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A PIPELINE-BASED TASK-ORIENTED DIALOGUE SYSTEM

ON DSTC2 DATASET

Yize Pang, MSCS
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Supervising Professor: Vincent Ng, Chair

Dialogue systems have attracted a lot of attention since some conversational products like

Google Assistant and Amazon Echo smart speaker have achieved big successes recently. In

this work, we try to build a pipeline-based task-oriented dialogue system, which is the core

technology behind these famous products. Our system consists of three modules: a GLAD

dialogue state tracker, a policy learning module and a response generation module. They are

sequentially connected. The contributions of this work are two-fold. Firstly, we propose an

effective approach to improve the controllability of language generation. The experimental

results show that this strategy significantly increases the key information accuracy in the

generated dialogue responses. Secondly, we introduce a practical method to build a task-

oriented dialogue system. Compared to models that are completely based on neural networks,

the modularity of our system helps convert a hard problem into several smaller ones that

are more specific and easier to solve.
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CHAPTER 1

INTRODUCTION

Dialogue system is an attractive problem in the field of natural language processing. Since

the invention of the computer, building the machine that can communicate with humans

has always been a goal pursued by mankind. Recently with the development of deep learn-

ing, the dialogue systems we can build are becoming powerful. Actually, with the help of

automatic speech recognition, technology giants have built some products in the field of

personal assistant and intelligent furniture by using the technique of dialogue system. For

example, Google Assistant and Amazon Alexa are two famous applications that are popular

in common life. And accompanied by the success of these products, research in the dialogue

system has also become hot in recent years.

According to the definition in the book of Speech and Language Processing (Keselj,

2009), a dialogue system (also known as conversational agent) is a kind of program that

can communicate with human in natural language and it can be roughly divided into two

categories: task-oriented dialogue systems and chat bots (which means open-domain dialogue

systems).

Task oriented-dialogue systems are only designed for a specific task like booking a flight

ticket or restaurant reservation. Usually, their abilities are very limited, however task-

oriented dialogue systems have been widely used in industry for a long time. For example,

in the field of online shopping, many customer services are processed by robots. Although

they can only handle some simple questions, such automation can significantly reduce the

labor cost for a company.

Chat bots are designed for communication in open topic. Theoretically, you can talk

anything with them. Comparing to the task-oriented dialogue systems, chat bots look more

attractive in the first glance. Since it is more like the interaction with human and much closer

to our definition of intelligence. There are some successful products in the industry. One
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good example is XiaoIce (Zhou et al., 2018), a popular social chat bot created by Microsoft.

Millions of people chat with it for entertainment purposes. However, building a product-

level chat bot is much harder than a task-oriented system. The technique we are using does

not allow a program to really understand the language meaning. It can learn the sentence

pattern and output fluent responses for a user utterance, but the information contained in

the response is usually wrong.

In this thesis, we try to build a pipeline-based task-oriented dialogue system in the field

of restaurant reservation by using the DSTC2 dataset (Henderson et al., 2014). The reason

we decide to employ a pipeline framework is that: it is the first choice to build a product-

level dialogue system in the industry and we would like to solve problems in the actual work

scenario. This is a challenging task because we need to build multiple modules to process

the user input step by step and each module is hard enough to be taken as an independent

task.

One big problem to build a pipeline-based dialogue system is lack of data. Although

there are many task-oriented dialogue corpora, few of them contain all the information that

is needed to build a complete dialogue system by using the pipeline method. We choose

DSTC2 dataset since it contains all the necessary information (like dialogue states, system

actions) that are needed to build a pipeline-based dialogue system.

Data in the DSTC2 dataset comes from a real-world restaurant reservation system. Peo-

ple made phone calls to it, gave some requirements about the restaurant they would like to

find (like the food type, price range). The phone calls were transformed into text format

by automatic speech recognition (ASR) module, then get processed by the system. DSTC2

dataset contains the text-format log and annotation files for each phone-call. In the data

pre-processing, we extract dialogues from these raw files. A dialogue contains multiple turns,

and they are chronologically processed by the system. One example dialogue from DSTC2

dataset is shown in the Figure 1.1.
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Figure 1.1. An example dialogue from the DSTC2 (Henderson et al., 2014) restaurant
reservation dataset. The dialogue contains four turns and is divided by dashed lines. For
each turn, the user utterance locates on the left side and it is the input to the dialogue
system. The system response is on the right side and it is the output of the system. Both
user utterance and system response are in the form of natural language.
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Our system consists of three major modules: a GLAD dialogue state tracker, a policy

learning module and a response generation module. They are sequentially connected.

Dialogue state tracking is the task to extract formatted information from user utterance

and manage the dialogue history. In this way, natural language is transformed into the form

that a machine can deal with. We choose the GLAD algorithm (Zhong et al., 2018) to

implement the dialogue state tracking module. The reason for this decision is that GLAD is

the state of the art on this task. We use it in our system so that the dialogue state tracker

will not be the bottleneck to the whole system.

After getting the formatted data, the system needs to query the database to find a

suitable restaurant. This work is finished in the policy learning module. What’s more, this

module needs to decide the actions that the system will take. We use one example to explain

the meaning of system actions: query database is an action and the policy learning module

is responsible to decide whether or not to trigger this action right now, since the conditions

given by user maybe not enough for a query. If the system needs more information from

the user, it must return a sentence that informs the user to give more conditions. And

the sentence returned to user will be generated under the guidance of some specific system

actions (which is predicted in the policy learning module).

Lastly, the response generation module creates a natural language response according to

the system actions and restaurant information that comes from the policy learning module.

The generation module uses an encoder-decoder architecture (Sutskever et al., 2014). The

encoder inputs are system actions, decoder chooses output sentence pattern through it.

Besides, the decoder generates a sentence word by word and each one is selected from a

vocabulary. There is a big problem for this method: we need to present the restaurant

information in the response, but it’s hard to precisely control the generation contents. To

mitigate this problem, we learn the idea from pointer-generator network (See et al., 2017).

That is to modify the output vocabulary distribution and increase the probability of some

words according to the restaurant information.
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Our contributions contain two parts. The first point is we propose an effective approach

to increase the controllability of language generation. The experimental results show that

this method significantly increases the accuracy of key information in the generated dialogue

responses. Secondly, we build a task-oriented dialogue system on DSTC2 dataset. In this

way, we can compare the traditional pipeline-based methods with models that are completely

based on neural network, and then we show the pros and cons of each kind of models and

finally give the conclusion that the pipeline-based methods are better choices for building

task-oriented dialogue systems.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the related

work in the field of dialogue systems. In Chapter 3, we explain our model in detail. Chapter

4 gives evaluations and analyses of our system. Lastly, in Chapter 5, we give the conclusion

and propose some possible improvements in future work.
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CHAPTER 2

RELATED WORK

In this chapter, we present researches in the field of dialogue systems. According to the

application areas, dialogue systems can be separated into two groups: task-oriented dialogue

systems and chat bots. A task-oriented dialogue system is designed for a particular task like

booking flights. Nowadays, most conversation products are based on task-oriented dialogue

systems. Some good examples are Amazon Echo smart speaker and voice navigation systems.

Another group of dialogue systems is chat bots. The common use for them is to kill time

and entertaining.

We firstly introduce the two kinds of systems separately. Then give a review on the

evaluation metrics that are used in dialogue systems.

2.1 Task-oriented Dialogue Systems

There are two general methods to build a task-oriented dialogue system. One is the tra-

ditional pipeline-based method, the other is the complete neural network based method.

Since pipeline methods are the most important ones that are used in task-oriented dialogue

systems, we give a detailed introduction to these methods and then briefly introduce the

complete neural network based models.

As shown in Figure 2.1, pipeline approaches typically contains four major modules: an

NLU module, a dialogue state tracking module, a policy learning module, and an NLG

module. They are sequentially connected together.

NLU is the abbreviation of natural language understanding. It is the module that maps

natural language user utterances into semantic entity types (known as slots) and determines

the user intents. We need to explain the meaning of the term slot and intent. Take weather

condition as an example. There are many words that can describe the weather, like sunny,
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Figure 2.1. Traditional pipeline in task-oriented systems

cloudy. In this case, the weather is a slot, and sunny, cloudy are possible values for this slot.

The intent is the purpose that is conveyed in the user utterance. If a user asks “Is it sunny

today?”, then the user intent is “query weather”. Usually, slots and intents are pre-defined

in a system. Table 2.1 illustrates the example result of NLG. - refers to no slot.

Table 2.1. Illustration of the example result of NLG.

Sentence Is it sunny today
Slot - - weather time
Intent query weather

Convolutional neural networks (CNN) are applied to extract query vector representations

from user query in search engines (Hashemi et al., 2016). Taking the high-dimensional

vectors as a feature, queries are then classified into intent groups. Recurrent neural networks

(RNN) are used for slot-filling tasks, and the performances are substantially better than the

traditional conditional random fields (CRF) based methods (Mesnil et al., 2013).

Dialogue state tracking is a crucial part of task-oriented dialogue systems. It is used to

manage the accumulated and current dialogue states. One dialogue state is a set of user goals
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and requests for the current turn. Traditional rule-based methods (Goddeau et al., 1996) and

web-style ranking algorithms can be used on dialogue state tracking task (Williams, 2014),

however their performances are not good. Recently the boundary between the NLU module

and the dialogue state tracking module becomes blurred. Methods like Global-Locally Self-

Attentive Dialogue State Tracker (GLAD tracker) (Zhong et al., 2018), Neural Belief Tracker

(NBT) (Mrkšić et al., 2016) can finish the intents and slots detection along with the dialogue

state tracking. By using previous-turn system actions and comparing all candidate slot-value

pairs with utterances, the performance of these neural network based methods obtains great

improvements comparing to traditional approaches.

Policy learning module (also known as dialogue management) predicts system actions

from dialogue states. A simple transformation by using dialogue states and external database

knowledge is used to predict system actions (Wen et al., 2016). Another common approach

is the rule-based policy learning (Yan et al., 2017). This approach works for the case that

the size of system actions is not very big.

The natural language generation (NLG) component learns the mapping between dialogue

actions and natural language responses. Retrieval-based models can be used in an online

shopping scenario to generate system responses by comparing the target user query with

query-response pairs in a candidate list. After finding the pair whose query is the closest to

the target one, the response in this pair is then taken as the system response (Yan et al.,

2017). Another widely used models are rule-based or template-based methods (Cheyer and

Guzzoni, 2014). This kind of approaches are simple and robustness, but their rigidness and

repetition make it hard to generate responses with high diversity. Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Chung

et al., 2014) are often used in language generation (Wen et al., 2015). They can learn from

unaligned data and easily create sequences with high flexibility.

About the methods that are completely based on neural networks, they don’t reduce a

dialogue system into smaller components like the pipeline approaches. Instead, they treat
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a dialogue system as a whole and usually model it through one end-to-end neural network. 

The complete neural network methods are more frequently used in chat bots but are less 

used in task-oriented dialogue systems. In this work, we would like to compare the pipeline 

methods and complete neural network methods. Thus we choose copy-network (Eric and 

Manning, 2017) as our main comparison. This model simply uses one end-to-end neural 

network and we will talk more about it in Chapter 4.

2.2 Chat Bots

Chat bots are systems that can mimic the unstructured communication between humans. 

Contrary to the goal-oriented dialogue systems, chat bots are designed to make topic-

unlimited conversations with people. Since the huge coverage of contents, recent chat bots 

are all data-driven. This requires a huge amount of data to build a chat bot. A survey of 

available corpus (Serban et al., 2015) provides a wealth of useful information about accessible 

corpora. From this work, we know that available data sources can be social networks like 

Twitter messaging (Ritter et al., 2010), movie lines (Li et al., 2016), and technology support 

dialogues (Lowe et al., 2015). These corpora contain a huge amount of data, however, the 

data is often very noisy and contains a significant number of acronyms, abbreviations that 

are specific to topics (Clark, 2003). Necessary pre-processing may be needed in such cases 

(Konstan et al., 1997).

According to the approach used to generate system responses, there are two common 

methods to build a chat bot, that are retrieval based methods and generation-based methods.

Retrieval-based methods depend on a set of conversation turns. Given a user utterance 

as query, we compute the similarity (like cosine or inner product) between the query and all 

turns in the set. After this, we can get the most similar turn to the query. There are two 

possible returns: the most similar turn or its next turn (the next turn is the response to 

the current turn). Intuitively the response should be a more reasonable answer. However,
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the most similar turn is better in practice (Wang et al., 2013). The information retrieval

is basically a matching problem, the only thing that matters is the approach to compute

similarity. Deep Neural Networks (DNN) are widely used in this area. (Lu and Li, 2013)

Generation-based methods are sequence transductions from user utterances to system

responses. This is firstly introduced by the statistical machine translation on response gen-

eration (Ritter et al., 2011). Since the alignment is non-existed between the utterance and

response, machine translation performs poorly on this task. However, the encoder-decoder

model effectively solves the alignment problem (Sutskever et al., 2014). The illustration of

encoder-decoder architecture is shown in Figure 2.2.

(Keselj, 2009)

Figure 2.2. Encoder-decoder model for neural response generation in dialog

The encoder transforms a sequence of embedded tokens into a sequence of hidden rep-

resentations. If it is implemented by LSTM or GRU units, the temporal relation will be

encoded into the hidden representations. The decoder takes previous decoder hidden state,

the concatenation of the encoder hidden state at the current time and the previous decoder

output, then generate a new decoder hidden state. The decoder output is computed from

the decoder hidden state. What’s more, the attention mechanism is a common method to

improve the performance of vanilla sequence to sequence models (Bahdanau et al., 2014).

Another big problem in chat bots is that the outputs can be fluent but lack of common

sense. This is because the decoder can only learn the pattern of language, but cannot really
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understand the meaning of it. Some works have tried to include common knowledge into the

decoder. A fully data-driven knowledge-grounded neural conversation model (Ghazvininejad

et al., 2018) uses Twitter 3-turn conversations as the corpus to create the basic dialogues,

uses Foursquare tips dataset (which contains restaurant comments) as the world facts. Figure

2.3 describes the knowledge-grounded model. User utterances are used to find relevant facts

from the world facts set. Then the relevant facts are added to the user utterance encoder

outputs and sent to the decoder for generating responses. Human judges evaluate that these

outputs are significantly more informative than before.

Figure 2.3. Knowledge-grounded model architecture

There is a big difference between single-turn and multi-turn chat bots. Single-turn sys-

tems only consider the previous turn to generate a response, but multi-turn systems need

to consider all turns of conversion accumulated from the start. The key point to build a

multi-turn system is to manage the contexts of previous turns utterances. However, if the

contexts are too long or there is no need to keep all of them, we can use context segmentation

(Song et al., 2016) to reduce the size of contexts.
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2.3 Evaluation Metrics

The evaluation metrics are very different between task-oriented dialogue systems and chat

bots.

For task-oriented dialogue systems, the major evaluation metrics are slot-value filling

accuracy and task error rate. There are few needs to evaluate the generated language quality

since these kinds of systems are just designed for finishing tasks. For chat bots, the mainly

used method is human evaluation, since the fluency and variance in language is very hard to

measure by automatic evaluation metrics. Actually, the automatic evaluation metric BLEU

score (Papineni et al., 2002), which is widely used in machine translation, is reported as a

very bad method to evaluate the performance of chat bots (Liu et al., 2016). Since a good

evaluation metric should have a similar trend to human judgments but BLEU actually has

a poor correlation with human evaluations. However, there are still some good methods to

automatically evaluate the chat bot performance. One approach is to train another classifier

to check if the responses come from human or a chat bot. This method is called adversarial

evaluation (Li et al., 2017) and it learns the idea from the Turing Test.
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CHAPTER 3

MODEL

Our dialogue system adopts pipeline-based methods, which include three major modules to

extract different features and generate responses to users. In this chapter, we firstly give an

overview of the task we work on. Then, we explain the framework of the proposed dialogue

system. Finally, we introduce the three modules in detail.

3.1 Overview of the Dialogue System Task

The system is task-oriented and focuses on the field of restaurant reservation. The main

goal of the task is to help users find a restaurant that satisfies the user’s requirements and

offer related information like the restaurant address and phone number to users. Figure 1.1

shows an example dialogue in DSTC2 dataset.

3.2 Framework of the Proposed Dialogue System

Our dialogue system is pipeline-based. It consists of three modules. GLAD dialogue state

tracker (Zhong et al., 2018) is the first module. It is used to estimate user goals and requests

from user utterances. the policy learning module is the second module and it is designed to

generate system actions and restaurant information. Response generation module is the last

one. We augment it with pointer-generator-network (See et al., 2017), which is an effective

approach to control language generation contents.

For each turn of dialogue, the system takes the user utterance as input, and return a

natural language response to the user. The process in the pipeline (shown in Figure 3.1)

includes three steps:

1. Understand the user utterance, which is to extract the user goals and requests (e.g.

inform(food=british), request(address)) from the user utterance. The GLAD algorithm is

13



Figure 3.1. The data pipeline in the proposed dialogue system
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reported performing well on DSTC2 dataset to extract dialogue states (or user goals and

request) (Zhong et al., 2018). We implement the GLAD dialogue state tracker here to solve

this problem.

2. Use the results obtained from step 1 to decide system actions and restaurant informa-

tion. There are two uses for these actions: 1) trigger the database query to get the restaurant

information according to the user goals. 2) guide the system response generation in the next

module. This part of work is realized in the policy learning module.

3. According to the system actions and restaurant information, the system generates

natural language responses (which will be returned to users). The response generation

module is designed for this work and as mentioned above, we adopt the pointer-generator

network (See et al., 2017) to improve the performance of language generation.

3.3 GLAD Dialogue State Tracker

3.3.1 An Overview of Dialogue State Tracking

Dialogue state tracking (DST) is the task to extract formatted information from natural

language and manage dialogue histories. The formatted information can be in different types

like food name, price range. As a convention, we usually called the formatted information

as the state of dialogue and the type of formatted information is called “slot”.

The state of dialogue typically includes multiple user goals and requests. We can explain

it more clearly from the example dialogue described in Figure 3.1. A user goal is an object

that a user would like to achieve. It starts with the term “inform” and is followed by a slot

value pair (separated with an equal sign) placed in parentheses (e.g. inform(food=british)).

The user request means a user would like to ask some information from the system. It starts

with the term “request” and is followed by the slot (means type of information) the user

wants to know (e.g. request(address)).
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Figure 3.2. Part of the ontology file in DSTC2 dataset
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3.3.2 Using the Domain Knowledge

For task-oriented dialogue system, it is practical to build a list that contains common words

collected from the actual work scenarios. This list is called ontology and it contains the

knowledge that is in a specific domain. Figure 3.2 shows part of the ontology file in DSTC2

dataset. We can use the ontology to reduce the size of possible values for each slot.

3.3.3 The Global-Locally Self-Attentive Dialogue (GLAD) State Tracker

Figure 3.3. The architecture of GLAD (Zhong et al., 2018)

The DST task is a hard problem. It’s really challenging to directly extract slot-value pairs

from user utterances. From the ontology file, we can know all the possible values for each

slot. So GLAD tracker uses every possible slot-value pair, creates one classifier for each of

them. For each turn of dialogue, one classifier compares its corresponding pair with the user

utterance to check whether this pair appears in the utterance or not. In detail, the classifier

generates a score and if it is bigger than a threshold, then adding this slot-value pair into

the dialogue state for the current turn. GLAD repeats this process for every classifier. In
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this way, it converts a multi-label state prediction into a problem of binary prediction and

reduces the task difficulty.

From Figure 3.3, we can see that the inputs of the GLAD tracker are system actions in

the previous turn, user utterance in the current turn and one slot-value pair that is under

consideration. They are encoded by separate encoders and the outputs are used to compute

the score for the current slot-value pair.

3.3.4 GLAD Encoder

Figure 3.4. The GLAD encoder (Zhong et al., 2018)

Track the slot-value pairs that are rare to appear in the dataset is a difficult problem

in DST task. GLAD tries to solve this problem by using two kinds of LSTM encoders to

capture more information for each kind of slot. The structure of encoder is showed in Figure

3.4. Given the input X (X ∈ Rn×demb , where n is the number of words in the input, demb

is the size of word embedding) and one slot, the local BiLSTM is the bi-directional LSTM

that is used only for one slot. The global BiLSTM is the LSTM that is used for all slots. We

need to further explain the meaning of this kind of structure. Usually, the global LSTM is
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the default choice. But it cannot differentiate various slots. By using local LSTMs, GLAD

can collect more information for each slot. This can help to solve the difficult problem of

tracking rare slot-value pairs.

Input X is encoded by both local BiLSTM and global BiLSTM, then combines the

outputs of these two LSTMs to generate a global-local encoding H, which contains the

temporal relationship of X. This process can be described by the following equations:

Hs = biLSTMs(X) (3.1)

Hg = biLSTMg(X) (3.2)

H = βsHs + (1− βs)Hg (3.3)

Hs, Hg, H are in the dimension of Rn×drnn , where drnn is the dimension of the LSTM, β

is a learned parameter between 0 and 1 that is specific to one slot s.

Next, compute the self attention of H. Again, GLAD encoder includes both global self

attention (which is used for all slots) and local self attention (which is only used for one

slot). Equations 3.4, 3.5, 3.6 are used to compute both the local self attention cs and the

global self attention cg. The diminsion of cs and cg are both Rdrnn .

ai = WHi + b (3.4)

p = softmax(a) (3.5)

c =
∑
i

piHi (3.6)

Combine the two contexts cs and cg to get the final attention context c (∈ Rdrnn). And

comparing to the encoding H, context c is the summary of input X.

c = βscs + (1− βs)cg (3.7)
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As shown in Figure 3.4, we use three different encoders to encode the system actions

in the previous turn, the user utterance in the current turn and one slot-value pair that is

under consideration. Equations 3.1 - 3.6 describe all the computation in the GLAD encoder.

Finally we get the encoding and self-attention context for the jth previous-turn system action

(Hact
j , cactj ), user utterance in the curren turn (Hutt, cutt), and the slot-value pair that is under

consideration (Hval, cval).

3.3.5 GLAD Score Module

From Figure 3.4, we can see that there are two scoring modules. The reason for using

two scoring modules is that the dialogue states can either come from the current turn user

utterances or from the previous turn system actions (e.g. in the previous turn, the system

asks user “would you like a restaurant in the south of town?” and the user replies “yes”).

The final score will be the combination of the two scores and we use this score to decide

whether to include the slot-value pair in the dialogue state or not.

Equations 3.8 - 3.11 describe computations in the utterance scorer, which is to get the

attention between the user utterance Hutt and the slot-value pair being considered cval, then

use the attention context qutt to score the slot-value pair.

autti = (Hutt
i )Tcval (3.8)

putt = softmax(autt) (3.9)

qutt =
∑
i

putti Hutt
i (3.10)

yutt = Wqutt + b (3.11)

Where putt ∈ Rm, qutt ∈ Rdrnn , yutt ∈ R,m is the number of words in the user utterance.

Equations 3.12 - 3.15 describes computations in the action scorer, which is to get the

attention qact between the system action self-attention context cact and the utterance self-

attention context cutt, then use the similarity between qact and cval as the score.
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aactj = (cactj )Tcutt (3.12)

pact = softmax(aact) (3.13)

qact =
∑
j

pactj cactj (3.14)

yact = (qact)T cval (3.15)

Where pact ∈ Rl+1, qact ∈ Rdrnn , yact ∈ R, l is the number of system actions.

We get the final score by mixing the two scores above and normalize it through a sigmoid

funciton.

y = sigmoid(yact + ωyutt) (3.16)

Where ω ∈ R, y ∈ R. As mentioned before the score y is used to compare with a

threshold. If y is higher than the threshold, we will include the corresponding slot-value pair

into the dialogue state. The threshold is set to a constant value and all slots have the same

value (0.5) in our experiment.

3.4 Policy Learning Module

Policy network is designed to generate system actions and restaurant information. It employs

the encoder-decoder architecture (Sutskever et al., 2014) and the LSTM cell is used as the

recurrent unit. The inputs are the dialogue states come from the GLAD tracker. The outputs

are system actions that can trigger the restaurant query and guide the response generation

in the next step and restaurant information.

For a turn of dialogue, although the dialogue states that come from GLAD tracker are

slot-value pairs, we take them as a sequence of words like w1,w2, ...,wn. They are sent to

the encoder to generate the encoder hidden representations h1, h2, ..., hn.
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Next, we use two decoders to separately generate the system actions and restaurant

information. The system firstly predicts the system actions in the system action decoder,

then predicts the restaurant information in another decoder by using the predicted system

actions. The reason we use two decoders is that: the system actions are defined in the

ontology file and the number of possible values for system action is small. It can be much

easier to predict system actions separately comparing to predict the system actions and

restaurant information together (in which case the number of candidate values for each

output token can be much bigger).

The attention mechanism (Vinyals et al., 2015) is used to improve the performance of

the decoder. At each timestamp t, we compute the decoder output y (which is a vocabulary

probability distribution) as follow:

ui = vT tanh(W1hi +W2h̃) (3.17)

a = softmax(u) (3.18)

h̃
′
=

∑
i

aihi (3.19)

o = U [h̃, h̃
′
] (3.20)

y = softmax(o) (3.21)

Where v,W1,W2, U are parameters, h̃ is the decoder hidden state at time t. The output

y is in the size of language generation vocabulary size.

After getting the predicted system actions, we can generate the restaurant information.

It comes from two possible sources. The first one is from the database. If the set of predicted

system actions contains the action “offer”, the system will query the database according to

the dialogue states and return some restaurant information. The second source is dialogue

states that come from the user utterance. Since users can give some requirements of the

restaurant, but the system may not be very sure about the contents of the user utterance
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and need to get a confirmation from the user. For example, a user says “I’d like to find

a restaurant that is near to the south church of the town.” and system replies with “Are

you looking for a restaurant that is in the south of town?”. One important thing we need

to mention is that, since there are two possible sources of the restaurant information, our

system always chooses the database information as the first choice, and only if it does not

exist, then use the information comes from user utterance.

3.5 Response Generation Module

Response generation (referred to as generation module for short) is the last module of the

pipeline. It takes system actions and restaurant information as input, convert them into a

natural language response and return it to users.

Generation module also uses the encoder-decoder architecture (Sutskever et al., 2014)

and it is augmented with the attention mechanism (Vinyals et al., 2015). Again, we take

LSTM cells as the recurrent units.

To generate a natural language response, the system actions determine the sentence

pattern and the restaurant information should always appear in the response without any

change. The attention augmented decoder can learn the match between system actions

and sentence pattern, but it’s hard to control the restaurant information in the response

to be the same as the information comes from the policy module. We learn the idea from

pointer-generator network (See et al., 2017) to solve this problem.

Our approach is to change the probability distribution for the decoder output so that

we can better control the contents of the language generation. We take the restaurant

information as the keyword list L, and would like to embed words in L into the system

response. When decoder is predicting the output token y, for each possible word w in the

generation vocabulary, we modify its probability in the vocabulary distribution pvocab in the

following way: if w is not in the keyword list L, we reduce its probability by multiplying
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a value qgen (∈ [0, 1]); otherwise, we keep the probability of w untouched. After modifying

the probabilities of all the words, we use a sigmoid function to normalize and create a new

output vocabulary distribution.

pw = qgen ∗ pw,w 6∈ L (3.22)

qgen = sigmoid(vT
1 ∗ o+ vT

2 ∗ h̃+ vT
3 ∗ cact) (3.23)

pvocab = softmax(p) (3.24)

Where v1, v2, v3 are learned parameters. o is the decoder output before using pointer-

generator. h̃ is the decoder hidden state, cact is the context vector of the system actions.
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CHAPTER 4

EVALUATION

In this chapter, we firstly introduce the DSTC2 dataset and the pre-processing on data.

Next, we present the training details (like hyper-parameters) in our experiments. Next, we

describe our main comparison copy-network and metrics. Then the full experimental results

and analyses are offered. After that, we compare between copy-network and pipeline-based

models. Then we give the error analysis and discuss possible improvements to our system.

Finally, we show a sample dialogue from the system outputs.

4.1 Dataset

Table 4.1. Statistics of DSTC2

Average Number of Utterances Per Dialogue 14
Vocabulary Size 1229

Training Dialogues 1618
Validation Dialogues 500

Test Dialogues 1117
Number of Entity Types (or Slot) 8

Number of Distinct Entities 452

We use the Dialogue State Tracking Challenge 2 (DSTC2) dataset (Henderson et al.,

2014), which contains dialogues that are in the domain of restaurant reservation. Table 4.1

shows the basic statistics of it. All data in DSTC2 comes from the log and annotation files of a

real-world dialogue system called “Cambridge restaurant system” (referred to as Cambridge

system for short). Log files record all important information generated from Cambridge

system. Figure 4.1 shows a sample log file. We mainly use “transcript” and “dialog-acts” to

rebuild a complete dialogue. The “transcript” section is the system response. The “dialog-

acts” are system actions and restaurant information got from an external database. Figure

4.2 shows part of the information in a sample annotation file. We only use “transcription”
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and “goal-labels” for our project. The “transcription” section is the user utterance and the

“goal-labels” are the user goals and requests. We divide the dataset into train/validation/test

splits, use the train split for training model, find model weights (like weights of LSTM and

linear layers) that get the best performance on validation split, and finally evaluate the model

on the test split.

The DSTC2 dataset is initially designed for the dialogue state tracking task. However, in

our experiments we use it to build a complete dialogue system since the log and annotation

files of DSTC2 contain all the information that is needed for this object.

There are some modifications to the data since we use it in a different way comparing

to its initial design. The major one is on the multi-word phrases that locate in the DSTC2

ontology file. We connect each word with underline so that the phrase is converted into

a special word (e.g. we convert “fish house cuisine” into “<fish house cuisine>”). This

operation is reasonable since these multi-word phrases are keywords, and a keyword should

be naturally taken as a whole.

4.2 Training Details

The pipeline contains three modules. We firstly train the GLAD tracker alone, then freeze

the parameters in this module and train the whole system together.

For the training of GLAD, we use the same hyper-parameters from the work of Zhong et

al. (Zhong et al., 2018). For the training of the rest of our system, we employ cross-entropy

loss, Adam optimizer (Kingma and Ba, 2014), batch size is set to 30, apply a dropout of

0.5, learning rate is equal to 0.0005. Both the embedding size and hidden size is set to 300.

To avoid gradient explosion, we add a gradient clipping of 5. Different from the setting in

Zhong et al.’s work (Zhong et al., 2018), we use randomly initialized embeddings instead

of any pre-trained ones in both GLAD module and the rest of the system since it brings a

better performance in our experiments. The number of layers for all LSTM cells is set to 2.
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Figure 4.1. Part of a sample log file for one dialogue from DSTC2 dataset. It contains all
important information generated by the cambridge system when processing user utterances.
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Figure 4.2. Part of a sample annotation file for one dialogue from DSTC2 dataset. It contains
user utterances transcribed by human (from a audio file) and manually-labeled user goals.
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Except for the GLAD module, model weights (like LSTM weights) in the rest of the system

are initialized by Glorot initialization with normal distribution (Glorot and Bengio, 2018).

4.3 Main Comparison and Metrics

We take the copy-network (Eric and Manning, 2017) as our main comparison. It also builds

a dialogue system on the DSTC2 dataset, but it just uses one encoder-decoder framework

(Sutskever et al., 2014) for the whole system and employs some basic attention mechanisms

(Vinyals et al., 2015). Since this model is the same as our policy learning module, Equations

3.17 - 3.21 (which are the equations that describe our policy learning module) can also

explain the computations in copy-network.

Copy-network takes user utterances as input and predicts system responses and API calls

(API calls can trigger database query to get restaurant information that is used in response

generation). Two extra mechanisms are used in copy-network. The first one is copy attention

of the encoder output (Equations 3.17, 3.18) decoder. Formally Equation 3.20 is changed to

o = U [h̃, h̃
′
, at1:m], where at1:m is the concatenation of attention scores of encoder output. The

second change is on the encoder inputs. According to the DSTC2 ontology file, each keyword

in this file belongs to one of eight possible slots (as shown in Table 4.1). Before sending an

embedded token into the encoder, copy-network checks if this token is an embedded keyword

that comes from the ontology file. If the answer is true, then an extra one-hot vector (which

represent the slot this token belongs) is sent to the encoder after this embedded token.

As a complete neural network based method, copy-network is much simpler than the

pipeline-based architecture (our model). But pipeline approaches are more explainable and

widely used in the industry to build product-level dialogue systems. Thus it’s valuable to

compare between the two methods on one dataset to further understand the pros and cons

of each kind of model.
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Our dialogue system contains three modules, we use different metrics to evaluate the per-

formance of each module. For the GLAD module, the outputs are user goals and requests.

So we use the turn-level goal accuracy and turn-level request accuracy as the metrics. These

metrics can show how much formatted information is extracted from user utterances. Sim-

ilarly, for the policy learning module, we use the system action accuracy and restaurant

information accuracy as the metrics. For the response generation module, we employ the

per-response accuracy from our main comparison copy-network. This is a very strict metric

since only if each of the token in the generated response matches the corresponding token in

the real one, the module output can be seen as a correct prediction.

4.4 Experimental Results

Since our system is based on a pipeline, we would like to know the effects of each module on

the whole system. Table 4.2 shows the experimental results under four conditions. For the

GLAD tracker, we can choose to use it or replace it with real user goals and requests. For

policy learning module, we can also choose to use it or replace it with real system actions and

restaurant information. We will analyze the performance of each module in the following

parts.

4.4.1 Performance of the GLAD Tracker

The results of the GLAD tracker are user goals and requests, so let’s check the turn-goal

accuracy and turn-request accuracy first. From Table 4.2, in the column of use GLAD we

can see that the turn-goal accuracy are 0.756 (use policy learning) and 0.742 (use real system

actions & restaurant information) and turn-request accuracy is 0.994 (for both use or not

use policy learning). Since GLAD depends on previous turn system actions (which are the

output of policy learning module), it’s reasonable that there is a minor difference between

the two conditions.

30



Table 4.2. Results from our experiments under four different conditions.

use GLAD
use real user goals

& requests

use policy
learning

turn-goal acc: 0.756
turn-request acc: 0.994
system action acc: 0.479
restaurant information acc: 0.546
system response acc: 0.371

turn-goal acc: 1.0
turn-request acc: 1.0
system action acc: 0.490
restaurant information acc: 0.549
system response acc: 0.367

use real system
actions &
restaurant
information

turn-goal acc: 0.742
turn-request acc: 0.994
system action acc: 1.0
restaurant information acc: 1.0
system response acc: 0.675

turn-goal acc: 1.0
turn-request acc: 1.0
system action acc: 1.0
restaurant information acc: 1.0
system response acc: 0.675

Next, we need to check the effects of GLAD tracker on the whole system. In our design,

the GLAD module’s outputs are passed to the policy learning module to generate system

actions and restaurant information. So it is reasonable to use system action accuracy and

restaurant information accuracy as metrics, compare the differences between the two condi-

tions of using GLAD tracker or not. And we also check the effects on the final system output

by comparing the system response accuracies between the two conditions.

The outputs of GLAD tracker contains errors (so the turn-goal accuracy and turn-request

accuracy are both less than 1.0). We would like to know if these errors have some big effects

on the whole system. So we can replace the outputs of GLAD by the the real user real goals

and requests and check the differences. From Table 4.2 we can see: if we use policy learning,

the differences between the three mentioned metrics are very small (all differences are less

than 2.5%). And if we use real system actions and restaurant information, the differences

between the three mentioned metrics are even zero. Thus it’s safe to reach the conclusion

that: in the current stage, the GLAD tracker is not the bottleneck to the whole system.
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4.4.2 Performance of the Policy Learning module

As mentioned above, we use the system action accuracy and restaurant information accuracy

as the metrics to evaluate the performance of the policy learning module. From Table 4.2 we

can see that: the system action accuracy of both “use GLAD” and “use real user goals and

requests” are less than 0.5 and the restaurant information accuracy for both cases are little

higher than 0.5. Considering that the error will accumulate along the pipeline, such poor

performance in policy learning will certainly limit the performance of the whole system. This

prediction is proved by the experiments. Again from Table 4.2 we can see: when using the

policy learning module, the system response accuracy are 0.371 (use GLAD), 0.367 (use real

user goals & requests). If we use the real system actions and restaurant information to replace

the outputs of the policy learning module, the system response accuracy is significantly

improved to 0.675. This shows that the policy learning module limits the performance of

the whole system.

4.4.3 Performance of Response Generation

Table 4.3. Response accuracies of different models

models response
accuracy

copy-network 0.480
seq-to-seq + attn 0.023
seq-to-seq + attn + pointer 0.371
seq-to-seq + attn + pointer + real act and info 0.675

The response accuracy of copy-network (Eric and Manning, 2017) and our pipeline-based

systems are presented in Table 4.3. The basic language generation model of our pipeline is

a sequence to sequence model (referred to as seq-to-seq) and it is augmented with attention

mechanism (referred to as +attn). +pointer means to use the pointer-generator approach
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in the response generation. +real act and info refers to replace the policy learning module

with real system actions and restaurant information.

There is a large gap between the performance of our model and the performance of the

copy-augmented network. The main reason is the performance of policy learning module

is so poor that it seriously restricts the ability of the whole system. If we replace the

policy learning module with the real system actions and restaurant information, the response

accuracy can reach 0.675, which is much higher than copy-network. What’s more, when we

only use the naive decoder to predict the response, the accuracy is only 0.023. However, if we

add the pointer-generator mechanism into the decoder, the response accuracy is improved to

0.371. This proves that the pointer-generator approach is an effective way to help language

generation as expected.

4.5 Comparison between Copy-network and Pipeline-based Models

As we can see from Table 4.3, copy-network has a higher response accuracy (0.480) than

ours (0.371). This shows the value of neural networks: they are good at modeling a problem

whose implicit patterns are hard to describe. We can say it is effective but the weakness

is also clear that it’s hard to explain why the performance is so good and how can we do

some specific changes to the model. In the field of the task-oriented dialogue system, this

is a big problem. Since we need to control the system responses as much as possible. If

there is an error, we need to know the reason for it. But for a neural network, the whole

system is a black box and it’s too hard to make a specific change. Such weakness decides

that the complete neural network models are far from practical applications in the area of

task-oriented dialogue systems.

And for our pipeline-based models, although the performance is not very good right now,

we can clearly know which part of it can be the bottleneck and make some improvements in

the future. If we can select a good model, the policy learning will not be the bottleneck to
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the whole system. What’s more, in our method, a big task is reduced into several smaller

and easier ones comparing to the task met by our opponent. And it’s reasonable that the

performance of our system should be at least as good as the complete neural network-based

methods. On the other hand, the core feature of pipeline-based methods is modularity. This

guarantees that we can get very strong control over the whole system, which is the major

requirement in task-oriented dialogue systems. As a result, we can say that the pipeline-

based methods should be more suitable to be used in task-oriented dialogue systems. The

performance of these two kinds of methods can be close. However, on the topic of taking

better control of the whole system, pipeline-based methods are definitely stronger than

complete neural network based approaches.

4.6 Error Analysis and Further Improvements

There are three possible sources of errors: dialogue states generated from the GLAD tracker,

system actions and restaurant information predicted from the policy learning module, sys-

tem responses generated from the language generation module. As shown in the previous

performance evaluations, the main limitations of our system locate in the policy learning

section. If we can improve the performance of policy learning, the whole system can get

much better results. Thus we focus on analyzing the errors that come from policy learning

module and try to give a solution to this part.

The major error in the output of policy learning module is that: there are too many

wrong predictions in the system actions. And we find two main reasons for this problem.

Firstly, the data is noisy. Since it comes from an old real-world system, the logic to determine

system actions is not crystal clear. Secondly, the model we use in our policy learning section

is not suitable for this problem. In detail, the inputs of policy learning are dialogue states

which are slot-value pairs. In our design, we take one dialogue state as a sequence like

a sentence, send it to an LSTM encoder-decoder neural network (Sutskever et al., 2014),
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and finally generate system actions as a sequence. LSTM is good at capturing temporal

relation contained in the sequences. However, both of our input slot-value pairs and the

output system actions don’t show strong temporal relation, which means the order is not

important. Thus LSTM encoder-decoder neural network cannot show its advantages in this

scenario and we should try some other approaches.

To increase the prediction accuracy in system actions, we can employ a simpler model

and include reinforcement learning into the training process. The model is a one-hidden-

layer neural network with tanh activation function and uses a softmax function as the output

layer to predict system actions. The reason we choose a model that is simpler than before

is that we don’t need to capture temporal relation in the inputs and outputs. And since

the size of possible system actions is not very big, a one-hidden-layer neural network can

deal with this problem. What’s more, the most important improvement is that: we use

a two-phase training strategy to train this neural network. That means firstly we train it

through supervised learning like before. Then we include reinforcement learning to get a

better generalization. This has been reported to be an effective method to find a policy on

a noisy dataset (Su et al., 2016).

4.7 Sample Dialogue Outputs Analysis

Figure 4.3 shows a sample dialogue output of our dialogue system (don’t use any annotations

to replace modules). We can see that except the first turn, the rest of the responses are all

predicted correctly. The reason is our system uses the pointer-generator network to improve

the ability to embed keywords. The result proves the designed algorithm is effective. And

for the first turn, since the system actions are used to guide the response generation, the

wrong predicted system action leads to a wrong response.
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Figure 4.3. A sample output dialogue. The predicted system outputs are in green line
rectangles. The real system outputs are in blue line rectangles.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We build a pipeline-based task-oriented dialogue system on the DSTC2 restaurant reservation

dataset. Our model contains three modules: a GLAD dialogue state tracker, a policy learning

module, a natural language response generation module. Each of them is a smaller and easier

task comparing to the original dialogue system task. Thus we can be sure that it’s highly

probable to find some good models to improve their performances and finally make our

system to be at least as good as the copy-network (which is our main comparison and it

employs an encoder-decoder neural network so it’s a complete neural network based model).

On the other hand, the characteristic of task-oriented dialogue systems requires to have

strong control over the whole system. Copy-network cannot achieve this goal since it takes

the whole system as a black box. However thanks to the modularity, pipeline-based methods

are naturally better on this point. Thus it’s easy to get the conclusion that we should

use pipeline methods to build a task-oriented dialogue system, rather than complete neural

network based approaches like copy-network.

Another contribution of our work is that we introduce a method to better control the

contents of language generation. By using the restaurant information as pointers, we can

increase the probability of keywords in the output vocabulary distribution. This mechanism

significantly increases the system response accuracy from 0.023 to 0.371.

Future work should focus on increasing the performance of policy learning module. We

have seen that by using the real system actions and restaurant information, the system

response accuracy can reach almost 0.7. Comparing to the result we have now (just 0.371),

there is a huge room for improvement. We can try a simple neural network model and include

reinforcement learning into the training process since reinforcement learning will help to get

a much better generalization on noisy data.
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