
A BIG DATA FRAMEWORK FOR UNSTRUCTURED TEXT PROCESSING WITH

APPLICATIONS TOWARDS POLITICAL SCIENCE AND HEALTHCARE

by

Sayeed Salam

APPROVED BY SUPERVISORY COMMITTEE:

Latifur Khan, Chair

Dohyeong Kim

Farokh Bastani

Weili Wu



Copyright © 2021

Sayeed Salam

All rights reserved



This dissertation is dedicated to
my family.



A BIG DATA FRAMEWORK FOR UNSTRUCTURED TEXT PROCESSING WITH

APPLICATIONS TOWARDS POLITICAL SCIENCE AND HEALTHCARE

by

SAYEED SALAM, BS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2021



ACKNOWLEDGMENTS

I would like to thank a number of people in my academic, social and family life who have

supported me throughout my tenure as a research assistant here at UTD. First, I would like

to thank my supervisor Dr. Latifur Khan for his continuous guidance and support towards

fulfilling my research objectives. I am really thankful to my labmates at Big Data Analytics

and Management lab. Throughout my academic period, I learned a lot from them and

enjoyed their company. I would like to thank my committee members, Dr. Dohyeong Kim,

Dr. Farokh Bastani and Dr. Weili Wu for evaluating my dissertation. I would like to thank

my parents, my brother and other family members for playing strong supporting roles.

Finally, I would like to thank NSF and NIH for sponsoring my research.

November 2021

v



A BIG DATA FRAMEWORK FOR UNSTRUCTURED TEXT PROCESSING WITH

APPLICATIONS TOWARDS POLITICAL SCIENCE AND HEALTHCARE

Sayeed Salam, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Latifur Khan, Chair

Machine learning and deep neural networks have soared in popularity in recent years, allow-

ing us to enhance many aspects of everyday life. While these methods are intuitive, they are

very reliant on the dataset being used to build the model. A high-quality dataset boosts the

model’s accuracy and validates the model’s output in the context of a real-world scenario.

Furthermore, continuous improvement on the dataset contributes in the tuning of the model

in a time-consistent way and the mitigation of temporal inconsistencies. However, preparing

datasets, particularly for text domains, is difficult due to the inherent unstructured nature

of the data and the use of multiple languages. Furthermore, the amount of text produced in

the form of news articles or social media posts is massive, necessitating large-scale process-

ing. The velocity at which new texts are produced demands an elastic and scalable system

that can accommodate any surge of inputs while remaining resource efficient while not in

use. Texts are created in a variety of ways and must be preprocessed and analyzed in order

to provide well-structured, consistent data. This can be accomplished through the use of a

well-defined domain-specific ontology (rule-based approach) or machine learning approaches.

While rule-based systems can provide information that are more precise and are preferred

in a variety of circumstances, they lack flexibility as the ontologies are often fixed and does

not respond well with the continuous changes in respective domains. We propose associated

vi



solutions to the challenges described above in this dissertation. First, we go over a scalable

architecture for collecting news stories from around the world and utilizing a rule-based ap-

proach with the Conflict and Mediation Event Observation(CAMEO) ontology to generate

political events. We present a summary of the generated dataset, as well as some basic

analysis, to demonstrate how it relates to the real-world scenario. We present techniques

to dynamically adding information to the ontology using a mining approach for discovering

new political actors that works as a recommender system and retrieves more than 80% of

the missing information including political figures and their roles. We discuss an extended

data processing system for processing articles published in several languages, with a focus

on translation methodologies and tools developed. In comparison to the English language,

we demonstrate the efficacy of the coder in Spanish. When compared to equivalent events

in English articles, the revised event coder with translated knowledge-base was able to rec-

ognize 83% of information in Spanish.

For healthcare, we propose an alternative strategy in which we use several machine learning

algorithms and social media, such as tweets, to extract the location and severity of Road

Traffic Incidents (RTI). We highlight a pipeline that goes from collecting tweets to summa-

rizing related tweets for an RTI. We also demonstrate how semi-automatic ontology learning

can be useful in determining severity and offer a simplified example in which 100% of the

target rules were identified using an iterative technique.

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Distributed Framework for Political Event Coding in Real-Time . . . . . . . 2

1.2 RePAIR: Recommend Political Actors In Real-time From News Websites . . 2

1.3 Automatic Event Coding Framework for Spanish Political News Articles . . 3

1.4 Exploring the roles of social media data to identify the locations and severity
of road traffic accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2 DISTRIBUTED FRAMEWORK FOR POLITICAL EVENT CODING
IN REAL-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Event Coding Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Data Processing and Meta-Data Generation . . . . . . . . . . . . . . 12

2.4.3 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 API Access to Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Multilingual Event Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Real-time Dataset Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Related Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 3 REPAIR: RECOMMEND POLITICAL ACTORS IN REAL-TIME FROM
NEWS WEBSITES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Web Scraper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Metadata Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Political Actor Extraction and Recommendation . . . . . . . . . . . . 31

3.3.4 Existing Actor’s Role Change Recommendation and Verification . . . 31

3.4 Recommending A New Actor and Role . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 New Actor Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Actor Role Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Recommending New Actors in Real-time . . . . . . . . . . . . . . . . 34

3.4.4 Graph-based Role Detection Technique . . . . . . . . . . . . . . . . . 37

3.4.5 Integrating External Knowledge Bases . . . . . . . . . . . . . . . . . 38

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Setup and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Threshold Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.4 Experiment 1: Performance Evaluation . . . . . . . . . . . . . . . . . 41

3.5.5 Experiment 2: Recommendation of New Actors with Roles . . . . . . 44

3.5.6 Experiment 3: Scalability Test . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4 AUTOMATIC EVENT CODING FRAMEWORK FOR SPANISH PO-
LITICAL NEWS ARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Multilingual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Step 1: Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Step 2: Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Step 3: Event Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



4.4.4 Step 4: Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Scalability: Universal Dependency Parse generation . . . . . . . . . . 64

4.5.2 Document Translation vs Ontology Translation . . . . . . . . . . . . 64

4.5.3 Article Filtration using ML Classifier . . . . . . . . . . . . . . . . . . 66

4.5.4 Ontology Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CHAPTER 5 EXPLORING THE ROLES OF SOCIAL MEDIA DATA TO IDENTIFY
THE LOCATIONS AND SEVERITY OF ROAD TRAFFIC ACCIDENTS . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Event detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Traffic Incident Identification . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Location extraction from tweets . . . . . . . . . . . . . . . . . . . . . 72

5.2.4 Summarization of Tweets . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Filtration (Query based) and Data Collection . . . . . . . . . . . . . 76

5.4.2 Filtration (ML based) - Context driven classification of tweets . . . . 76

5.4.3 Location Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.4 Clustering - Forming groups of similar tweets . . . . . . . . . . . . . 81

5.4.5 Summarization - summary for a cluster of tweets . . . . . . . . . . . 83

5.4.6 Severity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.7 Visualization and API . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Passive Mode of Accident Report Collection . . . . . . . . . . . . . . . . . . 88

5.6 System Specification and Dataset Description . . . . . . . . . . . . . . . . . 89

5.7 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7.1 Geolocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7.2 Severity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 6 CONCLUSION AND FUTURE WORKS . . . . . . . . . . . . . . . . 100

6.1 Distributed Framework for Political Event Coding in Real-Time . . . . . . . 100

x



6.2 RePAIR: Recommend Political Actors In Real-time From News Websites . . 100

6.3 Automatic Event Coding Framework for Spanish Political News Articles . . 101

6.4 Exploring the roles of social media data to identify the locations and severity
of road traffic accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CURRICULUM VITAE

xi



LIST OF FIGURES

2.1 Basic Mechanism of Automated Coding . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Framework Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Universal dependency tree for English . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Universal dependency tree for Spanish . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Distribution of events based on root code . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Distribution of events with root code 01 . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Distribution of quad classes where source=SAU and target=QAT . . . . . . . . 22

2.8 Distribution of quad classes where source=IGOEUREEC and target=GBR, 226
events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Distribution of quad classes where source=GBR and target=IGOEUREEC, 381
events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Framework for real-time new political actor recommendation . . . . . . . . . . . 29

3.2 Actor recommendation procedure in RePAIR . . . . . . . . . . . . . . . . . . . 32

3.3 Example Scenario for Graph Based Role Recommendation . . . . . . . . . . . . 38

3.4 Performance for Actor recommendation. Recall: Edit distance (PropBank) ,
MinHash (PropBank) , Edit distance (PETRARCH) , MinHash (PE-
TRARCH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Performance for role recommendation. Recall: Edit distance , MinHash ,
Exact match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Comparison of actor role recommendation with baseline: (N = 15, deleted actors
= 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Baseline coding comparison in actor detection: PETRARCH , BBN ACCENT
, and PropBank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Average processing time for of 131,932 documents . . . . . . . . . . . . . . . . . 46

4.1 Basic Mechanism of Automated Coding using PETRARCH . . . . . . . . . . . 52

4.2 Multilingual Event Coding Framework Diagram . . . . . . . . . . . . . . . . . . 53

4.3 Snippets from English and Spanish (highlighted) verb dictionaries. The entry
starts with a main verb, followed by related verbs and patterns (lines starting
with ”-”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Steps in translating Actors in English to Spanish . . . . . . . . . . . . . . . . . 59

xii



4.5 Universal dependency tree for Sentence 1 in Spanish . . . . . . . . . . . . . . . . 62

4.6 Relation between execution time and number of available processing cores. . . . 65

5.1 Example of Semantic Role Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Framework for accident-related tweet processing . . . . . . . . . . . . . . . . . . 76

5.3 Google Maps showing the location identified by Geocoder . . . . . . . . . . . . . 80

5.4 First example of Cluster of tweets . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Second example of Cluster of tweets . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Example of summarization of a cluster of tweets in Figure 5.4 . . . . . . . . . . 85

5.7 Framework for summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 Passive mode of accident report identification with the pipeline depicted in Figure
5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 Information found in a Dallas Area Police Report about an Accident . . . . . . 98

5.10 Percentage-wise distribution of published tweet w.r.t time windows around the
police report time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



LIST OF TABLES

2.1 List of available datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 PropBank annotation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Symbol for algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 List of recommended actors with their roles . . . . . . . . . . . . . . . . . . . . 45

4.1 Noun and Verb Phrases for Sentence 1 . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Distances between translated texts identified as S1 to S8 . . . . . . . . . . . . . 61

4.3 Comparison between English and Spanish Event coding on parallel corpus. . . . 65

4.4 Accuracy of different classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Examples of Non-accident vs Accident related tweets . . . . . . . . . . . . . . . 77

5.2 Citywise Tweet collection statistics for August 2020 . . . . . . . . . . . . . . . . 90

5.3 Location extraction from tweets published within Dallas . . . . . . . . . . . . . 91

5.4 Location extraction from tweets published within Austin . . . . . . . . . . . . . 92

5.5 Location extraction from tweets published within Houston . . . . . . . . . . . . 92

5.6 Location extraction from tweets published within Pittsburgh . . . . . . . . . . . 93

5.7 Location extraction from tweets published within Lagos . . . . . . . . . . . . . . 93

5.8 Performance of different machine learning models for severe-vs-non-severe classi-
fication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Performance of different machine learning models for severe-vs-non-severe classi-
fication for Austin area tweets only . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Performance of different machine learning models for severe-vs-non-severe classi-
fication for Dallas area tweets only . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Performance of different machine learning models for severe-vs-non-severe classi-
fication for Lagos area tweets only . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.12 Distribution of 3 severity levels of tweets. . . . . . . . . . . . . . . . . . . . . . . 96

5.13 BERT Performance for Identifying 3-Severity levels . . . . . . . . . . . . . . . . 96

5.14 Confusion matrix in BERT based classification . . . . . . . . . . . . . . . . . . . 97

5.15 Naive Bayes Performance for Identifying 3-Severity levels . . . . . . . . . . . . . 97

5.16 SVM Performance for Identifying 3-Severity levels . . . . . . . . . . . . . . . . . 97

5.17 HAN Performance for Identifying 3-Severity levels . . . . . . . . . . . . . . . . . 97

xiv



5.18 Police Accident Reports and Tweets compatibility . . . . . . . . . . . . . . . . . 98

xv



CHAPTER 1

INTRODUCTION

Online news articles have been increasingly replacing print media in recent years. Social

media also allows users to access enormous quantities of data that has been curated by the

users themselves. These media are now producing massive amounts of text data, which, if

properly processed, will yield a big dataset of computer-interpretable data. We will be able

to collect and evaluate global social and economic phenomena using this method, and we

will be able to model present and future events with existing computing capabilities.

The main issues encountered throughout the data collection process are directly tied

to big data-specific challenges. There are numerous news stories and social media posts

that must be processed through (high volume). New texts are published on a regular basis,

resulting in bursts of new information (i.e high impact social and political events, natural

calamities, etc.) This type of high-speed data necessitates a processing system that is scalable

and elastic in nature, minimizing resource utilization when not in use while still being able to

manage data surges when needed. Furthermore, people frequently disseminate information in

numerous languages, necessitating the deployment of appropriate knowledge-base or machine

learning models. To accomplish this, we should translate existing knowledge bases in order

to capture new information in languages other than English.

We typically use a distributed solution when dealing with large amounts of data. For pro-

totyping the solution, regular multiprocessing modules supplied by programming languages

can be utilized, however this adds overhead of process tracking, node management, and fail-

ure handling. We employ Apache Spark (for distributed computing) and Kafka (distributed

streaming) in the frameworks built in successive chapters to eliminate these overheads in

system architecture. To extract structured metadata from news articles and social media

posts, we use Stanford CoreNLP and Universal dependency parsers.

1



In subsequent sections, we will briefly introduce problems we address in different chapters

and describe corresponding solutions/frameworks.

1.1 Distributed Framework for Political Event Coding in Real-Time

Studying political activities and interaction between different entities gradually became a

prominent field of research for both the social science and computer science researchers.

Research is being carried out at local (limited to a particular region) and global scale, often

divided in temporal manner. It is also useful to have a most recent dataset to have an up-

to-date analysis. For these purposes, we need timestamped, structured information about

political interactions. Keeping this in mind, we develop a distributed framework that works

in real-time with Apache Kafka and SPARK for processing a global collection of news data

in different languages (i.e., Spanish, Arabic) and generate those structured data. We also

provide a API for easy access to the data. In this chapter, we will describe how the system

works, how to access the data and possible analytical problems that can be addressed by

building a model on the dataset.

1.2 RePAIR: Recommend Political Actors In Real-time From News Websites

Extracting a structured representation of political events from news reports is at the intersec-

tion of the computational and social sciences. A traditional approach is to use dictionary-

based pattern lookups to identify actors and actions involved in potential events. A key

complication of this approach is updating the dictionaries with new actors (e.g., when a new

president takes office). Currently, the dictionaries are curated by humans, updated infre-

quently, and at a high cost. This means that tools dependent on the actor dictionaries (e.g.,

PETRARCH) overlook events when actors are missing in the dictionary. Since these tools

use only the syntactic structure of the sentence (e.g., parse tree, etc.) for their event cod-

2



ing, missing actors will generate events which fail to capture actual political interaction. To

overcome these issues, we propose a framework RePAIR to recommend new political actors

in real-time from the political news articles with RSS feeds related to national/international

politics across the globe. The framework identifies the semantic structure of a sentence using

an Automatic Content Extraction (ACE) method and uses a frequency based actor ranking

algorithm to recommend the most frequent new political actors over multiple time windows.

We also suggest the associated role of recommended new actors from the role of co-occurred

political actors in the existing CAMEO actor dictionary. Further we integrate an external

knowledge base (e.g., Wikipedia) into our framework to capture the evolving roles of existing

actors over time and recommend new roles for them. Furthermore, we consider PETRARCH

and BBN ACCENT event coders for actor recommendation, and a graph-based actor role

recommendation using weighted label propagation as baselines and compare them with our

framework. Experimental results show our approaches outperform them significantly.

1.3 Automatic Event Coding Framework for Spanish Political News Articles

Today, Spanish speaking countries face a widespread political crisis. These political conflicts

are published in a large volume of Spanish news articles from Spanish agencies. Our goal is

to create a fully functioning system that parses realtime Spanish texts and generates scalable

event code. Rather than translating Spanish text into English text and using English event

coders, we aim to create a tool that uses raw Spanish text and Spanish event coders for

better flexibility, coverage, and cost.

To accommodate the processing of a large number of Spanish articles, we adapt a dis-

tributed framework based on Apache Spark. We highlight how to extend the existing ontol-

ogy to provide support for the automated coding process for Spanish texts. We also present

3



experimental data to provide insight into the data collection process with filtering unrelated

articles, scaling the framework, and gathering basic statistics on the dataset.

1.4 Exploring the roles of social media data to identify the locations and sever-

ity of road traffic accidents

People tend to use social media to share information about the event that occurred nearby,

including traffic accidents. Traffic accident reporting over the phone can initiate medical aid

but often fail to correctly specify severity, location, and assessment of the overall situation.

Social media information (i.e., tweets, posts, etc.) can be mined to extract supportive

information to be used to improve reporting accuracy and reduce response time of first

responders. In this chapter, we develop a framework that can continuously analyze and

extract relevant accident reports and tested it using the data from four cities in the U.S. and

Nigeria. In this framework, we collect tweets from Twitter API, identify whether they are

accident-related or not, create clusters of tweets talking about the same accident, and perform

a severity analysis based on the summary of the tweets. We then geolocate the accidents for

which the location is mentioned (i.e. direct geo-coding) or provide an approximate location

for accidents by estimating user location-based twitter feeds (i.e. indirect geo-coding). We

also use a semantic role labeling approach for severity detection and present the accuracy with

respect to annotated data. The results of empirical testing reveal that city-level locations

were identified for 71-97% of the accidents and geo-coordinates were obtained for 33-83%

of the accidents, varying across the study sites and geolocation methods. Our framework

demonstrates that on average 9-11% cases social media precedes on publishing accident

related information than that of actual police reports. We also discuss our approach of

using Distributed, Big Data frameworks to process a large number of Tweets generated in

streaming manner.

4



1.5 Organization of Dissertation

The rest of the dissertation is organized in the following way. Chapter 2 introduces a dis-

tributed processing pipeline for Political Event Coding. Chapter 3 introduces a recommenda-

tion based approach to identify potential new political actors and their roles through mining

news articles. Chapter 4 highlights steps taken to do multilingual event coding. Chapter

5 discusses a system that captures location and severity related to road traffic incidents

from social media messages (ie. tweets). Finally, chapter 6 draws concluding remarks and

highlights future direction of works.

5



CHAPTER 2

DISTRIBUTED FRAMEWORK FOR POLITICAL EVENT CODING IN

REAL-TIME

2.1 Introduction

Current world affairs related to politics is becoming complicated day by day. Study in this

field requires lot of data to build a good analytical model. Due to the interest from political

science professionals and researchers, generating the relevant data becomes an appropriate

problem to address.

One key area of information extraction related to political interactions is Structured Event

Data Generation. It is a process to convert unstructured text data to computer friendly

structured events. The process uses fixed ontology[51] to identify critical information from a

sentence, like who is acting, who is being acted upon and what type of action is happening

. This is called who-did-what-to-whom format. One such ontology is Conflict and Mediation

Event Observations (CAMEO)[40] and defined by dictionaries. There are automated event

coders like PETRARCH[66] which is used to generate events using pattern lookup and entity

lookup from the those dictionaries.

PETRARCH requires Parts-of-Speech tagged sentences. We apply Stanford CoreNLP[60]

to generate these formatted text data. As CoreNLP is compute intensive, we need to adapt

a distributed solution for dividing the load of processing in different nodes.

News articles are being published in continuous manner around the world. If we want

to get a real-time comprehension of what is going around, we need to build a real time

data processing framework where we can collect data in real-time, process them with the

tools and present them to the user for visualization[9] and more complex analytical tasks.

Unavailability of such a system hinders researchers to carry on their related tasks and demerit

the efficiency of ontologies built to capture these informations.

6



Easy access to the dataset is important for getting the required data for processing.

People from all levels of technical background should be able to easily access data with no

to little training on the system.

Focusing on these key points, we develop a real-time data processing framework that col-

lects the news articles from the web, process them with Stanford CoreNLP and PETRARCH

event coder. We also build an API for easy access to the generated events in real-time.

The major contributions compiled in this chapter are as follows -

• We present a real-time data processing framework built on Apache SPARK and Kafka

to generate political event data.

• We describe a rich API for accessing the generated event data.

• We highlight some example scenario where analytical models can be built using the

data we have.

The rest of the chapter is organized as follows- Section 2.2 we present related works.

Section 2.3 describes related helpful information on tools, ontologies, etc. Section 2.4 de-

scribes the architecture of the system. Section 2.5 briefly shows how to access the system

and query for data. In section 2.6, we discuss about the multilingual event coder and how

it works. Section 2.7 highlights the system specification used for the proposed framework.

Section 2.8 lists the available datasets being distributed through the API. In section 2.9, we

show some statistics related to data produced by the framework. Section 2.10 lists some

possible scenario, where we can reuse the framework and the data to address different social

and political problems.

7



2.2 Related Works

In this section we present the related works with respect to the contents of the chapter.

Distributed processing of large data has been addressed by [83], [44] where author address

a static dataset and the process of generating events. Here, we are working on a real-time

dataset and here we need to collect and distribute the data in real-time where aforementioned

works only concentrate on processing the data. We are inspired by the scalability analysis

found here [83] and incorporate that to design the system. Schordt[78] has pointed out the

importance of having a real-time event coding framework and data distribution. Automated

Political event coding has gone through several decades and several ontologies, datasets and

tools are developed. We use CAMEO ontology here. Other related ontologies are WEIS and

authors[40] has provided a comparative study between those ontologies. Eck[35] also present

an analysis among different conflict data-sets.

Among the available datasets ICEWS[20], Cline Center Dataset[14] are prominent. But

they are not easily accessible and updated in-frequently. In terms of event coder, we found

PETRARCH2 is the most flexible, easy-to-extend compared to others (i.e., BBN Accent)

as reported by [17, 86]. We are also using a extended version of the event coder which

uses Universal Dependency [61] to better support towards foreign languages. Such type of

extension was not possible to BBN Accent like proprietary software.

2.3 Background

To help the reader better understand the tools and methods used in this chapter, we will

provide key details of different components.

Stanford CoreNLP is a natural language processing tool and used for generating tagged

version of regular text sentence. It can generate Parts-of-Speech (POS) tags, lemma, Named-

Entity-Recognition (NER) tags, tokens, dependency diagrams, etc.

8



Apache SPARK is a distributed in-memory framework for large scale data processing.[102]

Apache Kakfa is highly efficient distributed message oriented queue management sys-

tem, useful for synchronizing input-output between different components of a distributed

framework.[92]

Political Event is a structured piece of information consisting of an action, source (act-

ing entity), target (entity being acted upon) and other related information. For example

consider the following sentence from a news article -

PM Theresa May has struck a last-minute

deal with the EU in a bid to move Brexit

talks on to the next phase.

As a structured event, it looks like the following

Source - GBRGOV,

Target - IGOEUREEC

Action - 057 (Sign formal agreement)

PM Theresa May and EU is coded in standard format used for event generation. The

structure used here is mostly known as who-did-what-to-whom format of event coding. The

coding mechanism is depicted in the Figure 2.1.

Given a sentence, the encoder search for a matching pattern in the CAMEO verb patterns

dictionary. A pattern consists of a verb and surrounding keywords. Together they signify

a particular course of action and represented with event code. For example, SET in the

following pattern

SET OUT VIEWS

indicates MAKE PUBLIC STATEMENT type of event (event code 010). Upon finding a

match in pattern, actor dictionaries are searched for matching entities representing source

9



Figure 2.1: Basic Mechanism of Automated Coding

and target. After finding all the pieces of information, an event is coded by PETRARCH.

If there is missing information, PETRARCH will ignore the event. This form of events are

called Source-Action-Target or SAT format.

Conflict and Mediation Event Observations (CAMEO) is an ontology developed to

capture political events and focuses on the following 4 categories

• Verbal Cooperation

• Material Cooperation

• Verbal Conflict

• Material Conflict.

It works using a knowledge-base which consists of pattern and actor dictionaries. Pattern

dictionary is helpful for identifying political interactions in a given sentence. Actor dictionary

is used for searching political actors found around the matched pattern, within a sentence.

Universal Dependency (UD) [61] is an initiative that is developing cross-linguistically

consistent tree-bank annotation for many languages, with the goal of facilitating multilingual

parser development, cross-lingual learning, and parsing research from a language typology

perspective. The general goal is to provide a universal collection of categories and guidelines

to facilitate consistent annotation of similar constructions across languages, while allowing

language-specific extensions when necessary.

10



Figure 2.2: Framework Diagram

2.4 Event Coding Framework

Figure 2.2 depicts the components of the framework and how the pipeline works. From the

web we collection news articles using Web Scraper. Then we pass those documents through

the Text Processing module where Stanford’s CoreNLP is used to annotate the documents

at sentence level. The processed output is provided to Political Event Coding module where

PETARCH and Geo-location software work together to generate geo-located events (events

along with the place where it happened). The generated events are the distributed using the

API to the Researchers and Visualization tools. In the following paragraphs, we discus about

the real-time distributed framework for automated event coding in detail. The framework

basically has three components.

• Data Collection

• Data Processing and Meta-data Generation

• Event Generation

11



2.4.1 Data Collection

We collect the data using URLs from the RSS Feed of different news agencies. There are

≈ 400 of them are used. This news agencies are dispersed around the world. After collecting

data in regular HTML form, we clean and extract main stories using the tools available here.

We collect the data 24×7 with an interval of 20 minutes. We use a web-scraper[10] program

for collecting and preprocessing the data in this step. We use python’s newspaper library[4]

to clean and extract meta-data from raw HTML documents.

2.4.2 Data Processing and Meta-Data Generation

As many other text-based software, event coder requires some structured from of a sentence

rather than the bare text. In this step, we process the text to generate those structured form

(i.e., POS Tagging, NER, etc) and use Stanford CoreNLP software for the purpose. But

CoreNLP itself is slow for being computationally intensive. That’s motivated us to apply

distributed solution using Apache SPARK. We create multiple nodes running Apache Spark

”Worker” program and and distribute the articles in different nodes and process it with

CoreNLP software to generate the following annotation of sentences -

• Parts-of-Speech (POS) Tagging

• Tokens

• Named Entity Recognition (NER)

• Parse Tree

• Dependency Diagram

• Sentiment Analysis

12



2.4.3 Event Generation

Using the processed data from previous step, we generate time-stamped political event data

using automated event coder. We use PETRARCH software from Open Event Data Alliance

for the purpose. It generates CAMEO compatible events. For geo-locating events, we use

Cliff-Clavin[33] from MediaMeter. It gives us locations associated with the events found in

the sentences.

All the processed text articles and generated events are stored in NoSQL database, Mon-

goDB. All three components use Apache Kafka to synchronize the input-output order. We

provide an example of event below to help reader understand about the information gener-

ated at the end of the pipeline.

{

"_id" :

ObjectId("59f7ffe8583dca26c72947e0"),

"code" : "010",

"src_actor" : "ITA",

"month" : "10",

"tgt_agent" : "",

"country_code" : "DEU",

"year" : "2017",

"id" : "59f7fea8de7923402d8a5d6d_4",

"source" : "ITAGOVBUS",

"date8" : "20171031",

"src_agent" : "GOV",

"tgt_actor" : "DEU",

"latitude" : 50.11552,

13



"src_other_agent" : "BUS",

"quad_class" : 0,

"source_text" : "euroobs",

"root_code" : "01",

"tgt_other_agent" : "",

"day" : "31",

"target" : "DEU",

"goldstein" : 0,

"geoname" : "Frankfurt am Main Hessen",

"longitude" : 8.68417,

"url" : "https://euobserver.com/

economic/139660?utm_medium=rss",

"date8_val" :

ISODate("2017-10-31T00:00:00Z")

}

The above event corresponds to the following sentence

"The recalibration of our asset purchases

reflects growing confidence in the

gradual convergence of inflation rates

towards our inflation aim," ECB

President Mario Draghi said at his monthly

press conference in Frankfurt.

For a detail description about each fields in the data, please refer to CAMEO codebook[77].

We developed a rich query based API running as a web-service and handling requests from

clients for serving the data. The description of the API is presented in the following section.

14



2.5 API Access to Event Data

We provide API to serve generated event data. This API maintains a api-key based access

restrictions and serves the data in JSON format. Interested users can query using a defined

query language. In this section we will briefly describe how user can select specific portion

of the data using selection and query mechanism. We provide following facilities for users to

select required set of data

• Projection

• Selection

• Aggregation

All of the requests should be directed to the server hosted here -

http://eventdata.utdallas.edu/api/data

Projection

To project on the required fields in the data, we add select clause in the query request. For

example, if we want only source, target and date values from the event presented, we can

add the following to the query as an argument

select=source,target,date8

Selection

To select certain entries from the dataset, we can add query argument to the request. The

structure of the query follows JSON like formation, similar to MongoDB. Our query trans-

lator on the server side translates to a MongoDB query. AN example where we find events

indicates making public statements (root-code for event is ”01”) about United States on

March 28, 2018 can be written as follows-

15



query={"target":{"$in":["USA","USAGOV"]},

"root_code":"01","date8":"20180328"}

Aggregation

Above operations gives back the result at individual record level. We provide the facility to

aggregate multiple records and get a summarized result at API level. It will be helpful for

the users to define there own data pipeline which involves multiple stages. An example of

aggregation based query is given below -

aggregate=[{"$match":{"source":{"$not":

{"$in"["MEX","MEXGOV"]}}}},

{"$sort":{"_id":-1}},{"$limit":10}]

Here we are looking the latest 10 events which does not include Mexico or Government of

Mexico as source. More detailed version of how-to procedures can be found here [7].

2.6 Multilingual Event Coding

We are using enhanced version of PETRARCH event coder that works on universal depen-

dency rather than only the Parts-Of-Speech tags used by original version of PETRARCH. It

is helpful for multilingual event coding because of uniformity of universal dependency across

language vs. differing Parts-of-Speech tags across languages. Using universal dependency

based event coder, we can easily incorporate coding in other foreign language with zero effort

on updating the event coder itself. We will still need the dictionaries to be translated first.

But gives lots of flexibility for the non-cs background researchers as they can solely focus

on the analysis and ontology extension parts. An example of universal dependency for the

following sentence

Ukraine ratified a sweeping agreement

16



with the European Union on Tuesday.

is given below.

1 Ukraine Ukraine PROPN NNP Number=Sing 2 nsubj _ _

2 ratified ratify VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin 0 root _ _

3 a a DET DT Definite=Ind|PronType=Art 5 det _ _

4 sweeping sweeping ADJ JJ Degree=Pos 5 amod _ _

5 agreement agreement NOUN NN Number=Sing 2 dobj _ _

6 with with ADP IN _ 9 case _ _

7 the the DET DT Definite=Def|PronType=Art 9 det _ _

8 European european PROPN NNP Number=Sing 9 compound _ _

9 Union Union PROPN NNP Number=Sing 5 nmod _ _

10 on on ADP IN _ 11 case _ _

11 Tuesday Tuesday PROPN NNP Number=Sing 2 nmod _ SpaceAfter=No

12 . . PUNCT . _ 2 punct _ SpacesAfter=\n

For dependency visualization, please refer to the Tree depicted in Figure 2.3

We take the Google translated version of the above sentence in Spanish and universal

dependency parser gave us the following output.

1 Ucrania Ucrania PROPN PROPN _ 2 nsubj _ _

2 ratificó ratificar VERB VERB Mood=Ind|

Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 root _ _

3 un uno DET DET Definite=Ind|Gender=Masc|

Number=Sing|PronType=Art 4 det _ _

4 acuerdo acuerdo NOUN NOUN Gender=Masc|Number=Sing 2 obj _ _

5 radical radical ADJ ADJ Number=Sing 4 amod _ _

6 con con ADP ADP AdpType=Prep 8 case _ _

17



Figure 2.3: Universal dependency tree for English

7 la el DET DET Definite=Def|Gender=Fem|

Number=Sing|PronType=Art 8 det _ _

8 Unión Unión PROPN PROPN _ 4 nmod _ _

9 Europea Europea PROPN PROPN _ 8 flat _ _

10 el el DET DET Definite=Def|Gender=Masc|

Number=Sing|PronType=Art 11 det _ _

11 martes martes NOUN NOUN AdvType=Tim 2 obl _ SpaceAfter=No

12 . . PUNCT PUNCT PunctType=Peri 2 punct _ SpacesAfter=\n

and the corresponding dependency graph is shown in Figure 2.4. Comparing Figures 2.3 and

2.4, we find that both English and Spanish universal dependency tree shows similar structure.

So it will provide same event if both the dictionaries have corresponding patterns. Using the

above universal dependency parse, enhanced PETRARCH event coder do the encoding by

18



Figure 2.4: Universal dependency tree for Spanish

forming the dependency graph, identifying pattern from PETRARCH2’s CAMEO dictionary

and actors from the actor dictionaries. Generated events are same as presented before.

Details of the process can be found here[59].

2.7 System Configuration

The framework components are running in different nodes of JetStream cloud under XSEDE,

NSF initiative to facilitate academic research [87]. There we have in total of 7 nodes. Three

of them forms a Spark Cluster with 30 cores and 90 GB of ram. We have a 6-core machine to

collect data from website using the scraper program. We run a single-instance of Cliff-Clavin

server on a 10 core machine along with the PETRARCH event coder. We have a separate

19



6 core machine for running other utility servers like Apache Kafka, Zookeeper, etc. We also

have a dedicated machine for MongoDB Storage Engine. Each node in there is Dell’s M630

machines.

2.8 Dataset Description

Using the web-based API, we are currently serving the real-time dataset along with other

prominent event datasets. Those are listed in the Table-2.1 The ICEWS dataset[20] com-

Table 2.1: List of available datasets

Event Dataset Timespan Number of Events
ICEWS 1995 - Sep 2016 15,220,347
Cline Phoenix NYT 1945-2005 1,092,211
Cline Phoenix FBIS 1995-2004 8,179,55
Cline Phoenix SWB 1979-2015 2,906,715
Phoenix Real-Time Oct 2017 - ongoing 844,298+

prises events related to politics and built a system on the dataset to provide conflict early

warnings. The Cline center dataset[14] covers Phoenix event data for the period of 1945

to 2015. They used PETRARCH-2 as the event coder and done event coding on the doc-

uments from New York Times (NYT), BBC Monitoring’s Summary of World Broadcasts

(SWB) and CIA’s Foreign Broadcast Information Service (FBIS). Phoenix Real-Time is the

dataset being accumulated by our proposed framework.

2.9 Real-time Dataset Summary

In this section we provide some basic analysis of the dataset generated by the framework

to give user some insight about using the data. Results presented here are calculated on

the entire dataset collected from October 2017 till August 13, 2018. Figure-2.5 reflects

the distribution of events based on root code(i.e 01, 02,...,20). Each indicates a particular

category of events, more granular than quad class based event distribution. Here, we found

20



Figure 2.5: Distribution of events based on root code

MAKE PUBLIC STATEMENT (root code is 01) has the highest percentage followed by

CONSULT (root code=04). This is because large number of the news articles have someone

making statement towards the very beginning of the text. PETRARCH2 focuses on the first

paragraph (up-to 6 sentences) for event coding. That’s why there is higher percentage of

events in that category. We consider the root-code 01 for further granularity and gather

percentage of events belonging to each of the 10 event code (i.e 010, 011,...,019.) Again we

found highly imbalanced distribution where event code 010 has largest percentage of ≈ 87%.

It indicates most generic event where event is captured based on any public statements

expressed verbally or in action not otherwise specified. In the following example, we try

to derive political relation between two countries Saudi Arabia (SAU) and QATAR (QAT).

We plot the quad class of the events where source is SAU and target is QAT and Figure-2.7

reflects that. There are 224 events and almost 95% of them indicates non-friendly relationship

between those two entities. This also correlates with the real world scenario where we observe

different conflict between those two countries including terrorism, airline embargo.

21



Figure 2.6: Distribution of events with root code 01

Figure 2.7: Distribution of quad classes where source=SAU and target=QAT

Another scenario between EU and United Kingdom may also be considered. Their rela-

tionship is revolving around Brexit. Here we present two graphs showing EU as source and

United Kingdom as Target (Figure-2.8) and the vice-versa (Figure-2.9) By observing these

figures, EU is balanced in terms of conflict and cooperation but United Kingdom mostly

inclined towards compliance.

22



Figure 2.8: Distribution of quad classes where source=IGOEUREEC and target=GBR, 226
events

Figure 2.9: Distribution of quad classes where source=GBR and target=IGOEUREEC, 381
events

23



2.10 Related Applications

In this section we will highlight some possible scenario where mining the generated events

can provide useful political or social understanding of different phenomena. As presented

in the Section-2.9, simplified analysis often reveals insights about the data, supporting in-

formation that we already know, and provide answers to the unknown facts. We think, the

real-time dataset along with other datasets supported by the API will continue to provide

strong support to the research community for better understanding the political interactions.

The framework used here can be extended to understand other non-political social phenom-

ena (i.e,. Human Migration).

To study human migration, we need similar ontology driven information extraction mecha-

nism. We can rely on human annotator to provide us CAMEO-like dictionaries useful for

capturing migration related events in the news articles. We can semi-automate the process

by using similar system as automatic actor detection framework. The key difference is we

have to identify patterns involving verbs rather than named entities, which is much harder

problem to address and open for research. Once we have the necessary pieces of information

to run the system, we can reuse this framework to accomplish the goal.

Once we gather these information, either political or social, we can mine and extrapolate re-

lated events. For example, observing two entities and try to predict they are becoming prone

to war can be within the scope of the data generated by this framework. Simple analytical

study on previous wars and associated entities may reveal threshold values of associated

parameters.

But, thankfully now a days, war a less common phenomena than political instability where a

nation or organization falls victim to its own citizen or people. Identifying stability at state

or organizational level will be an appropriate scenario for the dataset and framework. We

will human annotator to help us identify a time-line for the instability to occur (from start

24



to end). We will do sequence analysis[89] on the subset of the data related to that before

it started (to identify the cause) and during start and end of time (to identify the sequence

of phenomena that led to the result). Following sequences will be studied w.r.t the learned

ones and classified to reflect potential future course of events.

Another key area of news articles mining is news credibility identification (aka Fake News

Detection). Machine driven authentication to a statement or news is still being explored as

a research field. There are several parts in this validation mechanism like Fact Checking[46],

Relevancy analysis at article level[25] etc. The data we collected will be used as search-able

knowledge base for fact checking. As event coding works at a sentence level, a statement can

be easily converted to structured form for matching against other facts already collected.

25



CHAPTER 3

REPAIR: RECOMMEND POLITICAL ACTORS IN REAL-TIME FROM

NEWS WEBSITES

3.1 Introduction

Political event data [18] are machine-encoded from news reports. Events are categorized

based on a set of dictionaries for the political actions and actors. The typical format to

create these data is to determine ”who-did/said-what to whom” [5, 39]. While the set of

actions or verbs is finite and can be matched to a fixed ontology, the set of source or target

nouns is large and always expanding. Identifying these political actors along with their roles

is important to transform news reports into useful data for the study of international relations

and civil conflict. The final event data has the form of a source-action-target sequence of

political interactions.

Currently, actors and roles are added to the dictionary manually. Automated coders (i.e.,

PETRARCH [5]) use those dictionaries to identify events. However, if a source or target

actor is not in the relevant actor dictionary, PETRARCH will not code an event related to

the new actor. This motivates us to design a framework for recommending new political

actors in real-time so that the dictionaries stay up to date with new actors. Furthermore,

existing event coders (e.g., PETRARCH) use only the syntactic structure (i.e., parse tree)

of a sentence which fails to capture the semantic content of a sentence. More precisely, they

struggle to encode event from a complex sentence. As a result, either they generate events

with wrong actors (source/target) or fail to generate any event at all (more details in section

3.3.2). This drives us to use the sentence semantic for our actor recommendation framework.

Automatic Content Extraction (ACE) programs [30] infer entities, relations, and events

from natural language data. An event consists of relations which are a number of participants

(ACE entities) and each participant has a semantic role that it plays in the event (agent,

26



object, source, target). Machine learning-based semantic role labeling techniques [41] consist

of the detection of the semantic arguments associated with the predicate or verb of a sentence

and their classification into their specific roles. The PropBank[16] Corpus provides structured

predicate-argument annotation for the entire Penn Treebank [91]. Each verb in the Treebank

is annotated by a single instance in PropBank and acts like an event containing information

about the source, target, and location of the verb.

Implementing an automated system for recommending new political actors poses some

key challenges. First, an actor may come with multiple aliases, e.g., ’Barack Hussein Obama’,

’Barack Obama’, ’President Obama’, etc. Currently, a human expert puts a dictionary entry

for each of these aliases in Conflict Analysis and Mediation Event Ontology (CAMEO) actor

dictionary [39]. Second, the role of an actor changes over time. For example, ’Shimon

Peres’ served multiple political roles in Israel during his lifetime. Finally, processing a large

volume of news articles across the world in real-time demands a fast, scalable, and distributed

computing solution.

Building on earlier work [85] to address these challenges, we develop a real-time, dis-

tributed framework, RePAIR, to recommend new political actors and their associated roles.

The chapter highlights the following contributions:

First, we propose a novel time window-based, unsupervised technique for new actor and

role recommendations. We designed a frequency-based actor ranking algorithm with alias ac-

tor grouping from news articles that also integrates an external knowledge-base (Wikipedia)

to capture the timeline of an existing actor’s role change and to suggest possible new roles.

Second, we have developed an ACE based semantic event coding to augment the tradi-

tional syntactic event coding for our actor recommendation framework. Third, we develop

a distributed framework using Apache Spark Streaming [101] to address the scalability of

coding political events from news articles in real-time. Finally, we compare our proposed ap-

27



proaches with state of the art (e.g., PETRARCH, BBN ACCENT event coding) and shown

the effectiveness of our work.

The rest of the chapter is organized as follows: Section 3.3 explains the overall framework.

Section 3.4 describes our new actor with role recommendation technique in details. Section

3.5 shows the experimental results for new actor detection. Section 3.6 covers the related

works.

3.2 Background

CAMEO (Conflict and Mediation Event Observations) is an event coding framework to

record political events (both material and verbal interactions) in a structured who-did-what-

to-whom format. It was originally intended to the study of interstate conflict mediation [79].

Over time, it has developed as a ”next generation” coding scheme for automated coding and

the detailed coding of sub-state actors. There are dictionaries for actors and actions (verbs)

which form the knowledge-base for the framework. Tools using this framework first consider

the structure of the sentence to identify possible actors and actions, then they look for their

existence in the corresponding dictionaries. Once found, they can use an appropriate actor

and action coding to represent the event. Each action in CAMEO is represented with a

designated numeric code. Each actor is represented with corresponding actor codes (i.e.,

GOV, MIL, USA, etc.). These are associated with the actors based on a timeline since the

role of an individual can change when they achieve a new position in government or other

agencies.

PropBank [71] is a corpus which annotates text semantically. It adds a semantic layer to

Penn Treebank [91] which captures the accurate predicate-argument structure by annotating

predicates and the semantic roles of their arguments.

28



3.3 Framework

Web Scraper

Metadata 
Extraction

SPARK

 Window 1 Window 2 Window N

...

Political Actor 
Extraction

DOC N, 
Window M
{Parse, NER}

DOC N, 
Window M
{Parse, NER}

DOC N, 
Window M
{Parse, NER}

New Political Actor 
Recommendation 

New actors with roles

Human Feedback

Knowledge 
base 

Existing Actor’s Role 
Change Recommendation  

Timeline change 
detection for roles

Figure 3.1: Framework for real-time new political actor recommendation

Figure 3.1 illustrates our new political actor recommendation framework. RePAIR col-

lects political news stories periodically through web scrapers. Later, it uses CoreNLP [60]

and PropBank to extract NLP metadata from the stories such as parse trees, tokens, lemmas,

NER, semantic events (by PropBank), etc. and stores them in MongoDB. We use Apache

Spark streaming [101] with Kafka [53] to collect all the scraped data, periodically. We use

CoreNLP and PropBank annotation inside a Spark worker node to scale up the process.

Next it classifies political events only using CAMEO action ontology and dictionary from

the metadata. It fetches possible new actors from the source and target of the events and

NER. We implement a time window-based, unsupervised actor frequency ranking technique

to recommend potential new actors and their related roles. Finally, a human expert validates

the recommended actors and roles to update the dictionary.

29



3.3.1 Web Scraper

We use a web scraper [69] to collect news articles and extract the content of the news. It

collects news stories from about 400 RSS (Rich Site Summary) Feeds [8] every 2 hours. The

news articles are shipped through Apache Kafka to an Apache Spark-based data processing

module[84].

3.3.2 Metadata Extraction

Inside our data processing unit, Stanford CoreNLP parses the text of news documents, ex-

tracting metadata such as Parts-Of-Speech (POS) tagging, the Parse Trees, and importantly

Named Entity Recognition (NER). The results are stored in MongoDB.

PropBank-based event coding PropBank generates events [15] from the ‘predicate-

argument’ structures for each of the sentences of a document. It returns the arguments

corresponding to the semantic roles of an agent/source (ARG0) and a target (ARG1, ARG2,

etc.). It has extra annotations of modifiers that describe time (AM-TMP) and location

(AM-LOC) references in a sentence.

Table 3.1 shows the generated events for the following example.

”Obama vowed again on Sunday to help France hunt down the perpetrators of the attacks.”

- The Washington Post 11/15/2015

Table 3.1: PropBank annotation example

Verb ARG0 ARG1 AM-TMP

vowed Obama
to help France hunt down the
perpetrators of the attacks

again,
on Sunday

help Obama
France hunt down the
perpetrators of the attacks

hunt France
down the perpetrators
of the attacks

30



The advantage of PropBank over PETRARCH for event encoding is in the processing of

compound sentences. For example, consider the following sentence:

An AFP reporter said Bashar-Al-Assad agreed to take help from President Trump and his

Government.

Using PETRARCH, “AFP reporter” and “Bashar-Al-Assad” are the source and target, and

the action is “said”. However, the political event is between Bashar-Al-Assad and President

Trump. PropBank simplifies the sentence and captures the interaction between those two

entities.

3.3.3 Political Actor Extraction and Recommendation

For a given sentence, PropBank provides arguments for the source and target of each event.

Each event contains a verb/action which is looked up in CAMEO to categorize it as a

political event. We parse these arguments and filter named entities using NER, capturing

those that are missing in CAMEO actor dictionary as potential new actors. We also detect

possible actor aliases and group them together. Based on this list of new actors and aliases,

we introduce a time window-based actor ranking technique that selects the top N actors for

each window. Roles are suggested using the roles of co-occurring actors. This is described

in detail in section 3.4.

3.3.4 Existing Actor’s Role Change Recommendation and Verification

We integrate external knowledge bases (e.g., Wikipedia, Google Knowledge Graph [2]) to

capture role changes for existing actors. If a role change is detected, then our framework

captures the time-line changes and recommends the new role (detail ed in section 3.4.5).

Finally, we provide a graphical user interface and a dashboard to the end user/human expert

to provide recommendations about the new political actors with their role to update the actor

dictionary for CAMEO coding via PETRARCH.

31



3.4 Recommending A New Actor and Role

[<actor, role>]

PropBank

CoreNLP

Unknown

Actor List 

Relevant 

Role List  

Filter Actor 

(Alias name)

Group

∑(Tf x Df)

Top N Actor

Ranking

Actor listActor listActor listActor list ...

Windows

tLtL-1tL-2t1

W#appear(Actor) > TH

time tN

Actor 

(Alias name)

Group

(incremental)

Actor Ranking 

Recommend Actor in Lth Window 

news

NER

Figure 3.2: Actor recommendation procedure in RePAIR

Figure 3.2 depicts the details of our real-time actor recommendation for the dictionary

updates.

3.4.1 New Actor Discovery

We use a frequency-based ranking algorithm to recommend the top political actors and their

roles. Stanford CoreNLP parses the raw text of each news report and outputs NER for each

sentence. Next, PropBank generates event codes with arguments for each sentence using its

practnlp tool [6]. From these PropBank arguments, we filter a named entity list from the

NER output. This list contains both existing actors and probable new actors. The role of

an existing actor can be looked up from CAMEO dictionary. For example, President Obama

has role USAGOV . We filter out potential new actors by removing existing actors from

the proposed NER actor list. Sometimes, an actor may come in different alias in the same

32



article. For example, Barack Hussein Obama may come as Obama or Barack Obama in

many sentences. As a result, we need to group these actors with all possible alias names and

make a single actor name (e.g., Barack Hussein Obama). We use two similarity measures

Levenshtein Edit Distance [54] and MinHash [22] independently to group actors’ aliases.

These similarity measures need a similarity threshold simth which is estimated from existing

CAMEO actor dictionary (detailed in section 3.5.2). After grouping, we calculate the term-

frequency of each actor in a news article. For an actor alias, we compute the maximum

count of the common phrases for an actor’s name as its term-frequency for grouped actor

aliases. We assume that a common phrase from all aliases will be found in a document.

For example, the term-frequency of Barack Hussein Obama will be the maximum frequency

of Barack Hussein Obama, Obama, and Barack Obama as Obama is the common word

among the names. Similarly, we group aliases for actors across documents in a given time

window. Finally, for each actor a, we calculate a document frequency df and use the following

equations to generate a score:

rank(a) =
∑
d∈D

tf(a, d)× df(a,D) (3.1)

We use term frequency tf(a, d) = counta∈d(a) to show how frequent an actor a is in docu-

ment d. Equation 3.1 shows the rank calculation of an actor a, where df(a,D) = |d∈D:a∈d|
|D|

is document frequency and it shows how frequent an actor a comes across all news arti-

cles/document in the set D.

3.4.2 Actor Role Discovery

We collect all events from the news reports that contain new and existing political actors.

The CAMEO actor dictionary contains existing actors and their roles, which historically

have been coded by humans. We assume that new actors’ political roles will be related to

33



Table 3.2: Symbol for algorithm

D document set d document
m meta-data simth similarity threshold
E event code set e event code
A actor set a actor
R role set r role
tf term freuency df document frequency
N top N actor L number of window
k merged actor as key TH Threshold in window

their most frequent co-occurring existing political actor roles. So we collect the roles from

the existing CAMEO dictionary and map them to new actors’ roles. We update actors’ maps

with a role across news articles. If an actor appears in two news articles then we include all

possible roles across the articles increasing common roles.

3.4.3 Recommending New Actors in Real-time

We use algorithm 2 to describe the user recommendation procedure for dictionary updates.

For time window W of length L we receive the actor list with ranking Mrank. Then, take the

top N actors from the list (lines 5-7) and update the new actor map MA and its role map

MR. These are incrementally updated during each time window. For each actor in Mrank,

find the list of co-occurring actors in MA. If there are no actors in MA, insert it in MA with

occurrence 1 and the role in MR. If the closest match is present, then merge the actor name

as required. Later, increment the occurrence in MA. In the same way, update the role of

that actor in MR (lines 8-20). When the number of actors increases in MA and MR, their

size also increases, so we introduce a (min,max) threshold THmin and THmin. After the

Lth time window, if the total occurrence of an actor is greater that THmax, we consider this

as a new actor and recommend the top N roles from MR. On the other hand, if the total

occurrence is below THmin, discard the actor from MA and MR (lines 21-31). After the Lth

34



Algorithm 1 New actor discovery

1: procedure actorDiscovery(DocumentSet D)
2: Actor Map M ← {}
3: for each d ∈ D do
4: m← CoreNLP (d)
5: Ed, Acurrent ← PropBank(d)
6: Aall ← m.NER()
7: Ad ← Aall − Acurrent

8: Rd ← E.Roles()
9: for each a ∈ Ad do
10: tf ← counta∈d(a) ▷ calculate tf
11: for each ai ∈ Ad − a do
12: if Match(a, ai) > simth then
13: a←Merge(Ad, a, ai)
14: tf ← max(tf, countai∈d(ai))
15: end if
16: end for
17: k ← argmaxk{Match(M(k), a) > simth}
18: if k ̸= empty then
19: k ←Merge(M,k, ai)
20: M.insert(k, [(tf, d, Rd)])
21: else
22: M.insert(a, [(tf, d, Rd)])
23: end if
24: end for
25: end for
26: Mrank ← {}
27: for each k ∈ M.keys() do
28: df ← |k ∈ d : d ∈ D|/|D| ▷ calculate df
29: rank ←

∑
tf∈M(k)(tf)× df

30: Mrole ← {}
31: for each Rd ∈ M(k) do
32: for each r ∈ Rd do
33: Mrole(r)←Mrole(r) + 1
34: end for
35: end for
36: Mrank.insert(k, (rank,Mrole)
37: end for
38: end procedure

35



Algorithm 2 Real-time new actor recommendation

1: procedure actorInRealTime(THmin, THmax, N, L)
2: New Actor Map MA ← {}
3: New Actor Role Map MR ← {}
4: for t← t1 to tL do
5: D ← getDocuments(t)
6: Mrank ← ACTORDISCOV ERY (D)
7: MtopN ←Mrank.top(N)
8: for each < a, (rank,Mrole) > ∈ MtopN do
9: k ← argmaxk{Match(MA(k), a) > simth}
10: if k ̸= empty then
11: k ←Merge(M,k, a)
12: MA(k)←MA(k) + 1
13: else
14: MA(a)← 1
15: end if
16: for each r ∈ Mrole do
17: MR(k)←MR(k) + 1
18: end for
19: end for
20: end for
21: for each a ∈ MA do
22: if MA(a) ≥ THmax then
23: MA(a)← ”new actor”
24: MR(a)← ”new actor′s role”
25: end if
26: if MA(a) ≤ THmin then
27: MA(a)← ”discard actor”
28: MA.remove(a)
29: MR.remove(a)
30: end if
31: end for
32: end procedure

36



time window, we recommend new actors with possible related roles. Human experts will

verify this and update CAMEO dictionary accordingly.

3.4.4 Graph-based Role Detection Technique

We also consider a graph-based technique to suggest roles for the recommended actors. This

is an alternative to our frequency-based role detection technique. The role of a new actor

will be influenced by existing actors with whom he/she has mostly interacted. Therefore,

we use weighted label propagation technique [58] to infer possible roles from existing related

political actors.

We formulate a graph G = (V,E) that implies the interaction between actors. Here, V is

the set of actors (contains both existing and recommended actors). For two actors, u and v,

(u, v) ∈ E represents those actors are mentioned in the same news article. We also assign a

weight function w(u, v) as follows

w(u, v) = co-occurrence count of u and v

After that, we assign labels to the nodes which are the roles found in the CAMEO actor

dictionary for existing actors. For recommended actors, we simply put an empty label. We

use label(x) to denote the label for actor x.

label(x) =


roles from dictionary if x is an existing actor

empty otherwise

Our iterative label propagation algorithm assigns weights to each possible role for a rec-

ommended actor using neighboring actors. Weights are assigned for each role based an

associated edge of the interaction graph, G. We repeat this process N times or until the

37



HILLARY
CLINTON

BARACK 
OBAMA VLADIMIR

PUTIN

DONALD
TRUMP

BERNIE 
SANDERS

USAELI, 
USAGOV

USAELI, 
USAGOV

RUSELI, 
RUSGOV

4

9
3

5

1

3
2

Figure 3.3: Example Scenario for Graph Based Role Recommendation

label assignments are stable. The weighting function for roles works as follows,

role− weight(u, role) =
∑

v∈Neighbors(u)

T (v, role)× w(u, v)

where T (v, r) is used as indicator variable that simply returns 1 if v has ‘r’ in it’s list of

roles, 0 otherwise. In Figure 3.4.4, we determine the role for DONALD TRUMP. He is

associated with both existing actors (gray nodes) and new political actors. All the existing

actors have their roles associated with their nodes. After calculating weights for all roles from

neighbors, we find USAGOV, USAELI, RUSGOV as the top 3 possible roles for DONALD

TRUMP. The outcome here is that we detect that he is a government leader who has run for

president. A limitation is that we have not connected him to anyone who is a prime minister

in a parliamentary democracy.

3.4.5 Integrating External Knowledge Bases

External knowledge bases (e.g., Wikipedia, Google Knowledge Graph) store up-to-date news,

and are helpful for recommendation systems for actor dictionary updates and validation. Al-

38



though they are significant big data resources they are not alternatives to CAMEO dictionary

which contains structured, human-encoded data (e.g., action/actor dictionaries about polit-

ical events) since these knowledge bases contain more generic, unstructured data. However

they suffer from the same problem as the CAMEO dictionaries if a new political actor ap-

pears. To integrate these external knowledge bases and identify any time-line changes in the

role of an existing or new actor, we query the Google Knowledge Graph [2] for appropriate

entities. This disambiguates among closely related entities across popular words. As an ex-

ample, searching for Mullah Mohammad Rabbani in the Wikipedia API, produces no related

entries, but the Google Knowledge Graph resolves him to Mohammad Rabbani locating him

in the Wikipedia database. Experimentally over a sample of 1000 actors from 18000 actors

finds only 20 of them are resolved only with Wikipedia, but 850 are correctly identified when

using the Google Knowledge Graph. Identifying whether there is a change in the timespan

for the actor’s role by observing the dates associated with each of his/her responsibilities

from Wikipedia pages is then listed for human confirmation. For example, former President

of United States, Barack Obama has a dictionary entry where his role is USAGOV and

started on 20 January 2009 but has no end-date. From Wikipedia, we find both start date

and end date of his presidency. We match start date with the existing entry of the dictionary

and add the end date to the list of actor dictionary updates. We also suggest a new role for

an existing actor if he/she is assigned to a new political position based on the information

from Wikipedia.

39



3.5 Experiments

3.5.1 Setup and Dataset

To evaluate our framework, we take 10 time windows at 24 hours interval, containing 131,932

news articles for our experiments. This dataset contains news stories from July 11, 2017 to

July 20, 2017.

3.5.2 Threshold Estimation

We use partial string matching to measure the similarity for grouping actors and their aliases

via MinHash and Levenshein edit distance. These text matching metrics give a value between

0 and 1 indicating the textual similarity, with 1 being an exact match. One needs to set

a threshold value for whether two strings represent the same actor using these metrics. To

estimate the threshold, we consider the similarity values for actors in the existing CAMEO

actor dictionary. For example, consider the following snippet from the actor dictionary for

former U.N. Secretaries General Kofi Annan and Boutros Boutros Ghali:

....

KOFI_ANNAN_

+SECRETARY-GENERAL_KOFI_ANNAN

.....

BOUTROS_BOUTROS_GHALI_

+BOUTROS_BOUTROS-GHALI_

....

Both are followed by multiple aliases in the dictionary (lines with a ’+’). We estimate a

threshold value that minimizes the number of false positives (i.e., reporting high similarity

40



5 10 15 20

40

60

80

100

Top N actor

R
ec
al
l
%

(a) Deleted actor = 5

10 15 20 25

40

60

80

100

Top N actor

R
ec
al
l
%

(b) Deleted actor = 10

15 20 25 30
30

40

50

60

70

80

Top N actor

R
ec
al
l
%

(c) Deleted actor = 15

Figure 3.4: Performance for Actor recommendation. Recall: Edit distance (PropBank) ,
MinHash (PropBank) , Edit distance (PETRARCH) , MinHash (PETRARCH)

when they are not same actor). The estimated thresholds for the Levenshein and Min-Hash

methods are 0.75 and 0.4 respectively.

3.5.3 Baseline Methods

To compare actor detection methods we use the event coders from BBN Accent [21], PE-

TRARCH, and the ACE methods from PropBank. For role recommendation, we compare

our frequency-based and graph-based approaches.

5 10 15 20
40

60

80

100

Top N actor

R
ec
al
l
%

(a) Deleted actor = 5

10 15 20 25
40

60

80

100

Top N actor

R
ec
al
l
%

(b) Deleted actor = 10

15 20 25 30
40

60

80

100

Top N actor

R
ec
al
l
%

(c) Deleted actor = 15

Figure 3.5: Performance for role recommendation. Recall: Edit distance , MinHash ,
Exact match

3.5.4 Experiment 1: Performance Evaluation

This first experiment evaluates the framework’s correctness across event coding methods.

We first select 30 existing political actors from the CAMEO actor dictionary and randomly

41



remove some of them. We start with removing 5, 10 and 15 actors. The deleted actors are

considered for recommendation (as if they are newly discovered). We calculate how many

of them are recommended by our algorithm to obtain a recall. We repeat the experiments

10 times to obtain averages for 3 different numbers of deleted actors and plot the result in

Figure 3.4. We cannot compute precision because all are possible recommended actors. The

retrieved actors are 15-20% of the recommended actors.

In Figure 3.4, we see that if we increase the top N actors recommended at each time

window, it increases the possible retrieval of a deleted actor. We also see that our framework

which has the ACE PropBank event coder (dotted line) has higher recall than PETRARCH

(solid line) for recommending new actors. This is expected because as pointed out earlier

PETRARCH can make incorrect decisions in compound sentences. As a result, our frame-

work will generate more relevant actors than PETRARCH. Moreover, the edit distance actor

alias grouping (red) has higher recall than MinHash actor alias grouping (black) because Edit

distance considers each character where MinHash consider each word when comparing aliases

for an actor.

In the next experiment, we suggest the possible roles for identified actors in the previous

experiment, using a similar sampling process as first experiment. As a reference, we have

the actor roles (R1) listed in the CAMEO dictionary. Now using our frequency-based role

recommendation algorithm we predict appropriate roles (R2) for them. We calculate the

intersection of the two sets, R1 and R2. If the output is non-empty set then we consider it

a success. In this experiment, we keep the size of R2 at 5. The roles are selected based on

frequency. The top 5 frequent roles are presented as possible actor roles. Again we vary the

number of deleted actors and the number of top-N recommended. We reported the ratio

of a number of successes for the number of actors retrieved. Figure 3.5 shows the results.

We see that edit distance has a slight advantage for actor recommendation. We use word

set in the MinHash calculation and it uses Jaccard similarity. So, for close matched actor

42



Frequency Graph
0

20

40

60

80

R
ec
al
l
%

Edit distance
MinHash
Exact

Figure 3.6: Comparison of actor role recommendation with baseline: (N = 15, deleted actors
= 15)

aliases like ’Donald Trump’ and ’Donald J. Trump’, the edit distance metric gives higher

similarities than MinHash. For a similar reason, we see recall variation in Figure 3.5 for

role recommendation. Here edit distance performs better when the top N increases, whereas

MinHash and exact matching have similar levels of performance (worse than edit distance).

Comparison of role recommendation techniques: Extending this experiment, we

delete some well-known actors from the existing CAMEO dictionary and then try to retrieve

their roles by frequency-based and graph-based role detection techniques. We fix the numbers

of recommended actors per window and number of deleted actors to 15. We do not vary these

parameters for the graph-based approach because the resulting graph is then very sparse.

This makes the role inference hard with the label propagation technique. We consider all the

actors suggested by the actor recommendation algorithm and their interactions in the graph.

Figure 3.6 shows the results. Here, the frequency-based approach outperforms the graph-

based approach for all the similarity measurements because it infers new actors’ roles from

existing actors’ roles. The graph-based approach considers roles from neighbors who can be

either existing or new actors. In that case, an error in one role assignment can propagate

to others. The label propagation algorithm has fewer labels to propagate and the edges

43



between new actors will be higher because they have a higher possibility of co-occurring in

a document.

3.5.5 Experiment 2: Recommendation of New Actors with Roles

Next we list the possible newly recommended political actors based on the estimated thresh-

old. The threshold is how many times an actor appeared in the time windows. We set the

number of time windows L = 10 and (max, min) frequency thresholds of (THmax, THmin)

= (5, 2) in algorithm 2. So if any actor appears in five (more than 50% of the window

length), he/she will be suggested as a potential new political actor. In the case of roles, we

list the most probable roles from their co-occurred existing political actors. Table 3.3 shows

the list of recommended actors across all windows. We use both MinHash and edit distance

based string similarity and list the actors and roles output side-by-side. We find that both

the approach detects similar roles for identical actors. But the recommended user list varies

across the methods.

When recommending new actors, comparison among the PropBank, PETRARCH, and

BBN ACCENT event coders shows precision of the three methods after human validation.

Here we report what percentage of recommended actors actually represents a political entity.

Following the pattern of previous experiments, PropBank performs best in this scenario.

3.5.6 Experiment 3: Scalability Test

We ran our experiment on a Spark cluster which has 1 master node and 10 slave nodes. Each

node has 8 vCPU, 16 GB memory and 1 TB space.

We are using CoreNLP which is computationally expensive [84]. Figure 3.8 shows the

scalability of average document processing time of 131,932 news articles using Spark with

varying number of worker nodes. So, we take average processing time per article. It scales

up almost linearly.

44



T
ab

le
3.
3:

L
is
t
of

re
co
m
m
en
d
ed

ac
to
rs

w
it
h
th
ei
r
ro
le
s

E
d
it

d
is
ta
n
ce

M
in
H
a
sh

A
ct
o
r

T
o
p

3
ro

le
s

A
ct
o
r

T
o
p

3
ro

le
s

D
O
N
A
L
D

T
R
U
M
P

U
S
A
,
U
S
A
G
O
V
,
G
O
V

D
O
N
A
L
D

T
R
U
M
P

U
S
A
,
U
S
A
G
O
V
,
G
O
V

E
M
M
A
N
U
E
L
M
A
C
R
O
N

U
S
A
G
O
V
,
F
R
A
,
F
R
A
G
O
V

E
M
M
A
N
U
E
L
M
A
C
R
O
N

U
S
A
G
O
V
,
F
R
A
,
F
R
A
G
O
V

M
IT

C
H

M
C
C
O
N
N
E
L
L

G
O
V
,
U
S
A
,
U
S
A
G
O
V
L
E
G

R
E
X

T
IL
L
E
R
S
O
N

U
S
A
G
O
V
,
U
S
A
,
Q
A
T

R
E
X

T
IL
L
E
R
S
O
N

U
S
A
G
O
V
,
U
S
A
,
Q
A
T

M
IT

C
H

M
C
C
O
N
N
E
L
L

G
O
V
,
U
S
A
,
U
S
A
G
O
V
L
E
G

L
IU

X
IA

O
B
O

M
E
D
,
C
H
N
O
P
P
,
C
H
N

R
O
D
R
IG

O
D
U
T
E
R
T
E

P
H
L
G
O
V
,
L
E
G
,
G
O
V

R
O
D
R
IG

O
D
U
T
E
R
T
E

P
H
L
G
O
V
,
L
E
G
,
G
O
V

Y
E
M
I
O
S
IN

B
A
J
O

N
G
A
G
O
V
,
N
G
A
,
G
O
V

45



5 10 15 20 25
0

20

40

60

80

100

Top N Actor

P
re
ce
si
on

%

Figure 3.7: Baseline coding comparison in actor detection: PETRARCH , BBN ACCENT
, and PropBank

2 4 6 8

0.1

0.2

0.3

0.4

Number of workers

A
ve
ra
ge

p
ro
ce
ss
in
g
ti
m
e
(s
ec
)

Figure 3.8: Average processing time for of 131,932 documents

46



3.6 Related work

Political event data analysis has been developed over many decades in international relations

and security studies. Saraf, et al. [76] develp a recommendation model to determine if an

article reports a civil unrest event. Schrodt and Van Brackle [80] show a complete picture of

generating events from raw news texts. While each of these works focuses on political event

data generation and analysis, none incorporate dynamic actor dictionary building. Here, we

design a real-time scalable framework that detects new actors dynamically.

Role recommendation based on surrounding keywords in the document can also be con-

sidered. For example, ’President’ as keyword occurring in front of Barack Obama may help

infer his role. But we may not get enough keywords like this to infer roles. Often they

do not convey the complete role for an actor. With the keyword ’President’, we can im-

ply Barack Obama as a government employee, but we cannot infer his country. Moreover,

CAMEO uses short-form encoded roles (e.g., USAGOV) which require a static mapping in

the above procedure. Automatic Content Extraction (ACE) based event extraction systems

use patterns or machine learning for labeling. Ritter et al. [73] proposed TWICAL - an open

domain event extraction and categorization system for Twitter. Georgescu et al. [38] show

event extraction using Wikipedia. Weninger et al. [97] show future Web content extraction

algorithms. All the above methods use classifiers to identify event types which performs well

in generic domains but not in a restricted a political domain. Therefore, we use a mixed

model of CAMEO and PropBank to extract political events.

Finally, Extracting events from raw news articles in real-time demand a scalable dis-

tributed streaming framework. We choose Spark Streaming because it is matured and widely

used in industry.

47



CHAPTER 4

AUTOMATIC EVENT CODING FRAMEWORK FOR SPANISH

POLITICAL NEWS ARTICLES

4.1 Introduction

Spanish is the second most spoken language in the world with over 460 million native speak-

ers. Out of a total of 195 countries, there are twenty Spanish-speaking countries, such as

Spain, Venezuela, Colombia, Mexico, etc. Spanish-speaking countries have become a hotbed

for political conflict like the crisis of leadership in Venezuela or Colombia’s war on drugs.

With the prominence of Spanish-speaking countries in global interactions and political in-

stability ravaging these countries, it becomes pertinent to create a processing tool that can

parse through Spanish news for signs of political crisis. This tool will parse unstructured

Spanish text into structured event code.

Automated coders (i.e. PETRARCH) are specifically designed to complete structured

interpretation of political events in English and are guided by ontologies like CAMEO, a

Conflict and Mediation Event Observation ontology[77, 51, 12, 50]. This ontology is laid

out in such a way that the automated event coder can generate Source-Action-Target (SAT)

formatted events where “Source” is the initiator, “Action” is what has been initiated, and

“Target” is the entity being acted upon. The format is also known as the who-did-what-to-

whom pattern.

However, PETRARCH is limited in that it only works for English news articles. It uses

language specific parsers (i.e. Stanford CoreNLP [60]) to generate parse trees and works with

relationships between words to find useful patterns representing actions and named entities.

The process is hard to extend in other languages without rewriting the core logic from the

ground up. This problem originates due to the non-uniform nature of metadata (i.e., parts

of speech tags) across different languages.

48



Although substantial work has been done to convert unstructured English text to struc-

tured event code, there has been little to no work done to convert Spanish unstructured text

to structured event code.

We develop a tool, the first of its kind, that facilitates structured political event code

from unstructured Spanish news articles. Event coding in Spanish can be done in a number

of ways. The a straightforward way is to translate Spanish text into English and perform

English event coding on the translated texts. The drawbacks of this would be cost and the

poor quality of translation, hindering the tool’s performance. Another way is to develop

a tool that will work with the raw Spanish text and perform Spanish event coding. We

adopt this later strategy. To event code in Spanish, we cannot use readily-available CAMEO

ontology, because CAMEO ontology defines verb-action patterns and actors in English. So,

instead, we create an extended ontology that contains the verb-action patterns and actors in

Spanish. Using this extended ontology, we parse Spanish texts with a language independent

parser called UDPipe and match words with event code.

To facilitate event coding for Spanish texts, we make the following contributions: first,

we extend cameo ontology for verb-action patterns and actors for Spanish texts; second, we

utilize language independent parsers; third, we develop a full fledged framework that captures

a stream of real time Spanish texts from various Spanish news websites using Apache Spark

[102] and Kafka [92], parses them, and generates automated event code; finally, we develop

a fully functional prototype and empirically analyze its effectiveness.

The chapter is organized as follows- Section 4.2 represents the current research and

development work going into to our system. Section 4.3 highlights some key concepts and

tools that help the reader understand the rest of the chapter. Section 4.4 highlights the

organization of different modules in the pipeline. Section 4.5 shows results obtained on the

performance of different modules.

49



4.2 Related Works

In this section we present the related works with respect to the contents of the chapter.

Distributed processing of large data has been addressed by [83], [44] where author address

a static dataset and the process of generating events. Here, we are working on a real-time

dataset and here we need to collect and distribute the data in real-time where aforementioned

works only concentrate on processing the data. We are inspired by the scalability analysis

found here [83] and incorporate that to design the system. Schordt [78] has pointed out the

importance of having a real-time event coding framework and data distribution. Automated

Political event coding has gone through several decades and several ontologies, datasets and

tools are developed. We use CAMEO ontology here. Other related ontologies are WEIS

and authors [40] has provided a comparative study between those ontologies. Eck [35] also

present an analysis among different conflict data-sets. Among the available datasets ICEWS

[20], Cline Center Dataset [14] are prominent. But they are not easily accessible and updated

in-frequently. In terms of event coder, we found PETRARCH2 is the most flexible, easy-to-

extend compared to others (i.e., BBN Accent) as reported by [17, 86]. We are also using a

extended version of the event coder which uses Universal Dependency [61] to better support

towards foreign languages. Such type of extension was not possible to BBN Accent like

proprietary software. Another dataset that matches with some types of events in CAMEO

ontology would be the Global Terrorism Dataset(GTD) [1] which lists worldwide terrorist

activities including different types of protest. The key aspect of the dataset is it is human

annotated but doesn’t link well with the original news source. We are currently working

with this dataset to use it as a benchmark tool for the automatic event coder.

50



4.3 Background

To help the reader better understand the tools and methods used in this chapter, we provide

key details of fundamental concepts.

Conflict and Mediation Event Observations (CAMEO) [77] is an ontology devel-

oped to capture political events and focuses primarily on the following four categories, also

known as ”Quad Classes”.

• Verbal Cooperation - when two entities are agreeing or co-operating verbally on a

matter

• Material Cooperation - when an entity (source) is actively helping another entity (tar-

get)

• Verbal Conflict - when two entities are in disagreement on a matter

• Material Conflict - when an entity (source) is in conflict physically with another entity

(target), i.e., protest, war, etc

It works using a knowledge-base of pattern and actor dictionaries. The dictionaries

contain over 6000 patterns representing 200 types of events (encoded in three digit format

like, 010, 370, etc). Pattern dictionaries are helpful for identifying political interactions in a

given sentence. Actor dictionaries are used to search for political actors around the matched

pattern.

Political Events are structured pieces of information consisting of an action, source

(acting entity), target (entity being acted upon) and other related information. For example,

consider the following extract from a news article -

As coronavirus cases crop up across the

United States, some governors and other

51



Figure 4.1: Basic Mechanism of Automated Coding using PETRARCH

leaders are scrambling to slow its spread,

banning large public gatherings, enforcing

quarantines and calling National Guard

troops.

As a structured event, it looks like the following

Source - ---GOV

Target - ---MIL

Action - 041 (Discuss by telephone)

”governors” and ”National Guard troops” are coded in standard ISO-3 coding format

for event generation. The structure used here is mostly known as the who-did-what-to-whom

format of event coding. The coding mechanism is depicted in the Figure 4.1

Given a sentence, the encoder searches for a matching pattern in the CAMEO [77] verb

patterns dictionary. A pattern consists of a verb and surrounding keywords. The pattern

signifies a particular course of action and is represented by event code. For example, SET in

the pattern ”SET OUT VIEWS” indicates a MAKE PUBLIC STATEMENT type of event

(event code 010). Upon finding a match in pattern, actor dictionaries search for matching

entities representing the source and target. After finding the necessary information, an event

52



Figure 4.2: Multilingual Event Coding Framework Diagram

is coded by PETRARCH. If there is missing information, PETRARCH will ignore the event.

This sequence of events are called Source-Action-Target or SAT format.

Universal Dependency (UD) [61] is an technique that supports cross-linguistically

consistent tree-bank annotation. Its overall goal is to provide a universal collection of

categories and guidelines to facilitate consistent annotation of similar constructions across

languages, while allowing language-specific extensions when necessary. We will be using

”ufal-udpipe” [88], a python package for generating universal dependency parse trees.

4.4 Multilingual Framework

We design an infrastructure to download articles from the web, process them to generate

metadata, and run event coding and geolocation algorithms followed by a distribution of

the data using a web based API. The following subsections will describe each stage in detail

from the framework.

Figure 4.2 depicts the steps of the framework and how the pipeline works. The framework

can be divided into sequential steps [100] as follows -

• Step 1: Data Collection

53



• Step 2: Preprocessing

• Step 3: Event Coding

• Step 4: Data Access

At Step 1, we collect Spanish news articles using Web Crawler. Then we filter out

the Spanish articles and keep only the politically relevant articles using ML based filtering

classifier (Filter). Filtered documents are passed through the next step (Step 2) where within

the text Processing module universal dependency parse trees are generated at the sentence

level (Text Processing). This step runs on Apache Spark to ensure scalability. The processed

output is provided to the Political Event Coding module where UD-PETRARCH (Political

Event Coding) and geolocation software work together to generate geolocated events (events

along with the place where it happened) and completes Step 3. In the next step, the generated

events are then distributed using the API to the Researchers and Visualization tools (API

and Visualization). The steps highlighted in Figure 4.2 represents a real-time streaming data

processing unit. There are other components that supports the online framework (module

with highlighted background in Figure 4.4). Those are as follows -

• Model building and validation for the news article filter to support ”Step 1: Data

Collection” part

• Ontology translation for supporting the ”Step 3: Event Coding”

• Validation of multilingual event coding w.r.t events generated in English.

4.4.1 Step 1: Data Collection

In this step, we run a crawler to obtain Spanish news articles using a list of news agencies

from Spain, South America, Central America, and other Spanish-speaking countries. These

54



articles that are downloaded daily become the input for the framework. A detailed list of

Spanish news websites can be found here [68].

Article Annotation

This step is required for Spanish news articles as we download these articles without topic

restrictions and the websites often do not present a way to collect data section wise. Some-

times, a news article may also have URLs to other news articles that the crawler can follow

and download. After the data collection, we will get a lot of articles that are not relevant

and of those that are relevant, not all of them are political. We annotate a subset of 450+

randomly chosen articles and annotate whether the articles are relevant, and if so, whether

they are focused on politics. Once an article is found to be politically relevant, we classify it

into quad-class categories of the CAMEO ontology and thus create a simplified Gold Stan-

dard Records (GSR). This set of articles will be used for validating the accuracy/coverage

of the event coder.

Article Filtration - Relevant/Irrelevant followed by political/non political

We have designed a machine learning algorithm to filter out articles that are not relevant

to politics (either irrelevant articles or articles from other sections like business, sports,

etc). We have used TF-IDF on Bi-grams for feature selection technique and RandomForest,

NaiveBayes, and SVM as classifiers [45]. We also applied deep neural network based classifiers

like, BERT [27] with its own feature extraction technique.

4.4.2 Step 2: Preprocessing

After filtering out the irrelevant articles, we process the remaining documents to generate

metadata from raw text. The metadata includes Parts-of-Speech (POS) tags, named-entity

tags along with the dependency relationships. We use ufal-udpipe python package to generate

55



the tags and relationship between words at a sentence level. To explain Step 2 and 3, we

use Sentence 1 for reference.

Sentence 1: The UN Security Council on Tuesday unanimously approved a United

States’ resolution on the recent deal between the U.S. and the Afghan Taliban, a rare en-

dorsement of an agreement with a militant group. 1

The Spanish translation of Senetence 1 is below -

El martes, el Consejo de Seguridad de la ONU aprobó por unanimidad una resolución

de Estados Unidos sobre el reciente acuerdo entre Estados Unidos y los talibanes afganos,

un respaldo poco frecuente de un acuerdo con un grupo militante.

For each sentence in a document, we generate a dependency parse tree (Figure 4.5). The

parsing job requires a lot of time to complete when ran in standalone mode. We have adapted

a Spark-based distributed system for this task as it speeds up the processing almost linearly

with an increase in the number of processing cores. Each Spark worker node generates a

dependency parse for sentences from a batch of news articles and stores them in a MongoDB

instance.

4.4.3 Step 3: Event Coding

After generating metadata, we process it with the UD-PETRARCH event coder [59] to

generate time-stamped political events, making them CAMEO compatible events. For ge-

olocating events, we use Cliff-Clavin [33] from MediaMeter. It gives us locations associated

with the events found in the sentences. Here is a brief description on how the event coding

process works for a particular sentence. Given the sentence with dependency relations, the

1https://www.thehindu.com/news/international/un-security-council-endorses-us-taliban-
deal/article31035580.ece

56



Table 4.1: Noun and Verb Phrases for Sentence 1

Noun Phrase Verb Phrase
Council, Tuesday, U.S. approved

Afgan, Taliban, resolution

coder first identifies the noun and verb phrases of the sentence. Examples of the phrases are

listed in Table 4.1 generated from Sentence 1.

The coder then identifies the root verb, which is ”approve” in this case. Then using the

dependency relationship between noun phrases and the root verb, the coder creates triplets

in the form of (source, action, target). An example triplet that eventually qualifies for an

event is as follows:

u’matched_txt’: u’- * + OF [080]

#line:9440’,

u’source_text’: u’THE UN SECURITY COUNCIL’,

u’target_text’: u’A UNITED STATES’

RESOLUTION’,

u’verb_text’: u’APPROVE’,

u’verbcode’: u’080’

Here the ”matched text” is the verb pattern in the sentence that has been found in the

CAMEO verb dictionary. The source and target are matched against the actor dictionaries

and once all the information are found, the triplet becomes an event.

All the processed text articles and generated events are stored in the MongoDB. All these

framework components use Apache Kafka to synchronize the inputs and outputs.

Ontology Translation From English

To capture events in articles published in Spanish or in another foreign language, we have to

translate the existing CAMEO ontology to the corresponding language. There are two parts

57



Figure 4.3: Snippets from English and Spanish (highlighted) verb dictionaries. The entry
starts with a main verb, followed by related verbs and patterns (lines starting with ”-”)

that needs to be translated at this step: the verb-patterns and the list of political entities

(political leaders, organizations, etc.).

Translating verb patterns: Verb patterns are used to capture the interaction between

two entities. To translate verb-patterns, we adopt a semi automated way and develop an

online application to facilitate the collaboration between human annotators. We first present

a basic translation of verbs using the Wordnet [11] synsets in Spanish. Human annotators

are asked to assess the quality of translation w.r.t the CAMEO code category and after

feedback, we do a majority analysis to include the translation in the new dictionary [70]. A

snippet of translated verb dictionaries are presented in Figure 4.3

Translating Actors: With this approach we translate CAMEO dictionaries containing

political entities and organizations. The algorithm uses BableNet translations database to

translate dictionaries written in one language to another specified language. BabelNet is

a multilingual encyclopedic dictionary which was created by seamless integration of the

largest multilingual Web encyclopedia - i.e., Wikipedia - the most popular computational

58



Figure 4.4: Steps in translating Actors in English to Spanish

lexicon of English - i.e., WordNet, and other lexical resources such as OmegaWiki and

the Open Multilingual WordNet. We observed that the Bablenet translation database is

more accurate for translating agents, actors, countries, and organization names than other

translation sources such as Google and JRC databases [48].

Since BableNet is based on multiple lexical resources, like Wiktionary, OmegaWiki, Wiki-

data, Wikipedia infoboxes, free-license wordnets, Wikiquote, FrameNet, VerbNet, and oth-

ers, it is able to overcome problems that may arise from other translators such as ambiguous

and non-existing translations. Also, BableNet fills in lexical gaps in resource-poor languages

with the aid of Statistical Machine Translation and it connects concepts and named entities

in a very large network of semantic relations.

The translation process (depicted in Figure 4.4) takes a dictionary file in English as an

input and produces a translated version in Spanish. It goes through each of the entities and

their synonyms and translate them using BabelNet database[65] to Spanish. We get several

translations and each of them are associated with scores. Translations with the highest

scores are considered first. If no translation on BabelNet is present, Google Translate is used

to do the translation task. For example, for translating the entity ”AFGHANISTAN”, the

translation

”INVASION DE AFGANISTÁN DE 2001”

comes first , while

59



”ESTADO ISLAMICO DE TRANSICIÓN DE AFGANISTAN” comes second, and ”IN-

VASIÓN DE AFGANISTAN DE 2001” comes in third place based on the associated score.

In the case of translating a synonym, the returned translated synonym set is clustered

with other translated synonym sets belonging to the same main Entity. The algorithm lever-

ages Levenshtein distances technique[63] to calculate the similarity between each synonym

pair in the synonym set. Then the algorithm creates a two-dimensional array that stores

the Levenshtein distance between each pair of synonyms in the set. After that, the algo-

rithm builds a tree structure diagram of possible clustering based on hierarchical clustering

techniques[64, 96]. After that, the elbow method[98] is applied to determine the optimal

number of clusters based on the hierarchical tree. For example, if the translated synonym

set is of size 8 as follows:

S1: ’ESTADO_ISLAMICO_DE_TRANSICION_DE

_AFGANISTÁN’,

S2: ’ESTADO_ISLÁMICO_DE_TRANSICION_DE

_AFGANISTÁN’,

S3: ’ESTADO_ISLAMICO_DE_TRANSICIÓN_DE

_AFGANISTAN’,

S4: ’EJERCITO_DE_AFGANISTAN’,

S5: ’EJERCITO_NACIONAL_AFGANO’,

S6: ’PROVINCIA_DE_PARWAN’,

S7: ’PROVINCIA_DE_BĀMIYĀN’,

S8: ’PROVINCIA_DE_BAMIYĀN’

And they are numbered as S1 to S8 Then the two dimensions array of the distances are listed

in Table 4.2:

60



Table 4.2: Distances between translated texts identified as S1 to S8

S1 S2 S3 S4 S5 S6 S7 S8
S1 0 1 2 25 28 31 30 29
S2 1 0 3 25 28 31 30 29
S3 2 3 0 24 29 30 31 30
S4 25 25 24 0 12 14 15 14
S5 28 28 29 12 0 16 19 18
S6 31 31 30 14 16 0 6 5
S7 30 30 31 15 19 6 0 1
S8 29 29 30 14 18 5 1 0

Then, a tree structure diagram of possible clustering is built based on hierarchical clus-

tering techniques, After that the elbow method is applied and result in three clusters based

on hierarchical clustering as follows:

Cluster 1:

’ESTADO_ISLAMICO_DE_TRANSICION_

DE_AFGANISTÁN’,

’ESTADO_ISLÁMICO_DE_TRANSICION_

DE_AFGANISTÁN’,

’ESTADO_ISLAMICO_DE_TRANSICIÓN_

DE_AFGANISTAN’

# Cluster 2

’EJERCITO_DE_AFGANISTAN’,

’EJERCITO_NACIONAL_AFGANO’

# Cluster 3

PROVINCIA_DE_PARWAN

’PROVINCIA_DE_BĀMIYĀN’,

61



Figure 4.5: Universal dependency tree for Sentence 1 in Spanish

PROVINCIA_DE_BAMIYĀN

Multilingual Event Coding in Spanish

We are using UD-PETRARCH event coder that works on universal dependency rather than

only the Parts-Of-Speech tags used by original version of PETRARCH. It is helpful for

multilingual event coding because of the uniformity of universal dependency parses across

language in comparison to the inconsistency of Parts-of-Speech tags across languages. Us-

ing a universal dependency based event coder, we can easily incorporate coding in other

languages with no effort needed on updating the event coder itself. We will still need the

dictionaries to be translated first. Using a universal dependency parser, however, gives flex-

ibility for the non-CS background researchers to solely focus on the analysis and ontology

extension parts.

Figure 4.5 shows how the dependency relations are structured between words in the

translated version of Sentence 1.

Once again the root verb here is ”aprobó”, meaning ”approve” in English. This time

UD-PETRARCH genrates the following triplet

’matched_txt’: ’- * + OF [080]

#line:9440’,

62



’source_text’: ’EL CONSEJO DE

SEGURIDAD DE LA ONU’,

’target_text’: ’A ESTADOS

UNIDOS RESOLUCIÓN’,

’verb_text’: ’aprobó’,

’verbcode’: ’080’

and we find the same event where the source is USA, the target is IGOUNO, and the

event type code is 080.

Cross-lingual validation for generated events.

To identify whether similar events reported in different languages can be captured by the

event coder, we run the following validation procedure. First, we select a set of documents

in Spanish that has been annotated to be politically relevant. Then we translate them

to English using Google Translate API. Afterwards we have a parallel corpus of English

and Spanish documents. Then we run respective language parsers to generate universal

Dependency relationships and feed them to the UD-PETRRACH event coder. We observe

the generated triplets and do a semantic comparison between reported source and target

text with the help of BabelNet [65]. We also follow whether they are reporting the same

event type code. We will highlight the findings in Section 4.5.

4.4.4 Step 4: Data Access

We provide API to serve generated event data. This API maintains API-key based access

restrictions and serves the data in JSON format. Interested users can query using a JSON

based query language (similar to MongoDB). Users can select the portion of the data they are

interested in by subsetting the data with query parameters. They can also focus on particular

63



fields on each record, aggregate/group the query results, and query for the metadata about

the datasets. Additionally, there are user defined libraries in R programming language [52]

built on top of the web-based API to make accessing the data easier. Details of the access

policy can be found here [7].

4.5 Experiments

In this section we will discuss about the experiments conducted for different modules of the

framework.

4.5.1 Scalability: Universal Dependency Parse generation

As we point out earlier, the universal dependency parser is the most compute-intensive task

in the pipeline. We adopt a distributed system based on Apache SPARK and Kafka to parse

multiple documents in parallel. Each worker node in the Spark cluster gets a subset of the

documents to process. The synchronization is maintained by Kafka, guaranteeing that there

is no duplicate in processing task. Figure 4.6 show the relationship between the execution

time and number of processing cores and follows a linear monotonic decreasing function. For

this experiment we selected a subset of 1,400 Spanish news articles and generated dependency

parses for each of the sentences in those articles.

4.5.2 Document Translation vs Ontology Translation

With our current approach, we translate the CAMEO ontology to support the event coding

framework for Spanish news articles. Another route was to translate the articles into English

first and then apply an English event coder to generate the events. However, the cost to use

paid APIs, like Google Translate for that which would have cost us $125,000 for the current

corpus of 2.5 Million Spanish news articles. Also, the cost would have increased with time

64



2 4 6 8 10 12 14 16
0

200

400

600

Number of Cores

E
x
ec
u
ti
on

ti
m
e
(S
ec
on

d
s)

Figure 4.6: Relation between execution time and number of available processing cores.

Table 4.3: Comparison between English and Spanish Event coding on parallel corpus.

Number of news articles 132
Number of events generated(English) 107
Number of events generated(Spanish) 98
Number of events matched exactly 78

Number of events matched in Event code 93

as the corpus gets larger. This calculation is based on the estimate by Google who states

$0.05 is required to translate a document with around 500 characters [3].

Event coding coverage across languages

In this part of the experiment, we run the event coders in parallel for a set of Spanish articles

and the English translated version of those articles. We observe the similarities between the

events from the original and the translated version. Statistics are shown in the Table-4.3. As

we observed, a large number of events matched exactly with each other. Of the remaining

ones, there were partial matches present (ex. USAGOV captured in English as source, GOV

in Spanish for the corresponding event).

65



Table 4.4: Accuracy of different classifiers

Classifier Accuracy
Naive Bayes 81.4

Support Vector Machine (SBF) 80.7
Random Forest 82.7

BERT 74.6

4.5.3 Article Filtration using ML Classifier

Using the annotated 4̃50 documents, we create a multiclass classifier that tags each document

as irrelevant, political and non-political. We observe an overall accuracy of 82.5% with

Random Forest classifiers (Table 4.4) and average accuracy of 67% among the three classes.

In our observation, we found that the classifier struggles to differentiate between political and

non-political news articles. Most of the irrelevant articles (i.e. ads, homepages, etc.) were

identified with reasonable accuracy with no false negatives (articles identified as irrelevant

but are actually political/non-political). We also applied Deep Neural Network (DNN) model

BERT [27] but found it less accurate (∼ 75%) than the traditional machine learning model,

due to less annotated data to train the DNN model.

4.5.4 Ontology Translation

Here we discuss about the verb pattern translation app (VTA), where first the coders select

correct English synonym sets from WordNet w.r.t a particular CAMEO code and then iden-

tify appropriate translation using Spanish synsets. They provided 10,358 correct verdicts

(35.8% of the total verdicts) for English synonym set. Of those correct sysnsets, 90.1% of the

Spanish translations are regarded as correct which shows the effectiveness of WordNet[11]

based translation. The verb translation app [70] also provides valuable insights for inter-

annotator reliability. The system tracks individual annotator’s verdicts and generates an

overall sense of agreement among them. In general, there is a correlation factor of 0.96

between the average proportion of correct and incorrect verdicts across users. This indicates

66



a high degree of agreement between annotators in which they consistently identify English

synsets as correct when they indeed correspond to the corresponding CAMEO concept,

and consistently tag them as incorrect when their definition does not align with CAMEO’s

meaning[70].

67



CHAPTER 5

EXPLORING THE ROLES OF SOCIAL MEDIA DATA TO IDENTIFY THE

LOCATIONS AND SEVERITY OF ROAD TRAFFIC ACCIDENTS

5.1 Introduction

Social media is currently shaping the way news spreads as it allows people to know about an

event before it is published in broadcasted or printed media (e.g., tv, radio, or newspapers).

Furthermore, a lot of people publish news via social media through their accounts, which is

very often concise and easy to interpret. Keeping aside the false information or fake news,

the amount of relevant real-world news is available on a larger scale through social media

along with irrelevant information. This motivated us to focus on mining social media feed

for accident-related reports and gather key information such as location and severity of an

accident.

Twitter, a social media outlet, is proven to be a well-defined source of information during

different historical events and disasters; for example, it was used to predict election outcomes

around the world [32, 37]. Another time Twitter acted as a medium to spread information

was during a devastating earthquake in Nepal. The data provided gave people information

on the needs of the victims as well as different campaigns to raise funds [90]. For the recent

worldwide pandemic of Covid-19, Twitter is acting as a reliable source of information that

can be used to predict the second wave of Covid-19 and people’s sentiment on the different

preventative measures (i.e., Social Distancing [19]). For all these scenarios, Twitter acts as

a giant hub of information driven by a massive community of 330 Million users [99].

Traffic accidents are currently in a steady growth cycle due to increased load on traf-

fic, distracted driving, and various other causes. There is already a considerable amount

of research conducted in different locality and at different scales [43, 103]. However, in the

developing world, the problem is more prevalent due to less traffic maintenance as the World

68



Health Organization statistics show that the mortality rate is highest in Africa (26.6 per

100,000 population) and lowest in Europe (9.3 per 100,000 population). For instance, every

year, 39,000 Nigerian people are killed in traffic accidents [13]. Therefore, immediate and

adequate responses are needed to control such high levels of causality. Currently, only a

limited number of studies have used historical tweets to obtain accident-related information,

but they did not consider grouping tweets that convey the same information [43]. Addition-

ally, severity detection based on the message content may be beneficial for care providing

agencies, especially when medical aid resources are limited. In the developing world with

poor road networks, it is more important because the aid might not be similarly spontaneous

compared to the developed world. For example, analyzing traffic incident data from Lagos,

Nigeria, we found the average delay in response by the medical aid providers to be between

45 to 90 minutes, whereas in Dallas the response time is roughly between 8 to 15 minutes.

The longer delay is mostly because of the poor road network and lack of medical supply.

Hence, any re-evaluation of available supply and requesting more when needed will not be

feasible in most cases. So, the better and quicker we can assess the situation, the more of a

chance we have to save lives.

While using social media data to find accidents, key challenges like location extraction and

information dissemination steps, remain in data collection. During the data collection phase,

we find Twitter to be most accessible with its easy-to-use API. The keyword-based search

results contain tweets in different contexts and necessitate a context-driven filtration outside

of the API using machine learning techniques to identify accident-related tweets. We learned

that the location reported by tweet’s metadata is almost non-existent so that motivated us

to adopt content-based location identification (i.e., geolocation) and refine the results using

semantic properties of tweets. Once the tweets are collected, the efficient distribution of the

extracted information becomes the next point of focus, where we group similar tweets. We

find key-insights (e.g., the severity of an accident) from tweets using Machine Learning(ML)

69



and Natural Language Processing (NLP) techniques. This extracted information will help

medical-aid providers to assess the overall situation related to the accident and allocate their

resources accordingly. Processing large number of tweets requires application of distributed

processing and we use Apache Spark [102] based infrustructure to accomodate that. Apache

Kafka [92] is used for synchronizing the streaming nature of incoming tweets along with

guranteed delivery at different steps of the framework.

In this chapter, we propose a comprehensive framework that will provide supportive infor-

mation related to traffic accidents reported on Twitter. More specifically, we will use current

state-of-the-art machine learning (ML) and natural language processing (NLP) techniques

to extract location information and severity.

The proposed framework works in real-time with active and passive modes of operation.

In the active mode, it collects tweets continuously and identifies different accidents based on

the information in the tweets. In the passive mode, it takes input about some information

related to the accident (i.e., possible location, type, and so on) and collects geographically

relevant tweets that express accident-related information and extend the knowledge about

that accident. The framework has the following key steps - First, we collect and filter

accident-related tweets using Twitter API. Second, we perform tweet filtration via machine

learning classification where it identifies the context of a tweet representing an accident.

Third, we arrange the tweets into groups or clusters when they are related to the same

accident. Fourth, we provide a summarization of a group of tweets, highlighting key infor-

mation about a particular accident. Fifth, we extract geolocation based on tweet text and

associated metadata. Finally, we conduct severity analysis based on text mining approaches.

The chapter is organized in the following ways. Section 5.2 summarizes related works

to provide the context of the chapter. Section 5.3 provides some background on underlying

concepts. Section 5.4 describes the data collection and processing pipeline of the twitter-

70



based accident information. Section 5.5 shows how to interface with our system. Section

5.4.1 describes the dataset and provide system specification. Section 5.7 represents empirical

analysis and experimental results for different modules.

5.2 Related Works

In this section, we will describe related works for twitter based event detection, location

extraction from tweets and finally, summarization of tweets.

5.2.1 Event detection

Twitter-related event detection is an interesting problem and attracts the research commu-

nity in computer and transportation science. Li et al. [56] identified social events from

tweets along with the temporal-spatial information and the importance of the events. Other

notable applications addressed the early detection of contagious disease outbreaks by mon-

itoring influenza-related blogging trends during the emergence of the U.S. 2008 flu season;

which demonstrated the role of analyzing the structure of social media networks in improv-

ing the prediction of the spread of these outbreaks [26]. Influenza epidemic outbreaks were

also detected in the same application domain of bioinformatics [42]. Earle et al. attempted

to assess how fast tweeters reacted to the small and localized earthquake of Morgan Hill,

California, in March 2009 [34]; while Crooks et al. also identified spatial characteristics of

this information dissemination avenue [34].

5.2.2 Traffic Incident Identification

Gu et al. [43] focused on the identification of accidents in tweets in the Pittsburgh and

Pennsylvania areas, however, their work is different from our work in the following ways.

First, they used geolocation services but did not consider the content of the tweets to extract

71



the location. In our case, we utilize both to extract the location. Second, we aggregated

similar tweets that hadn’t been considered in their work. Finally, their work is narrowly

focused based on PA area whereas our work not only focuses on cities in the US but also

cities from developing countries like Nigeria.

5.2.3 Location extraction from tweets

Here we will present current state-of-the-art approaches to extract locations from tweets.

Many of them rely on the geotags associated with the tweets rather than using the analysis

to extract location from the text itself. However, implicit location identification based on

activity analysis on Twitter is also an emerging topic that can benefit the location identifi-

cation for related events. Li et al. [55, 23] identified the location with temporal information

for a particular Twitter user based on the historical tweets containing check-ins in different

Point of Interest (POI) collected from Foursquare. The method will be effective in a way

that whenever a user publishes a tweet related to an accident, the user’s tweet history can be

analyzed to identify her/his recently visited places. From that information along with some

additional temporal analysis, a possible location of the accident can be identified. Studies

[43] show that usually, around 70% of the tweets are from a well-known organization or

media accounts when it is related to accidents. Those accounts, however, are not as dynamic

as a regular, personal Twitter account when it comes to location changes Zhang et al. [103]

suggested a hybrid mechanism based on latent Dirichlet allocation and document clustering

for modeling incident-level semantic information, while spatial point pattern analysis would

be applied to explore the spatial patterns and to assess the spatial dependence between

incident-topic tweets and traffic incidents.

72



5.2.4 Summarization of Tweets

Inouye et al.[49] evaluated previous works in text summarization applied for tweet summa-

rization, such as SumBasic [95], MEAD [94], Phrase Reinforcement (PR) [81], and Hybrid

TF-IDF [82]. All of these algorithms are briefly described as follows: SumBasic is a notable

text summarization algorithm that performs well in tweet summarization. The primary idea

of SumBasic came from the tendency of a manual summary to include more frequent words

in documents as part of the summary. MEAD and other clustering approach did not perform

as good as SumBasic for tweet summarization. Phrase Reinforcement (PR) is a unique algo-

rithm because it uses word graphs to summarize tweets. The key concept behind PR was to

determine and combine partial summaries from tweets. Another summarization algorithm

specifically for tweets is hybrid tf-idf. The “hybrid” keyword came from the adaptation of

tf-idf weighting for short documents, particularly in its different definition of one document

when calculating tf and idf value of terms. The performance of hybrid tf-idf came second

to SumBasic in ROUGE scores, but slightly better in human evaluation. Other methods in

tweet processing are TwitterStand [75] and TweetMotif [67]. TwitterStand did not explic-

itly mention summarization, but their intention to find current event and provide several

representative tweets were very similar to tweet summarization task. In contrast, TweetMo-

tif explicitly intended to summarize a topic but did not limit their topic to only trending

topics and rather focused on topic modeling. We adopted these approaches and while also

providing severity information extracted from the summary.

5.3 Background

In this section, we provide insights into some key concepts/tools used in the project. This

will be helpful for the reader to understand the subsequent sections.

73



Figure 5.1: Example of Semantic Role Labeling

Semantic Role Labeling

Semantic Role Labeling (SRL) is the task of determining the latent predicate-argument

structure of a sentence and providing representations that can answer basic questions about

the sentence like, who did what to whom, etc. For example, given the following sentence,

Major accident occurred near I-635 and Royal Lane.

has the semantic structure with the key verb “occur” and associated argument and location

phrases (as shown in Figure 5.1).

We use AllenNLP[36] software stack to compute the semantic role labels.

Bidirectional Encoder Representations from Transformers - BERT

BERT’s key technical innovation is applying the bidirectional training of Transformer, a

popular attention model, to language modeling. This is in contrast to previous efforts that

looked at a text sequence either from left to right or combined left-to-right and right-to-

left training. The study results [28] show that a language model that is bidirectionally

trained can have a deeper sense of language context and flow than single- direction language

models. They detailed a novel technique named Masked LM (MLM) that allows bidirectional

74



training in models, which was previously impossible. One key application of BERT is to help

in situations where the training dataset has fewer number of instances. It uses a pre-trained

language model trained on Wikipedia and similar corpora. The task-specific instances will

be used to fine-tune the pre-trained model to increase the domain-specific accuracy.

5.4 Framework

In this section, we describe the framework in detail and use Figure 5.2 as a reference. There

are two modes of operation - active and passive.

In active mode, we collect tweets continuously from the Twitter API and extracted accident-

related information if there is any. The pipeline described in this section represents this mode

of operation.

In passive mode, we expect a trigger from an external system with location and time infor-

mation to initiate a twitter search for accident related tweets. It also includes the pipeline

with a request handler in between to handle the request and serve the data. Details will be

provided in Section 5.5.

The pipeline works as follows. It downloads the data through Twitter API in a regular

interval of 2 minutes (See Section 5.4.1). It filters out the non-accident-related tweets and

gives them as input to the classification based filtering module (See Section 5.4.2). After

the classification based filtering, we group similar tweets based on semantic, temporal, and

spatial attributes (See Section 5.4.4). This group of tweets represent information related to

a particular accident. Then, we apply summarization to get the most important information

from the tweets (See Section 5.4.5). After summarization, we record this group of tweets

as a particular accident and identify the severity using text mining techniques (See Section

5.4.6). We also extract location from text and metadata using a text mining and geolocation

tool-based approach (See Section 5.4.3).

75



Figure 5.2: Framework for accident-related tweet processing

5.4.1 Filtration (Query based) and Data Collection

We collect the data from Twitter API via their search API. We use “accident” as the keyword

and perform a keyword-based filtration. We send request every two minutes and collect

around 100 new tweets that contain the “accident” keyword, either as a regular word or

hashtag. The tweets are downloaded in the extended mode where we get the text content of

length 280 characters.

We use only the keyword “accident” as it is less restrictive than using phrases (i.e. “car

accident”, “road accident”, etc) Every tweet stored in the database includes tweet specific

and user-specific information. User-specific information is stored under the “user” attribute.

One additional attribute is “searched city”, which indicates the city where we collected the

tweets. It includes the center of the city as a geographic coordinate (latitude and longitude)

and we consider the radius to be 12 to 25 miles (depending on the size of the city itself) to

represent the city limit as a circle.

5.4.2 Filtration (ML based) - Context driven classification of tweets

After downloading the tweets, we consider whether the tweets are accident-related or not

since the keyword “accident” may be used in different contexts. For instance, both of the

following two sentences use “accident” but not in the same context.

76



Table 5.1: Examples of Non-accident vs Accident related tweets

Non-accident-related Accident-related

The National Transportation Safety Board Vernon, NY – Five Teens
(NTSB) has released a Marine Accident Injured in NY-26 Car Accident
Brief about the Carnival Horizon’s A. . .
Are you sure James Charles Accident, two lanes blocked in
termination was on accident?! New York on The FDR Drive

SB at The Manhattan Br/South
St/x3, stop and go traffic ba. . .

New soft-muscled RoboBee is New post: One dead, nine
accident proof. Read more: injured in Lagos-Ibadan

Eressway accident

Sentence 1 : I left the wallet in office by accident

Sentence 2 : Ghastly accident on i-45, 2 dead

The first sentence signifies a mistake, while the second signifies a car accident event. For

these types of tweets, we need to differentiate true accidents from other unfortunate events.

Table 5.1 shows some examples of tweets falling into these two contexts.

Those tweets express information about certain road accidents and contain location in-

formation, casualty information, etc. This information is extracted further down in the

pipeline.

For classification purposes, we use Google’s BERT pretrained model [28] and fine-tune

with annotated samples from a set of tweets. We also run other classifiers using shallow

learning (i.e., Naive Bayes, SVM) and word-to-vec based features from tweets. We convert

each word to a 300-dimension vector using word-to-vec [62] and perform an unweighted

averaging of words to retrieve a 300-dimension representation of the tweet itself and later

use that as input for the models. Related performance data and comparison are highlighted

in the Section 5.7.

The regular preprocessor works for tokenization, stopwords removal, and lemmatization

purposes. The BERT preprocessor has those steps built-in including the vectorizer.

77



The key motivation for using BERT for classification purposes is its effectiveness in being

trained with small datasets compared to other deep neural networks (DNNs). Recall that

BERT uses a pre-trained model and our data is used for domain-specific fine-tuning purpose.

As we will see in Section 5.7 we have a small number of annotated examples that BERT

model can perform well compared to others.

5.4.3 Location Extraction

To better identify the location mentioned for an accident, we use both methodical and tool-

based approach and extract location from the text. We also consider the metadata associated

with the tweets (i.e., geo-tags, user-location, and so on) to infer the location of the accident.

For methodical approache, We use a semantic role labeling approach for identifying location

based on smeantic tags in tweets. For tool based approach, We consider different geocoder

tools[72] and the Google Geotagger results are presented in the chapter as they perform the

best among all geotaggers. We capture location information at street level whenever possible.

A detailed table and examples are shown in Section 5.7. Algorithm 3 briefly describes the

steps involed.

Based on the methods/tools, the location extraction is done at 3 steps. First, we consider

associatedmetadata containing user location and geo-tag field. The geo-tag field indi-

cates from where the tweet was posted. As most of the people do not allow their tweets to be

geo-tagged, we don’t find it containing any value in the collected tweets. The profile location

is not dynamic since it does not change when the user moves to a different location. We find

around 35% of the tweets have a meaningful location in form of a city name or city-country

name pair that can be derived from user profile (See line 3 to 6 of Algorithm 3). Second,

we consider location extraction using geocoding(line 7). It is conversion between georef-

erenced information (i.e., latitude and longitude values) and address or location. “Forward

geocoding” (or simply “geocoding”) converts address to geocode, while “Reverse geocod-

78



Algorithm 3 Location Extraction From Tweets

1: procedure LocationExtraction
2: tweet← accident related tweet
3: location← geo tag(tweet)
4: if location ̸= NONE then
5: return location
6: else
7: user location← user location(tweet)
8: geo coded loc← geocode(tweet)
9: semantic coded loc← semantic role based loc extraction(tweet)
10: location← get most detailed address(
11: semantic coded loc, geo coded location)
12: if location ̸= geo coded loc(tweet) then
13: location← geo code(location.text)
14: end if
15: if location = NONE then
16: location← user location
17: end if
18: return location
19: end if
20: end procedure

ing” converts geocode to address. We use the geocoding function from Google Geocoder to

identify the location for the tweets and their corresponding latitude and longitude values, if

possible. For example, geocoding the following tweet with Google’s Geocoder pinpoints the

location “I-635 And Military Pky Mesquite TX” in Google Maps, as depicted in Figure 5.3.

CLEARED - accident:I-635 southbound

TX-352/Military Pky/Exit 4 Mesquite

various Lns blocked

Google’s geocoding approach has been widely used by other open-source geocoders. It

describes how different steps in fuzzy searching work for geocoding of input addresses. First,

geocoding performs a lexical analysis on an input address to obtain its geocoding informa-

tion. In one aspect, the lexical analysis may include at least one of a parsing operation, an

abstraction operation, and a stretch operation. Second, it performs a fuzzy searching on

79



Figure 5.3: Google Maps showing the location identified by Geocoder

knot-sequence tree, using the portions of the input address, to identify a plurality of partial

addresses which may match with the input address. Third, it computes a transposition and

matching score for each of the identified plurality of partial addresses to determine the best

matching candidate for the input address. Finally, it uses the geocoding database to find out

the best matching candidate for obtaining the geocoding information of the input address.

Finally, we use semantic role labeling to disambiguate the location descriptions found

in previous levels(line 8-9). Semantic role labeling (SRL) tags a phrase in the sentence as a

verb or an argument associated with the verb. It identifies the location phrase as ARG-LOC,

which can help identify any location mentioned in the tweet. Given the following tweet,

Ghastly accident occured on a

bridge near gt bank on okota road.

The semantic role based location extraction identifies the location as “bridge near gt bank

on okota road”, which provides more context than just “gt bank on okota road” identified

by the geocode(). So if we consider geocoding, we will only identify “gt bank on okota road”

and it’s related metadata including approximate latitude and longitude, but semantic role la-

beling will provide more context to derive finer-grained location as it captures more detailed

location expression (i.e., “bridge near gt bank on okota road”). get most detailed address()

(line 9) compares two addresses based on different components like street names, city, point

of interests (i.e. “gt bank” in the current example), reference points (i.e, “bridge”) and

80



gives more detailed one. If semantic role based approach gives the more detailed version

of the address, we again use geocoder to derive the address components (latitude and lon-

gitude) in lines 11-12. This time we use only the location expression identified by the

semantic coded loc. If geo-coder gives new geo-coordinate value we consider that value in-

stead of geo coded loc. Otherwise, we consider both the semantic coded loc (provides more

context) and the previously geocoded address, geo coded loc (provides latitude and longitude

with proximity near to actual location of accident).

To get most detailed address (i.e. get most detailed address), we compare the parts-of-

speech tags between the arguments. We consider words with tags NN and NNP and form

sets for semantic coded loc, S and geo coded location, G. S is derived from the ARG-LOC

identified by semantic parser and G is calculated based on the formatted address attribute

of geocoder’s output. Then, We consider set difference i.e. (S \G). If it contains any element

then semantic coded loc captures more detailed location, otherwise geo coded location is.

For geo coded location, we consider formatted address attribute, included in the output of

geocoder.

For example consider the tweet mentioned above. Here, the formatted address returned

by Google’s geocoder is “Okota Rd, Ilasamaja, Lagos, Nigeria”, and semantic coded loc is

“bridge near gt bank on okota road”. In this case set S is {“bridge”, “gt”, “bank”, “road”}

and D is {“Okota”, “Rd”, “Ilasamaja”, “Lagos”, “Nigeria”}. S\G becomes {“bridge”, “gt”,

“bank”} and is non-empty. So, we consider semantic coded loc will have more detailed in-

formation in this scenario.

5.4.4 Clustering - Forming groups of similar tweets

The motivation behind clustering is to identify related tweets that provide information about

the same accident. In an ideal scenario, the number of clusters will be equal to the number

of distinct accidents. It will also help us in the next step where we summarize the cluster to

81



make a single, unambiguous, tweet-like summary from the tweets in the same cluster. We

use online clustering[24] as it does not require a target number of clusters like many other

clustering algorithms (i.e., K-Means[57]). Since we consider spatial and temporal dimensions

in the clustering process, incremental clustering will also be amenable for this purpose.

After the location extraction step, the relevant accident-related tweets are identified and

grouped if they belong to the same accident. We keep a set of clusters divided into semantic,

temporal, and spatial dimensions. For the semantic dimension, we consider tweet vector

similarity based on word-to-vec [62]. A tweet vector is calculated based on an unweighted

average of words in that tweet. For the temporal dimension, we set a fixed time-to-live for

each cluster and use the cluster creation time to weigh new incoming tweets. For the spatial

dimension, we consider the location information found either in text or using metadata (i.e.,

tweet geo-tag, user-location, etc.). Some examples of tweets falling into the same cluster are

presented in Figures 5.4 and 5.5.

We use an incremental approach for clustering the tweets where for any new incoming

tweet, the similarity with the existing clusters is calculated first. The similarity score lies

between 0.0 and 1.0, where 1.0 means perfect similarity. The similarity calculation is based on

the vector of the candidate tweet and the cluster centers. A cluster center is the normalized

average of the tweet vectors multiplied by their similarity score. Cluster membership is

granted once the score exceeds a certain threshold. Otherwise, a new cluster is created.

We also use a Least Recently Used (LRU) based cluster eviction technique with temporal

constraint. Temporal constraint is given as a time-window starting with the time cluster

initially created, tstart and has length of 60 minutes (tend = tstart + 60minutes). Within

that time-window, the LRU approach works every 10 minutes to score the clusters based on

new insertion. If a cluster is not selected for LRU eviction after 60 minutes, it is granted

another 60 minutes to live. Once selected by the LRU eviction model, a probabilistic score

is generated based on how many times it was flagged by the LRU scheme.

82



‘BREAKING NEWS: New York radio

legend Angie Martinez involved

in severe car accident. Currently

recovering from frac...’,

‘New York radio personality Angie

Martinez recovering after suffering

multiple injuries in ""severe car

accident""’,

‘Radio Host Angie Martinez Suffers

Shattered Vertebrae in Severe Car

Accident\n\nAngie Martinez is

in recovery after s...’

‘New York radio legend Angie Martinez

involved in severe car accident.

Currently recovering from fractured

lumbar and shattered vertebrae’

Figure 5.4: First example of Cluster of tweets

5.4.5 Summarization - summary for a cluster of tweets

As we collected a large number of tweets, a lot of tweets are semantically “duplicate”,

meaning they convey the same information but are written in different linguistic forms. The

goal of this step is to provide a concise overview of the duplicate tweets. More specifically, we

want to isolate crucial information from the duplicate tweets and generate a single abstractive

summary tweet that represents the informativeness of those tweets. In the clustering step,

we identify the tweets that represent the same accidents. A single tweet that summarizes

the information about that particular accident could provide key insights from those tweets.

We follow the approach in [74] to summarize the tweets. First, we build a word-graph,

which is a graphical representation of a sentence where nodes represent words and edges

represent a link between words. We generate bigrams from each tweet of a particular cluster

83



* A man driving drunk left the scene

of an accident following a crash that

injured a pedestrian in ,...

Man dies, injured on Lagos-Ibadan

Eressway accident - ...

One killed, nine others injured in Lagos

-Ibadan Eressway accident - The Punch

Man dies, nine injured on Lagos-Ibadan

Eressway accident

Overtaking: Man dies, injured in

Lagos-Ibadan E/Way accident

Figure 5.5: Second example of Cluster of tweets

and add the bigrams to the graph iteratively. Then, we generate all possible word paths,

each of which denotes a sentence or in this case a tweet, by traversing the graph. As this

process may generate illogical sentences, we need to select the sentences which convey more

information and are more linguistically correct. To ensure informativeness, we compute the

cosine similarity value between the tf-idf vector of each word-path and the average tf-idf

vector of all word-paths. To ensure that the word paths represent more realistic sentences,

we use a tri-gram language model, which computes the probability of possible sequences of

word occurrences. We train the language model with text corpus from COCA (Corpus of

Contemporary American English) using the KenLM [47] tool and calculate the score of each

word-path. We then select the best scoring word-path from the objective function containing

the two scores by following the method in [74]. This word-path represents the summarized

sentence or tweet with the highest linguistic and informativeness score of all the tweets from

that particular cluster.

84



Figure 5.6 illustrates an example summarization from tweets of the cluster presented in

Figure 5.4. The detailed procedure is depicted in Figure 5.7.

break news new york radio personality

angie martinez recover fractured lumbar

shatter vertebrae severe car accident

Figure 5.6: Example of summarization of a cluster of tweets in Figure 5.4

Figure 5.7: Framework for summarization

The main motivation of using this approach over other approaches [95, 94, 81, 82] is to

have a summary that is more semantically close to a human-written like tweet and easier to

interpret by the user.

5.4.6 Severity Detection

Detecting the severity is a crucial step to properly assess the situation and correctly estimate

the damages, which will allow proper allocation based on given limited resources. For severity

analysis, we attempt to extract information about casualty and injury from the twitter text,

which allow the user to interpret how severe the accident is. We use a rule-based approach to

extract information about the severity and trained machine learning models for classification

of severity levels with 3 classes to consider.

85



We use the verb-arguments structure of semantic role labeling to identify the injury or

casualty data. We start with a seed list of verbs and extend the verbs based on the cluster

of tweets. Algorithm 4 describes how the process works. We start with the seed list of verbs

(line 2), consider each tweet in a cluster (line 4), and then try to find verbs from the seed

list and its associated argument. If successful, we search for arguments in the other tweets

in the cluster where no verb was identified and add that verb to the list (lines 12-17). We

match arguments based on semantic similarity using word-to-vec. If none of the tweets has

a verb that indicates some level of casualties, we ignore the cluster.

Algorithm 4 Identifying semantically labelled arguments related to accident severity

1: procedure SeverityInformationDetection
2: arguments← {}
3: seed list← {list of verbs related to accident}
4: tweets← tweets from cluster
5: while tweets ̸= ∅ do
6: tweet← pop(tweets)
7: (verbs, arguments)← Semantic Role Labeling(tweet)
8: while verbs ̸= do
9: verb← pop(verbs)
10: if verb ∈ seed list then
11: arguments← arguments ∪ argument1(verb)
12: else
13: similarity score ← Semantic Similarity(argument1(verb), arguments)

14:15: if similarity score ≥ THRESHOLD then
16: seed list← seed list ∪ verb
17: arguments← argument ∪ argument1(verb)
18: end if
19: end if
20: end while
21: end while
22: end procedure

As shown in Algorithm 4, the code “Semantic Similarity (a, list)” gives us the highest

similarity with “a” to any item in the list. THRESHOLD indicates how much similarity is

required to be considered same argument and we set it to 0.8 (1.0 being the exact match).

86



For example, we use “injury” and “kill” as our seed list of verbs. Let’s assume the following

tweets that form a cluster.

Man dies, injured on Lagos-Ibadan

Eressway accident - ...

Man killed, nine others injured in

Lagos-Ibadan Eressway accident - The Punch

Man dies, nine injured on

Lagos-Ibadan Eressway accident

Overtaking: Man dies, injured

in Lagos-Ibadan E/Way accident

Within this cluster, we find the second tweet includes some verbs from the seed list to indicate

how severe the accident is. Using semantic role labeling, we get ARG1, ARG2 associated

with each VERB in the sentence. In this example, ARG1 is “man” for the verb “kill”. This

indicates that a single person was killed in the accident. We also observe other related tweets

with “Man” as an argument for other verbs like “die”. We include the verb “die” in our

seed-list of verbs and present this information to the viewer for interpretation.

To identify severity level based on content in the tweet, we considered two classification

approaches. One is identifying severe and non severe accidents assuming ML based tweet

filtering is active (Section 5.4.2). In another approach, we unify these two steps into one

and and build model using BERT and aforementioned techniques to classifiy a tweet to

be “non-accident related”, “non-severe” and “severe”. As for features, we use word-to-vec

87



based vectorization of words in the tweet followed by unweighted averaging to generate fixed

length representations, except BERT. It has its own preprocessing technique to generate

vector form and we use the default configuration in our experiments. Section 5.7 shows the

related results.

5.4.7 Visualization and API

For the visualization part, we use Elasticsearch[29] and Kibana to showcase the processed

tweets in a structured json-like format. For more general-purpose users, we use a website to

show the accident-related tweets along with other processed data. For the collected tweets,

we provide a public API where a user can get access all the tweets related to the accidents

identified by the system (the active approach) and submit incident information (location and

type). The system can then give that incident-specific tweets collected on the fly.

5.5 Passive Mode of Accident Report Collection

In previsous sections, we describe the active mode of operation which collects tweets and

extracts accident-related information without any input or trigger from other applications.

We also provide a passive mode where other systems/applications may trigger the data

collection process. For this purpose, we built an API to interface with our system and other

applications. The application will provide us with the time, T, and location information,

L. We use the time to determine our window of 30 minutes (T, T+30 minutes) and collect

tweets published around L within that given window. We run the collection every 2 minutes

within that time window and update the results. The result can be accessed with a token.

Figure 5.8 shows the information-sharing pipeline.

88



Figure 5.8: Passive mode of accident report identification with the pipeline depicted in Figure
5.2

5.6 System Specification and Dataset Description

The pipeline described in Figure 5.2 is written in Python Programming language. Different

modules are run as a separate programs and Apache Kafka [93] is used to communicate in

between them. We use MongoDB to store the collected data. The system runs in a DELL’s

RDX740Xd machine with 40 cores and 96GB of RAM.

The data was collected every day from the four cities including Dallas, Austin, Houston,

Pittsburgh, and Lagos in Nigeria. We collected tweets for August 2020 and annotated

sampled tweets. The data size varies from 3,400 to 17,000 per day for accident-related

tweets in United States cities. Dallas had more accident-related tweets than Austin, as there

is more traffic on the roads of Dallas than Austin and its neighboring area. However, we

collected fewer Tweets in Lagos, Nigeria with around 341 tweets per day on average. In total,

we collected on average 42,000 tweets per day that are accident-related for all sample cities.

Table 5.2 shows the distribution of the downloaded tweets for each city. To understand how

much the collected data were attached to location information, we sampled data for Austin

and Dallas cities in the United States. For Austin, we sampled 4,100 tweets, where 900

tweets were accident-related according to the classifier. Among those 900 tweets, 7.8% were

89



Table 5.2: Citywise Tweet collection statistics for August 2020

City Total Average (Daily) Max (Daily) Min (Daily)
Dallas 383,086 12,768 17,033 10,338
Austin 154,361 5,145 5,780 3,418
Houston 360,391 12,013 14,203 11,008
Pittsburgh 359,040 11,968 14,832 9,842
Lagos 10,230 341 784 127

geocoded at the city level and 6.2% were geocoded at street level with respect to the total

number of tweets (i.e. 4,100).

For Dallas, we sampled 7,400 tweets where 2,850 were related to the accident. 26.9% of

them were geocoded at the city level and 24.2% were correct at the street level.

5.7 Experiments and Results

We present different experiment setup and corresponding results in this section.

5.7.1 Geolocation

We collected tweets from Lagos, Nigeria, and different cities in the United States. We col-

lected tweets for August 2020 and annotated sampled tweets. From the United States, we

considered Dallas, Houston, Austin, Pittsburgh, and New York. For our first and baseline

approach for geolocation, we relied on Twitter metadata associated with each of the Tweets

namely geo-tags and user location (GT-UL). We also applied semantic role labeling to iden-

tify any mention of locations in the tweet (SRL-Tweet). Finally, we used off-the-shelf tools

like Google’s geocoding software to encode the location mentioned in the tweet (GC). Below,

we presented tables focusing on one city at a time and show highlights of different methods

in terms of location retrieval. For each table, we presented how many annotated samples we

have and how many of them contain address information (city level and street level)[31].

90



Table 5.3: Location extraction from tweets published within Dallas

Indentified Step 2: Step 3: Step 4:
Location GT-UL SRL-Tweet GC
City 32.67% 0.00% 71.5%
Street 0.00% 2.75% 66.9%

Geo-Coordinates 0.00% 0.00% 63.4%

Geo-tag based approach was not showing any result as all of the tweets that we collected

and relevant to the accident do not contain any geo-tag information. For that, we removed

that column from the following tables.

For Dallas, we annotated 1, 137 tweets and the location was identified for 1, 089 of them,

including 1, 076 tweets for which street names were mentioned. Table 5.3 shows what per-

centages of tweets were georeferenced at each spatial unit in each of the three steps.

As for Dallas and other cities, we derive city information from the user location whereever

user mentioned the city in their profile. When we analyze the text, we extract street names

in a few cases where the tweet is written close to correct English sentence structure. The

semantic parser was able to identify positional tags and dependencies from the text and

extract street names. For Dallas and neighboring cities, most of the tweets follow a structured

format without having any proper English sentence structure. An example tweet is following

-

"Motor Vehicle Accident | L B J Acrd N /

Plano Rd | EN29; EN48; RE73; T | 570029 |

20:29 | B | https://t.co/vdTb1ICfa3"

For Austin, we have 798 annotated tweets, 243 of them have city names mentioned and

25 of them have street names, as shown in Table 5.4.

In this case, we saw a one percentage increase on text-based location extraction using

semantic role labeling. From the collected tweets, we observed more well-structured English

91



Table 5.4: Location extraction from tweets published within Austin

Indentified Step 2: Step 3: Step 4:
Location GT-UL SRL-Tweet GC
City 0.00% 0.00% 83.3%
Street 0.00% 16.7% 66.6%

Geo-Coordinates 0.00% 0.00% 33.4%

Table 5.5: Location extraction from tweets published within Houston

Indentified Step 2: Step 3: Step 4:
Location GT-UL SRL-Tweet GC
City 13.8% 0.00% 97.0%
Street 0.00% 5.00% 86.0%

Geo-Coordinates 0.00% 0.00% 83.0%

writings and the semantic parser were able to capture information in more tweets. For

example, given the following tweet

"This accident cause by speeding between

Austin and Gatineau

https://t.co/Q9QlqzDwFX",

the semantic role labeling based approach identified “between Austin and Gatineau” as

ARG-LOC for the verb “cause” and and provided more context than simlply identifying two

cities as in the case for Google’s geo-coding.

For Houston, Texas, we find similar data as Dallas. Of 1081 annotated tweets, 405 have

location information and 380 of them have street-name information, as shown in Table V.For

Pittsburgh, PA, we have 1, 056 annotated tweets and 764 of them have location information

and 657 have street names mentioned. Table 5.5 shows statistics on the dataset.

For Pittsburgh, PA, we have 1056 annotated tweets and 764 of them have location in-

formation and 657 have street names mentioned. Table 5.6 shows statistics on the dataset.

92



Table 5.6: Location extraction from tweets published within Pittsburgh

Indentified Step 2: Step 3: Step 4:
Location GT-UL SRL-Tweet GC
City 7.00% 0.00% 87%
Street 0.00% 12.00% 78.67%

Geo-Coordinates 0.00% 0.00% 74.0%

Table 5.7: Location extraction from tweets published within Lagos

Indentified Step 2: Step 3: Step 4:
Location GT-UL SRL-Tweet GC
City 70.0% 33.33% 87.5%
Street 0.00% 0.00% 40%

Geo-Coordinates 0.00% 0.00% 5.00%

For Lagos, Nigeria, we observed substantially fewer number of tweets related to accident

and annotated only 842 tweets, where 518 of them have location information and 108 have

street names. Table 5.7 shows the data on the location extraction methods. For most of

the tweets collected from Lagos, the locations were mentioned as the names of the highway.

For example, Lagos-Ibadaan Expressway is mentioned in a lot of tweets as accident location.

Although, we cannot pinpoint any specific geo-location with it as it is a long highway and

nothing was mentioned about a crossing street or exit number, which reduces the number of

geo-coordinates found significantly.

5.7.2 Severity Detection

There are two types of experiment involved for severity detection.

For identification of severity related information, we considered 568 tweets clustered into

201 groups. We use “injure”, “die” as our seedlist of verbs. Based on human annotation,

the final set of verbs should be the following.

expire, hurt, cause, injure,

die, kill, take away

93



Table 5.8: Performance of different machine learning models for severe-vs-non-severe classi-
fication.

Classification Model Accuracy Precision Recall Average Accuracy
Naive Bayes 76.23 0.66 0.24 0.65
SVM 86.89 0.71 0.84 0.86
HAN 85.18 0.79 0.73 0.81

Table 5.9: Performance of different machine learning models for severe-vs-non-severe classi-
fication for Austin area tweets only

Classification Model Accuracy Precision Recall Average Accuracy
Naive Bayes 91.6 0.3 0.6 0.77
SVM 87.03 0.26 0.57 0.73
HAN 82.40 0.22 0.71 0.76

We apply Algorithm 4 which used semantic role labeling based verb-arguments structure

to enhance the knowledge-base. We found fewer verbs to assess accident severity than

the synonym set of those verbs. With our incremental approach of verb identification and

argument extraction, we successfully retrieved all of the verbs and associated arguments. We

also observed for all the verbs that the ARG1 has the information for severity.

For identifying the severity level of from the tweet, we conducted two experiments. In

the first experiment, we considered only “Severe vs Non-Severe” accident tweet identifica-

tion. Approximately 850 annotated tweets were collected with 259 of them as “severe”. We

applied the Hierarchical Attention Network (HAN), Naive Bayes, and SVM based models.

Performance data is presented in Table 5.8. We annotated 698 tweets with labels “Severe”,

“Non- Severe” and “Non-Accident”. The distribution of data points for different classes are

shown in Table 5.12.

Table 5.9 shows the analysis based on 326 Tweets generated around Austin, with 108 of

them used as test instance and rest for training purposes. Only 18 of the given tweets were

an indicative of severe accident.

94



Table 5.10: Performance of different machine learning models for severe-vs-non-severe clas-
sification for Dallas area tweets only

Classification Model Accuracy Precision Recall Average Accuracy
Naive Bayes 90.32 0.42 0.67 0.79
SVM 91.61 0.4 0.6 0.77
HAN 85.8 0.20 0.63 0.75

Table 5.11: Performance of different machine learning models for severe-vs-non-severe clas-
sification for Lagos area tweets only

Classification Model Accuracy Precision Recall Average accuracy
Naive Bayes 76.73 0.68 0.607 0.73
SVM 82.44 0.75 0.74 0.80
HAN 84.89 0.75 0.83 0.84

Table 5.11 also shows the analysis based on 467 Tweets that were generated around

Dallas, with 155 of them used as test instance and the rest for training purposes. Only 12

of the given tweets were an indicative of severe accident.

For Lagos, Nigeria, 741 tweets were generated including 245 as test instance and the rest

for training purposes. There were 260 severe-accident related tweets. It is found that the

traditional machine learning approach slightly outperforms HAN due to the less amount of

training data, although we annotated more data to improve the performance of the HAN-

based approach. For all the datasets, we found average accuracy lower than the overall

accuracy, indicating that classifiers face difficulty in identifying minority class given the

imbalance nature of the dataset itself.

Unified classifier for filtering and severity detection

We run the experiment with another classifier which performs the task of identifying whether

a tweet is accident-related or not and assessing the severity of the accident. We present the

detailed results using BERT based model in Table 5.13. The distribution of instances in

different classes are listed in Table 5.12.

95



Table 5.12: Distribution of 3 severity levels of tweets.

Severe Non-Severe Non-Accident
112 294 292

Table 5.13: BERT Performance for Identifying 3-Severity levels

Instance Class Precision Recall f1-score support
Non-Accident 0.62 0.97 0.76 99
Non-Severe 1.00 0.70 0.82 113
Severe 0.58 0.21 0.31 33

accuracy 0.74 245
macro avg 0.74 0.63 0.63 245
weighted avg 0.79 0.74 0.73 245

We used 245 instances to validate the classifier performance among 698 total instances

(35% of the entire dataset).

All classifiers give overall accuracy of 74% but still do not perform well in identifying

severe accidents. The confusion matrix is shown in Table 5.14 highlighting different per-

formance for “severe” type classification. Most of the “severe” instances were incorrectly

classified as “non-accident-related”, which motivates us to further investigate for identifying

difference semantically. We provided a detailed result for BERT-based classifier as it out-

performed other methods of the classification task. The performance data of Naive Bayes,

SVM (Linear Kernel), and HAN based approaches are presented in Table 5.15, 5.16, and

5.17, respectively. We expect higher performance gain for HAN and BERT with a larger

dataset compared to traditional ML approaches used here. We found all of the classifier’s

performance is compromised when identifying a severe accident, which further motivates us

to concentrate on how to improve the performance with a more sophisticated representation

of the tweet including semantic relationships.

96



Table 5.14: Confusion matrix in BERT based classification

Non-Accident Non-Severe Severe
Non-Accident 96 0 3
Non-Severe 32 79 2
Severe 26 0 7

Table 5.15: Naive Bayes Performance for Identifying 3-Severity levels

Instance Class Precision Recall f1-score support
Non-Accident 0.94 0.60 0.73 99
Non-Severe 0.60 0.97 0.74 113
Severe 0.091 0.15 0.11 33

accuracy 0.67 245
macro avg 0.54 0.57 0.53 245
weighted avg 0.67 0.71 0.65 245

Table 5.16: SVM Performance for Identifying 3-Severity levels

Instance Class Precision Recall f1-score support
Non-Accident 0.93 0.66 0.76 99
Non-Severe 0.63 0.99 0.77 113
Severe 0.15 0.24 0.19 33

accuracy 0.70 245
macro avg 0.58 0.62 0.57 245
weighted avg 0.69 0.74 0.68 245

Table 5.17: HAN Performance for Identifying 3-Severity levels

Instance Class Precision Recall f1-score support
Non-Accident 0.91 0.64 0.75 99
Non-Severe 0.67 0.94 0.78 113
Severe 0.21 0.29 0.25 33

accuracy 0.71 245
macro avg 0.60 0.62 0.59 245
weighted avg 0.70 0.73 0.69 245

97



Table 5.18: Police Accident Reports and Tweets compatibility

Dallas Austin Houston
no. of accident reports 1371 179 234

no. of accident reports with tweets 863 83 93
percentage 63% 47% 40%

Temporal Analysis with Police Accident Reports

For model validation with the actual police accident reports, 730 police reports in Dallas, 568

reports from Houston and 432 reports from Austin were compared with tweets in a similar

timeline that corresponds to any particular accident. The accident information was available

for June 2020. We observed when tweets are published at the actual police report and for

how many incidents we get tweets associated with it. Table 5.18 shows key values for the

experiment results.

An example of police report in JSON is given in Figure 5.9.

{

"date": "2020-06-25T20:29:00.000Z",

"location": "N JOSEY LN , Lewisville,

Denton, TX, US",

"vehicles": [

"FORD",

"HONDA"

],

"deaths": 0,

"injuries": 0

}

Figure 5.9: Information found in a Dallas Area Police Report about an Accident

Based on the date, we create a search window in time to collect the tweets. The tweets

are collected based on filtering with the location information.

98



t-20 t+20 t+40 t+60

10

15

20
Dallas
Austin
Houston

Figure 5.10: Percentage-wise distribution of published tweet w.r.t time windows around the
police report time

Figure 5.10 shows a distribution of timeline for published tweets in comparison to the

accident report time. Here “t” indicates the time of the accident and the numbers are

expressed in minutes. For instance, “t-20” means a time window of 20 minutes prior to the

reporting time. The numbers are presented in percentage form. Overall, for Dallas, 58%

of the accidents fall in this range since the rest of the tweets have a higher delay of being

published in social media. For other cities like Lagos, Nigeria, the average time to address

an accident with aid falls between 45 minutes to 1 hour 10 minutes. According to our study

for Dallas (assuming similar user behavior over time), we could gather informative tweets

within the time-window when the aid is being served.

99



CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this chapter we will discuss our key contributions along with future directions of work 

related to the previous chapters.

6.1 Distributed Framework for Political Event Coding in Real-Time

We describe our framework for real-time automated event coding in a distributed manner 

for better scalability. We also discuss the data sharing process through a rich query based 

API serving JSON data. We present a summary of the data to give readers an insight about 

the gathered dataset. We also discuss some future applications that can be built on top of 

the framework and the dataset.

In future, we will extend the system to capture other social and political phenomena. Cur-

rently we are working on a limited set of Spanish news sources. Once we increase that and 

add Arabic news sources, we need to study how the system performs in-terms of scalability. 

We will also work on methods that can be used to semi-automate the ontology extension 

part. We will also simplify the query mechanism to the API by incorporating more natural 

way of specifying parameters and query translation.

6.2 RePAIR: Recommend Political Actors In Real-time From News Websites

Here, we address the problem of detecting and recommending new political actors and their 

roles in real-time to code events from news reports. We propose a Spark-based framework 

called RePAIR to recommend new actors with unsupervised ranking techniques and new 

actor aliases grouping that works on news articles collected on a periodic basis. Moreover, 

we integrate external knowledge bases (e.g., Wikipedia) to capture the timeline of changes 

for existing actors and also suggest new political roles for them

100



Currently, we limit ourselves to finding new political actors but this approach can be

extended to recommend new political actions in the CAMEO verb dictionary. In addition,

we will extend this to build CAMEO dictionaries for other languages (e.g., Spanish, Arabic).

6.3 Automatic Event Coding Framework for Spanish Political News Articles

We describe our infrastructure for real-time automated multilingual event coding in a dis-

tributed manner for better scalability. We present some statistics and experimental results

to show effectiveness of the individual modules and system as a whole.

In the future, we will extend the system to capture other social and political phenomena.

Currently we are working on a limited set of Spanish news sources. Once we increase that

and add Arabic news sources, we need to study how the system performs in-terms of scalabil-

ity. Moreover, we will assess the performance of the UD-PETRARCH event coder in other

languages including Arabic, French and Portuguese. We will run our annotation process

again for new articles to increase the accuracy of the DNN models used in the chapter.

6.4 Exploring the roles of social media data to identify the locations and sever-

ity of road traffic accidents

We present a processing pipeline that can capture traffic-accident related information (such

as location, severity, etc.) from tweets in real-time. We also discuss how other systems can

garner this information. The empirical data analysis and experimental results show promis-

ing outcomes and encourage us to further extend and investigate related methods/tools. We

find that google geo-coding works reasonably well in identifying location mentioned directly,

but Semantic Role Labeling (SRL) extracts locations with context which in some cases pro-

vides more accurate information. We also observe good performance on severity detection

using SRL and ML based approaches.

101



In the future, we want to extend the study by including more cities from different coun-

tries as the current analysis shows different user behavior and different level of information

available city-by-city basis. We will extend the data collection process by dynamically in-

cluding relevant keywords to be used with api query with twitter. We will annotate more

tweets for building a robust dataset for classifiers used in the paper and further improve

their performance by tuning the parameters and retraining. We will also train the model

with spatial restriction (training only on tweets published within “Dallas”) and see how the

performance differs across different methods. We will model spatial/temporal distribution

of accidents and identify hotspots along those dimensions. We will conduct inter-operability

tests with other systems requiring accident-related social media data.

102



REFERENCES

[1] Global Terrorism Dataset. https://www.start.umd.edu/gtd/.

[2] Google Knowledge Graph. https://developers.google.com/knowledge-graph/.

[3] Google Translation Pricing. https://cloud.google.com/translate/pricing.

[4] Newspaper Python Library. https://github.com/codelucas/newspaper.

[5] PETRARCH Event Coder. http://petrarch.readthedocs.org/en/latest/.

[6] practnlptools 1.0. https://pypi.python.org/pypi/practnlptools/1.0.

[7] Real-time Event Data Server. https://github.com/Sayeedsalam/

spec-event-data-server.

[8] RSS Whitelist. https://github.com/openeventdata/scraper/blob/master/

whitelist_urls.csv.

[9] Two Ravens. http://eventdata.2ravens.org/#!/home.

[10] Web Scraper. https://github.com/openeventdata/scraper.

[11] Wordnet. https://wordnet.princeton.edu/.

[12] Abrol, S. and L. Khan (2010). Twinner: understanding news queries with geo-content
using twitter. In Proceedings of the 6th Workshop on Geographic information Retrieval,
pp. 1–8.

[13] Adeloye, D., J. Y. Thompson, M. A. Akanbi, D. Azuh, V. Samuel, N. Omoregbe, and
C. K. Ayo (2016). The burden of road traffic crashes, injuries and deaths in africa: a
systematic review and meta-analysis. Bulletin of the World Health Organization 94 (7),
510.

[14] Althaus, Scott, J. B. J. F. C. B. P. and D. A. Shalmon (2017). Cline Center Historical
Phoenix Event Data. v.1.0.0.

[15] Babko-Malaya, O. (2005). Propbank annotation guidelines.

[16] Baker, C. F., C. J. Fillmore, and J. B. Lowe (1998). The berkeley framenet project.
In 17th International Conference on ACL, Volume 1, pp. 86–90.

[17] Beieler, J. (2016). Generating politically-relevant event data. arXiv preprint
arXiv:1609.06239 .

103



[18] Beieler, J., P. T. Brandt, A. Halterman, P. A. Schrodt, and E. M. Simpson (2016).
Generating political event data in near real time: Opportunities and challenges. Com-
putational Social Science: Discovery and Prediction. ed. by R. Michael Alvarez, Cam-
bridge, Cambridge University Press , 98–120.

[19] Bhat, M., M. Qadri, M. K. Noor-ul Asrar Beg, N. Ahanger, and B. Agarwal (2020).
Sentiment analysis of social media response on the covid19 outbreak. Brain, Behavior,
and Immunity .

[20] Boschee, E., J. Lautenschlager, S. O’Brien, S. Shellman, J. Starz, and M. Ward (2018).
ICEWS Coded Event Data.

[21] Boschee, E., P. Natarajan, and R. Weischedel (2013). Automatic extraction of events
from open source text for predictive forecasting. In Handbook of Computational Ap-
proaches to Counterterrorism, pp. 51–67. Springer.

[22] Broder, A. Z. (1997). On the resemblance and containment of documents. In Com-
pression and Complexity of Sequences 1997. Proceedings, pp. 21–29. IEEE.

[23] Chandra, S., L. Khan, and F. B. Muhaya (2011). Estimating twitter user location
using social interactions–a content based approach. In 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing, pp. 838–843.

[24] Charikar, M., C. Chekuri, T. Feder, and R. Motwani (2004). Incremental clustering
and dynamic information retrieval. SIAM Journal on Computing 33 (6), 1417–1440.

[25] Chen, J. Y., J. Johnson, and G. Yennie. Rnns for stance detection between news
articles.

[26] Christakis, N. A. and J. H. Fowler (2010). Social network sensors for early detection
of contagious outbreaks. PloS one 5 (9), e12948.

[27] Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018a). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 .

[28] Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018b). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 .

[29] Divya, M. S. and S. K. Goyal (2013). Elasticsearch: An advanced and quick search
technique to handle voluminous data. Compusoft 2 (6), 171.

104



[30] Doddington, G. R., A. Mitchell, M. A. Przybocki, L. A. Ramshaw, S. Strassel, and
R. M. Weischedel. The automatic content extraction (ace) program-tasks, data, and
evaluation.

[31] Dong, B., J. Guo, Z. Wang, R. Wu, Y. Gao, and L. Khan (2019). Regression pre-
diction for geolocation aware through relative density ratio estimation. In 2019 IEEE
International Conference on Big Data (Big Data), pp. 1644–1649.

[32] Dwi Prasetyo, N. and C. Hauff (2015). Twitter-based election prediction in the devel-
oping world. In Proceedings of the 26th ACM Conference on Hypertext & Social Media,
pp. 149–158.

[33] D’Ignazio, C., R. Bhargava, E. Zuckerman, and L. Beck (2014). Cliff-clavin: Deter-
mining geographic focus for news. NewsKDD: Data Science for News Publishing, at
KDD 2014.

[34] Earle, P. S., D. C. Bowden, and M. Guy (2012). Twitter earthquake detection: earth-
quake monitoring in a social world. Annals of Geophysics 54 (6).

[35] Eck, K. (2012). In data we trust? a comparison of ucdp ged and acled conflict events
datasets. Cooperation and Conflict 47 (1), 124–141.

[36] Gardner, M., J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu, M. Peters,
M. Schmitz, and L. S. Zettlemoyer (2017). Allennlp: A deep semantic natural language
processing platform.

[37] Gaurav, M., A. Srivastava, A. Kumar, and S. Miller (2013). Leveraging candidate
popularity on twitter to predict election outcome. In Proceedings of the 7th workshop
on social network mining and analysis, pp. 1–8.

[38] Georgescu, M., N. Kanhabua, D. Krause, W. Nejdl, and S. Siersdorfer (2013). Ex-
tracting event-related information from article updates in wikipedia. In European
Conference on Information Retrieval, pp. 254–266. Springer.

[39] Gerner, D. J., P. A. Schrodt, and Ö. Yilmaz (2009). Conflict and mediation event obser-
vations (CAMEO): An event data framework for a post Cold War world. In J. Bercov-
itch and S. Gartner (Eds.), International Conflict Mediation: New Approaches and
Findings, Chapter 13, pp. 287–304. New York: Routledge.

[40] Gerner, D. J., P. A. Schrodt, O. Yilmaz, and R. Abu-Jabr (2002). Conflict and me-
diation event observations (cameo): A new event data framework for the analysis of
foreign policy interactions. International Studies Association, New Orleans .

[41] Gildea, D. and D. Jurafsky (2002). Automatic labeling of semantic roles. Computa-
tional linguistics 28 (3), 245–288.

105



[42] Ginsberg, J., M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Bril-
liant (2009). Detecting influenza epidemics using search engine query data. Na-
ture 457 (7232), 1012–1014.

[43] Gu, Y., Z. S. Qian, and F. Chen (2016). From twitter to detector: Real-time traffic
incident detection using social media data. Transportation research part C: emerging
technologies 67, 321–342.

[44] Halterman, A., J. Irvine, M. Landis, P. Jalla, Y. Liang, C. Grant, and M. Solaimani
(2017, Dec). Adaptive scalable pipelines for political event data generation. In 2017
IEEE International Conference on Big Data (Big Data), pp. 2879–2883.

[45] Haque, A., L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal (2016). Efficient
handling of concept drift and concept evolution over stream data. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pp. 481–492. IEEE.

[46] Hassan, N., B. Adair, J. T. Hamilton, C. Li, M. Tremayne, J. Yang, and C. Yu (2015).
The quest to automate fact-checking. world .

[47] Heafield, K. (2011). Kenlm: Faster and smaller language model queries. In Proceedings
of the sixth workshop on statistical machine translation, pp. 187–197.

[48] Helou, M. A., M. Palmonari, and M. Jarrar (2016). Effectiveness of automatic transla-
tions for cross-lingual ontology mapping. Journal of Artificial Intelligence Research 55,
165–208.

[49] Inouye, D. and J. K. Kalita (2011). Comparing twitter summarization algorithms
for multiple post summaries. In 2011 IEEE Third international conference on pri-
vacy, security, risk and trust and 2011 IEEE third international conference on social
computing, pp. 298–306. IEEE.

[50] Khan, L. and F. Luo (2002). Ontology construction for information selection. In 14th
IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI
2002). Proceedings., pp. 122–127.

[51] Khan, L. and D. McLeod (2000). Effective retrieval of audio information from an-
notated text using ontologies. In Proceedings of the International Workshop on Mul-
timedia Data Mining, MDM/KDD’2000, August 20th, 2000, Boston, MA, USA, pp.
37–45.

[52] Kim, H., V. D’Orazio, P. Brandt, J. Looper, S. Salam, L. Khan, and M. Shoemate
(2019). Utdeventdata: An r package to access political event data. Journal of Open
Source Software 4 (36), 1322.

106



[53] Kreps, J., N. Narkhede, J. Rao, et al. (2011). Kafka: A distributed messaging system
for log processing. NetDB (pp. 1-7).

[54] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. In Soviet physics doklady, Volume 10, pp. 707.

[55] Li, C. and A. Sun (2014). Fine-grained location extraction from tweets with temporal
awareness. In Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, pp. 43–52.

[56] Li, R., K. H. Lei, R. Khadiwala, and K. C.-C. Chang (2012). Tedas: A twitter-based
event detection and analysis system. In 2012 IEEE 28th International Conference on
Data Engineering, pp. 1273–1276. IEEE.

[57] Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information
theory 28 (2), 129–137.

[58] Lou, H., S. Li, and Y. Zhao (2013). Detecting community structure using label prop-
agation with weighted coherent neighborhood propinquity. Physica A: Statistical Me-
chanics and its Applications 392 (14), 3095–3105.

[59] Lu, J. Universal dependency based petrarch, language-agnostic political event coding
using universal dependencies.

[60] Manning, C., M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky (2014).
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd an-
nual meeting of the association for computational linguistics: system demonstrations,
pp. 55–60.

[61] McDonald, R., J. Nivre, Y. Quirmbach-Brundage, Y. Goldberg, D. Das, K. Ganchev,
K. Hall, S. Petrov, H. Zhang, O. Täckström, et al. (2013). Universal dependency
annotation for multilingual parsing. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Volume 2, pp.
92–97.

[62] Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pp. 3111–3119.

[63] Miller, F. P., A. F. Vandome, and J. McBrewster (2009). Levenshtein Distance: Infor-
mation Theory, Computer Science, String (Computer Science), String Metric, Dam-
erau?Levenshtein Distance, Spell Checker, Hamming Distance. Alpha Press.

[64] Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms. arXiv
preprint arXiv:1109.2378 .

107



[65] Navigli, R. and S. P. Ponzetto (2012). BabelNet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network. Artificial
Intelligence 193, 217–250.

[66] Norris, C., P. Schrodt, and J. Beieler (2017, jan). PETRARCH2: Another event coding
program. The Journal of Open Source Software 2 (9).

[67] O’Connor, B., M. Krieger, and D. Ahn (2010). Tweetmotif: exploratory search and
topic summarization for twitter. In ICWSM, pp. 384–385.

[68] OEDA. List of news sources in Spanish. https://docs.google.com/spreadsheets/
d/13DmJ140wW8pCp6nyRSAk911S7AoF-6zJOJ-F77qoMuM/.

[69] Open Event Data Alliance. Web Scraper. Open Event Data Alliance. http:

//oeda-scraper.readthedocs.io/en/latest.

[70] Osorio, J., V. Pavon, S. Salam, J. Holmes, P. T. Brandt, and L. Khan (2019). Translat-
ing cameo verbs for automated coding of event data. International Interactions 45 (6),
1049–1064.

[71] Palmer, M., D. Gildea, and P. Kingsbury (2005). The proposition bank: An annotated
corpus of semantic roles. Computational linguistics 31 (1), 71–106.

[72] Patty Frontiera (2018). Locating a geocoding tool that works for you and your data.
[Online; accessed 30-Octobar-2020].

[73] Ritter, A., O. Etzioni, S. Clark, et al. (2012). Open domain event extraction from
twitter. In 18th ACM SIGKDD, pp. 1104–1112.

[74] Rudra, K., S. Banerjee, N. Ganguly, P. Goyal, M. Imran, and P. Mitra (2016). Summa-
rizing situational tweets in crisis scenario. In Proceedings of the 27th ACM Conference
on Hypertext and Social Media, pp. 137–147.

[75] Sankaranarayanan, J., H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling
(2009). Twitterstand: news in tweets. In Proceedings of the 17th acm sigspatial inter-
national conference on advances in geographic information systems, pp. 42–51.

[76] Saraf, P. and N. Ramakrishnan (2016). EMBERS autogsr: Automated coding of civil
unrest events. In 22nd ACM SIGKDD, pp. 599–608.

[77] Schrodt, P. A. (2012a). Cameo: Conflict and mediation event observations event and
actor codebook. Pennsylvania State University .

[78] Schrodt, P. A. (2012b). Precedents, Progress, and Prospects in Political Event Data
Article in International Interactions.

108



[79] Schrodt, P. A. and D. J. Gerner (2004). An event data analysis of third-party mediation
in the middle east and balkans. Journal of Conflict Resolution 48 (3), 310–330.

[80] Schrodt, P. A. and D. Van Brackle (2013). Automated coding of political event data.
In Handbook of Computational Approaches to Counterterrorism, pp. 23–49. Springer.

[81] Sharifi, B., M.-A. Hutton, and J. Kalita (2010a). Summarizing microblogs automat-
ically. In Human language technologies: The 2010 annual conference of the north
american chapter of the association for computational linguistics, pp. 685–688.

[82] Sharifi, B., M.-A. Hutton, and J. K. Kalita (2010b). Experiments in microblog sum-
marization. In 2010 IEEE Second International Conference on Social Computing, pp.
49–56. IEEE.

[83] Solaimani, M., R. Gopalan, L. Khan, P. T. Brandt, and B. Thuraisingham (2016a).
Spark-based political event coding. In 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (BigDataService), pp. 14–23.

[84] Solaimani, M., R. Gopalan, L. Khan, P. T. Brandt, and B. Thuraisingham (2016b).
Spark-based political event coding. In BigDataService, pp. 14–23. IEEE.

[85] Solaimani, M., S. Salam, L. Khan, P. T. Brandt, and V. D’Orazio (2017a). APART:
Automatic Political Actor Recommendation in Real-time, pp. 342–348. Cham: Springer
International Publishing.

[86] Solaimani, M., S. Salam, L. Khan, P. T. Brandt, and V. D’Orazio (2017b, Dec).
Repair: Recommend political actors in real-time from news websites. In 2017 IEEE
International Conference on Big Data (Big Data), pp. 1333–1340.

[87] Stewart, C. A., T. M. Cockerill, I. T. Foster, D. Y. Hancock, N. Merchant, E. Skidmore,
D. Stanzione, J. Taylor, S. Tuecke, G. W. Turner, et al. (2015). Jetstream: a self-
provisioned, scalable science and engineering cloud environment. In XSEDE, pp. 29–1.

[88] Straka, M. and J. Straková (2017, August). Tokenizing, pos tagging, lemmatizing and
parsing ud 2.0 with udpipe. pp. 88–99.

[89] Studer, M. and G. Ritschard (2016). What matters in differences between life trajec-
tories: A comparative review of sequence dissimilarity measures. Journal of the Royal
Statistical Society: Series A (Statistics in Society) 179 (2), 481–511.

[90] Thapa, L. (2016). Spatial-temporal analysis of social media data related to nepal
earthquake 2015. The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 41, 567.

109



[91] The University of Pennsylvania. The Penn Treebank Project. The University of Penn-
sylvania. https://www.cis.upenn.edu/~treebank/.

[92] Thein, K. M. M. (2014a). Apache kafka: Next generation distributed messaging system.
International Journal of Scientific Engineering and Technology Research 3 (47), 9478–
9483.

[93] Thein, K. M. M. (2014b). Apache kafka: Next generation distributed messaging system.
International Journal of Scientific Engineering and Technology Research 3 (47), 9478–
9483.

[94] Timothy, D., T. Allison, S. Blair-goldensohn, J. Blitzer, A. Elebi, S. Dimitrov,
E. Drabek, A. Hakim, W. Lam, D. Liu, et al. (2004). Mead a platform for multi-
document multilingual text summarization. In International Conference on Language
Resources and Evaluation, pp. 699–702.

[95] Vanderwende, L., H. Suzuki, C. Brockett, and A. Nenkova (2007). Beyond sumba-
sic: Task-focused summarization with sentence simplification and lexical expansion.
Information Processing & Management 43 (6), 1606–1618.

[96] Wang, L., L. Liu, and L. Khan (2004). Automatic image annotation and retrieval using
subspace clustering algorithm. In Proceedings of the 2nd ACM international workshop
on Multimedia databases, pp. 100–108.

[97] Weninger, T., R. Palacios, V. Crescenzi, T. Gottron, and P. Merialdo (2016). Web con-
tent extraction: a metaanalysis of its past and thoughts on its future. ACM SIGKDD
Explorations Newsletter 17 (2), 17–23.

[98] Wikipedia contributors (2019). Elbow method (clustering) — Wikipedia, the free
encyclopedia. [Online; accessed 20-August-2019].

[99] Wikipedia Contributors (2019). Twitter — Wikipedia,, the free encyclopedia. [Online;
accessed 27-Octobar-2020].

[100] Yen, I.-L., J. Goluguri, F. Bastani, L. Khan, and J. Linn (2002). A component-based
approach for embedded software development. In Proceedings Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing. ISIRC 2002, pp.
402–410. IEEE.

[101] Zaharia, M., M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica (2012). Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. 9th USENIX , 2–2.

110



[102] Zaharia, M., R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. (2016). Apache spark: a unified engine for big
data processing. Communications of the ACM 59 (11), 56–65.

[103] Zhang, S., J. Tang, H. Wang, and Y. Wang (2015). Enhancing traffic incident detec-
tion by using spatial point pattern analysis on social media. Transportation Research
Record 2528 (1), 69–77.

111



BIOGRAPHICAL SKETCH

Sayeed Salam obtained his BSc in Computer Science and Engineering from Bangladesh 

University of Engineering and Technology. He is a PhD student in The Department of 

Computer Science at The University of Texas at Dallas. He has been working in the 

Big Data Analytics and Management Lab as a research assistant starting Spring 2016. 

His research interest includes large scale distributed system design, text processing and 

analytics with application towards Political Science and Healthcare. He worked on the 

Multilingual Framework development for identifying political events in different 

languages other than English. He also worked on the ontology extension for Conflicts 

and Event Observation and Mediation (CAMEO) ontology used for coding political 

events. Additionally, he works on geolocating and severity analysis of road-traffic incidents 

based on tweets. He has been working in projects funded by NSF and NIH and in 

collaboration with Lagos Area EMS service from Nigeria.

112



CURRICULUM VITAE

Sayeed Salam
November 11, 2021

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: sxs149331@utdallas.edu

Educational History:

BSc, Computer Science and Engineering, Bangladesh University of Engineering and Tech-
nology, 2013
PhD, Computer Science, The University of Texas at Dallas, 2021

A Big Data Framework for Unstructured Text Processing with Applications towards Political
Science and Healthcare
PhD Dissertation
Computer Science Department, The University of Texas at Dallas
Advisors: Dr. Latifur Khan

Employment History:

Research Assistant, The University of Texas at Dallas, January 2016 – present
Teaching Assistant, The University of Texas at Dallas, August 2014 – December 2015
Lecturer, BRAC University, Dhaka, Bangladesh, January 2014 – July 2014
Software Engineer, ReveSystems Ltd., Dhaka, Bangladesh, March 2013 – October 2013

Publications:

Exploring the roles of social media data to identify the locations and severity of road traffic
accidents, IEEE AIKE, 2021
Automatic Event Coding Framework for Spanish Political News Articles., IEEE IDS 2020
UTDEventData: An R package to access political event data, JOSS 2019
Translating CAMEO Verbs for Automated Coding of Event Data, International Interactions
(II): Empirical and Theoretical Research in International Relations, 2019
Automated Verbal-Pattern Extraction from Political News Articles using CAMEO Event
Coding Ontology., IEEE IDS 2019
Distributed Framework for Political Event Coding in Real-Time., IEEE EECS 2018
RePAIR: Recommend political actors in real-time from news websites., IEEE BigData, 2017



Near real-Time atrocity event coding. IEEE ISI 2016

Professional Memberships:

Institute of Electrical and Electronics Engineers (IEEE), 2017–present




