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Many aspects of modern science, business and engineering have become data-centric, relying

on tools from Artificial Intelligence and Machine Learning. Practitioners and researchers in

these fields need tools that can incorporate observed data into rich models of uncertainty to

make discoveries and predictions. One area of study that provides such models is the field of

Bayesian Nonparametrics. This dissertation is focused on furthering the development of this

field.

After reviewing the relevant background and surveying the field, we consider two areas of

structured data:

- We first consider relational data that takes the form of a 2-dimensional array—such as

social network data. We introduce a novel nonparametric model that takes advantage

of a representation theorem about arrays whose column and row order is unimportant.

We then develop an inference algorithm for this model and evaluate it experimentally.

- Second, we consider the classification of streaming data whose distribution evolves over

time. We introduce a novel nonparametric model that finds and exploits a dynamic

hierarchical structure underlying the data. We present an algorithm for inference in
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this model and show experimental results. We then extend our streaming model to

handle the emergence of novel and recurrent classes, and evaluate the extended model

experimentally.
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CHAPTER 1

INTRODUCTION

In many fields—including science, business, government, and medicine—there is a constant

need to make decisions under uncertainty. For example, a business making decisions about

what products to produce and market necessarily must deal with the uncertainty of predicting

customer needs and desires. However, there is usually data available—often in large amounts—

to inform such decisions. In recent years, the field of machine learning has supplied many

of the computational techniques used to turn these data sets into actionable intelligence.

In practice, machine learning is essentially a field of applied statistics with an emphasis

on computational aspects, with many of its techniques founded in statistical theory and

probability.

An increasingly popular approach to statistics and machine learning is the Bayesian

paradigm (see, e.g., (Gelman et al. 2004; Box and Tiao 2011; Bernardo and Smith 1994;

Barber 2013; Thibaux 2008)), wherein probability is used to directly model uncertainty. The

general pattern of a Bayesian technique involves:

1. Defining a probability distribution over the observed data, called the likelihood, which

generally depends on unobserved parameters

2. Defining a probability distribution over these unobserved parameters, called the prior

3. Observing the data and updating the prior to produce the posterior distribution

The likelihood and prior should ideally encode whatever is known before the data is seen, i.e.,

the scientist’s prior beliefs.

This approach is very general, and even methods that are not traditionally considered

Bayesian can be re-cast into the Bayesian paradigm. For example, Neural Networks can be

trained using Bayesian techniques (Neal 1993a, 1992; Andrieu, Freitas, and Doucet 1999; Solla
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and Winther 1998); Support Vector Machines can be cast as a probabilistic model (Franc,

Zien, and Schölkopf 2011), or used as part of a Bayesian model (Zhu, Chen, and Xing 2014);

k-nearest neighbor models can also be made more robust via Bayesian techniques (Guo and

Chakraborty 2009).

Historically, the process of computing posterior distributions—also called inference—has

been prohibitively expensive (Green et al. 2015; Betancourt 2017b), such that only uselessly

simple models were tractable. However, advances in inference techniques (Andrieu et al. 2003)

have enabled much more expressive models to be used. Thus, the Bayesian paradigm has

become a practical option worth considering. Indeed, there are many arguments in favor

of the Bayesian approach. On the practical level, it is consistent with the “common-sense

interpretation of statistical conclusions” and has “flexibility and generality [which] allow it

to cope with very complex problems” (Gelman et al. 2004). Indeed, “[t]he only relevant

thing is uncertanty” (de Finetti 1974): whether a process is deterministic, or whether more

information about it is available to other people, any decision or conclusion a scientist must

make can only depend on the information available to them, and their degree of certainty.

Additionally, only the Bayesian approach permits the use of information known prior to the

current experiment, and gives a formal method of combining such knowledge with the current

observations (Ferguson 1983). See also (Bernardo and Smith 1994; Barber 2013; Gelman

2008; Gelman and Robert 2013; Morey et al. 2015; Hauer 2004; Carlin and Louis 2009) for

further discussion on the merits of Bayesianism.

The remainder of this dissertation is organized as follows. In Chapter 2, we review the

theoretical background underlying Bayesian methods. In Chapter 3, we review nonparametric

techniques. In Chapter 4, we review the computational techniques for performing inference in

our models. In Chapter 5, we present a Bayesian nonparametric model of relational data such

as social networks. In Chapter 6, we present a Bayesian nonparametric model of streaming

data whose distribution can change over time, and in Chapter 7, we extend this model to

handle novel and recurrent classes. Finally, in Chapter 8, we present our conclusions.
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CHAPTER 2

BAYESIAN PROBABILITY THEORY

To gain a deep understanding of Bayesian techniques, it is helpful to explore the theoretical

underpinings of modern probability theory. Here we present a shallow review of the most

relevant aspects of modern axiomatic probability. We assume familiarity with the standard

concepts and notation of basic set theory. See, e.g., (Roitman 1990) or the first chapter

of (Munkres 2000) for an introduction to this topic.

2.1 Notation and Preliminaries

We start with some preliminary definitions and notation.

We abbreviate the phrase “if and only if” by “iff.” We denote by R+ the set [0,∞) of

positive real numbers, and by R the set R ∪ {−∞,∞}. For any two functions f, g : A→ B,

we write f ≡ g if f(x) = g(x) for any x ∈ A. We may also denote a constant function by

f ≡ b for some b ∈ B. We denote by a ∝ b that a = cb for some constant c, i.e., that a is

“proportional to” b.

Given some ordered set A, the supremum, supA, is the smallest upper bound on A, and

the infimum, infA, is the largest lower bound. For countable sets, these are the same as

maximum and minimum, respectively, but are more general. For example, the open interval

(0, 1) has no maximum or minimum, but has supremum 1 and infimum 0.

We denote by Γ(·) the Gamma function

Γ(z) =

∫ ∞
0

xz−1e−xdx,

which generalizes the factorial to real (or complex) inputs. Relatedly, we denote by B(·, ·)

the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt = Γ(x)Γ(y)

Γ(x+ y)
.
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2.2 Topological Spaces

Let Ω be some arbitrary set. A topology T on Ω is a collection of subsets of Ω such that:

- ∅ ∈ T and Ω ∈ T

- Let U be an arbitrary subcollection of T ; then ∪T∈UT ∈ T

- Let U be a finite subcollection of T ; then ∩T∈UT ∈ T

That is, T is closed under arbitrary (even uncountable) unions and finite intersections. Then,

we call (Ω, T ) a topological space, and the sets T ∈ T are called the open sets of Ω. The

complement of any open set is called closed; a set can be both open and closed. If (S,S)

and (T, T ) are topological spaces, then a mapping f : S → T is called continuous if for any

A ∈ T , f−1A ∈ S, i.e., it maps open sets to open sets. See (Munkres 2000) for a thorough

treatment of topology.

2.3 Measure Theory

A σ-algebra A on Ω is a nonempty collection of subsets of Ω such that:

- If A ∈ A, then the complement of A, Ac ∈ A

- If {A1, A2, . . .} is a countable collection of elements of A, then ∪iAi ∈ A and ∩iAi ∈ A

That is, A is closed under complementation, countable unions and countable intersections.

These properties imply that ∅ ∈ A, and Ω ∈ A: if A ∈ A, then Ac, A ∩Ac = ∅ and ∪Ac = Ω

are all in A. The pair (Ω,A) is called a measurable space. A sub-σ-algebra of A is some

σ-algebra B on Ω such that B ⊆ A.

If we have some arbitrary collection C of subsets of Ω, then there exists a smallest σ-algebra

containing C, which we call the σ-algebra generated by C and denote by σ(C). In particular,
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if C is a topology on Ω, we call σ(C) the Borel σ-algebra on Ω, and denote it B(Ω) when the

topology is implicit. A Borel space is a measurable space S such that there exists a bijection

f between S and some T ∈ B[0, 1] such that both f and f−1 are measureable.

The Lebesque measure λ is a measure on (R,B(R)) such that λ[a, b] = b− a.

If we have two measurable spaces, (Ω,A) and (Ξ,B), then a mapping f : Ω→ Ξ is said

to be measurable if for every A ∈ B, f−1A ∈ A, so that measurable mappings are to measure

theory what continuous mappings are to topology (indeed, any continuous mapping between

topological spaces is measurable with respect to their Borel σ-algebras (Kallenberg 1997,

Lemma 1.5)). The set {f−1B|B ∈ B} is a σ-algebra on Ω, called the σ-algebra generated by

f . Note that by the definition of measurability above, σ(f) ⊆ A.

A measure on (Ω,A) is a function µ : A → [0,∞] such that:

- µ∅ = 0

- countable additivity: µ∪iAi =
∑

i µAi, for any collection {Ai} of disjoint elements of A

Then, (Ω,A, µ) is called a measure space.

A set A ∈ A is called null if µA = 0. The support of µ, suppµ is the smallest closed

A ∈ A such that µAc is null. If there exists some countable partition (An) of Ω such that

µAn <∞ for all n, then µ is said to by σ-finite. If a property holds for all ω ∈ suppµ (but

may fail to hold on some null set A), it is said to hold almost everywhere with respect to µ,

or hold µ-a.e.. If suppµ = {ω} for some ω, then µ = cδω, where δω(A) = 1A(ω) is a Dirac

measure, and c > 0. In general, if {ω} ∈ A and µ{ω} > 0, then ω is called an atom of µ. If

µ has no atoms, it is said to be diffuse or nonatomic.

Proposition 2.1. Let C = C1, C2, . . . be some partition of Ω, and let f : Ω → R be

σ(C)-measurable. Then, f is constant over each Ci.

Proof. By measurability, we have that f−1B ∈ σ(C) for any B ∈ B. In particular, f−1{x} ∈

σ(C) for x ∈ R, so f−1{x} is either some Ci or a countable union of Cis.

5



For any p > 0, we denote by Lp(Ω,A, µ) the class of all measurable functions f : Ω→ R

such that

‖f‖p = (µ|f |p)
1
p =

(∫
|f(ω)|pµ(dω)

) 1
p

<∞

‖ · ‖p is called the Lp-norm. If (Ω,A, µ) = (R,B(R), λ) or is obvious from context, we just

write Lp.

We now define the integral of the measurable function f : Ω→ R:

µf =

∫
fdµ =

∫
f(ω)µ(dω)

as follows. First, any non-negative real-valued measurable function f is the limit of a sequence

(fk) of simple measurable functions : Ω → R+ (Kallenberg 1997, Lemma 1.11), where a

simple function is of the form
n∑

i=1

ci1Ai
,

where ci ∈ R+, Ai ∈ A, and

1Ai
(x) =

{
1 x ∈ Ai

0 otherwise
is an indicator function for Ai. Then, we can define the integral of a simple non-negative

function to be

µ

(
n∑

i=1

ci1Ai

)
=

n∑
i=1

ciµAi.

Then, by (Kallenberg 1997, Theorem 1.19), if the sequence (fk) converges to f , then µfk

converges to µf . Finally, Lebesque’s dominated convergence theorem (Kallenberg 1997,

Theorem 1.21) gives conditions under which this result extend to arbitrary real-valued

measurable functions.

2.4 Probability Theory

If µ(Ω) = 1, then µ is a probability measure, and (Ω,A, µ) is a probability space, and the

elements of A are called events. If a property holds µ-a.e., and µ is a probability measure,

then the property is said to hold almost surely (a.s.) instead.
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A function k : S × T → [0,∞] is called a kernel from (S,S) to (T, T ) if k(·, B) is

S-measurable for any B ∈ T , and k(s, ·) is a measure on (T, T ) for any s ∈ S. Equivalently,

we can consider k to be a measurable function k : S →M(T ), whereM(T ) is the space of

all σ-finite measures on (T, T ). If k(s, T ) = 1 for all s, so that k(s, ·) is a probability measure,

we call k a probability kernel.

2.4.1 Random Elements, Distributions, and Densities

Rather than define a probability measure (Ω,A, P ) for each set we wish to sample from, we

often fix a probability space, e.g., ([0, 1],B([0, 1]), λ), and work with measurable functions

from this space. A random element of some set S is a measurable function ξ : Ω→ S. When

S = R, we use the term variable rather than element; when S is a space of functions, we call

ξ a stochastic process. Then, for B ∈ S, we may denote the event {ξ ∈ B} = ξ−1B, and

P{ξ ∈ B} = P (ξ−1B) = (P ◦ ξ−1)B,

where we call P ◦ξ−1 the distribution of ξ. We denote by ξ d
= η the fact that P ◦ξ−1 = P ◦η−1,

i.e., ξ and η have the same distribution.

Two events A,B ∈ A are said to be independent (denoted A ⊥⊥ B) if P (A∩B) = PA×PB.

Likewise, two random elements ξ : Ω→ S and η : Ω→ T are said to be independent, denoted

ξ ⊥⊥ η if, for any A ∈ σ(ξ) and B ∈ σ(η), A ⊥⊥ B.

The expected value of a random variable is defined as

Eξ =

∫
ξdP =

∫
x(P ◦ ξ−1)(dx).

Likewise, for any measurable f : S → R,

Ef(ξ) =

∫
f(ξ)dP =

∫
f(s)(P ◦ ξ−1)(ds) =

∫
x(P ◦ (f ◦ ξ)−1)(dx),

where ξ takes values in an arbitrary S. The variance of a random variable is defined as

var(ξ) = E[ξ −E[ξ]]2 = E[ξ2]− (E[ξ])2.
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Let f : Ω→ R+ be measurable. Then, for any measure µ, we may define ν = f · µ by

νA = (f · µ)A = µ(1Af) =

∫
A

fdµ, (2.1)

and call f the µ-density of ν. This is also denoted f = dν/dµ.

Lemma 2.1. Let f, g : Ω→ R+ be measurable functions on some measure space (Ω,A, µ),

and let ν be some other measure on (Ω,A). Then,∫
g(ω)ν(dω) =

∫
f(ω)g(ω)µ(dω)

iff f = dν/dµ.

Proof. First, let g = 1A for some A ∈ A. Then, the result is just Equation (2.1), so f must be

a density. Using the linearity and dominated convergence techniques at the end of Section 2.3,

we extend to arbitrary functions g.

If f = d(P ◦ ξ−1)/dP , for some ξ : Ω → Ω, we refer to f : S → R+ as just the density

of ξ, and denote it p(x) for x ∈ Ω. If p(x) has other parameters, we may indicate this by

separating the other parameters with a semicolon, e.g., p(x; a, b)

We write ξ ∼ f or say that ξ is drawn from f to denote that f is the distribution or

density of ξ. For a collection of random elements, we write ξi
ind∼ fi to give the distribution

or density of each ξi and to declare that the ξi are independent of each other. Similarly, we

write ξi
iid∼ f to show that the ξi are independent and identically distributed with distribution

or density f .

Some common distributions we will need:

- The Uniform distribution: ξ ∼ UA if ξ : Ω→ A, A is some set, and

p(x) =
1

|A|
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- The Beta distribution: ξ ∼ Beta(α, β) if ξ : Ω→ [0, 1], α, β > 0, and

p(x;α, β) =
xα−1(1− x)β−1

B(α, β)

(if α = β = 1, this reduces to U(0, 1))

- The Dirichlet distribution: ξ ∼ Dirichlet(~α) if ξ is a random element of the d-simplex

(the set of d-dimensional real vectors whose elements sum to 1), ~α ∈ Rd, and

p(x; ~α) = Γ(
d∑

i=1

αi)
d∏

i=1

xαi−1
i

Γ(αi)

- The Exponential distribution: ξ ∼ Exp(λ) if ξ : Ω→ R+, λ > 0, and

p(x;λ) = λe−λx

- The Gamma distribution: ξ ∼ G(k, θ) if ξ : Ω→ R+, k, θ > 0, and

p(x; k, θ) =
xk−1e−

x
θ

Γ(k)θk

- The Normal distribution: ξ ∼ N(µ, σ2) if ξ : Ω→ R, µ ∈ R, σ > 0, and

p(x;µ, σ2) =
exp

(
− (x−µ)2

2σ2

)
√
2πσ2

- The Multivariate Normal distribution: ξ ∼ N(~µ, ~Σ) if ξ : Ω→ Rd, ~µ ∈ Rd, ~Σ ∈ Rd×d

and is positive semi-definite, and

p(~x; ~µ, ~Σ) =
exp

(
−1

2
(~x− ~µ)>~Σ−1(~x− ~µ)

)
√
2π|~Σ|

- The Poisson distribution: ξ ∼ Poisson(λ) if ξ : Ω→ Z+, λ > 0, and

p(n;λ) = e−λ
λn

n!

- The Bernoulli distribution: ξ ∼ Bernoulli(p) if ξ : Ω→ {0, 1}, p ∈ [0, 1], and

p(x; p) =

{
1− p x = 0

p x = 1

9



2.4.2 Product Measures and Conditional Distributions

Let (S,S) and (T, T ) be measureable spaces. We can define the product space of S and T to

be the measureable space (S × T,S ⊗ T ), where S ⊗ T is the product σ-algebra generated

by the set {A × T |A ∈ S} ∪ {B × S|B ∈ T }. We now present an important result about

measures on such product space:

Theorem 2.1 (Fubini). Let (S,S, µ) and (T, T , ν) be σ-finite measure spaces. Then, there

exists a unique measure µ⊗ ν on (S × T,S ⊗ T ) such that

(µ⊗ ν)(A×B) = µA · νB

for any A ∈ S, B ∈ T . Additionally, for any measurable function f : S × T → R with

(µ⊗ ν)|f | <∞,

(µ⊗ ν)f =

∫
µ(ds)

∫
f(s, t)ν(dt) =

∫
ν(dt)

∫
f(s, t)µ(ds)

For any sub-σ-algebra F ⊆ A, we define the conditional expectation E[·|F ] : L1 → L1(F)

to be the a.e.-unique linear operator such that, for any random variable ξ ∈ L1, and any

A ∈ F

E[E[ξ|F ]1A] = E[ξ1A]. (2.2)

See (Kallenberg 1997, Theorem 5.1) or (Billingsley 2012, Section 34) for proofs of the existance

of this operator. To explore the meaning of this operator, consider some experiment that

yields information about ξ. The possible outcomes of such an experiment induce some

σ-algebra F . At one extreme, if the experiment yields no information, then F = {∅,Ω}, and

we have E[ξ|{∅,Ω}] ≡ E[ξ], i.e., we learn nothing and the conditional expectation is just the

expectation. At the other extreme, F = A and E[ξ|A] = ξ, i.e., the experiment tells us the

exact value of ξ, so the conditional expection is naturally just ξ itself. Conditioning on a

10



random element η is defined as conditioning on σ(η). Applying Proposition 2.1, there exists

some constant αi ∈ R where

E[ξ|F ](ω) = αi

for all ω ∈ Ci. Combining with Equation (2.2),

E[E[ξ|F ]1Ci
] = E[αi1Ci

] = αiP (Ci) = E[ξ1Ci
],

so αi = E[ξ1Ci
]/P (Ci).

Then, consider the random variable ξ = 1A, which is 1 with probability P (A). We define

the conditional probability of A as P [A|F ] = E[1A|F ]. Applying the above argument, when

F = σ(C) for some partition C of Ω,

P [A|F ](ω) = E[1A1Ci
]

P (Ci)
=
P (A ∩ Ci)

P (Ci)

for ω ∈ Ci.

The function P [ξ ∈ ·|η], is called the conditional distribution of ξ : Ω→ S, given η : Ω→ T ,

which is a probability kernel from (T, T ) to (S,S), i.e., for each t ∈ T , P [ξ ∈ ·|η](t, ·) is

a measure on (S,S). In particular, P [ξ ∈ ·|η](t, A) = P [ξ ∈ A|η](t) = E[1ξ−1A|σ(η)](η−1t).

See (Faden 1985) for necessary and sufficient conditions for this kernel to exist.

We can now define conditional independence: two events A and B are conditionally

independent given F if

P (A ∩B|F) = P (A|F)P (B|F),

and the definition extends to random elements just as for unconditional independence.

Let (ξ, η) : Ω → Ω × Ω be a random vector with density f(x, y). Equivalently, we say

ξ and η are random elements with joint density f(x, y). Then, by Theorem 2.1, f(y) =∫
S
f(x, y)(P ◦ ξ−1)(dx) is the density of η alone, and f(x) =

∫
T
f(x, y)(P ◦ η−1)(dy) is the

density of ξ. These are called the marginal densities of f(x, y).
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Theorem 2.2. Let

f(x|y) =

{
f(x,y)
f(y)

f(y) 6= 0

0 otherwise.

Then, f(x|y) is the density of the conditional distribution of ξ given η, that is,

f(·|y) = d(P [ξ ∈ ·|η](y))
d(P ◦ ξ−1)

,

so that ∫
A

f(x|y)(P ◦ ξ−1)(dx) = P [ξ ∈ A|η](y)

for any A ∈ S and any y ∈ T .

Proof. Let g : Ω → R+ be some measureable function. We first prove that Equation (2.2)

holds: that is, for any B ∈ A,

E

[∫
g(x)f(x|η)(P ◦ ξ−1)(dx)1B(η)

]
= E [g(ξ)1B(η)]

Note that the left expectation is over η alone, whereas the right expectation is over both ξ

and η. Expanding both sides, and cancelling out the f(y) factors on the left, we get∫ [∫
g(x)f(x, y)(P ◦ ξ−1)(dx)1B(y)

]
P (dy) =

∫ ∫
[g(x)1B(y)] f(x, y)P (dx, dy)

which follows directly from Theorem 2.1, with µ = P ◦ ξ−1 and ν = P ◦ ξ−1.

Thus,
∫
g(x)f(x|η)(P ◦ ξ−1)(dx) is the conditional expectation of g(x) with respect to η.

Applying g(x) = 1A(x) yields the result.

Applying this, we get an immediate corollary:

Corollary 2.1 (Bayes’ Theorem). For any random vector (ξ, η) with density f(x, y), we have

f(x|y) = f(y|x)f(x)
f(y)
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The next result is best given in the visual language of category theory (see, e.g., (Adámek,

Herrlich, and Strecker 1990; Baez and Stay 2010; Mac Lane 1978) for an introduction to

category theory). A category is a class of objects together with morphisms or arrows between

them. The objects represent “things,” and the morphisms represent “ways to go between

things” (Baez and Stay 2010). Importantly, morphisms can be composed: if f and g are

arrows, so is the composition g ◦ f . Often, category theorists use graphical diagrams to

represent a category. For example,

B

A C

gf

h

represents a simple category with three objects and three morphisms. A diagram is said to

commute if every path between two objects is equal. In this example, the diagram commutes

if h = g ◦ f .

(Culbertson and Sturtz 2013) gives a categorical treatment of Bayesian probability, where

the objects are certain measurable spaces which admit conditional probabilities, and the

morphisms are certain probability kernels. The composition of kernels, denoted by g ◦k f is

given by

(g ◦k f)(x,A) =
∫
g(y, A)f(x, dy).

Finally, let us introduce the notation ιf (ω,A) = 1A(f(ω)), which promotes the measurable

function f : Ω→ S to a kernel from Ω to S. With this, we can present our next result:

Theorem 2.3. The diagram

13



1

Ω

S T

P◦ξ−1

P

P◦η−1

ιξ ιη

P [η∈·|ξ]

P [ξ∈·|η]

commutes and

∫
A

P [η ∈ ·|ξ](·, B)d(P ◦ ξ−1) = P ({ξ ∈ A} ∩ {η ∈ B}) =
∫
B

P [ξ ∈ ·|η](·, A)d(P ◦ η−1)

for any A ∈ S and B ∈ T , provided the conditional probabilities exist.

Here, 1 represents the trivial measureable set with one element, so that a probability

kernel from 1 to S is just a probability measure on S. (Culbertson and Sturtz 2013) proved

a similar theorem where Ω = S × T .

Proof. The diagram encodes the following basic relations, plus their symmetrical counterpoints

with ξ and η swapped:

(1) (P ◦ ξ−1)(A) =
∫
ιξ(ω,A)P (dω):

The right hand side expands to
∫
1A(ξ(ω))P (dω) = E[1Aξ] = P (ξ ∈ A), which is defined

as (P ◦ ξ−1)(A).

(2) (P ◦ ξ−1)(A) =
∫
P [ξ ∈ ·|η](t, A)(P ◦ η−1)(dt):

The right hand side is E[P [ξ ∈ A|η]] = E[E[1ξ−1A|η]]. By Equation (2.2), this equals

E[1ξ−1A] = P (ξ−1A) = (P ◦ ξ−1)(A)

14



Finally, ∫
A

P [η ∈ ·|ξ](·, B)d(P ◦ ξ−1) =
∫
ξ−1A

P [η ∈ ·|ξ](ξ(ω), B)P (dω)

=

∫
ξ−1A

P [η ∈ B|ξ](ξ(ω))P (dω)

= E[P [η ∈ B|ξ](ξ(ω))1ξ−1A]

= E[E[1η−1B|ξ]1ξ−1A]

= E[1η−1B1ξ−1A]

= P (η−1B ∩ ξ−1A)

= P ({ξ ∈ A} ∩ {η ∈ B})

The other equality follows symmetrically.

We can interpret the composition of kernels as a sequential sampling operation: a kernel

f from S to T gives a way of sampling from T for each s ∈ S. A kernel g from T to U

likewise samples U given t ∈ T . The composition g ◦k f gives a way of sampling U given a

s ∈ S: first sample t ∈ T according to f(s, ·), then sample from g(t, ·). Using this language,

(1) is just a restatement of the definition of the random element ξ: ω is drawn from P , then

ξ(ω) is output. (2) says that we can sample the random element ξ by first sampling η then

sampling from the conditional distribution P [ξ ∈ ·|η]. Then, the final statement says that if

we sample ξ and then η from the conditional (or vice versa), and put the two together, this

is the same as sampling from both unconditional distributions at the same time.

2.4.3 Martingales, Markov Processes, and Random Series

A filtration on some index set T ⊆ R is a sequence of σ-algebras Ft ⊆ A, t ∈ T , with

Fs ⊆ Ft for s < t. A stochastic process on T (i.e., a random element of the set of functions

{f : T → U}) is adapted to (Ft) if it is Ft-measurable for every t. The smallest filtration

that X is adapted to is said to be generated by X, and is given by Ft = σ{Xs|s ≤ t}.
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A real-valued process X is a martingale (with respect to (Ft)) if

E[Mt|Fs] = Xs a.s.

for all s ≤ t.

Lemma 2.2. Let (Mt) be a martingale such that Mt is finite for all t. Then, var(Mt) ≥

var(Ms) for all t ≥ s.

Proof. We begin by expanding var(Mt):

var(Mt) = E[M
2
t ]− (E[Mt])

2

= E[E[M2
t |Fs]]− (E[E[Mt|Fs]])

2 by Equation (2.2)

= E[var[Mt|Fs]] +E[(E[Mt|Fs])
2]− (E[E[Mt|Fs]])

2

= E[var[Mt|Fs]] + var(E[Mt|Fs])

= E[var[Mt|Fs]] + var(Ms) by the martingale property.

By definition, var[Mt|Fs] ≥ 0, so var(Mt) ≥ var(Ms).

A S-valued process X on T is a Markov process if it is adapted to some filtration (Ft), and

Xt is independent of Fs, given Xs for s ≤ t. If T starts at 0, then X is uniquely determined

by an initial distribution ν and a set of kernels µs,t. When µs,t is fixed, we write Pν for the

distribution of the paths (Xt). If µs,t = µt−s depends only on the length of time t− s, X is

said to be time-homogeneous.

A process X is called stationary if θtX
d
=X for all t, where θt maps ωs 7→ ωs+t. A measure

ν is called invariant for (µt) if
∫
ν(dx)µt(x,B) = νB for all B ∈ S

Lemma 2.3. A time-homogeneous Markov process with initial distribution ν and transition

kernels µt is stationary iff ν is invariant for (µt).
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If S is countable, we call X a Markov chain; if T = Z+, we call it a discrete-time process.

If Pδi{inf{n > 0|Xn = j} < ∞} > 0 for all i, j ∈ S—so that every state is reachable with

positive probability from every other state—we call X irreducible.

Let µ1(i, j) = µ(i, j), and µn(i, j) =
∑

k∈S µn−1(i, k)µn−1(k, j), so that µn(i, j) is the

probability of reaching state j from state i in n steps. Then, consider µn(i, {i}), for any state

i ∈ S. Then, the set R = {n ∈ N|µn(i, {i}) > 0} is the set of time-lags where it is possible

for i to recur. If R has a greatest common denominator di > 1, so that i can only recur at

some multiple of di, we call di the period of i. If there are no states i with periods, we call X

aperiodic.

Theorem 2.4. For an irreducible, aperiodic discrete-time Markov chain X, either

1. There exists a unique invariant distribution ν, such that ν({i}) > 0 for all i ∈ S and

lim
n→∞

sup
A
|(Pµ ◦ θ−1n )A− PνA| = 0,

or

2. No invariant distribution exists, and

lim
n→∞

µn(i, {j}) = 0, for all i, j ∈ S

Thus, either X converges to a stationary chain Pν , “forgetting” the initial distribution µ,

or the multi-step transition probability µn(i, {j}) spreads out without bound.

A measurable transformation T on (Ω,A, µ) is called measure-preserving if µ ◦ T−1 = µ;

equivalently, µ is called invariant relative to T . Then, T ◦ ξ d
= ξ for any random element ξ.

Lemma 2.4. Let ξ be a random element of S, and let T be a measurable transformation on

S. Then T ◦ ξ d
= ξ iff the discrete-time process (T nξ), n ∈ Z+ is stationary. Additionally, if f

is measurable, (f ◦ T nξ) is also stationary. Any stationary process can be represented this

way.
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Combining Theorem 2.4 and Lemma 2.4, we see that an irreducible, aperiodic discrete-

time Markov chain X with invariant distribution ν, converges to a chain X ′ where X ′n
d
= ξ for

some random variable ξ. Furthermore,

ν({j}) =
∑
i

ν{i}µ′n(i, {j})

=
∑
i

ν{i}(P ◦ ξ−1){j}

= (P ◦ ξ−1){j},

so X ′n
iid∼ ν. These results extend to analogous results with continuous time and state; see,

e.g., (Kallenberg 1997, Theorem 20.15).

We end this section with a result on random series, i.e., sums over random sequences:

Theorem 2.5 (the law of large numbers). Let ξ1, ξ2, . . . be a sequence of i.i.d. random

variables with E|ξ| <∞. Then,

lim
n→∞

∑n
i=1 ξi
n

= Eξ a.s.

See, e.g., (Kallenberg 1997, Theorem 3.23) for a proof.

2.4.4 Exchangeability

A random sequence (ξk) is exchangeable if

(ξπ1 , ξπ2 , . . .)
d
=(ξ1, ξ2, . . .)

where (πi) is a finite permutation, a permutation such that πi 6= i for only finitely many i.

Such sequences are abundant in practice, to the extent that data that are not exchangeable

are the exception, and are typically called things like “time-series data” or “streaming data.”
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Theorem 2.6 (de Finetti). Let (ξk) be some infinite random sequence on some Borel space

S. Then, (ξk) is exchangeable iff

η ∼ λ

ξk
iid∼ η

for some measure λ on the space of probability measures on S.

This is a very useful—and very Bayesian—tool, as it says that any exchangeable data

(which, as discussed above, is most data) can be treated as conditionally i.i.d., so that we

may compute posteriors P [η ∈ ·|ξ1, . . . , ξn] after n data points. λ is sometimes called the

mixing distribution for (ξk). See (Aldous 1985; Diaconis 1988; de Finetti 1931, 1938) for more

discussion of exchangeability.

2.5 Bayesian Methods

The formal Bayesian approach to statistics begins by modeling observed data as a random

element ξ and unobserved parameters as a random element η, by defining the conditional

distribution P [ξ ∈ ·|η] (the likelihood), and the distribution P ◦ η−1 (the prior). Typically,

this is done by defining the densities p(x|θ) and p(θ). Then, the posterior p(θ|x) is computed

using Corollary 2.1:

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(dθ)

. (2.3)

In some cases, the parameter θ is the object of interest, but often the real interest is in

making predictions about future observations. In these cases, we model the observed data as

a vector (x1, . . . , xn), and compute the posterior predictive distribution

p(xn+1|x1, . . . , xn) =
∫
p(xn+1|θ)p(dθ|x1, . . . , xn)

Often, we assume the order of the data is irrelevant, representing a partial observation of an

infinite exchangeable sequence, in which case we can apply Theorem 2.6.
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In principle, the output of a Bayesian procedure is a full posterior distribution, but in

practice this is hard to communicate. Often a summary of the posterior, such as the posterior

mean (expectation) or mode (maximum) is used instead. Another summary is the credible

interval, which is an interval, typically containing the mode which contain some set proportion

(e.g., 95%) of the posterior probability, i.e., a parameter has 95% posterior probability of

lying in a 95% credible interval.

2.6 Prior Selection

When specifying a model, the goal is to encode, as best as possible, the scientist’s actual

prior beliefs about the parameters θ and the relationship between those parameters and

the observed data. For an illustrative example of this process involving human speech and

birdsong, see (Yildiz, Kriegstein, and Kiebel 2013). Accordingly, there is a need for a large

catalog of expressive, flexible priors and likelihoods. So far, we have only seen the small list

of parametric distributions in Section 2.4.1, which is hardly a comprehensive toolkit: they

are all unimodal, meaning that they have no local maxima other than the global maximum

(except for the uniform, which of course has no maximum at all). However, these and similar

simple distributions can be used as building blocks in constructing more complex priors. One

such construction method is that of the hierarchical model: the basic two-level model of

prior-plus-likelihood can be extended into a larger structure where the prior has parameters

which themselves get so-called hyperpriors, which themselves may have parameters. Another

construction method is a mixture model such as

~π ∼ Dirichlet(~α)

θk
iid∼ p(θk)

xi ∼
K∑
k=1

πip(xi|θk).

20



Here, the likelihood is a weighted sum (mixture) of differing versions of the simpler distribution

p(xi|θk). For example, the p(xi|θk) could be Normal distributions with means and standard

deviations varying according to θk. In this case, the likelihood p(xi|~π, ~θ) may be multimodal,

in contrast to the unimodal Normal distribution it is built from.

When the scientist has a high degree of certainty about a parameter, the prior for that

parameter will be highly concentrated around the nearly-known value. Conversely, if there

they have a lot of uncertainty, the prior will be broad and diffuse. Such priors are also

called vague. In the extreme case, where there is no information at all, the goal is to use

an objective or noninformative prior. Over discrete spaces, and especially finite spaces, the

objective prior is usually constant (i.e., uniform), but in some cases there may be underlying

structure in the space or the likelihood that lead to other priors; see (Berger, Bernardo,

and Sun 2012). In infinite cases, there is usually no such thing as a uniform probability

distribution, but sometimes a prior based on a non-finite measure can yield a posterior

distribution that does sum to one; such priors are called improper. If the likelihood can be

expressed as p(x|θ) = f(x− θ), then θ is called a location parameter, it is generally accepted

that the uninformative prior is the improper uniform prior on R (Gelman et al. 2004). If

p(x|θ) = f(y/θ), then θ is a scale parameter, and the uninformative prior is the improper

prior p(θ) ∝ 1/θ (Gelman et al. 2004).

(Kass and Wasserman 1996) reviews a number of proposed systems for defining nonifor-

mative priors. These include:

- Jeffreys’ prior, p(θ) ∝
√

det(I(θ)), where I is the Fisher information matrix,

I(θ)ij = E

[
−∂

2 log p(x|θ)
∂θi∂θj

]
.

If there are any location parameters, assume they are independent of other parameters.

- Laplace’s priors based on the “principle of insufficient reason,” which yields (often

improper) uniform distributions. However, these are not invariant to reparameterization:
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if the likelihood is expressed differently (for example, replacing the parameter σ with

the parameter τ = 1/σ in the Normal distribution), the resulting prior is often far from

uniform.

- Maximum entropy: find the prior that maximizes the entropy (−
∫
p(θ) log p(θ)µ(dθ) for

some base measure µ) subject to certain restraints on expected values. Here, choosing

µ is itself a challenge.

- Berger-Bernardo: find prior that maximizes expected information gain in the limit of

infinite data, that is, maximize

lim
n→∞

E

[∫
p(θ|x1, . . . , xn) log

(
p(θ|x1, . . . , xn)

p(θ)

)
dθ

]

where the expectation is taken with respect to p(x1, . . . , xn) =
∫
p(x1, . . . , xn|θ)p(θ)dθ.

- Zellner’s method, the Maximal Data Information Prior (MDIP): let

Z(θ) = −
∫
p(x|θ) log p(dx|θ)

then find the prior that maximizes

G =

∫
Z(θ)p(dθ)−

∫
p(θ) log p(dθ),

i.e., maximize the difference in expected entropy of the likelihood and the entropy of

the prior. The solution is always

p(θ) ∝ eZ(θ)

This prior is not invariant to reparameterization, but adding certain constraints in the

maximization can allow certain reparameterizations.
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Over certain topological spaces, (Dembski 1990) defines a general notion of uniform

probability. In the simple case of the unit interval, their methods lead to the Lebesque

measure, i.e., the usual uniform probability, as expected.

For an (incomplete) catalog of noninformative priors, see (Yang and Berger 1998).

Another approach to prior selection is to seek priors such that the Equation (2.3) is

analytically tractable. One such approach is to use conjugate priors, which are chosen to

be “closed under sampling” (Kadane 2011, Chapter 8), meaning that the posterior has the

same form as the prior, with parameters updated based on the observed data. In addition to

computational convenience, (Agarwal and Daumé III 2010) argues that there are geometric

arguments that justify the use of conjugate priors. A popular family of distributions with

abundant conjugacy properties is the exponential family (Diaconis and Ylvisaker 1979;

Wainwright and Jordan 2008), which includes many of the most commonly used distributions,

including all of the distributions listed in Section 2.4.1. A large number of conjugate pairs

(i.e., prior-likelihood pairs that are conjugate) are given in (Fink 1997) (including examples

that are not exponential family distributions).
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CHAPTER 3

BAYESIAN NONPARAMETRICS

The usual formulation of the Bayesian paradigm of placing a prior on a parameter θ and

defining a likelihood p(x|θ) can be reformulated as placing a prior p(η) on some probability

distribution η, and then drawing x ∼ η, as seen in Theorem 2.6. Then, p(η) places probability

1 on the set of measures of the parametric form p(x|θ). Viewed this way, such priors seem very

restrictive. For example, if p(x|θ) ≡ N(x;µ, σ2), then all of the mass of p(η) is concentrated

on identically shaped symmetric, unimodal distributions that only vary in their location and

scale. The field of Bayesian nonparametrics (Ghosh and Ramamoorthi 2003; Hjort et al. 2010)

is concerned with identifying less restrictive priors using stochastic processes to define priors

on the infinite-dimensional space of measures (or, more generally, on any infinite-dimensional

space, such as spaces of densities or other functions).

The use of nonparametric priors can allow for fewer assumptions. For example, when

using mixture models, one must choose the number of mixture components. Nonparametrics

offer one way to let this factor be random as well.

We are left with the problem of defining priors on infinite-dimensional spaces. The

following theorem gives one method (Ferguson 1973; Walker et al. 1999):

Theorem 3.1. Let (Ω,A) be a measurable space, and let D(A) = {(A1,1, . . . , Am,k)} be the

set of all finite sequences of pairwise disjoint sets Ai,j ∈ A. Then, let {F (A)}A∈A be a

collection of random variables with values in (0, 1) such that F (Ω) = 1 almost surely, and

(F (∪iA1,i), . . . , F (∪iAm,i))
d
=

(∑
i

F (A1,i), . . . ,
∑
i

F (Am,i)

)

for each element of D(A), then there exists a unique measure λ on the space of probability

measures on (Ω,A) yielding these finite dimensional distributions.
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3.1 The Dirichlet Process

Among the oldest and most popular nonparametric priors is the Dirichlet Process (Ferguson

1973). Let α be a finite, non-null measure on (S,S). Then, the random measure P is a

Dirichlet Process, P ∼ DP (α) if, for any measurable partition (A1, . . . , An) of S,

(P (A1), . . . , P (An))
d
=Dirichlet(α(A1), . . . , α(An))

By Theorem 3.1, this defines a probability measure on the space of probability measures on

S. Moreover, DP (α) places probability 1 on the subspace of discrete probability measures.

Additionally, (Ferguson 1973) showed that the Dirichlet Process has a conjugacy property:

Theorem 3.2. Let P ∼ DP (α), and let xi ∼ P , i ∈ {1, . . . , n} be samples from P . Then,

P |x1, . . . , xn ∼ DP (α +
n∑

i=1

δxi
)

(Blackwell and MacQueen 1973) gives what is known as the Pólya urn representation of

the Dirichlet Process:

xi|x1, . . . , xi−1 ∼
α +

∑i−1
j=1 δxj(

α +
∑i−1

j=1 δxj

)
(S)

To explain the name, assume S is finite, and α{s} ∈ Z+ for all s ∈ S. Then, for each s, place

α{s} balls of color s into an urn. Generate each xi by drawing a ball at random from the

urn, then return it to the urn along with another ball of the same color. (Blackwell and

MacQueen 1973) showed that this process converges (as i → ∞) to the Dirichlet Process,

even when S and α are unrestricted.

(Sethuraman 1994) developed the following constructive definition of the Dirichlet Process:

θi
iid∼Beta(1, α(S))

pi = θi

i−1∏
j=1

(1− θj)

yi
iid∼ α

α(S)

P =
∞∑
i=1

piδyi
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This process has been called “stick-breaking:” we start with a unit-length stick, then break of

a piece of length p1 = θ1, and use it as the weight of y1. Then, θ2 gives the proportion of the

remaining stick that we break off for y2, and p2 is the absolute length of this second piece.

This process continues indefinitely. Using this representation, (Sethuraman 1994) presented

a simpler proof of Theorem 3.2. Furthermore, this representation leads to better inference

techniques (Walker 2007).

Consider the simple model

P ∼ DP (α)

xi
iid∼ P.

Thus, the Dirichlet process is the de Finetti mixing distribution for the exchangeable sequence

(xi). The distribution P [(xi)], appearing first in (Aldous 1985) (but attributed to Jim Pitman),

is the Chinese Restaurant Process (CRP):

zi|z1, . . . , zi−1 ∼
i−1∑
j=1

(
1

i− 1 + α(S)
δzj

)
+

α(S)

i− 1 + α(s)
δz∗

φi
iid∼ α

α(S)

xi = φzi ,

where z∗ = max{z1, . . . , zi−1}+1 is the lowest value not yet assigned to any zj . Equivalently,

letting nz = |{zj|j < i, zj = z}|,

zi|z1, . . . , zi−1 ∼
z∗−1∑
z=1

(
nz

i− 1 + α(S)
δz

)
+

α(S)

i− 1 + α(s)
δz∗

φi
iid∼ α

α(S)

xi = φzi ,

The analogy which gives this process its name is as follows: a sequence of customers arrive

at a (Chinese) restaurant. The first customer sits at the first table (z1 ≡ 1), and orders a
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dish (φ1 ∼ α
α(S)

). Subsequently, the ith customer sits at an occupied table z with probability

nz/(i − 1 + α(s)), or chooses a new table with probability α(S)/(i − 1 + α(S)). If the

chosen table is already occupied, the new customer orders the same dish as the other

customers at that table. Otherwise, they order a new dish from α
α(S)

. This representation

is computationally convenient, as we need only keep track of the observations xi and their

tables zi; the (infinite-dimensional) P has been integrated out.

This representation also gives insight into the meaning of the parameter α(S): if α(S) is

very large, then the relative probability of sitting at a new table (and thus ordering a new

dish i.i.d. from α
α(S)

) grows, so that samples xi
iid∼ P resemble samples x∗i

iid∼ α
α(S)

. Conversely,

if α(S) is small, then P will be further from α
α(S)

.

The theoretical properties of the Dirichlet Process have been extensively studied; see, e.g.,

(Ferguson 1974; Kingman 1974; Green and Richardson 2001; Lo 1984; Ghosal, Ghosh, and

Ramamoorthi 1999; Gnedin and Kerov 2001; Pitman 1996).

Often, it is undesireable to be restricted to discrete distributions. (Ferguson 1983) presents

a simple workaround:

P ∼ DP (Mα)

(µi, σi)
iid∼ P

xi
ind∼ N(µi, σ

2
i ),

where α is the Normal-Inverse Gamma prior conjugate to the Normal distribution, i.e., each

unique ρi = 1
σ2
i
∼ G(α, 2

β
) with the corresponding µi ∼ N(µ0,

1
(σiτ)2

). This approach is called

a Dirichlet Process Mixture (DPM) of Normals. (Escobar and West 1995) discusses this

model further, and (Görür and Rasmussen 2010) extends this model to the multivariate

Normal case, and discusses options for selecting α.

Of course, DPMs of other distributions are possible. (Canale and Scarpa 2015) discusses

DPMs of skew-Normal distributions. (West 1992) discusses setting M in DPMs of arbitrary
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exponential family distributions. Additionally, there are other techniques for smoothing a

Dirichlet Process draw; see (Petrone 1999b, 1999a).

(Antoniak 1974) presents the converse, mixtures of Dirichlet Processes, where the param-

eter α is given a (hyper)prior; equivalently:

u ∼ H

P ∼ DP (α(u, ·))

for some kernel α(·, ·).

Dirichlet Processes have been applied to traditional machine learning tasks such as

classification (Shahbaba and Neal 2009), clustering (Kulis and Jordan 2012), and computer

vision (Sudderth 2006). (Stimberg, Ruttor, and Opper 2014) applies Dirichlet Processes

to neurology in modelling EEG data, and (Navarro et al. 2006) provides an application in

psychology. (Zhang, Pati, and Srivastava 2015) uses DPMs with a model of shapes to cluster

curves including protein structures and cell shapes. (Yuan et al. 2015) develops a DPM with

a rank-based likelihood for each mixture component, and (Kottas, Müller, and Quintana

2005) applies DPMs to discrete data.

Consider the problem of modeling data in the form of a collection of documents, i.e., a

collection of lists or sets of words. In (Blei, Ng, and Jordan 2003), the following parametric

model, called Latent Dirichlet Allocation (LDA) is proposed:

Ni ∼ Poisson(ξ)

θi ∼ Dirichlet(~α)

zij ∼ θi

wij ∼ p(·|zij, β)

where i varies over documents, and j varies over words in each document. Thus, each

document consists of a collection of words wij , each drawn from a distribution associated with
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the “topic” zij , which itself is drawn from a document-specific topic distribution θi (based on

this terminology, LDA is known as a topic model). As a parametric model, it is assumed

that the number of topics is known a priori. The naïve approach to a nonparametric version

of this model is to replace the Dirichlet distribution with a Dirichlet Process. However, this

leads to a situation where every document has its own Dirichlet Process, and therefor its own

a.s. unique topics; no two documents will share any topics.

(Teh et al. 2006) produces a solution to this problem with the Hierarchical Dirichlet

Process (HDP):

G0 ∼ DP (α)

Gj
ind∼ DP (γG0)

where γ ∈ R+ is a parameter that controls the total mass of the measure γG0, since G0 will

a.s. have total mass 1. Because G0 is a.s. discrete, the Gj will have positive probability of

sharing atoms with each other. Teh et al. develop a stick-breaking representation and a

CRP-like representation of the HDP. Put together, the nonparametric LDA is as follows:

G0 ∼ DP (α)

Gj
ind∼ DP (γG0)

θij ∼ Gj

wij ∼ θij

where α is a base measure on a space of probability distributions over the (fixed) vocabulary

of the corpus.

(Kim, Kim, and Oh 2012) presents a similar model where the documents can have

multiple labels. Each label gets a Dirichlet Process Gk
0, and the base measure of each Gj is a

finite mixture
∑

k λjkG
k
0, where k varies over the labels of document j. In addition to topic

modeling, the HDP has been in neural activity modeling (Knudson and Pillow 2013; Kim
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and Smyth 2006), and computer vision and image processing (Kivinen, Sudderth, and Jordan

2007b, 2007a; Sudderth et al. 2007).

In some cases, it is useful to model additional structure beyond i.i.d. topics. (Blei et

al. 2004) introduces the nested CRP (nCRP) to build a model where topics are organized into

a hierarchy. In the nCRP, each table of the restaurant is associated with another restaurant,

whose tables are associated with other restaurants and so on, to L levels. Each customer

visits the root restaurant and chooses a table according to the CRP. They subsequently visit

the restaurant associated with the chosen table, and so on. At each level, they still sample

dishes, so that overall each customer samples a path of restaurants with associated dishes.

Applying this to create the hierarchical LDA (hLDA), each document is a customer, and each

dish is a topic, so that each document has exactly L topics. Completing the model, we have

θi ∼ Dirichlet(α)

zij ∼ θi

wij ∼ topic(zij)

where θi is a distribution over document i’s L topics. This induces a hierarchy over the

topics, as topics associated with restaurants near the root are shared by more documents

and therefor should be more general. (Wang and Blei 2009) shows that the nCRP has a

stick-breaking construction. This model is extended to eliminate the need for L in (Blei,

Griffiths, and Jordan 2010) by making the tree of restaurants infinitely deep and essentially

replacing the Dirichlet-distributed θi with a Dirichlet Process draw.

(Paisley et al. 2015) generalizes the nCRP by allowing each word to be associated with its

own path in the tree, so that each document has a subtree rather than a single path. (Li and

McCallum 2006) adds inter-topic dependencies to the LDA, and (Li, Blei, and McCallum

2007) generalizes this work to the nonparametric setting.

30



3.2 The Pitman-Yor Process

(Pitman and Yor 1995) generalizes the Dirichlet Process DP (α) to what is now known as

the Pitman-Yor Process PY P (θ, α). This process can be defined in terms of a stick-breaking

representation:

θi
ind∼ Beta(1− θ, α(S) + iθ)

pi = θi

i−1∏
j=1

(1− θj)

yi
iid∼ α

α(S)

P =
∞∑
i=1

piδyi

It also admits a Chinese Restaurant representation:

zi|z1, . . . , zi−1 ∼
z∗−1∑
z=1

(
nz − θ

i− 1 + α(S)
δz

)
+
α(S) + (z∗ − 1)θ

i− 1 + α(S)
δz∗

φi
iid∼ α

α(S)

xi = φzi ,

Distributions drawn from a Pitman-Yor Process have power-law behaviour (Broderick, Jordan,

and Pitman 2012), meaning that there exists constants c > 0 and a ∈ (0, 1) such that

lim
n→∞

Kn

cna
= 1 a.s.,

where Kn is the number of mixture components that have been sampled after n draws (i.e.,

the number of occupied tables z∗ − 1 after n customers), and that there exists constants

d > 0 and b ∈ (0, 1) such that

lim
n→∞

Kn,i

dnb

i!Γ(1− b)
bΓ(i− b)

= 1 a.s.,

where Kn,i is the number of samples from the ith mixture component (i.e., the number of

customers at table i after n total customers). Distributions with such properties have been

observed in a number of real-world situations (Zipf 1949; Gnedin, Hansen, and Pitman 2007).
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Like the Dirichlet Process, models based on hierarchies of Pitman-Yor Processes have

been used for language modeling (Wood et al. 2011; Teh 2006; Wood et al. 2009) and image

processing (Sudderth and Jordan 2008; Shyr et al. 2011).

3.3 Pólya Trees

Another generalization of the Dirichlet Process is the Pólya Tree, introduced by (Mauldin,

Sudderth, and Williams 1992), and further studied by (Lavine 1992, 1994); see also (Ferguson

1974). Let E = {0, . . . , k − 1} be some finite set, let Em denote the set of sequences of

elements of E of length m, and let E∗ = ∪mEm denote the set of all finite sequences of

elements of E (including the empty sequence ∅). Next, let A = {αε|ε ∈ E∗} be a set of

k-dimensional vectors, and let Π = {π0, π1, . . .} be an infinite tree of partitions of Ω such that

π0 = {Ω} and πm is constructed by partitioning each element of πm−1 into k pieces. Finally,

for any ε ∈ E∗, let Bε be obtained by traversing Π: B∅ = Ω, B(0) is the first partition of

π1, B(0,0) is the first part of B(0) as defined by π2, and so on. Then, the random probability

measure P on Ω has a Pólya tree distribution, P ∼ PT (Π,A), if there exists a set of random

k-dimensional vectors Y = {Yε|ε ∈ E∗} such that

1. Yε ∼ Dirichlet(αε) and

2. for any ε ∈ E∗ of length m, P (Bε) =
∏m

j=1 Y(ε1,...,εj−1)(εj)

where Y (e) is the eth element of the vector Y . In words, x ∼ P is drawn by randomly

traversing the tree Π according to random variables with Dirichlet distributions whose

parameters come from A.

Dirichlet Processes are a special case of Pólya trees where αε =
∑

e αεe, and like the

Dirichlet Process, Pólya trees are conjugate under sampling: if P ∼ PT (Π,A) and x ∼ P ,

then P |x also has a Pólya tree distribution. With certain choices of Π and A, P can be an

a.s. continuous distribution.
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3.4 The Indian Buffet Process

The Dirichlet Process and its variants are sometimes referred to as “latent class” models (see,

e.g., (Ghahramani, Griffiths, and Sollich 2006))—the zi in the CRP representation serve as

class assignments. An alternative to latent classes are latent “features”. The Indian Buffet

Process (IBP) (Ghahramani, Griffiths, and Sollich 2006; Griffiths and Ghahramani 2005;

Ghahramani and Griffiths 2006) is a model that assigns latent binary features to each data

point. As in the CRP, in a draw Z ∼ IBP (α), customers arrive sequentially, but now they

walk down an (infinitely long) buffet line. The first customer samples the first Poisson(α)

dishes; subsequently, the ith customer samples previously-sampled dishes with probability
mk

i
, where mk is the number of times the kth dish has previously been sampled. They then

sample Poisson(α
i
) new dishes. Then, Z is a matrix with one row per customer and an

infinite number of columns, of which only a finite number are non-zero, where zik is 1 if the

ith customer sampled the kth dish.

Like the Dirichlet Process, the IBP has a stick-breaking representation (Teh, Görür, and

Ghahramani 2007): let µk denote the prior probability of any customer sampling the kth dish,

and let µ(1) > µ(2) > · · · denote the µks in decreasing order. Then,

ν(k)
iid∼Beta(α, 1)

µ(k) =
k∏

i=1

ν(i)

zik ∼ Bernoulli(µ(k))

Just as the CRP is derived from the Dirichlet Process by integrating out the random

measure P , (Thibaux and Jordan 2007) considered the model

B ∼ BP (H)

Zi
iid∼BeP (B),
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where BP (H) is the Beta process with base measure H (Hjort 1990), and BeP (B) is called

the Bernoulli process with hazard measure B. Then, if we integrate out B, Z is distributed

according to the IBP.

There is a rich body of theoretical work on the IBP and the Beta process. (Wang and

Carin 2012) develops a representation of the Beta process as a Lévy process (Applebaum

2004). (Broderick, Jordan, and Pitman 2012) develops a 3-parameter generalization of the

Beta process that exhibits power-law behaviour. (Broderick, Jordan, and Pitman 2013) and

(Broderick, Pitman, and Jordan 2013) discuss the combinatorial properties of the IBP and

the Beta process. (Paisley et al. 2010) develops a stick-breaking representation for the Beta

process.

There has also been much work on applications using the IBP and the Beta process. (Hu

et al. 2012) uses the IBP for image representation, for visual feature extraction and image

reconstruction. (Fox et al. 2014) uses the Beta process to model multiple related time series

in the context of motion capture segmentation. (Wood, Griffiths, and Ghahramani 2006)

and (Adams, Wallach, and Ghahramani 2010) use the IBP (and a recursive variant called

the cascading IBP) to learn the structure of Neural Networks. (Knowles and Ghahramani

2007) and (Knowles and Ghahramani 2011) present models based on the IBP to perform

signal separation, wherein an observed dataset is assumed to be a linear combination of

multiple signals, which these models attempt to recover. In particular, they apply their

models to the problem of finding gene transcription factors based on gene expression data.

(Polatkan et al. 2015) uses the Beta-Bernoulli process for image superresolution, wherein

a high-resolution image is constructed based on a low-resolution image. (Ruiz et al. 2014)

applies the IBP to the problem of detecting patterns of psychiatric disorders appearing

together.
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3.5 The Gaussian Process

Another popular nonparametric prior is the Gaussian Process (Rasmussen and Williams

2006). Like the Dirichlet Process, the Gaussian process is defined by its finite-dimensional

distributions: if X is a Gaussian Process on some index set T , X ∼ GP (m, k), then

µ = (mt1 , . . . ,mtn)

Σij = kti,tj

(Xt1 , . . . , Xtn) ∼ N(µ,Σ)

for any (t1, . . . , tn) ∈ T n. Typically, X is thought of as a random real-valued function X(t).

Then, m : T → R is called the mean function, and k : T × T → R is called the covariance

function.

As a special case, let m ≡ 0 and k(s, t) = min{s, t}. Then, X(t) ∼ N(0, t), and X is

called Brownian motion (Ghosh and Ramamoorthi 2003; Zanten 2007).

Gaussian Processes have been used in many areas, ranging from regression (Rasmussen

and Williams 2006), classification (Rasmussen and Williams 2006; Barber and Williams

1997; Mackay and Gibbs 2000), extrapolation (Wilson and Adams 2013), and density

estimation (Murray, MacKay, and Adams 2009).

3.6 Other Nonparametric Models

It is often possible and useful to combine nonparametric priors. (Williamson et al. 2010)

combines the HDP and the IBP in a topic model that allows documents to focus on rare

topics. Similarly, (Paisley, Wang, and Blei 2012) combines the HDP with a Gaussian Process

for a correlated-topic model.

(Iwata, Duvenaud, and Ghahramani 2013) present a model that combines the Dirichlet

Process with the Gaussian Process: each data point is drawn from a DPM of multivariate
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Normals, with each dimension then “warped” by a function drawn from a Gaussian Process,

giving much more free-form cluster shapes:

P ∼ DP (Mα)

fd ∼ GP (m(·), k(·, ·))

µi, σi
iid∼ P

yi
ind∼ N(µi, σ

2
i )

xid ∼ N(fd(xnd), β
−1).

Relatedly, (Jackson et al. 2007) presents a Dirichlet Process mixture of Gaussian Processes,

where the parameters m(·), k(·, ·) of the Gaussian Process are drawn from a Dirichlet Process.

(Rai and Daumé III 2008) develops a sparse variant of the IBP and combines it with a

nonparametric prior over trees called Kingman’s Coalescent (Kingman 1982).

(MacEachern 1999) adapts the Dirichlet Process to a regression setting: in cases where a

standard linear regression with parametric noise is a poor fit, a better approach is to use a

nonparametric distribution for the errors that smoothly evolves depending on the covariate.

The Dependent Dirichlet Process (DDP) is proposed to achieve this goal. Consider the

stick-breaking construction of the Dirichlet Process above. To adapt to the regression context,

we first replace the random variables yi
iid∼ α

α(S)
with stochastic processes yiX = (yix)x∈X , where

X is the covariate space, essentially specializing to the case where α is a measure over a space

of functions X → S for some S. Next, we similarly replace the stick length proportions θi

with processes θiX = (θix)x∈X , likewise replacing pi with piX . This effectively replaces the

parameter α(S) with a parameter MX , which allows the degree to which samples from the

DDP resemble parametric regression to vary along X . See (Lin, Grimson, and Fisher 2010;

Barrientos, Jara, and Quintana 2012) for more theoretical discussion of DDPs; (Campbell

et al. 2013) generalizes the clustering algorithm of (Kulis and Jordan 2012) to the dependent

setting using DDPs.
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Hidden Markov models (HMMs) are a popular model of sequential data such as speech,

consisting of an unobserved (hidden) state which evolves among a finite number of states

according to a Markov chain. At each time step, an observed variable is generated based

on the current state. (Beal, Ghahramani, and Rasmussen 2002) introduce a nonparametric

technique for this setting by incorporating a HDP into the transition probability that governs

the unobserved Markov chain, allowing the state space to be infinite. (Bratières et al. 2010)

and (Van Gael et al. 2008) discuss inference in this model. (Palla, Knowles, and Ghahramani

2014) develops a similar model where the Markov chain is guaranteed to be reversible,

whereas (Stepleton et al. 2009) enforces additional structure on the transition probability

that produces partitions (i.e. clusters) of the hidden state space. (Blunsom and Cohn 2011)

discusses an infinite HMM using hierarchical Pitman-Yor Processes.

Other works develop completely new models. (Titsias 2008) develops nonparametric

distribution over non-negative integer-valued matrices called the Infinite Gamma-Poisson

Process (IGPP). Similarly, (Broderick et al. 2015) produces the Beta Negative Binomial

Process (BNBP), which is similar to the Beta-Bernoulli Process underlying the IBP; they

also investigate the Hierarchical BNBP. (Zhou et al. 2012) shows that these two processes

are closely related, and (Zhou 2014) further develops the theory of the BNBP. Finally,

(Heaukulani and Roy 2016) derives the negative binomial version of the IBP.

Sometimes it is useful to develop new models by incorporating additional constraints into

existing models. (Dalal 1979) present a modified Dirichlet Process that produces distributions

that are invariant to certain transformations. (Gershman, Frazier, and Blei 2015) modifies

the IBP to incorporate a distance metric between customers such that similar customers are

more likely to sample the same dishes; (Miller, Griffiths, and Jordan 2008) presents a similar

modification that uses a phylogenetic structure among customers. (Williamson, Maceachern,

and Xing 2013) presents a method for modifying the IBP and other nonparametric processes

on infinite matrices, including the BNBP and IGPP, to change the distribution of the
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number of non-zero entries per row. In the case of the IBP, this corresponds to changing the

distribution for the number of dishes each customer samples.

Often, connections are found between seemingly disparate processes. For example,

(Heaukulani and Roy 2015) investigates connections between the Dirichlet Process and the

IBP, and a similar connection between the PYP and the three-parameter IBP of (Teh and

Görür 2009). (James, Orbanz, and Teh 2015) explores further connections between the CRP

and the IBP and other processes. (Roy 2014) explores connections between the Dirichlet

Process and the Beta Process and uses this to generalize the IBP. (Jordan 2010) reviews a

class of models called Completely Random Measures (CRMs) (Kingman 1967), which includes

the Dirichlet Process and the Beta and Bernoulli Processes. See (Broderick, Wilson, and

Jordan 2018) for recent work in this area. (Broderick, Jordan, and Pitman 2013) develops a

theory of the combinatorial structure of the CRP and IBP.

The stick-breaking representations of the Dirichlet Process and IBP have lead to other

generalizations. (Dunson and Park 2008) incorporates random locations and a distance

measure into the stick-breaking weights of the Dirichlet Process. (Ghahramani, Jordan, and

Adams 2010) generalizes to a tree-structured stick breaking wherein sticks can be broken

into more than two pieces. (Nalisnick and Smyth 2016) develops a stick-breaking-based deep

Neural Network model. See also (Perman, Pitman, and Yor 1992).

The Wishart distribution, Wn(V, ν), is a distribution over positive definite n× n matrices

(i.e., n×n matricesM for which z>Mz is strictly positive for all non-zero n-vectors z) which is

commonly used as a prior for covariance matrices. If ui
iid∼N(0, V ), then

∑ν
i=1 uiu

>
i ∼ W (V, ν)

(although the Wishart distribution is also defined for non-integer ν); (Wilson and Ghahramani

2009) defines the Generalized Wishart Process analagously by replacing the Gaussian vectors

ui with Gaussian Processes, arriving at a distribution over infinite collections of positive

definite matrices.
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CHAPTER 4

INFERENCE

When applying Bayesian techniques, we wish to calculate posterior distributions or posterior

expectations (such as posterior predictive distributions). However, these calculations often

involve intractable integrals. Accordingly, there has been a great deal of effort in finding

efficient methods to accurately approximate these quantities. We will mostly focus on Monte

Carlo techniques, also called simulation techniques.

Suppose we wish to calculate E[f(θ)|x] =
∫
f(θ)p(dθ|x). If we can sample

θ(i) ∼ p(θ|x),

then

Î =
1

K

K∑
i=1

f(θ(i))

is a good estimator. In particular, a good estimator of this form should have two properties:

it should be unbiased, meaning that the expected value of the estimator should equal the

true value, i.e., E[Î] = E[f(θ)|x], and it should have decreasing variance as the number of

samples K grows. The second property follows from the law of large numbers (Theorem 2.5);

we prove the first:

E

[
1

K

K∑
i=1

f(θ(i))

]
=

1

K

∫ [ K∑
i=1

f(θ(i))

]
K∏
i=1

p(dθ(i)|x)

=
1

K

K∑
i=1

∫
f(θ(i))

K∏
j=1

p(dθ(j)|x)∫
f(θ(i))p(dθ(j)|x) = f(θ(i)) for i 6= j, so we have

=
1

K

K∑
i=1

∫
f(θ(i))p(dθ(i)|x)

=
1

K

K∑
i=1

E[f(θ)|x] = E[f(θ)|x]
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Unfortunately, it is often the case that one cannot sample p(θ|x) directly, so that another

layer of approximation must be used. We focus on two classes of such methods: Markov

Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC).

4.1 Markov Chain Monte Carlo

MCMC is based around the construction of a Markov chain with transition kernel P (θ,B)

which has p(θ|x) as its stationary distribution.

Any Markov chain satisfying the global balance condition∫
p(θ|x)P (θ, dθ′) =

∫
p(dθ′|x)P (dθ′, θ)

will have stationary distribution p(θ|x). A stricter condition that implies global balance is

detailed balance:

p(θ|x)P (θ, θ′) = p(θ′|x)P (θ′, θ)

A generic form of such a kernel, known as the Metropolis-Hastings algorithm (Metropolis

et al. 1953; Hastings 1970), is

P (θ,B) =
∑
m

∫
B

qm(θ, dθ
′)︸ ︷︷ ︸

propose a
move m
from θ
to θ′

αm(θ, θ
′)︸ ︷︷ ︸

accept the
move

+ s(θ)1{θ∈B}︸ ︷︷ ︸
no move

(rejected or
none

proposed)

wherem varies over some set of available “moves,” which identify proposal distributions qm(·, ·).

Sampling proceeds by first selecting a move m, then proposing a new state θ′ ∼ qm(θ, ·).

Then the new state θ′ is either accepted (with probability αm(θ, θ
′)), or rejected, in which

case the chain stays in state θ.

We may enforce detailed balance if we let

αm(θ, θ
′) = min

{
1,
fm∗(θ′, θ)

fm(θ, θ′)

}
,
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where fm(θ, θ′) is the (finite) density of p(dθ|x)qm(θ, dθ′) with respect to some symmetric

measure µm, and m∗ is the move that can take state θ′ to θ (in many samplers, m∗ = m).

Multiple kernels may be combined in a mixture or in a cycle. Gibbs sampling is a special

case where θ = (θ1, . . . , θd), and each cycle samples θi ∼ p(θi|θ¬i) exactly. In this case,

α(θ, θ′) = 1.

See (Andrieu et al. 2003; Neal 1993b; Robert and Casella 1999; Brooks et al. 2011)

for reviews of MCMC techniques. (Gilks, Richardson, and Spiegelhalter 1996) and (Besag

et al. 1995) contain numerous examples of applied MCMC algorithms. (Green et al. 2015) is

a review of more recent advances.

There has been a considerable work on MCMC methods. In some cases, the acceptance

probability α(θ, θ′) is difficult to compute, in which case it can be estimated (Sherlock et

al. 2015) or decomposed into multiple ratios that are tested (so that if the sample is rejected,

the whole ratio is never computed) (Banterle, Grazian, and Robert 2014; Banterle et al. 2015;

Sherlock, Golightly, and Henderson 2016). The random proposals of a Metropolis-Hastings

kernel can sometimes be slow to explore the full support of the target distribution, leading to

low quality estimates. (Neal 1995) addresses this problem for Gibbs sampling by “ordered

overrelaxation:” when sampling θ′i ∼ p(·|{θj}j 6=i), generate K samples, then order them

θ
(1)
i ≤ . . . ≤ θ

(r)
i = θi ≤ . . . ≤ θ

(K)
i (r is the index of the current value), θ′i = θ

(K−r)
i ; this tends

to make θ′i more different from θi than plain Gibbs, while preserving invariance. If a CDF is

available, more efficient versions are available. (Tak, Meng, and Dyk 2017) approaches the

same problem from another direction by incorporating the gradient of the target density into

the proposal and alternating between “attractive” and “repulsive” cycles which move toward

and away from local modes, respectively.

Another approach to this problem is slice sampling (Mira 1998; Neal 2003): let f(θ)

be the (possibly unnormalized) density we wish to sample from, and let y be an auxiliary
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variable such that the joint density is

p(θ, y) =

{
1∫

f(θ)dθ
0 < y < f(θ)

0 otherwise;

then,

p(θ) =

∫ f(θ)

0

(
1∫

f(θ)dθ

)
dy ∝ f(θ),

so sampling from this joint distribution, then discarding y values yields the samples we

desire. The basic idea is to define a Markov chain that will converge to this joint distribution.

(Walker 2007) applies this technique to Dirichlet Process Mixtures.

Other methods of improving efficiency focus on the computational aspect, specifically en-

abling parallel and distributed implementations (Neal 2012; Angelino et al. 2014; Neiswanger,

Wang, and Xing 2014), and data subsampling techniques (Maire, Friel, and Alquier 2015;

Bardenet, Doucet, and Holmes 2017); see also (Angelino, Johnson, and Adams 2016).

Finally, there has been substantial work in the field of exact sampling (Green and

Murdoch 1998), which is focused on using MCMC methods to generate samples that are

exactly distributed as p(θ|x). See also (Murdoch and Green 1998; Wang, Schwing, and

Urtasun 2014; Fill and Huber 2010). (Casella et al. 2002) develops an exact slice sampler.

4.1.1 Reversible Jump MCMC

In many cases, the states θ and θ′ may be of different dimensions. In such cases, special care

must be taken to maintain detailed balance while the parameter space may change dimension

between moves. Reversible Jump MCMC (RJMCMC) (Green 1995; Green and Hastie 2009)

allows us to do this.

Let θ = (k, θ(k)), where k is the “model index,” which identifies the parameter space Rnk ,

and θ(k) denotes the parameters of this model. Then, let Ck = {k} ×Rnk and C = ∪kCk, so

that C is the space we wish to sample from.
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To construct the new state θ′ = (k′, θ(k
′)), because θ(k) ∈ Rnk and θ(k

′) ∈ Rnk′ with

nk 6= nk′ in general, it is often necessary to sample new real values. That is, when moving

from θ to θ′, we set θ(k′) to some deterministic function of θ(k) and u(k), where u(k) ∼ qk(u
(k)) is

a real-valued random vector. Similarly, moving from θ′ to θ involves sampling u(k′) ∼ qk′(u
(k′)).

u(k) and u(k
′) are of dimensions mk and mk′ , respectively, such that nk +mk = nk′ +mk′

(noting that one or both of mk and mk′ may be zero).

Finally, to propose a new state θ′, we must first pick a “move” m. Let jm(θ, θ′) denote

the probability of proposing the move m from the state θ. This includes both the probability

of choosing the mth “type” of move, and the probabilities of any random variables sampled

in constructing the new state θ′ according to m (including the sampling of u(k′)).

Let us revisit the requirement that p(dθ|x)qm(θ, dθ′) have a finite density fm(x, x′) with

respect to some symmetric measure µm. To maintain symmetry, for any A ⊂ Ck, B ⊂ Ck′ ,

we must have

µm(A×B) = λ{(θ(k), u(k)) : θ(k) ∈ A, θ(k′)(θ(k), u(k)) ∈ B},

where λ is the Lebesque measure. Moreover, consider the inverse,

µm(B × A) = λ{(θ(k′), u(k′)) : θ(k′) ∈ B, θ(k)(θ(k′), u(k′)) ∈ A}.

By symmetry, µm(A × B) = µm(B × A), which requires that we have a bijection between

(θ(k
′), u(k

′)) and (θ(k), u(k)), so we can move back and forth freely and deterministically.

Then, applied to our trans-dimensional model, the density fm(θ, θ′) is

fm(θ, θ
′) = p(k, θ(k)|x)jm(θ, θ′)

fm(θ
′, θ) = p(k′, θ(k

′)|x)jm(θ′, θ)×
∣∣∣∣∂(θ(k′), u(k′))∂(θ(k), u(k))

∣∣∣∣ ,
where the Jacobian term comes from the fact that dv1 . . . dvn =

∣∣∣ ∂(v1,...,vn)∂(u1,...,un)

∣∣∣ du1 . . . dun, as
used in the general substitution rule in calculus.
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Then, αm(θ, θ
′) = min{1, α∗m(θ, θ′)}, where

α∗m(θ, θ
′) =

p(k′, θ(k
′)|x)jm∗(θ′, θ)

p(k, θ(k)|x)jm(θ, θ′)

∣∣∣∣∂(θ(k′), u(k′))∂(θ(k), u(k))

∣∣∣∣
=
p(x|k′, θ(k′))
p(x|k, θ(k))︸ ︷︷ ︸

likelihood
ratio

p(k′, θ(k
′))

p(k, θ(k))︸ ︷︷ ︸
prior
ratio

jm∗(θ′, θ)

jm(θ, θ′)︸ ︷︷ ︸
proposal

ratio

∣∣∣∣∂(θ(k′), u(k′))∂(θ(k), u(k))

∣∣∣∣︸ ︷︷ ︸
Jacobian

(Hastie and Green 2012) and (Andrieu and Doucet 1999) apply RJMCMC to the problem

of selecting a model, i.e., where p(k, θ(k)) and p(k′, θ(k′)) are entirely different models. (Green

and Mira 2001) proposes a delayed rejection approach to RJMCMC in which rejected

samples are instead given a second chance by re-applying a move. (Al-Awadhi, Hurn, and

Jennison 2004) discusses the development of efficient RJMCMC moves (i.e., moves with a

high acceptance rate).

4.2 Sequential Monte Carlo

Consider a state-space model or HMM, where an unobserved parameter evolves according to

a Markovian kernel p(θi|θi−1), and at each i, an observation is generated from p(xi|θi). An

MCMC approach to inference in such a model would have to repeatedly sample θi and xi for

every i. Sequential Monte Carlo (SMC) methods work recursively, each step producing an

approximation of p(θi|x1:i−1) by modifying the previous step’s approximation of p(θi−1|x1:i−2),

taking advantage of a the Markovian structure.

A simple SMC method samples

θ
(k)
1

iid∼ p(θ1)

θ
(k)
i

ind∼ p(θi|θ(k)i−1, xi)

and estimates p(θi|x1:i) by

p̂(θi|x1:i) ∝ p(xi|θi)
K∑
k=1

p(θi|θ(k)i−1)
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As with all Monte Carlo estimators, we wish our estimators to be unbiased:

E[p̂(θi|x1:i)] ∝ p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3,xi−2)

E
p(θ

(k)
i−1|θ

(k)
i−2,xi−1)

(
K∑
k=1

p(θi|θ(k)i−1)

)

= p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3,xi−2)

(∫ ( K∑
k=1

p(θi|θ(k)i−1)

)
K∏
k=1

p(dθ
(k)
i−1|θ

(k)
i−2, xi−1)

)

= p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3,xi−2)

(
K∑
k=1

∫
p(θi|θ(k)i−1)

K∏
j=1

p(dθ
(j)
i−1|θ

(j)
i−2, xi−1)

)

= p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3,xi−2)

(
K∑
k=1

∫
p(θi|θ(k)i−1, θ

(k)
i−2, xi−1)p(dθ

(k)
i−1)

)

= p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3,xi−2)

(
K∑
k=1

p(θi|θ(k)i−2, xi−1)

)
Thus, the rightmost expectation replaces the term θ

(k)
i−1 with θ(k)i−2 and adds a dependency on

xi−1. Each successive expectation proceeds likewise until we get

= p(xi|θi)
K∑
k=1

p(θi|x1:i−1)

∝ p(xi|θi)p(θi|x1:i−1)

= p(θi|x1:i)p(xi)

∝ p(θi|x1:i)

However, this algorithm is not applicable in most applications: we cannot typically sample

from p(θi|θ(k)i−1, xi).

Working around this problem leads to one of the most basic SMC methods, the Sequential

Importance Sampling (SIS) algorithm, which is the basis for most SMC methods (Handschin

and Mayne 1969; Handschin 1970). We begin with samples from a proposal distribution,

θ
(k)
1 ∼ q(·|x1),

and compute the importance weights

w
(k)
1 ∝ p(x1|θ(k)1 )

p(θ
(k)
1 )

q(θ
(k)
1 |x1)

,
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At each subsequent step,

θ
(k)
i ∼ q(·|θ(k)i−1, xi)

w
(k)
i ∝ w

(k)
i−1p(xi|θ

(k)
i )

p(θ
(k)
i |θ

(k)
i−1)

q(θ
(k)
i |θ

(k)
i−1, xi)

,

which depend on the previous step’s weights. Then, at each time step, we have the approxi-

mation

p̂(θi|x1:i) = p(xi|θi)
∑
k

w
(k)
i−1p(θi|θ

(k)
i ).

As before, we show that this estimator is unbiased:

E[p̂(θi|x1:i)] ∝ p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−1|θ

(k)
i−2)

(
K∑
k=1

w
(k)
i−1p(θi|θ

(k)
i−1)

)
= p(xi|θi)Ep(θ

(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3)(

K∑
k=1

∫
w

(k)
i−2p(xi−1|θ

(k)
i−1)p(θi|θ

(k)
i−1)

p(θ
(k)
i−1|θ

(k)
i−2)

q(θ
(k)
i−1|θ

(k)
i−2, xi−1)

q(dθ
(k)
i−1|θ

(k)
i−2, xi−1)

)

= p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3)

(
K∑
k=1

w
(k)
i−2p(xi−1, θi|θ

(k)
i−2)

)

∝ p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(k)
i−3)

(
K∑
k=1

w
(k)
i−2p(θi|θ

(k)
i−2, xi−1)

)

The rest of the proof mirrors the previous proof.

However, this simple algorithm leads to degenerate estimates: the normalized weights

tend towards a state where one sample has weight 1 and all other samples have weight 0. To

prove this, we first show that (w(k)
i ) is a martingale, following (Kong, Liu, and Wong 1994).

First, we re-express w(k)
i to match their expression:
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w
(k)
i ∝ w

(k)
i−1p(xi|θ

(k)
i )

∝ w
(k)
i−1

p(θ
(k)
1:i |x1:i)

p(θ
(k)
1:i |x1:i−1)

Ep(xi|x1:i−1)[w
(k)
i |θ

(k)
1:i−1, x1:i−1] ∝ w

(k)
i−1Ep(xi|x1:i−1)

(
p(θ

(k)
1:i |x1:i)

p(θ
(k)
1:i |x1:i−1)

)

= w
(k)
i−1

∫
p(θ

(k)
1:i |x1:i)

p(θ
(k)
1:i |x1:i−1)

p(dxi|x1:i−1)

= w
(k)
i−1

∫
p(dxi|θ(k)1:i , x1:i−1)

= w
(k)
i−1

Since the expected value of the ith item is the (i− 1)th item, we have a martingale, as

desired. From Lemma 2.2, we have var(w(k)
i ) > var(w(k)

i−1).

Then, since
∑

k w
(k)
i = 1, as variance increases, the set {w(k)

i }k must “spread out” to 0

and 1. As at most one element may be 1, all others must be 0, completing our proof.

To correct this problem, we turn to the Sampling/Importance Resampling (SIR) (Rubin

1987; Smith and Gelfand 1992) algorithm (see also (Gordon, Salmond, and Smith 1993; West

1993)). At each time step, we sample (with replacement) from the previous step’s population

of samples instead of including their weight recursively:

a
(k)
i ∼

K∑
j=1

w
(j)
i−1δj

θ
(k)
i ∼ q(·|θ(a

(k)
i )

i−1 , xi)

w
(k)
i ∝ p(xi|θ(k)i )

p(θ
(k)
i |θ

(a
(k)
i )

i−1 )

q(θ
(k)
i |θ

(a
(k)
i )

i−1 , xi)
.

Thus, samples with low weight tend to die out, leaving only samples whose history had higher

weight, i.e., samples that better match the data.
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This estimator is also unbiased:

E[p̂(θi|x1:i)] ∝ p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−1|θ

(a
(k)
i−1

)

i−2 )p(a
(k)
i−1|{w

(k)
i−2}k)

(
K∑
k=1

w
(k)
i−1p(θi|θ

(k)
i−1)

)
= p(xi|θi)Ep(θ

(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(a
(k)
i−2

)

i−3 )p(a
(k)
i−2|{w

(k)
i−3}k)(

K∑
k=1

K∑
j=1

w
(j)
i−2

∫
p(xi−1|θ(k)i−1)p(θi|θ

(k)
i−1)p(dθ

(k)
i−1|θ

(j)
i−2)

)

= p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(a
(k)
i−2

)

i−3 )p(a
(k)
i−2|{w

(k)
i−3}k)

(
K∑
k=1

K∑
j=1

w
(j)
i−2p(xi−1, θi|θ

(j)
i−2)

)

∝ p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(a
(k)
i−2

)

i−3 )p(a
(k)
i−2|{w

(k)
i−3}k)

(
K∑
k=1

K∑
j=1

w
(j)
i−2p(θi|θ

(j)
i−2, xi−1)

)

∝ p(xi|θi)Ep(θ
(k)
1 )
· · ·E

p(θ
(k)
i−2|θ

(a
(k)
i−2

)

i−3 )p(a
(k)
i−2|{w

(k)
i−3}k)

(
K∑
k=1

w
(k)
i−2p(θi|θ

(k)
i−2, xi−1)

)

Again the rest of the proof mirrors the original.

A critical weakness remains in this algorithm: because the history indicators a(k)i do

not depend on xi, θ(k)i depends on xi only through q(·|·), which tends to be close to the

prior p(θ(k)i |θ
(a

(k)
i )

i−1 ). In cases where p(θ(k)i |θ
(a

(k)
i )

i−1 , xi) differs significantly from q(θ
(k)
i |θ

(a
(k)
i )

i−1 ) (as

may be the case if xi is an outlier), the θ(k)i will be poor samples, the weights w(k)
i will be

highly skewed, and p̂(θi|x1:i) will be inaccurate. The Auxiliary Particle Filter of Pitt and

Shephard (Pitt and Shephard 2001) addresses this problem by incorporating a forward-looking

estimator g(xi|θ(k)i−1) into the history indicator probabilities:

a
(k)
i ∼

K∑
j=1

w
(j)
i−1g(xi|θ

(j)
i−1)δj

w
(k)
i ∝

p(xi|θ
(a

(k)
i )

i−1 )

g(xi|θ
(a

(k)
i )

i−1 )

p(θ
(k)
i |θ

(a
(k)
i )

i−1 , xi)

q(θ
(k)
i |θ

(a
(k)
i )

i−1 , xi)
.

=
p(xi|θ(k)i )

g(xi|θ
(a

(k)
i )

i−1 )

p(θ
(k)
i |θ

(a
(k)
i )

i−1 )

q(θ
(k)
i |θ

(a
(k)
i )

i−1 , xi)
.
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If g(xi|θ
(a

(k)
i )

i−1 ) approximates p(xi|θ(k)i−1) =
∫
p(xi|θ(k)i )p(dθ

(k)
i |θ

(k)
i−1) well, the terms (approxi-

mately) cancel out, and weights will be (approximately) equal. Because p(xi|θ(k)i ) is now

represented in the weights w(k)
i , we change our estimator to

p̂(θi|x1:i) =
K∑
k=1

w
(k)
i δ

θ
(k)
i
.

This estimator is unbiased:

E[p̂(θi |x1:i)]

= E
q(θ

(k)
1 |x1)

· · ·E
q(θ

(k)
i |θ

(a
(k)
i

)

i−1 ,xi)p(a
(k)
i |{w

(k)
i−1}k)

(
K∑
k=1

w
(k)
i δ

θ
(k)
i
(θi)

)
∝ E

q(θ
(k)
1 |x1)

· · ·E
q(θ

(k)
i−1|θ

(a
(k)
i−1

)

i−2 ,xi−1)p(a
(k)
i−1|{w

(k)
i−2}k) K∑

k=1

K∑
j=1

w
(j)
i−1g(xi|θ

(j)
i−1)

∫
p(xi|θ(k)i )

g(xi|θ(j)i−1)

p(θ
(k)
i |θ

(a
(k)
i )

i−1 )

q(θ
(k)
i |θ

(a
(k)
i )

i−1 ,xi)
δ
θ
(k)
i
(θi)q(dθ

(k)
i |θ

(j)
i−1, xi)


= p(xi|θi)Eq(θ

(k)
1 |x1)

· · ·E
q(θ

(k)
i−1|θ

(a
(k)
i−1

)

i−2 ,xi−1)p(a
(k)
i−1|{w

(k)
i−2}k)

(
K∑
k=1

K∑
j=1

w
(j)
i−1p(θi|θ

(j)
i−1)

)

∝ p(xi|θi)Eq(θ
(k)
1 |x1)

· · ·E
q(θ

(k)
i−1|θ

(a
(k)
i−1

)

i−2 ,xi−1)p(a
(k)
i−1|{w

(k)
i−2}k)

(
K∑
k=1

w
(k)
i−1p(θi|θ

(k)
i−1)

)

As before, the rest of the proof is the same.

In addition to the dynamic state θi, many models have a static parameter vector φ. To

handle static parameters, we must maintain a collection of φ(k)
i drawn approximatly from

p(φ|x1:i), which presents two challenges:

1. the target p(φ|x1:i) is intractable, and

2. there is no p(φi|φi−1) to base a proposal distribution on

However, we can recover a recursive estimator by observing that

p(θ1:i, φ|x1:i) ∝ p(θi|θi−1, φ, xi)p(φ|θ1:i−1, x1:i−1)p(θ1:i−1|x1:i−1).
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so we can estimate p(θ1:i−1|x1:i−1) by generating an estimate of p(θ1:i−1, φ|x1:i−1) and dis-

carding the φ(k)
i−1. Such methods must sample from p(φ|θ1:i−1, x1:i−1), which typically has

complexity that is at least linear in i. In models where we can take advantage of conjugacy,

p(φ|θ1:i−1, x1:i−1) = p(φ|Ti−1), for some sufficient statistics Ti−1; this gives the algorithm

from (Storvik 2002). Most models do not enjoy such conjugacy properties, however.

(Liu and West 2001) proposes using a Gaussian Kernel density estimate to approximate

p(φ|θ1:i, x1:i):

φ̄i−1 =
K∑
j=1

w
(j)
1:i−1φ

(j)
i−1

~Vi−1 =
K∑
j=1

w
(j)
1:i−1(φ

(j)
i−1 − φ̄i−1)(φ

(j)
i−1 − φ̄i−1)

>

~m
(j)
i−1 =

√
1− h2φ(j)

i−1 + (1−
√
1− h2)φ̄i−1

q(φ
(k)
i |x1:i) = N(~m

(a
(k)
i )

i−1 , h2~Vi−1),

with smoothing parameter h. This is then mixed into the Auxiliary Particle Filter. That is, we

approximate p(φ|θ1:i, x1:i) with a Normal distribution whose mean and standard deviation are

derived from the previous iteration’s collection of φ(k)
i−1 values. The weights w(k)

i and history

indicators a(k)i ensure that each iterations {φ(k)
i }k are approximate samples of p(φ|θ1:i, x1:i).

4.2.1 Other SMC Works

Here, we survey other works related to Sequential Monte Carlo techniques. See (Doucet,

Freitas, and Gordon 2001; Kantas et al. 2015) for other general surveys. (Cappe, Godsill, and

Moulines 2007) surveys recent advances in SMC, and (Liu and Chen 1998) gives guidelines for

using SMC techniques. (Doucet, Godsill, and Andrieu 2000) reviews SMC techniques from a

specifically Bayesian perspective. (Creal 2012) reviews SMC for use in economics and finance.

Some works use the term “Particle Filter” instead of SMC; (Arulampalam et al. 2002; Künsch

2013) review such works. (Fearnhead 1998) reviews SMC and Particle Filters.
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There has been a large volume of work specializing SMC methods to certain problems.

(Doucett et al. 2000) adapts SMC methods to the setting of Dynamic Bayesian Networks. More

generally, (Naesseth, Lindsten, and Schön 2014) develops SMC for Probabilistic Graphical

Models. (Andrieu, De Freitas, and Doucet 1999) uses SMC for Bayesian Model Selection.

(Naesseth, Lindsten, and Schön 2015) proposes using an SMC estimate as a proposal in a

higher-level SMC algorithm for use with high-dimensional data. (Del Moral and Murray

2015) develops a specialized SMC algorithm for use with “highly informative” data, wherein

the posterior distribution is very different from the prior. (Wang, Bouchard-Côté, and Doucet

2015; Everitt et al. 2016; Dinh, Darling, and Matsen IV 2017) develop SMC algorithms

for infering phylogenetic trees. In the setting of models with both static and dynamic

parameters, (Carvalho et al. 2010) uses sufficient statistics in a manner similar to that of

(Storvik 2002) discussed above, and (Nemeth, Fearnhead, and Mihaylova 2014) presents

an SMC algorithm that adapts to abruptly changing dynamic parameters. Certain models

(especially based on physical processes) are defined using partial differential equations. In

such models, discretization can lead to growing errors; (Beskos et al. 2017b) adapts an SMC

algorithm to this setting.

Another vein of research concentrates on the computational aspects of SMC. In particular,

there is interest in using SMC methods on parallel and distributed systems, as discussed

in (Cotter, Cotter, and Russell 2015; Vergé et al. 2013; Chen et al. 2011). (Paige et al. 2014)

presents a parallel and distributed SMC method that is “anytime” in nature, meaning that it

continuosly improves its accuracy (by generating more samples), but can be stopped at any

time to give an unbiased estimate.

There has also been more theoretical work on SMC methods. (Kitagawa 1996; Douc

and Cappe 2005; Whiteley, Lee, and Heine 2016) discuss the effect of resampling on SMC

algorithm, including different resampling distributions and methods to avoid resampling at

every iteration. Similarly, (Whiteley and Lee 2014) develops a resampling distribution that
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minimizes the growth of variance of the estimator. (Bengtsson, Bickel, and Li 2008; Beskos,

Crisan, and Jasra 2014) explore properties of SMC when the data are high dimensional.

(Gilks and Berzuini 2001) incorporates MCMC transitions (on the entire history of a sample)

into an SMC algorithm. Similarly, (Fearnhead 2002) incorporates MCMC transitions that

take advantage of conjugacy and sufficient statistics to remain efficient.

SMC methods can be used for problems other than state-space models. (Del Moral,

Doucet, and Jasra 2006) discusses using SMC for sampling from arbitrary sequences of

distributions. (Cappé et al. 2004) introduces Population Monte Carlo, which is essentially

an SMC algorithm where the target distribution is the same at every iteration. (Jasra,

Stephens, and Holmes 2007b) reviews similar algorithms, including ones that incorporate

MCMC techniques. (Wraith et al. 2009; Kilbinger et al. 2010) discuss the application of

Population Monte Carlo and other algorithms to cosmology. (Jasra, Stephens, and Holmes

2007a) combines these concepts with RJMCMC for trans-dimensional targets.

Similarly, (Andrieu, Doucet, and Holenstein 2010) introduces Particle MCMC, which uses

SMC algorithms for proposal distributions within an MCMC algorithm. (Pitt et al. 2012) and

(Chopin and Singh 2015) explore the theoretical properties of Particle MCMC, and (Lindsten,

Jordan, and Schön 2014) adds a kind of resampling between iterations of the MCMC algorithm.

(Bouchard-Côté, Doucet, and Roth 2017) incorporates split-merge moves into Particle MCMC

for mixture models, and (Golightly, Henderson, and Sherlock 2014) incorporates delayed

acceptance into Particle MCMC. (Meent et al. 2015) applies the algorithm of (Lindsten,

Jordan, and Schön 2014) to probabilistic programming.

4.3 Other Inference Techniques

4.3.1 Hamiltonian Monte Carlo

Originally introduced as “Hybrid Monte Carlo” (Duane et al. 1987; Neal 1992), Hamiltonian

Monte Carlo (HMC) is a simulation technique based in physics. In physics, Hamiltonian
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dynamics represent the time-evolution of systems wherein energy is conserved (i.e., there is

no input of energy from outside of the system). The total energy of such systems can be

represented as the sum of potential energy (such as from a gravitational or electromagnetic

field) and kinetic energy. The basic idea of HMC is to generate samples from some target

probability distribution π(x) by simulating a dynamical system with potential energy given

by − log π(x): first a momentum p (and thereby a kinetic energy) is sampled from some

arbitrary distribution π(p|x). Then, the Hamiltonian system is simulated for some time t

(e.g., using any of the techniques in (Lindsten, Jordan, and Schön 2014)), yielding (x′, p′).

Because Hamiltonian systems conserve total energy H = − log π(p|x) − log π(x), we have

(x′, p′) ∼ π(x, p) = π(x)π(p|x). Discarding p′ leaves us with a sample x′ ∼ π(x), as desired

(technically, because the simulation is of finite precision, there is a Metropolis-Hastings step

to occasionally reject bad samples). See (Betancourt 2017a) for an in-depth and intuitive

introduction to HMC methods that explains their efficacy, and see (Betancourt 2017b) for a

historical review of MCMC and HMC.

HMC methods have proven to be quite effective when they are applicable, and have

thus engendered a lot of study. (Betancourt et al. 2017) and (Barp et al. 2017) provide a

theoretical foundation of HMC based in differential geometry; (Betancourt 2014) uses some of

these properties to generalize HMC methods. More theoretical work can be found in (Seiler,

Rubinstein-Salzedo, and Holmes 2014; Livingstone et al. 2016; Zhang et al. 2016; Betancourt

2015).

Another area of study is the setting of the parameters of the HMC algorithm. (Betancourt

2016b) identifies the optimal integration time (i.e. length of the simulation). Hamiltonian

simulations typically proceed by making small “steps;” (Hoffman and Gelman 2014) develops

a variant of HMC without the need to tune the size of such steps. (Betancourt 2016a) and

(Livingstone, Faulkner, and Roberts 2017) discuss the kinetic energy of the system, i.e., the

distribution π(p|x).
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(Strathmann et al. 2015) HMC for problems w/out tractable gradients: fit a kernellized

exponential family model and use it’s gradients (or estimate the gradient with the model?)

(Sohl-Dickstein, Mudigonda, and DeWeese 2014) HMC w/out rejection (instead, longer

paths are simulated) (Tripuraneni et al. 2017) develops a variant of HMC with different

dynamics which still preserve energy. (Lan, Streets, and Shahbaba 2014) modifies HMC with

a periodic search for modes which are then linked via “wormholes” so that the samples can

more effectively explore a multimodal distribution.

The original HMC algorithm is only applicable to simulating real-valued variables with

smooth densities with efficiently computable gradients. There has been work (Beskos et

al. 2011; Beskos et al. 2017a; Byrne and Girolami 2013; Beskos 2014) on generalizing to non-

real spaces, as well as to discrete variables (Pakman and Paninski 2013; Nishimura, Dunson,

and Lu 2017) and densities with discontinuities (Afshar and Domke 2015). (Strathmann

et al. 2015) and (Stoehr, Benson, and Friel 2017) develop variants that do not require exact

gradients.

Finally, (Sohl-Dickstein, Mudigonda, and DeWeese 2014) develops a variant of HMC

without rejection (instead, longer paths are simulated), and (Betancourt and Girolami 2015)

specializes HMC for hierarchical models.

4.3.2 Simulated Annealing

Plain MCMC is useful for computing posterior means and other summary statistics, but it is

not efficient when the goal is to find the maximum a posteriori (MAP) estimate (i.e., the

mode of the posterior distribution), since it will generate many samples far from the mode,

unless the distribution is sharply concentrated around the mode (which it rarely is). A useful

alternative is Simulated Annealing (Laarhoven and Aarts 1987; Andrieu, Freitas, and Doucet

2000), wherein instead of sampling from a homogeneous Markov chain that (assymptotically)

generates samples from some π(x) one samples from an inhomogeneous Markov chain that
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generates samples from πi(x) ∝ πTi(x), where Ti increases as the simulation continues. As

Ti increases, πi(x) becomes more and more concentrated around the mode(s) of π(x). By

introducing the increasing Ti into the proposals and acceptance ratios of an MCMC sampler,

we can therefor produce better MAP estimates. The rate at which Ti increases is itself a

subject of study (Hajek 1988; Kiwaki 2002). Alternatively, one can adapt SMC algorithms to

target πi(x) (Iba 2003).

If the model being used has so-called “nuisance parameters” α—parameters whose value

is not interesting—an alternative is to replace πTi(x, α) with
∏Ti

k=1 π(x, α
(k)) (Doucet, Godsill,

and Robert 2002; Zhao et al. 2015). This is better at integrating out α.

(Andrieu, Freitas, and Doucet 2000) and (Bandyopadhyay 2005) combine the RJMCMC

techniques of Section 4.1.1 with simulated annealing.

4.3.3 Approximate Bayesian Computation

For sufficiently complex models, even evaluating the likelihood can be prohibitively expensive.

Approximate Bayesian Computation (ABC) (Sunnåker et al. 2013) is a class of algorithms

to handle inference in even the case that the prior and likelihood can be simulated but

the likelihood cannot be computed. The simplest version is to simulate an artificial set of

parameters and data (θ̂, x̂), then compare the generated data with the true observed data. If

they are similar enough, i.e., ρ(x, x̂) < ε for some distance metric ρ(·, ·), then we accept θ̂;

otherwise, we reject. Thus, the set of accepted θ̂s, being associated with virtual data similar

to the real data, are approximately distributed according to the posterior p(θ|x).

ABC has been adapted to state-space models (Vakilzadeh, Beck, and Abrahamsson

2018) as well as classification using the popular random forest model (Marin et al. 2016).

Additionally, it can be incorporated into other inference mechanisms, such as SMC (Bonassi

and West 2015).
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4.3.4 Variational Methods

So far, all of the inference techniques we have discussed have been based on simulation and

sampling. An alternative approach, variational inference (Jordan et al. 1999; Blei, Kucukelbir,

and McAuliffe 2017; Wainwright and Jordan 2008) is instead based on optimization. The

posterior p(θ|x) is approximated by the distribution q(θ;φ) by solving the optimization

problem

argmin
φ

DKL(q(θ|φ)‖p(θ|x)),

where DKL(·‖·) is the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951),

DKL(f(x)‖g(x)) =
∫
f(dx) log f(x)−

∫
f(x) log g(x).

In general, DKL(q(θ|φ)‖p(θ|x)) is not available; instead, an equivalent optimization maximizes

the evidence lower bound:

argmax
φ

∫
q(dθ|φ) log p(θ, x)−

∫
q(dθ|φ) log q(θ|φ). (4.1)

Additionally, other divergence measures may be used (Minka 2005; Ranganath et al. 2016)

Optimizing Equation (4.1) requires calculating integrals and gradients which are not

always available; see (Paisley, Blei, and Jordan 2012; Ruiz, Titsias, and Blei 2016) for

methods to handle such situations. Even in cases where these gradients are available, it can

be time-consuming to derive them. (Kucukelbir et al. 2017) presents a system which uses

automatic differentiation (Baydin et al. 2018) to allow users to perform inference in a broad

class of differentiable models without needing to derive any gradients themselves.

Variational inference has been applied to many problem areas, including applications

involving “big data” and scalability (Armagan and Dunson 2011; Ko and Seeger 2012; Dai

et al. 2015) as well as streaming data (Broderick et al. 2013; Tank, Foti, and Fox 2015). It

has been applied to popular models such as neural networks (Jaakkola and Jordan 1996),

Markov Decision Processes (Cheng et al. 2013), and logistic regression (Jaakkola and Jordan
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1997; Jaakkola and Jordan 2000)—including a nonparametric multinomial version involving

Gaussian Processes (Chai 2012).

4.3.5 The Gumbel-max Trick

Consider the problem of sampling a random variable x ∈ {1, . . . ,m} with p(x = i) = f(i)/z

for some unknown normalizing factor z. The “Gumbel-max trick” is as follows: let Gi, i ∈

{1, . . . ,m} be i.i.d. standard Gumbel random variables, meaning that they have density

e−(Gi+e−Gi ). Then, let

x∗ = argmax
i

log f(i) +Gi.

Proposition 4.1. p(x∗ = i) = p(x = i)

Proof. First, note that the cumulative distribution function of Gi is given by p(Gi < g) =∫ g

0
p(dGi) = e−e

−g . Then,

p(x∗ = i) =

∫ ∏
j 6=i

p(Gj < log f(i)− log f(j) +Gi)p(dGi)

=

∫ ∏
j 6=i

exp (− exp (− log f(i) + log f(j)−Gi)) p(dGi)

Letting G′i = Gi − log f(i) and expanding its density, we get

=

∫
exp (−G′i + log f(i)− exp (−G′i + log f(i)))

×
∏
j 6=i

exp (− exp (log f(j)) exp (−G′i)) dG′i

=

∫
exp (−G′i + log f(i)− exp (−G′i + log f(i)))

× exp

(
− exp (−G′i)

∑
j 6=i

f(j)

)
dG′i

=

∫
exp

(
−G′i + log f(i)− exp (−G′i + log f(i))− exp (−G′i)

∑
j 6=i

f(j)

)
dG′i

= f(i)

∫
exp

(
−G′i − f(i) exp (−G′i)− exp (−G′i)

∑
j 6=i

f(j)

)
dG′i
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= f(i)

∫
exp

(
−G′i − exp (−G′i)

∑
j

f(j)

)
dG′i

=
f(i)∑
j f(j)

Using this technique to sample from p(x) is no more efficient than computing z, but this

leads novel approximation algorithms (Papandreou and Yuille 2011; Jaakkola and Hazan

2012; Hazan, Maji, and Jaakkola 2013). These techniques have been generalized to continuous

spaces (Maddison, Tarlow, and Minka 2014), and distributions other than the Gumbel (Balog

et al. 2017). Additionally, theoretical connections between these techniques and Monte Carlo

techniques have been established (Maddison 2016); (Orabona et al. 2014) develops more

general theory.
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CHAPTER 5

BAYESIAN NONPARAMETRIC RELATIONAL LEARNING WITH THE

BROKEN TREE PROCESS1

Recently, an increase in the availability and importance of relational datasets—such as social

network data or protein interaction data—has lead to increased interest in modelling and

learning from such data. Such data are often modelled as exchangeable arrays, yielding a

particular representation due to Aldous and Hoover. We present a Bayesian nonparametric

model based on this representation, which uses a novel process to generate a partition of

the data. We present a Reversible Jump MCMC algorithm for inference in this model, and

demonstrate the effectiveness of this approach on real-world data.

5.1 Introduction

Relational data—which appear in many areas of science, ranging from social networks to

protein interaction networks—are observations of relationships between sets of objects. A

useful representation of such data is in the form of arrays of random variables2, e.g., R = (Rij),

where i and j index objects xi. A basic challenge that arises in the study of relational data

is that of link prediction, where some entries of R are missing and the goal is to predict

these unobserved links based on the observed structure. That is, let R+ denote the observed

part of R, and R− the unobserved part. The goal is to calculate the posterior predictive

distribution p(R−|R+). In order to address such challenges, it is necessary to develop rich,

flexible models of relational data.

1©2016 IEEE. Reprinted with permission, from Justin Sahs, “Bayesian Nonparametric Relational Learning
with the Broken Tree Process”, IEEE Conference on Intelligence and Security Informatics, September 2016.

2We restrict our discussion to binary relations here, but higher-dimensional analogs of our methods are
possible.
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In this chapter, we propose a probabilistic model of relational arrays based on a novel

Bayesian nonparametric prior on partitions of the unit square. This prior allows our model

to find irregular co-clusters of the relation entries, leading to a flexible model that can find

rich latent structures in the data.

The rest of this chapter is organized as follows: in section 5.2, we review some techni-

cal background, and present a representation theorem due to Aldous (Aldous 1981) and

Hoover (Hoover 1979). In section 5.3, we review related work and present these works in

the light of the Aldous-Hoover theorem. In section 5.4, we introduce our novel model. In

section 5.5 we present inference in this model. In section 5.6, we present our experimental

results. Finally, in section 5.7, we conclude the chapter.

5.2 Background

A random array is a collection X of random variables (Xij)i,j∈N taking values in some set

X. Relational data such as graphs can be represented as arrays (in the case of unweighted

graphs, these arrays have binary values). An array is called jointly exchangeable when

(Xij)
d
=(Xπ(i),π(j)) for any permutation π of N; X is called separately exchangeable when

(Xij)
d
=(Xπ1(i),π2(j)) for any pair (π1, π2) of permutations of N.

Theorem 5.1 (Aldous, Hoover). Let X be a random array. Then, X is separately exchange-

able iff

(Xij)
d
=(F (Ui, Uj, Uij)),

where

- F : [0, 1]3 → X is a random function

- (Ui)i∈N and (Uij)i,j∈N are collections of i.i.d. U [0, 1] random variables.

We will use this representation to frame our discussion of our work and the works discussed

in the next section.
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5.3 Related Work

A popular approach to modelling relations is the Stochastic Blockmodel (Wang and Wong

1987), which assumes that the relationships between objects can be explained as class-class

interactions: the objects are assigned to classes (either observed classes or through clustering),

and each pair of classes is assigned a link probability. In the Aldous-Hoover representation,

each cluster gets a column (or row) in a grid. Each grid-block is then associated with a height.

Then, each object i is assigned a Ui, which will fall in one of the columns/rows, corresponding

to a cluster assignment. F (Ui, Uj, Uij) is a threshold function: if Uij is lower than the “height”

of the block containing (Ui, Uj), then there is a link between objects i and j.

The Infinite Relational Model (IRM) (Kemp et al. 2006) (and the closely related Infinite

Hidden Relational Model (IHRM) (Xu et al. 2006)) first applied the techniques of Bayesian

nonparametrics (Hjort et al. 2010; Ghosh and Ramamoorthi 2003) to the Stochastic Block-

model, using the Dirichlet Process (Antoniak 1974) to assign objects to an unknown number

of clusters. In (Ishiguro, Ueda, and Sawada 2012), Ishiguro et al. add “relevance” indicators

to the IRM allowing objects to be marked as irrelevant noise, and therefore have no affect

on the clustering or other parameters of the model. In the Aldous-Hoover representation,

there is a fixed L-shaped block that contains all of the “irrelevant” points. Similarly, in

(Ohama et al. 2013), Ohama et al. modify the IRM to allow particular pairs of objects to be

“irrelevant.” This corresponds to setting a random subset of the height-map to a particular

amount, such that the “irrelevant” subset is independent of the underlying grid structure,

and such that every point (Ui, Uj) has the same probability of being “irrelevant.”

Another vein of research has been to replace the IRM’s Dirichlet Process-based latent

clustering with the latent feature model of the Indian Buffet Process (Ghahramani, Griffiths,

and Sollich 2006). In (Miller, Griffiths, and Jordan 2009), the IBP assigns latent binary

features to each object and a Gaussian-distributed weight matrix and sigmoid function are

used to assign link probabilities. Additionally, the model provides the ability to include

61



Algorithm 5.1: MP (λ,Θ)

input :Θ = Θ1 ×Θ2 × · · · ×Θn, the space to be partitioned (e.g., a square),
λ, the budget parameter

output :M , a partition of Θ
1 begin
2 τ ←

∑
i |Θi|

3 E ∼ Exp(τ)
4 λ′ ← λ− E
5 if λ′ < 0 then
6 return {Θ}
7 else
8 c ∼ U [0, τ ]

9 d← d such that
d∑

i=1

|Θi| < c <

d+1∑
i=1

|Θi|

10 (Θd<,Θd>)← split Θd at c−
d∑

i=1

|Θi|

11 Define Θ< and Θ> appropriately
12 m< ∼MP (λ′,Θ<)
13 m> ∼MP (λ′,Θ>)
14 return m< ∪m>

(observed) side-information when available. In (Mørup, Schmidt, and Hansen 2011), the

weight matrix and sigmoid function are replaced with Beta-distributed link probabilities

combined through a noisy-or function. Like the IRM, these correspond to grid-based threshold

functions F . In (Palla and Knowles 2012), the IBP is used to assign latent features to each

object, and each feature is further clustered with the Dirichlet Process. Each cluster is

assigned a Gaussian-distributed weight, and link probabilities are recovered via a sigmoid

function, similar to (Miller, Griffiths, and Jordan 2009).

The Mondrian Process (Roy and Teh 2008) is a Bayesian nonparametric prior over

partitions of an n-dimensional unit hypercube3. The process is defined recursively, as shown

in Algorithm 5.1, wherein the hypercube is split in half by a random hyperplane, and the

3In general, the Mondrian Process is defined over any product space Θ = Θ1 ×Θ2 × · · · ×Θn where each
Θi is a one-dimensional simply-connected space, so that one can randomly select a point in Θi to split the
space into two spaces, and repeat this on the new spaces. We use Θi = [0, 1] for all i, but other spaces—such
as trees—can be used.
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two halves are split in the next recursion, and so on, with a recursion depth controlled by a

“budget” parameter λ and a cost variable E that is exponentially distributed with inverse

mean equal to the sum of the lengths of the sides of the hypercube being split, so that costs

(tend to) rise as the recursion depth increases. This leads to a more flexible partition of the

hypercube than the grids associated with the previous works. (Roy et al. 2006) presents

a similar model based on random binary trees. (Blundell and Teh 2013) presents a model

based on random rose trees.

Finally, in (Lloyd et al. 2012), Lloyd et al. present a model based on the Aldous-Hoover

representation, where the random function F (Ui, Uj, Uij) = H(Uij,Θ(Ui, Uj)), where Θ is

a random function drawn from a Gaussian Process (Rasmussen and Williams 2006), and

H(a, b) returns 1 if b > a and 0 otherwise (in the case of graph data).

See (Orbanz and Roy 2015) for a more thorough review of the theory and existing work

in modelling exchangeable relations.

5.4 The Broken Tree Process

5.4.1 Definition

A drawM∼ BTP (λ, α) is as follows:

1. Draw

mx ∼ Poisson(λ) my ∼ Poisson(λ)

2. Draw

ζ ix ∼ U(0, 1) for i ∈ [1,mx]

ζ iy ∼ U(0, 1) for i ∈ [1,my],

defining mx vertical and my horizontal lines on the unit square, with offsets given by

the corresponding ζs, and thus a grid with (mx + 1)(my + 1) blocks
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(a) The structure underlying M, with mx =
4,my = 5; shows ζ (as gray lines), T (as
arrows), and B (as red dashed arrows)

(b) The partition of M

Figure 5.1: A drawM∼ BTP (λ, α)

3. Let G be the graph whose nodes correspond to the blocks of this grid, with edges

between adjacent blocks. Let T be a uniform random spanning tree of G

4. Each node v (except the root) of T is independently added to the “break set” B with

probability α. Then, these “broken” nodes induce a forest by removing the edges from

their parents (i.e., each broken node becomes the root of a tree in this forest).

5. For each tree in the forest, we take the union of the grid-blocks associated with its

nodes; the collection of such unions defines a partition of the unit square

This process is depicted in Figure 5.1.

The density p(M|λ, α) is given by

p(M|λ, α) = λmx

mx!
e−λ

λmy

my!
e−λ
(
(mx + 1)(my + 1)− 1

k

)
×α

k(1− α)(mx+1)(my+1)−k−1

τ(G(mx + 1,my + 1))
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where k = |B| and τ(G(x, y)) is the number of possible spanning trees of the grid graph G,

given by (Kreweras 1978)

τ(G(x, y)) =
my−1∏
i=1

mx−1∏
j=1

4 sin2(
jπ

2mx

) + 4 sin2(
iπ

2my

)

5.4.2 The BTP Relational Model

To complete our model of relational data, we draw a threshold φs for each partition s ∈M.

Then, our Aldous-Hoover F is a threshold function: F (Ui, Uj, Uij) = 1 if Uij > φsij where sij

is the partition that contains the point (Ui, Uj). Equivalently, our model is

M∼ BTP (λ, α)

ξi
iid∼U [0, 1] for each object i

φs
iid∼Beta(a, b) for each partition s inM

Rij
ind∼ Bernoulli(φsij)

Finally, we assign hyperpriors to the parameters (λ, α, a, b):

p(λ) ∝ λ−
1
2

p(α) = Beta(α;
1

2
,
1

2
)

p(a, b) = e−(a+b)

Here, we have placed an (improper) uninformative Jeffreys prior on λ, and a (proper) Jeffreys

prior on α. The prior p(a, b) is equivalent to placing a uniform prior on the mean a
a+b

, and a

vague exponential prior on the “sample size” a+ b.

5.5 Inference

We are interested in computing

p(R−|R+) =

∫
p(R−|ψ)p(ψ|R+)dψ
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where ψ = (M, ξ, φ, λ, α, a, b). Because this integral is intractable, we use the Reversible

Jump Markov Chain Monte Carlo techniques of Section 4.1.1.

5.5.1 Inference in the BTPRM

For our model, p(k, θ(k)|x) ≡ p(ψ|R+), so we have

α∗m(ψ, ψ
′) =

p(R|ψ′)
p(R|ψ)︸ ︷︷ ︸
likelihood

ratio

p(ψ′)

p(ψ)︸ ︷︷ ︸
prior
ratio

jm∗(ψ′, ψ)

jm(ψ, ψ′)︸ ︷︷ ︸
proposal

ratio

∣∣∣∣∂(θ(k′), u(k′))∂(θ(k), u(k))

∣∣∣∣︸ ︷︷ ︸
Jacobian

where θ(k) contains all of the real-valued variables in ψ.

Our sampler uses a Gibbs sampling structure, cycling through each component of ψ and

sampling (sometimes approximately) from p(ψi|R+, ψ−i).

Sampling M To sampleM from p(M|R+, λ, α, ξ), we use a RJMCMC sampler with six

moves:

1. Tree: Sample a new tree T that is consistent with the current partition by uniformly

sampling subtrees in each block. (This is its own inverse.)

2. Split: First select a dimension, then uniformly select an interval (i.e., a pair of adjacent

ζ), then add a new ζ at uniform between them and increment the appropriate mx or

my. Sample a new tree on the expanded grid. (This is the inverse of Merge.)

3. Merge: First select a dimension, then uniformly select a ζ and remove it. Decrement

mx or my as appropriate. Sample a new tree on the reduced grid. (This is the inverse

of Split.)

4. Warp: First select a dimension, then uniformly pick a ζ, and move it to a uniform

location between its neighbors. The tree does not change. (This is its own inverse.)
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5. Fall: Choose a broken node or the root at random, then either replace it with one of its

children (with probability 1− α) or add the child (and keep the parent). If the child is

already broken, adding it has no effect. If the root is chosen, it is neither added nor

removed from B. (This is the inverse of Rise.)

6. Rise: Choose a broken node at random, then either replace it with its parent (with

probability 1 − α) or add the parent (and keep the child). If the parent is already

broken or the root, adding it has no effect. (This is the inverse of Fall.)

To choose a move m, we first choose a category among {Tree}, {Splitx, Mergex}, {Splity,

Mergey}, {Warpx, Warpy}, and {Fall, Rise}. Let M be the number of valid categories; in

general, M = 5, but there are special cases: if mx = 0 or my = 0 then there can be no

Tree move; if both are zero, there can be no Merge, Warp, Rise, or Fall moves. Thus, we

choose among the valid categories at uniform (with probability 1/M), then a move is chosen

uniformly from the chosen category.

After selecting a move type m, we generate the proposalM′, and then accept the proposal

with acceptance ratio α∗m(M,M′) = Lr(M,M′)A(m), where Lr(M,M′) is the likelihood

ratio,

Lr(M,M′) =

∏
s∈M′ B(a+ n′+s , b+ n′−s )∏
s∈MB(a+ n+

s , b+ n−s )

where s varies over the blocks ofM, and n+
s (resp. n−s ) are the number of positive (resp.

negative) entries in s, i.e., the number of points (ξi, ξj) ∈ s such that Rij = 1 (resp. Rij = −1).

The A(m) are given by:

A(Tree) = 1

A(Splitx) =
λ

mx + 1
(1− α)my+1 ((mx + 2)(my + 1)− 1)k

((mx + 1)(my + 1)− 1)k
(ζ→ − ζ←)

A(Mergex) =
mx

λ
αk′−k(1− α)−(my+1)+k′−kkk−k

′ (mx(my + 1)− 1)k
′

((mx + 1)(my + 1)− 1)k
(ζ→ − ζ←)−1

A(Warpx) = 1
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A(Fall) = |C(β†)|


k+1
k

β† /∈ B′ ∧ β∗ /∈ B
k+1
k−1

k
(mx+1)(my+1)−k β† /∈ B′ ∧ β∗ ∈ B

(mx+1)(my+1)−k−1
k+1

β† ∈ B′ ∧ β∗ /∈ B
k+1
k

β† ∈ B′ ∧ β∗ ∈ B

A(Rise) = |C(β∗)|−1


k

k+1
β† /∈ B′ ∧ β∗ /∈ B

k
(mx+1)(my+1)−k β† /∈ B′ ∧ β∗ ∈ B

k
k+2

(mx+1)(my+1)−k−1
k+1

β† ∈ B′ ∧ β∗ /∈ B
k

k+1
β† ∈ B′ ∧ β∗ ∈ B

where

- β† is the randomly selected broken node, and β∗ is the newly generated broken node;

- ζ← and ζ→ are the ζs to the left and right of the added or removed ζ;

- xy denotes the falling factorial x(x− 1) · · · (x− y + 1)

- A(Splity),A(Mergey), and A(Warpy) are the same as their x-counterpoint, with mx

and my exchanged.

Note that for the Tree move, Lr(M,M′) = 1 as the partitioning does not change. Thus,

Tree moves are always accepted.

Sampling ξ Next, we sample ξ from p(ξ|M, R+). We sample each ξi uniformly, then accept

with α∗(ξ, ξ′) = Lr(ξ, ξ′) (since the prior and proposal ratios are both one). The marginal

posterior p(ξi|R+,M, ξ−) (where ξ− denotes all of ξ except ξi) is a piecewise-constant function,

as the probability of ξi only changes when some corresponding points ξj move from one

partition to another. We can therefore sample from the constant segments, then sample at

uniform within that segment. Let χi denote the sampled segment. Then,

p(χi|R+,M, ξ−) ∝ |χi|
∏
s

B(a+ n+
s (χi), b+ n−s (χi))

Because each χi can only take on a relatively small number of values, we can sample from

this distribution directly.
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Sampling λ Given the prior in Section 5.4.2, the posterior on λ is given by

p(λ|M) = G(mx +my +
1

2
, 2)

which we can sample exactly.

Sampling α Given the prior in Section 5.4.2, the posterior on α is given by

p(α|M) = Beta(k +
1

2
, (mx + 1)(my + 1)− k + 1

2
)

which can also be exactly sampled.

Sampling (a, b) The prior for (a, b) yields the posterior

p(a, b|R+) ∝ e−(a+b)
∏
s

B(a+ n+
s , b+ n−s )

B(a, b)

which is not directly sampleable, so we use a Metropolis-Hastings proposal

a′ ∼ N(a, σ2)

b′ ∼ N(b, σ2)

and accept the proposal with

α∗((a, b), (a′, b′)) = Lr((a, b), (a′, b′))e(a+b)−(a′+b′)

(because the proposal distribution is symmetric, the proposal ratio is 1).

5.6 Experiments

We compare the performance of our model against the IRM (Kemp et al. 2006) on real-world

data. For each dataset, we ran 5-fold cross validation, running both the BTPRM and IRM

on the same folds, generating 10,000 samples per fold per method.

We use two datasets from the classic Countries collection (Wasserman and Faust 1994).

Both are relations on 24 countries regarding trade. The first reports the trade of food and

live animals, and the second reports the trade of minerals and fuel.
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Figure 5.2: ROC curves with 95% credible intervals. BTPRM; IRM

The results of our experiments are shown in Figure 5.2, which shows Receiver Operating

Characteristics (ROC) curves for the BTPRM and IRM, with a 95% credible interval computed

by treating the True Positive rate as a Binomial random sample with a Jeffreys’ Beta(1/2, 1/2)

prior for each False Positive rate. Thus, the central line is the posterior mean, and the upper

and lower bounds of the shaded region are the 97.5th and 2.5th percentiles, respectively. We

can then compute the area under the curve (AUC) for each curve (using AUC of the upper

and lower curves as upper and lower bounds on a credible interval for the AUC). For the food

and live animal trade dataset, the IRM outperforms the BTPRM slightly: the IRM achieves

an AUC of 0.86 (credible interval (0.84, 0.88)), compared to the BTPRM’s 0.78 (credible

interval (0.75, 0.80)). For the mineral and fuel trade dataset, the two methods are essentially

indistinguishable: the IRM achieves and AUC of 0.84 (credible interval (0.81, 0.86)), and the

BTPRM achieves and AUC of 0.83 (credible interval (0.80, 0.85)).
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5.7 Conclusion

We have presented a novel Bayesian nonparametric approach, the BTPRM, to the problem

of relational modeling, and link prediction in particular. The BTPRM is based on a novel

distribution over partitions of the unit square and the Aldous-Hoover representation theorem.

The partitions used by the BTPRM are more flexible than previous work such as the

IRM (Kemp et al. 2006) or MPRM (Roy and Teh 2008), thus leading to a more flexible

model.

Experimental results show that the BTPRM performs comparably to the IRM, which has

the advantage of a large body of work leading to very efficient inference machinery. We expect

that future work to develop similarly sophisticated and specialized inference techniques for

the BTP would lead to improved performance relative to the IRM. For example, there may

be better RJMCMC moves than those used in this chapter, or it may be possible to use other

techniques such as variational inference.

We believe that the development of highly expressive nonparametric priors and associated

inference techniques will lead to a strong theoretical foundation for future techniques in

machine learning and artificial intelligence. Accordingly, future work should also include

developing extensions to and variations of the BTP. Additionally, applications to tasks other

than relational modelling should be investigated; for example, the Mondrian process (which

was also originally used for relational modeling) has recently been applied to classification

and regression tasks (Lakshminarayanan, Roy, and Teh 2014, 2016).
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CHAPTER 6

ONLINE CLASSIFICATION OF NONSTATIONARY STREAMING DATA

WITH DYNAMIC PITMAN-YOR DIFFUSION TREES1

In Artificial Intelligence and Machine Learning, there is a need for flexible, expressive models

of uncertainty. In the case of online classification, such models should be able to adapt to the

dynamics of the data-generating system, i.e., they should be nonstationary. We introduce

the Dynamic Pitman-Yor Diffusion Tree (DPYDT), a generalization of the Pitman-Yor

Diffusion Tree (PYDT) (Knowles and Ghahramani 2010) to nonstationary streaming data.

These Bayesian nonparametric priors model hierarchical structure in the data, providing

interpretable structural information about patterns in the data. Our model allows this

structure to evolve over time in response to changes in the data distribution. We give

a description of the generative process and derive closed form expressions for the joint

density of a sequence of trees, and the predictive density of successive trees. We also discuss

generalizations of the diffusion underlying the PYDT to discrete variables. Finally, we

describe a Sequential Monte Carlo algorithm for inference in our model, and discuss its

efficiency.

6.1 Introduction

In online classification, data points arrive sequentially, and the learning algorithm attempts

to predict the labels of arriving points. After the prediction, the label of the new data point

is provided, and the model is updated to reflect the new information. One framework for

online learning is the Bayesian probabilistic paradigm, in which the posterior distribution of

model parameters is continually updated as data points arrive.

1©2017 IEEE. Reprinted with permission, from Justin Sahs and Latifur Khan, “Online Classification of
Nonstationary Streaming Data with Dynamic Pitman-Yor Diffusion Trees”, IEEE International Conference
on Tools with Artificial Intelligence, November 2017.
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Tree structures in particular have great value in machine learning, as they can capture

complex dependencies between data points while remaining interpretable. One of the most

popular nonparametric methods is the Dirichlet Process Mixture Model (see Section 3.1),

which assumes a flat structure in which different mixture components (i.e., clusters) are

independent. The Dirichlet Diffusion Tree (Neal 2001) and its generalization the Pitman-Yor

Diffusion Tree (Knowles and Ghahramani 2010) instead incorporate hierarchical structure.

These models are applied in the setting of stationary, exchangeable distributions, where

it is assumed that all data is available at once, and the order of the data is irrelevant. We

describe a modification of the Pitman-Yor Diffusion Tree that extends it to the case where

the data are nonstationary, i.e., their distribution may change over time, as the underlying

system evolves.

The rest of this chapter is organized as follows: in Section 6.2, we review prior work

culminating in the PYDT and its properties. In Section 6.3, we present our dynamic process.

In Section 6.4, we present details of inference in our model. In Section 6.5, we present some

experimental evaluation. Finally, in Section 6.6, we give some example directions for future

work.

6.2 Background

We begin in the offline setting, where data is assumed to be available all-at-once, and the

distribution is assumed to be stationary and exchangeable; that is, the order of the data

does not change the joint distribution of the data. In this setting, the Dirichlet Process and

Pitman-Yor Process Mixture models of Sections 3.1 and 3.2 are popular, computationally

tractable choices.

A limitation of the DPMM and PYPMM is that each mixture component has independent

parameters. A more flexible alternative is to use a prior that produces dependence between

components through a hierarchical structure. The Dirichlet Diffusion Tree (Neal 2001) is a

73



t1 ∼ exp
[
−A(t1)

Γ(1−β)
Γ(2+α)

]
a(t1)Γ(1−β)

Γ(2+α) t2 ∼ exp
[
−A(t2)

Γ(2−β)
Γ(3+α)

]
a(t2)Γ(2−β)

Γ(3+α) t′2∼exp
[
(A(t1)−A(t′2))

Γ(1−β)
Γ(2+α)

]
a(t)Γ(1−β)
Γ(2+α)

0 t1 1

x1

x2

0 t2 t1 1

x1
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0 t1 t′2 1

x3

x1

x2

x3

x3

(a) (b) (c)

Figure 6.1: The Pitman-Yor Diffusion Tree. Top: divergence densities. Middle: tree structure.
Bottom: diffusion paths. (a) x1 diffuses from t = 0 to t = 1, and x2 diverges from the path
to x1 at t1, drawn from the shown density. (b) If t2 < t1, x3 diverges. (c) If t2 > t1, x3 may
branch or follow an existing branch then diverge at t′2.

prior that generalizes the Dirichlet process to hierarchical structures, and the Pitman-Yor

Diffusion Tree (Knowles and Ghahramani 2010) is likewise a tree-structured generalization of

the Pitman-Yor Process.

We can describe the data-generating distribution of the PYDT sequentially, as with

the Chinese Restaurant Process description of the Dirichlet Process. This is illustrated

in Figure 6.1. Consider particles undergoing random diffusion from the root at t = 0 to leaves

at t = 1. The first particle starts at some origin, then follows Brownian motion2 until t = 1.

Then, the ith particle initially follows the path of the previous particles. At each infinitesimal

2We generalize to other continuous-time Markov processes in Section 6.3.2
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time interval [t, t+ dt], the ith particle will diverge from this path with probability

a(t)Γ(m
(t)
i−1 − β)dt

Γ(m
(t)
i−1 + 1 + α)

,

where a(t) is a parameter called the “divergence function,” Γ(·) is the Gamma function, and

m
(t)
i−1 is the number of particles that have followed the path up to this divergence point before

the current particle. We assume that
∫ 1

0
a(t)dt =∞, as this guarantees that each particle

will eventually diverge, so that the values at the leaves will be drawn from a nonatomic

distribution for any continuous feature. If particle i reaches the point where previous particles

have diverged, it follows existing branch k with probability

b
(t,k)
i−1 − β
m

(t)
i−1 + α

or creates a new branch with probability

α + βK
(t)
i−1

m
(t)
i−1 + α

,

where K(t)
i−1 is the number of existing branches, and b(t,k)i−1 is the number of particles that have

followed branch k before. When a particle diverges or creates a new branch, it independently

diffuses until t = 1; otherwise, it follows the path previous particles have taken.

Next, we turn to the density of divergence times, p(t):

p(go from s to t without diverging)

= lim
k→∞

k−1∏
i=0

p(go from si = s+ (i− 1)(t− s)/k to ti = s+ i(t− s)/k without diverging)

= lim
k→∞

k−1∏
i=0

(
1− a(ti)Γ(m− β)

Γ(m+ 1 + α)
(ti − si)

)

= lim
k→∞

k−1∏
i=0

(
1− a(si+1)Γ(m− β)

Γ(m+ 1 + α)
(si+1 − si)

)
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= exp

(
lim
k→∞

k−1∑
i=0

log
(
1− a(si+1)Γ(m− β)

Γ(m+ 1 + α)
(si+1 − si)

))
Using the fact that limx→0

log(1−ax)
−ax = 1, i.e. log(1− ax) ∼0 −ax, we can substitute:

= exp

[
lim
k→∞
−

k−1∑
i=0

a(si+1)Γ(m− β)
Γ(m+ 1 + α)

(si+1 − si)

]

= exp
[
−
∫ t

s

a(t)dt
Γ(m− β)

Γ(m+ 1 + α)

]
= exp

[
(A(s)− A(t)) Γ(m− β)

Γ(m+ 1 + α)

]
Thus,

p(t) = exp

[
(A(s)−A(t))

Γ(m
(t)
i−1 − β)

Γ(m
(t)
i−1+1+α)

]
a(t)Γ(m

(t)
i−1 − β)

Γ(m
(t)
i−1+1+α)

, (6.1)

where A(t) =
∫ t

0
a(t)dt, and s is the time of the last branch (or 0). (If the sampled t is

beyond an existing branch point, then the particle follows or branches as above, and has a

new chance to diverge if it follows an existing path.)

6.3 The Dynamic Pitman-Yor Diffusion Tree

Turning to the online setting, we drop the assumption that the data distribution is stationary.

In the sequential picture of the PYDT, as each data point arrives, the underlying tree grows

by one leaf. This presents two problems: first, as m(t)
i−1 (the number of particles that have

traversed a path) grows, the factor Γ(m(t)
i−1 − β)/Γ(m

(t)
i−1 + 1 + α) in the divergence density

approaches zero, leading to later and later divergence times, so that new data points will be

more and more likely to be distributed like previous data points. Second, to make predictions

about the next data point, the entire tree must be known, leading to slower inference as time

goes on. To adapt the PYDT to the non-stationary setting, we allow subtrees to be removed

as new leaves are added. This means that the distribution tends to “forget” older leaves,

leading to both gradual and sudden changes in distribution.
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Figure 6.2: Deletion in the Dynamic Pitman-Yor Diffusion Tree. (a) As x12 is added to
the tree, it follows the bold path to x3 before diverging. At the intervening branches, some
subtrees are deleted (dashed lines). (b) The new tree. Diffusion values are not shown.

The deletion process (illustrated in Figure 6.2) is as follows: each time a particle reaches

a branch point at t, each subtree T(t,k)
i−1 rooted at that point is removed with probability

ρ(T
(t,k)
i−1 ), where ρ(·) is a parameter and is bounded from above by 1. Let m̃(t)

i−1 and K̃
(t)
i−1

denote the counts and branching factors after this deletion, but before the new leaf is added,

so that m(t)
i = m̃

(t)
i−1 + 1, and K(t)

i = K̃
(t)
i−1 + 1 if the new data point creates a new branch at

t, and K(t)
i = K̃

(t)
i−1 otherwise. Particle i’s probability of choosing an existing branch versus

creating a new branch depends on these post-deletion numbers.

6.3.1 Probability Densities

Let T1:i denote the sequence of trees Ti that generate the observations x1 through xi as their

leaves. We cannot represent the (uncountably infinite) paths between nodes on these trees,

but our requirement that the diffusion be a Markov process allows us to just sample the

diffusion at the nodes. We are interested in deriving p(T1:i|θ), where θ = (α, β, a(·), ρ(·), ψ)

are the parameters of the model, with ψ being the parameters of the diffusion (discussed

in Section 6.3.2).

To achieve a succinct, readable result, we require some additional notation:
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- In a slight abuse of notation, let t identify a unique point on the tree, with the

understanding that the application a(t) applies a(·) only to the time component of t.

- Let ξt denote the diffusion value at t.

- Let Ti be considered a collection of intervals [s, t], one for each segment of the tree.

Likewise, T1:i is the union of these collections.

- For each t, let m(t)
i be the list of m(t)

j−1 values for every particle j ≤ i that traverses t.

- Let m∗(t)i denote the m(t)
j−1 for the j ≤ i that first diverged at t.

- Let r(t)i denote the list of subtrees T(t,k)
j−1 for every branch k that is retained by particle

j ≤ i at the branch point t, and let r′(t)i denote the subtrees for deleted branches.

- Let b(t)i denote the list of pairs (m, k), where m = m̃
(t)
j−1 and k = K̃

(t)
j−1 for each particle

j ≤ i that creates a new branch at t.

- Let f(t)i denote the list of pairs (m, b), where m = m̃
(t)
j−1 and b = b

(t,k)
j−1 for each particle

j ≤ i that follows an existing branch at t.

Using this notation, the joint distribution of a sequence of trees is given by

p(T1:i|θ) =
∏
T∈r(0)i

(1− ρ(T))
∏
T∈r′(0)i

ρ(T)

×
∏

[s,t]∈T1:i

a(t)
Γ(m∗(t) − β)

Γ(m∗(t) + 1 + α)

×
∏

m∈m(t)
i

exp
[
(A(s)−A(t)) Γ(m− β)

Γ(m+1+α)

]
×
∏
T∈r(t)i

(1− ρ(T))
∏
T∈r′(t)i

ρ(T)

×
∏

(m,k)∈b(t)i

α + βk

m+ α

∏
(m,b)∈f(t)i

b− β
m+ α

× p(ξt|ξs, ψ, t− s)
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Additionally, the predictive distribution is given in terms of Pi, which is the path from the

root to the last node before the new leaf in the new tree (as all changes to the tree take place

along this path):

p(Ti|Ti−1, θ)

=

{
1− ρ(Ti−1) Ti−1 ∈ r

(0)
i

ρ(Ti−1) Ti−1 ∈ r′
(0)
i

×
∏

[s,t]∈Pi

exp

[
(A(s)−A(t))

Γ(m
(t)
i−1 − β)

Γ(m
(t)
i−1+1+α)

]

×



p(ξt|ξs, ξs+ , ψ, t− s, s+−t)

×a(t) Γ(m
(t)
i−1−β)

Γ(m
(t)
i−1+1+α)

D Pi diverges at t

R
α+βK̃

(t)
i−1

m
(t)
i−1+α

D Pi branches at t

R
b
(t,k)
i−1 −β

m
(t)
i−1+α

Pi follows k at t,

where R =
∏
T∈r(t)i

(1− ρ(T))
∏
T∈r′(t)i

ρ(T) is the joint probability of all branch deletions and

retentions at t, and D = p(ξ1|ξt, ψ, 1− t) is the probability of diffusing from the final branch

or diverge to the leaf.

6.3.2 Diffusions

In the original formulation of the DDT and PYDT, the particle diffusion was defined to be

Brownian motion, so that ξt+dt ∼ N(ξt, σ
2dt). We are interested in performing inference on

data that may have discrete elements, and are in particular interested in predicting a discrete

classification label. For any diffusion, we assume that the diffusion is a continuous-time

Markov process, since we will need its value at arbitrary times, and we cannot simulate or

store the full path. Note that the diffusion need not remain stationary between data points:

it is acceptable for the diffusion distribution to update based on (sufficient statistics of) the

data.
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Figure 6.3: A sample from the DPYDT of length 2000 using Brownian diffusion. This sample
displays the nonstationary nature of the DPYDT; it can produce both sudden changes in
distribution (e.g., the sudden appearance of a tight cluster around sample 1,500) and smooth
changes (e.g., the gradual drifting near the end of the sample).

We will need two distributions for each diffusion: the diffusion itself p(ξt|ξs, t− s), and the

bridging distribution p(ξt|ξs, ξu, t− s, u− t) for sampling a point ξt between existing points

ξs and ξu.

Continuous Variables

For continuous variables, we use Brownian motion:

ξt|ξs, t− s ∼ N(ξs, σ
2(t− s))

If there are multiple continuous variables that may be correlated, they can share a multivariate

Brownian motion with covariance matrix Σ.

The bridging distribution is given by

p(ξt|ξs, ξu, t−s, u−t) = N
(
ξt; ξs+

t−s
u−s(ξu−ξs), σ

2 (u−t)(t−s)
u−s

)
A 1-dimensional dataset sampled with Brownian diffusion is shown in Figure 6.3.

Discrete Variables

For discrete variables we use pure jump-type Markov processes (Kallenberg 1997); more

specifically, we use what Kallenberg calls pseudo-Poisson processes. Such a process is
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represented as the composition of a discrete-time Markov chain and a Poisson point process.

That is, at random times governed by the Poisson point process, the diffusion jumps according

to the kernel K(ξs, ξt), i.e., ξt ∼ K(ξs, ·). Then, we have diffusion probabilities given by

p(ξt|ξs, t− s) =
∞∑
n=0

e−λ(t−s)
(λ(t− s))n

n!
Kn(ξs, ξt).

For variables from a finite sample space X = {1, 2, . . . , k}, we follow Kemp et al. 2004 and

use a uniform kernel, K(ξs, ξt) = 1/k. Then,

Kn(ξs, ξt) =

{
1/k n > 0

1(ξt = ξs) otherwise,
and

p(ξt|ξs, t− s) =
1

k

(
(k1(ξt = ξs)− 1) e−λ(t−s) + 1

)
,

and

p(ξt|ξs, ξu, t− s, u− t) =
(
(k1(ξu=ξt)−1) e−λ(u−t) + 1

) (
(k1(ξt=ξs)−1) e−λ(t−s) + 1

)
k ((k1(ξu = ξs)− 1) e−λ(u−s) + 1)

6.3.3 Hyperpriors

Finally, we must define the hyperprior p(θ). We recommend the following: first, we have the

parameters α and β, where β ∈ (0, 1), and α ∈ (−2β,∞). A fairly vague prior for this is

β ∼ Beta(1, 1) δ ∼ G(20,
1

20
) α = δ − 2β,

where Beta(·, ·) is the Beta distribution, and G(·, ·) is the Gamma distribution. Follow-

ing (Knowles and Ghahramani 2010), we choose a(t) = c
1−t with c ∼ G(4, 1

2
). We then

choose
ρ(T

(t,k)
i−1 ) = min{1, t tanh b((i− i∗)− |T(t,k)

i−1 |)},

with b ∼ G(2, 1
50
), where i∗ is the i corresponding to the newest leaf of T(t,k)

i−1 , so that i− i∗

is the “age” of the newest leaf. Using this choice of ρ(·), we have increased probability of

deleting small trees, trees that diverge closer to the leaves, and trees that have not been

updated recently.

To complete the model, we define the hyperpriors for the diffusion parameter ψ. For the

Brownian diffusion (in one dimension), we have ψ = σ2, 1
σ2 ∼ G(3

2
, 1). For finite discrete

variables, we have ψ = λ, λ ∼ G(2, 1
2
).

81



6.4 Inference

We are interested in performing classification; that is, each data point is of the form yi = (vi, li),

where li is a discrete label. We want to compute p(li|vi, y1:i−1) =
∫
p(li|Ti)p(Ti|vi, y1:i−1)dTi,

which—because of the high-dimensional, mixed discrete and continuous nature of Ti−1—is

highly intractable. We will therefore resort to Monte Carlo estimates, which estimate the

integral by

p(li|vi, y1:i−1) ≈
1

K

∑
k

p(li|T(k)
i )

where the T(k)
i are i.i.d. samples from p(Ti|vi, y1:i−1). Generating exact samples from this

distribution is also intractable, so we will rely on the Sequential Monte Carlo methods

from Section 4.2.

To complete the specification of our inference algorithm, we must specify the proposal

distribution for a(k)i . Liu and West use

g(yi|x(k)i−1, ~m
(k)
i−1) = p(yi|E[xi|x(k)i−1, θ

(k)
i−1], ~m

(k)
i−1)

but this expectation is not analytically available or even necessarily defined in general. Indeed,

in our model, the xi are not real numbers but trees, and thus do not have expectation values.

Therefore, we use

x̂
(m,k)
i

iid∼ p(·|x(k)i−1, θ
(k)
i−1)

g(yi|x(k)i−1, ~m
(k)
i−1) =

1

M

M∑
m=1

p(yi|x̂(m,k)
i , ~m

(k)
i−1)

6.4.1 Inference in Our Model

Specializing to our model, we note that (x1:i, y1:i) = T1:i, where each yi is the value of newest

leaf in Ti, and xi corresponds to the rest of the tree, including the leaf with value yi, but

excluding its value. In a slight abuse of notation, we will use Ti in place of xi, with the
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Algorithm 6.1: SMC for our model

1 θ
(k)
1

iid∼ p(θ)
2 T

(k)
1 ← The (deterministic) tree with one leaf at y1

3 w
(k)
1 ∝ 1

4 foreach i > 1 do
/* sample a(k)i */

5 T̂
(m,k)
i

iid∼ p(·|T(k)
i−1, θ

(k)
i−1)

6 g(vi|T(k)
i−1, θ

(k)
i−1)← 1

M

∑M
m=1 p(vi|T̂

(m,k)
i , ~m

(k)
i−1)

7 a
(k)
i

iid∼
∑K

j=1w
(j)
i−1g(vi|T

(j)
i−1, θ

(j)
i−1)δj

/* Sample θ and Ti */
8 θ

(k)
i ∼ N(~m

(k)
i−1, h

2~Vi−1)

9 T
(k)
i ∼ q(·|T(a

(k)
i )

i−1 , θ
(k)
i , yi)

/* Calculate new weights, classifier */

10 w
(k)
v,i ∝

p(vi|T
(k)
i ,θ

(k)
i )p(T

(k)
i |T

(a
(k)
i

)

i−1 ,θ
(k)
i )

g(vi|T
(a

(k)
i

)

i−1 ,θ
(a

(k)
i

)

i−1 )q(T
(k)
i |T

(a
(k)
i

)

i−1 ,θ
(k)
i ,vi)

11 p̂(li|vi, y1:i−1)←
∑K

j=1w
(k)
v,i p(li|T

(j)
i , θ

(j)
i )

12 w
(k)
i ∝ w

(k)
v,i p(li|T

(k)
i , θ

(k)
i )

understanding that the newest leaf has a fixed value. Then, we have

p(yi|Ti, θ) = p(ξ∗1 |ξ∗s∗ , θ, 1− s∗),

where ξ∗1 = yi is the value of the newest leaf, and (ξ∗s∗ , s
∗) is the value and time of its parent

node, so that the probability of yi is just the diffusion probability from its attachment to the

tree. To adapt the algorithm to the task of classification, we note that

p(yi|T(k)
i , θ

(k)
i ) = p(li|T(k)

i , θ
(k)
i )p(vi|T(k)

i , θ
(k)
i ),

(and likewise for g(yi|T
(a

(k)
i )

i , θ
(a

(k)
i )

i )), so we can compute w̃(k)
1:i and g(yi|T

(a
(k)
i )

i ) using only vi,

yielding samples from p(Ti|vi, y1:i−1), as desired. We then update the weights by multiplying

by p(li|T(k)
i , θ

(k)
i ) and renormalizing before propagating the particles. The whole inference

process is given in Algorithm 6.1, and depicted graphically in Figure 6.4.
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(w
(k)
i−1,T

(k)
i−1, θ

(k)
i−1) T̂

(m,k)
i g(vi|T(k)

i−1, θ
(k)
i−1)(T

(a
(k)
i )

i−1 , θ
(a

(k)
i )

i−1 ) θ
(k)
i T

(k)
i +w

(k)
i

Line 5 Line 6 Line 7 Line 8 Line 9 Line 10, 12

...

...

...

...

...

...

...

Figure 6.4: The inner loop of our Sequential Monte Carlo algorithm.3 In the first and last
columns, the size of each element is proportional to its weight. The values of the components
of θ are represented as bar graphs. Small arrowheads mark new leaves.

For the proposal q(·|T(a
(k)
i )

i−1 , θ
(k)
i , yi), we can simply choose p(·|T(a

(k)
i )

i−1 , θ
(k)
i ), given in Sec-

tion 6.3.1, which is easy to draw from and cancels out of the expression for w̃(k)
1:i , but lacks

dependence on yi. To sample from this proposal, we must generate divergence times t

according to the distribution in Equation (6.1). To do this, sample U ∼ Uniform[0, 1], then

take

t = A−1
(
A(s)− Γ(m+ 1 + α)

Γ(m− β)
log(1− U)

)
with the appropriate m.

3Figure format heavily inspired by Figure 1 in (Dinh, Darling, and Matsen IV 2017)
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For Algorithm 6.1 to be applicable to streaming data, the amount of work per data

point should be approximately constant. Thus, sampling T̂(m,k)
i and T(k)

i , and calculating

p(T
(k)
i |T

(a
(k)
i )

i−1 , θ
(a

(k)
i )

i−1 ) and q(T(k)
i |T

(a
(k)
i )

i−1 , θ
(a

(k)
i )

i−1 , yi) should require a constant amount of work.

Each of these computations involve traversing T(k)
i−1 or T(k)

i , so a bound on the size of Ti

would also bound the work-per-data-point.

In the worst case, |Ti| = |Ti−1|+ 1. This happens either because the new leaf diverges

before any removal can happen, or because no branches were removed at branch points the new

leaf traversed. In the first case, we incur a multiplicative penalty of a(t)Γ(m−β)/Γ(m+1+α),

where m is the total number of leaves in the tree. As the tree grows, m grows, and t must

get smaller to remain before all other branch points. Γ(m− β)/Γ(m+ 1+ α) falls off rapidly

as shown in Figure 6.5:

1 2 3 4 5
m

Γ
(m

−
β
)

Γ
(m

+
1
+

α
)

Figure 6.5: Γ(m− β)/Γ(m+ 1 + α), with β = 1
2
and α = 1

So, as long as a(t) does not exponentially prefer early divergence, the probability of early

divergence falls rapidly as the tree grows. In the second case, every branch retained incurs a

multiplicative penalty of the form (1− ρ(T)) ≤ 1, and the number of branches encountered

increases as the tree grows. So long as ρ(T) is nonvanishing, this also rapidly penalizes tree

growth. Thus, with high probability, Ti will quickly stop growing, and the work required at

each data point is bounded.
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Figure 6.6: The synthetic dataset

6.5 Experimental Evaluation

We experimentally validate our model and inference methods on a two-dimensional synthetic

dataset intended to showcase the nonstationarity of the DPYDT. The dataset is shown in

Figure 6.6. The dataset contains both gradual and sudden changes, including classes that

disappear and reappear at various times.

Figure 6.7 shows the negative log predictive probability (NLPP), − log p̂(li|vi, y1:i−1). A

value of 0 indicates that the model assigns probability 1 to the correct label. Figure 6.7 shows

that the NLPP is very close to 0 most of the time, with higher spikes mostly found at points

where the classes get close or overlap in at least one dimension (e.g., the higher spikes just

after i = 800, where there is a lot of overlap in the first dimension, as shown in Figure 6.6),

or when a class (re)appears (e.g., at around i = 1700). Finally, Figure 6.8 provides evidence

supporting our argument that |Ti| is bounded with high probability: after a steep climb in

the beginning, the average tree size does not deviate far from 100.
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6.6 Future Work

Some directions for future work include:

- Other diffusions. Examples: continuous value diffusions with fatter tails; diffusions over

structured spaces such as random-walk diffusions on graphs; diffusions over non-numeric

spaces

- Other divergence rate and deletion functions

- Alternative inference methods such as adapting the variational inference methods

from (Knowles, Van Gael, and Ghahramani 2011; Knowles 2012)
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CHAPTER 7

THE ANCHORED DPYDT FOR MODELING STREAMS WITH NOVEL

AND RECURRENT CLASSES

7.1 Introduction

As in the previous chapter, we are interested in the task of online classification. In many

cases, the set of possible classes may vary over time. Previously-unseen, or novel classes may

appear long after the start of the stream. Classes may disappear for long stretches, only to

reappear as a recurrent class.

These possibilities present a number of challenges. First, we must distinguish a class that

has not recently been seen (whether novel or recurrent) from the classes that are currently

“active” in the data. Second, we must determine whether the differing class is one that has

ever been seen before. Additionally, all of this takes place in a setting of nonstationary class

distributions, so that old data may be unreliable.

In this chapter, we seek to modify the DPYDT of the previous chapter to handle these new

challenges. To handle novel classes, we introduce the idea of time-nonstationary diffusions

and develop a diffusion based on the CRP. To handle recurrent classes, we first introduce

the idea of anchors: subtrees that are removed from the tree, but which leave behind a

pseudo-node that remembers the size and divergence point of the removed tree. We also

modify the CRP-based diffusion to allow recurrence.

The remainder of this chapter is organized as follows. In Section 7.2, we introduce

anchoring and derive a new density expression. In Section 7.3, we develop our new diffusions

that handle novel and recurrent values. In Section 7.4, we discuss the hyperpriors on the

various parameters of our model. In Section 7.5, we discuss inference in our model. In

Section 7.6, we prove that the size of the tree cannot grow without bound. In Section 7.7, we

present experimental evaluation of our model. Finally, in Section 7.8, we conclude our paper

and discuss future work.
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7.2 Anchoring the DPYDT

The problem of recurrent classes requires some form of longer-term memory mechanism.

When a class disappears, the leaves labeled with that class will eventually be deleted from

the tree. When that class later becomes recurrent, under the DPYDT, the new members of

that class will be completely independent of the now-deleted previous members. However, we

would like to remember where the previous clusters associated with the recurrent class were,

so that the new members may be similarly distributed.

To address this problem, we introduce the concept of anchoring: when traversing the

tree to add a new leaf, in addition to the existing deletion mechanism, we add the ability

to remove a subtree but retain its size and the location of its root. Subsequent traversals

have a small probability—controlled by the new parameter γ—of turning towards an anchor

instead of turning towards an existing branch or creating a new one. Each anchor, denoted

A
(t,j)
i−1 , where j varies only over the anchors attached at t has a probability of being chosen

proportional to (i− l)|A(t,j)
i−1 |, where l is the iteration when A(t,j)

i−1 was created, i.e., (i− l) is

the age of the anchor. As with existing branches, there are two possibilities:

- Partial Resurrection: the new data point diverges before the anchor point is reached,

in which case the anchor remains, attached to the new divergence point; and

- Full Resurrection: the new data point does not diverge, in which case the anchor

becomes a regular internal node, except that the associated count m(t) remains higher.

These new mechanisms are illustrated in Figure 7.1.

7.2.1 Probability Densities

As in Section 6.3.1, we wish to derive an expression for p(Ti|Ti−1, θ). To achieve a succinct,

readable result, we require some additional notation:
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(a)
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4

(c)

(+4)

(d)

Figure 7.1: Anchoring. (a) Before any anchoring. (b) The middle subtree is anchored,
retaining only its size and the location of its root. (c) A new node diverges between choosing
the anchor and reaching it; this is called “partial resurrection.” (d) A new node reaches the
anchor; this is called “full resurrection.” Diffusion is not shown.

- In a slight abuse of notation, let t identify a unique point on the tree, with the

understanding that the application a(t) applies a(·) only to the time component of t.

- Let ξt denote the diffusion value at t.

- Let Pt denote the path from the root to the point t, represented as a collection of

intervals [s, t] whose endpoints are divergence or branch points.

- Let ε[s,t] = exp
[
(A(s)− A(t)) Γ(m

(t)
i−1−β)

Γ(m
(t)
i−1+1+α)

]
be the probability of not diverging in [s, t].
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- Let

Rt =
∏
T

(t,k)
i−1



(
1− ρ(T(t,k)

i−1 )
)

×
(
1− τ(T(t)

i−1,T
(t,k)
i−1 )

) T
(t,k)
i−1 is not deleted

or anchored(
1− ρ(T(t,k)

i−1 )
)

×τ(T(t)
i−1,T

(t,k)
i−1 )

T
(t,k)
i−1 is anchored

ρ(T
(t,k)
i−1 ) T

(t,k)
i−1 is deleted

×
∏
A

(t,j)
i−1

{(
1− ρ(A(t,j)

i−1 )
)

A
(t,j)
i−1 is not deleted

ρ(A
(t,j)
i−1 ) A

(t,j)
i−1 is deleted

be the joint probability of all deletion/anchoring decisions made at the branch point t.

- Let zt =
∑

j(i− l(A
(t,j)
i−1 ))|A

(t,j)
i−1 | be the normalizing constant for (partial) resurrection

at t

- Let [s0, t0] denote the final interval traversed by the new leaf before it diverges or creates

a new branch

- Let D = p(ξ1|ξt0 , ψ, 1− t0) be the probability of diffusion from the point where the new

leaf diverges or creates a new branch

Using this notation, the predictive distribution is given by:

p(Ti|Ti−1, θ) = DR0

 ∏
[s,t]∈Ps0

ε[s,t]Rt

b
(t,k)
i−1 − β

m
(t)
i−1 + γ + α

 ε[s0,t0]

×



γ(i−l(A(s0,j)
i−1 ))|A(s0,j)

i−1 |

zs0

(
m

(s0)
i−1 +γ+α

) A
(s0,j)
i−1 is fully resurrected

γ(i−l(A(s0,j)
i−1 ))|A(s0,j)

i−1 |

zs0

(
m

(s0)
i−1 +γ+α

) a(t0)
Γ(m

(t0)
i−1−β)

Γ(m
(t0)
i−1+1+α)

A
(s0,j)
i−1 is partially resurrected

Rt0

α+βK̃
(t0)
i−1

m
(t0)
i−1+γ+α

branch

a(t0)
Γ(m

(t0)
i−1−β)

Γ(m
(t0)
i−1+1+α)

diverge

(7.1)
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7.3 Nonstationary Diffusions

In addition to the diffusions discussed in Section 6.3.2, we introduce here diffusions that are

adapted to handling novel and recurrent classes. First we note that the diffusion process need

not remain stationary between data points; i.e., the distribution used to generate one data

point could change over time, depending on arbitrary properties of the tree being modified.

In particular, we present diffusions that depend on the class counts of current leaves.

As in Section 6.3.2, we will use pseudo-Poisson processes as our diffusions over discrete

spaces. However, in place of the time-stationary kernel K(ξs, ξt), we will have a varying

kernel Ki(ξs, ξt).

Unbounded Discrete Variables: For variables from a discrete space without known bound

(in particular, for class labels), we introduce a diffusion based on the CRP, so that novel

classes may be discovered:

Ki(ξs, ξt) =

{
nk

i−1+η
ξt = k ≤Mi

η
i−1+η

ξt =Mi + 1,

where nk is the number of leaves in the tree with value k, and Mi is the number of different

values at the leaves. This diffusion has a fundamental flaw, however: if every leaf with value k

is removed from the tree, then Mi will decrease, reusing an existing value inappropriately. If

Mi is simply changed to be the number of distinct values ever taken, we still assign probability

0 of ever assigning the value k to a leaf.

Unbounded Discrete Variables with Recurrence: To address this, we artificially inflate

the count associated with each k so that even if nk = 0 there is positive probability of assigning

the value k to a leaf:

Ki(ξs, ξt) =

{
nk+ζ

i−1+η+Miζ
ξt = k ≤Mi

η
i−1+η

ξt =Mi + 1,

where Mi is the number of distinct values ever assigned.
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7.4 Hyperpriors

Lastly, we give a hyperprior for the parameter vector θ. First, we have the parameters

β ∈ (0, 1) and α ∈ (−2β,∞). We use the vague prior

β ∼ Beta(1, 1)

δ ∼ G(20,
1

4
)

α = δ − 2β,

where Beta(·, ·) is the Beta distribution, and G(·, ·) is the Gamma distribution. We choose

a(t) = c
(1−t)2 with c ∼ G(4, 1

2
). Previous works (Knowles and Ghahramani 2010) and

the previous chapter used a(t) = c
1−t , but squaring the denominator favors slightly earlier

divergence tendencies, leading to more samples with multiple discrete clusters. As in the

previous chapter, we choose

ρ(T
(t,k)
i−1 ) = min{1, t∗ tanh b((i− i∗)− |T(t,k)

i−1 |)},

where b ∼ G(2, 1
50
), t∗ is the t at the root of T(t,k)

i−1 , and i− i∗ is the “staleness” of T(t,k)
i−1 : the

number of iterations since the newest leaf was added (i∗ is the iteration where that leaf was

added). Choosing this ρ(·) gives higher probability of deleting smaller subtrees, subtrees

whose root is closer to the leaves, and subtrees that have not been updated recently. The use

of tanh gives ρ(·) a sigmoidal curve whose steepness is controlled by b. Next, we choose

τ(T
(t)
i−1,T

(t,k)
i−1 ) = min

1,
(1− t∗) |T

(t,k)
i−1 |

|T(t)
i−1|

1 + exp
[
−b′

(
(i− i∗)− (|T(t)

i−1|+ |ξt − ξ∗t,k|)
)]
 ,

which assigns higher probability to anchoring

- subtrees rooted closer to the root of the overall tree, as we want to anchor discrete

clusters and not individual leaves
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- subtrees that are medium-sized: larger trees should be retained longer, and smaller

trees should just be deleted

- subtrees that are more stale, as in ρ(·)

- subtrees whose root value, ξ∗t,k, is further from its parent node’s value, ξt, as this also

favors discrete clusters

Finally, we complete the model by specifying hyperpriors for the diffusion parameter ψ.

For Brownian diffusion and finite discrete variables, we use the same hyperpriors as in the

previous chapter (see Section 6.3.3), and for unbounded discrete variables, ψ = (λ, α) with

λ ∼ G(2, 1
2
) again and α ∼ G(2, 1

2
) as well.

7.5 Inference

We use the same basic inference algorithm of Section 6.4, except we change the proposal

q(·|T(a
(k)
i )

i−1 , θ
(k)
i , vi). In designing such a proposal, we must balance the desire to closely match

the prior Equation (7.1) with the desire to depend on vi, as any deviation from the prior will

increase the computational complexity of the acceptance ratio, but independence from vi will

lead to higher variance in weights and thus a skewed estimator. Towards this end, we mostly

follow the prior Equation (7.1), except when choosing among branches or anchors to follow,

we use

p(k) ∝


b
(t,k)
i−1

|ξ∗t,k−vi|
branch k

γ|A(s0,j)
l

|ξ∗t,k−vi|
anchor k

instead of

p(k) ∝

b
(t,k)
i−1 − β branch k
γ(i−l)|A(s0,j)

l |
zs0

anchor k
,

where ξ∗t,k is the feature vector of the next node along branch k. That is, we bias towards

choosing branches or anchors that are closer to vi while still prefering more popular routes.
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7.6 Bounding the Size of the Tree

To efficiently perform inference in this model, the amount of work per data point must be

approximately constant. To show this is the case, we bound the size of the tree |Ti|: if the

tree does not grow unbounded, neither can the work-per-datapoint. Let ‖Ti‖L denote the

number of leaves (not counting anchors) of Ti, and note that |Ti| ≤ ‖Ti‖2L − 1.

Theorem 7.1. |Ti| does not grow without bound.

Proof. Let us represent Ti as a collection of triples ([s, t],m
(t)
i , K̃

(t)
i ). Then, if ‖Ti+1‖L >

‖Ti‖L, then no deletion or anchoring events have happened, a triple ([u, 1], 1, 0) is added,

and some subcollection of triples will change as follows:

- Any intervals that are only traversed or wherein a full resurrection event occurs will

have m(t)
i+1 = m

(t)
i + 1.

- Any intervals wherein a diverge event or partial resurrection event occurs will be split

into smaller intervals: [s, t] 7→ [s, u], [u, t] for some u ∈ (s, t), with m(u)
i+1 = m

(t)
i + 1.

- Any intervals wherein a branch event occurs will have K̃(t)
i+1 = K̃

(t)
i + 1.

Then, note that for fixed s < 1 and m(t),

lim
t−s→0

exp
[
(A(s)− A(t)) Γ(m(t) − β)

Γ(m(t) + 1 + α)

]
= 1,

and for fixed s < t < 1,

lim
m(t)→∞

exp
[
(A(s)− A(t)) Γ(m(t) − β)

Γ(m(t) + 1 + α)

]
= 1,

so that the probability of diverging in any interval [s, t], t < 1 goes to 0. Then, as Ti grows,

the growth of the m(t)
i leads to later divergences, and the growth of the K̃(t)

i leads to more

branches. In either case, the number of subtrees rooted along the path Ps0 to the newest leaf
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increases, adding more (1− ρ(T(t,k)
i−1 )) and (1− τ(T(t)

i−1,T
(t,k)
i−1 )) terms to the distribution of

Ti+1.

In other words, as Ti grows, the probability of not deleting any leaves gets smaller,

unless ρ(·) shrinks faster. However, the subtrees rooted along Ps0 can be new, small trees

corresponding to recent branch and diverge events or old, large trees that are frequently

traversed. Thus, there is no one kind of tree that predominates, so that ρ(·), as a function

only of the subtrees, cannot uniformly shrink. Similarly, τ(·, ·) cannot uniformly shrink as Ti

grows, so that the probability of deleting or anchoring grows as Ti grows. In other words, as

Ti grows, the probability of growing decreases, eventually leading to a maximum size.

7.7 Experimental Evaluation

We experimentally test our proposed model on three datasets. The first—to compare against

the DPYDT without anchoring—is the same synthetic dataset from Chapter 6. The second

is synthetic dataset with 50 dimensions which exhibits novel and recurrent classes with sharp

boundaries that drift. The third is a real-world network intrusion dataset with 41 dimensions

from the KDD-Cup 1999 competition (Stolfo et al. 1999), obtained from the UCI Machine

Learning Repository (Dheeru and Karra Taniskidou 2017). Figure 7.2 shows the NLPP

results of all three datasets. We see from the histograms in particular that the large majority

of data points are predicted well (NLPP near 0, so predictive probability near 1). We can

convert these numbers to typical classifier accuracies by declaring a “correct classification”

when the model predicts the correct label with probability at least 0.5. Using this rule, we

get 92.5%, 66.1%, and 75.9% accuracy on the three respective datasets.

7.8 Conclusion and Future Work

We have presented a novel Bayesian nonparametric method for handling nonstationary data

with novel and recurrent classes, by adding an anchoring mechanism to the DPYDT and
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Figure 7.2: Experimental results: (a) The synthetic dataset from Chapter 6. (b) The new
synthetic dataset. (c) The KDD-Cup 1999 dataset. Left: Negative Log Predictive Probability
over time. Right: Histograms of Negative Log Predictive Probability.
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considering diffusion distributions that vary over time. Experimental results demonstrate

that the proposed method handles these challenges well. Possible subjects for future work

include exploration of other divergence rate, deletion, and anchoring functions, as well as

improved inference methods. Additionally, other applications such as regression could be

explored.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this dissertation, we explored the field of Bayesian nonparametrics. We presented novel

models for relational and streaming data, and developed inference algorithms for them.

Finally, we showed that these models perform well in experimental evaluation.

There is still a lot of room for future work. The development of rich, flexible nonparametric

priors should continue, as such techniques can form the foundation of powerful learning

systems. To support this endeavor, there is still much work to be done on both the theoretical

underpinnings of nonparametric methods and on powerful, efficient inference in such models.

These two directions will support eachother as theoretical results enable new inference

techniques and exploration of inference algorithms leads to the discovery of theoretical

properties.

Additionally, these powerful techniques should see broader application, especially as

the inference algorithms speed up. Again, such research will feed back insights and ideas,

improving the theoretical and practical sides as well.
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