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INVERSION OF THE COVERING MAP FOR THE INDEFINITE SPIN GROUPS

Francis Kwabena Adjei, PhD
The University of Texas at Dallas, 2017

Supervising Professor: Dr. Viswanath Ramakrishna, Chair

The double covering of Orthogonal groups by the Spin groups is vital for many applica-
tions. In this dissertation, we address the important question of inverting the covering map
Gpq : Spint(p,q) — SO (p,¢) in the indefinite case. We also develop explicit formulae for
the forward map ¢,, : Spin®(p,q) — SOt (p,q), for (p,q) € {(1,2),(1,3),(2,3)}. We do
not work with the even subalgebra of Cl(p, q) and thus our formulae are quite explicit. Our

method relies significantly on standard Givens and hyperbolic Givens decompositions.
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CHAPTER 1

INTRODUCTION

Clifford Algebra has shown to be a highly efficient and powerful language available for
solving problems in mathematical physics, control engineering, group representation theory,
signal and image processing, numerical analysis, integral transforms as well as Lie algebras,
geographic information systems, cosmology, medical imaging, and neural computation. Most
often, it is easy to work in some matrix algebra that is isomorphic to a Clifford algebra, and
there are known explicit matrix realizations of Cl(p,q) for any (p,q) [9] [14]. Therefore,
the spin groups also have standard representations as matrix groups. For ¢ > 1 and p > 1
the even subalgebra of Cl(p,q) is isomorphic to Cl(p,q — 1) and Cl(q,p — 1) respectively.
Spin™(p,q) being a subset of the even subalgebra can be viewed as living in the matrix
algebra corresponding to the even subalgebra. However this representation of Spin™(p, q) of
the matrix algebra does not lead to an identification of the Spin group as a subset of Cl(p, q).
This is inconvenient for many applications. Therefore we avoid usage of this expression.

In [1] by Emily Herzig and Viswanath Ramakrishna, the spin homomorphism
Gpq = SpinT(p,q) — SOT(p,q) of classical matrix Lie groups was explicitly formulated for
several (p, q) with 3 < p+¢ < 6. Further the double covering map from the definite Spin (0, n)
to SO(n,R) was inverted for n = 5,6 [2] which, among other applications, makes possible
a parametrization of SO(5,R) and SO(6,R). In this dissertation, we extend the explicit
construction of indefinite spin groups to Clifford algebras with (p,q) € {(1,2),(1,3),(2,3)}.
We also invert the covering map for several important cases of (p,q). The applications of
the indefinite spin group, the double covering map,and its inversion are manifold in the field
of mathematical physics. For instance, the Lorentz group of special relativity is SO(3,1,R).
The study of hydrogen atom employs the SO (4,2) and SO*(3,2).

Let us briefly describe how we are going to proceed of the task of inverting the forward

map:



(i) We use the work by Emily Herzig and Viswanath Ramakrishna [1] to explicitly con-
struct the forward map ¢, , as a matrix of quadratic maps taking values in the indefinite

orthogonal groups. This requires several intricate calculations.

(ii) Therefore, the question of inverting ¢, , is reduce to solving a large dimensional sys-
tem of quadratic equations. Further, we want the inversion formulae to be explicitly

parameterized by the target matrix in SO™(p, q).

(iii) To ameliorate this, we make use of the fact that ¢, , is a group homomorphism and
therefore it suffices to solve the systems of equations in (ii) when the target is a factor
in some decomposition of elements of the indefinite orthogonal groups. For us the most

useful such factors are the hyperbolic Givens or standard Givens.

For the last chapter in the dissertation, we begin with a low dimensional Cl(p, ¢) and use an
iterative construction to extend Cl(p + 1,q + 1).

The organization of the dissertation is as follows. In chapter 2, we present prelimi-
nary background on Clifford algebras, spin groups, hyperbolic Givens and standard Givens,
quaternions, and other facts needed for the study. In chapters 3, we develop explicit for-
mulations of the forward map for (p,q) € {(2,1),(2,2),(3,1),(3,2),(3,3)} . Chapter 4,
fully addresses the important question of inverting the forward maps for each component of
Spin™(p, q) for (p,q) € {(2,1),(2,2),(3,1),(3,2),(3,3)}. Finally, in chapter 5, we provide de-

tails of a direct approach to the indefinite spin groups for (p, q¢) € {(1,2),(0,2),(1,3),(2,3)}.



CHAPTER 2

PRELIMINARIES
2.1 Clifford Algebras

Associated to any vector space V with symmetric bilinear form B is a Clifford algebra
Cl(V ; B). In the special case B = 0, the Clifford algebra is just the exterior algebra A(V).

Let V be a finite-dimensional vector space over a field K, with a symmetric bilinear form

B:V xV — K. The Clifford algebra CI(V; B)is the quotient map CI(V; B) = I{‘(f‘%, where
T(V) C I(V; B) is the two-sided ideal generated by all elements of the form
vRwW + w®v = 2B(v,w)l Yu,w € V. So, given an associative algebras .4 and B over C with
unit and a linear maps 7: V' — A and p : V' — B such that p(v)p(w)+p(w)p(v) = 2B(v, w)1
Vv, w € V there exists an associative algebra homomorphism A : A — B such that p = AoT.
Thus, 7(A) generates A and A is called a Clifford algebra for CI(V; B). The existence of
Clifford algebra for any pair (V, B) is guaranteed and unique up to isomorphism (see [9] for
details). Besides, if {v;} for i = 1,2...,n form a basis for V', then A is the algebra generated
by {1, 7(v1),7(vs), ..., 7(v,)} due to the fact that B is bilinear. There are several alternative
definitions for such algebra depending on application (see Clifford’s original definition [5]). As
this work seeks to formulate explicit construction of the indefinite spin group as Spin™(p, q)
as a matrix subalgebra of a matrix algebra that Cl(p,q) is isomorphic to. So, our Clifford
algebras will be realized as real,complex or quaternion matrix with explicitly given generating
set. Therefore, our approach will rely on constructive formulations and definitions of a
Clifford algebra.
Definition 1. Let p,q with n = p 4+ ¢ be two nonnegative integers and suppose we find a
collection of matrices ey, es, €3, ..., €, and e,11, €y12, €p13, ..., €, Within some suitable ambient
space M(m,F) (a family of m x m matrices with entries in a field F), and the algebra A

generated by {I,,,e1, €9, €3, ..., €,}, such that:



(i)e?=1I1,Vi=1,23..,pande? =1, Vi=p+1,p+2,p+3,..n,
(ii) eje; = —eje; Vi # j, and
(iii) Cl(p,q) cannot be generated by any proper subset of {I,,, e, ea, €3, ..., €, }.

Then A is the Clifford algebra and is denoted by Cl(p,q). The algebra is expressible as a

span over a field F of the following elements:

e the identity element [,,, called the O-vector or scalar;
e n elements e;, called the 1-vectors;
) (Z) elements e;e;, for distinct 7, j, called the 2-vectors or bivectors;

) (Z) elements e;ejey, for distinct 7, j,and k, called 3-vectors or trivectors;

e the n-vectors or the volume element e;es...e,. It follows from (iii) that, the basis for the

n

algebra contains > p_; (}

) = 2" vectors. We refer to 0-vectors, 2-vectors, 4-vectors,etc
as the even vectors, and 1-vectors, 3-vectors, 5-vectors,etc as the odd vectors. So the
algebra decomposed into the direct sum : Cl(p,q) = Ci*(p,q) ® Cl~(p, q), where the
even(resp. odd) subalgebra of Cl(p,q), denoted by Cl*(p,q) (resp Cl™(p,q)) is the
span of the even (resp. odd) vectors of Cl(p,q). For any pair (p, q), a Clifford algebra
Cl(p,q) can be realized as a particular matrix algebra M (m,F), where F = R, C or
H or as a double ring of one of these algebras. Nevertheless, whereas the algebra
containing Cl(p, ¢) is known, the explicit constructions of the spin groups within that
algebra relies intricately on the particular choice of 1-vectors. As such, the choice of

1-vector used will be specified whenever a particular construction is pertinent to our

results.



Definition 2.

(i) Define a map ¢ on the basis elements with ¢*(I) = I, and ¢**(v) = —v for all 1-
vectors v, and ¢°(vw) = ¢°(w)p“(v) for any basis vectors v and w. Then, by linearity,
extend ¢ to all of Cl(p,q). The function ¢ is known as the Clifford conjugation

antiautotomorphism.

(ii) Define a function ¢™" on the basis elements with ¢"* (1) = I, ¢"*"(v) = v, V l-vectors
v, and ¢ (vw) = ¢"(w)@ " (v) for any basis vectors v and w. Then ,by linearity, ex-

tend ¢"¢" to all of Cl(p, q). The map ¢"*" is called the reversion antiautotomorphism.

(iii) Define a map ¢9" = ¢" o ¢ on Cl(p,q). We refer to this map as the grade anti-
autotomorphism. It satisfies ¢p9"(I) = I, ¢9"(v) = —v forall 1-vectors v, ¢9"(vw) =

@9 (v)¢9" (w) for any basis vectors v and w and extends linearly over Cl(p, q).

For brevity, we denote x° := ¢““(z) , " := ¢"*’(x), and 9" := ¢9"(x). Thus, x € Cl(p,q)
is an even vector if and only if 9" = x and x is an odd vector if and only if 29" = —z.

It is easy to formulate examples of low-dimensional Clifford algebras as isomorphic to
known matrix algebras. For instance, CI(3,0) is M(2,C), and [15] gives conditions for
identifying a suitable matrix algebra for any Cl(p,q). Nevertheless, as the size of the pair
(p,q) increases, the task of finding practical family of 1- vectors in order to define the
Clifford conjugation, reversion and the grade map as explicit matrix automorphisms becomes
a hurdle. However, our task will be simplified by the following iteration denoted IC:

IC: Assume Ci(p, ¢) has a known matrix representation generated by 1-vectors {e; - - - e,, f1- - - f,},
where ef =1, f7 = —1Vi=1,---pand j =1,---¢. Let & and E denote the set of 1-vectors
for the new Clifford algebra whose squares are I and —1I respectively. Then Cl(p+ 1,q+ 1)

can be represented as M(2,Cl(p,q)) with 1-vectors defined as follows:

01 10
Ci=0,0¢€, i=1-p €y = ; the identity , where 0 and 1 denote the

10 01
zero and identity elements of Cl(p, q).



The following result also tells us how to extend reversion and Clifford conjugation from

that for (p,q) to (p+1,¢+ 1):

A B
For A, B,C,D € Cl(p,q), let X = € Cl(p+1,q+1). Then Clifford conjugation

C D
and reversion on Cl(p+ 1,q+ 1) is given by:
Drev _Brev DCC BCC
X = and X" = respectively.
_CTE'U A’I"EU CCC ACC

Now our path to inversion of the covering map follows the steps below:

1. Identify a set of 1-vectors for Clifford algebra Cl(p, q) and formulate the Clifford con-

jugation ¢, reversion ¢"’, and grade ¢9" map with respect to the 1-vectors.

2. Identify a representation of Spin™(p, ¢) consistent with ¢, ¢"* and ¢9". Thus Spin™(p, q)
should lie in the same algebra as Cl(p, q).
Steps 1 and 2 were achieved in reference [1].

3. Compute the explicit form, as a matrix of quadratic functions, of the forward map, a

two-to-one, surjective homomorphism ¢, , : Spin™(p,q) — SO (p,q)

4. Finally, calculate the inverse map by solving an intricate system quadratic equations

when the target matrix is standard Givens or hyperbolic Givens.



2.2 Quaternions

To define the quaternions, we first introduce the symbols 7, 7, k. These symbols satisfy the
following properties: i2 = j2 = k? = ijk = —1 ,ij = k, jk =i and ki = j. Any quaternion
g € H is an object of the form a + bi + ¢j + dk, where a,b,c,d € R. The real part of
q is a and its imaginary part is a vector (b,c,d) € R3. So, we define pure quaternion as
P={¢ecH:a=0}

The conjugate of a quaternion ¢ is ¢ = a — bi — ¢j — dk and its norm squared is ¢ =
a® +b? + ¢ + d*. So the norm of ¢ is defined to be |q| = \/qq. q is called a unit quaternion
if |q| = 1.

It is also known that H ® H is isomorphic to M (4,R) [9]. We make significant use of the

following matrices stemming from this isomorphism, H @ H = M (4, R):

0O 1 0 O 0 0O 1 0 0 0 0 1

-1 0 0 O 0 0 01 0O 0 -1 0
Mg = ; Ml@] = i Mgk = )

0 0 0 -1 -1 0 00 0O 1 0 O

0O 01 O 0O -1 00 -1 0 0 O



2.3 Indefinite Orthogonal groups and Spin Groups

e Denote by O(p, q) the set of real n X n matrices X satisfying X*1,,X = I,,. Then
SO(p,q) = {X € O(p,q) : det(X) = 1}. This set is not connected for pg # 0.
Therefore, we define SO (p,q) as the connected component of the identity I of the

set {X € M(p+¢q,R) : XTI,,X = I,,,det(X) = 1}. Here n = p+q and [,, =
I, 0
. Unlike the case, pg = 0, the set is not connected. Therefore, there is no
0 -1,

simple algebraic formulation of SO*(p, q).

e Spint(p,q) is the set of all X € Cl(p, q) satisfying: i) X is even; ii) XX = [; iii) The

map v — XvX leaves the space of 1-vectors invariant.

e The forward map ¢, ,(X) is the matrix of the linear map that sends v — xva® for any

1-vector v.

2.4 Given-like Actions

c —s a b
Define R = where ¢ + s> =1 and H = , for a®> — b = 1 respectively. It

s c b a

is well known that

c —s
e Given a vector (z,y)? thereis an R = where ¢?+s% = 1 such that R(z,y)" =
s ¢
(V2?2 +y2%,0)
. . . . . a
e Similarly given a vector (z,y)”, with | x [>] y |, there isan H = ,fora®?—b* =1
b a

such that H(z,y)T = (/22 — 32,0)



R, H are called plane standard Givens and hyperbolic Givens respectively. Embedding
R, resp. H as a principal submatrix of the identity matrix I,,, yields matrices known as
standard Givens (respectively, Hyperbolic Givens)[19].

R; ;(H; ; respectively) stands for standard Givens (respectively, Hyperbolic Givens) ob-
tained by embedding a plane standard Givens and hyperbolic Givens respectively in rows
and columns (i, 7). We now present an example which shows how elements of SO (p, q) can
be factored into products of standard Givens and hyperbolic Givens.

Let X € SO*(2,2). Consider the first column of X,

V1 =

Since X € SOT(2,2), a®> + b* — ¢* — d* = 1. Therefore there are Ry, R34 such that

a
0

the first column of Rj, Rz, X = , where a = va?2+b% and f = /2 + d?. Since
B
0

a>+ b —c*—d*=1=a?— (% it follows that |a| > |3]. Hence there is an H; 3 such that

the first column of H; 3R 2R3 4. X

a 1

b 0
1)1: =

c 0

d 0

Since HysR12R34X € SOT(2,2) also, it follows that the first row Hj 3Ry 2R34X is

also (1 0 0 ()). Therefore, the second column of the product H; 3R;2R34.X is of the



b
form since b* — ¢ — d? = 1. So there is an R34 such that Rz4(c,d)” = (v,0)T, where
c

d
v? = 2+d?. As before b> —? = 1, so there is an Hy 3 such that Hy 3 with Ha3(b,v)" = (1,0).

So it follows that the first and the second column equal the first two standard unit vectors.
Since Hy3R34H1 3R 2R34X € S07(2,2), it follows that it equals

10 0 O

01 0 O

0 0 w33 Y34

0 0 a3 Yua
Again the condition Hy3Rs34H1 3R12R34X € S07(2,2), ensures that

Ysz Y34

Y43 Yaq
must itself be a plane standard Givens, whose inverse is, of course, is also a plane standard

Givens. Therefore, pre-multiplying be the corresponding R34 we get that
Ry aHs3R3 41 3R 9 R34 X = Iy
Since the inverse of each R, ; (respectively Hy,) is itself an R;; (respectively Hy,), it
follows that X can be expressed constructively as a product of R34, Ho3, Hi 3, R12. The
above factorization is the only way to factor an element of SO*(2,2) into a product of

standard and hyperbolic Givens

10



CHAPTER 3

EXPLICIT FORMULATIONS OF THE MAP

In the work [1], explicit choice of 1-vectors were used to identify Clifford conjugation, re-
version and grade map for several Spin™(p,q). In this chapter, we build on that work to
explicitly describe ¢, ,(X) as a matrix of quadratic maps. Recall that the forward map

®p,q(X) is the matrix of the linear map v — zva®, for any 1-vector v.

3.1 The double cover of SO*(2,1) by Spint(2,1)

Let 0, = » Oy = y Oz = , Idp =
10 i 0 0 —1 01

Then {Y7, Y5, Y3}, the set of 1-vectors for C1(2,1) is defined as follows:

1 0 0 0 0010
0 -1 0 0 0 001
1/1:02@02: 7}/2:O-x®1d2: 5
0 0 -1 0 10 00
0 0 0 1 0100
0O 0 10
0 0 01
Y; =0, ® Idy =
-1 0 00
0O -1 0 0
~ 1 T2
Let Z = € SL(2,R) which is abstractly isomorphic to Spin™(2,1).
T3 T4

T 0 i) 0

~ 0 —I 0 T2
We embed Z in Z € C1(2,1) as follows: Z =
T3 0 Ty 0

0 I3 0 —Xy

11



Note g1 = z124 — 223 — 1 = 0. Then Z € C1(2,1) and also in Spin™(2,1).

Denote the Grobner basis by GB = {¢;}

Clearly

Ty
0

0

0 —zo O
—x4 0 —x9
0 T 0
—r3 0 —x

We now compute modulo Grébner basis GB = {g; }:

Uy =2Y1Z 'modGB =

Uy =2ZY 7 'modGB =

Us = ZY 37 'modGB =

Y

Define the 3 x 3 matrix D:

1 4 22975 0 —2x129
0 — (14 2z923) 0
2w31, 0 — (1 4+ 2z923)
0 20324 0
ToXy — T1T3 0 1? — 13
0 T1T3 — Toly 0
x3 — 12 0 T1X3 — ToTy
0 x; — a3 0
— (2123 + T24) 0 3 + a3
0 T1T3 + ToTy 0
— (23 + ) 0 T1T3 + Taly
0 — (23 4 z3) 0
diy diz diz
D= dy dy dy
d31 dzy ds3

12

0
—2?[711‘2

0

1+ 21’2!13'3

Loy — L1X3
0

2 2

T+ 75
0

— (2123 + 2214)




where

Uj = dy;Y1 + da;Ys + d3;Y3, j=1,2,3,

an the entries of matrix D are given by
dij =
(Y3, Y3)

modGB, 7,7 =1,2,3 and

(A,B) = tr(A"B).

Ty T2
Then, D = ¢a3 [ . We obtain the following matrix:
T3 T4
1 + 2I21’3 T2y — X113 — (1‘11‘3 + l‘gl’4)
D = T3Ty — T1T9 (22 — 23 —22+2%) (423 —22-2)) |- (3.1)

1
2
— (120 + x3wa) % (2% — 2f + 2} — 2F)

Theorem 3.1.

Ty X2

The forward map ¢4 : Spint(2,1) — SOT(2,1) is the ¢271[ ] = D, where D is

T3 Ty

as in Equation

13



3.2 The double cover of SO"(2,2) by Spint(2,2)

01 0 —i 1 0 10
Let 0,= , Oy = , 0, = ,1d =
10 i 0 0 —1 0 1
01 0 O 0010
10 0 0 0001
Let X1 =0, R0, = , Xo=0,®Id= ,
00 0 -1 1 000
00 —1 0 0100
0 10 0
-1 00 0
X3 =0,® (io,) = ,and Xy = (ioy) ®Id.
0 00 —1
0 01 0
Then { X, Xo, X3, X4} is the set of 1-vectors for C1(2,2).
~ T1 T2 ~ T3 T4
Now let [A = ,B = € SL(2,R) x SL(2,R) = Spin™(2,2).
7 T8 Ts Tg

T 0 0 )

— 0 T3 T4 0
Let us embed A,B in C1(2,2) as follows: A= ;

0 I5 Tg 0

zr 0 0 x5
Then the entries of matrix A satisfy the following identities:

1 T2

Define: h;= det —1=1x128 — 1927 — 1 and
7 T8
T3 T4
ho=det — 1 =1x306 — x425 — 1.
Ts Te

Clearly, the Grobner Basis for the ideal generated by these two polynomials is:

14



GB = {hy, hs}. Obviously

Next, we compute matrices

Ty 0 0
B 0 T —x4 O
- 0 —x5 x3 0
—x7 0 0

T

C; = AX; A 'modGB, i =1,2,3,4.

We have
0 ToZs + T1Tg —ToL3 — T1Xy 0
TyX7 + T3T8 0 0 — (Z‘QIg + $1I4)
C, =
TeT7 + T5Xg 0 0 — (womws + x176)
0 TeX7 + Ty — (T4T7 + T3T8) 0
0 ToXg — T1T5 X1T3 — ToXa 0
Tplg — T3y 0 0 T1X3 — Loy
Cy =
TeXs — T5T7 0 0 T1X5 — ToXg
0 Telg — T5X7 T3X7 — Talg 0
0 T1Tg — Tols Tol3 — T1Xa 0
Tpl7 — T3Tg 0 0 Loy — T1T4
Cy =
TeL7r — Tl 0 0 Tols — T1Xg
0 TeX7 — TsXg 3Ly — Taly 0
0 — (1‘1$5 + 1'21’6) T1Z3 + Loy 0
— (ZL’3I7 + ZE4J}8) 0 0 T1T3 + Toly
Cy =
— (x5m7 + x68) 0 0 T1T5 + ToTg
0 — (r527 + T6T8)  T3T7 + T4Tg 0

15




Define D = ¢35, : Spin™(2,2) — SO*(2,2)

diy dya dig dyg
do1 dao daz dyy
ds1 d3p dsz d3s

di dyp dyg dag
where C; = dy ;X1 +dy ;X +ds; X3+ dsj, j=1,2,3,4, Thus, one obtains:

Cj, X, .
dij = ﬁmodGB, i,7=1,2,3,4 and

(A,B) = tr(A"B).

Therefore

dig = 3 (wows+ + + T325)
1,1 = 5 \T2T5 T T1xg T T4T7 T T3Lg
d 5 (zew7 + - — T124)
2,1 = 5 Ty T Tslg — Talg — L1Ty
dsg = % (woxs + - — T37g)
3,1 = 5 (XT2X5 T T1Tg — L4ly — T3Lg
dig = 1 (zowe— - + 2475)
4,1 = 5 \T2de — T1X5 — T3T7 T L4y
dip = 3 (wow6— - + 2473)
1,2 = 5 \T2¥g — T1x5 — T3T7 T T4lg
d = 1 — —

22 = 3 (x123 — Toxy — T527 + T6T3)
dsp = 3 (wowe— + — T4g)
32 — 35 \T2¥e — X151~ L3Ly — T4y
dip = % (vas5— + — T6Tg)
42 = 5 \T1x3 — ToX4 T T5T7 — Ledg
diyg = % (w126 — + — 1373)
1,3 = 5 \T1&g — LoXs T TyT7 — T3T8
dyy = 3 (woxs — + — T5Tg)
2,3 = 35 \T2x3 — X1Xq4 T Tely — T5Tg
d = 1 — —

33 = 3 (x176 — Tox5 — T4X7 + T3T3)
diz = 3 (zows— - + 2573)
4,3 = 5 \T2d3 — T1X4 — TeT7 T T5L8
_ 1

d1,4 = 3 (—551535 — Tl — X3X7 — $4$8)
doy = 3(mias+ - — T6Tg)
2,4 = 35 \T1X3 T T2y — T5L7 — TeLg
d 5 (w3m7 + - — TyT)
34 = 3 \T3L7 T Tylg — T1L5 — L2Tg
dig = %(mas+ + + T67)
44 = 5 \T1x3 T T2Ty T T5L7 T Ty
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Theorem 3.2.
The forward map for ¢z : Spin®(2,2) — SOT(2,2) is

Ty T2 xr3 T4

P22

Tr Tg Ts Te
3.3 The double cover of SO"(3,1) by Spin*(3,1)

Let

= D with D given by Equation (3.9).

0
010
7Id4:

1

o o O

001

0001

Define Xy =0, ®0,, Xo =0, ® 0, X3 =0, ® Idy, Xy = (i0,) ®Ids, and q = \/Li (1+k),

then
1
7 0 0
o L L1
Migq = v
o L L1
V2 V2
1
-5 0 0

and using Mg, we change the basis { X1, Xo, X3, X4} of
for Cl(3,1): {Z1, Zs, Z3, Zs} , where

Z;, = ML

1®q
We thus have

1 0 0 0 01 0 O

0 -1 0 0 10 0 0
Z) = , Ly = Z3 =

0O 0 -1 0 00 0 -1

0O 0 0 1 00 -1 O
Lot A — T11 T12 ’ _ Y11 Y12 - 0
To1 T2 Y21 Yoo -1

17
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[(3,1) into the basis of 1-vectors

XiM1®q, Z - 1,2,3,4.

010 0O 1 0 O

0 01 -1 0 0 O
) Z4 -

0 00 0O 0 0 -1

1 00 0 01 O




—B
and let us consider matrix ¥ = . One shows that
B A

Y € Spin™(3,1)
if and only if
—J A" hbA+ J,B"J,B = 1dy and
0 0

Jo AT J,B + J,BT J, A=
0 0

The above identities imply that Y € Spint(3,1)
iff p = —1— 219791 + T11%22 + Y12Y21 — Y11Y22 = 0 and ¢ = —220y11 + T21Y12 + T12Y21 — T11Y22-

One verifies that Groebner Basis of I = (p,q) is GB = {f1, fs, f3}, where

2 2.
f1 = X35Y11 — To1T202Y12 — T12T22Y21 + Yoo + T12T21Y22 — Y12Y21Y22 + Y11Y0;
fo = Ty — TaYiz — Ti2Y1 + T11Y22;
f3 = —1— 219291 + T11T22 + Y12Y21 — Y11Y22-

One sees that det (V) modGB = 1. Thus, Y 'modGB = Y ! is computed using the matrix

of cofactors of Y

T
t1n tiz tiz Tia
yi _ lor loo toz to4
t31 l32 133 134
tar Taz taz taa
where
tij = (—1)i+j MiijdGB,
and M;; is the (¢, 7) minor of Y. We have
T2  —Ti12 —Y22 Y12
y-1_ —T21  T11 Y21 —Yn
Y22 —Yi2 T2 —Ti12
—Yo1 Y11 —T21 T11

18



Next, we compute matrices CymodGB, ComodGB, C3modGB, CymodGB, as follows:

Ci=YZ,Y 'modGB ,i=1,2,3, 4.

We have,if C}, = (cfj),then

1 1 1
ciy = 14+ 2xp0w0 +2y11Y22 ¢y = —2r117T12 — 2y11Y12 Ci3 = 2Tyl — 2T12Y2
1 1 1
Cyr = 2X91T22 + 2Y21Y22 Cpy = —1—2wpwe —2y11y22 ¢33 = 0
1 1 1
C31 = 2I22y11 - 2.’13123/21 C3p = 0 C33 = -1- 21’121321 - 2y113/22
1 1 1
¢y = 0 Cio = 2T2Y11 — 2712y Ciz = —2T21%22 — 2Y21Y22
2> . 2,2 .2 2 .2
1 = T11T21 + T12%22 — Y11Y21 + Y12Y22 €1y = T — Tiy T Y11 — Uiz
2 .2 2 .2 2 2 _ _
€1 = Ty + Ty — Yo + Yoo Cyp = T1T21 — T1222 + Y11Y21 — Y12Y22
2 2 _
€31 = —Toyi1 + ToaYi2 + T11Yo1 — Tialee C3 = 0
2 2
¢, = 0 Clp = —TaYn + Teyi2 + TulY2 — Ti2Y22
2 2
Cl3 = —T1Y11 + ToaY12 + T11Yo1 — Ti2Ye2 €, = 0
2 2
33 = 0 Coo = —T2Y11 + T22Y12 + T11Y21 — T12Y22
2. = _ 4 _ 2 g2 4 g2 a2 g2
33 = 11221 — L12%22 T Y11Y21 — Y12¥22 C39 = T1p T L2 — Y11 T Y12
2 .2 2 2 .2 2 _
Ciz = Ty — Ty + Y — Yo Cro = T11%21 + T12%22 — Y11Y21 + Y12Y22
3 _ 3 _
¢l = 2Ty +2Tny12 Cly = 2x12Y11 — 2T11Y12
3 _ 3 _
Cy = —2ToYo1 + 2To1Ya2  Chy =  2TaY11 — 2X21Y12
3 = 1-2 +2 3, = 0
€31 = Y12Y21 Y11Y22 C39 =
3 = 0 3, = 1-2 + 2
. = Clp = Y1221 + 2y11Y22
3, = 1-2 + 2 3, = 0
Ci3 = Y12Y21 Y11Yo2 Ciy =
3. = 0 3, = 1-2 2
C3 = Cyy = Y12Y21 + 2Y11Y22
3 _ 3 _
C33 = 2;6223/11 — 23321@/12 C3p = _255123/11 + 23;113/12
3 3 _
Cls = 2TYo1 — 2To1Y20 Clo = —2Toyn + 2T21Y12
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4
C11

4
Co1

4
C31

4
C41

4
Ci3

4
Co3
4
C33
4

C43
Using these

—T11T21 — T12T22 — Y11Y21 — Y12Y22

2 2 2 2
—Ty1 — Ty — Yo1 — Yo

—T21Y11 — T22Y12 + T11Y21 + T12Y22

0

—X21Y11 — T22Y12 + T11Y21 + T12Y22

0

T11%21 + T12%22 + Y11Y21 + Y12Y22

x%l + x%2 + y%l + ygz

matrices, we compute the matrix

mip Ma2

mo1 Moo
M =

mz1 M3z

My M2

20

C12
€22
C39
Cq2
C12
€22
C32

Cya

mis

ma3

mMys

miq

Moy

mM3q

My

x%l + x% + y%l + 9%2

T11%21 + T12%22 + Y11Y21 + Y1222

0

—T21Y11 — T22Y12 + T11Y21 + T12Y22
0

—T21Y11 — T22Y12 + T11Y21 + T12Y22
_$%1 - $%2 - y%l - y%2

—T11T21 — T12T22 — Y11Y21 — Y12Y22




where C; = Z?Zl mi i Zi, My = m (Cj, Z;)modGB, j =1,2,3,4and (A, B) = Tr (BTA) .
We obtain the following:
mi1 = 1+ 2212291 + 2Y11Y22
Mo = —T11T12 + T21Z22 — YY1z + Y21Y22
ma1 = 2T92Y11 — 2T12Y21
My = —T11T12 — T21T22 — Y11¥Y12 — Y21Y22Mi2 = —T11T21 + T12T22 — Y11Y21 + Y12Y22
Moy = 5 (27 — oy — 25 + 235 + YTy — YTs — Va1 + U3)
M3y = —T21Y11 + T2 + T11Y21 — T12Y22
My = % (%) — a3y + 23 — 255 + Yi — Yo T Y31 — Y3o) Maz = —2Toay11 + 2721912
M3 = T12Y11 — T11Y12 — T22Y21 + T21Y22
mg3 = 1 — 2y19y21 + 2Y11Y22
My3 = Ti2Y11 — TnYi2 + T22Y21 — T21Y22Mig = —T11T21 — T12T22 — Y11Y21 — Y12Y22
Mg = % (%) + a3y — 231 — 25 + YT+ Yo — Y31 — Uzo)
Mm3q = —T21Y11 — T22Y12 + T11Y21 + T12Yy22

Mmyg = % (.T%l + :U%Q + 51331 + x%Q + y%l + y%Z + y%l + y%?)

Hence we obtain:

Theorem 3.3.

Ty T Y11 Y
The forward map ®3, sends the matriv A+1iB, with A = Hoe , B = Hooe
To1 22 Y21 Y22
to the matriz M in Equation .
3.4 The double cover of SO"(3,2) by Spint(3,2)
1 000
0 1 0 —i 1 0 1 0 0100
Let 0, = , Oy = , 0, = , Idy = , Idy =
10 i 0 0 —1 0 1 0010
0001
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We choose the basis B = {X;, X», X3, X4, X5}, as our basis of 1-vectors for C1(3,2),
000O0O1O0O0O0

0000O0OT1O0O0
000O0O0O0OT1SOQO0
where X7 =0, ® Idy = 0 ououuod )
10000000
01 000O0O0O
0010000
0001000
0010 0 0 0 O
0001 0 0 0 O
1000 0 O O O
0100 0 0 0 O

Xo=0,®0, ®Idy =

0O -1 0 0 0 OO0 O
0O 0 =10 0 OO0 O
0 O O 1 0 0O O
X3:Uz®az®az: )

0 O 0 -1 0 0 O
0 O 0 0O 1 0 O
0

0

S
o
o o o O
(@]
o
—
o

22



0 0 0 0 1000
0 0 0 0 0100
O 0 O O 0010
X4 = (ioy) ®1dy = 00 0 0 0001
-1 0 0 0 0000
0 -1 0 0 0000
0 0 -1 .0 0000
0 0 0 -10000
0 0 1000 0 0
0 0 0100 0
-1 0 0000 0 0
X5 =0, ® (io,) ® Idy = 0 -10000 0 O
00 0000 -1 0
0 0 0000 0 -1
0O 0 0010 0 O

0 0 0001 0 0

This choice of 1-vectors produces Spin™(3,2) as the following nonstandard copy of the
real symplectic group
Sp(4,R) = {A € M(4,R) : AT M1 A = Mgy}
Suppose

T ) T3 24

L5 Lo X7 s

)
I

(3.4)

Tg Tio Tn T2

Ti3 Ti4a Ti5 T
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We embed A into an element of Cl (3,2) as follows:

r1 0 @z 0 T3 0 T4 0
0 = 0 -z 0 —z3 0 T4
x5 0 x 0 x; 0 xzz O
0 —z5 O Te 0 T7 0 —xg
Tg 0 20 0 11 0 T19 0
0 —x9 O T10 0 T 0 —x19

ri3 0 x4 0 x5 0 x6 O

0 x3 0 —zu 0 —z5 0 6
Then A lives in CI(3,2) and belongs to Spin®(3,2). The conditions that A belongs to

5?9(4, R) are the following:

J1= 21016 —24T13—T5T 12+ 289 —1 = 0

Jo= To16—T4T14—TT12+T8T10= 0

J3= T3W16—24T15—T7T12+T8T11 = 0

f1= 1215 —T3T13— X521 +T7xx9 = 0

J5= o5 —23T14—TT11+T7T10+1 = 0

J6= T1014—T2T13—T5T10+T6Tg = 0

Let K ={fi1, f2, f3, f1, [5, fo} and a Grobner Basis for the ideal (K) < Rz, 29, ..., 16

with respect to the Lex Order is given by GB = {¢1, go, ..., 922}, where

g1 = —T12%13 + T11T14 — T10T15 + T16L9,

g2 = —T16 — T12%15T6 + L11T16T6 + L12T14T7 — T10T16L7 — L11T14T8 + T10T1578,

gs = $12$13—$11$14+I10$15—$11I12$13I6+$%1$14$6—$10$11I15$6+I10I12$13I7—$10$11$14$7

+230215T7 + T19T15T6T9 — L12T14T7Tg + T11T14T8T9 — T10T15T8 Lo,

g4 = T16T5 — T15%6 + T14T7 — T137Ts,

g5 = 1 + 1225 — T11%6 + T10T7 — Ty,

g6 = —T13 — T11214T5 + T10T15T5 + T11X13T6 — T10X13T7 — T15L6L9 + T14T7 X9,
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g7 = T16T3 — T15T4 — T12T7 + T11 T8,

gs = T12T13T3 — T11T14T3 + T10T15T3 — T15T4T9 — T12T7T9 + T11T8T9,

gy = —T15T4T5 + T15T3L6 + Ty — T1aL3T7 — T11TeL7 + T10%5 + T13T30s + L11L5L8 — TrLsly,
g10 = —%13%4 — T11T14T4T5 — T12X13T3T6 + T11T14T3T6 + T11T13T4T6 + T10T7 — T10T14T3T7 —
T10T13 47— T10L11 TeL7+TT )X+ T10L13T3L8+T 10211 L5T8+T14T4T7Tg+T12T6T7 L9 — 11 LeLsTo—
L10X7X8T9,

911 = T16T2 — T14T4 — T12T6 + T10T8,

g12 = 1 + 21509 — L1473 — T11T6 + L1027,

g13 = T10 — T12213%2 + T11T14%2 — T10T14T3 — T10T11%6 + 13%01‘7 + X14T4T9 + T12T6XT9 — T10T8Ty,
14 = T14T4T5 — T14T3T¢ + T14T2T7 — T13T2Ts — L10T5Ts + TeTsTo,

15 = —T4 — T12T3T6 + T11T4T6 + L12XL2X7 — L10T4L7 — T11T2T8 + T10T3T8,

Gi6 = TaTs — T3Tg — T11T4TsTe + T11T3TE + Toly + T10TaTsTy — T11T2Tel7 — T10L3Tely +
$1o$29€$ + T1122X5T8 — T10T3T5T8 + T3TLeTgTg — T2T7LgTy,

917 = T1T16 — T13T4 — T11T6 + T10T7,

g1s = T1T15 — T13%3 — 1125 + T7Xo,

g19 = T1ZT14 — T13T2 — T10T5 + T6Lo,

G20 = T1T12 — T11T2 + T10T3 — T4T9,

go1 = —T4T5 + T3Tg — Ta2X7 + 12,

Goo2 = —T1 — T11T2T5 + T10T3T5 + T1X11T6 — L1X10L7 — T3TeLg + ToT7Tg.

Note that det (A) modGB = 1, and hence
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A 'modGB =

T16 0 —ZT12 0
0 T16 0 T12
—x15 0 T 0
0 Z15 0 11
T14 0 —Z10 0
0 —X14 0 —T10
—x13 0 T 0
0 —T13 0 —Xg

Tg
0
— 27
0
Te
0
— s

0

—Ty 0
—xg 0 —x4
T3 0
—X7 0 —xT3
—X2 0
Tg 0 To
T 0
Ty 0 T

Next, we compute matrices CimodGB, ComodGB, CsmodGB, CymodGB, CsmodGB as

follows: C; = AX;A™'modGB, i =1,2,3,4,5. We then have Cy = (c};) , where the ¢}, are

cry
0%3
0%5
052

1
Coy

C36
C31
C33
Céo
Cs
cr3
c1s
Ct7
Cl4
Cs6

1
Csg

Z10%5 + L1207 — L1128 — TeTg
—X1X10 — T12%3 + T11T4 + T2X9g
—XT2T5 + T1xg — TyaX7 -+ T3l
—T10%5 — T12T7 + L11T8 + LTy
—T1T10 — T12T3 + T11T4 + T2Zy
—Tox5 + T1Tg — T4X7 + T3Tg
T14%5 — T13%T6 + T16T7 — L1578

—X10T5 — T12T7 + T11X8 + Ty

T10T5 + T12T7 — T11XL8 — LTy

T1T10 + T12T3 — T11X4 — T2Tg

Ca7
0}12
Ciy
61118
0%1
Cé5
Ci7

1
Co2

—X10T13 — T12T15 + T11T16 + T14%9

—X14%5 + T13T6 — T16T7 T T15T8

T10T5 + T12T7 — 1108 — TelLy

—X10T13 — T12T15 + T11T16 + T14%9

—X14T5 + T13T6 — T16T7 T T15T8

—X10T5 — T12%7 + T11T8 + TeXg

26

—ToX5 + T1Xg — T4T7 + T3Tg
T14%5 — T13%T6 + T16T7 — L1578
T10T5 + T122T7 — L1178 — Ty
—ToX5 + T1Xg — T4T7 + T3Tg
—T10T13 — T12%15 + T11T16 + T14T9
—T10T5 — T12T7 + T11T8 + T6Lg
L1210 + T12T3 — T11T4 — T2T9g

—X10T13 — T12T15 + T11T16 + T14T9



— (2 2 :
Cy = (cz-’j) , where c;; # 0 are:

2

€1 = —Tuls+ T12%e — TioTs + T7T9  C3r = X3l — Tale — T1T7 + Lol

C%g = T1%11 — T12%2 + T10T4 — T3T9 Cig = —X15%5 + T1eLg + T13T7 — L1428
0%5 = T3T5 — T4Tg — T1T7 + Tolg 024 = —I11%5 + T12%6 — L1028 + T7Tg
ng = TnZs — T12T6 + T10Tg — T7T9 Cig =  X3Ty — T4lg — T1T7 + ToTg

034 = 1711 — T12%2 + T10%4 — T3X9 C§1 = T11%13 — T12T14 + T10T16 — T15T9
C%G = X3x5 — TyXg — 17 + ToTg C§5 = T11x5 — T12T¢ + 108 — T7x9

31 = —Ti5T5 + T1eTe + T13T7 — T4y Cop = —X1T11 + Ti2l2 — T1oT4 + T3Tg
01233 = T11%T5 — T12%T6 + T10T8 — T7Lg ng = T11%13 — T12T14 + T10T16 — T15T9
C%G = —X11T5 + T12Xg — T10X8 + T7T9

C%s = —I1%11 T X122 — T10T4 + T3Tg

633 = T11%13 — T12%14 T T10T16 — T15T9

3. = T15T5 — T16Te — T13T7 + T14Ts

037 = —X11T5 + T12Xg — T10x8 + T7T9

C§4 = T1%13 — T12%14 + T10T16 — T15T9

s = T15T5 — X166 — T13T7 + T14Ts

ng = T11%5 — T12%6 + T10T8 — T7x9

Cs = (c3;) , where ¢ # 0 So, we have :

¢ty = =14 2xpm36 —2x1007 ¢ = —2x3x6 + 20217 cae = —1+2x1m6 — 271077
C§)3 = —2.1'11372 + 2.1710373 Ciz = 23715276 — 2.3(714&37 ng = 2.1’1111}2 — 21’10373

e = —2w3w6 + 21077 3, = —1+42x316 —2T1077 B3 = —2x11714 + 2T10T15
032 = 1- 21’111‘6 -+ 2(1]101‘7 Cig = —2$3ZE6 + 2ZE2I7 025 = —21’151}6 -+ 21]141]7

034 = —2r1122 + 221073 Cgl = 2711214 + 2210715 c§7 = =14 2x1126 — 221077
C%G = —21‘31‘6 + 2$2:L“7 025 = 1- 2?[311$6 + 2?[710117 024 = —2$11I14 + 2$10I15
3 = 2r1586 — 221477 Gy = 2x11xy — 2T1073 Cos = —2x15T¢ + 271477

cas = 1—=2mm6+2T1027  Chy = —2T11%14 + 210715 css = 1 —2mm6 + 231027
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4
Coy
Cog
C31

C33

4
i’j

), where ci; # 0 are:
T10%5 — T12%T7 + T11T8 — Ty
—T1T10 + T12T3 — T11T4 + T2T9g
—XoX5 + T1Te + T4X7 — T3Tg
—Z10%5 + T12T7 — L1178 + Ty
—Z1%10 + T12T3 — L1104 + ToTg
—To%5 + T1T6 + T4T7 — T3Tg
T14T5 — T13T6 — T16T7 + L1578

—X10T5 + T12T7 — L1128 + TeLy

C37
Ca2
Cyq
C48
Cs1
Css
Cs7

Ce2

Cee
Ces
Cr3
Crs
Cr7
Cs4
Cge

Cgs

28

—X2x5 + T1Tg + T4T7 — T3xg
T14T5 — T13T6 — T16T7 T T15T8
T10T5 — T12T7 + £11X8 — TeTy
—X2x5 + T1Tg + T4T7 — T3xg
—Z10%13 + T12%15 — 11216 + L14T9
—T10T5 + T12T7 — T11T8 + T6Lg
T1T10 — T12T3 + T11T4 — T2T9g

—X10T13 + T12T15 — L1116 + T14%9

T10T5 — T12T7 + T11T8 — T6Lg
L1210 — L1223 + T11T4 — T2T9
—T10T13 + T12T15 — T11T16 + T14T9
—Z14%5 + T13%6 + T16T7 — L1578
T10%5 — T12%7 + T11T8 — TeTg
—T10713 + T12T15 — T11T16 + T14T9
—Z14%5 + T13%6 + T16T7 — L1578

—X10T5 + T12T7 — T11T8 + TeLy



Cs = (c?;) , where ¢;; # 0 are:

7:7j
5 5 _
C{1 = —T11T5 — T12%¢ + T10Tg + T7Xg C3y = T3T5 + X4Tg — T1XT7 — ToXg
5 _ 5 _
Cl3 = T1T11 + T12T2 — T10T4 — T3Tg Cio = —T15T5 — T16Tge + T13T7 + L1478
5 5
Cls = T3T5+ TyTg — T1T7 — ToTsg Cyy = —T11T5 — T12T6 + T10T8 + T7Tg
5 5 0
Coy = T11T5 + X12T6 — T10T8 — Ty Cig = T3T5+ Tyle — T1T7 — Lo
5 _ 5 _
Coy = T1T11 + T12T2 — T10T4 — T3Lg Cy1 = T11%13 + T12T14 — T10T16 — T15T9
. = =z + — - 2. = + — —
2 3Ly T Tylg — L1X7 — Talg Cs5 = T11T5 T X120 — L10L8 — T7X9
5 5
C31 = —T15T5 — T16T6 T T13T7 + T14Tg  C5; = —T1T11 — L1202 + T10T4 + T3T9g
5 5 _
C33 = T11%5 + T12Te — T10T8 — Ty Ceo = T11T13 + XT12T14 — T10T16 — T15T9
5
Cgg — —X11T5 — T12%6 + X10Ts + T7T9
5
Cgg = —T1T11 — T12T2 + T10T4 + T3Xg
5
Cr3 = T11%13 + T12T14 — T10T16 — T15T9
5
Cos = T15%5 + T16T6 — T13T7 — L1478
5 _
Cr7 = —T1%s5 — T12%T6 + T10Ts + T7Tg
5
Cgy = T11%13 + XT12T14 — T10T16 — T15T9
5
Cgg = T15T5 + T16T6 — T13T7 — L1478
5
Cgg = T11T5 + X12T6 — T10T8 — T7y
Now we express the matrices C; in terms of the basis B = { X1, X», X3, Xy, X5} as follows:
> 1
_ § : _ _ T
Cj = TTLLJ'X,L', where m;; = m <Cj, XZ> modGB and <Y7 Z> ="Tr (Y Z)
19 1

i=1

Let M be the matrix of coefficients:

mi1 Mi2 Mi3 Mi4 Mags
Ma1 Ma2 Ma3 Mo MM2as
M = m31 M32 M33 M34 M35 (3.5)

Mg Mgz M43 Maa M4s

ms1 Mps2 Ms3 M54 Msps

) )
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The m; ; are given as follows:

mi
ma1

ms1

myi

migo
ma 2
mso
my 2
ms 2
migs
ma3

msgs

myg3

mia

)

mgo 4
ms4
My 4
Mg 4
mis
ma 5
ms3s

mys

mss

%(—xmxm — L1915 + T11T16 — Tals + X106 — T4T7 + T3Tg + T1479)
%(—3611’10 — T12T3 + T11T4 + T1aTs — T13%6 + T16T7 — T15T8 + Talg)
T10T5 + L1227 — T11T8 — TeT9

%($10$13 + T19T15 — T11T16 — TaTs + T1T6 — T4T7 + T3Tg — T14T)

—X1T10 — T12T3 + L1104 — T14%5 + T13%T6 — T16T7 + T15T8 + T2Xg)

N[ —=

N =

(
(11713 — T12T14 + T10T16 + T3T5 — TyTe — T1T7 + ToTg — T15T9)
%(3715611 — T12T2 + T10T4 — T15T5 + T16T6 + T13T7 — T14Tg — T3Tg)
—Z11%5 + T12%6 — T10T8 + T7T9

%(—%13013 + L1714 — T10T16 + T3T5 — TyT6 — T1T7 + ToTg + T15T9)

(T1211 — T12T2 + T10T4 + T15T5 — T16T6 — T13T7 + T14Tg — T3Tg)

N [—=

—T11T14 + T10T15 — T3Te + T2Z7
—Z11T2 + T10T3 + T15T6 — T14T7
-1+ 2.1'11.T6 — 2.1710337

11214 — T10T15 — T3Te + ToX7
—T11T2 + T10T3 — T15T6 + T14T7

(—x10%13 + T12T15 — T11T16 — T2l + T12T6 + Ty — T3Ts + T142T)

N[ =

1
5(—T1T10 + T12T3 — T11T4 + T1uTs — T13T6 — T16T7 + 1508 + TaT)
T10T5 — T12%7 + T11T8 — TeLy

1
3(T10T13 — T12T15 + T11T16 — ToT5 + T1T6 + T4y — T3Tg — T147T9)

N[ —=

—X1T10 + T12T3 — L1104 — T14T5 + T13%6 + T16T7 — T15T8 + T2Xg)

N |—=

(11213 + T12%14 — T10T16 + T3X5 + T4 — T1X7 — Toly — T15L9)
1
5 (71711 + T19T0 — T10T4 — T15T5 — T16T6 + T13T7 + T14T8 — T3Tg)
—T11%5 — T12%6 + T10T8 + T7Xg

(—211213 — T12%14 + T10T16 + T35 + T4 — T1X7 — Tals + T15T0)

N[ =

(X111 + T12T2 — T10T4 + T15T5 + T16T6 — L1307 — T14Tg — T3Tg

D=
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Theorem 3.4. The map P34 sends Ac Spin*(3,2) = 51\9(4, R) to M in SO™(3,2), where

A is as in Equation and M 1is as in Equation .

3.5 The double cover of SO*(3,3) by Spin*(3,3)

0 1 0 —i
Let0$: , Oy = y Oz =

10 ¢ 0 0

—1

,Id2:

1
0

0
,Idy =

1 0

0

1
0
0

0
1
0

0
0

1

Define Y1 =0, ®0,®0,, Yo =0, R0, ®Idy, Y3 =0, ®Idy ® Idy, Yy = 0, ® 0, ®i0y,

Y5 = 0. ®io, ®Idy, Y5 = i0y, ® Idy ® Idy;

0 0
0 0
01
Let @ = [e1|es]es|er|eales|es|es] =
0 0
0 0
00
0 0
Define
0O O 0 01 0 0O O
0O 0 0O 00 -1 0 O
0O O 0O 00 0 —-120
- 0 0 0 0 0 O 0 1
leQ YiQ:
1 0 0 0 0 O 0O 0
0O -1 0 0 0 O 0O O

1000000

e}

00100
00010
00 0O0O
00 0O

1 00 00
01 00O
00 0O0@O0
2y = QTY2Q =

31

be a permutation matrix.

00 0 O
00 0 O
00 0 O
00 0 O
01 0 O
10 0 O
00 0 -1
00 -1 O




o
o o O

—_

Zy = Q"Y3Q =

(e
(@]
(e
o o o o o
—

(@]

(@]

(]

—
o o o o O
o o o O

o
o o o O
[en}

Zs = Q"Y5Q =

o
o o o o o O
o

o
o o o o o o o

- o O O

o o o O

o O

e}

7Z4 = QT}/ZLQ =

726 = QT}/GQ =

o o o O

o o o o o O

We use the set {Z;,i = 1,...,6} as our basis of 1-vectors for C1(3, 3).

Let

€

X5

Ty

Z13

To T3 X4

Te X7 Xg

T10 T11 T12

T14 T15 T16

32
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We suppose T' € SL (4,R) = Spin™(3,3). Denote by p = det (T') — 1; p € R [x1, o,

Since the Grobner Basis GB of the ideal (p) is GB ((p)) = {p}, we compute
1

T T T3 Ty

_ Ts Tg T7 TR
7! = modp

Tg T10 T11 12

r13 T14 T15 T16

t11 ti2 tiz tuis
tor tog toz Tog

t31 132 133 t34

tyn tag taz Tas

where

t11 = —T12215T6 + T11016T6 + T12014T7 — T10T16L7 — T11014%8 + T10T1528;
lo1 = T12T15%5 — T11016X5 — T12013%7 + T11T1308 + L16T709 — T15T8L9;
l31 = —X12214%5 + T1021625 + T12013T6 — T10T130L8 — T16L6L9 + T14T8T9;
l41 = T11014%5 — T10T1505 — T11013%6 + T10T1307 + T15T6T9 — T14T7L9;
l12 = T12T15%2 — T11T16T2 — T12014%3 + T10T1673 + T11T14T4 — T10T15T4;
log = —T1212T15 + 121116 + L12013T3 — T11T13T4 — T16T3L9 + L15T4%9;
l32 = X1T12014 — T1T10%16 — T12T13%2 + L10T1304 + T16X2T9 — T14T4T—g;
lag = —T1211014 + T1X10T15 + T11013T2 — T10T1303 — T15T2X9 + L14T3%g;
t13 = —T16X3%6 + T15X4T6 + T16T2T7 — L14T4T7 — T15T2T8 + T14T3Tg,

log = T1603%5 — T15X4%5 — T1X16T7 + L13X4T7 + T1X15T8 — T13T3Ts;

l33 = —X1622T5 + T14T4T5 + T1T16T6 — T13T4T6 — T1T1408 + T13T2Xg;

l43 = T15T2X5 — T14T3T5 — T1T15T6 + T13T3T6 + T1L14T7 — T13T2X7;

l14 = X19T3%6 — X11T4T6 — T12T2X7 + L10TaT7 + L11T2Xg — T10T3X8;

log = —T1223T5 + 110475 + T1X12T7 — T1X11T8 — T4XL7Lg + T3TRT;

l34 = T12T2X5 — T10T4T5 — L1X12T6 + L1X10T8 + L4TeTg — ToT8Ly;
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tyy = —XT1122%5 + T1023%5 + T1T11T6 — T1T10T7 — T3TeTy + T2T7T9

Next let G = — Mg (T‘l)T Migxmodp where we recall that

0 0 0 1
0 0 —1 0
M1®k =0, ® iO'y =
0 1 0 0
-1 0 0 O
Thus,
g1 G122 G913 Gua
- 921 g22 G923 Goa ’
g31 932 g33 g34
941 G42 943 Ga4
where
g11 = —T11T2T5 + T10T3T5 + T1X11T6 — T1X10T7 — T3TeLg + T2T7T9;
g12 = —T12T2T5 + T10T4T5 + T1T12T6 — T1T10T8 — T4TeLg + T2T8T9;
13 = —T12T3T5 + T11T4T5 + T1X1207 — T1X11X8 — T4X7Lg + T3TTo;
14 = —T12T3%¢ + T11T4%6 + T12X2X7 — T10T4L7 — L11X2X8 + T10T3T8;
921 = —T15T2%5 + T14T3%5 + T1X15T6 — T13T3T6 — T1X14T7 + T13T2T7;
Go2 = —T16T2T5 + T14T4T5 + T1T16L6 — L13L4Te — T1X14X8 + T13T2T8;
g23 = —T16T3T5 + T15T4T5 + T1T16L7 — L13T4T7 — T1X1508 + T13T3T8;
J24 = —T16T3%6 + T15T4%6 + T16X2L7 — T14T4T7 — T15X2T8 + T14L3T8;
g31 = —T1Z11%T14 + T1210%15 T T11213T2 — T10213T3 — T15T2T9 + L14X3%9;
g32 = —T1T12%14 + T1T10T16 T T12213T2 — T10T13T4 — T16T2T9 + L14L4T9;
933 = —T1Z12%15 + T1T11T16 T T12213T3 — T11T13T4 — T16T3T9 + L15L4L9;
934 = —T12T15T2 + T11T16T2 + T12214T3 — T10T16L3 — L11214T4 + T10T15L4;
941 = —T11214%5 + T10T15T5 + T11213T6 — T10213T7 — T15L6T9 + T14T7T9;
J42 = —T12214%5 + T10216%5 + T12213T6 — T10213T8 — T16L6T9 + L14T8T9;
J43 = —T12215%5 + T11216%5 + T12013T7 — 1121308 — T16XL7T9 + L15T8T9;
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Ja4s = —X12T15T6 + T11T16T6 + T12L14T7 — T10T16L7 — T11214T8 + T10T15L8;

We then embed T into a matrix U living in C1(3, 3) via

r1 3 x3 x4 0 0 0 O

rs wx¢ x7 wxg 0 0 0 O

T9g Tip Tin T2 0 0 0 0

- T3 T4 T15 g O 0 0 O 7

0 0 0 0 g1 gi2 13 Gua
0 0 0 0 g21 922 Gg23 Gos
0 0 0 0 g3 932 933 g
0 0 0 0 gun g2 943 gu

As one verifies, det (U) = 1mod (p). Therefore, we can compute the inverse of U mod (p) by

taking the transpose of the matrix of all cofactors mod (p). In particular, we have, if
T

U113 U2 Uz U4 U5 Ui Ur7 U1
U1 U2 U3 U4 U25 U2 U7 U28
U3z U3z U3z U4 U5 Ue UT U3
Ug1r Ug2 Uyg3 Ugq Ug5 Uge  Ug7  Uqs
Ul= mod (p)
Us1 Us2 Us3 U4 Uss Use Us7r Uss

U1 U2 U3 Uea Ues Use Uer U

U7y U2 U3 U74 U5 U76 U77T UTS

Ugy Ugz Ug3 Ugse Ugs Uge Ugy USY

then u;; = (—1)i+j M;;jmod (p) , where M;; is the (i, j)the minor of matrix U, 4,j = 1,2,...,8.
In particular, we have:

U1l = —T12215%6 + T11T16L6 + T1201407 — T10216L7 — L11214T8 + T10L15T8;

Ul = X12T15T2 — L11T16T2 — L12T14T3 + T10T1623 + T11214T4 — T10T15L4]

Uz1 = —T16T3Te + T15T4T6 + T16T2T7 — L14T4T7 — T15T2T8 + T14T3X8;
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U41
71
U2
U2
U32
U42
Uj2
U3
U23
U33
Uy3
Ujg

U14

U2q =

U3q
Ugq
Uja
Uj5
Uss
Ujﬁ

Use

Usg

T1923T6 — T11TaTe — T12X2T7 + T10T4T7 + T11T2X8 — T10L3T8;

=0,j=5,6,7,8.

= T12%15T5 — T11T16L5 — T12L13T7 + £11L13T8 + T16L7L9 — T15T8L9;

—X1T12%15 + T1T11216 + T12T13T3 — T11L13T4 — T16T3T9 + T15T4T9;
T16T3T5 — T15T4T5 — T1T16T7 + T13T4T7 + T1T15T8 — T13L3X8;

—X12X3T5 + T11X4%5 + T1T1207 — T1T11T8 — T4T7T9 + T3TYT;

_Oaj:575a778;

—T12T14T5 + T10T16T5 + T12T13T6 — T10L13T8 — T16L6L9 + L14T8L9;
T1T12%14 — 11016 — T12T13T2 + T10T13T4 + T16L2L9 — L14X4X9;
—T1622T5 + T1404T5 + T1T16T6 — L1304T6 — T1214T8 + L13T2Ts;
T12T2%5 — T10T4T5 — T1T12T6 + T1X10T8 + L4Telyg — TaTgTy;

0,7=5,6,7,8.

= T11214T5 — T10T15T5 — T11L13%T6 + T10L13T7 + T15TeL9 — T14T7L9;

—X1T11%14 + 1T10%15 + T11T13T2 — T10L13T3 — T15T2T9 + T14T3T9;

T15T2T5 — T14T3T5 — T1T15T6 + T13T3T6 + T1T14T7 — T13T2X7;

= —X11T2%5 + T10X3T5 + T1T11T6 — T1T10T7 — T3LeXg + ToT7Ty,

=0,5=5,5,7,8;

0,7=1,2,3,4;

T16, Uss = —T12, Urs = T8, Ugs = —T4,
=0,7=1,2,3,4;

—T15, Ues = T11, Ure = —T7, UgT = T3;
=0,7=1,2,3,4;

T14, Uer = —T10, U7 = T, UgT = —T2;

0,7=1,23,4;

—x13, Ueg = L9, U78 = —T5, Ugs = T1;

One verifies that UU 'mod (p) = Idg
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Now, we compute matrices Cymod (p) , Comod (p) , Csmod (p) , Cymod (p) , Csmod (p) , Cemod (p)
as follows:
Ci=UZU 'mod (p),i=1,2,3,4,5,6. We have:

C, = (ng) , where ¢ ; # 0 are given as follows:

0%1 =  T12%5 + T11Te — T10T7 — T8Ty Céz = —I1T12 — T11T2 + T10T3 + T4Tg
0(151 = T16T5 T T15T6 — L1407 — T13T3 Cég = —I1%16 — T15L2 + T14T3 + L1324
0%1 =  —Z12%13 — T11T14 T T10%15 + T16L9 051;2 = —Z12713 — 11714 T T10%15 + T16T9
0%3 =  —X4T5 — T3Te + T2T7 + T1T8 Cé4 = —X4T5 — T3Tg + ToT7 + T1T8
0%3 = —X1%16 — T15T2 + L1403 + L1374 6%4 = T1T12 + T11T2 — T10XT3 — T4Tg
051;3 = —T16T5 — T15Te T T14T7 + T13T8 Cé4 =  X19%5 + T11Tg — T10L7 — TYT9
0%5 = T1%16 T T15T2 — T14T3 — L1324 C%g = —I1T12 — T11T2 + T10T3 + T4T9
055 = T16T5 T T15T6 — T14T7 — L13T3 C%G = —X19%5 — T11Tg + T10X7 + TgTg
Cglw,5 = —212%13 — T11%14 T T10%15 + T16X9 04116 = —Z12%13 — L1114 T T10%15 + T16T9
C%? = —T4T5 — T3Te + ToT7 + T1Tg C;g = —XI4T5 — T3Tg + ToxX7 + T1Tg
Cé? = —X12%5 — T11%6 T L1027 + Ty C;l»,g = I1T12 + T11T2 — T10T3 — T4T9
Cin = —X16T5 — T15T6 + T1al7 + T13Tg  Clg = T1T16 + T15T2 — T14T3 — T13T4

Cy = (c};) , where ¢Z; # 0 are given in the table:
Cgl = —I11%5 + 12X — T10Ts + T7Lg ng = T1%11 — T12T2 + T10T4 — T3Xg
31 = —Ti5T5 + T1ieTe + T13T7 — T1aTs  Chy = T1T15 — TieT2 — T13T3 + T1als
31 = T1Ti3 — T1a%1a + T1oT1e — T15Ly  Cay = L11T13 — L1281 + T10T16 — T15%g
C§3 = I3T5 — TyTg — T1T7 + Tolg 0%4 = X3L5 — T4lg — T1X7 + Tokg
033 = T1%15 — T16TL2 — T13T3 + L1474 634 = —I1Z11 + T12T2 — T10T4 + T3Tg
C33 = X155 — T16Te — T13T7 + L1aly  C3y = —T11L5 + Tialg — T1o%s + L7k
035 = —T1%15 + T16T2 + T13T3 — L1474 C%G = X1T11 — T12%2 + T10T4 — T3T9
C35 = —Ii5T5+ T16L6 + T13T7 — Tuls  Cyg = T11T5 — L1l + T10Ls — L7y
G35 = T1T13 — T1a%1a + T1oT16 — L1589  Cig = L11T13 — L1281 + T10T16 — T15%9
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2
C17
2
C37

Cy7

T3Ty — Talg — T1T7 + Tolsg c5
2
T11T5 — T12T6 + T10T8 — T7Tyg  C3
2
T15T5 — T16Te — T13T7 + T14Tg €

Cy = (c3;) , where ¢ ; # 0 are:

C51

3
Ce1

3
€71

3
Cs3

3
Cr3

3
Cs3

3
Cis

3
Cos

3
C35

3
Ci7

3
C37

3
Cy7

T10%5 + L1227 — T11T8 — LTy
T14%5 — T13%T6 + T16T7 — T15T8
—T10713 — T12%15 + T11T16 + T14T9
—ToT5 + T1T6 — T4T7 + XT3y
—T1T14 + T13T2 — T16T3 + L1524
—T14T5 + T13T6 — T16T7 + T15T8
T1%14 — T13%T2 + T16T3 — L1574
T14%5 — T13%T6 + T16T7 — T15T8
—T10T13 — T12%15 + T11T16 + T14T9
—ToZ5 + T1Xg — T4T7 + T3Tg
—Z10%5 — T12T7 + L1178 + LTy

—X14T5 + T13%T6 — T16T7 + T15T8

8 =
8 =

8 =

3
Cs2

ng
022
024
C§4
034
C?G
Cgﬁ
Cia
Cgs
ng

3
C48

Cy = (¢};), where ¢}; # 0 are given in the table:

c3
Cé1
C%l
C33
C§3
Ca3
01115
4

Cos

4
C35

T12T5 — T11T6 + T10T7 — T8T9
T16T5 — T15T6 + T14T7 — T13T8
—T12713 + T11T14 — T10T15 + T16T9
—T4x5 + T3Tg — ToX7 + T1T8
—T1T16 + T15T2 — T14T3 + T13T4
—T16%5 + T15T6 — T14T7 + L1378
T1T16 — T15T2 + T14T3 — T13%4
T16T5 — T15T6 + T14T7 — T13T8

—X12%13 + £11T14 — L1015 + T16T9

38

C§2
ng
Cha
C$4
Caa
cle
C%G

4
C46

T3Ts — Tale — T1T7 + Tolg
—T1%11 + T12T2 — T10T4 + T3Tg

—X1T15 + T16T2 + T13T3 — T14%4

—T1T10 — T12%3 + 1174 + Ty

—X1T14 + T13T2 — T16T3 + T15%4

—ToT5 + T1T6 — T4T7 + T3Xg

T1T10 + L1223 — T11T4 — TaXg

T10T5 + L1227 — T11T8 — TeLg
—Z1%10 — T12%3 + 1124 + T2Tg

—X10T5 — T12T7 + T11T8 + TeZg

—ToT5 + T1T6 — T4T7 + T3Xg
T1Z1p + L1273 — T11X4 — T2Tg

T1T14 — T13T2 + T16T3 — T15T4

—X1T12 + T11T2 — T10T3 + T4Tg

—X1T16 + T150T2 — T14T3 + T13%4

—X4x5 + T3Tg — ToX7 + T1T3

T1T12 — T11T2 + T10T3 — T4Tg

T12%5 — T11%6 + T10T7 — T8Tyg
—T1T12 + T11T2 — T10T3 + T4Tg

—X12T5 + T11T6 — T10T7 + TsTy

—X10T13 — T12T15 + L1116 + T14%9

—X10T13 — T12T15 + T11T16 + T14%9

—X12T13 + T11T14 — T10T15 + T16T9

—X12T13 + T11T14 — T10T15 + T16T9



01117 =  —T4T5 + T3Te — Tol7 + T1T8 C%S = —XT4T5 + T3Tg — ToT7 + T1T8
C3y = —T1aT5 +T1Te — T10T7 + TgTy  Cyy = T1Tip — T1Tz + TiT3 — TaLo
037 = —T16T5 + T15T6 — T1aT7 + T13Tg  Cls = T1T1 — T15T2 + T14T3 — T13T4
Cs = (c3;) , where ¢ ; # 0:
3 = —In5 — Tl + Tiols + T7Tg By = T1T11 + T1aTe — T1pTy — T3Tg
Q1 = —Ti5Ty — TieT6 + T13l7 + Tuals  Cly = T1T1s + T16T2 — T13T3 — T14%4
0?1 = T11%13 T T12%14 — T10T16 — T15T9 ng = TnZiz + T12T14 — T10T16 — T15T9
023 = T3%5 + T4Te — T1X7 — Tl 024 =  X3T5 + TyTg — T1T7 — Tolg
0?3 = T1%15 T T16T2 — T13T3 — T14T4 6?4 = —I1T11 — T12T2 + T10T4 + T3Tg
ng = T15T5 T T16T6 — T13T7 — L1478 024 = —T11%5 — T12Tg + T10T8 + T7Xg
Cls = —X1T15 — T1eTo + T13T3 + T4y Clg = T1T11 + T12l2 — T10T4 — T3Tg
by = —T15T5 — Ti6Te + T13T7 + Tuuls  Chg = T11Ts + T1ale — T1oTs — L7y
ng) = T11%13 T T12%14 — T10T16 — T15T9 Cie = TnZiz+ T12T14 — T10T16 — T15T9
C??? = X3%5 + XTylg — T1X7 — Tadg 038 = X35+ Ty4Xg — T1L7 — Loy
c§7 = Z11%5 + 12T — T10T8 — L7y ng = —T1%11 — T12%2 + T10T4 + T3Tg
027 = T15T5 + T16T6 — T13T7 — T14T8 Cig = —T1T15 — T16T2 + T13T3 + L1474
Co = (¢£;) , where ¢ # 0:
Cg1 = T10T5 — L1227 + L1178 — T6Ly ng = —Z1T10 + T12T3 — L1124 + T2y
021 = T14%5 — T13Tg — T16T7 + T15T8 ng = —I1%14 T XT13%2 + L1623 — L1504
0(751 = —Z10%13 + T12%15 — T11T16 + T14T9 ng =  —Z10%13 + T12%15 — T11%16 T T14T9
023 =  —XTs5 + T1Te + T4T7 — T3Tg 084 = —X29%5 + T1Tg + T4X7 — T3Tg
0(753 = —X1T14 + T13T2 + T16T3 — T15T4 094 = T1T10 — L1273 + L1124 — T2Xy
ng = —TuTs5 + T13T6 + T16T7 — L1578 Cg4 = X10T5 — T12L7 + T11T8 — TTg
6?5 = T1%14 — T13T2 — T16T3 + T15T4 0(136 = —T1X10 + T12T3 — L1104 + TaXg
035 = T14T5 — T13Te — T16L7 + T15T3 ng = —Z10T5 + T12T7 — T11X8 + Ty
ng, = —X10%13 T T12%15 — T11%16 + L14%9 Cgﬁ = —T10T13 T T12%15 — T11T16 T T14T9
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0?7 = —I9T5 + T1Tg + T4T7 — T3T8 cgs = —Xok5+ T1Xg + T4T7 — T3y
6 _ 6 _

C37 = —T10T5 T T12T7 — T11T8 + TeLyg C33 = T1T10 — T12T3 + T11T4 — T2y
6 _ 6 _

Ci7 = —T1Ts5 + X13%6 + L1627 — L1508  Cqg = T1T14 — T13T2 — L1673 + T15T4

Now we express the matrices C; in terms of the basis B = {7y, Zy, Z3, Zs, Zs, Zgs} as

follows:

1

6
C; = meZi, where m; ; = ———— (C}, Z;) mod (p) and (A, B) =Tr (BTA)

=1

(Zis Zi)

This produces a matrix M:

mii1 Mi2 Mi13 Mi4 Mi1is Mig
Mao1 M2 Ma3 Moy Mas Mg
mg3y1 Mgz2 M33 M34 M35 136
my1 Maya2 M43 Mag Mas Mag

msy1 Ms2 Ms3 M54 Mss5 Mse

) ) ) ) )

me1 Me2 Me3 Mea Mes Mee

The entries m; ; are given by

me1 =

mio =
Mmoo =
mzo =
Mmyo =

ms2 =

meo =

)

1
5 (11716 + T15T0 — T14T3 — T13T4 + T12T5 + T11T6 — T10T7 — TgTo)

—X1T12 — T11T2 + T10T3 + L1625 + T1586 — T14T7 — T13T8 + TaXg)

N [—=

—212%13 — L11%14 + T10%15 — Ta%s — T3Le + TaZ7 + T125 + T16L9)

N[ —=

N[ —=

(X116 + T15T2 — T14T3 — T13T4 — T12T5 — T11T6 + T10T7 + TTg)
(21212 — 1122 + T10T3 — T16T5 — L1586 + T14%7 + T13%8 + T4To)

T19%13 + T11014 — T10T15 — TaTy — T3Le + TaX7 + T1Tg — T16Tg)

—21%15 + T16T2 + T13T3 — T14%4 — L1125 + L12%T6 — T10Ts + T7Lg)
1
5 (11711 — T12Ty + T10T4 — T15T5 + T16T6 + T13T7 — T14Tg — T3Tg)

11213 — T12%14 + T10T16 + T3T5 — Tyl — T127 + Toly — T15L9)

1
5(=21715 + T16T2 + T1373 — T1aTy + T11T5 — T19T6 + T10T8 — T7T)
(T1711 — T12T0 + T10T4 + T15T5 — T16T6 — T13T7 + T14Tg — T3Tg)

—211213 + T12%14 — T10%16 + T3Ls — TaTe — T1T7 + Toks + T15%9)
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m13
ma3
mszs
My 3
ms3
me3

)

mi 4
ma 4
ms4
My 4
ms 4
me 4

mis

ma 5

mes

mie

mae
mse
Mmye
mse

mMe.6

)

L1214 — T13T2 + T16L3 — T15L4 + T10L5 + L1287 — T11Ls — LeLy)
—T1 %10 — T1203 + X184 + T14l5 — T13T6 + T16T7 — L1588 + TaZy)
—T10%13 — T12%15 + T11%16 — T2l + T1X6 — Taly + T3Lg + T14T9)
L1214 — T1382 + L1603 — T15L4 — L10T5 — L1287 + T11T8 + LeLy)
—T1%10 — L1203 + X104 — T14T5 + T13T6 — L1627 + L1588 + TaZy)
L1013 + T12%15 — L1816 — Tols + T1%6 — Taly + T3Tg — T14T9)
L1216 — L1582 + T1al3 — T13T4 + L1205 — T11T6 + T10T7 — TsTy)
—T1%12 + L1182 — T1003 + L1605 — L1586 + T14T7 — L1308 + T4Tg)
—T12213 + T11 %14 — T10L15 — Tals + T3Te — Toky + T1T8 + T16T9)
L1216 — L1582 + T1aT3 — T13T4 — L1285 + L1106 — T10%7 + TgTy)
—X1T12 + T11T2 — T10T3 — L1605 + T15T6 — L14%7 + T13Ts + TaTy)
L1213 — L1214 + L1815 — Tals + T3Te — Toly + T1Tg — T16T9)
—T1%15 — T16T2 + L1303 + T14Ts — L1105 — T12%6 + T10T8 + T7T9)
L1211 + L1282 — T10T4 — L1585 — L16%6 + L13T7 + T1aLs — T3Ty)
L1113 + T12%14 — T10T16 + T3T5 + Tale — T1T7 — TaXg — T15T9)
—X1%15 — T16T2 + T13%3 + T14%4 + L1125 + T12%6 — T10Ts — T7Lg)
L1211 + L1282 — T10%4 + L1585 + L1606 — L1387 — L1als — L3Tg)

—X11213 — T12%14 + T10%16 + T3Ts + T4l — T1T7 — Tols + T15T9)

T1T14 — T13T2 — T16T3 + T15T4 + T10T5 — T12T7 + T11T8 — TeLg)

—X1T10 + T12T3 — L1104 + T14%5 — T13%6 — T16T7 + T15T8 + TaXg)

T1T14 — T13T2 — T16L3 + T15L4 — T10T5 + T12T7 — T11T8 + TeLg)

1
5 (—=T10713 + T12T15 — T11T16 — ToTs + T1T6 + T4T7 — T3Tg + T14T)
(—21710 + 1273 — T11T4 — T14T5 + T13T6 + T16T7 — T15Tg + Taly)

T10T13 — T12%15 + T11T16 — ToXs + T1Te + T4l — T3Ty — T14Lg)
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Theorem 3.5. The forward map ¢33 : Spin®(3,3) : SOT(3,3) sends the matriz T as in
FEquation (@ to the matriz M as in Equation .
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CHAPTER 4

INVERSION OF THE DOUBLE-COVERING MAP

Since the statements of theorems will get extremely long, we follow the following format.
Each target in SO™(p,q) can be expressed constructively as a product of standard and
hyperbolic Givens. One just has to mimic Example (2.4]). Therefore, in each section we will

just develop the output of the inversion when the target is one of these factors.

4.1 From SO*(2,1) to Spin™(2,1)

Following Example (2.4)) every matrix in SO (2,1) is a product of Ry 2H; 3Ho 3.
Let ¢ = cosf, s = sinf, a = cosh (f) and b = sinh (0) and
¢c —s 0 a 0 b 100
Rio=1| s ¢ 0| Hiz=| 010 |.Hpz=|0a b
0 0 1 b 0 a 0 b a

e Ry, case
We solve the system of quadratic equations which arise when the target is standard

Givens Ry s.

D = R1727

If & € (0,27), then sin(g) > 0. Let ¢ = Cos( ),§: sin(g), ch = cosh(g) and sh =

N[D

sinh (’g) then

T 0 % 0
0 ¢ 0 -3
S(Ri2) =+
s 0 ¢ 0
0§ 0 -¢



-~

o)

-8
So gbﬁ(Rl,z) =+ . For 6 = 0,27 we get
5§ C
-1 0 0 O
0 1 0 0
+
0 0 -1 0
0 0 0 1
10
For § = 0,27 the inverse image is ¢51(Ri2) = F
01

e H, 3 case

We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H; 3.

If 8 > 0 then we have

S(His)

I
H_

So the inverse image is ¢, (H13) = £

Now, if § < 0, then we have

S (H1,3) =+

44



ch —sh
Thus the inverse image is ¢£%(H1,3) ==+ |- The remaining case is 8 = 0, we
—sh ch

have in such a case

-1 0 0 O
0O 1 0 O
+
0 0 -1 0
0 0 0 1
10
So the inverse image is qb;&(]‘h,g) =+
01

e Hy 3 case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens Hz’g.

D= H,;
and we have the following solutions:
—eP2 0 0 0
0 €2 0 0

S(Ha3) =+

So the inverse image is @31 (Ha3) = =+



4.2 From SO*(2,2) to Spin™(2,2)

Following Example (2.4) every matrix in SOT(2,2) is a product of Ry o, R34, H1 3, Hi 4, Ha 4,

where

c —s 0 0 1 00 O a 0 b 0
s ¢ 00 010 O 0100

R1,2 = ) R3,4 = ) H1,3 = )
0O 0 10 0 0 ¢ —s b 0 a O
0O 0 01 00 s ¢ 00 01
a 0 0 b 1 0 00
0100 0 a 0 b

H14 = 7H24_
0 010 0O 01 0
b 0 0 a 0 b 0 a

Let ¢ = cosf, s = sinf, a = cosh (#) and b = sinh (6)

e Ry, case
We solve the system of quadratic equations which arise when the target is stndard

Givens Ry o.

D =Ry,
If 6 € (0,7), then
¢c 0 0 -s
0¢c —s 0
S(Ri2) =F
0s ¢ 0
s 0 0 T
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)
)

So the inverse image is ¢33(Ri2) = F

w)

o) U|}
w) o)
o) J»
| I

If 6 € (m,27), then

c0 0 —s
0¢c -5 0
S(Ri2) ==+

0s ¢ 0

50 0 ¢
. ¢ —s| (¢ —s

So the inverse image is ¢, 5(R12) = & :
5§ ¢ s ¢

e R34 case
We solve the system of quadratic equations which arise when the target is standard

Givens Rs 4.

D = Ry,
If 6 € (0,7), then
¢ 0 0 s
0 ¢ —=s0
S(R34) =F
0 5 ¢ 0
-s 0 0 ¢
¢ 5| (¢ 8]
So the inverse image is ¢2_7%(R374) =F ,
—s ¢/ \s ¢/
If 6 € (m,2m), then
c 0 0 s
0 ¢ -0
0 s ¢© 0
- 0 0 ¢
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c

s ¢ -8
So the inverse image is ¢; 5(R34) = & : ] .
—s c

~

o)
w)

e H, 3 case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens Hl,g.

D=H3

We have
bz 0 0

0 eB?2 0 0
¥ ,

S (H,3)
0 0 €72 0

0 0 0 e P2

bz 0 e P2 0
So the inverse image is ¢35(H3) = F ,
0 e b2 0 b2

o M, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H1’4

We have
ch 0 0 —sh

0 ¢h —sh 0

S (H174) +

—sh 0 0 ch
1 i i) (4 -
So the inverse image is ¢, 5(H14) = £
—sh ch —sh ch
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e Hy, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H2’4.

D - H274
Finally, we have
e??2 0 0 0
0 €72 0 0
0 0 e B2 0

0 0 0 e 2

6'8/2 0 65/2 O
So the inverse image is ¢55(Haz4) = F 7
’ 0 B2 0 B2

49



4.3 From SO*(3,1) to Spin™(3,1)

Following Example ({2.4) every matrix in SO (3,1) is a product of

Rio, Ry3, Ri3, Hy4, Hyy, Hs 4, where

Rip=

0
0

b

0

0
0
1
0

0

0
0
0
1

b

1 00

010

0 0 «a

) R2,3 =

0
0
0

0
b

1
0

0

a

7R1,3 -

Let ¢ =cos(0), s =sin(0), a = cosh (8), and b = sinh () .

® Ry, case
We solve the system of quadratic equations which arise when the target is standard

Givens RLQ.

a) If 0 # 0,7 and 6 € (0,7), then

S(RLQ) +

0
0

o)

B

c

o)

So the inverse image is gb?:%(RLg) =F

w)

b) If 0 # 7,27 and 0 € (m,27), then

o)

20

M — RLQ




c =S 0 0
s ¢ 0 0
S(RLQ) - :t )
0 0 ¢ —s
0 0 5§ ¢
c
So the inverse image is @3 (Ry2) = +
s

e The equation:

gives the following solutions.

a) If 0 # 0,7 and 6 € (0,7), then

c0 0 —s

0¢c =s 0
S(Ra3) =F

0s ¢ 0

S0 0 ¢

Therefore, the inverse image is ¢35 (Ra3) =

b) If 6 # 7,27 and 6 € (7, 27) , then

c 0 0 -8
0¢c —s 0
0s ¢ 0
s 0 0 ¢
c
So the inverse image is @31 (Rs3) = +
is

-5
c
M = Ry
c s
:F
s ¢©
S



e Ry 3 case
We solve the system of quadratic equations which arise when the target is standard

Givens Rl’g.

M=R3
a) If 0 # 0,7 and 0 € (0, 7), then
c 0 -0
0 ¢ 0 ¥
S(Ry3) ==+
s 0 ¢ o0
0 - 0 ¢
¢+ 0
So the inverse image is ¢35 (Ry3) = +
c—18
b) If 6 # 7,27 and 6 € (7, 27) , then
c 0 -0
0 ¢ 0 ¥
S(Ri3) = F
s 0 ¢© o0
0 s 0 ¢
c+is 0
So the inverse image is ¢31(Ri3) = F
c—is

e M, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H1,4.

M=H,,
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—ch sh 0 0
sh —ch 0 0
0 0 —ch sh
0 0 sh —ch
—¢ch sh
So the inverse image is ¢31(H14) = +| R
sh —ch

e Hy 4 case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens Ho 4.

M = Hy,
ef/2 0 0 0
0 eP2 0 0
S(H2,4) =+ )
0 0 €2 0
0 0 0 e P2
bz
So the inverse image is @31 (Haz4) = F
’ 0 e P2

o M3, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H3’4.

M = H;,
ch 0 0 sh
0 ch —sh 0 q —idh
S(Hz4) = F L . So the inverse image is @:%(H?)A) =F L
0 —sh ch O —ish  ch
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4.4 From SO*(3,2) to Spin™(3,2)

Following Example (2.4)) every matrix in SO*(3,2) is a product of

R1,27 R1,3, R2,3, R4,5, H1,47H2,57 where

c —s 000 c 0 —s 00 10 0 0O
s ¢ 000 01 0 00 0 c —s 00
Rig=10 0 100 |, Bis=] s 0 ¢ 00 |[,Bs=|0s ¢ 00 [,
0 0 010 00 0 10 00 0 10
0 0 001 00 0 01 00 0 01
1000 O a 00 b 0O 10000
0100 O 01000 0 a 00 b
Rys = 0010 0 , Hig = 00100 | ,Heps= 00100
00 0 c —s b 0 0 a O 00010
000 s ¢ 00001 0 b 00 a
Solving the following equations for variables 1, xs, ..., 16 in terms of s, ¢, a, b
e Ry, case

We solve the system of quadratic equations which arise when the target is standard

Givens R ».

M =Ry,

If 0 #0,7,27, and 6 € (0,7), then

o4



c 0 0 0 00O

0O ¢ 0 0 00

0 0 ¢ 0 s0

S(Ris) = 0 0 0 ¢ 0w
0 0 =s 0 ¢ O

0 0 0 —s 0 ¢

—-s 0 0 0 00

0

So the inverse image is gbié(RLg) =F

then
c 0 0 0 00O
0O ¢ 0 0 00O
0 0 ¢ 0 s 0
0O 0 0 ©¢© 0 s
S (RLQ) =4+
0 0 —=s 0 ¢ o0
0 0 0 —-s 0 ¢
-5 0 0 0 00
0O s 0 0 0O

So the inverse image is @3 5(R12) = +

0 O o o o o w

o)

) © o o o o w

o)

w)

o o o o O

o)

w)

o o o o O

o)

95

w)

o)

w)

o)

w)

Q)

w)

o O

o)

For 0 # 0, 7,27, and 6 € (m,2m),



e Ry 3 case

We solve the system of quadratic equations which arise when the target is standard

Givens Rl’g.

M=R3
If @ #0,m, 27, and 6 € (0,7), then
c 0 0s 0 0 O
0O ¢c0 0 0 - 0 0
0 0c 00 0 -0
0 00 ¢ 0 0 0 s
S(Ri3) =F
s 00 0 ¢ 0 0 O
0 s0 0 0 c 0 O
0 0s 0 0 0 © 0
0 00 -s0 0 0 ¢
c 0% 0
0 ¢ 0 -8
So the inverse image is ¢35(Ri13) = F
-5 0 ¢ 0
0 §0 ¢

If 0 #0,7,27, and 0 € (7,27), then

o6



c 00 0 s 0 0 O
0O ¢c0 0 0 - 0 0
0 0c 00 0 -0
0 00 ¢ 0 0 0 ¥
S (R173) =+
-s 00 0 ¢ 0 0 O
0 s 0 0 0 ¢ 0 0
0 08 0 0 0 < 0
0 00 -s0 0 0 ¢
c 05 0
0 ¢ 0 —s
So the inverse image is ¢33(Ry3) = +
-5 0°¢ 0
0 s 0 ¢

e Ry3 case
We solve the system of quadratic equations which arise when the target is standard

Givens Ry 3.

M = R273

If 0 #0,7,2m, and 6 € (0,7), then

o7



o
o)

w)

S (Ra23)

:F

So the inverse image is QS?:%(RQ,:;) =F

If0#0,7,2n, and 0 € (7

0

o)

o
o)

w)

Therefore the inverse image is ¢35(Ra3) = &

o o o) w)

e}

S

o)

o o o O

o)

o o o O

o)

w)

,2m) , then
0 0 0
—-s 0 0
0 0 0
c 0 0
0 ¢ 0
0 0 ¢
0 —s 0
0 0 s

ny o o o

o)

o o O

w)

o)

o O

e}

w)

o)

o8

o O

Q)

o O

Q)

w)

o)

o O

Q)

o O

Q)




e R,5 case

We solve the system of quadratic equations which arise when the target is standard

Givens Ry 5.

If 0 # 0,7, 27, and 6 € (0,7), then

c 0 0 0 00 =s O
0¢c O 0O 00 0 —=s
00 ¢ 0 s 0 O 0
00 0 ¢ 0s 0 o0
S(Ras) =F
00 s 0 ¢cO0 o 0
00 0 —=s 0<c¢ O 0
S0 0 0O 00 ¢ O
0s O 0O 00 0 ¢
¢t 0 0 =%
0 ¢ 5 0
So the inverse image is ¢;§(R4,5) =F
0 —s ¢ 0
s 0 0 ¢

If 0 #0,7,27, and 0 € (7, 27), then
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c 0 0 0 00 - 0

0¢c 0 0 00 0 —%

00 ¢ 0 s 0 0 O

00 0 ¢ 0%s 0 O

00 s 0 ¢c0 0 O

00 0 s 0¢c 0 O

s 0 0 0 00 ¢ O

0s 0 0 00 0 =<
¢ 0 0 —%
0 ¢ s 0

So the inverse image is ¢35(Ra5) = +

0 —s ¢ 0
s 0 0 ¢

e M, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H1’4.
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S (H1,4) =+

0
0 0
0 0 0 e?2 0 0
0 0 0 0 e¥B2 0
0 0 0 0 0 e#2 0
0 0 0 0 0 0 e 82
ez 0 0 0
So the inverse image is ¢35(H14) = F 0 et 05 ’
0 0 e= 0
0 0 0 et

e Hy5 case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens Hy 5.
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P20 0 0 0 0 0 0
0 €2 0 0 0 0 0 0
0 0 e¥2 0 0 0 0 0
0 0 0 e®2 0 0 0 0
S(Hys)=7F
0 0 0 0 €2 0 0 0
0 0 0 0 0 €2 0 0
0 0 0 0 0 0 eb2 0
0 0 0 0 0 0 0 e 82

b2 0 0 0

. 0 e#2 0 0
So the inverse image is ¢35(H14) = F

0 0 €72 0

0 0 0 e A2
We need to address the special cases 6 # 0, w, 2. In such cases we have the following

matrices
100 00
01 000
® Rip(0)=PRi3(0)=Re3(0)=Ry5(0)= 00 10 0 |
00010
0 00O01
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We obtain: S(R;2(0)) =F

So the inverse image is ¢33(R12(0)) = F

° Ry (7T) =

o o o O
(@)
o
—_
(@)

So the inverse image is @3 5(R12())

o
—
o
o
(@)
o o o o o o o

S
—
S
o O O

0000 O
0000 O
0000 —1
0000 O
,S(RLQ(W))::E
0010 O
0001 0
1 00 0 O
01 00 O
00 0 -1
00 —1 O
=+
01 O 0
1 0 0 0
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° Ri3 (7T) =

S (R1’3 (77')) = :f:

o o o O

—_

o o o o o o o

So the inverse image is ¢35(R13(7)) =

o Rys(m)=

o o o O

o o o o

+

o o o o O
)
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S (R273 (77')) = :f:

[ J R4,5 (71') =

Il
H_

S (Ras (m))

o o o o o o o

o O

—_

o o o o O

- o O O

o o o O

==+
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So the inverse image is @3 5(Ry5())

+
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4.5 From SO*(3,3) to Spint(3,3)

Following Example (2.4)) every matrix in SO*(3,3) is a product of

31,2, 32,3, R4,57 R5,67 H1,4, H2,4, H3,4; where

C

S

0
Ryp=

o o o o O

-5 0 0 00
c 0000

o o o O

® Ry, case

We solve the system of quadratic equations which arise when the target is standard

Givens Ry ».

) R2,3 =

; H1,4 -

10 0 O
c —s 0

s ¢ 0

o o o o O

o O

e}
e}
—_

o
o
o o O

M = Rl,z

67

o o o O

o o o o O

o o o o O

) H2,4 -

Hzq =




If @ € (0,7), then we have
—-s 0 0 0 O

o

o)

c 0 0 0 0

w)

]
o O

0 ¢ —s 0

o
w)
o)
o
o

S (R1,2) +

w) o)
o) CL>
S (@] (@]

o)

o o o o o o
o o o O

So the inverse image is ¢§7§(R172) =F

If 6 € (m,27), then

~ -~

—S

o O

c

w)

0

o
w) o)
o) u|;>
Ay o o
CL> o o
o o o

w)
o)
o

o o o o o o
o
o
o o o o
o o
o o
o)

n)

So the inverse image is ¢3_7:13(R1’2) =+

o o o o o O

o)

w)

o O

o o o o o O

o)

w)
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o) JJ

o O

o)
|
)

o)

o O

o)

w)

Ay o o

w)




e Ry3 case
We solve the system of quadratic equations which arise when the target is standard

Givens R2’3.

M—R273
If 6 € (0,27), then
c0 0 -s00 0 O
0O0c s 0 00 0 O
0s ¢© 0 00 0 O
s0 0 © 00 0 O
S(Re3) = F
00 0 0 ¢c0 0 —%
00 0 0 0¢c —s 0
00 0 0 0% ¢ 0
00 0 0 sO0 0 ¢
c 0 0 —s
0¢c —s 0
So the inverse image is @3 3(Ra3) = +
0s ¢ 0
s 00 ¢

e Ry5 case
We solve the system of quadratic equations which arise when the target is standard

Givens Ry 5.

If € (0,7), then we have
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c 50 0 0 0 O
-s ¢ 0 0 0 0 O
0 0c s 0 0 O
S (Rus) = T 0 0s © 0 0 o0
0 00 0 ¢ —s 0
0 00 0 s ¢ 0
0 00 0 0 0 =¢
0 00 0 0 0 —%

So the inverse image is gzﬁ;;é(Rz;,s) =F

If 0 € (m,2m), then

c 50 0 0 0 O
-s ¢ 0 0 0 0 O
0O 0c -0 0 O
S (Rys) = + 0 0s ¢© 0 0 O
0 00 0 ¢ —s 0
0 00 0 s ¢ 0
0 00 0 0 0 =T
0 00 0 0 0 —%

Therefore the inverse image is ¢35(Ry5) = +

w)

o)

o)

o o O

w)
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o)

Ay o o

w)

o) wm)
(@) (e}

o O

Q)

w)




® Rs¢ case
We solve the system of quadratic equations which arise when the target is standard

Givens Rsg.

M = R5,6
If 6 € (0,27), then
c 0 0 s 0 0 0 O
0 ¢ -s 0 0 0 O
0O s ¢ 0 0 0 0 O
-s 0 0 ¢ 0 0 0 O
S(Rs6) = F :
0O 00 0c 0 0 s
0 000 0O ¢ —=s0
0O 00 0O 0Os ¢ 0
0O 000 -s0 0 ¢
c 0 0 s
. 0 ¢ -5 0
So the inverse image is ¢33(Rs6) = F
0 5 ¢ 0
-5 0 0 ¢

e M, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens H; 4.

M= H,
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20 0 0 0 0 0 0
0 e P2 0 0 0 0 0 0
0 0 e P2 0 0 0 0 0
0 0 0 2 0 0 0 0
S(Hia) =F :
0 0 0 0 e?2 0 0 0
0 0 0 0 0 e 0 0
0 0 0 0 0 0 e2 0
0 0 0 0 0 0 0 e P2

So the inverse image is ¢?:§(H174) =F

e Hy, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens Hy 4.

M = H,,
P20 0 0 0 0 0 0
0 e P2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 e#2 0 0 0 0
S (H2,4) =+ )
0 0 0 0 €2 0 0 0
0 0 0 0 0 e B2 0 0
0 0 0 0 0 0 &2 0
0 0 0 0 0 0 0 e P2
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b2 0 0 0

X 0 eb?2 0 0
So the inverse image is ¢ 3(Hay4) = F

0 0 €72 0

0 0 0 e h/?
e Hj, case
We solve the system of quadratic equations which arise when the target is hyperbolic

Givens Hj 4.

—ch 0 —sh O 0 0 0 O

0 —ch 0 —sh 0 0 0 O
~sh 0 —-ch 0 0 0 0 0
0 —-sh 0 —ch 0 0 0 0

S (H3,4) +

—ch O —sh 0

0 —ch 0 -sh
So the inverse image is ¢35(Hsq) = £

—sh 0 —ch 0

0 —-sh 0 —ch
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CHAPTER 5

DIRECT APPROACH TO SOME INDEFINITE SPIN GROUPS

It is well known that Spin™(p,q) is isomorphic to Spin*(q,p). However, Cl(p,q) is not
isomorphic to Cl(q,p). Therefore, we look at some of the cases not considered in Emily
Herzig and Viswanath Ramakrishna [1]. One motivation is that will provide us new concrete
realizations of the classical groups. We will construct the indefinite spin group Spin™(p, q)
as a matrix subalgebra of the matrix algebra that Cl(p,q) is isomorphic to, for the pairs
(p,q) € {(1,2),(1,3),(2,3)}. In view of this, we need to provide explicit constructions for
Clifford conjugation and reversion map as this will be useful in defining the grade map with
respect to the basis set of 1-vectors use. We then characterize the elements of

Spint(p,q) = {X € Cl(p,q) : X9" =X , XX =1, XVX“is a l-vector for any 1-vector
V'}. Having defined the Clifford conjugation and reversion on any Clifford algebra Cl(p, q)
realized as an algebra of matrices, we can explicitly define Clifford conjugation, reversion
and grade map on Cl(p + 1,q + 1). Therefore, we start with low dimensional p, ¢ and use

the iteration IC for higher dimensions.

5.1 Spint(1,2)

We construct CI(1,2) as follows:

Let C1(0,1) = C via {3}, then, the Clifford conjugation and reversion are defined as follows

a b
ccis z — Z and rev is z — z respectively. So CI(1,2) = M(2,C) and X = an
c d
element of it.
We obtain
a b d b a b d —b
= ; and = = adj(A).
c d c a c d —c a
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a b a —b
So the grade of X is

c d
a b a b a —b
Thus is even iff = B , i.e., if and only if a,d € R; b,c € iR.
c d c d —c d
a 13 a 1 o  —if 10
Thus, Spint(1,2) = { s.t = }
iy 0 iy 0 -y« 0 1

Now if A € Spin™(1,2), then Aadj(A) = I5. So det(A) = 1.

So Spin™(1,2) C SL(2,C).
Next, we will show that this group of matrices is, in fact, isomorphic to SL(2,R) via

¢[aﬂ] a i
v 0 -1y 0

g o —if
Indeed, ad — fy =1 and adjo =
v o "y«
We calculate:
a ifs 0 —ifs ad — Py —iaf +ifa 10
—iy0 + 10y  —fy+ ad 0 1

—iy 0 Y«
Therefore ad — gy =1
Thus, the image of ¢ is indeed in Spin™(1,2). it is trivially onto and injective. Further,
it is a group homomorphism and thus a group isomorphism:
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Indeed,

¢[ a f a b ]_ qﬁ[ aa+ fe ab+ Bd
~ya 4+ dc b+ dd

aa+ fe i(ab+ Bd)
—i(ya+dc) b+ od

a ip a b

-y 0 —ic d

aa+ fe i(ab+ Bd)
—i(ya+dc) b+ dd

a f3 a b

=0 ¢
v o c d

5.2  Spin™(0,2)

As preparation for studiying Spin™* (1, 3) we first need to look at C1(0,2) and then use IC. As
a bonus, we will obtain an explicit form of reversion on C1(0,2), which is perhaps folklore,
but has not been explicitly recorded elsewhere.

Let C1(0,2) = H via the basis of 1-vectors {7,j}. Clifford conjugation cc is same as

quaternionic conjugation. i.e. ¢°

C — q—
Let us next calculate reversion. To that end recall, the association ¢ — M, =

where ¢ is written as z + wj.
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Now observe that
01 -1 0 0 1
10 0 1 10

0 =2 01
—1 0 1 0
1 0
= _>Mi7
0 —2

1 0 0 1
0 —1 10
0 1
— — Mj,
-1 0
01
Now the matrix is itself not an M, for any quaternion ¢q. However, it equals %Mk
10

where 7 as viewed as a complex number and k as a quaternion).

One can thus conclude that

¢ = —ikq(—ik) = —kqk

7



Therefore,

Lemma 1.

C1(0,2) for the choice of 1-vectors {i,j}, the Clifford

C

(i) conjugation: ¢°“ = q.
(ii) reversion: ¢"*¥ = —kqk.

iii) grade: ¢9" = —kqk.
(ii) g

Though not needed for understanding Spin*(1,3), it is interesting to look at what the
previous lemma yields regarding Spin™*(1,2) (which is abstractly isomorphic to SO(2,R)).
First, ¢ is even <—

—kqgk =q
—kq = q(=k).

Note : —kkk

Thus, C11(0,2) = {q : ¢k = kq}.

Soif g =a+bi+ cj+ dk, then gk = ak —bj +ct —d and kq=ak +bj —ct —d.
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So gk =kq<=b=c=0. SoCl*(0,2) ={q:a+dk}.

Thus Spin®(0,2) = {q: a + dk; (a + dk)(a — dk) = 1}

5.3 Spint(1,3)

Now that we have all the details of the C1(0,2) from section 5.2, we can use the iteration

IC to proceed as follows:

Let CI(1,3) = M(2,H), then

1 42 _ qs 42
43 qa 43 ¢
a1 Q2 B —kqk  kgk
q3 qa k@sk  —kqk
G B —kqk  kgk
43 Q4 kgsk  —kqk
—kq@k  kgpk
kGak  —kaak

kqsk —kaquk

So q1 = a1 + 81k, g4 = ay + 04k and  kqok = o <= kqz = ¢2(—k).

Now, if o = ag + B2t + Y2J + 02k, then
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kgs = ank + B2 — Y21 — do and
Q2(—k) = —(ok — P + 721 — b2) = —aok + Boj — Y21 + 0s.
a1 Q@ ap + 01k Boityag

Hence, is even <= it is of the form
43 Ga B3i+73) aq+ 04k

Therefore Spin™(1,3) = {P € M(2,H), P even: PP® = I,}.

a1+ 0k Boi 4+ v
Now for P = e 2l , we get

Bsi +v3] g+ 04k

—k?(Oé4 — 54]{3)]{3 k?(—ﬁgl — ’72])](?
/{Z(—ﬁg’l — 73])]{3 —]{Z<Oél — (51]{?)]{3

PCC —

—k(ouk +64)  k(Bai — 727)
k(Bsi —v3j) —k(auk +61)

ay — 04k —Pai — 2

—B3t — 3] o1 — 01k
ay + 01k Baityag ay — 04k =Pl — Y2j

Hence PP = I, is equivalent to:
Baitys) an+dak ) \ =Bsi—13) a1 —dik

At the level of the entries of PP this is equivalent to the following equations:
(L,1) is

iy + 0104 + k(d10q — 04001 + P25 + Yoy3 + k(=23 + 7205)

So
aray + 0104 + Baf3 + 70y3 =1
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and

d10y — 0400 + Y283 — Bay3 = 0

Therefore
Oy — 0g01 = PBoys — Y283
(2,2) is
B30 + 372 + k(B2ys — 1183) + cuor + 0164 + k(=010 + da0ry)
So
dgorp — 010y = Bayz — Y203
(1,2) is
—a1 B2t — a1Y2) — 01825 + 01721 + Boani + B201] + Yoo — 72011 = 0
(2,1) is

Baaugi + B304] + Y30t — Y3047 — a3t — quysg — 3] + Y3041 = 0

So PP =] «—

a0y + 0104 + o83 +72y3 =1

and

010g — 0401 + B372 — Boy3 =0
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Our next goal is to display en explicit isomorphism between SL(2, C) and Spin™(1,3) as

obtained above.

a1+ 512
To that end let Y =

B2 + Y21

Y

—B3 + 730 g — 04

then

det(Y) = (a1 + 614) (s — 042) — (B2 + 720) (=3 + 731)

= a0y + 0164 + (010 — avy) — [(— P23 — Y27v3) + i(Bays — Y23)]

= aray + 6104 + Boffs + 23 + i(S10ua — dacr — Boys + Baye)

This motivates us to define ® : SL(2,C) — CI(1,3) via:

o [ ay + 01t Po+ Yt ] oy + 01k Poi + 2)

—B3 + 3t g — 047

Bsi 4 y3) g+ 04k

Is this a group isomorphism onto Spin™*(1,3)?.

To answer the above question, let calculate:

P(Y1Y2) = ¢[

a1 — d151 + 2'((51@1 + leél

oy + 51i 52 + ’Ygi

—Bs 4+ y3t g — 048

+(—Babs — vac3) + i(—y2bs + Pacs) | a1by — cady +i(01b2 + coy) + Paay + Yady + i(y2a4 — daf2)

a; + dli bg + Czi ]

—bg + Cgi ay — d4Z

—Bsa1 — y3dy + i(—d1 B3 + y301)

aja; — dy6y — Pabs — Y2C3
+(01a1 + droq — Y2bs + Pacs)k

—Oé4b3 =+ (5403 —I— i(Oé4Cg —f- 54b3) —ﬂgbg — Y3C2 + Z(’y;;bg — 5302) + a4y — 54d4 + i(—54a4 — O[4d4)

(a1by — €201 + Paay + day2)i + (8102 + cocry + Yaa4 — dafa)]

(Bsar +y3di + caby — d4b3)i

+(—d1)b3 + Y3a1 + 4C3 + 54[)3)]

(oz4a4 — 04dy — PB3by — 7302) - (’7352 - 5302 — d4a4 — d40é4)7<?

82




a1+ 0k Boi 4 o ay + dik bat + coj

B3t +y3) g+ 04k b3i +c3j  aq + dsk

aja; — didy — Pabs — Yacs
+(01a1 + droq — Y2bs + Pacs)k | (cnba — 201 + Baas + day2)i + (8102 + cooq + Yoas — duf32)]

(Bsa1 + v3dy + auubs — dacs)i

+(—dybs + y3a1 + cuucs + 04b3)j | (uuay — 04dy — Baby — y3¢2) — (y3b2 — B3ca — daay — daouy)

5.4 Spint(2,3)

Since C1(0,1) = C, it follows from IC that C1(2,3) = M(4,C). Accordingly let

be an element of C1(2,3). Then

rev cc

A B DCC BCC A B DT‘eU _BT‘GU
C D CCC ACC C D _CT’@’U AT‘@’U

So using the results of Section 5.1, we find

A B adjiD adjB
C D adjC  adjA
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Note that if X =
c

So

Next,

is 2 x 2, then
d
a b d —b
adj =
c d —Cc a
0 —1 a c 0 1
1 0 b d -1 0
—-b —d 0 1
a c -1 0
d —-b
—Cc a
:JQIXTJQ
rev T
0 I, J{lATJQ J{lCTJQ 0 I
I 0 BT, J;7'DTJy )\, 0
T T
I JI 0 A B Jo 0 0 I
0 0 JI C D 0 J I, 0
T T
0 J A B 0 J
Jo 0 C D Jo 0
= 1T®kXTM1®k
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cc

A B prev _ Brev
D _Cvrev Arev
AT’G’U CT‘GU
=JI J4
BT‘@’U DT@U
NOW rev
a b d b
c d c a
0 1 a ¢ 01
1 ofJ\b dJ\1 o0
d b
cC a
a b
:af Oz
c d
ce T
A B 0 I ol A*a, olC*o, 0 I
C D -1, 0 oI'B*o, olD*o, -1, 0
T *
s oz O A B o, 0
0 oz C D 0 o,
cc T
0 oy 0 oy
Thus = X*
—o, O —o, 0O
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00 0 -1
0 o, 00 —1 0
Now = Mg where Myg1=
-0, 0 01 0 O
10 0 O
o, 0 0 I 0 Og
= . So as kj = —1, it follows that
0 o, —I, 0 —o0, O
0 o,
k :M—I@l
—o, O
Therefore,

X = (M_pe1)TX* M_en
= Mye1 X™ My
Hence, the grade automorphism is:
X9 = (XTevyee
- MTk@l [M1T®kXTM1®k} ) Mz
= Myg1 Mig—x X Mok M_ge1
= Mg X M_pgy

= Mk@kXMk:@k
Thus X9" = Mk®7kXM—k®k

A B _
Therefore, X = is even <= Mo X = X Misk.

Now
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1 0 0 0

0O -1 0 O
Mg = . Therefore the condition that X is even becomes:

0O 0 -1 0

0O 0 0 1

o, 0 A B A B o, 0
0 —o, C D C D 0 —o,
o, A o0.B Ao, —Bo,
—0,C —0,D Co, —Doa,
This implies
0,A= Ao,
0,D = Do,
0.B = —Bo,
0.C =—Co,
w

Let Y = ,

( w

_ 1 0 zZ w zZ W z —w
then o,Y = B = B = Ao, =
0 —1 ( w —( —w ¢ —w

Soz, weR, weiR

Let Z = D 0,4 =—Z0o,.
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w
So B = (, weRw,ze€iR
—( —w —( w

Thus X € Cl(2,3) is even if it has the form

T1 WY T2 Yo

izl w1 Z9 Z"LUQ

1y Y3 Tg Y4

zZ3 iwg ’i24 W4y

A B
Let X = and Mg, = we claim that:
D o, O

Now an even X is in Spin™ (2, 3) iff it additionally satisfies
Mk@lX*M_k®1X* - I
= X'M 51X = M_ys1

i X*Mk®1X — Mk@l

To see what this last condition entails we first note that: Mg,

Ox
So

A* C* 0 —o, A B 0 —o,

B* Dx o, 0 C D o, 0
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C*o, —A*o, A B 0 —o,

D*o, —B*o, C D o, 0

C*0,A— A*c,C C*0,B— A*c,D 0 —o,

D*¢0,A— B*0,C D*c,B— B*c,D o, O
Thus,

1. C*0,A— A*c,C =0 and

2. D*c,B — B*o,D = 0.

3. C"o,B— A*c,C = —0,

4. D*oc,A— B*0,C = 0,

The first condition says that A*c,C' is Hermitian. The second condition says D*o,B is

Hermitian. The third and fourth conditions are equivalent to onether, since o, is Hermitian.

Theorem 5.1.

Spint(2,3) is the set of matrices in M(4,C), of the form

when written in block form satisfies additionally

i) A*o,C is Hermitian
ii) D*0,B is Hermitian

iit) D*0,A — B*o,C = 0,
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we completely addressed the essential questions of developing explicit
quadratic formulae for the covering map ¢, , and then inverting this map ¢, , : Spin™(p, ¢) —
SO*(p,q,R), for (p,q) € {(2,1),(2,2),(3,1),(3,2),(3,3)} . Finally, we produced details of
a first principles approach, in the spirit of [1], of the indefinite spin groups when (p,q) €
{(1,2),(1,3),(2,3)}.
Future work will concentrate on calculating the inversion of the remaining covers of

®pq, Where p + ¢ < 6. It is particularly interesting to do this for ¢5; since Spin™(5,1) is
M (2,H). Finally it would be useful to develop a first principles approach to Spin*(9,1) due

to it relations to the Octonions.
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