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Measurement of branching fractions and rate asymmetries in the rare decays B — K ¢* ¢~
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In a sample of 471 X 10 BB events collected with the BABAR detector at the PEP-II e e~ collider we
study the rare decays B — K®¢*€~, where €+ €~ is either e* e~ or u* ™. We report results on partial
branching fractions and isospin asymmetries in seven bins of dilepton mass-squared. We further present
CP and lepton-flavor asymmetries for dilepton masses below and above the J/ s resonance. We find no
evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are
consistent with the Standard Model predictions and with results from other experiments.

DOI: 10.1103/PhysRevD.86.032012

L. INTRODUCTION

The decays B — K™ ¢*¢~ arise from flavor-changing
neutral-current processes that are forbidden at tree level in
the Standard Model (SM). The lowest-order SM processes

*Now at the University of Tabuk, Tabuk 71491, Saudi Arabia.

TAlso with Universita di Perugia, Dipartimento di Fisica,
Perugia, Italy.

*Now at the University of Huddersfield, Huddersfield HDI
3DH, United Kingdom.

SNow at University of South Alabama, Mobile, AL 36688,
USA.

I Also with Universita di Sassari, Sassari, Italy.

PACS numbers: 13.20.He

contributing to these decays are the photon penguin, the Z
penguin and the W* W~ box diagrams shown in Fig. 1.
Their amplitudes are expressed in terms of hadronic form
factors and perturbatively calculable effective Wilson co-
efficients, C§, C§ and CSif, which represent the electro-
magnetic penguin diagram, and the vector part and the
axial-vector part of the linear combination of the Z penguin
and WTW~ box diagrams, respectively [1]. In next-
to-next-to-leading order at a renormalization scale u =
4.8 GeV, the effective Wilson coefficients are CSf =
—0.304, C&ff = 4.211, and C$if = —4.103 [2].

Non-SM physics may add new penguin and box dia-
grams, which can contribute at the same order as the SM
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FIG. 1. Lowest-order Feynman diagrams for b — s€*€¢~.

(a) - (b) X © 2y

b ‘ tcu s b ‘ T3¢ T b ‘ b3.d s

FIG. 2. Examples of new physics loop contributions to b —
s€* € (a) charged Higgs (H™); (b) squark (7 ¢, it) and chargino
(x7); (c) squark (b, §, d) and gluino (§) or neutralino (x°).

diagrams [3-5]. Examples of new physics loop processes
are depicted in Fig. 2. These contributions might modify
the Wilson coefficients from their SM expectations [5-7].
In addition, new contributions from scalar, pseudoscalar,
and tensor currents may arise that can moditfy, in particular,
the lepton-flavor ratios [8,9].

II. OBSERVABLES

We report herein results on exclusive partial branching
fractions and isospin asymmetries in six bins of s = mﬁg,
defined in Table I. We further present results in the s bin sq =
1.0-6.0 GeV?/c* chosen for calculations inspired by soft-
collinear effective theory [10]. In addition, we report on direct
CP asymmetries and the ratio of rates to dimuon and dielec-
tron final states in the low s and high s regions separated by
the J/ 4 resonance. We remove regions of the long-distance
contributions around the J/¢ and (2S) resonances. New
BABAR results on angular observables using the same data set
and similar event selection will be reported shortly.

The B— K{7¢~ and B — K*€*{~ total branching
fractions are predicted to be (0.35 = 0.12) X 10~® and
(1.19 = 0.39) X 107 (for s > 0.1 GeV?/c*), respectively
[5]. The ~30% uncertainties are due to a lack of knowl-
edge about the form factors that model the hadronic effects
in the B— K and B — K" transitions. Thus, measure-
ments of decay rates to exclusive final states are less suited
to searches for new physics than rate asymmetries, where
many theory uncertainties cancel.

For charged B decays and neutral B decays flavor-tagged
through K* — K* 7~ [11], the direct CP asymmetry is
defined as

o BBE— RO ()~ BB—KOCH)
F BB—-KYDEH)+BB—KHEHE)
and is expected to be @(107?) in the SM. However AKX

may receive a significant enhancement from new physics
contributions at the electroweak scale [12].

ey
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TABLE I. The definition of seven s bins used in the analysis.
Here mp and mye are the invariant masses of B and K*,
respectively. The low s region is given by 0.10<s <
8.12 GeV?/c*, while the high s region is given by s>
10.11 GeV?/c*.

s bin s min (GeV?/c*) s max (GeV?/c%)

Low S1 0.10 2.00

S 2.00 4.30

S3 4.30 8.12
High S4 10.11 12.89

S5 14.21 16.00

S6 16.00 (mg — My )?

So 1.00 6.00

For s > 0.1 GeV? / ¢*, the ratio of rates to dimuon and
dielectron final states is defined as
_BB— K"t u)

R ) — .
KO BB — KMete)

2

In the SM, R is expected to be unity to within a few
percent [13] for dilepton invariant masses above the
dimuon kinematic threshold. In two-Higgs-doublet mod-
els, including supersymmetry, these ratios are sensitive to
the presence of a neutral Higgs boson. When the ratio of
neutral Higgs field vacuum expectation values tanf is
large, R ;- might be increased by up to 10% [9].
The CP-averaged isospin asymmetry is defined as
xo _ BB — KM ¢7) — r B(B" — KW' ¢7)
! B(BY — KMt ¢) + r,B(B* — KW ¢t ¢)
3)
where r. = 75 /75+ = 1/(1.071 = 0.009) is the ratio of
B and B™ lifetimes [14]. AX" has a SM expectation of
+6% to +13% as s — 0 [4]. This is consistent with the
measured asymmetry 3 * 3% in B — K*y [15]. A calcu-
lation of the predicted K** and K*° rates integrated over
the low s region yields .7[5( = —0.005 = 0.020 [16,17].
In the high s region, we may expect contributions from
charmonium states as an additional source of isospin asym-

metry. However the measured asymmetries in the J/  K®*)
and ¢(285)K™ modes are all below 5% [14].

III. BABAR EXPERIMENT AND DATA SAMPLE

We use a data sample of 471 X 10° BB pairs collected at
the Y'(4S) resonance with the BABAR detector [18] at the
PEP-II asymmetric-energy e*e~ collider at the SLAC
National Accelerator Laboratory. Charged particle track-
ing is provided by a five-layer silicon vertex tracker and a
40-layer drift chamber in a 1.5 T solenoidal magnetic field.
We identify electrons with a CsI(T1) electromagnetic calo-
rimeter, and muons using an instrumented magnetic flux
return. Electron and muon candidates are required to have
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momenta p > 0.3 GeV/c in the laboratory frame. We
combine up to three photons with electrons when they
are consistent with bremsstrahlung, and do not use elec-
trons that are associated with photon conversions to low-
mass ete” pairs. We identify charged kaons using
a detector of internally reflected Cherenkov light, as
well as dE/dx information from the drift chamber.
Charged tracks other than identified e, w and K
candidates are treated as pions. Neutral K — 7% 7~ can-
didates are required to have an invariant mass consistent
with the nominal K° mass, and a flight distance from the
ete” interaction point that is more than 3 times its
uncertainty.

IV. EVENT SELECTION

We reconstruct B — K¢ 1 ¢~ signal events in the fol-
lowing eight final states:
(i) B — K§u*u™,
B+ —_ K+M+M7,
B — K%eTe,
Bt — KTete™,
B — K" (= Kdm )t ™,
B'— K= K*7 )ut ™,
BY - K" (= Kdmt)eTe,
B — K(— Kt 7 )ete.

We reconstruct Kg candidates in the 7 7~ final state. We

also study the K®)h* u™ final states, where & is a charged
track with no particle identification requirement applied, to
characterize backgrounds from hadrons misidentified as
muons. We use a K*e™ u* sample to model the combina-
torial background from two random leptons. In each mode,

we utilize the kinematic variables mpg = \/E%M/4 - p?

and AE = Ej — Ecy/2, where pj and Ej are the B
momentum and energy in the Y'(4S) center-of-mass (CM)
frame, and Ecy, is the total CM energy.

For masses mgg > 5.2 GeV/c?> we perform one-
dimensional fits of the mpgg distribution for K€€~
modes. For K*€¢"¢~ modes, we include in addition the
K7 mass region 0.72 < mg, < 1.10 GeV/c? in the fit.
We use the sideband 5.20 < mgg <5.27 GeV/c? to
characterize combinatorial background shapes and normal-
izations. For both the eTe” and w*u~ modes, we
veto the J/(2.85 < my <3.18 GeV/c?) and 4(2S) X
(3.59 < mgy <3.77 GeV/c?) mass regions. The vetoed
events provide high-statistics control samples that we use
to validate the fit methodology.

The main backgrounds arise from random combinations
of leptons from semileptonic B and D decays. These
combinatorial backgrounds from either BB events
(referred to as “BB backgrounds”’) or continuum ¢g events
(ete” —qG, q=u,d, s, c, referred to as “qg back-
grounds”) are suppressed using bagged decision trees
(BDTs) [19]. We train eight separate BDTs as follows:

PHYSICAL REVIEW D 86, 032012 (2012)

(i) suppression of BB backgrounds for e™e™ modes in
the low s region;
(ii) suppression of BB backgrounds for e™ ¢~ modes in
the high s region;
(iii) suppression of BB backgrounds for u*u~ modes
in the low s regio_n;
(iv) suppression of BB backgrounds for u* u~ modes
in the high s region;
(v) suppression of gg backgrounds for e* e~ modes in
the low s region;
(vi) suppression of gg backgrounds for e™ ¢~ modes in
the high s region;
(vii) suppression of gg backgrounds for u* ™ modes
in the low s region;
(viii) suppression of ¢ backgrounds for u* ™ modes
in the high s region.

The BDT input parameters
observables:

(i) AE of the B candidate;

(ii) the ratio of Fox-Wolfram moments R, [20] and the
ratio of the second-to-zeroth angular moments of
the energy flow L,/L, [21], both event shape
parameters calculated using charged and neutral
particles in the CM frame;

(iii) the mass and AE of the other B meson in the event
(referred to as the “‘rest of the event”’) computed in
the laboratory frame by summing the momenta and
energies of all charged particles and photons that
are not used to reconstruct the signal candidate;

(iv) the magnitude of the total transverse momentum of
the event in the laboratory frame;

(v) the probabilities that the B candidate and the dilep-
ton candidate, respectively, originate from a single
point in space;

(vi) the cosine values of four angles: the angle between
the B candidate momentum and the beam axis, the
angle between the event thrust axis and the beam
axis, the angle between the thrust axis of the rest of
the event and the beam axis, and the angle between
the event thrust axis and the thrust axis of the rest of
the event, all defined in the CM frame.

include the following

Figure 3 shows the output distributions of the BDTs for
Monte Carlo (MC) simulated signal and combinatorial
background for the e*e™ sample below the J/ i reso-
nance. The distributions are histograms normalized to
unit area. The selections on BDT outputs are further opti-
mized to maximize the statistical significance of the signal
events, as shown later.

Another source of background arises from
B — D(— K™ )7 decays if both pions are misidentified
as leptons. Determined from data control samples with
high purity [18], the misidentification rates for muons
and electrons are ~3% and =< 0.1% per candidate, respec-
tively. Thus, this background is only significant for ™ u~
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FIG. 3 (color online). The (a) BB and (b) qG e"e™ BDT
outputs for simulated events in the low s region. Shown are
the distributions for BB background (red dashed line), g¢g
background (red dotted line), and signal (blue solid line) event
samples, normalized to unit area.

final states. We veto these events by requiring the invariant
mass of the K* 7 system to be outside the range
1.84-1.90 GeV/c? after assigning the pion mass hypothe-
sis to the muon candidates. Any remaining residual back-
grounds from this type of contribution are parameterized
using control samples obtained from data.

After applying all selection criteria about 85% of signal
events contain more than one B candidate. These candi-
dates differ typically in one charged or neutral hadron. The
average number of candidates per signal event is about six.
To choose the best candidate, we define the ratio

PEE 4 P

A= sig sig (4)
BB 99 BB qq ’
?sig + ?sig + Tbkg + ,'Pbkg

where Pg, and Py, are probabilities calculated from the
corresponding BB and gg BDT output distributions for
signal and background, respectively. We select the candi-
date with the largest A as the best candidate. The proba-
bility for a correctly reconstructed signal event to be
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selected as the best candidate is mode-dependent and
varies between about 80% and 95% for s bins below the
J/ 4 mass, while for s bins above the /(2S) mass it varies
between about 60% and 90%.

V. SELECTION OPTIMIZATION

To optimize the AE selection, we simultaneously vary
the upper and lower bounds of the AE interval to find the
values that maximize the ratio S/+/S + B in the signal
region (mpg > 5.27 GeV/c?, and for K* modes in addition
0.78 < mg, <0.97 GeV/c?), where S and B are the
expected numbers [14] of signal and combinatorial back-
ground events, respectively. We perform separate optimi-
zations for dilepton masses below and above the J/
mass. For some modes, the optimization tends to select
very narrow intervals, which leads to small signal effi-
ciency. To prevent this, we require the magnitudes of the
AE upper and lower bounds to be 0.04 GeV or larger. (Note
that the lower bound is always negative and the upper
bound always positive.)

We also optimize the lower bounds on the BDT BB and
qq intervals (the upper bounds on these intervals are al-
ways 1.0). We perform fits to extract signal yields using the
fit model described in Sec. VI. For each mode, the lower
bound on the BDT interval is optimized by maximizing the
expected signal significance defined as the fitted signal
yield divided by its associated uncertainty. We determine
these from 500 pseudoexperiments using branching frac-
tion averages [14]. The optimized BDT lower bounds are
listed in Tables II and III for K€+ €~ and K*¢* €, respec-
tively. Figure 4 shows the expected experimental signifi-
cance in the BB BDT versus the gqg BDT plane for
B — K*7~ utu” in bin s,. The signal selection effi-
ciency and the cross-feed fraction (defined in Sec. VI) in
each mode and s bin after the final event selection are also
listed in Tables II and III. The selection efficiencies
determined in simulations vary from 11.4 = 0.2% for
Kdm*eTe™ in s¢ to 33.3 +0.3% for K*u*pu™ in ss,
where the uncertainties are statistical.

VL. FIT METHODOLOGY

We perform one-dimensional fits in mgg for K€€~
modes and two-dimensional fits in mgg and mg, for
K*€* €~ modes to extract the signal yields. The probability
density function (PDF) for signal mgg is parametrized by a
Gaussian function with mean and width fixed to values
obtained from fits to the vetoed J/i events in the data
control samples. For mg, the PDF is a relativistic Breit-
Wigner line shape [22]. True signal events are those where
all generator-level final-state daughter particles are cor-
rectly reconstructed and are selected to form a B candidate.

For the combinatorial background, the mgg PDF is mod-
eled with a kinematic threshold function whose shape is a
free parameter in the fits [23], while the mg,. PDF shape is
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TABLE II.
and s bin. The uncertainties are statistical only.

PHYSICAL REVIEW D 86, 032012 (2012)

Optimized lower bounds on the BDT intervals, signal reconstruction efficiency, and cross-feed fraction, by K€* ¢~ mode

Mode s bin BB BDT qgq BDT Efficiency [%] Cross-feed fraction [%]
B’ — Kg,u,+,u_ S 0.20 0.80 19.9 £0.2 89+0.3
S 0.70 0.85 222 +0.2 8.6 +0.2
$3 0.20 0.85 252+ 0.1 89 +0.2
S4 0.70 0.70 24.3 0.2 9.4 +0.2
S5 0.70 0.80 222 +0.2 12.0 = 0.5
S 0.75 0.80 16.6 £ 0.1 21.7 £0.7
So 0.50 0.85 22.7 = 0.1 8.8 0.1
BT — K utu~ K 0.30 0.85 21.3 0.2 0.3 0.0
S 0.15 0.85 27.0 0.2 0.3 0.0
53 0.15 0.85 30.9 = 0.1 0.3 0.0
S4 0.80 0.85 31.0 0.2 0.4 *=0.0
S5 0.65 0.85 33.3+0.3 2.1*0.1
S 0.05 0.85 30.5+0.2 10.4 = 0.2
So 0.05 0.85 13.6 = 0.1 0.3 0.0
BY — KeTe™ S 0.25 0.80 22.1 £0.2 83+0.3
S 0.25 0.80 252 +0.2 9.4+03
S3 0.65 0.80 24.3 + 0.1 9.4 +0.2
S4 0.50 0.85 24.1 = 0.2 10.9 = 0.4
S5 0.05 0.65 23.0 0.2 18.5 = 0.9
S 0.25 0.70 16.5 = 0.1 350+ 1.1
So 0.85 0.85 21.3+0.1 9.2+0.2
Bt — KTete™ S 0.35 0.85 22.8 £0.2 0.4 0.1
S 0.10 0.85 28.8 0.2 0.4 +0.0
53 0.10 0.85 30.8 = 0.1 0.5*+0.0
S4 0.30 0.80 327202 1.1 +0.1
S5 0.25 0.80 31.7 0.3 43 +0.2
Se 0.50 0.85 25.1 £0.2 12.0 = 0.3
So 0.40 0.85 29.6 = 0.1 0.5*+0.0

characterized with the K*e™ u* sample mentioned in Sec. IV.
We parameterize the combinatorial mg, distributions with
nonparametric Gaussian kernel density estimator shapes [24]
(referred to as the “KEYS PDFs”) drawn from the K*e™ u ™
sample in the full mgg fit region. Since the correlation be-
tween my, and AE is weak, we accept all K*e™ u™ events
within |AE| < 0.3 GeV, rather than imposing a stringent AE
selection, in order to enhance sample sizes.

Signal cross feed consists of misreconstructed signal
events, in which typically a low-momentum 7= or 7 is
swapped, added, or removed in the B candidate reconstruc-
tion. We distinguish among different categories of cross
feed: “‘self-cross-feed” is when a particle is swapped
within one mode, “feed-across” is when a particle is
swapped between two signal modes with the same final-
state multiplicity, and ‘““feed-up (-down)”’ is when a parti-
cle is added (removed) from a lower (higher) multiplicity
b — s€*€~ mode. We use both exclusive and inclusive
b — s€*€~ MC samples to evaluate the contributions of
the different categories. The cross-feed mgg distribution is
typically broadened compared to correctly reconstructed
signal decays. We combine the cross-feed contributions

from all sources into a single fit component that is modeled
as a sum of weighted histograms with a single overall
normalization, which is allowed to scale as a fixed fraction
of the observed correctly reconstructed signal yield. This
fixed fraction is presented as the ‘“‘cross-feed fraction” in
Tables II and III. The modeling of cross-feed contributions
is validated using fits to the vetoed J/ ¢ K*) and s (25)K™
events, in which the cross-feed contributions are relatively
large compared to all other backgrounds.

Exclusive B hadronic decays may be misreconstructed
as B— K®¢* ¢, since hadrons can be misidentified as
muons. Following a procedure similar to that described in
Ref. [25], we determine this background by selecting a
sample of K™ u*h™ events, in which the muon is identi-
fied as a muon and the hadron is inconsistent with an
electron. Requiring identified kaons and pions, we select
subsamples of KW zta~, KWK 7~ KWztK~, and
K"K K~. We obtain weights from data control samples
where a charged particle’s species can be identified with
high precision and accuracy without using particle identi-
fication information. The weights are then applied to this
data set to characterize the contribution expected in our fits
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TABLE IIL
mode and s bin. The uncertainties are statistical only.

PHYSICAL REVIEW D 86, 032012 (2012)

Optimized lower bounds on the BDT intervals, signal reconstruction efficiency, and cross-feed fraction, by K*¢* €~

Mode s bin BB BDT qg BDT Efficiency [%] Cross-feed fraction [%]
BT — K277'+,u+,u_ S 0.55 0.85 13.6 = 0.1 14.0 £ 0.5
Sy 0.80 0.85 14.6 £0.2 19.2 = 0.7
S3 0.85 0.80 14.9 = 0.1 20.7 = 0.5
S4 0.85 0.85 14.7 £ 0.1 28.0 0.7
S5 0.15 0.85 16.4 = 0.2 593+ 1.3
S 0.10 0.85 14.3 = 0.1 110.8 = 1.9
So 0.80 0.85 14.5 = 0.1 18.9 = 0.5
B — K am utu” ) 0.80 0.85 16.2 = 0.1 4.9 +0.2
S 0.80 0.85 19.6 = 0.2 7.8 0.3
S3 0.75 0.85 21.3 +0.1 10.1 = 0.2
Sy 0.85 0.85 20.9 = 0.1 13.8 0.3
S5 0.75 0.85 22.8 0.2 31.7 = 0.6
Se 0.80 0.80 19.5£0.2 61.0 = 0.9
So 0.60 0.85 20.4 = 0.1 8.9+0.2
BT — KimteTe s 0.45 0.70 16.6 £ 0.2 17.8 = 0.6
S 0.85 0.85 13.7£0.2 20.7 = 0.8
S3 0.55 0.85 16.0 £ 0.1 27.5+0.7
S4 0.40 0.85 15.4 £0.1 41.6 = 0.9
S5 0.80 0.45 13.1 0.2 68.6 + 1.8
S 0.60 0.85 11.4 £ 0.2 1334 =29
So 0.70 0.85 16.0 = 0.1 23.1 0.5
B’ — K 7 ete™ S 0.80 0.85 16.5 0.2 6.8 0.2
Sy 0.85 0.85 18.6 = 0.2 10.9 = 0.3
53 0.80 0.80 18.5 = 0.1 11.2 0.3
Sy 0.55 0.65 21.9 £ 0.2 25.6 =04
S5 0.75 0.80 19.0 £ 0.2 50.4 = 0.9
S 0.05 0.80 15.1 £0.2 110.9 £ 1.8
So 0.80 0.85 19.7 £ 0.1 10.8 = 0.2

due to misidentified muon candidates. We characterize the
misidentification backgrounds using the KEYS PDFs, with
normalizations obtained by construction directly from the
weighted data.

Some charmonium events may escape the charmonium
vetoes and appear in our fit region. Typically, this occurs
when electrons radiate a photon or a muon candidate is a
misidentified hadron and the missing energy is accounted
for by a low-energy 7 or 7°. The largest background
contributions from this source are expected in the
K*u*u~ and K*e*e~ channels. We model this back-
ground using the charmonium MC samples and determine
the leakage into s bins on either side of the J/ ¢ and ¢ (25)
resonances. We see a notable charmonium contribution
(about five events) for B® — K* 7~ u ™ ™ in bin s5. This
leakage is typically caused by a swap between the ™ and
7" in a single B—J/¢y(— u"u")K7" candidate,
where both the ™ and 77t are misidentified.

Hadronic peaking background from B — K*7° and
B — K*n in which the 7° or % decays via Dalitz pairs
shows a small peaking component in mgg in bin 5. Because
of the requirement s > 0.1 GeV?/c*, contributions of y

conversions from B — K™y events beyond the photon
pole region are found to be negligible.

Fit model for rate asymmetries

Using the PDFs described above, we perform simulta-
neous fits across different K™ ¢*¢~ modes. Since
efficiency-corrected signal yields are shared across various
decay modes, we can extract rate asymmetries directly
from the fits. The fitted signal yields in BT modes are
corrected by the lifetime ratio 7z /75+. We also correct
the signal yields for B(K* — Kr) in K* modes and
B(KY) — 7*ar~) in the modes with a Kj. In the fits for
A cp, we share the efficiency-corrected signal yield N as
a floating variable for B gb, ¢ = u, d events across differ-
ent flavor-tagging K*)¢* €~ modes by assuming lepton-
flavor and isospin symmetries. The efficiency-corrected
signal yield N for B(gh) events is then defined by Nz =
Np-(1+ Acp)/(1 — Acp) and is also shared across
corresponding modes. For the lepton-flavor ratios R g,
we share the efficiency-corrected signal yield N,,
as a floating variable for the two B— Ke'e™ or
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FIG. 4 (color online). Expected statistical significance of the
number of fitted signal events as a function of BDT interval
lower bounds for B — K* 7~ " ™ in bin s,. The star marks
the optimized pair of lower bounds.

B — K*e"e™ modes by assuming isospin symmetry. The
efficiency-corrected signal yield N, shared across the
corresponding B — K™ u ™ u~ modes is then defined by

Nyu = Nee * Ry For the isospin asymmetry ﬂf(*), we
share the efficiency-corrected signal yield N+ as a floating
variable for the two BY* — K" €*¢~ or BT — K* "¢ ¢~
modes by assuming lepton-flavor symmetry. The
efficiency-corrected signal yield Ngzo shared across the
corresponding B — K*%¢* ¢~ modes is then defined by

Ngo = Ny - (1 + AKD) /1 — 4Ky,

VII. FIT VALIDATION

We validate the fit methodology with charmonium con-
trol samples obtained from the dilepton mass regions
around the J/¢ and (2S) resonances that are vetoed in
the B — K™ {¢* ¢~ analysis. We measure the J/¢K® and
(2S)K™ branching fractions in each final state with the
optimized BDT selections in bins s; and s,4, respectively.
Our measurements agree well with the world averages [14]
for all final states. Typical deviations, based on statistical
uncertainties only, are less than 1 standard deviation (o).
The largest deviation, in the K* 7~ u* u~ mode, is 1.70.
For J/ 1,[/K(*) modes, the statistical uncertainties are con-
siderably smaller than those of the world averages. We
float the Gaussian means and widths of the signal PDFs in
the fits for the J/ K™ modes. The associated uncertain-
ties obtained from the fits are then used as a source of
systematic variation for the signal PDFs. The typical signal
width in mgg is 2.5 MeV/c?.

We further validate our fitting procedure by applying it
to charmonium events to extract the rate asymmetries. The
measured CP asymmetries A ¢p, lepton-flavor ratios R
and isospin asymmetries A ; are in good agreement with
Standard Model expectations or world averages for A;.

We also test the methodology with fits to ensembles of
data sets where signal and background events are generated

PHYSICAL REVIEW D 86, 032012 (2012)

from appropriately normalized PDFs (““pure pseudoexperi-
ments”’). We perform fits to these pseudoexperiments in
each mode and s bin using the full fit model described
previously. For ensembles of 1000 pure pseudoexperi-
ments, the pull distributions for the signal yields show
negligible biases. We further fit ensembles of pseudoex-
periments in which the signal events are drawn from
properly normalized exclusive MC samples (‘“‘embedded
pseudoexperiments’). The pull distributions also show the
expected performance.

We perform fits to ensembles of pure pseudoexperiments
in order to estimate the statistical sensitivity of, and biases
related to, the various rate asymmetry measurements. The
pull distributions for A p and R . for the low and high s
regions show minimal biases. For ‘A ;, we test a series of
A ; input values ( — 0.6, —0.3, 0.0, 0.3, 0.6) in each s bin
using pure pseudoexperiments to ensure we obtain un-
biased fits under different assumptions of isospin asymme-
try. The AK pulls are generally well-behaved. In the worst
case, the test fits for A X are slightly biased due to very low
signal yield expectations in the K2¢* €~ final states.

VIII. SYSTEMATIC UNCERTAINTIES

Since some systematic uncertainties largely cancel in
ratios, it is useful to separate the discussion of systematic
uncertainties on partial branching fractions from that on
rate asymmetries.

A. Branching Fraction Uncertainties

Systematic uncertainties for branching fractions arise
from multiplicative systematic uncertainties involving the
determination of the signal efficiency, and from additive
systematic uncertainties arising from the extraction of
signal yields in the data fits. The multiplicative systematic
errors include contributions from the

(i) Number of BB pairs: This uncertainty is 0.6%.

(i1) Tracking efficiency for charged particles: We assign
a correlated uncertainty of 0.3% for each lepton, and
0.4% for each charged hadron including daughter
pions from K9 decay [26].

(iii) Charged particle identification (PID) efficiencies:
We employ a data-driven method to correct PID
efficiencies in simulated events. We estimate the
systematic uncertainties from the change in signal
efficiency for simulated J/ s K events after turn-
ing off the PID corrections. The systematic uncer-
tainties are mode-dependent and vary between
0.3% and 1.6%.

@iv) Kg identification efficiency: This is determined
as a function of flight distance after applying Kg
efficiency corrections. An uncertainty of 0.9% is
obtained by varying the K selection algorithm.

(v) Event selection efficiency: We measure the effi-

ciency of the BDT selection in charmonium data
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TABLE IV. Individual systematic uncertainties [%] for measurements of the total branching fractions in K¢+~ decays.

Mode Ku n~ K'uun~ Kletem Kretew Kimtu pn~ Ko putu~ Kimtetew Kimete
BB counting +0.6 +0.6 +0.6 +0.6 +0.6 *+0.6 +0.6 +0.6
Tracking *1.4 *1.0 *1.4 *1.0 *1.8 +1.4 *1.8 *1.4
PID *1.6 *0.3 *0.7 *04 *1.5 +0.3 *0.5 *1.2
K% 1D +0.9 - +0.9 e +0.9 e +0.9 e
BDT selections *22 *1.7 *4.7 *1.5 *8.3 *2.5 *9.1 *2.7
MC sample size *0.3 *0.3 +0.3 *0.3 *0.4 +0.3 *0.4 *0.4
Sig. shape *0.5 *04 *1.5 *04 *1.5 *0.7 *1.5 *0.7
Hadronic *33 *5.8 e e +23 *1.6 s e
Peaking *0.3 *0.8 *1.2 *0.8 *0.7 +1.7 *0.8 *1.2
Comb. myg,. shape o s e ce *1.2 *0.6 *0.6 *1.6
Total +4.7 *6.3 *54 +2.2 +9.3 +3.9 *9.5 +4.0

control samples and compare with results obtained
for exclusive charmonium samples from simulation.
We take the magnitude of the deviation for any
particular final state and s bin as the uncertainty
associated with the BDT lower bounds. If the data
and simulation are consistent within the uncertainty,
we then take the uncertainty as the systematic
uncertainty. The systematic uncertainty is found to
vary between 0.3% and 9.1% depending on both the
mode and the s bin. Because of a strong correlation
between the AE and BDT outputs, uncertainties due
to AE are fully accounted for by this procedure.
(vi) Monte Carlo sample size: We find the uncertainty
related to the finite size of the MC sample to be of
the order of 1% or less for all modes.
The additive systematic uncertainties involve contribu-
tions from the
(1) Signal PDF shapes: We characterize them by varying
the PDF shape parameters (signal mean, signal

[
o
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- N
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5.2 5.22

5.24
mg (GeV/c?)

5.26

FIG. 5 (color online). The mgg spectrum in bin s4 for all
K€*¢~ modes combined showing data (points with error
bars), the total fit (blue solid line), signal component (black
short-dashed line), combinatorial background (magenta long-
dashed line), hadrons misidentified as muons (green dash-dotted
line), and the sum of cross-feed and peaking components (red
dotted line).

width, and combinatorial background shape and nor-
malization) by the statistical uncertainties obtained
in the fits to the J/ 4 data control samples for mpgg
and signal MC events for mg,,.

(i) Hadronic backgrounds: We characterize them by
varying both the normalization by the associated
statistical uncertainties and by performing fits with
different choices of smoothing parameters for the
KEYS PDF shapes.

(iii) Peaking backgrounds from charmonium events and
7%/ Dalitz decays: We vary the normalization for
these contributions by *25%.

(iv) Modeling of m, line shapes of the combinatorial
background: We characterize the uncertainties by
analyzing data samples selected from the mgg <
5.27 GeV/c? sideband, and simulated events.

Table IV summarizes all sources of systematic uncer-

tainties considered in the total branching fraction measure-
ments for individual modes. The total systematic
uncertainty for the branching fractions is obtained by
summing in quadrature the above-described uncertainties
from different categories.

W

o
W
o

Y
o

Y

o

Events / ( 3.75 MeV/c?)
N
o

Events / (19 MeV/c?)
N
o

52 522 524 526 5.28 0.8 0.9 1 1.1
m (GeV/c?) m,, (GeV/c?)

FIG. 6 (color online). The (a) mgg and (b) m g, mass spectra in
bin s, for all four K*¢*€¢~ modes combined showing data
(points with error bars), the total fit (blue solid lines), signal
component (black short-dashed lines), combinatorial back-
ground (magenta long-dashed lines), hadrons misidentified as
muons (green dash-dotted lines), and the sum of cross-feed and
peaking components (red dotted lines).
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TABLE V. Measured branching fractions [1077] by mode and s bin. The first and second

uncertainties are statistical and systematic, respectively.

PHYSICAL REVIEW D 86, 032012 (2012)

B— K{T( B— Kt~

s (GeV2/c%) Ny B[1077] Ny B[1077]

0.10-2.00 20.6739 0.717939 + 0.02 26.077; 1.897932 + 0.06
2.00-4.30 17.4%54 0.497013 = 0.01 14.5%33 0.951035 = 0.04
4.30-8.12 37.1189 0.941920 + 0.02 29.3%31 1.827936 + 0.09
10.11-12.89 36.0152 0.907929 = 0.04 31.675% 1.867032 = 0.10
14.21-16.00 19.7+¢2 0.497513 + 0.02 241787 1467041 + 0.06
>16.00 22.3%7] 0.6775% +0.05 14.1788 1.027047 + 0.06
1.00-6.00 39.4*77 1.367037 * 0.03 33.13¢ 2051033 = 0.07

B. Systematic uncertainties for the rate asymmetries

For A ¢p, a large portion of the uncertainties associated
with the signal efficiency cancel. We find that the only
efficiency-related term discussed in Sec. VIII A that is not
negligible for A p is the one associated with the PID
selection. Among the efficiency-related systematics, we
therefore only consider this term. We also consider the
additive systematic uncertainties listed in Sec. VIII A.
Our measured A -p central values for J/# K and J/ i K*
are both well below 1% and show minimal detector
efficiency effects. Potential, additional A p systematic
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FIG. 7 (color online). Partial branching fractions for the
(a) K€€~ and (b) K*¢* €~ modes as a function of s showing
BABAR measurements (red triangles), Belle measurements [27]
(open squares), CDF measurements [28] (blue solid squares),
and the SM prediction from the Ali et al. model [5] with B —
K® form factors [31] (magenta dashed lines). The magenta solid
lines show the theory uncertainties. The vertical yellow shaded
bands show the vetoed s regions around the J/ i and (2S).

effects from the assumptions of lepton-flavor and isospin
symmetry are tested by removing these assumptions.

The systematic uncertainties for the lepton-flavor ratios
Ry are calculated by summing in quadrature the system-
atic errors in the muon and electron modes. Common
systematic effects, such as tracking, Kg efficiency, and
BB counting, yield negligible uncertainties in the ratios.
Potential, additional R 4 systematic effects are tested by
removing the assumption of isospin symmetry.

For the systematic uncertainties of A;, we sum in
quadrature the systematic errors in charged and neutral B
modes. Common systematic effects, which include BB
counting and a large portion of the uncertainties associated
with PID and tracking efficiencies, are negligible. Again,
additional tests on A, systematics are performed by relax-
ing the assumption of lepton-flavor symmetry. Furthermore,
as the cross-feed fractions in Tables II and III are estimated
under the assumption of isospin symmetry, we test this
systematic effect using cross-feed fractions estimated with
different A input values.

Our checks on symmetry assumptions described above
for Acp, Ry and A, generally show deviations from
the original measured values below 20% of the associated

* - ——
K I'l —_
———

—¥- BABAR, 471 M BB
= CDF, 6.8 fb"
-5 Belle, 657 M BB

. KI'r [ Aii’02

e [ zhong "02
P S T S S IS 1 ad
0 0.5 1 1.5 2 2.5

Branching Fraction

FIG. 8 (color online). Total branching fractions for the K€ ¢~
and K*¢*€~ modes (red triangles) compared with Belle [27]
(open squares) and CDF [28] (blue solid squares) measurements
and with predictions from the Ali et al. [5] (light gray bands),
and Zhong, Wu, and Wang [6] (dark gray bands) models.
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FIG. 9 (color online). (a),(c) mgg and (b),(d) mg,, fits for A -p
in the (a),(b) B and (c),(d) B low s region for all four K*¢* €~
modes combined. Data (points with error bars) are shown
together with total fit (blue solid lines), combinatorial back-
ground (magenta long-dashed lines), signal (black short-dashed
lines), hadronic background (green dash-dotted lines), and the
sum of cross-feed and peaking background (red dotted lines).

statistical uncertainties, and so we do not assign additional
uncertainties.

IX. RESULTS

We perform fits for each K®)€ ¢~ final state in each s
bin listed in Tables II and III to obtain signal and back-
ground yields, Ng, and Ny,, respectively. We model the
different background components by the PDFs described in
Sec. VI. We allow the shape parameter of the mgg kine-
matic threshold function of the combinatorial background
to float in the fits. For the signal, we use a fixed Gaussian
shape unique to each final state, as described previously.
We leave the shapes of the other background PDFs fixed.
For the peaking background, we fix the absolute normal-
ization. For the cross feed, we fix the normalization relative
to the signal yields.

Figure 5 shows as an example the mgg distribution for
the combined K€* €~ modes in bin s4, while Fig. 6 shows
the mgg and my,, mass spectra for the combined K*€* €~
modes in bin s;. The cross-feed contributions and the
peaking backgrounds are negligible for this fit. The

TABLE VI. Measured A p by mode and s region. The first
and second uncertainties are statistical and systematic, respec-
tively. ““All” refers to the union of 0.10 < s < 8.12 GeV?/c* and
s>10.11 GeV?/c*.

5 (GeV2/cY)  Acp(BT — KT ET€)

All —0.03 = 0.14 = 0.01
0.10-8.12 0.02 * 0.18 = 0.01
>10.11 —0.06753% + 0.01

Acp(B— K€ €7)

0.03 *0.13 = 0.01
—0.137318 + 0.01
0.167218 = 0.01
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FIG. 10 (color online). CP asymmetries Ap for K€€~
modes (red solid triangles) and K*€*€~ modes (red open
circles) as a function of s. The vertical yellow shaded bands
show the vetoed s regions around the J/¢ and (25).

combinatorial background dominates and for u* u~ modes
misidentified hadrons are the second largest background.
From the yields in each s bin we determine the partial
branching fractions summarized in Table V. Figure 7 shows
our results for the partial branching fractions of the K€€~
and K*€" €~ modes in comparison to results from the Belle
and CDF Collaborations [27,28] and to the prediction of the
Ali et al. model [5]. Our results are seen to agree with those
of Belle and CDF. Our results are also in agreement with the
most recent partial branching fraction measurements of
B — K*u* = from LHCb [29].
The total branching fractions are measured to be

B(B— K{T{)=(47+0.6+02) X107,
B(B— K*€+t{") = (10.2*14 +0.5) x 1077,

Here, the first uncertainties are statistical, and the second
are systematic. The total branching fractions are shown in
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FIG. 11 (color online). mypg fits for R in the (a) Kete™ and
(b) K™ ™ modes in the high s region. Data (points with error
bars) are shown together with total fit (blue solid lines), combi-
natorial background (magenta long-dashed lines), signal (black
short-dashed lines), hadronic background (green dash-dotted
lines), and the sum of cross-feed and peaking background (red
dotted lines).
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TABLE VII. Measured R by mode and s region. The first
and second uncertainties are statistical and systematic, respec-
tively. All refers to the union of 0.10 < s < 8.12 GeV?/c* and
5> 10.11 GeV?/c*.

s (GeV?/c%) Rk Ry

All 1007931 + 0.07 1137934 £ 0.10
0.10-8.12 0.74104% = 0.06 1.067043 + 0.08
>10.11 1431093 = 0.12 1184235 = 0.11

Fig. 8 in comparison to measurements from Belle [27] and
CDF [28] and predictions from Ali et al. [S] and Zhong,
Wu, and Wang [6].

To measure direct A ¢p, we fit the B and B samples in
the two K*€* ¢~ modes and four K*€* €~ modes listed in
Sec. IV. We perform the measurements in the full s region,
as well as in the low s and high s regions separately. The B
and B data sets share the same background shape parame-
ter for the kinematic threshold function. Figure 9 shows an
example fit for the combined B — K*¢*{~ modes in the
low s region. Table VI summarizes the results. Figure 10
shows A p as a function of s. Our results are consistent
with the SM expectation of negligible direct ‘A ¢p.

We fit the e* ¢~ and w* ™ samples in the four K€+ €~
modes and four K*€* €~ modes in the low s and high s
regions separately to measure the lepton-flavor ratios.
Figure 11 shows an example fit for the combined
Ku*u~ and Ke'e~ modes in the high s region.
Table VII and Fig. 12 show Ry and Ry for s>
0.1 GeV?/c*. Our results are consistent with unity as ex-
pected in the SM.

We fit the data in each s bin separately to determine A,
for the four combined K€" €~ and four combined K*€* €~
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FIG. 12 (color online). Lepton-flavor ratios Ry for the
K€* ¢~ (red solid triangles) and K*¢*¢~ modes (red open
circles) as a function of s. The vertical yellow shaded bands
show the vetoed s regions around the J/ i and #(2S).
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FIG. 13 (color online). The mgg and mg, fit projections for the
(a),(b) K**€* €~ and (c),(d) K**¢*€~ modes in bin s,. Data
(points with error bars) are shown together with total fit (blue
solid lines), combinatorial background (magenta long-dashed
lines), signal (black short-dashed lines), hadronic background
(green dash-dotted lines), and the sum of cross-feed and peaking
background (red dotted lines).

modes. Figure 13 shows an example fit for bin s,. The
results are summarized in Table VIII. Figure 14 shows our
measurements as a function of s in comparison with those
of Belle [27]. The two sets of results are seen to agree
within the uncertainties. Our results are also consistent
with the SM prediction that “A; is slightly negative
(~ —1%) except in bin s;, where it is predicted to have
a value around +5% [4].

Our A ; measurements in the low s region (0.10 < s <
8.12 GeV?/c*) yield

AP — K€T¢7) = —0.58192% + 0.02[2.10],
AW(B— KT ¢7) = —0.25%929 + 0.03[1.20],
where the first uncertainty is statistical and the second is

systematic. The A; significances shown in the square
brackets include all systematic uncertainties. We estimate

TABLE VIII. Measured “A; by mode and s bin. The first and
second uncertainties are statistical and systematic, respectively.

Ar

5 (GeV2/c%) B— K{T € B— Kt

0.10-2.00 —0.517932 + 0.04 —0.17+333 * 0.03
2.00-4.30 —0.737548 = 0.03 —0.06793% * 0.05
4.30-8.12 —0.32733 £ 0.01 0.031243 = 0.04
10.11-12.89 —0.05%925 = 0.03 —0.48+032 + 0.05
14.21-16.00 0.057931 +0.03 0.24738) = 0.04
>16.00 —0.93%983 + 0.04 1.07+¢31 £ 0.35
1.00-6.00 —0.41 = 0.25 = 0.01 —0.20%939 * 0.03
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FIG. 14 (color online). Isospin asymmetry A; for the
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the significance by refitting the data with ‘A, fixed to zero
and compute the change in log likelihood v2A InL be-
tween the nominal fit and the null hypothesis fit.

X. CONCLUSION

In summary, we have measured total and partial branching
fractions, direct CP asymmetries, lepton-flavor ratios, and
isospin asymmetries in the rare decays B — K€" €~ using
471 X 10° BB pairs. These results provide an update to our
previous measurements on branching fractions and rate asym-
metries excluding the s < 0.1 GeV?/c* region [30]. The
total branching fractions, B(B — K¢"€~) = (4.7 = 0.6 +
0.2) X 1077 and B(B— K*¢*¢7) = (10.2*}4 £ 0.5) X
1077, are measured with precisions of 13% and 14%, respec-
tively. The partial branching fractions as a function of s agree

PHYSICAL REVIEW D 86, 032012 (2012)

well with the SM prediction. For 0.10<s<
8.12 GeV?/c*, our partial branching fraction results
also allow comparisons with soft-collinear effective
theory based predictions. CP asymmetries for both B —
K€*€¢~ and B— K*¢*€¢~ are consistent with zero and
the lepton-flavor ratios are consistent with one, both as
expected in the SM. The isospin asymmetries at low
s values are negative. For 0.10 < s < 8.12 GeV?/c* we
measure A ;(B— K€T¢7) = —0.587332 £ 0.02 and
A;B— KY€"¢")=-025%039 £ 0.03. The isospin
asymmetries are all consistent with the SM predictions.
All results are in good agreement with those of the Belle,
CDF, and LHCb experiments.
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