introduces an alternate definition of the

Christoffel matrix as

Gik ¼ cijklpjpl; (A-2a)

where cijkl are density-normalized moduli, and pj and pl are
components of the phase slowness vector. Summation over repeated
indices is implied. This leads to a corresponding generalized
Christoffel equation of the form (Červený, 1972)

GikAk
ðQÞ − Ai

ðQÞ ¼ 0; (A-2b)

where the polarization vectors AðQÞ are required to be normalized,
so jAðQÞj ¼ 1, and the slowness vectors jpðqPÞj < jpðqS1Þj ≤ jpðqS2Þj.
As for equation A-1a above, for any given slowness vector, there are
three eigenvalues and three eigenvectors, one for each of the three
wave types. Here, we adopt Červený’s (2001) alternate definition,
as do Dewangan and Grechka (2003), and Kochetov and Slawinski
(2009) for their inversions to estimate elastic tensors from polariza-
tion and slowness observations.
The Christoffel equation A-2b provides the relations between the

inputs and outputs for the inversions. The inputs are the measured
polarization AðQÞ and slowness pðQÞ vectors of plane qP and

qS waves propagating in an anisotropic medium (calculated by
the procedure described in the “Phase slowness and polarization
data” subsection above, or by extraction from synthetic or field
data). The outputs of the inversion are the density-normalized mod-
uli cijkl, and in some cases, horizontal components of slownesses
(e.g., Dewangan and Grechka, 2003).

APPENDIX B

THE INVERSE PROBLEM

For the inverse problem, following Dewangan and Grechka
(2003), the Christoffel equation A-1a in terms of the model vector
(m) containing the elastic moduli, and the data vector (d) containing
the polarization and slowness components for each of P, qS1, and
qS2 waves, can be written in the form

Fðm; dÞ ¼ 0: (B-1)

The relation between the model (Δm) and data (Δd) perturba-
tions is

JΔm ¼ −KΔd; (B-2)

where

J ¼ ∂F
∂m

; and K ¼ ∂F
∂d

; (B-3)

and F is given by equation A-1a. The model pertubation (Δm) can
be obtained by inverting matrix J and then, multiplying the inverse
by KΔd (equation B-2). J is a Jacobian matrix containing the first
derivative of the Christoffel equation with respect to the model
vector and K is a diagonal matrix containing the derivative of
the Christoffel equation with respect to the data vector. To avoid
the inversion of the nonsquare matrix J (the number of data are
greater than the number of model parameters), the equation B-2
can be manipulated by multiplying both sides by JT to give

JTJΔm ¼ −JTKΔd; (B-4)

or

Δm ¼ −½JTJ�−1JTKΔd: (B-5)

Superscripts −1 and T indicate an inverse and transpose operations,
respectively. Equation B-5 can be solved with any existing linear-
ized inverse algorithm; we use the Levenberg-Marquardt algorithm
(Moré, 1977), and routine lmdif from MINPACK (Moré et al.,
1980) to perform the solution.

APPENDIX C

THE ELASTIC MODULI

The high-order T-matrix approach (Jakobsen et al., 2003) is used
to calculate the elastic moduli. The isotropic background values of
P-wave velocity (VP), S-wave velocity (VS), and bulk density (ρ)
are 2963 m∕s, 1393 m∕s, and 2200 kg∕m3, respectively. All the
crack sets are gas-filled (with VP 300 m∕s, VS 0 m∕s, and ρ
1.29 kg∕m3). The T-matrix crack parameters (with a crack aspect
ratio of 0.05 and an aspect ratio of the crack distribution of 0.1), are
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the same for all crack sets. The first, second, and third crack sets
have crack densities of 0.03, 0.04, and 0.02, respectively.
For clarity, each crack set is represented only by a single plane in

Figure 1. The orientation of the first crack set (green) is vertical, and
strikes parallel to the y-axis. The second vertical cracks (blue) have
a rotation around the z-axis (ϕ) of 120°, around the x-axis (θ) of 0°,
and around the y-axis (γ) of 0°. The third cracks (orange) have ϕ of
60°, θ of 30°, and γ of 45°. The reference orientation
ðϕ; θ; γÞ ¼ ð0; 0; 0

�
is for vertical fractures parallel to the y-axis;

positive rotation is counterclockwise.
The isotropic elastic moduli calculated using the host rock para-

meters listed above is

c ¼

0
BBBBBB@

8.7795 4.8986 4.8986 0 0 0

4.8986 8.7795 4.8986 0 0 0

4.8986 4.8986 8.7795 0 0 0

0 0 0 1.9405 0 0

0 0 0 0 1.9405 0

0 0 0 0 0 1.9405

1
CCCCCCA
: (C-1)

The constructed, density-normalized triclinic moduli c (km2∕s2) for
creating all the noise-free synthetic examples is

c ¼

0
BBBBBB@

5.5618 2.1916 2.5979 0.1496 −0.0144 −0.3308
2.1916 5.5145 2.6089 0.2066 −0.0081 −0.2901
2.5979 2.6089 6.7882 0.2115 −0.0134 −0.2240
0.1496 0.2066 0.2115 1.7636 −0.0658 −0.0011
−0.0144 −0.0081 −0.0134 −0.0658 1.7490 0.0392

−0.3308 −0.2901 −0.2240 −0.0011 0.0392 1.6588

1
CCCCCCA

(C-2)

where the indices i and j of the elements of c are defined using the
abbreviated (two index) Voigt notation; i is the row and j is the
column position of modulus cij. Negative moduli values result
from the sines and cosines of the rotations of the crack planes
(Helbig, 1994).
The starting model for the inversion for all the examples is the

isotropic model C-1 with random noise of the form

cij ¼ cij þ 0.2 × randn (C-3)

added where randn gives normally distributed random numbers
with mean zero and variance 1.0. The specific starting model that
we use for inversion is

c ¼

0
BBBBBB@

8.2723 3.9388 4.1757 −0.2201 −0.0978 −0.2700
3.9388 8.1576 4.1647 −0.1359 0.1194 −0.2342
4.1757 4.1647 8.4074 −0.0881 −0.0557 0.0541

−0.2201 −0.1359 −0.0881 2.0802 0.0148 −0.2082
−0.0978 0.1194 −0.0557 0.0148 1.7093 0.0470

−0.2700 −0.2342 0.0541 −0.2082 0.0470 2.2099

1
CCCCCCA
:

(C-4)

The isotropic model C-1 alone or using other definitions of the
added noise produce other reasonable starting models.
The elastic moduli obtained by inverting all the polarizations and

vertical and horizontal components of slowness estimated from the
finite-difference seismograms are

c ¼

0
BBBBBB@

5.5158 2.1906 2.4586 −0.0466 −0.0329 −0.3347
2.1906 5.4704 2.5002 −0.0546 −0.0661 −0.3379
2.4586 2.5002 6.7561 −0.0133 −0.0375 −0.2334
−0.0466 −0.0546 −0.0133 1.7499 −0.0656 0.0244

−0.0329 −0.0661 −0.0375 −0.0656 1.7533 −0.0193
−0.3347 −0.3379 −0.2334 0.0244 −0.0193 1.6782

1
CCCCCCA
:

(C-5)

Compare with the correct solution C-2.
The elastic moduli obtained by inverting all the polarizations and

only the vertical components of slowness estimated from the finite-
difference seismograms are

c ¼

0
BBBBBB@

5.5185 2.1815 2.4570 −0.0467 −0.0324 −0.3297
2.1815 5.4731 2.4972 −0.0544 −0.0658 −0.3327
2.4570 2.4972 6.7561 −0.0133 −0.0378 −0.2312
−0.0467 −0.0544 −0.0133 1.7522 −0.0640 0.0249

−0.0324 −0.0658 −0.0378 −0.0640 1.7555 −0.0200
−0.3297 −0.3327 −0.2312 0.0249 −0.0200 1.6815

1
CCCCCCA

(C-6)
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