
SEMI-SUPERVISED ADAPTIVE CLASSIFICATION OVER DATA STREAMS

by

Ahsanul Haque

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Latifur Khan, Chair

Dr. Alvaro Cárdenas

Dr. Kevin W. Hamlen

Dr. Murat Kantarcioglu

Copyright c© 2017

Ahsanul Haque

All rights reserved

This dissertation is dedicated

to my parents, without whom

I would not be able to pursue my dreams.

SEMI-SUPERVISED ADAPTIVE CLASSIFICATION OVER DATA STREAMS

by

AHSANUL HAQUE, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2017

ACKNOWLEDGMENTS

First, I would like to offer my wholehearted appreciation and gratitude to my PhD super-

visor Professor Latifur Khan – a great researcher, educator, and a wonderful human being.

Professor Khan provided precious suggestions, ideas, and support at difficult times in my

research and beyond. He is a role model to me for characteristics of his amazing personality,

such as diligence, patience, kindness, and tranquility. Thanks to Professor Khan for guiding

me throughout my graduate student life.

I would like to thank Dr. Alvaro Cárdenas, Dr. Kevin W. Hamlen, and Dr. Murat Kantar-

cioglu for their interest in my research, and serving on my PhD committee. Their comments

helped me greatly in refining this dissertation.

This research was supported in part by awards from the National Science Foundation (NSF),

the Air Force Office of Scientific Research (AFOSR), and IBM. Any opinions, findings,

conclusions, or recommendations expressed are those of the authors, and do not necessarily

reflect the views of the NSF, AFOSR, or IBM.

I was fortunate enough to work with a bunch of very talented friends and colleagues –

Solaimani, Khaled, Sayeed, Ahmad, to name a few. I spent a wonderful five years with them.

I thank them for making my journey towards the PhD degree so enjoyable and memorable.

Special thanks to Swarup, for his contribution and partnership as a co-researcher in many

of my research works.

Last but not the least, I would like to thank my wife, Kazi Sabrina Sonnet, for her continuous

support and sharing my journey as a graduate student. I am grateful to the Almighty for

whatever I have achieved in my life.

October 2017

v

SEMI-SUPERVISED ADAPTIVE CLASSIFICATION OVER DATA STREAMS

Ahsanul Haque, PhD
The University of Texas at Dallas, 2017

Supervising Professor: Dr. Latifur Khan, Chair

Data streams are ubiquitous in today’s digital world. Efficient extraction of knowledge from

these streams may help in making important decisions in (near) real-time, and unveiling

hidden opportunities. Traditional data mining techniques are inadequate on the streaming

data due to its inherent properties, such as infinite length, concept drift, concept evolution,

limited labeled data, and covariate shift between labeled training data and unlabeled test

data. In this dissertation, we study the challenges posed in data stream classification due to

these properties, and propose solutions to the challenges.

A data stream is essentially an infinite flow of data. The classifier in a streaming scenario

needs to be updated regularly as the underlying class boundary may change and totally new

classes may emerge in the stream over time, known as the concept drift and the concept

evolution problems respectively. As labeled data instances are scarce in the real-world data

streams, the classifier must be trained and updated under a semi-supervised setting in order

to capitalize the large portion of data that are unlabeled. Due to the semi-supervised setting,

covariate shift such as sampling bias may be introduced between the training and the test

distribution. An efficient data stream classification approach would consolidate for this

difference in distributions. In addition to addressing these challenges, a classifier in the

streaming context must be scalable for addressing the additional challenges posed by any

Big Data or Internet of Things (IoT) stream.

vi

In this dissertation, we propose four paradigms for addressing challenges in classifying data

streams, namely ECHO, FUSION, SDKMM, and CASTLE. First, we propose ECHO, which

is a semi-supervised approach for addressing infinite length, concept drift and concept evo-

lution using a limited amount of labeled data. Next, we study the consequences of covariate

shift in data stream classification. A covariate shift between the training and test distribution

may occur due to difficulty in collecting labeled data instance, often resulting in a sampling

bias. In a streaming scenario, we consider two separate streams, where one of the streams

provides only labeled training data, and the other stream provides unlabeled test data. These

streams of data may have covariate shift and asynchronous concept drifts among them. The

second approach proposed in this dissertation, referred to as FUSION, addresses challenges

in the above scenario, also known as the Multistream classification problem. In the third

and fourth approaches proposed in this dissertation, we propose two scalable paradigms for

data stream classification. The third approach, SDKMM, is a sampling-based distributed

approach for addressing covariate shift between the training and the test distribution. The

last approach presented in this dissertation, referred to as CASTLE, is a hierarchical en-

semble classification model for data streams, where individual classifiers in the hierarchy are

trained in parallel and in a distributed fashion. We theoretically analyze various proper-

ties of the proposed approaches. Moreover, we evaluate each of the above approaches using

benchmark datasets, and compare them with a number of baseline approaches. Empirical

results indicate the effectiveness of the proposed approaches.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xii

LIST OF TABLES . xiii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND AND RELATED WORK 8

2.1 Data Stream Classification . 8

2.1.1 Related Work . 9

2.2 Multistream Classification . 13

2.2.1 Data Shift Adaptation . 13

2.2.2 Problem Statement . 14

2.2.3 Prior Work . 16

CHAPTER 3 ECHO: DATA STREAM CLASSIFICATION USING LIMITED LA-
BELED DATA . 18

3.1 The Proposed Approach . 21

3.2 Training and Classification . 23

3.3 Novel Class Detection . 24

3.4 Calculation of Confidence Scores . 25

3.5 Justification of Confidence Estimators . 27

3.5.1 Objective Function . 27

3.5.2 Association . 29

3.5.3 Purity . 30

3.6 Effect of Concept Drift on Classifier Confidence 31

3.7 Change Detection . 32

3.8 Updating the Ensemble using Limited Labeled Data 34

3.9 Time and Space Complexity . 35

3.10 Performance Improvement . 36

3.10.1 Sporadic Execution . 36

viii

3.10.2 Recursive Calculation . 37

3.10.3 Selective Execution . 39

3.11 Evaluation . 40

3.11.1 Datasets . 40

3.11.2 Experiment Setup . 41

3.11.3 Performance Metrics . 42

3.11.4 Classification . 42

3.11.5 Novel Class Detection . 45

3.11.6 Parameter Sensitivity . 47

3.11.7 Speed Up . 50

CHAPTER 4 FUSION: AN ONLINE METHOD FOR MULTISTREAM CLASSIFI-
CATION . 52

4.1 The Proposed Approach . 54

4.1.1 Density Ratio Estimation Module (DRM) 57

4.1.2 Training and Classification . 60

4.1.3 Drift Detection Module (DDM) . 62

4.1.4 Classifier Update . 62

4.2 Theoretical Analysis . 64

4.2.1 Convergence Rate . 64

4.2.2 Time and Space Complexity . 66

4.3 Evaluation . 67

4.3.1 Datasets . 67

4.3.2 Baseline Methods . 68

4.3.3 Setup . 69

4.3.4 Classification Performance . 69

4.3.5 Parameter Sensitivity . 71

CHAPTER 5 SDKMM: SAMPLING-BASED DISTRIBUTED KERNEL MEAN MATCH-
ING . 75

5.1 Background . 78

5.1.1 Notations . 78

ix

5.1.2 Kernel Mean Matching . 78

5.1.3 Apache Spark . 79

5.2 The Proposed Approach . 80

5.2.1 Sampling-based KMM (SKMM) . 80

5.2.2 Sampling-based Distributed KMM (SDKMM) 84

5.2.3 Challenges and Design Choices . 86

5.2.4 Complexity Analysis . 87

5.3 Evaluation . 88

5.3.1 Datasets . 88

5.3.2 Baseline Methods . 89

5.3.3 Setup . 89

5.3.4 Normalized Mean Square Error (NMSE) 90

5.3.5 Execution Time . 91

5.3.6 Speed up . 92

5.3.7 Sensitivity . 94

CHAPTER 6 CASTLE: A DISTRIBUTED FRAMEWORK FOR DATA STREAM
CLASSIFICATION . 96

6.1 Background . 98

6.1.1 Hierarchical Stream Miner (HSMiner) 98

6.1.2 MapReduce Programming Model . 101

6.2 Shortcomings and the proposed Solution . 101

6.2.1 Class Level Distribution (CLD) . 102

6.2.2 Improved Class Level Distribution (ICLD) 104

6.2.3 Feature Level Distribution (FLD) . 107

6.2.4 Design Choices and Analysis on different aspects of design 108

6.3 Evaluation . 110

6.3.1 Datasets . 110

6.3.2 Setup . 111

6.3.3 Classification Accuracy . 111

x

6.3.4 Execution Time . 112

6.3.5 Speed Up . 114

CHAPTER 7 FUTURE WORK . 116

7.1 Discussion . 116

7.1.1 ECHO . 116

7.1.2 FUSION . 117

7.1.3 SDKMM . 117

7.1.4 CASTLE . 117

7.2 Future Directions . 118

7.2.1 Ensemble FUSION . 118

7.2.2 Multistream Regression . 119

7.2.3 Multistream Domain Adaptation . 119

7.2.4 Zero-day Attack Detection . 120

7.2.5 Political Unrest Prediction . 121

REFERENCES . 122

BIOGRAPHICAL SKETCH . 129

CURRICULUM VITAE

xi

LIST OF FIGURES

2.1 An example illustrating asynchronous data drifts 15

3.1 High level workflow of ECHO . 21

3.2 Sliding window management of ECHO . 23

3.3 Change of window size and error rate of ECHO-D as the stream progresses . . . 44

3.4 Sensitivity of ECHO-D to confidence threshold (τ) on SynRBF@0.002 48

3.5 Performance of ECHO-D as sensitivity parameter (η) varies 49

3.6 Sensitivity to ensemble size (t) . 50

3.7 Confidence threshold (τ) vs Speed Up . 51

4.1 Overview of FUSION . 55

4.2 Parameter sensitivity of FUSION on ForestCover dataset 72

5.1 Illustration of the SKMM process. 82

5.2 Workflow of SDKMM . 85

5.3 Logarithm of NMSE with increasing size of training set (ntr) 91

5.4 Logarithm of NMSE with increasing the number of test partitions (k) 92

5.5 Total execution time in seconds with increasing size of training set (ntr) 93

5.6 Total execution time in Seconds with increasing the number of test partitions (k) 93

5.7 Speed up with increasing size of training set (ntr) 94

5.8 Sensitivity to the Sampling error tolerance (η) 94

6.1 Hierarchical structure of HSMiner . 99

6.2 Comparison among Basic HSMiner and CASTLE in terms of execution time per
chunk . 113

6.3 Speed Up achieved by CASTLE . 115

xii

LIST OF TABLES

3.1 Commonly used symbols and terms . 24

3.2 Characteristics of datasets . 40

3.3 Summary of classification results . 46

3.4 Comparison of classification performance using limited amount of labeled data . 46

3.5 Novel class detection performance using τ = 0.9 47

4.1 Frequently used symbols . 57

4.2 Characteristics of datasets . 70

4.3 Comparison of performance . 70

5.1 Commonly used symbols and terms . 78

5.2 Characteristics of datasets . 88

6.1 Characteristics of datasets . 110

6.2 Comparison of classification performance on different datasets 111

xiii

CHAPTER 1

INTRODUCTION1

In today’s connected digital world, an enormous amount of data are being generated in

the form of data streams from a variety of sources – social networks, online businesses,

sensors, military surveillance to name a few. It is estimated that 2.5 quintillion bytes of

data are being generated everyday (Wang et al., 2014). These streams of data are important

sources of knowledge that can help in designing improved strategies, and unveiling hidden

opportunities. This is why the necessity of having a robust and fast technique for classifying

data streams is becoming increasingly important. However, data stream classification is a

challenging task due to its inherent properties. In this dissertation, we study five major

challenges in data stream classification, and propose solutions to address these challenges.

The first challenge we study is the infinite length problem. Data streams are essentially

infinite flows of data. Due to the infinite length, data streams cannot be stored into main

memory for analyzing, e.g., labeling. Existing techniques either divide the stream into

fixed-sized chunks, e.g., (Parker and Khan, 2015; Masud et al., 2011, 2010), or use gradual

forgetting, e.g., (Koychev, 2000, 2002; Klinkenberg, 2004), to address the problem of infinite

length. In these approaches, the classifier typically is updated after processing a chunk of

1 c©2017 ACM. Portions Adapted, with permission, from A. Haque, Z. Wang, S. Chandra, B. Dong,
L. Khan, and K. W. Hamlen, “FUSION: An Online Method for Multistream Classification,” CIKM In-
ternational Conference on Information and Knowledge Management, pp. 919-928, November 2017, DOI:
https://doi.org/10.1145/3132847.3132886; c©2016 Association for the Advancement of Artificial Intelligence.
Portions Adapted, with permission, from A. Haque, L. Khan, and M. Baron, “SAND: Semi-Supervised Adap-
tive Novel Class Detection and Classification over Data Stream,” AAAI Conference on Artificial Intelligence,
North America, pp. 1652-1658, February 2016; c©2016 IEEE. Portions Adapted, with permission, from A.
Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal, “Efficient Handling of Concept Drift and
Concept Evolution over Stream Data,” IEEE International Conference on Data Engineering (ICDE), pp.
481-492, May 2016; c©2016 IEEE. Portions Adapted, with permission, from A. Haque, Z. Wang, S. Chan-
dra, Y. Gao, L. Khan, and C. Aggarwal, “Sampling-based Distributed Kernel Mean Matching using Spark,”
IEEE International Conference on Big Data (Big Data), pp. 462-471, December 2016; c©2014 IEEE. Portions
Adapted, with permission, from A. Haque, B. Parker, L. Khan, and B. Thuraisingham, “Evolving Big Data
Stream Classification with MapReduce,” IEEE International Conference on Cloud Computing, pp. 570-577,
June 2014.

1

data. However, since the underlying concepts often change in data streams, deciding the

proper chunk size requires a priori knowledge about the time-scale of change, which is not

available most of the time. So, these techniques suffer from a trade-off between performance

during stable periods due to redundant retraining, or delayed response to a sudden drift

of concepts. Existing dynamic sliding window based approaches, e.g., (Bifet and Gavaldà,

2007; Gama et al., 2004), determine chunk boundaries dynamically by tracking any major

change in error rate of the classifier, but requires true labels of all data instances.

The second challenge we consider in this dissertation is the change of underlying concepts,

also known as the concept drift problem (Gama et al., 2014). The classification model needs

to be updated regularly to adapt to the most recent concepts (Parker and Khan, 2015).

The vast majority of concept drift researches are supervised in nature, and assume that true

labels of test instances will be readily available to update the classifier as soon as they are

tested. However, typically labeling requires annotation by a human expert, which is a costly

and time-consuming process. More often, true labels are available only for a limited amount

of data. Therefore, supervised approaches suffer in this scenario (Masud et al., 2008).

The next major challenge we consider is the emergence of a totally new class, also known

as the novel class detection or concept evolution problem. In real-world data streams, such as

intrusion detection, text classification or fraud detection, the number of classes is not fixed,

and concept evolution may occur at any time in the stream. If concept evolution is not

addressed timely, the classifier classifies the instances from the new class as existing classes,

thereby the classification error increases. Unfortunately, this challenge has been ignored by

most state-of-the-art techniques.

The fourth challenge we discuss in this dissertation is the scarcity of labeled data in

data streams. A vast majority of the existing techniques for data stream mining are fully-

supervised in nature, as they assume that true labels for data instances would be available as

soon as prediction is done. As mentioned before, providing true labels for data instances is a

2

time-consuming process, and requires human effort. Therefore, although data is abundant in

data streams, typically most of them are unlabeled. Fully-supervised models do not utilize

this enormous amount of unlabeled data, therefore are not suitable in data stream mining

scenario.

The fifth and the final challenge we consider is the presence of sampling bias between the

training and the test distribution. A fundamental assumption in data mining, known as the

“stationary distribution assumption”, is that both the training and test data represent the

same data distribution (Zadrozny, 2004). This assumption may be violated in a real-world

semi-supervised learning setting, where a few data instances are sampled for which true labels

are provided. Traditional classifiers that are trained on the biased training data, without

accounting for the sampling bias, greatly suffer in this setting. This important challenge also

has not been addressed by the state-of-the-art data stream mining approaches.

In addition to the above challenges, scalability is very important in analyzing Big Data

or IoT data streams. Big Data is characterized by four V ’s, i.e., Volume, Velocity, Variety,

and Veracity. At present, the data produced per day is in quintillion bytes range and is

supposed to increase even more in nearby future. This grand scale and the rise of data

outstrip traditional data mining techniques (Zikopoulos et al., 2011). Any system dealing

with Big Data Stream receives this high volume data continuously. Moreover, data in Big

Data Stream may have different types of features and unstructured data. This is why, usually

data needs to undergo normalization preprocessing before applying classification methods

which is an extra overhead. Thus, traditional data mining systems fall short in classifying

this huge amount of data that is constantly in motion.

In this dissertation, we present four frameworks, where the first two frameworks exten-

sively address the five challenges in data stream classification. The latter two frameworks

have been designed with scalability in mind to address the challenges posed by Big Data

streams. Next, we briefly discuss the proposed frameworks.

3

ECHO. In the first approach, we address the challenges of infinite length, concept drift,

and concept evolution using a limited amount of labeled data. More specifically, we propose

a sliding window based framework, ECHO (Haque et al., 2016) that maintains an ensemble

of classifier models, each trained on a dynamically determined chunk. Each of these models

is a semi-supervised clustering based k-NN type model. As soon as a new data instance

arrives in the stream, in addition to classifying the instance, ECHO estimates the confidence

in the classification. We propose two estimators, namely Association and Purity to estimate

confidence. ECHO detects any concept drift by tracking any significant change in confidence

estimates using a change detection technique (CDT). Monitoring change in the distribution

of classifier confidence is the bottleneck in ECHO in terms of execution time. Therefore, in

order to improve performance, we propose a few strategies for selectively executing change

detection. Moreover, we propose a recursive formula, and use dynamic programming to

calculate change detection scores. These greatly reduce the execution time of our proposed

framework, and make it practically usable.

Once a concept drift is detected, ECHO updates the classifier using a limited amount of

labeled data. It uses the classifier confidence for selecting important instances for updating

the model, and requests label for those instances only. ECHO also incorporates a novel class

detector. It detects outliers in the data stream, and stores them in a buffer. The novel

class detector periodically examines the buffer for detecting the presence of a novel class. It

detects a novel class if the outliers have enough cohesion among themselves and separation

from the existing class instances. Empirical results show that ECHO achieves competitive

classification accuracy, if not better, compared to the fully-supervised baseline approaches,

despite using a limited labeled data for training.

FUSION. We propose the next approach, referred to as FUSION (Haque et al., 2017), for

handling covariate shift over data streams. In this work, we focus on the multistream classi-

fication problem, which involves two independent non-stationary data generating processes.

4

One of them is the source stream that continuously generates labeled data. The other one

is the target stream that generates unlabeled test data from the same domain. The dis-

tribution represented by the source stream data is biased compared to that of the target

stream. Moreover, these streams may have asynchronous concept drifts between them. The

multistream classification problem is to predict the class labels of target stream instances

by utilizing labeled data from the source stream. This kind of scenario is often observed in

real-world applications due to the scarcity of labeled data problem. In this work, we propose

an efficient solution for multistream classification by fusing drift detection into online data

shift adaptation.

Concretely, we estimate a weight for each training instance, so that the weighted training

distribution closely imitates the test distribution. FUSION models the instance weights us-

ing a Gaussian kernel model, and updates it online. It trains a classification model based on

the weighted training instances and detects an asynchronous concept drift if there is a signif-

icant difference between the weighted training and the test distribution. FUSION updates

the classification model following detection of any concept drift. We study the theoretical

convergence rate and computational complexity of the proposed approach. Moreover, em-

pirical results on benchmark datasets indicate significantly improved performance over the

baseline methods.

SDKMM. As mentioned before, scalability is an important consideration while designing

a classification technique for Big Data or IoT streams. In the third paradigm presented in this

dissertation, referred to as SDKMM (Haque et al., 2016), we design a scalable and distributed

approach for handling covariate shift between the training and the test distribution. As

mentioned before, limited access to supervised information may forge scenarios in real-world

data mining applications, where the distributions represented by training and test data are

not same, but related by a covariate shift, i.e., having equal class conditional distribution

5

with unequal covariate distribution. This difference in the distributions must be accounted

for in order to build an efficient classifier.

A number of approaches are available in the literature that address the covariate shift

problem by estimating density ratio as the importance weight for the training instances.

However, these approaches in general have high time complexity, which limits their appli-

cation in real-time applications, such as data stream classification. In this work, we focus

on one such method, referred to as Kernel Mean Matching (KMM). It has time complexity

cubic in the size of training data, which is computationally impractical for large or streaming

datasets. Our proposed approach, SDKMM is a sampling-based algorithm to address the

limited scalability problem of KMM. In this approach, first, we generate a number of random

sub-samples from the original training data. The number of samples is determined in such a

way that each training instance is included in at least one of the sub-samples with a very high

probability. In addition to sampling the training data, we also split the test data. Then, we

consider each possible pair of training sample and test split as a train-test component. Next,

we apply the KMM on each train-test component independently. Finally, we aggregate the

weights for each training instance that are estimated from different train-test components,

in order to estimate the final weight for that training instance.

Importantly, we show that the approach is highly parallelizable, and therefore propose a

distributed algorithm for estimating training instance weights efficiently using Spark. Exper-

iment results on benchmark datasets show that the proposed approach achieves competitive

estimation accuracy within much lower execution time compared to the KMM algorithm.

Moreover, it indicates that larger size of training data results into a higher accuracy with

minimal effect on the execution time of the proposed approach.

CASTLE. In the last approach presented in this dissertation, we propose a scalable multi-

tiered ensemble-based method for Big Data stream classification. We refer to this approach

6

as CASTLE (Haque et al., 2014). More specifically, CASTLE builds separate ensemble

classifier for each class that is present in the stream. Each class-based ensemble consists of

feature-based models. CASTLE induces a Naive Bayes model for each non-numeric feature,

and an AdaBoost model for each numeric feature. This hierarchical structure is maintained

and updated after the arrival of each chunk of data. As soon as a test instance arrives in

the stream, first, votes from individual feature-based models are aggregated for collecting

class-based ensemble votes. Finally, the class-based ensemble votes are aggregated for final

prediction.

The bottleneck of this approach is building AdaBoost ensembles for each of the numeric

features. Therefore, it faces scalability issue if the number of numeric features is large.

However, we observe that the process of forming AdaBoost ensemble for a feature is com-

pletely independent of forming AdaBoost ensemble for other features. So, there is scope for

parallel training and maintenance of these AdaBoost ensembles. In CASTLE, we propose

three different MapReduce-based approaches to form AdaBoost ensembles for different nu-

meric features in parallel. Each of the approaches executes only one MapReduce job for

building all the AdaBoost ensembles needed per data chunk. First two approaches build all

the feature-based AdaBoost ensembles under a particular class in the same Map task. The

third approach does not have this constraint. In the third approach, the task of building

feature-based AdaBoost ensembles is distributed among different Map tasks regardless of

class information.

The rest of the dissertation is organized as follows: In Chapter 2, we present the necessary

background information, and discuss some of the related work. We present our proposed

approaches chronologically in Chapters 3 - 6. Finally, we conclude the discussion with a

summary and future directions in Chapter 7.

7

CHAPTER 2

BACKGROUND AND RELATED WORK1

In this chapter, we formally define the data stream and the Multistream classification prob-

lem. Moreover, we briefly discuss related work in this domain.

2.1 Data Stream Classification

A data stream is a continuous sequence of data instances. Let the set of first t instances

received from the data stream be
{〈

x(1), y(1)
〉
, . . . ,

〈
x(t), y(t)

〉}
, where

〈
x(i), y(i)

〉
is the ith

instance. Ignoring the index, in each data instance 〈x, y〉, x ∈ Dv denotes a v dimensional

feature vector from domain D. On the other hand, y ∈ {1, . . . , l, . . . , L} denotes the true

class label of the instance, where l is the number of classes observed so far in the stream,

and L is the number of possible classes, which is unknown. Let ŷ(t) be the prediction for〈
x(t), y(t)

〉
, the prediction is correct if y(t) = ŷ(t).

〈
x(t), y(t)

〉
is called a labeled data instance

if y(t) is provided. The classification task for each new instance in the data stream,
〈
x(i), ·

〉
,

is to predict the class label y(i) using the set of instances L(i−1) ∪ U (i−1), where L(i−1) and

U (i−1) denote set of labeled and unlabeled instances from
{〈

x(1), y(1)
〉
, . . . ,

〈
x(i−1), y(i−1)

〉}
respectively.

1 c©2017 ACM. Portions Adapted, with permission, from A. Haque, Z. Wang, S. Chandra, B. Dong,
L. Khan, and K. W. Hamlen, “FUSION: An Online Method for Multistream Classification,” CIKM In-
ternational Conference on Information and Knowledge Management, pp. 919-928, November 2017, DOI:
https://doi.org/10.1145/3132847.3132886; c©2016 ACM. Portions Adapted, with permission, from S. Chan-
dra, A. Haque, L. Khan, and C. Aggarwal, “An Adaptive Framework for Multistream Classification,” CIKM
International Conference on Information and Knowledge Management, pp. 1181-1190, October 2016, DOI:
https://doi.org/10.1145/2983323.2983842; c©2016 Association for the Advancement of Artificial Intelligence.
Portions Adapted, with permission, from A. Haque, L. Khan, and M. Baron, “SAND: Semi-Supervised Adap-
tive Novel Class Detection and Classification over Data Stream,” AAAI Conference on Artificial Intelligence,
North America, pp. 1652-1658, February 2016; c©2016 IEEE. Portions Adapted, with permission, from A.
Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal, “Efficient Handling of Concept Drift and
Concept Evolution over Stream Data,” IEEE International Conference on Data Engineering (ICDE), pp.
481-492, May 2016.

8

2.1.1 Related Work

The challenges in data stream classification stem from the inherent properties of data

streams. In this section, we briefly discuss existing research works that address challenges

in data stream classification, i.e., infinite length, concept drift, limited labeled data, and the

emergence of novel classes.

Infinite Length

Data streams are divided into fixed-size chunks by most state-of-the-art approaches to ad-

dress the infinite length problem (Aggarwal and Yu, 2010; Masud et al., 2011; Parker and

Khan, 2015; Widmer and Kubat, 1996). These approaches use abrupt forgetting as only the

latest chunk of data instances is kept in the memory. Typically to address concept drift,

each fixed-size chunk is used to retrain or update the classifier as soon as all the instances

in the chunk are labeled. However, setting the fixed size for chunks is very difficult in the

context of an evolving data stream. Approaches using a fixed chunk size cannot capture the

concept drift immediately if the chunk size is too large, or suffer from unnecessary frequent

retraining during stable time periods if the chunk size is too small (Bifet and Gavaldà, 2007).

Gradual forgetting is used by (Koychev, 2000, 2002; Klinkenberg, 2004), which is a full

memory approach for defining a window of instances for learning. In gradual forgetting, each

example is associated with a weight rather than discarding it from the memory completely.

The weight typically is assigned based on the age of that data instance assuming that impor-

tance of an instance should decrease with its age. Various decay techniques are used in the

literature. For example, linear decay techniques are used in (Koychev, 2000, 2002), and an

exponential decay is used in (Klinkenberg, 2004). However, finding the perfect decay function

is a challenge if information on the time-scale of change is not available (Bifet and Gavaldà,

2007). In our proposed approach (ECHO), we determine the chunk size dynamically by

using an explicit change detection technique (CDT).

9

Concept Drift Detection

In data stream mining, change detection techniques (CDTs) are used either to detect any

change in the input data distribution, or to detect any change in the classifier feedback.

Several methods, e.g., (Song et al., 2007; Kuncheva and Faithfull, 2012; Ross et al., 2011)

exist to detect change of the input data distribution in a data stream. However, detecting a

change of distribution in a multi-dimensional space is considered as a hard problem (Harel

et al., 2014). It introduces error while finding changes in the multidimensional input space,

hence not efficient in the context of data stream mining. In our proposed approach, we focus

on detecting changes in one-dimensional classifier confidence.

Various CDTs have been proposed in the literature to detect concept drift from any

significant change in the classifier feedback. Adwin (Bifet and Gavaldà, 2007) is a sliding

window based technique which determines the size of the window according to the rate of

change observed from the window data itself. The approach proposed in (Gama et al.,

2004) detects a change when the error rate over the whole current window significantly

exceeds the lowest error rate recorded. The approach proposed in (Cieslak and Chawla,

2007) exploits Kruskal Wallis analysis and Kolmogorov Smirnov tests to detect changes. An

approach based on obtaining statistics from the loss distribution of the learning algorithm

by reusing the data multiple times via re-sampling has been proposed in (Harel et al., 2014).

Concept drift detection in (Alippi et al., 2013) contains two CDTs based on Intersection

of Confidence Intervals (ICI), one to detect any change in the input data distribution and

another to detect any change in the classifier error rate. Considering the high volume and

speed of today’s data streams, running two CDTs after testing each instance is expensive.

Another ICI based approach is ACE (Nishida et al., 2005). All of the above CDTs detect

changes in the classifier error rate, requiring true labels of all data instances be readily

available. This assumption is not practical in the context of data streams (Masud et al.,

10

2008). Our proposed approach ECHO detects changes in classifier confidence, which does

not require any supervised information.

Limited Labeled Data

Existing semi-supervised techniques use active mining, computational geometry, or ran-

dom sampling for selecting important data instances for labeling. The approaches proposed

in (Fan et al., 2004; Zhu et al., 2007, 2010; Masud et al., 2010) are examples that use active

learning. The approach proposed in (Fan et al., 2004) estimates the error of a decision tree

model based on a few statistics. If the estimated error is significantly high, it randomly sam-

ples a small number of instances from the data stream for labeling. The size of the sample

depends on the cost for labeling. A classifier-ensemble based active learning framework has

been proposed in (Zhu et al., 2007, 2010). The authors of these papers argue that the vari-

ance of an ensemble classifier is directly related to its error rates. Therefore, the instances

that contribute most to the variance of the ensemble classifier are considered as important,

and true labels are requested for only these instances. The approach proposed in (Masud

et al., 2010) selects only those data instances for labeling for which the expected classifi-

cation error is high. Though active learning approaches are useful for selecting important

data instances, these typically add an extra overhead to the overall learning algorithm. Our

proposed approach reuses the same confidence scores calculated during prediction to select

instances for labeling without adding any extra overhead.

Apart from active learning techniques, the approaches presented in (Aggarwal, 2006;

Efraimidis and Spirakis, 2006; Al-Kateb et al., 2007; Masud et al., 2008) investigate various

random sampling based techniques over data streams. However, though random sampling is

useful for reducing labeling cost to some extent, it often misses the instances important for

accommodating change of class boundaries. An approach based on computational geometry,

called COMPOSE, has been proposed in (Dyer et al., 2014). However, it can only address

gradual (limited) drift, rather than abrupt drift.

11

Novel Class Detection

Various clustering-based novel concept detection techniques for data streams have been pro-

posed in (Spinosa et al., 2008; Hayat and Hashemi, 2010). In these approaches, the instances

which are not explained by the current decision model are labeled with an unknown profile.

If a sufficient number of instances with the unknown profile can be found, clustering is ap-

plied on these instances. Valid clusters are evaluated as an extension of the normal class or a

novelty. Therefore, these are single class novelty detection methods, where authors assume

that there is only one normal class and all other classes are novel. Thus, it is not suitable

for a multi-class environment.

A novel class detection algorithm in a multi-class environment has been proposed in

(Masud et al., 2011), where each new test instance is considered as an outlier if it falls outside

of decision boundary of the ensemble classifier. A novel class is detected if a sufficient number

of outliers have high cohesion among themselves and enough separation from the instances

of existing classes. However, this approach divides the data stream into fixed-size chunks,

hence suffers from the trade-off discussed earlier. Unlike these approaches, our proposed

framework detects novel classes in a multi-class environment using dynamically-determined

chunk boundaries.

Three general strategies for transforming block-based ensembles into online learners are

investigated in (Brzezinski and Stefanowski, 2014). However, it does not investigate strate-

gies related to concept evolution. An evaluation methodology for multi-class novelty detec-

tion algorithms has been presented in (Faria et al., 2013). In this dissertation, we assume

that only one novel class may appear at a time in the data stream. So, we use the tra-

ditional novel class detection performance evaluation metrics that have been used by most

state-of-the-art approaches.

12

2.2 Multistream Classification

In this section, first we briefly discuss covariate shift adaptation. Next, we introduce the

Multistream classification problem and point out the challenges in it. Finally, we briefly

discuss the prior work on this problem.

2.2.1 Data Shift Adaptation

A fundamental assumption in data mining, known as the “stationary distribution assump-

tion”, is that both the training and test data represent the same data distribution (Zadrozny,

2004). However, it may be violated in real-world applications due to limited supervision,

or lack of control over the data gathering process. Traditional techniques based on this

assumption greatly suffer in this scenario.

Addressing an arbitrary difference between training and test distribution is a very difficult

problem (Huang et al., 2006). Hence, most approaches addressing this challenging assume

that the training and test data distributions, denoted by Ptr(·) and Pte(·) respectively, are

related by a covariate shift assumption. More specifically, the relationship between the

training and test data distributions is such that Ptr(y|x) = Pte(y|x) and Ptr(x) 6= Pte(x),

where x and y denote the set of covariate values and label of a data instance respectively.

In general, covariate shift between training and test data distributions is accounted by

computing an importance weight, β(x) = Pte(x)
Ptr(x)

, for each training instance x, and using them

in the learning process. KMM (Huang et al., 2006), KLIEP (Sugiyama et al., 2008), and

uLSIF (Kanamori et al., 2009) are among the techniques that are available in the literature

for handling covariate shift. However, these approaches work only on fixed-size training and

test data. Although Kawahara and Sugiyama extended KLIEP for direct online density ratio

estimation and sequential change-point detection (Kawahara and Sugiyama, 2012), it works

on a single stream of data, where the set of recent training/reference and test data instances

are determined by a sliding window. In this dissertation, we consider covariate shift in the

13

Multistream classification problem, which considers two streams of data, where new data

instance may arrive arbitrarily at any stream.

2.2.2 Problem Statement

The vast majority of existing data stream classification techniques make two strong assump-

tions. First, true labels of data instances along the stream become available soon after

prediction, which are then used for updating the existing classifier. In practice, labeled data

are scarce as obtaining true labels is costly (Haque et al., 2016). Furthermore, it is assumed

that the training and the test data represent the same distribution. As mentioned in Sec-

tion 2.2.1, this assumption may also be violated due to scarcity of labeled data. This may

induce a sampling bias between the training and test data distribution. A new problem set-

ting, called Multistream Classification, has been introduced in (Chandra et al., 2016), where

two data streams over the same domain are considered by relaxing the above assumptions.

Let us consider that two different but related processes generate data continuously from a

domain D. The first process operates in a supervised environment, i.e., all the data instances

that are generated from the first process are labeled. On the contrary, the second process

generates unlabeled data from the same domain. The stream of data generated from the

above processes are called the source stream and the target stream, and are denoted by S

and T respectively. Each data instance is denoted by (x, y), where x ∈ Dd is the set of d

covariates, and y is the true label of the instance. As mentioned before, only x for each

instance is observed in T , where S also provides y in addition to x for each instance. The

Multistream Classification is defined as follows.

Definition 1. Let XS ∈ D be a set of d-dimensional vectors of covariates and YS be the

corresponding class labels observed on a non-stationary stream S. Similarly, let XT ∈ D be

a set of d-dimensional vectors of covariates observed on another independent non-stationary

stream T . Let PS and PT denote covariate distribution from S and T respectively. Data

14

generated from S and T are related by a covariate shift, i.e., PS(y|x) = PT (y|x) and PS(x) 6=

PT (x). Construct a classifier M that predicts class label of x ∈ XT using XS, YS and XT .

Time
Drift - 21 Drift - 22

Drift - 11 Drift - 12

Domain

Source
Stream

Target
Stream

Figure 2.1: An example illustrating asynchronous data drifts

Challenges

As mentioned before, we assume that initially at time t, data distributions of S and T are

related by a covariate shift, i.e., P
(t)
S (y | x) = P

(t)
T (y | x) and P

(t)
S (x) 6= P

(t)
T (x). However,

this assumption may not be true at time r > t due to the non-stationary nature of data

streams. The reason is that, individually within each data stream, the conditional probability

distribution may change over time due to concept drift, i.e. P (t)(y | x) 6= P (r)(y | x).

Similarly, a covariate shift, i.e., a change in the covariate distribution, may also occur with

time in each stream.

With two independent non-stationary processes generating data continuously from D,

the effect of a drift may be observed at different times on these streams, referred to as

asynchronous drift. Figure 2.1 illustrates asynchronous data drifts between the source and

the target stream. In this illustration, four independent data drifts occur at different times

on S and T . The drifts Drift-11 and Drift-21 are similar, and occur on the source and

target stream respectively but at different times, which by definition is an asynchronous drift.

15

Similarly, Drift-12 and Drift-22 represent another example of an asynchronous concept drift.

This type of scenario may occur in a real-world application when the factor causing a drift

affects the streams at different times. To summarize, the main challenges in Multistream

classification are handling data shift and asynchronous concept drift between the source and

the target stream simultaneously and efficiently.

2.2.3 Prior Work

MSC (MultiStream Classifier) (Chandra et al., 2016) is the first framework that was pro-

posed for Multistream classification. MSC uses Kernel Mean Matching (KMM) for covariate

shift adaptation between the source and the target distributions by weighing labeled source

instances in the learning process. However, since source or target stream may have asyn-

chronous concept drifts, weights of the training instances may become outdated if there

is a drift in any of these streams. To address this challenge, an ensemble of classifiers is

maintained. The ensemble contains classifiers built on both source stream and target stream

data. The ensemble is updated by calculating new weights for recent instances from the

source data stream if a concept drift is detected in either of these streams of data. Concept

drift is detected by monitoring any significant change in classifier feedback following similar

approach proposed in (Haque et al., 2016). Since source stream generates all labeled data, a

concept drift in it is detected by tracking any major change in classifier error rate. On the

contrary, classifier confidences are monitored to detect concept drifts in the target stream

generating only unlabeled data.

While being the first approach for addressing the challenges of Multistream classification,

MSC suffers from a number of limitations. First, it uses an ensemble classifier consisting of

models trained on both source and target data. Once there is a concept drift in either stream,

the ensemble is updated using a model trained on data from the corresponding stream. As

a result, the overall ensemble management is complex in MSC. Second, it executes change

16

detection algorithm for detecting concept drift after receiving any new data instance either

in the source or target stream. The change detection algorithm used in MSC has time

complexity cubic in the number of data instances in the current window, which makes MSC

extremely slow. Third, once a concept drift is detected in any of the streams, MSC uses

Kernel Mean Matching for covariate shift adaptation, which also has cubic time complexity.

The above overheads adversely affect the performance of MSC. In this dissertation, we

propose a framework FUSION for addressing the challenges in the Multistream classification

problem efficiently.

17

CHAPTER 3

ECHO: DATA STREAM CLASSIFICATION USING LIMITED LABELED

DATA1

Data stream classification is a challenging task because of its inherent properties as mentioned

in Chapter 1. Due to the infinite length of data, it is not practical to store all the training data

first, and then execute a multi-pass learning algorithm like traditional data mining. Instead,

data stream classification demands single-pass limited-memory learning algorithm that can

adapt to any change in the underlying concepts quickly. One strategy of updating the

classifier could be dividing the stream of data into fixed-size chunks and updating the model

periodically at the end of each chunk. This strategy suffers from important shortcomings.

As time scale of change is not often available, based on the size of the chunks, the classifier

may become outdated, or may experience unnecessary updates.

Therefore, it is clear that the best way of keeping the classifier updated is to detect any

change in the underlying concepts, and update the classifier only when it is necessary. It

again poses two important challenges, i.e., how to detect a concept drift efficiently, and which

instances should be used to update the classifier. Please note that despite providing abundant

data instances, labeled data instances are scarce in data streams. In this chapter, we propose

a framework, referred to as ECHO ((Efficent Concept Drift and Concept Evolution Handling

over Stream Data)) (Haque et al., 2016), which answers the above questions using only a

limited amount of labeled data.

ECHO maintains an ensemble of classifier models, each trained on a dynamically deter-

mined chunk. However, unlike other existing sliding window techniques, it does not depend

1 c©2016 Association for the Advancement of Artificial Intelligence. Portions Adapted, with permission,
from A. Haque, L. Khan, and M. Baron, “SAND: Semi-Supervised Adaptive Novel Class Detection and
Classification over Data Stream,” AAAI Conference on Artificial Intelligence, North America, pp. 1652-
1658, February 2016; c©2016 IEEE. Portions Adapted, with permission, from A. Haque, L. Khan, M. Baron,
B. Thuraisingham, and C. Aggarwal, “Efficient Handling of Concept Drift and Concept Evolution over
Stream Data,” IEEE International Conference on Data Engineering (ICDE), pp. 481-492, May 2016.

18

on the error rate of the classifier, which requires true labels for all data instances. Rather, it

estimates classifier confidence in classifying each test instance, stores in the sliding window,

and tracks any significant change in confidence estimates using a change detection technique

(CDT). A change in the classifier confidence indicates the occurrence of a concept drift.

Therefore, if there is a significant change in confidence estimates, a concept drift is detected,

a chunk boundary is determined, and the classifier is updated using a few labeled instances

from the latest chunk.

In order to estimate the confidence of the classifier in ECHO, we propose two estimators,

namely Association and Purity. These estimators are generic as these can be used to estimate

the confidence of any clustering based model. We theoretically justify the use of these

estimators, and show that confidence estimates decrease consistently in presence of a concept

drift. A naive strategy is to invoking the change detection module after estimating classifier

confidence on each test instance. A change detection score is calculated each time based

on values currently stored in the sliding window. If this score is greater than a pre-fixed

threshold, a concept drift is detected. This exhaustive invocation of the change detection

module is computationally expensive. Instead of this, we propose a recursive formula, and

use dynamic programming to calculate change detection scores. Along with this, we propose

selective and sporadic execution of the change detection module based on confidence score

on the most recent test instance. These greatly reduce the execution time of ECHO, and

makes it practically usable.

ECHO uses only a limited amount of labeled data instances from the latest chunk for

updating the classifier. Motivated by the principle of Uncertainty Sampling (Settles, 2009),

it selects data instances for labeling based on the classifier confidence score calculated during

testing. If the confidence in classifying an instance is low, the true label for that instance

is requested. Otherwise, the label predicted by the classifier is accepted as the label of that

instance. Thus, training data is formed only using a partially labeled data. A new model

19

is then trained on the training data to replace the oldest model in the ensemble. Thus, the

ensemble is updated using a limited amount of labeled data without any extra overhead by

simply using the confidence scores calculated for dynamic sliding window management.

ECHO also incorporates a novel class detector for the purpose of handling concept evo-

lution. The detector assumes the appearance of a single novel class at a time in the data

stream. Any instance falling outside the decision boundaries of all models in the ensemble is

identified as an outlier. The framework interprets the presence of a sufficiently large number

of outliers with strong cohesion among themselves as the emergence of a novel class.

Primary contributions of this work are as follows:

1. We present a technique to estimate the confidence of any clustering based classifier

with theoretical justification.

2. We analytically show that classifier confidence decreases consistently in presence of a

concept drift. Therefore, we design a suitable change detection technique (CDT) to

detect any significant change in classifier confidence.

3. We use the confidence scores to select a limited number of data instances from the latest

chunk for labeling. Following detection of a concept drift, the classifier is updated using

this limited amount of labeled data instances without any extra overhead.

4. We present a semi-supervised framework (ECHO) that uses dynamically determined

chunks both for classification and novel class detection. We use dynamic programming,

and propose sporadic and selective execution of the change detection module to reduce

the execution time of ECHO to a great extent.

5. We evaluate ECHO on several benchmark and synthetic datasets. Experiment results

indicate that ECHO shows good performance in terms of both classification accuracy

and execution time.

20

3.1 The Proposed Approach

High level workflow of ECHO is depicted in Figure 3.1. The framework has four modules,

i.e., Classification, Novel Class Detection, Change Detection, and Update. ECHO maintains

Outlier
Detection

Input Data
Instance

Outlier?
Novel Class
Detection

Found?
Existing

class
Classify using
the Ensemble

Novel
class

Predicted class
Confidence
Calculation

Change?
Keep the
Current

Ensemble

Build New
Model

Ensemble
Classifier

Yes

No

Yes

No

YesNo

Figure 3.1: High level workflow of ECHO

an ensemble M of t classification models, and a dynamic window W containing classifier

confidence estimates in predicting labels of recent test data instances. Let {M1, ...,Mt} be

the models in the ensemble. At the beginning, the ensemble classifier contains models trained

on the initial training data, also known as warm-up period data. Once the warm-up period

21

is over, each incoming instance in the data stream is first examined to determine whether it

is an outlier or not. It detects an instance as an outlier if the instance falls outside of the

decision boundary of the ensemble classifier. If the instance is not an outlier, it is classified

as instance of an existing class using majority voting among the models in the ensemble. On

the contrary, if the instance is an outlier, it is temporarily stored in a buffer. When there

are enough instances in the buffer, the Novel Class Detection module is invoked. We define

a class as novel class if none of the models in the ensemble has been trained with instances

from that class. If a novel class is detected, the instances of the novel class are tagged

accordingly. Otherwise, the instances in the buffer are considered as from existing classes

and classified using the current ensemble classifier. As soon as any test instance arrives,

ECHO along with predicting the label of the instance, also estimates the confidence in the

prediction. It keeps monitoring classifier confidences on recent instances. ECHO detects a

concept drift if there is a significant change in confidence scores. A new model is trained on

the recent instances, and the ensemble classifier is updated if a concept drift is detected.

As mentioned before, ECHO uses a sliding window, denoted by W , for storing and mon-

itoring classifier confidence on recent instances. Sliding window management of ECHO is

depicted in Figure 3.2. As discussed before, if a test instance is inside the decision boundary

of the ensemble classifier, or is not detected as an instance from a novel class, ECHO classifies

it by taking the majority vote from the ensemble. At the same time, it estimates the con-

fidence of each model in this classification using a few estimators. These model confidences

are combined together to calculate the overall confidence of the ensemble classifier. ECHO

stores recent instances along with corresponding confidence scores in the sliding window W .

Following insertion of confidence estimates, ECHO selectively invokes the change detection

module to search for any significant change of distribution among the scores saved in W .

If there is such a change, ECHO detects a concept drift, and W is updated. Moreover, a

few instances are selected based on the confidence scores for which the actual labels are

22

Association

Purity

Model 1
Confidence

Association

Purity

Model 2
Confidence

Association

Purity

Model t
Confidence

Prediction using
the Ensemble

Predicted
Class

Ensemble
Confidence

Change
Update Classifier
& Shrink Window

Grow Window

Input

Figure 3.2: Sliding window management of ECHO

requested. Finally, the ensemble classifier is updated following a concept drift by training a

new model on a limited amount of labeled data, and by replacing the oldest model in the

ensemble by it. Based on the memory resource available, we set a maximum allowable size

for W denoted by Vm. If W grows beyond Vm, a chunk boundary is determined, and both

M and W are updated. Later in this chapter, we discuss classification, novel class detection,

and change detection modules. Table 3.1 contains a list of frequently used symbols.

3.2 Training and Classification

Each model in the ensemble, Mi, i ∈ 1 . . . t, is a k-NN type model. However, unlike k-NN,

raw data points are not stored in the model. Rather, a number of clusters are built using any

clustering algorithm, e.g., K-means, DBSCAN (Ester et al., 1996) etc. We use an impurity

based K-means algorithm (discussed in Section 3.5) to build the clusters in our experiments.

23

Table 3.1: Commonly used symbols and terms

M : The ensemble classifier C(x) : Confidence in classifying x
Mi : ith model in M τ : Classifier confidence threshold
t : Number of models in the ensemble U : Set of unlabeled training data
L : Set of labeled training data Ai : Association of Mi

hip : pth pseudopoint in Mi Pi : Purity of Mi

x(k): kth instance in stream y(k) : True label of instance x(k)

Dip(x) : Distance of instance x from hip ŷ
(k)
i : Predicted label of instance x(k) by Mi

Lip(c) : Frequency of class c in hip W : Dynamic sliding window
R(hip) : Radius of hip Vm : Maximum allowable size for W

We assume that only a portion of data instances will be labeled. Once the clusters are

created, the raw data points are discarded after summaries (mentioned as pseudopoints) of

the clusters are saved. Therefore, each model is a collection of K pseudopoints. Summary

of a cluster, i.e., a pseudopoint contains the centroid, radius, and the number of data points

belonging to each of the classes (referred to as frequencies). The radius is equal to the

distance between the centroid and the farthest data point in the corresponding cluster.

Each pseudopoint corresponds to a “hypersphere” in the feature space with a correspond-

ing centroid and radius. The decision boundary of a model Mi is the union of the feature

spaces encompassed by all pseudopoints in Mi. The decision boundary of the ensemble M

is the union of decision boundaries of all models Mi ∈M.

If a test instance x is inside the decision boundary of M, it is classified using each

Mi ∈M, i ∈ 1 . . . t as follows. Let h ∈Mi be the pseudopoint whose centroid is the nearest

from x. The predicted class of x is the class that has the highest frequency in h. The data

point x is classified using the ensembleM by taking the majority vote among all classifiers.

3.3 Novel Class Detection

If a test instance x falls outside of the decision boundary of M, it is declared as a filtered

outlier, or F-outlier. The principle of the novel class detection is that an instance should

be closer to instances from the same class (cohesion), and farther apart from instances from

24

other classes (separation). Since any F-outlier falls outside of the decision boundary, it

is far away from the existing class instances. So, it satisfies the separation property. If it

satisfies the cohesion property also, i.e., it is close to other F-outlier instances, ECHO declares

emergence of a novel class. To examine this, such instances are stored in a buffer. This buffer

is periodically examined by the novel class detection module to observe whether there are

enough instances in the buffer that are close to each other. This is done by computing the

q-Neighborhood Silhouette Coefficient, or q-NSC(Masud et al., 2011). This is defined based

on q, c-neighborhood of an F-outlier x (q, c(x) in short), which is the set of q instances from

class c that are nearest to x. Here q is a user-defined parameter.

Let D̄cout,q(x) be the mean distance of an F-outlier x to its q-nearest F-outlier neighbors.

Also, let D̄c,q(x) be the mean distance from x to its q, c(x), and let D̄cmin,q(x) be the minimum

among all D̄c,q(x), c ∈{Set of existing classes}. In other words, q, cmin is the nearest existing

class neighborhood of x. Then q-NSC (Masud et al., 2011) of x is given by:

q-NSC(x) =
D̄cmin,q(x)− D̄cout,q(x)

max(D̄cmin,q(x), D̄cout,q(x))
(3.1)

q-NSC considers both cohesion and separation, and yields a value between −1 to +1. A

positive value of q-NSC indicates that the F-outliers are closer to other F-outlier instances

stored in the buffer (more cohesion), and farther away from the instances from existing classes

(more separation). The q-NSC(x) value of an F-outlier x must be computed separately for

each classifier Mi ∈ M. ECHO declares emergence of a novel class if it finds at least q′ > q

F-outliers having a positive q-NSC score for all the classifiers Mi ∈M.

3.4 Calculation of Confidence Scores

ECHO employs two heuristics, i.e., association and purity to estimate confidence of each

individual model Mi ∈M in classifying any instance x. These individual model confidences

are then combined together to calculate confidence of the entire ensemble classifier. Let hip

25

be the pth pseudopoint in Mi, and cm be the class having highest frequency in hip. Assuming

the closest pseudopoint from x in model Mi is hip, the heuristics are calculated as follows:

• Association is calculated by R(hip)−Dip(x), where R(hip) is the radius of hip andDip(x)

is the distance of x from hip. Therefore, smaller the Dip(x), higher the association.

• Purity is calculated by
|Lip(cm)|
|Lip| , where |Lip| is the sum of all frequencies in hip, and

|Lip(cm)| is the frequency of cm in hip.

Association and purity of the model Mi are denoted by Ai and Pi respectively. We

theoretically justify use of these heuristics in Section 3.5. Both of the heuristics contribute

to model confidence according to their estimation capability. This capability is evaluated by

the correlation between heuristic values and classification accuracy using the initial training

data as follows. Heuristic values for Mi are calculated for each of the training instances. Let

Hk
ij be the value of jth heuristic in Mi’s classification of instance x(k), the kth instance in the

stream. Since we use two heuristics, j ∈ {1, 2}. Let ŷki be the prediction of Mi on instance

x(k), and yk be the true label of that instance. Let vi is the vector containing vki values

indicating whether the classification of instance x(k) by model Mi is correct or not. In other

words, vki = 1 if ŷki = yk and vki = 0 if ŷki 6= yk. Finally, a correlation vector ri is calculated

for model Mi. It contains rij values, which are Point-biserial correlation coefficients between

Hij and vi for different j. Once the correlation coefficients, i.e., estimation capabilities are

evaluated, it is retained for calculating model confidence in classifying future test instances.

To calculate the confidence of Mi in classifying a test instance x (denoted by C(x)
i), ECHO

first calculates heuristic values H(x)
i . Next, C(x)

i is calculated by taking the dot product of

H(x)
i and ri, i.e., C(x)

i = H(x)
i .ri. Similarly, ECHO calculates confidence scores for each of

the models in the ensemble. These scores are then normalized between 0 and 1. Finally,

ECHO takes the average confidence of the models towards the predicted class to estimate

confidence of the entire ensemble C(x).

26

3.5 Justification of Confidence Estimators

In this Section, we first define the objective function for semi-supervised K-means clustering

that is used to build models in ECHO. Then, based on the objective function, we theoretically

justify the choice of the heuristics for estimating classifier confidence.

3.5.1 Objective Function

As mentioned in Section 3.2, any standard clustering algorithm can be used in ECHO. In this

chapter, we use the semi-supervised imputrity-based clustering method proposed in (Masud

et al., 2008) for building the classification models in ECHO. Given a limited amount of

labeled data, the goal of impurity-based clustering is to create K clusters by minimizing the

intra-cluster dispersion, and at the same time by minimizing the impurity of each cluster.

This is also referred to as K-means with Minimization of Cluster Impurity (MCI-Kmeans).

A cluster is completely pure if all the labeled data points in that cluster belong to the

same class. As all the clusters in this context are desired be pure with other unlabeled data

instances, a term is added to the objective function for the clustering to penalize each cluster

for being impure. Considering both of the intra-cluster dispersion and the cluster purity, the

general form of the objective function used in MCI-Kmeans is as follows:

OMCIKmeans =
K∑
i=1

∑
x∈Xi

||x− µi||2 +
K∑
i=1

Wi ∗ Impi (3.2)

where Wi is the weight associated with cluster i, Impi is the impurity of cluster i, µi is the

centroid of cluster i, and Xi is the set of all (both labeled and unlabeled) points in cluster

i. To ensure that both the intra-cluster dispersion and cluster impurity are given the same

importance, the weight associated with each cluster is chosen to be:

Wi = |Li| ∗ D̄Li ⇒Wi =
∑
x∈Li

||x− µi||2

27

where Li is the set of all labeled data points in Cluster i and D̄Li is the average dispersion

from each of these labeled points to the cluster centroid.

Any impurity measure can be plugged in to Equation 3.2. Following (Masud et al.,

2008), we use Impi = ADCi∗Enti as the impurity measure, where ADCi is the “Aggregated

Dissimilarity Count” of cluster i and Enti is the entropy of cluster i. The Dissimilarity count

DCi(x, y) of a data point x in cluster i having class label y is the total number of labeled

points in that cluster belonging to classes other than y. DCi(x, y) = 0 if if x is unlabeled

(i.e., y = ∅). On the contrary, DCi(x, y) = |Li| − |Li(c)|, if x is labeled and its label y = c,

where Li(c) is the set of labeled points in cluster i belonging to class c. The “Aggregated

Dissimilarity Count”, denoted by ADCi, is the sum of the dissimilarity counts of all the

points in cluster i: ADCi =
∑

x∈Li DCi(x, y). The entropy of a cluster i is computed as:

Enti =
∑C

c=1(−pic ∗ log(pic)), where pic is the prior probability of class c, i.e., pic = |Li(c)|
|Li| .

After combining all the above terms, our objective function becomes:

OMCIKmeans =
K∑
i=1

∑
x∈Xi

||x− µi||2 +
K∑
i=1

∑
x∈Li

||x− µi||2∗

∑
x∈Li

(|Li| − |Li(c)|) ∗
C∑
c=1

(
−|Li(c)|
|Li|

∗ log
|Li(c)|
|Li|

)
(3.3)

Let hip and hjq be the closest pseudopoint from a test data point x in model Mi and Mj

respectively. We define Mi will have higher confidence than model Mj in classifying a test

data instance x, if including x in hjq increases the objective function more than including x

in hip. We define the following terms:

∆Disp
(x)
i ← increase in intra-cluster dispersion due to adding x to the closest pseudopoint

in Mi.

∆ADC
(x)
i ← increase in the “Aggregated Dissimilarity Count” due to adding x to the

closest pseudopoint in Mi.

∆Ent
(x)
i ← increase in entropy due to adding x to the closest pseudopoint in Mi.

Next, we justify the use of association and purity as confidence estimators.

28

3.5.2 Association

Consider two cases: a) x is inside only one of hip and hjq. Without loss of generality, let

assume that x falls inside hip but outside of hjq. Therefore,

R(hip) > Dip(x)⇒ R(hip)−Dip(x) > 0⇒ Ai(x) > 0

and

R(hjq) < Djq(x)⇒ R(hjq)−Djq(x) < 0⇒ Aj(x) < 0

So, from the above equations, we get the following:

Ai(x) > Aj(x) (3.4)

If x falls inside hip but outside of hjq, hip has a greater association value than hjq. There-

fore, if other properties remain same, Mi will have greater confidence than Mj as expected.

Moreover, since the point x falls outside of decision boundary of hjq but inside of hip,

||µjq−x||2 > ||µip−x||2 ⇒ ∆Disp
(x)
i < ∆Disp

(x)
j , where µip and µjq are centroids of hip and

hjq respectively. So, including x into hjq increases the objective function value (Equation 3.3)

more than that of hiq. So, Mi will have more confidence than Mj in classifying x.

b) Test instance x falls into the same side of both hip and hjq. Without loss of generality,

let assume that, hip and hjq have similar properties (e.g., centroid, radius etc). Let us also

assume that Mi has a higher association than Mj in the case of classifying x. Therefore, we

can deduce:

Ai(x) > Aj(x)

⇒ R(hip)−Dip(x) > R(hjq)−Djq(x)

⇒ R(hip) +Djq(x) > R(hjq) +Dip(x)

⇒ Djq(x) > Dip(x) (since R(hip) = R(hjq))

⇒ ||µjq − x||2 > ||µip − x||2

⇒ ∆Disp
(x)
i < ∆Disp

(x)
j (3.5)

29

Therefore, in this case also, including x into hjq increases the objective function more than

including x into hip. So, in both cases, greater association leads to better confidence.

3.5.3 Purity

Assume that hip predicts x as an instance of cm, and hiq predicts x as an instance of cn. Let

us also assume that hip and hjq share similar properties except that hip has a higher purity

than hjq in predicting data point x. There can be two different cases:

a) Both of the pseudopoints contain an equal number of labeled points, i.e., |Lip| = |Ljq|.

Then,

Pi(x) > Pj(x)

⇒ |Lip(cm)|
|Lip|

>
|Ljq(cn)|
|Ljq|

⇒ |Lip(cm)| > |Ljq(cn)| (Since |Lip| = |Ljq|)

⇒ −|Lip(cm)| < −|Ljq(cn)|

⇒ |Lip| − |Lip(cm)| < |Ljq| − |Ljq(cn)| (as |Lip| = |Ljq|)

⇒ DCip(x, cm) < DCjq(x, cn)

⇒ ∆ADC
(x)
ip < ∆ADC

(x)
jq (3.6)

b) The pseudopoints contain an unequal number of labeled points, i.e., |Lip| 6= |Ljq|.

Then,

Pi(x) > Pj(x)

⇒ |Lip(cm)|
|Lip|

>
|Ljq(cn)|
|Ljq|

Again since picm =
|Lip(cm)|
|Lip| and pjcn =

|Ljq(cn)|
|Ljq | , the following holds:

picm > pjcn

⇒ ∆Ent
(x)
ip < ∆Ent

(x)
jq (3.7)

30

Equation 3.6 and Equation 3.7 show that in both cases, including x into the closest pseudo-

point in model Mj will increase the value of the objective function more than that of model

Mi. Thus, a higher value of purity leads to higher confidence.

3.6 Effect of Concept Drift on Classifier Confidence

In this Section, we show that classifier confidence decreases due to a concept drift. First,

we will see the relationship between the intra-cluster dispersion in terms of sum of squared

error (SSE) and association. Let SSEp be the SSE of pseudopoint hip, µip be the centroid

of hip, and x be an arbitrary data point. Therefore, the SSEi of a classification model is

defined as follows:

SSEi =
∑
p

SSEp =
∑
p

∑
x∈hip

(x− µip)2

=
∑
p

nip

∑
x∈hip(x− µip)

2

nip
=
∑
p

nipD̄ip (3.8)

where D̄ip is the mean distance between a data point in hip and the centroid of hip, and

nip is the number of instances in hip. Now the sum of association of the model Mi can be

formulated as follows:

Ai =
∑
p

Aip =
∑
p

∑
x∈hip

(R(hip)− (x− µip)2)

=
∑
p

nipR(hip)−
∑
p

∑
x∈hip

(x− µip)2

=
∑
p

nipR(hip)− SSEi (3.9)

Equation (3.9) concludes that total model association is inversely proportional to the model

SSE because the pseudopoint radii are fixed (can be considered constant) on a given model.

Next, we show that a concept drift increases model SSE. We describe concept drift as the

drift of the decision boundary, obtained by drifted pseudopoints. Assume, without loss of

31

generality, that concept drift is quantified by the amount of drift of the pseudopoints, which

is obtained by δip displacement of the centroid of hip for all p in the model. Assume that a

new window (i.e., chunk) appears in the stream that exhibits the drift. Therefore, the new

chunk can be obtained by moving the center of each pseudopoint hip in the current model by

δip, while keeping the same distribution of data points in each pseudopoint. Let the drifted

pseudopoint be h′ip. Now, if we randomly draw nip data points from h′ip, and calculate the

mean distance between each a point x′ and the centroid µip (of the old pseudopoint), the

mean distance would be higher by δip amount. Let SSE ′i be the SSE of the new model, and

D′ip be the mean distance between new data points and old pseudopoint. Therefore, we can

derive that:

SSE ′i =
∑
p

nipD
′
ip =

∑
p

nip(D̄ip + δip)

=
∑
p

nipδip +
∑
p

nipD̄ip

=
∑
p

nipδip + SSEi > SSEi (3.10)

Since SSE ′i > SSEi, from equation (3.9) we can follow up that A′i < Ai, meaning that

association, and as a consequence, confidence in classifying the new data chunk will be lower

because of the concept drift. The higher the amount of drift, the lower the confidence will

be.

3.7 Change Detection

ECHO maintains a variable size window W to monitor confidence of the classifier on recent

data instances. Confidence scores are generated in the range of [0, 1] (discussed in Sec-

tion 3.4). We observe from our experiments on various datasets that generated confidence

scores tend to follow a beta distribution. We have carried out Chi-Square goodness of fit

test on the generated confidence scores which also confirm that observation. Moreover, we

32

have shown in Section 3.6 that confidence scores decrease consistently in presence of a con-

cept drift. Therefore, we propose a CUSUM (Baron, 1999)-type change detection technique

(CDT) on beta distribution to use in this context. After inserting each confidence score,

our CDT is used to detect any significant change of statistical properties within the values

stored in W .

Algorithm 1 Detect-Change (η, γ, W)

Input: η: Sensitivity; γ: Cushion period size; W : The dynamic sliding window.
Output: The change-point if exists; -1 otherwise

1: Th ← −log(η), n←size of W , and ωn ← 0.
2: if n ≤ Vm & mean(W (1) . . .W (n)) > 0.3 then
3: for k ← γ : n− γ do
4: Estimate pre and post beta distributions, beta(α̂0, β̂0) and beta(α̂1, β̂1) from W (1) . . .W (k)

and W (k+1) . . .W (n) respectively.
5: Calculate Sk,n using Equation (3.11).
6: end for
7: Calculate ωn using Equation (3.12).
8: if ωn ≥ Th then
9: Return kmax, where Skmax = ωn.

10: else
11: Return -1.
12: end if
13: else
14: Return n.
15: end if

Algorithm 1 sketches the proposed CDT. Let n be the size of W , if at any time overall

mean confidence of the classifier falls below 0.3, or the window size exceeds the maximum

allowable size, the proposed CDT returns n as the change-point. Otherwise, first it divides W

into two sub-windows for each k between γ to n−γ. We know that each of the sub-windows

contain a beta distribution, however the parameters are unknown. So, W (1) . . .W (k) and

W (k+1) . . .W (n) constitute pre and post beta distributions respectively, where W (i) is the

ith element in W . We estimate the parameters using the method of moments. So, each

sub-window should contain at least γ number of values to preserve statistical properties of

a distribution. In the literature, γ = 100 is widely used, which is also called the cushion

33

period. The proposed CDT estimates the parameters at Line 4. Let (α̂0, β̂0) and (α̂1, β̂1)

are the estimated parameters for pre and post beta distributions respectively. Then, sum of

the log likelihood ratios is calculated at Line 5 using the following formula:

Sk,n =
N∑

i=k+1

log

f
(
W (i) | α̂1, β̂1

)
f
(
W (i) | α̂0, β̂0

)
 (3.11)

Where f
(
W (i)|α̂, β̂

)
is the probability density function (PDF) of the beta distribution having

parameters
(
α̂, β̂

)
applied on W (i). Next, the CUSUM process score ωn for the values stored

in W is calculated at Line 7 using the following formula:

ωn = max
γ≤k≤n−γ

Sk,n (3.12)

Let kmax is the value of k for which the algorithm calculated the maximum Sk,n value

where γ ≤ k ≤ n − γ. Finally, a change is detected at point kmax if ωn is greater than a

pre-fixed threshold. We fix the threshold based on the value of the desired sensitivity η. In

our experiments, we use −log(η) as the threshold value.

3.8 Updating the Ensemble using Limited Labeled Data

A chunk boundary is detected as soon as a significant change is detected in the distribution

of confidence scores. Subsequently, the current ensemble classifier is updated using the

instances from that chunk as shown in Algorithm 2. However, instead of requiring true labels

of all instances, ECHO intelligently selects a few instances for labeling using the classifier

confidence scores. Since confidence scores are calculated using association and purity of the

models, it provide useful insight to select important instances for updating the classifier. If

the confidence in classifying an instance is below a threshold τ , ECHO requests for its true

label and include in the labeled instance set (Line 1). On the contrary, if the confidence is

above τ , ECHO uses the predicted label and includes the instance in the unlabeled instance

34

Algorithm 2 UpdateClassifier (M, W , τ , cp)

Input: M: The current ensemble classifier; W : The dynamic sliding window; τ : Classifier
confidence threshold; cp: Estimated change-point.

Output: Mu: The updated ensemble classifier
1: L ←

{
< x, y >: C(x) ∈ W and C(x) ≤ τ

}
// y is the true label of x

2: U ←
{
< x, ŷ >: C(x) ∈ W and C(x) > τ

}
// ŷ is the predicted label of x

3: T ← L ∪ U // T is the training set
4: M ′ ← TrainNewModel (T)
5: Mu ← Update (M,M ′)
6: T ← ∅
7: W ←

[
W (cp+1) . . .W (n)

]
set (Line 2). Labeled and unlabeled set of instances together form the new training set to

train a new model (Line 4) as discussed in Section 3.2.

Once a new model is trained, it replaces the oldest one among the existing models in the

ensemble. This ensures that we have exactly t models in the ensemble at any given point of

time. In this way, the infinite length problem is addressed as a constant amount of memory

is required to store the ensemble. The concept-drift problem is addressed by keeping the

ensemble up-to-date with the most recent concept. Finally, W is updated so that it contains

only W (cp+1) . . .W (n), where cp is the change-point.

3.9 Time and Space Complexity

ECHO has four modules, i.e., Classification, Change Detection, Novel Class Detection, and

Update. Time complexity of invoking the Novel Class Detection module once is O(KVm),

where K is the number of pseudopoints. This module is invoked only when the buffer contains

q number of instances in it. Including this periodic call to the Novel Class Detection module,

the total time complexity for classification is O(KtVm + tVm + mKVm), where m = Vm/q.

Since m >> Kt, the total time complexity for the classification is O(mKVm). The time

complexity for invoking Change Detection module for a whole chunk is O(V 3
m). So, the

overall time complexity for executing ECHO on a chunk of data is O(mKVm +V 3
m + f(Vm)),

35

where f(Vm) is the time to train a new classifier with Vm training instances. Most often,

Vm >> m and Vm >> K, so the total time complexity is essentially O(V 3
m + f(Vm)). We use

four buffers, i.e., filtered outlier buffer, training buffer, unlabeled data buffer and dynamic

sliding window. All the buffers can contain at most Vm instances, where Vm is the maximum

allowable size for the dynamic sliding window. So, space complexity of our framework is

O(Vm).

3.10 Performance Improvement

As discussed in Section 3.9, time complexity of the change detection module of the proposed

approach (ECHO) is O(V 3
m) for one chunk of data. Therefore, change detection module adds

significant overhead on ECHO. In this chapter, we propose strategies to improve performance

of the proposed approach in terms of execution time.

3.10.1 Sporadic Execution

As shown in Equation 3.11 and 3.12, we calculate Sk,n exhaustively for each k, γ ≤ k ≤ n−γ,

to get CUSUM score ωn on n observations. As stated before, confidence scores are expected

to decrease when a concept drift occurs. Hence, we are interested about change-points only

in the negative direction, i.e., change of distribution in decreasing confidence scores. We use

this fact to avoid invoking computationally heavy CUSUM-type CDT after inserting each

confidence score. Rather, we use a computationally inexpensive secondary algorithm to seek

at least a certain amount of decrease in the population mean of confidence scores. Since the

secondary algorithm can only detect a mere mean shift, it is assumed to produce frequent false

alarms. Therefore, when it signals such a change, it is considered as a preliminary detection

only. It will be then verified and confirmed by a more accurate but computationally heavier

CUSUM-type CDT. In ECHO, we form the inexpensive secondary algorithm simply by

comparing mean confidence scores of the sub-windows. It produces a warning and therefore

36

proposed CUSUM-type CDT is invoked only if η times decrease is observed between the mean

scores of the sub-windows, where η is the sensitivity parameter introduced in Section 3.7.

3.10.2 Recursive Calculation

To calculate the CUSUM score ωn, we need to calculate Sk,n for each k, γ ≤ k ≤ n − γ.

Hence, to develop the recursion, we divide the original problems into sub-problems based on

the value of k and n. We propose the following recursion to calculate Sk,n:

Sk,n =



0, if 0 ≤ n ≤ 2γ∑n
i=k+1 log f(W (i)|α̂1,β̂1)

f(W (i)|α̂0,β̂0)
,

if for all m ≤ n, I(k,m) = 0

Sk,m +
∑n

i=m+1 log f(W (i)|α̂1,β̂1)

f(W (i)|α̂0,β̂0)
, otherwise

where m = max{g : g ≤ n & I(k, g) = 1}

(3.13)

Let current size of W be n. Since each of the sub-windows are required to contain at least

γ number of observations, Sk,n = 0 for all n ≤ 2γ. After receiving each test instance, ECHO

predicts the label of the instance and inserts the confidence score into W . Since we only

compute Sk,n when a secondary algorithm gives a warning, for each m ≤ n we use I(k,m)

as an indicator function to indicate whether Sk,m was computed or not. If there is no such

m ≤ n for which Sk,m was computed, we calculate Sk,n using the original formula shown in

Equation 3.11. These first two cases constitute the base of our recursive formula.

The third case applies if we have at least one m ≤ n for which Sk,m was calculated before,

i.e., I(k,m) = 1. If there exists multiple m like this, we find the largest m and reuse Sk,m

to calculate Sk,n recursively. Parameters for pre and post-beta distributions are estimated

as before from W (1) . . .W (k) and W (k+1) . . .W (n) respectively. However, in this case, we only

calculate log-likelihood ratios for W (m+1) . . .W (n) and add with Sk,m to get Sk,n. Since we do

37

not adjust for log-likelihood ratios for W (k+1) . . .W (m), it introduces a loss in the estimation.

On the other hand, it can be shown that mere calculating Sk,n recursively reduces the time

complexity of invoking change detection module for one chunk to O(V 2
m). Empirical result

also suggests that the above recursive calculation reduces execution time significantly while

keeping very competitive accuracy.

Algorithm 3 Detect-Change-Revised (η, γ, W , Stat)

Input: η: Sensitivity; γ: Cushion period size; W : The dynamic sliding window; Ind: Data
structure containing largest m for which I(k,m)=1; Stat: Data structure containing previous
CUSUM calculations.

Output: The change-point if exists; -1 otherwise

1: Th ← −log(η), n←size of W , and ωn ← 0.
2: if n ≤ Vm & mean(W (1) . . .W (n)) > 0.3 then
3: for k ← γ : n− γ do
4: if Secondary algorithm (Section 3.10.1) produces a warning then
5: Retrieve pre-beta distribution beta(α̂0, β̂0) from Stat[m] if Ind[k] = m: estimate the

parameters explicitly if there is no such m.
6: Estimate post beta distribution beta(α̂1, β̂1) from W (k+1) . . .W (n).
7: Calculate Sk,n using Equation (3.13).
8: end if
9: end for

10: Calculate ωn using Equation (3.12).
11: Insert pre-beta distribution and Sk,n at State[n], and update Ind[k]← n.
12: if ωn ≥ Th then
13: Return kmax, where Skmax = ωn.
14: else
15: Return -1.
16: end if
17: else
18: Return n.
19: end if

Algorithm 3 sketches the revised change detection algorithm using the above stated sec-

ondary inexpensive algorithm and recursion. We maintain two data structures Ind and Stat.

Ind is used to implement the indicator function used in Equation 3.13. It returns the largest

m for which Sk,m has already been computed and −1 if no such m exists. On the other

hand, Stat is used for memoization of previous CUSUM scores and distributions.

38

The algorithm starts with calculating the threshold and size of W . If there is a warning

from the secondary algorithm, we use the proposed CUSUM-type CDT to verify it (Line 4).

Pre and post beta distributions are estimated explicitly if Ind(k) returns −1, meaning there

is no m ≤ n for which Sk,m was calculated before. Otherwise, only post-beta distribution is

estimated explicitly, and pre beta distribution is retrieved from Stat at Line 5. Next, Sk,n is

calculated using the Equation 3.13, and ωn is calculated using Equation 3.12. Ind and Stat

are updated using n and CUSUM calculations respectively. Finally, a change is detected if

ωn ≥ Th.

3.10.3 Selective Execution

So far in Section 3.10.1 and 3.10.2, we have focused on efficiently detecting a change-point

once the change detection module is invoked. To further reduce time complexity of ECHO,

we focus on invoking the change detection module itself selectively instead of executing after

inserting each confidence estimate. Since we intend to detect any significant decrease of

confidence over a period of time, confidence scores calculated on the latest test instance

could be used to decide whether the change detection needs to be executed or not. We can

skip execution of the change detection module if the latest confidence score is high. On the

contrary, we must execute the change detection if the latest confidence score is low. We

examine the following two strategies based on this principle for selective execution of the

change detection module:

1) First strategy is to use a pre-fixed sampling threshold on the classifier confidence to

decide whether the change detection module will be invoked or not. We use the classifier

confidence threshold τ (introduced in Section 3.8) as the sampling threshold also. If the

classifier confidence on test instance x, i.e., C(x) is below τ , change detection module is

invoked and vice versa. This version will be referred to as ECHO-F.

2) According to second strategy, The probability of executing the change detection mod-

ule after inserting C(x) is determined by e−C
(x)

. In other words, we calculate the probability of

39

invoking the change detection module based on the confidence score itself. Therefore, if the

confidence in classifying an instance is high, the probability of invoking the change detection

module will be low and vice versa. We will refer to this version as ECHO-D.

3.11 Evaluation

3.11.1 Datasets

Table 3.2 depicts the characteristics of the datasets. The ForestCover dataset is obtained

from the UCI repository as explained in (Masud et al., 2011). It contains geospatial descrip-

tions of different types of forests. The labeling task is to find the actual forest cover type for

a given observation from US Forest Service (USFS) Region-2 Resource Information System

(RIS) data. In order to prepare it for novel class detection, we arrange the data so that

at most three and at least two classes co-occur at a similar time. In the second real-world

Table 3.2: Characteristics of datasets

Name of Num of Num of Num of
dataset Instances Classes Features

ForestCover 150,000 7 54
PAMAP 150,000 19 52

PowerSupply 29,927 24 2
HyperPlane 100,000 5 10

SynRBF@0.002 100,000 7 70
SynRBF@0.003 100,000 7 70

dataset used, referred to as Physical Activity Monitoring (PAMAP) (Reiss and Stricker,

2012), nine individuals were equipped with sensors that gathered a total of 53 streaming

features whilst they performed activities. Nineteen total activities were identified as class

labels - including one category for miscellaneous or transient activities. Without loss of gen-

erality, we use the first 150, 000 data instances from ForestCover and PAMAP datasets in

our experiments. The third real-world dataset is Powersupply (Zhu, 2010), which contains

40

hourly PowerSupply of an Italian electricity company which records the power from two

sources: PowerSupply from main grid and power transformed from other grids.

Besides using real-world datasets, we also use several synthetically generated datasets.

HyperPlane (Zhu, 2010) is such a data stream which is generated using the equation:

f(x) =
∑d−1

j=1 aj
(xj+xj+1)

xj
, where f(x) is the label of instance x and aj, j = 1, 2, .., d, con-

trols the shape of the decision surfaces. SynRBF@X are synthetic datasets generated using

RandomRBFGeneratorDrift of MOA (Bifet et al., 2010) framework where X is the Speed of

change of centroids in the model. We generate two such datasets using different X to check

how efficiently different approaches can adapt to a concept drift.

We use ForestCover and PAMAP datasets for simulating both concept drift and novel

classes. Rest of the datasets are used to test only concept drift handling capability of the

considered approaches.

3.11.2 Experiment Setup

We implement two versions of the proposed framework, i.e., ECHO-F, ECHO-D to analyze

performance as discussed in Section 3.10.3. We compare classification and novel class detec-

tion performance of our framework with ECSMiner (Masud et al., 2011). We have chosen

ECSMiner since it addresses both concept drift and concept evolution. Other than that, we

compare the performance of ECHO with OzaBagAdwin (OBA) and Adaptive Hoeffding Tree

(AHT) implemented in MOA (Bifet et al., 2010) framework, since these approaches seem to

have superior performance than others on the datasets used in the experiments. Both OBA

and AHT use ADWIN (Bifet and Gavaldà, 2007) as the change detector. These approaches

do not have novel class detection capability. So, we compare ECHO with these approaches

only in terms of classification performance.

We evaluate each of the above classifiers on a stream by testing and then training with

chunks of data in sequence. To evaluate ECSMiner, we use 50 pseudopoints, and ensemble

41

size 6 as suggested in (Masud et al., 2011). We use 100% labeled training data to evaluate

ECSMiner, OBA and AHT. On the other hand, we use t = 6, τ = 0.90, η = 0.001, γ = 100,

and Vm = 5000 as the default setting for ECHO, if not specified otherwise. Percentage of

labeled data in ECHO depends on the value of τ , and the frequency and intensity of concept

drifts in the dataset used.

3.11.3 Performance Metrics

Let FN = total novel class instances misclassified as existing class, FP = total existing class

instances misclassified as novel class, TP = total novel class instances correctly classified

as novel class, Fe = total existing class instances misclassified (other than FP), Nc =

total novel class instances, and N = total instances in the stream. We use the following

performance metrics for evaluation:

1. Error% : Total misclassification error (percent), i.e., (FP+FN+Fe)∗100
N

.

2. Mnew: % of novel class instances misclassified as existing class, i.e., FN∗100
Nc

.

3. Fnew: % of existing class instances Falsely identified as novel class, i.e., FP∗100
N−Nc .

4. F2: Fβ score provides the overall performance of a classifier by considering both preci-

sion and recall. We use β = 2, which gives us F2 = 5∗TP
5∗TP+4∗FN+FP

.

5. Processing Time: Average time required in milliseconds to process thousand instances.

6. Processing Speed : Average number of instances processed in one second.

3.11.4 Classification

As discussed before, most techniques to classifying evolving data stream divide the stream

into fixed-size chunks regardless of occurrence or intensity of concept drifts. On the contrary,

42

ECHO determines the chunk size dynamically based on any significant change in classifier

confidence. Hence, ECHO avoids unnecessary training during the stable period and fre-

quently update the classifier when needed. This characteristic is evident in Figure 3.3.

In this experiment, we have considered the first thousand instances of ForestCover and

SynRBF@0.002 datasets, and plotted the window size and error rate as the stream pro-

gresses. In case of ForestCover dataset, we observe that whenever error rate of the classifier

increases significantly, the proposed approach detects a concept drift, and reinitialize the

sliding window W after updating the classifier. Increase in classifier error rate indirectly

indicates a concept drift. Therefore, this supports the claim we made in Section 3.6 that

though estimated without any supervision, classifier confidence decreases if there is a change

in underlying concepts. Moreover, we also observe that following re-initialization of the

sliding window, the error rate drops as expected. This indicates that the updated classi-

fier reflects the current concepts, and thereby classification accuracy increases. Figure 3.3b

shows similar behavior in case of SynRBF@0.002 dataset. However, we observe more fre-

quent concept drift detection, which is expected as we increase frequency and intensity of

concept drifts intentionally in this synthetic dataset. Overall, this experiment shows that

the proposed semi-supervised approach works well in detecting concept drifts and updating

the classifier timely.

Table 3.3 and Table 3.4 compare performance of ECHO using two different values for τ ,

with other baseline approaches in terms of classification accuracy. More specifically, Table 3.3

shows classification accuracy of ECHO using τ = 0.9. In this case, ECHO outperforms the

other approaches by a large margin on all the datasets considered. We also observe that, a

high value of τ in general results in a large amount of labeled data. However, this is not

always true. For example, in case of PowerSupply dataset, ECHO versions use labels for less

than 10% of instances despite using high τ , still exhibit superior performance. As discussed

in Section 3.8, ECHO only requests label for an instance if the confidence is below τ . It

43

W
in

do
w

 S
iz

e

0

200

400

600

800

E
rr

or
 r

at
e

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

Data Instance

Window Size
Error rate

(a) ForestCover

W
in

do
w

 S
iz

e

0

200

400

600

800

E
rr

or
 r

at
e

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000

Data Instance

Window Size
Error rate

(b) SynRBF@0.002

Figure 3.3: Change of window size and error rate of ECHO-D as the stream progresses

44

implies that, in case of PowerSupply dataset, ECHO has high confidence in classifying most

of the test instances. So, instead of requesting labels for those instances, ECHO uses the

predicted labels while updating the classifier.

The number of instances ECHO requests labels for is controlled by τ . We show clas-

sification performance of ECHO using τ = 0.4 in Table 3.4. Although, other approaches

considered in this table use 100% labeled data, we have put the performance of these ap-

proaches for ease of comparison. We observe that ECHO versions use extremely low amount

of labeled data because of using a low value for τ . However, ECHO versions still show com-

petitive performance, if not better, than the other considered approaches in case of all the

datasets. So, experiment result suggests that ECHO can be used in scenarios where labeled

data is very scarce and expensive.

3.11.5 Novel Class Detection

ECHO stores the filtered outliers temporarily in a buffer until there are enough instances in

the buffer to detect a novel pattern. As the stream progresses, more instances from the novel

pattern arrive in the stream which makes it easier to detect the novel pattern. However,

similar to ECSMiner, we also consider a maximum allowable time up to which the classifier

can wait for enough instances from a emerging class to appear. We set this time constraint

as 400 instances as suggested in (Masud et al., 2011). Table 3.5 compares the novel class

detection performance of ECHO-D and ECHO-F using τ = 0.9 with ECSMiner on Forest-

Cover and PAMAP datasets. We observe that both versions of ECHO show competitive

performance. ECHO-D shows the best Fnew and competitive Mnew and F2 on ForestCover

dataset despite using less labeled data than ECSMiner. In case of PAMAP dataset, ECHO-D

shows better performance than ECSMiner in terms of all Mnew, Fnew, and F2. If we consider

overall performance (Error %, Mnew, Fnew, and F2), ECHO clearly outperforms all the other

baseline approaches.

45

T
ab

le
3.

3:
S
u
m

m
ar

y
of

cl
as

si
fi
ca

ti
on

re
su

lt
s

N
am

e
of

d
at

as
et

E
C

H
O

-F
(τ

=
0.

9)
E

C
H

O
-D

(τ
=

0.
9)

E
C

S
M

in
er

A
H

T
O

B
A

E
rr

or
%

%
of

la
b

el
ed

d
at

a
E

rr
or

%
%

of
la

b
el

ed
d
at

a
E

rr
or

%
E

rr
or

%
E

rr
or

%
F

or
es

tC
ov

er
3.

95
96

.5
4

3
.6

8
95

.1
6

4.
55

22
.8

9
18

.0
6

P
A

M
A

P
4.

75
93

.6
4

3
.7

3
94

.7
35

.2
6

8.
76

7.
27

P
ow

er
S
u
p
p
ly

0.
01

8.
93

0
.0

1
9.

8
0.

01
85

.5
9

86
.9

2
H

y
p

er
P

la
n
e

2.
79

99
.7

6
2
.1

8
10

0
3.

73
46

.2
4

48
.5

5
S
y
n
R

B
F

@
0.

00
2

23
.9

8
99

.7
9

1
8
.1

9
99

.6
2

63
.4

3
38

.7
5

37
.0

4
S
y
n
R

B
F

@
0.

00
3

25
.6

0
99

.5
1

2
2
.3

7
99

.8
65

.3
9

48
.6

5
46

.8
6

T
ab

le
3.

4:
C

om
p
ar

is
on

of
cl

as
si

fi
ca

ti
on

p
er

fo
rm

an
ce

u
si

n
g

li
m

it
ed

am
ou

n
t

of
la

b
el

ed
d
at

a

N
am

e
of

d
at

as
et

E
C

H
O

-F
(τ

=
0.

4)
E

C
H

O
-D

(τ
=

0.
4)

E
C

S
M

in
er

A
H

T
O

B
A

E
rr

or
%

%
of

la
b

el
ed

d
at

a
E

rr
or

%
%

of
la

b
el

ed
d
at

a
E

rr
or

%
E

rr
or

%
E

rr
or

%
F

or
es

tC
ov

er
7.

96
39

.2
6

3
.8

8
35

.3
3

4.
55

22
.8

9
18

.0
6

P
A

M
A

P
4.

77
69

.5
6

4
.7

3
68

.6
2

35
.2

6
8.

76
7.

27
P

ow
er

S
u
p
p
ly

0.
01

0.
1

0
.0

1
0.

14
0.

05
85

.5
9

86
.9

2
H

y
p

er
P

la
n
e

2.
99

32
.6

2
.3

6
26

.9
3.

73
46

.2
4

48
.5

5
S
y
n
R

B
F

@
0.

00
2

42
.6

5
38

.4
38

.1
7

38
.8

8
63

.4
3

38
.7

5
3
7
.0

4
S
y
n
R

B
F

@
0.

00
3

45
.5

1
36

.5
1

4
0
.6

5
54

.4
8

65
.3

9
48

.6
5

46
.8

6

46

Table 3.5: Novel class detection performance using τ = 0.9

dataset Method Mnew Fnew F2

ForestCover
ECHO-F 11.37 2.27 0.72
ECHO-D 14.51 2.11 0.71
ECSMiner 8.42 2.13 0.88

PAMAP
ECHO-F 0.05 4.22 0.78
ECHO-D 0.05 3.39 0.82
ECSMiner 0.05 37.53 0.45

3.11.6 Parameter Sensitivity

In this section, we examine parameter sensitivity of the proposed approach. More specifi-

cally, we vary parameters of ECHO, i.e., confidence threshold (τ), number of models in the

ensemble (t), sensitivity parameter (η), and examine its effect on performance of ECHO. We

consider the error rate, percentage of labeled data used, and processing time as performance

metrics in this set of experiments. To evaluate ECHO in terms of processing time, we use

two metrics, namely Execution Time and Processing Speed. Execution Time is defined as

the average time taken by ECHO in milliseconds to process one thousand instances from a

dataset. On the other hand, Processing Speed is defined as the number of instances pro-

cessed by ECHO on average in one second. In this set of experiments, we apply ECHO-D

on SynRBF@0.002 dataset, and observe the performance metrics by varying the parameters

discussed above.

Confidence Threshold

Figure 3.4 shows performance of ECHO-D as the confidence threshold (τ) varies. We dis-

cussed in Section 3.8 that ECHO selects instances for labeling based on the confidence

threshold (τ). So, the percentage of labeled data used to update the classifier depends on

the value of τ . A higher value of τ should incur a larger amount of labeled data and vice

versa. This is exactly what we observe from the figure. As τ increases, the percentage of

labeled data increases, and percentage of error decreases. In the figure, we also compare

47

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Confidence Threshold (t)

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

T
im

e/
S

pe
ed

Labeled Data (%)
Error (%)
Processing Speed
Execution Time

Figure 3.4: Sensitivity of ECHO-D to confidence threshold (τ) on SynRBF@0.002

the performance of ECHO with the best performing baseline method. From Table 3.3, we

know that the OzaBagAdwin (OBA) approach performs best on SynRBF@0.002 in terms

of classification accuracy among all the baseline methods. We observe from the figure that

ECHO requires only around 45% labeled data to surpass that performance. This is impres-

sive especially considering that OBA uses 100% labeled data. Figure 3.4 also shows effect of

τ on Processing Speed and Execution Time. We observe that the Execution Time decreases,

thereby Processing Speed increases with increasing τ .

Sensitivity Parameter

In the next experiment in this section, we examine sensitivity of ECHO-D to the sensitivity

η and ensemble size t parameters. Figure 3.5 shows the performance of ECHO-D with

increasing η. As discussed in Section 3.7, η controls the false alarm rate in change detection

48

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sensitivity (h)

10

15

20

25

30

35

40

E
rr

or

500

1000

1500

2000

2500

T
im

e/
S

pe
ed

Error
Processing Speed
Execution Time

Figure 3.5: Performance of ECHO-D as sensitivity parameter (η) varies

algorithm. We observe that percentage of error increases with increasing η probably due to

more false alarms in change detection. Moreover, increasing η results into a larger threshold

in change detection. It means change detection becomes less sensitive and the average size

of the sliding window increases with increasing η. As discussed in Section 3.9, the time

complexity of ECHO depends on the size of the sliding window. Therefore, Execution Time

decreases, thereby Processing Speed decreases with increasing η.

Ensemble Size

Figure 3.6 shows effect of varying ensemble size t on performance of ECHO-D using Syn-

RBF@0.002 dataset. We observe that the error rate keeps decreasing with increasing until

t = 6, due to the reduction of error variance (Tumer and Ghosh, 1996). However, if we

keep increasing beyond t = 6, we observe an increase in the error rate. This behavior can

be explained using the analysis presented in (Tumer and Ghosh, 1996), which states that

49

2 4 6 8 10

t

10

15

20

25

30

35

40

E
rr

or

500

1000

1500

2000

2500

T
im

e/
S

pe
ed

Error
Processing Speed
Execution Time

Figure 3.6: Sensitivity to ensemble size (t)

increasing ensemble size helps in decreasing error rate until individual model errors are corre-

lated. Moreover, we observe that Execution Time increases and Processing Speed decreases

with increasing t, due to more overhead in classification and ensemble maintenance.

3.11.7 Speed Up

In this set of experiments, we examine Speed Up achieved by ECHO using dynamic program-

ming and other performance improvement techniques discussed in Section 3.10. To examine

the improvement in terms of execution time, we compare the performance of ECHO-F and

ECHO-D with basic ECHO implementation without any performance improvement. We de-

fine Speed Up as Tb/To, where Tb is the total time taken by the basic ECHO implementation

and To is the total time taken by an improved version of ECHO. Figure 3.7 shows the Speed

Up achieved by ECHO-F and ECHO-D on SynRBF@X datasets with increasing τ . As dis-

cussed before, a higher value of X indicates more frequent and more intense concept drift in

50

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

30

Confidence Threshold (t)

S
pe

ed
 U

p

ECHO-F
ECHO-D

(a) SynRBF@0.002

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Confidence Threshold (t)

S
pe

ed
 U

p

ECHO-F
ECHO-D

(b) SynRBF@0.003

Figure 3.7: Confidence threshold (τ) vs Speed Up

SynRBF@X. We observe that improved versions of ECHO achieve as high as 18 times Speed

Up than the basic implementation on SynRBF@0.002. In case of SynRBF@0.003, improved

versions achieve as high as 120 times Speed Up which is very promising. This indicates the

effectiveness of our proposed strategies for performance improvement.

51

CHAPTER 4

FUSION: AN ONLINE METHOD FOR MULTISTREAM CLASSIFICATION1

Data stream mining researchers have so far focused on mining a single stream of data. Even

if data is received from more than one stream simultaneously, all of them are assumed to

be generated from a non-stationary data generating process (Chandra et al., 2016). Any

change in the data generating process would affect data distributions in these streams simul-

taneously. Therefore, all such streams can be combined into a single stream, as individual

streams represent the same distribution. However, combining streams may not be effective

in particular scenarios, especially if individual streams represent different distributions with

asynchronous and independent concept drifts among them. This type of scenarios may arise

if data is generated by two different, but related non-stationary processes.

For example, consider building a model for predicting sentiment of tweets (Kouloumpis

et al., 2011). Typically, the sentiment is not provided as the ground truth along with a

tweet. So, in order to collect training data, a few users may agree to provide tweets with

sentiment label information. On the contrary, tweets on which the model needs to analyze

the sentiment may come from any Twitter user. Users providing the training data may

represent only a small portion of the population. Therefore, if we assume two streams of

data, one from the Twitter users providing labeled data, another from the whole population

of Twitter users, a sampling bias may exist between the distributions represented by these

streams of data. This type of data shift is typically caused due to limited supervision, or

lack of control over the data generating process (Chandra et al., 2016).

1 c©2017 ACM. Portions Adapted, with permission, from A. Haque, Z. Wang, S. Chandra, B. Dong,
L. Khan, and K. W. Hamlen, “FUSION: An Online Method for Multistream Classification,” CIKM In-
ternational Conference on Information and Knowledge Management, pp. 919-928, November 2017, DOI:
https://doi.org/10.1145/3132847.3132886; c©2016 ACM. Portions Adapted, with permission, from S. Chan-
dra, A. Haque, L. Khan, and C. Aggarwal, “An Adaptive Framework for Multistream Classification,” CIKM
International Conference on Information and Knowledge Management, pp. 1181-1190, October 2016, DOI:
https://doi.org/10.1145/2983323.2983842 .

52

A new problem setting called Multistream Classification has been introduced in (Chandra

et al., 2016) to address these scenarios. It involves two simultaneous streams of data. One

of the streams, called the source stream, provides only labeled training data. The other

stream, called the target stream, provides unlabeled test data. The classification task is

to use the labeled data from the source stream for classifying unlabeled data from the

target stream efficiently. As pointed out before, combining the two streams may result in a

different overall distribution that inhibits available data patterns when they are considered

individually. Moreover, independent and asynchronous concept drifts may occur in either of

the streams over time. Therefore, traditional techniques for data stream mining may not be

effective if applied to the combined stream.

The main challenge of Multistream classification is to address data shift and independent

asynchronous concept drifts between the source and target streams. In this chapter, we

propose an efficient approach for Multistream classification. We refer to this approach as

FUSION (Efficient Multistream classification using Direct Density Ratio Estimation) (Haque

et al., 2017). It uses two sliding windows for storing recent instances from the source and

target streams. Data shift between the source and target stream is addressed by weighing

each source instance based on the density ratio. Let PS(·) and PT (·) be the distributions

represented by recent source and target data instances respectively. The density ratio for

an instance x is defined by β(x) = PT (x)
PS(x)

. A Gaussian kernel model is used in FUSION for

direct density ratio estimation. The model is updated online with incoming instances. An

ensemble classifier is used for classification, where each model is trained on weighted source

stream instances.

FUSION has an inherent capability of addressing asynchronous concept drifts in Mul-

tistream classification. In addition to addressing data shifts, FUSION uses density ratios

estimated by the Gaussian kernel model for detecting any change between distributions rep-

resented by weighted source and target stream data. If a significant change is detected,

53

the Gaussian kernel model is updated. Subsequently, weights for the source stream labeled

data are re-evaluated using the updated kernel model, and the ensemble classifier is up-

dated. The efficiency of the proposed approach stems from the fact that it uses the same

kernel model for addressing both data shift and asynchronous concept drift in Multistream

classification. Empirical results on benchmark datasets show that FUSION outperforms the

existing Multistream classification method in terms of both accuracy and execution time.

The main contributions of our work are as follows.

1. We present an efficient method for direct density ratio estimation in the Multistream

setting. The model used in this method is updated online. The density ratios are used

for data shift adaptation between the streams. We provide theoretical convergence

rate for the proposed method.

2. We present a technique for detecting asynchronous concept drifts between the source

and the target stream data using direct density ratios.

3. We propose an efficient approach for Multistream classification by fusing asynchronous

concept drift adaptation into data shift adaptation. We derive the time and space

complexity of the proposed approach.

4. We use benchmark real-world and synthetic datasets to evaluate our approach, and

compare the performance with the baseline methods. In addition to the only existing

method for Multistream classification, we use some of the acclaimed state-of-the-art

data stream mining techniques as baseline methods.

4.1 The Proposed Approach

Figure 4.1 and Algorithm 4 illustrate the core components in FUSION. It has four main

modules, i.e., Density Ratio Estimation (DRM), Drift Detection (DDM), Classification, and

54

Source Stream
(Labeled)

Target Stream
(Unlabeled)

Density Ratio
Estimation

Module (DRM)

Drift Detection
Module (DDM)

Ensemble
Classifier

Class
Prediction

Train Model Drift?
Non-stationary

Domain
Yes No

Update

Figure 4.1: Overview of FUSION

Update. As mentioned in the problem statement, both source and target streams are gener-

ated from the same non-stationary domain, having asynchronous data drift between them.

We use two fixed-size sliding windows to store recent instances from S and T , referred to as

the source and the target sliding window, and denoted as WS and WT respectively. The

size of the sliding windows is denoted by Nm.

FUSION uses an ensemble classifier for classification. The first model in the ensemble

is trained on the initial instances from the source sliding window. However, to correct

possible covariate shift between S and T , each instance from the sliding window is associated

with an importance weight. FUSION uses density ratios estimated from the Density Ratio

Estimation Module (DRM) as importance weights. Label for any new instance arriving in

T is predicted by taking the majority voting from the ensemble classifier. DRM updates

the model for density ratio estimation incrementally with each incoming instance in either

sliding windows.

As the system keeps receiving new instances in S or T , the Drift Detection Module

(DDM) detects drift between the distributions represented by data in the sliding windows

55

Algorithm 4 FUSION: Multistream Classification

Input: Labeled source stream data S, The size of sliding windows Nm.
Output: Labels predicted on T data.

1: Read first Nm instances from S and T into WS and WT respectively.
2: Learn α = {αi}Nmi=1 using LearnAlpha (Algorithm 5).

3: Estimate
{
β(W (i)

S)
}Nm
i=1

(Section 4.1.2).

4: Initialize M by learning a base model from WT , WS, and
{
β(W (i)

S)
}Nm
i=1

.

5: repeat
6: Receive a new instance x.
7: if x ∈ T then
8: Predict label for x by taking the majority voting.
9: end if

10: Slide the corresponding window (WS or WT) for including the new instance.
11: Update α using UpdateAlpha (Algorithm 6).
12: Check for any drift in data using DetectDrift (Algorithm 7).
13: if DetectDrift returns True then
14: Recalculate α = {αi}Nmi=1 using LearnAlpha
15: Update M using UpdateClassifier (Algorithm 8).
16: end if
17: until T exists

using density ratios estimated by DRM. If there is a drift, a new model is trained on source

sliding window instances along with their updated importance weights. Moreover, the en-

semble classifier and the sliding windows are updated.

Table 4.1 lists frequently used symbols in this chapter. Throughout the chapter, typically

a bold symbol or letter is used to denote a set of elements, and a superscript is used to indicate

the index of an element in the set. A subscript is used to indicate the association of an entity

to a type. For example, W (i)
S denotes the ith data instance in the source sliding window. We

present a detailed discussion about different modules of FUSION in rest of this section.

56

Table 4.1: Frequently used symbols

D: Domain M: Ensemble Classifier
P: Set of non-stationary processes PS: Source stream probability distribution
S ∈ P: A labeled source stream PT : Target stream probability distribution
T ∈ P: An unlabeled target stream β(x): Importance weight for x
WS, WT : Source and Target Sliding window L: The maximum allowable ensemble size
x: d-dimensional features (or covariates) α: The set of parameters of the Gaussian kernel model
y ∈ Y: Class label of a data instance Nm: The size of WS and WT

4.1.1 Density Ratio Estimation Module (DRM)

The Density Ratio Estimation module (DRM) of FUSION uses a Gaussian kernel model for

direct density estimation. The model is updated incrementally as new instances appear in

S or T . In this section, we describe the DRM, and its online update procedure.

Gaussian Kernel Model

At a particular time, we define the source distribution PS, and the target distribution PT by

the distributions represented by data instances in WS and WT respectively at that moment.

Density ratio for an instance x is defined by β(x) = PT (x)
PS(x)

. If x is an instance from S, β(x)

is used as its importance weight in the learning process. We will discuss more on training

later in this section.

Using Gaussian kernel model, β(x) is modeled as follows:

β̂(x) =
Nm∑
i=1

αiKσ

(
x,W (i)

T

)
(4.1)

where α = {αi}Nmi=1 are parameters to be learned from data samples, and Kσ(·, ·) is a Gaussian

kernel with kernel width σ, i.e., Kσ(x,x′) = exp
{
−‖x−x

′‖2
2σ2

}
. The target sliding window

instances, WT , works as the Gaussian centers. Each parameter αi is associated to the ith

Gaussian kernel, i.e., ith instance in WT . We choose kernel width σ by likelihood cross

validation following (Sugiyama et al., 2008). Any other basis functions can also be used in

place of Gaussian kernels in Eq. (4.1).

57

Learning Parameters

The target distribution is estimated by the weighted training distribution, P̂T (x) = β̂(x)PS(x).

The parameters α = {αi}Nmi=1 in model (4.1) are learned so that the Kullback-Liebler di-

vergence from PT (x) to P̂T (x) would be minimized. This leads to the following convex

optimization problem-

maximize
{αi}Nmi=1

[
Nm∑
j=1

log

(
Nm∑
i=1

αiKσ

(
W (j)

T ,W (i)
T

))]

subject to
1

Nm

Nm∑
j=1

Nm∑
i=1

αiKσ

(
W (j)

S ,W (i)
T

)
= 1,

and α1, α2, . . . , αNm ≥ 0. (4.2)

Algorithm 5 LearnAlpha: Learn DRM Parameters

Input: Source instances WS =
{
W (i)

S

}Nm
i=1

, target instances WT =
{
W (i)

T

}Nm
i=1

, the learning

rate ε, and the kernel width σ.
Output: DRM parameters α = {α}Nmi=1.

1: K(i,j) = Kσ(W (i)
T ,W

(j)
T); i, j = 1, . . . , Nm.

2: p(j) = 1
Nm

∑Nm
i=1 Kσ(W (i)

S ,W
(j)
T); j = 1, . . . , Nm.

3: Initialize α.
4: repeat
5: Gradient ascent step:

α← α + εK(1./K).
6: Satisfy constraints:

α← α + (1− pTα)p/(pTp),
α← max(0,α),
α← α/(pTα).

7: until convergence
8: Return α = {α}Nmi=1.

Algorithm (5) outlines the steps for learning the parameters α for the model in Eq. (4.1).

First, Gaussian kernels are calculated for all WT instances at Line 1. Next, gradient ascent

is performed until convergence while satisfying the constraints at Lines 5-6. Once the set of

58

parameters α is learned from data, importance weight for any instance x is calculated using

Eq. (4.1).

Updating Parameters Online

Since data continuously arrives in source and target streams, the model in Eq. (4.1) needs to

be updated also by updating α. Kawahara and Sugiyama have proposed an online update

method of α in (Kawahara and Sugiyama, 2012). However, unlike Multistream classification

scenario, this method assumes only one stream of data with a sliding window to define the

set of reference and test data instances. In FUSION, we adapt this method for Multistream

classification scenario.

As mentioned before, WT instances act as the Gaussian kernel centers. For eachKσ(·,W (i)
T),

there is a corresponding parameter αi in the set α, which works as the weight for that Gaus-

sian function. Therefore, if there is a new instance in the target stream, it affects the

optimization problem in Eq. (4.2). So α needs to be updated while satisfying constraints.

The online update method is based on the online learning technique for kernel methods

proposed in (Kivinen et al., 2004). Assuming that β is searched within a reproducing kernel

Hilbert space H, the following reproducing property holds-

〈β(·), K(·,x′)〉 = β(x′) (4.3)

Let Ei(β) be the empirical error for W (i)
T , Ei(β) = − log β(W (i)

T). It can be observed

from Eq. (4.2) that estimated density ratio β̂ is calculated by minimizing
∑Nm

i=1 Ei(β) under

the constraints. Let Ẽi(β) be the regularized empirical error, that is-

Ẽi(β) = − log β(W (i)
T) +

λ

2
‖β‖2

H (4.4)

where λ(> 0) is the regularization parameter, and ‖β‖H denotes the norm in H space.

59

Considering the reproducing property in Eq. (4.3), and the regularized empirical error

shown in Eq. (4.4), the estimated density ratio (β̂) can be updated using a new instance in

the target stream, denoted by (W (Nm+1)
T) as follows-

β̂′ = β̂ − η∂βẼNm+1(β̂) (4.5)

where η is the learning rate, and ∂β denotes partial derivative with respect to β. Since we

consider Gaussian kernel model (Eq. (4.1)), replacing the partial derivative in Eq. (4.5), we

get-

β̂′ = β̂ − η

−Kσ

(
·,W (Nm+1)

T

)
β̂
(
W (Nm+1)

T

) + λβ̂

 (4.6)

Using the Eq. (4.1), values in α should therefore be updated as follows-
α̂′i ← (1− ηλ)α̂i+1 i = 1, . . . , Nm − 1

α̂′i ←
η

β̂
(
W(Nm+1)

T

) i = Nm

(4.7)

Algorithm 6 outlines the online updating of α. As discussed before, a new instance in

the target stream changes the optimization problem in Eq. (4.2). Therefore, α needs to

be updated along with constraint satisfaction. On the contrary, if the new instance arrives

in the source stream, it does not affect the optimization problem directly. However, the

constraints may be violated due to the new instance. Therefore, the constraints need to be

satisfied again. Subsequently, the corresponding sliding window is updated with the new

instance.

4.1.2 Training and Classification

FUSION uses an ensemble classifier, denoted as M. We start by loading the first Nm

instances from S and T into WS and WT respectively, which are referred to as the warm-

up period data. FUSION trains the first model in the ensemble using the warm-up period

60

Algorithm 6 UpdateAlpha: Update DRM Parameters

Input: Source instances WS =
{
W (i)

S

}Nm
i=1

, target instances WT =
{
W (i)

T

}Nm
i=1

, new in-

stance x, the kernel width σ, the regularization parameter λ, and the learning rate η.
Output: Updated DRM parameters, α = {α}Nmi=1.

1: if x ∈ S then
2: W (Nm+1)

S ← x.

3: p(j) = 1
Nm

∑Nm
i=1 Kσ(W (i+1)

S ,W (j)
T), j = 1, . . . , Nm.

4: Go to Line 10.
5: end if
6: W (Nm+1)

T ← x.

7: p(j) = 1
Nm

∑Nm
i=1 Kσ(W (i)

S ,W
(j+1)
T), j = 1, . . . , Nm.

8: β̂(W (Nm+1)
T) =

∑Nm
i=1 αiKσ(W (Nm+1)

T ,W (i)
T).

9: Update α using Eq. (4.7).
10: Satisfy constraints:

α← α + (1− pTα)p/(pTp),
α← max(0,α),
α← α/(pTα).

11: if x ∈ S then
12: W (i)

S ←W (i+1)
S , i = 1, . . . , Nm.

13: else
14: W (i)

T ←W (i+1)
T , i = 1, . . . , Nm.

15: end if
16: Return α = {α}Nmi=1.

data. However, due to covariate shift between the source stream (S) and the target stream

(T), importance weights for labeled source data should be considered in the learning process.

These importance weights are estimated by the Density Ratio Estimation (DRM) module

using warm-up period data from WS and WT as follows-

β̂
(
W (i)

S

)
=

Nm∑
j=1

αjKσ

(
W (i)

S ,W
(j)
T

)
, i = 1, . . . , Nm (4.8)

Any learning algorithm that incorporates importance weight of training instances can be

used in FUSION. As new instances arrive in S or T , the ensemble classifier M is updated

if there is a drift to ensure that it represents the current concepts. A new base model is

trained using data in WS and WT at that time. Drift detection and updating method used

61

by FUSION will be discussed later in this section. FUSION predicts the majority voted class

in the ensemble as the class of an incoming test instance from the target stream.

4.1.3 Drift Detection Module (DDM)

As mentioned before, PT (x) is estimated by P̂T (x) = β̂(x)PS(x). The classifier is updated

following a drift, i.e., a significant difference between PT (x) and β̂(x)PS(x). Let α0 be the

set of initial parameters. These parameters are updated online as new instances arrive in S

or T . Let αt be the set of parameters at time t. Let β̂0 and β̂t are density ratios defined by

α0 and αt respectively. The following likelihood ratio measures the deviation of the weighted

training distribution from the test distribution at time t.

S =
Nm∑
i=1

ln
PT

(
W (i)

T

)
β̂0PS

(
W (i)

T

) =
Nm∑
i=1

ln
β̂t

(
W (i)

T

)
β̂0

(
W (i)

T

)
A drift is detected if S > − ln(τ), where τ is a user-defined parameter. It can be proved

that the false alarm rate of the drift detection algorithm is bounded by τ . The efficiency of

FUSION stems from the fact that in addition to estimating importance weights, it uses the

same Gaussian kernel model for drift detection. Therefore, FUSION detects drift without

adding any extra overhead.

Algorithm 7 sketches drift detection of FUSION. A drift is detected if the drift score

S, i.e., the sum of log-likelihood ratios is greater than a pre-fixed threshold. As α is up-

dated online with any new instance in S or T , both importance weight estimation and drift

detection of FUSION are efficient.

4.1.4 Classifier Update

Algorithm 8 sketches the update procedure of FUSION. If a significant difference, i.e., a

drift between the distributions represented by weighted source and target data is detected,

62

Algorithm 7 DetectDrift: Drift Detection

Input: Target instances WT =
{
W (i)

T

}Nm
i=1

, Set of initial parameters {α0
i }
Nm
i=1, Set of current

parameter {αti}
Nm
i=1, The kernel width σ, and The parameter τ .

Output: True if drift is detected, else False.
1: β̂0(W (i)

T) =
∑Nm

j=1 α
0
jKσ(W (i)

T ,W
(j)
T) for i = 1, . . . , Nm.

2: β̂t(W (i)
T) =

∑Nm
j=1 α

t
jKσ(W (i)

T ,W
(j)
T) for i = 1, . . . , Nm.

3: S =
∑Nm

i=1 ln
β̂t(W(i)

T)

β̂0(W(i)
T)

.

4: Return S > − ln(τ).

the Gaussian kernel model in (4.1) needs to be updated by re-evaluating α. Therefore, if a

drift is detected, α is recalculated from WS and WT using Algorithm 5. Then, importance

weight of each instance in WS is evaluated following Eq. (4.8) using the re-evaluated α.

Next, a new model is trained based on instances from WS along with importance weights.

Finally, the ensemble classifier M is updated using the newly trained model along with

re-initializing WS, and WT . The maximum number of models M can contain is L. If M

contains less than L models currently, the new model is simply added toM. Otherwise, the

least desired model in the ensemble is replaced by the new model.

Algorithm 8 UpdateClassifier: Update the Classifier

Input: Target instances WT =
{
W (i)

T

}Nm
i=1

, DRM parameters {αi}Nmi=1, the kernel width σ,

and threshold τ .
Output: The updated ensemble.

1: Get α from WS and WT using Algorithm 5 and 6.

2: Calculate
{
β̂(W (i)

S)
}Nm
i=1

using Eq. (4.8).

3: Train a new classifier Mn using weighted WS.
4: Find the least desired model, M ′, in the current ensemble.
5: Update the ensemble by replacing M ′ with Mn.
6: Return the updated ensemble classifier.

As instances in T are unlabeled, it is not practical to find the least desired model by

calculating accuracy. Rather, we calculate the confidence of a classifier on each instance in

WT , and replace the model having the least average confidence. We use SVM as the base

63

model in our experiments. A method to produce probabilistic output from an SVM model

has been proposed in (Platt, 1999). We use the probability associated with each predicted

class as its confidence in classification. Confidence for most classifiers can be calculated from

classification metadata. For examples, the confidence of Bayesian classifier and clustering

based classifiers can be estimated using associated probabilities and techniques proposed

in (Haque et al., 2016) respectively.

4.2 Theoretical Analysis

In this section, first we analyze the convergence rate of density ratio generated by the Den-

sity Ratio Estimation (DRM) module. Then, we derive the time and space complexity of

FUSION.

4.2.1 Convergence Rate

In order to get the convergence rate, we first prove that the error function Ẽi(β̂) is a strictly

convex function, and gradient of Ẽi(β̂) is Lipschitz continuous and bounded. Next, we find

the convergence rate of UpdateAlpha (Algorithm 6). Finally, we determine the convergence

rate of the Density Ratio Estimation(DRM) module.

Lemma 1. Ẽi(β̂) is a strictly convex function, i.e., Ẽi(tβ̂′+(1−t)β̂) < tẼi(β̂′)+(1−t)Ẽi(β̂).

Proof. From the definition, Ẽi(β̂) = − log β̂(W (i)
T) + λ

2

∥∥∥β̂∥∥∥2

H
.

Since logarithm is a concave function, we have-

log(tβ̂′ + (1− t)β̂) > t log β̂′ + (1− t) log β̂ (4.9)

λ

2
‖tβ̂′ + (1− t)β̂‖2 <

λt

2
‖β̂′‖2 +

λ(1− t)
2

‖β̂‖2 (4.10)

Then from Eq. (4.9) and Eq. (4.10), we get

64

Ẽi(tβ̂′ + (1− t)β̂) < tẼi(β̂′) + (1− t)Ẽi(β̂) (4.11)

Here, we assume that β̂′ is not equal to β̂.

Lemma 2. Gradient of Ẽi(β̂) is Lipschitz continuous and bounded, i.e.,∥∥∥∇Ẽi(β̂′)−∇Ẽi(β̂)
∥∥∥ ≤ L

∥∥∥β̂′ − β̂∥∥∥, where L > 0.

Proof. The gradient of Ẽi, ∇Ẽi(β̂) = −Kτ (·,W(i)
T)

β̂
+ λβ̂

Therefore-

∥∥∥∇Ẽi(β̂′)−∇Ẽi(β̂)
∥∥∥ =

∥∥∥∥∥−Kτ (·,W (i)
T)

β̂′
+ λβ̂′ +

Kτ (·,W (i)
T)

β̂
− λβ̂

∥∥∥∥∥
≤ |λ|

∥∥∥β̂′ − β̂∥∥∥+

∣∣∣∣∣Kτ (·,W (i)
T)

β̂β̂′

∣∣∣∣∣ ∥∥∥β̂′ − β̂∥∥∥
≤ L

∥∥∥β̂′ − β̂∥∥∥
Here, |λ|+

∣∣∣∣Kτ (·,W(i)
T)

β̂β̂′

∣∣∣∣ ≤ L, assuming that β̂, β̂′ 6= 0.

Theorem 1. Assume there are positive numbers M , D, such that
∥∥∥Ẽi(β̂′)∥∥∥ ≤ M and∥∥∥β̂′ − β̂∥∥∥2

≤ D. Then, for step size η = 1
γN

, E[Ẽi(β̂′) − Ẽi(β̂)] ≤ LQ
2N

, where Q =

max

{
η2M2

2ηc−1
,
∥∥∥β̂′ − β̂∥∥∥2

}
.

Proof. From Lemma 2, for any W (i)
T , we know that∥∥∥∇Ẽi(β̂′)−∇Ẽi(β̂)

∥∥∥ ≤ L
∥∥∥β̂′ − β̂∥∥∥

Therefore, we have-

Ẽi(β̂′) ≤ Ẽi(β̂) +
1

2
L
∥∥∥β̂′ − β̂∥∥∥ (4.12)

E[Ẽi(β̂′)− Ẽi(β̂)] ≤ 1

2
L ∗ E

[∥∥∥β̂′ − β̂∥∥∥2
]

(4.13)

65

Then from Eq. (4.12) and Eq. (4.13), we can get

E[Ẽi(β̂′)− Ẽi(β̂)] ≤ LQ

2N
(4.14)

Therefore, the convergence rate for UpdateAlpha (Algorithm 6) is O
(

1
N

)
, where N is the

sample size.

The convergence rate of LearnAlpha (Algorithm 5) is O
(
n−

1
2+γ

)
for arbitrary small

γ > 0, where n is the number of instances (Sugiyama et al., 2008). Assuming that the

parameters of the DRM module are estimated initially by LearnAlpha algorithm using N1

number of instances, and thereafter updated online by UpdateAlpha algorithm using N2

instances (N2 >> N1), the convergence rate of DRM is O

(
1+N

1+γ
2+γ
1

N1+N2

)
.

4.2.2 Time and Space Complexity

FUSION has four modules, i.e., Density Ratio Estimation (DRM), Drift Detection (DDM),

Classification, and Update. DRM has two operations, one is to learn α (Algorithm 5),

and the other one is to update α online (Algorithm 6). Time complexity to learn α is

O(N2
m), where Nm is the size of the sliding windows. Time complexity to update α is

O(Nm). As DRM learns α only once at the beginning, and updates it onward, the amortized

time complexity of DRM is less than O(N2
m). Time complexity of DDM is O(Nm). Time

complexity of classification and update depends on the learning algorithm used as the base

model. Therefore, FUSION has total time complexity of O(N2
m) + f(Nm), where f(Nm)

is the time complexity for training a new model. However, amortized time complexity of

FUSION is much less as α is learned from data occasionally only if a data drift is detected

at Line 15, or initially at Line 5 of Algorithm 4.

The space complexity of DRM is O(N2
m), which dominates space complexities of other

modules. Moreover, most learning algorithms have space complexity less than that. There-

fore, overall space complexity of FUSION is O(N2
m). Both time and space complexity of

66

FUSION are functions of Nm. In real-world applications, Nm can be tuned to execute FU-

SION within available resource.

4.3 Evaluation

In this section, we describe the experiment setup, and evaluate the proposed approach using

synthetic and benchmark real-world datasets. We compare the performance of the proposed

approach with a number of baseline methods.

4.3.1 Datasets

Table 4.2 lists the datasets used in the experiments. The first four datasets are from real-

world, all of them are publicly available. The ForestCover and Physical Activity Monitoring

(PAMAP) datasets are collected from the UCI repository as mentioned in Section 3.11.1 of

Chapter 3. The KDD (Lichman, 2013) dataset contains TCP connection records extracted

from LAN network traffic over a period of two weeks. Each record refers either to a normal

connection or an attack. Without loss of generality, we use the first 200, 000 data instances

from the KDD dataset. The last real-world dataset used in this chapter is Electricity (MOA,

2015), which contains data collected from the Australian New South Wales Electricity Mar-

ket. In this market, the price is affected by demand and supply. The class label identifies

the change of the price relative to a moving average of the last 24 hours.

SynRBF@X are synthetic datasets generated using the RandomRBFGeneratorDrift tool

from MOA (Bifet et al., 2010) framework as mentioned in Section 3.11.1 of Chapter 3, where

X is the Speed of change of centroids in the model. We generate two such datasets using

X = {0.002, 0.003} to evaluate the approaches on concept drifts having various intensities

and frequencies. We generate two versions of SynRBF@002, using a different number of

cluster centroids and classes. We normalize all the datasets used, and reshuffle the instances

from different classes randomly to remove novel classes from them.

67

We generate a biased source stream from each dataset mentioned above using a method

similar to previous studies (Huang et al., 2006; Chandra et al., 2016) as follows. First, we

detect concept drifts in the dataset by employing a Näıve Bayes classifier to predict class

labels, and monitoring its performance using ADWIN, similar to (Bifet and Gavaldà, 2007).

A minibatch is constructed from data instances between the points at which ADWIN detects

a significant change in the performance, i.e., a concept drift. Following (Huang et al., 2006),

we first compute the sample mean x̄ of a minibatch. Next, we divide the minibatch to

form the source and target minibatches. Each instance x is selected to be included in the

biased source minibatch according to the probability P (ξ = 1|x) = exp
(
−‖x−x̄‖

2

2σ2

)
, where

σ is the standard deviation of ‖x− x̄‖, for all x in the minibatch. Finally, we select n%

of the instances in the minibatch to be included in the source minibatch, and the rest of

the instances are included in the target minibatch. The source and target minibatches are

concatenated together to form the source and the target stream respectively. We vary n in

our experiments to introduce different level of sampling bias between the source and target

streams.

4.3.2 Baseline Methods

The first baseline method we use is Multistream Classifier (MSC) (Chandra et al., 2016),

which is the only available method in the literature for Multistream classification. MSC uses

Support Vector Machine (SVM) as the base classifier. To implement the base classifier, we

use weighted LibSVM library (Chang and Lin, 2011) with RBF kernel. Moreover in MSC,

Kernel Mean Matching (KMM) (Huang et al., 2006) has been used for data shift adaptation.

We evaluate the quadratic program in KMM using the CVXOPT python library (Dahl and

Vandenberghe, 2008). To select the parameters of KMM, we use Bkmm = 1000, εkmm =
√
NS−1√
NS

, and γkmm as the median of pairwise distances in the training set, as suggested

in (Chandra et al., 2016).

68

Although MSC is the only available method for Multistream classification, there are a

number of methods available for traditional data stream classification. We use SVM and

Adaptive Hoeffding Tree (AHT) (Bifet et al., 2010) on a single stream formed by combining

the source and the target stream to examine if these approaches really suffer in presence of

covariate shift and asynchronous drift in streaming data.

4.3.3 Setup

We implemented the proposed approach FUSION and one of the baseline methods MSC

using Python version 2.7.6. To implement SVM and AHT, we used Weka (Hall et al., 2009)

and MOA (Bifet et al., 2010) respectively. All the methods have been evaluated using a

Linux machine with 2.40 GHz core and 16 GB of main memory. For a fair comparison,

we have used SVM with the RBF kernel as the base classifier in the proposed approach

(FUSION). As mentioned in Section 4.1.1, the kernel width (σ) for the Gaussian kernel

model in FUSION is selected by likelihood cross-validation. In the experiments, we have

used Nm = 500, and L = 2, and τ = 0.0001. Moreover, we used regularization parameter

λ = 0.01 and learning rate η = 1 following (Kawahara and Sugiyama, 2012).

4.3.4 Classification Performance

The first set of experiments are designed for comparing classification accuracy and execution

time of the approaches considered on all the datasets mentioned in Table 4.2.

Classification Accuracy

Classification accuracy on different datasets have been shown in Table 4.3. The proposed

approach (FUSION) clearly outperforms all the other baseline approaches. As stated before,

we apply SVM and AHT on the combined stream for examining if simply combining the

source and the target streams is useful. For a fair comparison, we consider that true labels

69

T
ab

le
4.

2:
C

h
ar

ac
te

ri
st

ic
s

of
d
at

as
et

s

D
a
ta

se
t

#
fe

a
tu

re
s

#
cl

a
ss

e
s

#
in

st
a
n
ce

s
F

or
es

tC
ov

er
54

7
15

0,
00

0
K

D
D

42
23

20
0,

00
0

P
A

M
A

P
53

19
15

0,
00

0
E

le
ct

ri
ci

ty
8

2
45

,3
11

S
y
n

R
B

F
@

00
2-

1
50

5
10

0,
00

0
S

y
n

R
B

F
@

00
2-

2
70

7
10

0,
00

0
S

y
n

R
B

F
@

00
3

70
7

10
0,

00
0

T
ab

le
4.

3:
C

om
p
ar

is
on

of
p

er
fo

rm
an

ce

d
at

as
et

F
U

S
IO

N
M

S
C

A
H

T
S

V
M

A
cc

u
ra

cy
T

im
e

(S
ec

on
d

s)
A

cc
u

ra
cy

T
im

e
(S

ec
on

d
s)

A
cc

u
ra

cy
T

im
e

(S
ec

on
d

s)
A

cc
u

ra
cy

T
im

e
(S

ec
on

d
s)

F
or

es
tC

ov
er

8
5
.1

0
46

9.
89

84
.4

27
0.

57
61

.5
2

0.
05

69
.2

9
8.

78
K

D
D

9
7
.3

0
41

7.
85

96
.8

0
45

1.
54

97
.2

0.
05

96
.2

9
10

.0
P

A
M

A
P

9
9
.8

0
47

1.
99

97
.4

0
56

4.
56

94
.9

5
0.

08
88

.0
4

7.
54

E
le

ct
ri

ci
ty

7
6
.5

0
23

8.
33

74
.6

0
60

1.
08

75
.0

2
0.

02
73

.3
7

0.
09

S
y
n

R
B

F
@

00
2-

1
9
8
.1

0
41

5.
22

93
.6

0
53

3.
33

85
.5

8
0.

07
86

.2
9

8.
51

S
y
n

R
B

F
@

00
2-

2
9
6
.2

0
56

1.
86

69
.8

0
23

2.
34

83
0.

13
44

.1
3

7.
72

S
y
n

R
B

F
@

00
3

9
3
.1

0
59

1.
18

58
.3

0
19

4.
49

80
.1

1
0.

12
41

.2
8

8.
75

70

of only the source stream instances are available. Since both SVM and AHT are fully

supervised models, we update the model on labeled source stream data instances once a

concept drift is detected. We use ADWIN (Bifet and Gavaldà, 2007) for detecting concept

drifts. Performance of these baseline methods is evaluated on unlabeled target stream data.

We observe that SVM and AHT perform poorly compared to the proposed approach on

both real-world and synthetic datasets. It indicates that SVM and AHT suffer on the

combined stream due to not handling data shift and asynchronous data drifts as stated in

Section 2.2.2. The proposed approach also outperforms MSC by a big margin especially on

synthetic datasets, where we introduce frequent concept drifts. This indicates that FUSION

adapts to data shift and data drifts more efficiently than MSC.

Execution Time

As discussed in Section 4.2.2, amortized time complexity of FUSION is less than O(N2
m) +

f(Nm), where Nm is the size of the sliding windows, and f(Nm) is the time complexity for

learning a new model. On the contrary, time complexity of MSC is O(N3
m), where Nm is the

maximum size of the sliding windows. Therefore, worst case time complexity of FUSION is

better than MSC. Table 4.3 shows average time to process 1000 instances (in seconds) by the

approaches on different datasets. We observe that FUSION achieves competitive execution

time compared to MSC if not better. Online density ratio estimation, and inherent drift

detection contribute to the improved performance of FUSION in terms of execution time.

The other two baselines SVM and AHT shows better execution time understandably as they

do not counter for data shift and asynchronous data drift adaptation.

4.3.5 Parameter Sensitivity

The next set of experiments are designed to examine parameter sensitivity of FUSION. In

these experiments, we have used Nm = 800, L = 1, and τ = 0.0001 as the default setting if

not mentioned otherwise.

71

A
cc

ur
ac

y

70

75

80

85

90

95

100

T
im

e
(S

ec
on

ds
)

1000

1050

1100

1150

1200

1 2 3 4 5 6 7 8

L

Accuracy
Time (Seconds)

(a) Sensitivity to the ensemble size
A

cc
ur

ac
y

75

80

85

90

95

100

T
im

e
(S

ec
on

ds
)

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

400 600 800 1000 1200

Nm

Accuracy
Time (Seconds)

(b) Sensitivity to the size of the sliding window

A
cc

ur
ac

y

80

85

90

95

100

T
im

e
(S

ec
on

ds
)

1000

1050

1100

1150

1200

1250

0.005 0.02 0.05 0.07 0.1

t

Accuracy
Time (Seconds)

(c) Sensitivity to the drift detection parameter

0.1 0.2 0.3 0.4 0.5

Sampling Ratio

60

70

80

90

100

A
cc

ur
ac

y

FUSION
MSC
AHT
SVM

(d) Sensitivity to Sampling Bias

Figure 4.2: Parameter sensitivity of FUSION on ForestCover dataset

Ensemble Size

First, we vary the ensemble size (L), and observe how it affects FUSION on the ForestCover

dataset from Figure 4.2a. We observe that initially with increasing ensemble size, accu-

72

racy also increases. However, further increasing the ensemble size decreases the accuracy

slightly, possibly due to a correlation among individual model errors (Tumer and Ghosh,

1996). The execution time of FUSION increases slightly with increasing ensemble size. As

mentioned before, unlike MSC, FUSION uses an ensemble classifier containing only models

trained for predicting target stream data. As a consequence, ensemble management is much

lightweight in FUSION compared to MSC. Therefore, changing ensemble size does not affect

the execution time of FUSION significantly.

Maximum Window Size

Next, we examine effect of window size on FUSION using the ForestCover dataset in Fig-

ure 4.2b. We observe that the accuracy remains similar with little fluctuations as the size of

the sliding window (Nm) increases. However, the execution time increases with the size of

the sliding window. The time complexity of FUSION is quadratic with respect to Nm as ana-

lyzed in Section 4.2.2, which is reflected in the experiment result. In real-world applications,

Nm can be tuned to execute FUSION within the resource limit.

Drift Detection Parameter

Figure 4.2c shows effect of the drift detection parameter (τ) on FUSION. We mentioned in

Section 4.1.3 that the false alarm rate of the drift detection algorithm is bounded by τ . We

observe from the figure that as τ increases, the number of false alarms produced by the drift

detection increases, and the classifier is updated using wrong data instances. Therefore, the

accuracy decreases and the execution time increases with increasing τ as expected.

Sampling Bias

Finally, we observe the performance of FUSION with different sampling bias introduced in

ForestCover dataset from Figure 4.2d. As discussed in Section 4.3.1, we vary sampling bias

73

in the dataset by varying sampling ratio between the source and the target stream. As an

example, sampling ratio 0.1 means that we sample only 10% data to be labeled, i.e., included

in the source stream data. The rest 90% data are considered unlabeled and included in the

target stream data. Therefore, increasing sampling ratio results into decreasing sampling

bias and vice versa. We observe that all the methods have better accuracy as the sampling

ratio increases. However, the proposed approach FUSION exhibits the best performance. We

also observe that performance of AHT and SVM improve rapidly with increasing sampling

ratio, as the penalty for not handling sampling bias reduces.

To summarize, the experiments indicate that FUSION is not much sensitive to its pa-

rameters. However, it seems that choosing good values for L and Nm is vital for getting

better performance. These parameters can be set by doing cross-validation on initial warm-

up period data. Furthermore, as the time and space complexity of FUSION depends on Nm,

it can be tuned for executing FUSION within the resource limit.

74

CHAPTER 5

SDKMM: SAMPLING-BASED DISTRIBUTED KERNEL MEAN

MATCHING1

As the limitation of labeled data instances has become a reality, covariate shift due to various

reasons, such as sampling bias, has also become a common problem. Recent studies have

identified the sampling bias problem in areas such as natural language processing (Jiang

and Zhai, 2007), computer vision (Bergamo and Torresani, 2010), and text mining (Chen

et al., 2009). As mentioned in Chapter 5, traditional classifiers based on “stationary distri-

bution assumption” greatly suffer in the presence of sample selection bias (Zadrozny, 2004).

Therefore, the problem of covariate shift adaptation has attracted data mining researchers

in recent years.

Most algorithms for addressing sampling bias first estimate corresponding distributions,

and then apply appropriate corrections based on the estimation (Huang et al., 2006). How-

ever, estimating distribution from a multidimensional data itself is known to be a hard

problem (Harel et al., 2014). There are a few approaches available in the literature that

address sampling bias without estimating the biased probability densities. Kernel Mean

Matching (KMM) (Huang et al., 2006) is such a approach, which estimates density ratio for

each training instance x , denoted by β(x) = Pte(x)
Ptr(x)

, directly by minimizing mean discrep-

ancy between the training and test data distributions in a Reproducing Kernel Hilbert Space

(RKHS) (Gretton et al., 2009). These density ratios, also referred to as importance weights,

are then used to adapt the given training data for learning an appropriate model to perform

prediction on test data (Chandra et al., 2016).

1 c©2016 IEEE. Portions Adapted, with permission, from A. Haque, Z. Wang, S. Chandra, Y. Gao, L.
Khan, and C. Aggarwal, “Sampling-based Distributed Kernel Mean Matching using Spark,” IEEE Interna-
tional Conference on Big Data (Big Data), pp. 462-471, December 2016; c©2016 IEEE. Portions Adapted,
with permission, from S. Chandra, A. Haque, L. Khan, and C. Aggarwal, “Efficient Sampling-Based Kernel
Mean Matching,” IEEE International Conference on Data Mining (ICDM), pp. 811-816, December 2016.

75

KMM solves a quadratic optimization program (more details in Section 5.1.2) to estimate

importance weights for training data instances. This approach has a time complexity cubic in

the size of training data, and linear with respect to the test data size. Therefore, despite being

very useful in addressing sampling bias, KMM often becomes a bottleneck when employed

in data mining operations such as data stream classification, where the classifier needs to

be updated regularly (Haque et al., 2016). Moreover, computations in KMM require the

whole training and test dataset to be in the memory. In scenarios where the dataset is

distributed across multiple systems, one cannot directly employ KMM to perform density

ratio estimations for the complete dataset.

One can use a smaller subset from the original dataset to overcome the above challenge.

However, density ratio estimation depends on the distribution represented by the dataset

used, i.e., data distribution of the subset in this case. Therefore, the subset generated should

preserve the original data distribution. Constructing such a subset from a multidimensional

data is not trivial. First, this subset may have a completely different data distribution from

its original superset. Second, all data patterns in the original dataset may not be captured

within this subset, which might limit its relevance in applications such as data classification.

In this chapter, we present a sampling-based approach to address the limited scalability

problem in KMM. More specifically, instead of using the whole training and test dataset at

once, we first generate the number of bootstrap samples of size m from the training data of

size n (m < n). It is well established that the distribution represented by bootstrap samples

closely follow the original distribution (Bickel and Freedman, 1981). Moreover, the number

of training samples is determined in such a way that each instance in the original training

set is selected at least once with very high probability. In addition to taking samples from

the training set, we split the test dataset into a number of partitions. Then, we consider

each possible pair of training sample and test partition as a train-test component. Next, we

apply KMM on each of the components separately. Finally, we aggregate instance weights

calculated from the components to estimate weight for each training instance.

76

Importantly, we show that KMM can be applied to different train-test components in-

dependently from each other. Therefore, the presented approach can be applied to large

datasets in parallel and distributed fashion. It can reduce the overall time of calculating

instance weights due to the small size of the components. Moreover, increasing number

of training samples and test partitions, i.e., increasing number of components may help in

improving quality of density ratio estimation, without increasing the execution time of this

approach. Motivated by this, we propose a distributed version of the sampling approach. We

implement it using Apache Spark, a distributed cluster computation framework. Experiment

results show a significant speed up achieved by the distributed version while maintaining very

competitive estimation accuracy.

The primary contributions of our work are as follows-

1. We present a method to address limited scalability of Kernel Mean Matching (KMM) by

dividing training and test data into samples and partitions respectively, and applying

KMM on each pair of sample and partition (referred to as components).

2. We show that KMM on different components can be applied independently in parallel

and distributed manner. Therefore, we propose a distributed version of the sampling

algorithm.

3. We implement the algorithm using Apache Spark. We discuss the design challenges of

implementing this algorithm in a distributed environment, and propose design choices

to address those challenges.

4. We thoroughly evaluate the proposed approach over benchmark datasets. The exper-

iment results show that the proposed approach achieves significant speed up over the

centralized algorithm. Moreover, experiment data also indicates that using a larger

training data only improves the estimation accuracy, with minimal or no effect on

execution time.

77

5.1 Background

As the proposed approach in this chapter is based on the Kernel Mean Matching (KMM)

algorithm and implemented using Apache Spark, we provide a brief discussion on KMM and

Spark, along with a list of frequently used notations in this section.

5.1.1 Notations

Table 5.1: Commonly used symbols and terms

Xtr: Training data covariates m : Size of each training sample
Xte: Test data covariates η : Sampling error tolerance
D : Domain d : Number of dimensions
x : Set of covariates (data instance) β(x): Weight of instance x
y : Class label k : Number of test partitions
s : Number of training samples C : Set of train-test components
ntr, nte : Total number of train and test instances S,P : Set of training samples and test partitions

Table 5.1 lists frequently used symbols in this chapter. In general, we use a bold letter

to indicate a set, and a capital-bold letter to indicate a set of sets. Elements of a set are

typically indexed by a subscript integer, if not specified otherwise. For example, Xtr denotes

training data covariates, and X
(i)
tr denotes the ith data instance in the training data. A hat

or tilde over any symbol indicates estimated value.

5.1.2 Kernel Mean Matching

The idea in Kernel Mean Matching (KMM) is to minimize the mean distance between

weighted training data distribution β(x)Ptr(x) and corresponding test data distribution

Pte(x) in a Reproducing Kernel Hilbert Space (RKHS) F with feature map φ : D → F .

Mean distance is measured by computing the Maximum Mean Discrepancy (MMD)∥∥Ex∼Ptr(x)[β(x)φ(x)]− Ex∼Pte(x)[φ(x)]
∥∥ (5.1)

where ‖·‖ is the l2 norm, and x ∈ X ⊆ D is a data instance in dataset X. Here, it is

assumed that Pte(·) is absolutely continuous with respect to Ptr(·), i.e. Pte(x) = 0 whenever

78

Ptr(x) = 0. Additionally, the RKHS kernel h is assumed to be universal in D. It has

been shown that under these conditions, minimizing MMD in Equation 5.1 converges to

Pte(x) = β(x)Ptr(x) (Yu and Szepesvári, 2012).

In particular, minimizing MMD to obtain optimal importance weights is equivalent to

minimizing the corresponding quadratic program that approximates the population expec-

tation with an empirical expectation. The empirical approximation of MMD (Equation 5.1)

to obtain the desired β̂(x) is given by

β̂ ≈ arg min
β

∥∥∥∥∥ 1

ntr

∑
x∈Xtr

β(x)φ(x)− 1

nte

∑
x∈Xte

φ(x)

∥∥∥∥∥
2

(5.2)

where β̂(x) ∈ β̂, and Xtr, Xte, ntr, nte are training data covariates, test data covariates, size

of the training data and size of test datasets respectively. The equivalent quadratic program

is as follows.

β̂ ≈ minimize
β

1

2
βTKβ − κTβ (5.3)

subject to β(x) ∈ [0, B] ,∀x ∈ Xtr

and

∣∣∣∣∣ 1

ntr

∑
x∈Xtr

β(x)− 1

∣∣∣∣∣ ≤ ε

where K and κ are matrices of a RKHS kernel h(·) with Kij = h(X
(i)
tr ,X

(j)
tr) ∈ K, and

κi = ntr
nte

∑nte
j=1 h(X

(i)
tr ,X

(j)
te) ∈ κ. B > 0 is an upper bound on the solution search space, and

ε is the normalization error.

5.1.3 Apache Spark

Apache Spark (Zaharia et al., 2010) is an in-memory cluster-computing platform for data

analytics. It allows machines to cache data in the memory avoiding disk I/O, and reuses

it in multiple MapReduce-like parallel operations. In-memory caching contribute to much

faster computation by Spark compared to most MapReduce-based platforms, e.g., Apache

Hadoop.

79

The main abstraction of Spark is Resilient Distributed Dataset (RDD), which is a col-

lection of objects partitioned across a set of machines. RDDs play a central role in the fault

tolerance mechanism of Spark, which maintains transformation operations on each RDD as a

lineage. These lineages are recorded as centralized metadata in the master node. Therefore,

if a partition is lost, Spark applies the same transformation operations on the original RDD

to rebuild just that partition.

5.2 The Proposed Approach

Kernel Mean Matching (KMM) algorithm (discussed in Section 5.1.2) is sequential in nature.

As mentioned in (Miao et al., 2015), it has time complexity of O(n3
tr +n2

trd+ntrnted), where

d is the number of dimensions. In real-world applications, especially in data streams, large

volume of data occur at high speed. In such scenarios, the classifier needs to be updated

regularly to cope with any change of class boundaries known as a concept drift (Haque et al.,

2013). Often the size of data, using which the classifier needs to be updated, are very large

with possible sampling bias between training and test data distributions. KMM can be used

in such scenarios for updating the classifier with sampling bias correction. However, it adds

a bottleneck in the periodic update process due to its limited scalability.

In this chapter, we use the principles of KMM to present a sampling-based distributed

and parallel algorithm for efficient estimation of density ratios. We refer to this algorithm

by Sampling-based KMM or SKMM.

5.2.1 Sampling-based KMM (SKMM)

Given an i.i.d. set of training covariates Xtr and an i.i.d. set of test covariates Xte, such

that Xtr is sufficiently large, the problem is to efficiently estimate density ratio or instance

weight β(x) = Pte(x)
Ptr(x)

for each x ∈ Xtr using the Kernel Mean Matching (KMM) method.

80

Since the main contributing factor to the high time complexity of KMM comes from

ntr, the challenge of limited scalability of KMM can be addressed naively by splitting the

training data into smaller subsets, and applying KMM over each subset independently. Union

of density ratio estimates from all the samples provide instance weight for each training data

instance. However, such a method may not perform well, as a small subset of training

data instances (chosen uniformly at random) may exhibit a glaringly different distribution

compared to the original training data distribution. This can adversely affect the KMM

output (Yu and Szepesvári, 2012).

The estimation of β(x) ∈ β is sensitive to the training data distribution, i.e., the esti-

mates may vary depending on the size and choice of instances used as training data. Boot-

strap methods (Efron, 1992) have been shown to be extremely useful when estimators are

unstable. In this scenario, one can employ a bootstrap sampling process by generating sam-

ples with replacement from the given training data. However, a naive bootstrap sample from

the training data will consist of ntr instances. This does not aid in improving the compu-

tational time efficiency of KMM as desired. Therefore, the m-out-of-n bootstrap sampling

(or m/n bootstrap) method is more appropriate since m < ntr can be fixed. Here, m is

the sample size and n = ntr. We utilize this notion to achieve scalability for sampling bias

correction.

The time complexity of KMM is linear with respect to the size of the test data, i.e.,

nte. If nte is small, KMM applied on the whole test data along with each sample from the

training dataset, estimates weights for corresponding instances in the training sample. If a

sufficiently large number of samples are considered, union of weights from all the samples

provide weight for each instance in the training set. On the contrary, if nte is also large,

which is a realistic scenario in data streams, complete test data cannot fit into the memory.

In such cases, KMM cannot be applied directly using the whole test data. One can address

this challenge by sampling from test data also. However, sampling over the test dataset

81

only approximates its data distribution. Moreover, a method that partitions the test data

and applies KMM on each partition independently, has been demonstrated to achieve better

performance (Miao et al., 2015). Therefore, instead of sampling, SKMM divides test data

into k partitions, where k is specified by the user.

Tr
ai

n
in

g
D

at
a

(X
tr
)

 1

 2

 3

 s

 11 12 13 1k

 21 22 23 2k

 31 32 33 3k

 s1 s2 s3 sk

 1 2 3 K

Test Data (Xte)

Figure 5.1: Illustration of the SKMM process.

Figure 5.1 illustrates this many-to-many computation scheme using training samples and

test partitions. Components are formed by taking each possible pair of training sample and

test partition. Since SKMM takes s samples from the training data, and creates k partitions

in test data, the number of components is s ∗ k. Applying KMM to each of the components

results in weights estimated for instances in the corresponding training sample. Final weight

for an instance is calculated by taking the average of all weights calculated for that instance

from different components.

Algorithm 9 sketches the sampling-based approach. First, SKMM takes samples from

the training data with replacement. Size of each sample is calculated by m = size(Xtr)
k

, where

k is the number of partitions in test data, which is a user input. Ideally, union of all the

samples should contain each instance from the training data at least once. Since sampling is

82

Algorithm 9 SKMM (Xtr, Xte, k, η, θ)

Input: Xtr: Training data covariates; Xte: Test data covariates; k: Number of test data
partitions; η: Sampling error tolerance; θ: KMM parameters.

Output: β̂: Estimated weights for training instances.
1: m← size(Xtr)

k

2: s← d ln η

m ln
(

1− 1
ntr

)e // Number of training samples

3: S ← genSample(Xtr,m, s)
4: P ← partition(Xte, k)
5: C ← cartesian(S,P) // Formation of Components
6: β̃ ← zeros
7: for ∀Cij ∈ C, i← 1 . . . s and j ← 1 . . . k do
8: β̃ij ← KMM(Cij, θ)
9: β̃ ← aggregate(β̃ij)

10: end for
11: Return β̂ =

{
β̂(x) = β̃(x)

count(x)
|∀x ∈

⋃s
i=1 Si

}

done randomly with replacement, inclusion of each training instance in the sampling process

cannot be guaranteed. However, if a sufficiently large number of samples are taken, one can

be highly confident that each instance from the training data will be selected at least once

in the sampling process. We denote this confidence as (1− η), where η is the sampling error

tolerance. The minimum number of samples s to be generated can be calculated using the

following Lemma.

Lemma 3. Let s be the number of training samples generated from Xtr in SKMM, where

each sample Si, i ← 1 . . . s, consists of m instances selected randomly with replacement

from the training data. The minimum number of samples required to be generated such that

an instance x ∈ Xtr belongs to the set
⋃s
i=1 Si with probability at least (1 − η) is given by⌈

ln η

m ln
(

1− 1
ntr

)
⌉

Proof. Probability that a data instance x ∈ Xtr is not selected in any of the s indepen-

dent samples, each having m independent trials, is
(

1− 1
ntr

)ms
. Using the definition,

η ≤
(

1− 1
ntr

)ms
. Therefore, s ≥ ln η

m ln
(

1− 1
ntr

) .

83

SKMM also splits the test data into k partitions. Let P be the set of test data partitions,

where Pj, j ← 1 . . . k, denotes the jth test partition consisting of nte
k

test instances. Next,

SKMM takes a cartesian product of set S and P , to pair each sample from the training set

with each partition of the test data. We refer to each pair as a train-test component, or simply

as a component. Let C be the set of such components, where Cij is one of the components

in set C that consists of the training sample Si and test partition Pj. SKMM then applies

the kernel mean matching algorithm on each of the components Cij ∈ C to calculate weights

for each instance x ∈ Si. In this process, multiple weights may be estimated for training

instances that are selected in multiple samples. Therefore, SKMM aggregates instance-wise

weights denoted by β̃(x) for all x selected in the sampling process, i.e.,
⋃s
i=1 Si. Finally,

SKMM outputs β̂(x) ∈ β̂, density ratio or importance weight for instance x , by dividing

aggregated β̃(x) with the number of times x is selected in
⋃s
i=1 Si.

5.2.2 Sampling-based Distributed KMM (SDKMM)

It is apparent that calculation of instance weights in different components are independent

from each other. In other words, KMM can be applied on different components in parallel,

which makes SKMM highly parallelizable. As discussed before, time complexity of KMM is

cubic in ntr and linear in nte. If computations on different components can be done in parallel

and distributed fashion, total computation time can reduce drastically due to small sizes of

a training sample and a test partition. Motivated by this, we next propose the distributed

version of SKMM, referred to as Sampling-based Distributed KMM (SDKMM).

Figure 5.2 shows the workflow of SDKMM. Following the creation of components from

training samples and test partitions, SDKMM distributes the components to different Map-

pers. Ideally, each Map function should be invoked only on one component Cij for calculating

weights of instances in Si. All the weights from Mappers are then aggregated instance-wise

by a Reducer. Finally, the reducer divides the aggregated weight for each instance by the

84

 11

 1 1

 12

 1 2

 1k

 1 k

 sk

 s k

 s1

 s 1

MAP
Xtr, Xte

MAP
Xtr, Xte

MAP
Xtr, Xte

MAP
Xtr, Xte

Reduce

Figure 5.2: Workflow of SDKMM

number of times that instance is selected in the sampling process to calculate the final

estimated weight for that instance.

Algorithm 10 details the SDKMM approach. First, it calculates the size of each training

sample and the number of such samples at Lines 1-2 according to Lemma 3. Then, it takes

s number of samples, each consisting of m instances selected randomly with replacement

from the training data at Line 3. It also splits the test data into k partitions, and creates

s ∗ k components by considering each possible pair of training sample and test partition

at Lines 4-5. Next, the components are distributed over the Mappers (worker nodes) for

applying KMM on these in parallel. For each component Cij, Map function applies KMM on

training sample Si and test partition Pj. The Map function provides output in 〈key, value〉

pairs for all x ∈ Si, where key is the index of x and value is the estimated weight for x from

Cij, denoted by β̃ij(x).

All these estimated weights for different x ∈ Si are received by the Reducer (worker

node), where
s⋃
i=1

Si denotes the set of all training instances which are selected at least once

in the sampling process. Since the instances are selected randomly with replacement, an

85

Algorithm 10 SDKMM (Xtr, Xte, k, η, θ)

Input: Xtr: Training data covariates; Xte: Test data covariates; k: Number of test data
partitions; η: Sampling error tolerance; θ: KMM parameters.

Output: β̂: Estimated weights for training instances.
1: m← size(Xtr)

k

2: s← d ln η

m ln
(

1− 1
ntr

)e // Number of training samples

3: S ← genSample(Xtr,m, s)
4: P ← partition(Xte, k)
5: C ← cartesian(S,P) // Formation of Components
6: Master node distributes components over worker nodes.
7: MAP:
8: Each worker node calculates instance weights by

applying KMM on each component Cij (consists of
Si and Pj) received.

9: Emit 〈ind(x), β̃ij(x)〉, ∀x ∈ Si.
10: REDUCE:

11: Calculate 〈(ind(x),
∑
β̃(x)), count(x)〉, ∀x ∈

s⋃
i=1

Si.

12: Emit 〈ind(x), β̂(x) =
∑
β̃(x)

count(x)
〉, ∀x ∈

s⋃
i=1

Si.

13: Return β̂ =
{
β̂(x)|∀x ∈

⋃s
i=1 Si

}

instance can be selected in multiple samples. Therefore, the Reduce function first aggregates

all these estimated weights instance-wise, denoted by
∑
β̃(x). To get the final estimated

weight of a training instance x ∈ Si, which is denoted by β̂(x),
∑
β̃(x) is divided by the

number of times x is selected in the sampling process (referred to as count(x)).

5.2.3 Challenges and Design Choices

In this section, we discuss some design challenges that exist in implementing Algorithm 10,

and choices available to address these challenges. First, the main objective of SDKMM is to

reduce execution time for addressing sampling bias. As discussed in Section 5.1.3, Apache

Spark is much faster than other existing cluster computing framework due to in-memory

caching ability. Therefore, we use Spark to implement SDKMM.

86

Second, as shown in Algorithm 10, SDKMM creates components in the master node

by taking every possible combination of training samples and test partitions, and then dis-

tributes these components among the worker nodes for parallel computations. SDKMM is

more efficient when large number of small-size samples are taken from the training dataset,

because the samples can be processed quickly in parallel due to small size of each sample.

At the same time, more samples help to estimate the distribution of the training data more

accurately as discussed in Section 5.2.1. However, taking large number of samples from

training data also increases number of components to a great extent. Often we observe that

total size of components exceeds size of the main memory in the master machine. Therefore,

instead of full data instances, we store only the indices of training and test data instances

in a component. This greatly reduces the total size of the components.

Third, since only indices of instances are stored in the components, worker machines need

access to the original training and test data to form the actual component before applying

KMM. We share the original training and test data among the worker nodes using Spark

Broadcast API before actual Map begins.

Finally, it is desired that only one component be processed per invocation of Map func-

tion. Spark automatically sets the number of Map tasks based on the number of slices in

RDD (Resilient Distributed Dataset) depending on its size. However, SDKMM greatly re-

duces the size of RDD containing components by replacing actual data instances by indices.

Therefore, using default setting does not satisfy the objective of invoking one Map per com-

ponent. To fully utilize the cluster, we set the minimum between the number of cores and

the number of components as number of slices, i.e., number of Map tasks.

5.2.4 Complexity Analysis

The sequential KMM approach has a time complexity of O(n3
tr +n2

trd+ntrnted) (Miao et al.,

2015). The proposed approach (SKMM) creates components by pairing a training sample

87

of size m, and a test partition of size nte
k

. Therefore, time complexity of estimating weights

for all training instances in a component is O(m3 + m2d + mnte
k
d). In case of SDKMM,

time complexity to process all the components remains the same as time to process a single

component due to parallel processing. Finally, the aggregation of weight estimations requires

O(m). Together, the time complexity of SDKMM is O(m3 + m2d + mnte
k
d) + m. Clearly,

SDKMM achieves quicker execution time as k increases, i.e., m decreases. Similarly, the

space complexity of sequential KMM is O((ntr)
2 + ntrnte), whereas that of SDKMM is

O(m2 +mnte
k

+ ntr).

5.3 Evaluation

Table 5.2: Characteristics of datasets

Dataset # Features Total Size
ForestCover 54 50,000

KDD 34 50,000
PAMAP 53 50,000

PowerSupply 2 29,928
SEA 3 50,000

Syn002 70 50,000
Syn003 70 50,000
MNIST 780 50,000

5.3.1 Datasets

Table 5.2 lists the datasets used in the experiments. We use two synthetic datasets, Syn002

and Syn003, which are generated using MOA (Bifet et al., 2010). Others are real-world

datasets, and publicly available (Asuncion and Newman, 2007; Fan et al., 2008). Since the

execution time of centralized KMM increases greatly with increasing size of the dataset,

we consider the first 50,000 instances from each dataset in our experiments. In order to

simulate sampling bias between the training and test data, we follow a procedure similar to

88

a previous study (Huang et al., 2006). For each dataset, we first compute the covariate mean

X̄ of all data instances, and select ntr data instances with probability of P
(
ξ = 1|X(i)

)
=

exp

(
−‖X

(i)−X̄‖2
2σ2

)
, where ξ is an indicator variable with 1 indicating selection of X(i) as a

training instance, and σ is the standard deviation of
∥∥X(i) − X̄

∥∥, ∀X(i) ∈ X. Remaining

part of the dataset is considered for testing.

5.3.2 Baseline Methods

We use two baseline methods to compare performance with our proposed approach SDKMM.

The first baseline approach is the original centralized Kernel Mean Matching (KMM), which

uses the whole training and test data for density ratio estimation. We denote this approach

as CenKMM.

The second baseline method is denoted as EnsKMM, which is proposed by Miao et

al. (Miao et al., 2015). In this approach, first the test data instances are divided into k

partitions. Since β(x) ∝ Pte(x), an ensemble of estimators is then obtained in EnsKMM,

where each estimator estimates weights for all the training instances based on one of the test

partitions and the whole training data. Finally, the estimates from individual estimators are

combined to form β̂ = 1
k

∑k
i=1 β̂i, where β̂i is the set of estimated weights from ith estimator.

While the study demonstrates improvements in accuracy and execution time, computational

efficiently is still limited by requiring the complete training dataset in the memory. Since

computations on individual estimators can be done in parallel, we implement EnsKMM also

using Apache Spark for a fair comparison with the proposed approach.

5.3.3 Setup

We implemented all the approaches considered in this chapter using Python version 2.7.5. We

used the QP solver in CVXOPT python library (Dahl and Vandenberghe, 2008) to execute

the KMM quadratic program, with B = 1000 and ε =
√
ntr−1√
ntr

. Following (Huang et al.,

89

2006), we use a Gaussian kernel with width γ equal to the median of pairwise distances.

All the experiments related to SDKMM and EnsKMM were performed on a cluster running

Spark version 1.5.1. The cluster has 12 nodes, each with eight 2.40 GHz cores and 16 GB

of main memory. In the experiments, we have used ntr = 1000, k = 10, and η = 0.01 as the

default setting if not mentioned otherwise.

5.3.4 Normalized Mean Square Error (NMSE)

In the first set of experiments, we compare goodness of estimated importance weights

by different approaches mentioned in Section 5.3.2. We measure goodness of estimated

weights (denoted as β̂(x) ∈ β̂) by Normalized Mean Square Error (NMSE) defined as

1
n

∑n
i=1

(
β̂(X(i))∑n
j=1 β̂(X(j))

− β(X(i))∑n
j=1 β(X(j))

)
, where β(X(i)) = 1

P (ξ=1|X(i))
, following (Miao et al., 2015).

Figure 5.3 shows NMSE of all the approaches with increasing size of the training set (ntr).

In the experiments, we report natural logarithm of NMSE value for ease of interpretation.

It can be observed that all the approaches show lower NMSE score with increasing size of

the training set as expected. The proposed approach SDKMM shows very competitive per-

formance if not better in terms of weight estimation accuracy compared with CenKMM and

EnsKMM.

In the next experiment, we vary the number of partitions in the test data (k), and observe

the effect on the quality of weight estimation. As discussed in Section 5.2.1, the size of each

training sample m is inversely proportional to the value of k. Moreover, the number of

training samples s is inversely proportional to the value of m. In other words, increasing

value of k results into decreasing m and increasing s, and vice versa. Therefore, it is expected

that NMSE should decrease with increasing k in case of SDKMM, due to a better estimation

of the training data distribution by more bootstrap samples from training data. This is

evident from Figure 5.4, which shows that SDKMM outperforms the other approaches in

most of the cases with increasing value of k.

90

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

−16.5

−15.5

−14.5

−13.5

−12.5

−11.5

−10.5

−9.5

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(a) ForestCover

●

●

●

●

● ●

●

0 500 1000 1500 2000 2500 3000

−18

−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(b) KDD

●

●

●

● ●

●

●

0 500 1000 1500 2000 2500 3000

−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(c) PAMAP

●

●

●

●
●

●

●

0 500 1000 1500 2000 2500 3000

−16

−14

−12

−10

−8

−6

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(d) MNIST

●

●

● ●

●

●
●

0 500 1000 1500 2000 2500 3000

−16

−15

−14

−13

−12

−11

−10

−9

−8

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(e) PowerSupply

●

●

●

●

●

●
●

0 500 1000 1500 2000 2500 3000

−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(f) SEA

●

●

●
●

●

●

●

0 500 1000 1500 2000 2500 3000

−15.5

−14.5

−13.5

−12.5

−11.5

−10.5

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(g) Syn002

●

●

● ● ●

●

●

0 500 1000 1500 2000 2500 3000

−16.5

−15.5

−14.5

−13.5

−12.5

−11.5

−10.5

ntr

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(h) Syn003

Figure 5.3: Logarithm of NMSE with increasing size of training set (ntr)

5.3.5 Execution Time

Total execution time of SDKMM along with baseline approaches with increasing size of

training dataset is shown in Figure 5.5. As discussed in Section 5.2.4, both CenKMM and

EnsKMM have cubic time complexity with respect to the size of the training data (ntr).

However, in SDKMM, components are formed by taking samples from training data, and by

partitioning test data. Moreover, each partition is processed in parallel. Therefore, SDKMM

should have the best performance in terms of execution time among all the approaches

considered, which is evident from Figure 5.5. We observe that with increasing ntr, time

required for estimating instance weights remain almost same in case of SDKMM due to

distributed and parallel execution of components. On the contrary, time increases rapidly in

case of CenKMM and EnsKMM. This is significant since in data streaming scenario, ntr can

be extremely large due to high speed continuous data entering into the system. SDKMM

can be employed in these scenarios.

91

●
● ●

● ●

5 10 15 20 25

−14

−13.5

−13

−12.5

−12

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(a) ForestCover

●

● ●

●

●

5 10 15 20 25

−14

−13.5

−13

−12.5

−12

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(b) KDD

●

●

●
●

●

5 10 15 20 25

−15

−14.5

−14

−13.5

−13

−12.5

−12

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(c) PAMAP

●

●

●

●

●

5 10 15 20 25

−14

−13.5

−13

−12.5

−12

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(d) MNIST

●

●

●

●

●

5 10 15 20 25

−13.5

−13

−12.5

−12

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(e) PowerSupply

●
● ● ●

●

5 10 15 20 25

−14

−13.5

−13

−12.5

−12

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(f) SEA

●

●
● ●

●

5 10 15 20 25

−13.8

−13.6

−13.4

−13.2

−13

−12.8

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(g) Syn002

●

●

●

●

●

5 10 15 20 25

−13.8

−13.6

−13.4

−13.2

−13

−12.8

k

ln
(N

M
S

E
)

● SDKMM
EnsKMM
CenKMM

(h) Syn003

Figure 5.4: Logarithm of NMSE with increasing the number of test partitions (k)

Figure 5.6 shows total time consumed by different approaches with increasing value of

k with ntr = 500. As discussed before, size of each training sample (m) and the number of

training samples (s) are inversely proportional and proportional respectively with respect to

k. Consequently, execution time decreases in general with increasing k due to distributed

processing of smaller sized samples in case of both SDKMM and EnsKMM. However, SD-

KMM requires much lower time than EnsKMM due to sampling from the training data

besides partitioning the test data. Both EnsKMM and SDKMM require lower time than

CenKMM.

5.3.6 Speed up

We compare speed up achieved by SDKMM and EnsKMM on different datasets in Figure 5.7.

We define speed up by Tsq
Td

, where Tsq and Td are the execution time of sequential and

distributed approach respectively on a given set of training and test data. It is clear from the

92

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

3500

ntr

T
im

e
(s

ec
on

d)
● SDKMM

EnsKMM
CenKMM

(a) ForestCover

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

400

800

1200

1600

2000

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(b) KDD

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

3500

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(c) PAMAP

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(d) MNIST

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

100

200

300

400

500

600

700

800

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(e) PowerSupply

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

100

200

300

400

500

600

700

800

900

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(f) SEA

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

900

1800

2700

3600

4500

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(g) Syn002

● ● ● ● ● ● ●

0 500 1000 1500 2000 2500 3000

0

800

1600

2400

3200

4000

4800

ntr

T
im

e
(s

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(h) Syn003

Figure 5.5: Total execution time in seconds with increasing size of training set (ntr)

● ●

● ● ●

5 10 15 20 25

5

15

25

35

45

55

65

k

T
im

e
(S

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(a) KDD

●

●

● ●
●

5 10 15 20 25

3

4

5

6

7

8

k

T
im

e
(S

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(b) PowerSupply

●

●

●

●

●

5 10 15 20 25

3

3.5

4

4.5

5

5.5

6

6.5

7

k

T
im

e
(S

ec
on

d)

● VFKMM
EnsKMM
CenKMM

(c) SEA

●

● ● ● ●

5 10 15 20 25

5

30

55

80

105

130

k

T
im

e
(S

ec
on

d)

● SDKMM
EnsKMM
CenKMM

(d) Syn002

Figure 5.6: Total execution time in Seconds with increasing the number of test partitions
(k)

plots that SDKMM achieves much more speed up compared to EnsKMM. More importantly,

with increasing ntr, speed up of SDKMM increases rapidly, whereas EnsKMM shows only

a limited speed up. As evident from Figure 5.3, larger ntr also results in better estimation

accuracy. Therefore, both Figure 5.5 and Figure 5.7 suggest that with more training data,

SDKMM provides much better estimates while requiring similar execution time. We skip

identical results on some of the datasets in Figure 5.6 and 5.7.

93

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

100

120

ntr

S
pe

ed
 U

p
● SDKMM

EnsKMM

(a) KDD

●
●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0

10

20

30

40

50

60

ntr

S
pe

ed
 U

p

● SDKMM
EnsKMM

(b) PowerSupply

●
●

●

●

●
●

●

0 500 1000 1500 2000 2500 3000

0

9

18

27

36

45

ntr

S
pe

ed
 U

p

● SDKMM
EnsKMM

(c) SEA

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0

40

80

120

160

200

ntr

S
pe

ed
 U

p

● SDKMM
EnsKMM

(d) Syn002

Figure 5.7: Speed up with increasing size of training set (ntr)

●

●

●
●●

0 0.02 0.04 0.06 0.08 0.1

−15

−14.5

−14

−13.5

−13

−12.5

−12

−11.5

−11

η

ln
(N

M
S

E
)

●

ForestCover
KDD
PAMAP
MNIST

Power Supply
SEA
Syn002
Syn003

Forest Cover

(a) η vs ln(NMSE)

●

●
●

●●

0 0.02 0.04 0.06 0.08 0.1

3

6

9

12

15

18

21

24

27

30

33

36

η

T
im

e
(s

ec
on

d)

●

ForestCover
KDD
PAMAP
MNIST

Power Supply
SEA
Syn002
Syn003

Forest Cover

(b) η vs Execution Time

Figure 5.8: Sensitivity to the Sampling error tolerance (η)

5.3.7 Sensitivity

Figure 5.8 shows sensitivity of SDKMM to the parameter η in terms of error and execution

time. We observe from Figure 5.8a that NMSE increases in general with increasing η. On the

contrary, Figure 5.8b indicates that time in general decreases with increasing η. Increasing

η results in lower number of larger size samples. Therefore, increasing η affects inherent

approximation of the training data distribution adversely, which results in increasing NMSE.

Moreover, less number of samples results in slightly less execution time. The possible reason

94

is that smaller number of samples results into cheaper aggregation of weights in terms of

time. In both cases, we observe that NMSE and time changes slowly with increasing η,

indicating that SDKMM is not significantly sensitive to η.

95

CHAPTER 6

CASTLE: A DISTRIBUTED FRAMEWORK FOR DATA STREAM

CLASSIFICATION1

With the proliferation of the Internet of Things (IoT) networks, we observe an outburst of

streams of data in this modern age. It is estimated that until 2020, the size of the digital

universe will double every two years (Yin and Kaynak, 2015). Due to the colossal volume

and high speed, often a special term “Big Data” stream is used to specify such streams of

data. These are characterized by four V ’s, i.e., Volume, Velocity, Variety, and Veracity.

The word “Big” in “Big data” itself defines the volume. At present, the data produced

per day is in quintillion bytes range, which is expected to increase even more in nearby

future (Wang et al., 2014). Systems dealing with Big Data streams receive this high volume

data continuously. Moreover, data in a Big Data stream may have different types of features

and unstructured data. This is why, usually data needs to undergo preprocessing before

applying classification methods, which is an extra overhead. Thus, traditional data mining

systems are not capable enough to classify this huge amount of data, which is constantly in

motion (Zikopoulos et al., 2011).

Finally, veracity refers to uncertainty due to data inconsistency, bias, noise, feature evo-

lution, concept drift etc. Feature evolution occurs when the features in the stream shift

meaning, range, or context, or when new features are added mid-stream. In addition to

these new challenges, concept drift, which is a common challenge in data stream mining, is

1 c©2014 IEEE. Portions Adapted, with permission, from A. Haque, B. Parker, L. Khan, and B. Thu-
raisingham, “Evolving Big Data Stream Classification with MapReduce,” IEEE International Conference
on Cloud Computing, pp. 570-577, June 2014; c©2013 IEEE. Portions Adapted, with permission, from A.
Haque, B. Parker, and L. Khan, “Labeling Instances in Evolving Data Streams with MapReduce,” IEEE
International Congress on Big Data, pp. 387-394, June 2013; c©2013 IEEE. Portions Adapted, with permis-
sion, from A. Haque, B. Parker, L. Khan, and B. Thuraisingham, “Intelligent MapReduce Based Framework
for Labeling Instances in Evolving Data Stream,” IEEE International Conference on Cloud Computing Tech-
nology and Science, pp. 299-304, December 2013; c©2013 IEEE. Portions Adapted, with permission, from
A. Haque, and L. Khan, “MapReduce Based Frameworks for Classifying Evolving Data Stream,” IEEE
International Conference on Data Mining Workshops, pp. 1113-1120, December 2013.

96

also present in analyzing Big Data streams. Therefore, any machine learning technique must

be scalable in order to be suitable in this context.

In this chapter, we propose a scalable distributed framework for addressing the challenges

in classifying Big Data streams. This framework is based on HSMiner (Parker et al., 2012),

which is a multi-tiered ensemble classifier model. HSMiner builds a hierarchy of ensemble

classifiers by breaking down the classification problem. At the bottom of the hierarchy, there

are two distinct types of base learners for different types of features. Non-numeric features

induce Näıve Bayes base classifiers. On the other hand, numeric features induce AdaBoost

ensembles of linear classifiers. After receiving each new chunk of data, the hierarchical

structure is updated to keep this up to date with the current concept trends.

HSMiner (Parker et al., 2012) has been described briefly in Section 6.1. As in a Big Data

stream, high volume data enters continuously into the system, the size of a data chunk that

needs to be processed within a unit time is large. Moreover, the Big Data streams typically

have a large number of numeric features. So, HSMiner requires building a large number

of AdaBoost ensembles for maintaining the hierarchical structure after receiving each new

data chunk. This is an expensive process as the system needs to iterate a number of times

over all data instances in the data chunk for building each AdaBoost ensemble. Therefore,

HSMiner (Parker et al., 2012) may suffer scalability issue in case of Big Data stream.

The process of forming a AdaBoost ensemble for a feature is completely independent of

forming the same for any other feature. So, there is scope for parallel training and main-

tenance of these AdaBoost ensembles. We have used this fact for addressing the limited

scalability problem in HSMiner. In this chapter, we propose the scalable and distributed

version of HSMiner, referred to as CASTLE (Haque et al., 2014). We examine three dif-

ferent MapReduce-based designs to form AdaBoost ensembles for different numeric features

in parallel. Each of the strategies executes only one MapReduce job for building all the

AdaBoost ensembles needed per data chunk. First two designs build all the feature-based

97

AdaBoost ensembles under a particular class in the same Map task. The third design does

not have this constraint. In the third design, the task of building feature-based AdaBoost

ensembles is distributed among different Map tasks regardless of class information.

The primary contributions of this work are as follows:

1. We point out scalability issue of base method HSMiner (Parker et al., 2012). To

address this challenge, we identify independent components of HSMiner for applying

parallelism.

2. We design three MapReduce-based distributed solutions for achieving significant Speed

Up and scalability on HSMiner. We analyze advantages and disadvantages of each of

these solutions.

3. We implement our proposed solutions using Apache Hadoop. We improve performance

of the proposed solutions by making several design choices.

4. We evaluate the performance of CASTLE with the proposed designs on several estab-

lished benchmark datasets, and compare with baseline approaches.

6.1 Background

Our proposed framework CASTLE uses three MapReduce-based designs for improving scal-

ability of Hierarchical Stream Miner (HSMiner) (Parker et al., 2012). We briefly discuss

HSMiner and MapReduce in this section.

6.1.1 Hierarchical Stream Miner (HSMiner)

The core concept behind HSMiner (Parker et al., 2012) is the use of a multi-tiered ensemble,

depicted in Figure 6.1. We break down the multi-class classification problem by creating

98

a top-tier ensemble of per-class classifiers following a one-against-all paradigm. Each per-

class classifier is an ensemble of single class classifiers. Each single class classifier is further

decomposed into feature-based classifiers. The feature-based classifiers may take one of two

forms. Non-numeric features are processed using the Näıve Bayes algorithm. Each numeric

feature, however, is modeled using an AdaBoost ensemble of linear threshold classifiers.

Main Multi-Class
Ensemble

Per Class Ensemble

Single Class
Ensemble

Single Class
Ensemble

Single Class
Ensemble

Per Class Ensemble

Single Class
Ensemble

Single Class
Ensemble

Single Class
Ensemble

Per Class Ensemble

Single Class
Ensemble

Single Class
Ensemble

Single Class
Ensemble

Nominal Feature
(Naïve Bayes)

Numeric Feature
(AdaBoost Ensemble)

Figure 6.1: Hierarchical structure of HSMiner

As the data stream enters into the system, it is segmented into discrete data chunks

for processing. After receiving a new data chunk, this hierarchical model is used to predict

label for each data instance in the chunk. For the prediction, each feature-based classifier

contributes a vote in a range of −1 to +1. Single class ensemble classifiers calculate their

vote by summing up votes from contributing feature-based classifiers under it. Each per-

99

class classifier calculates its vote by summing up votes from all of its member single class

ensembles. Finally, the class label with the highest per-class vote is predicted as the label of

that data instance. A portion of the data chunk is then used as training data to update the

ensembles in order to adapt to changes in the data stream. Upon completion of this routine,

the next data chunk enters into the system, and the process repeats.

Training data is used to update the whole hierarchical structure. For each label present

in the training data, a new single class ensemble is created under corresponding per-class

ensemble. To do this, different feature-based learners under that new single class ensemble

are formed as well. Thus, after receiving a new training data chunk, some new single class

ensembles are added in the hierarchy under different per-class ensembles. Subsequently, these

single class ensembles under different per-class ensembles are evaluated using the newest data

chunk. To keep the number of single class ensembles limited, the system then prunes worst

ensembles based on the evaluation. This process ensures that the overall classifier is kept up

to date with the current concept trends.

HSMiner (Parker et al., 2012) offers several key contributions to address different prop-

erties of Big Data stream classification. First, it uses features in their native format without

performing any data normalization preprocessing. It uses both numeric and non-numeric

features equally. Second, as each class-based classifier maintains its own set of chunk-based

classifiers, which in turn maintain their own set of feature-based classifiers, the features can

be pruned such that only the necessary features are retained for each class. This ensures

that, as features drift in the stream, each class independently adapts to the features best

suited for their target label. Finally, HSMiner shows better efficiency in terms of accuracy

and execution time compared to other state-of-the-art methods which try to solve the similar

problem.

100

6.1.2 MapReduce Programming Model

MapReduce (Dean and Ghemawat, 2008) is a distributed framework and programming model

for processing very large datasets. It is based on master-worker architecture. Typically, one

of the nodes in the cluster works as the master node. When a job is submitted, the master

node assigns input splits to different worker nodes. A worker node, which is assigned a

Map task reads records from assigned splits, transforms each record into a key-value pair,

and sends it to the user-defined Map function. Map function receives input as the form of

key-value pairs, processes these according to functionality provided by user, and emits the

intermediate key-value pairs.

Intermediate key-value pairs from Map functions are then partitioned by the partitioning

function. All the key-value pairs of one partition are assigned to the same worker node, which

now works as a Reducer. Reducer then arranges these intermediate key-value pairs of the

assigned partition into some groups. By default, all values having the same key are grouped

together to form a list of values. User-defined Reduce function is called once for each of the

grouped key and associated list of values (Dean and Ghemawat, 2008). Finally, the output

of the Reducer function is written into Distribute File System (DFS).

6.2 Shortcomings and the proposed Solution

As discussed in Section 6.1, HSMiner builds a number of AdaBoost ensembles for each

numeric feature after receiving each new data chunk. In Big Data streams, the number of

features can be very large. For example, in case of a textual stream, each distinct keyword

is regarded as a feature. So in a large corpus, the number of dimensions, i.e., the number of

features can be in the order of tens of thousands.

To build an AdaBoost ensemble learner for a feature, the number of iterations needed

to form final ensemble classifier is equal to the number of weak classifiers we need in that

101

ensemble (Freund and Schapire, 1995). Moreover, at each iteration, it needs to iterate over

all the data instances of the current data chunk. So, complexity for forming AdaBoost

ensembles under one class-based ensemble is O(n ∗ w ∗ f), where n is the number of data

instances in the data chunk, w is the number of weak classifiers needed in the ensemble,

and f is the number of numeric features, for which we need to form the ensemble. For each

new data chunk, HSMiner needs to build a number of AdaBoost ensembles for each of the

numeric features. Since in Big Data streams, big volume data continuously enters into the

system, the size of data chunk needs to be processed within an unit time can be of a large

size. Thus, our base work (Parker et al., 2012) may face limited scalability while processing

test data instances in (near) real-time, especially when the number of features or size of the

data chunk is large.

To address this problem, we observe that the whole process of forming AdaBoost en-

sembles for one feature is totally independent of forming AdaBoost ensembles for any other

feature. So, AdaBoost ensembles for different features can be formed in parallel. In our

proposed framework, referred to as CASTLE, we propose three MapReduce-based designs,

namely Class Level Distribution (CLD), Improved Class Level Distribution (ICLD) and Fea-

ture Level Distribution (FLD). Next we elaborate details of each of these designs.

6.2.1 Class Level Distribution (CLD)

Only one MapReduce job is executed in CLD after receiving a new data chunk for building

all the feature-based AdaBoost ensembles under different class-based ensembles. In this

design, all the weak classifiers for AdaBoost ensembles under a specific class-based ensemble

are formed in a single Map procedure.

Pseudocode of Mapper for Class Level Distribution is given in algorithm 11. The Map

procedure starts with an initial uniform weight distribution to the data instances in the

current data chunk (line 3). Input to the Map procedure is in <key, value> format. In

102

Algorithm 11 MapperCLD{l, (f1, f2, .., fm, T)}
1: //D contains data chunk loaded from Distributed Cache
2: for i = 1→ m do
3: w1[1..n]← InitializeDataInstanceWeights(n)
4: for t = 1→ T do
5: (h(t), αt, ε)← LearnWeakClassifier(D,wt, fi)
6: wt+1[1..n]← UpdateWeights(D, h(t), wt, ε)
7: Emit (l, (fi, α

t, h(t)))
8: end for
9: end for

this case, key is the name of the class l, under which AdaBoost ensemble needs to be

formed. Value is the list of all features that need AdaBoost ensembles under this class-based

ensemble. For each of the features, CLD executes T number of iterations to create weak

classifiers needed to form AdaBoost ensemble for that feature. At each iteration CLD forms a

weak classifier h(t), calculates error (ε), and assigns weight (α) to this weak classifier. Finally,

Mapper emits output as <key, value> pair (line 7). In this case, the key is only the name

of the class under which feature-based AdaBoost ensembles are created. The corresponding

value is the combination of feature index, the weak classifier which is created in the current

iteration along with its weight. In addition to emitting the output, weight of each data

instance is updated for the next iteration at line 6.

Algorithm 12 ReducerCLD{l, List(f, αtf , h
(t)
f)}

1: AssociativeArray ← LoadClassifiers()
2: for all feature f ∈ AssociativeArray do
3: H(f) ←

∑T
t=1 α

t
fh

(t)
f

4: e← CalculateError(H(f), D)
5: w ← AssignWeight(H(f), e)
6: Emit (l, (f,H(f), e, w))
7: end for

Pseudocode of Reducer for CLD is shown in algorithm 12. In Hadoop, Reducer receives

key and list of values associated to that key from Mapper as input. Values associated with

103

the same key are processed by the same Reducer. In CLD, Reducer receives class label l

as the key and a list of all the weak classifiers that are formed for different feature-based

ensembles under that class label as the value.

As output key from Mapper of CLD is only the name of the class, all weak classifiers,

which are part of all feature-based ensembles under that class come to the same Reducer as

the list of values. This list of weak classifiers is not feature-wise sorted. This means, weak

classifiers for a specific feature can be scattered throughout the list of values. So, Reducer

must have to keep track of weak classifiers for different features. That is why, after receiving

the list of values, Reducer sorts feature-wise weak classifiers in an associative array (line 1).

Reducer forms the final AdaBoost ensemble by taking weighted sum of all the weak

classifiers for that feature at line 3. H(f) denotes AdaBoost ensemble for feature index f .

Reducer also calculates error rate e of this new AdaBoost ensemble on current data chunk

(line 4) and assigns weight w to it (line 5). Finally at line 6, Reducer emits label l as key

and AdaBoost ensemble along with its error rate and weight as the value.

Output from Reducer is written in the HDFS file system, which is eventually copied to

the local file system. AdaBoost ensemble formed using MapReduce-based parallelism are

then extracted from the file afterwards, and used to update the whole hierarchical structure.

6.2.2 Improved Class Level Distribution (ICLD)

Recall that Reducer of CLD uses an associative array to sort the weak classifiers formed

for different feature-based AdaBoost ensembles. However, use of associative array in Map

or Reduce is not encouraged as it may cause memory overflow in case of Big Data stream.

Moreover, this kind of in-memory sorting in Reducer can be very expensive. In order to

address this problem, we propose an improved design for CASTLE, referred to as Improved

Class Level Distribution (ICLD).

ICLD uses Hadoop’s own secondary sorting mechanism to avoid in-memory sorting. How-

ever, Hadoop does secondary sorting only on the key of intermediate key-value pairs. In our

104

case, we need to sort the list of values on feature index, which is part of value. So, to do

secondary sorting on values, ICLD customizes default partitioner, grouping comparator and

sort comparator classes.

Algorithm 13 MapperICLD{l, (f1, f2, .., fm, T)}
1: //D contains data chunk loaded from Distributed Cache
2: for i = 1→ m do
3: w1[1..n]← InitializeDataInstanceWeights(n)
4: for t = 1→ T do
5: (h(t), αt, ε)← LearnWeakClassifier(D,wt, fi)
6: wt+1[1..n]← UpdateWeights(D, h(t), wt, ε)
7: Emit ((l, fi), (fi, α

t, h(t)))
8: end for
9: end for

Pseudocode for Mapper of ICLD is shown in Algorithm 13. It computes all the weak

classifiers for all input features under the input class just like Mapper of CLD. The only

difference between these two Mappers is that feature index is included both in key and value

of intermediate key-value pairs generated by ICLD Mapper (line 7).

The default partitioner of Hadoop computes hash value only on the key and assigns the

partition to the key-value pair based on this result. All the intermediate key-value pairs

belonging to the same partition go to the same Reduce function. In case of ICLD, key of

intermediate key-value pair contains both label and feature index. To include all the key-

value pairs having the same class label in the same partition, partitioner function needs

to be applied only on the label. That is why, ICLD uses customized partitioner function

that is shown in Algorithm 14. This Partitioner function extracts the label from the key,

and computes the hash value based only on the label. It ensures that, all the intermediate

key-value pairs having same label in key field are sent to the same Reducer.

All intermediate key-value pairs assigned to a particular Reducer are processed by series

of invocation to the user defined Reduce function. GroupingComparator function decides

which Map output keys within the assigned key-value pairs to the Reducer will be grouped

105

Algorithm 14 PartitionerICLD{Key, V alue, numR}
1: //numR is the number of Reducers
2: Label← ExtractLabel(Key)
3: HashV alue← HashOnLabel(Label, numR)
4: Return HashV alue

together and processed by the same Reduce function call. SortComparator function is used

to sort the keys within the same group. ICLD needs to make sure that all the weak classifiers

formed for different features under a single label are processed by the same invocation of

the Reduce procedure. To do so, ICLD uses customized GroupingComparator to ensure

all the keys having the same label are grouped together, and sent to the same invocation

of Reduce function. Finally, customized SortComparator is used to sort the keys, first on

the label, and then on the feature index of the key. Sorting the keys of intermediate key-

value pairs makes sure that associated values are also sorted. Thus, key-value pairs assigned

to a specific invocation of Reduce function are secondary sorted on values. Customized

GroupingComparator and SortComparator functions are shown in Algorithm 15 and 16

respectively.

Algorithm 15 GroupingComparatorICLD{Key1, Key2}
1: L1← ExtractLabel(Key1)
2: L2← ExtractLabel(Key2)
3: ComparisonResult← Compare(L1, L2)
4: Return ComparisonResult

Pseudocode for Reducer for ICLD is shown in Algorithm 17. Reducer of ICLD is essen-

tially similar to that of CLD. The only difference is, in case of Reduce function of ICLD, the

list of values are already sorted according to the index of features. So, all weak classifiers

of a specific feature have contiguous places in the input list of values. That is why, Reduce

function of ICLD doesn’t need to use an Associative Array to manage weak classifiers for

different features, which is very expensive. Thus, intuitively reducer of ICLD should work

more efficiently than reducer of CLD.

106

Algorithm 16 SortComparatorICLD{Key1, Key2}
1: L1← ExtractLabel(Key1)
2: L2← ExtractLabel(Key2)
3: isEqual← Compare(L1, L2)
4: if !isEqual then
5: Return ComparisonOnLabel
6: else
7: F1← ExtractFeature(Key1)
8: F2← ExtractFeature(Key2)
9: isEqual← Compare(F1, F2)

10: Return isEqual
11: end if

Algorithm 17 ReducerICLD{(l, f), List(f, αtf , h
(t)
f)}

1: for all feature f ∈ List do
2: {(αtf , h

(t)
f)} ← RetrieveWeakClassifiers(f)

3: H(f) ←
∑T

t=1 α
t
fh

(t)
f

4: e← CalculateError(H(f), D)
5: w ← AssignWeight(H(f), e)
6: Emit (l, (f,H(f), e, w))
7: end for

6.2.3 Feature Level Distribution (FLD)

In the previous designs, the list of all features that need AdaBoost ensembles under a specific

class is sent to a single Map task. Unlike this, in Feature Level Distribution (FLD), features

are distributed over different Map tasks for building AdaBoost ensembles regardless of the

class. Therefore, FLD exploits MapReduce-based parallelism more efficiently.

Pseudocode of Mapper for FLD is given in algorithm 18. In this case, Map procedure

receives the name of the class l as the input key. It receives combination of a single feature

index f and the number of weak classifiers needed T as the value. At each iteration, Map

task builds a weak classifier along with its error rate and weight for feature-based AdaBoost

ensemble under that feature and class (line 4). Finally, at the end of an iteration, Map emits

the weak classifier created in the current iteration using feature f and class l at line 6. This

107

Algorithm 18 MapperFLD{l, (f, T)}
1: //D contains data chunk loaded from Distributed Cache
2: w1[1..n]← InitializeDataInstanceWeights(n)
3: for t = 1→ T do
4: (h(t), αt, ε)← LearnWeakClassifier(D,wt, fi)
5: wt+1[1..n]← UpdateWeights(D, h(t), wt, ε)
6: Emit ((l, f), (αt, h(t)))
7: end for

time, the key is composed of class name and the index of feature. On the other hand, the

value is composed of the weak classifier itself and weight of that weak classifier.

Pseudocode of Reducer for FLD is shown in algorithm 19. As output key from Mapper has

composite format containing both class name and feature index, so unlike previous designs,

all the weak classifiers formed for a specific feature and class come to a single Reducer. For

this reason, Reducer in FLD does not need to deal with feature-wise sorting the list of values.

Moreover, it will have larger number of Reducers and thus better parallelism in Reducer level.

Reducer builds all the final AdaBoost ensembles for specified feature and class (line 1). It

Algorithm 19 ReducerFLD{(l, f), List(αtf , h
(t)
f)}

1: H(f) ←
∑T

t=1 α
t
fh

(t)
f

2: ef ← CalculateError(H(f))
3: wf ← AssignWeight(H(f))
4: Emit (l, (f,H(f), ef , wf))

also calculates the error of the AdaBoost ensemble on the current data chunk and assigns a

weight to the ensemble. Finally, Reducer emits the feature-based AdaBoost ensemble along

with its error and weight at line 4.

6.2.4 Design Choices and Analysis on different aspects of design

We make several choices to implement the above mentioned designs. First, as each Map and

Reduce task needs the current data chunk, we put this in the Distribute Cache of Hadoop. It

108

is a facility provided by the MapReduce framework to cache files needed by the applications.

The framework copies the necessary files on to the slave nodes before any tasks for the job

are executed on that node. Current data chunk is loaded from the Distributed Cache into

data structure before the actual Map begins. Size of a single data chunk is typically small.

So, sharing the data chunk using Distributed Cache or loading it into the data structure

requires small amount of memory. On the other hand, to form AdaBoost ensemble for a

feature, system needs to iterate over the current data chunk for a large number of times. So,

loading the dataset in the main memory makes the process considerably efficient.

Second, the number of Map tasks in a Hadoop job depends on the number of input splits.

In our case, input to the Map task is the file with lines containing indexes of features, which

need feature-based AdaBoost ensembles under different class-based ensembles. Though, the

size of this file is not big, still processing each line of this file requires large amount of

computation. If the default maximum split size of Hadoop is used, then the number of input

splits as well as the number of Mappers becomes very small. As a consequence, almost all

the feature-based AdaBoost ensembles are built in a single Mapper and execution time goes

high. So, to customize it for our designs, we have modified maximum split size of Hadoop to

increase the number of input splits i.e., the number of Mappers. In this way, performance is

much improved in terms of execution time.

Input to the Mapper in CLD and ICLD designs is the list of all features that need an

AdaBoost ensemble under a single class ensemble. On the other hand, input to the Mapper

in the FLD design is combination of class name and index of a single feature. Therefore,

all the features that need AdaBoost ensembles under different class-based ensembles are

distributed along the available Mappers more efficiently. As a result, the number of Map

tasks using FLD should be larger than that of other two designs. So, FLD enjoys more

parallelism in Mapper level. Moreover, details of FLD from Section 6.2.3 indicates that, it

should have better parallelism than all the other designs in Reducer level too.

109

From the above discussion, it is clear that, Intuitively FLD should perform better than

the other designs in a cluster environment, especially when the number of numeric feature

is large. In the next Section, we present experimental data that also supports this analysis

in terms of execution time and Speed Up.

6.3 Evaluation

In this section, we present the empirical results to illustrate efficiency and scalability achieved

by the proposed framework (CASTLE). First, we present the performance of CASTLE in

terms of classification accuracy. Next, we compare the execution time of the proposed designs

on different datasets.

Table 6.1: Characteristics of datasets

Dataset # Features # Classes Total Size
ForestCover 54 7 581,000

PAMAP 52 19 3,850,505
Synthetic10 100 10 500,000
Synthetic15 100 15 500,000

6.3.1 Datasets

We have used several benchmark real-world and synthetic datasets for evaluating the pro-

posed framework. Table 6.1 depicts the characteristics of the datasets. We use the Forest-

Cover and the Physical Activity Monitoring (PAMAP) as real-world datasets for evaluating

the proposed approach and the baselines. These datasets have been introduced in Sec-

tion 3.11.1 of Chapter 3. For the experiments in this chapter, however, we have used all the

instances from these datasets.

The other two datasets we use in the evaluation are synthetically generated using the

RandomRBFGeneratorDrift tool from the MOA (Bifet et al., 2010) framework. We generate

110

two versions of this dataset. In the first version, referred to as Synthetic10, we generate total

10 classes, each having 100 numeric features. On the contrary, we increase the number of

classes to 15 in the second version of this synthetic dataset, referred to as the Synthetic15

dataset. We intentionally vary the number of classes between the two versions in order to

compare the performance of the approaches in terms of both accuracy and execution time.

6.3.2 Setup

We have used JDK version 1.8.0.77 for implementing the sequential HSMiner method. For

MapReduce implementation, we have used Hadoop version 2.7.4. We have evaluated the

implementation of the proposed designs using a cluster with 12 nodes, where each node has

eight 2.40 GHz cores, and 16 GB of main memory.

We implement the three MapReduce-based designs proposed in Section 6.2 for the pro-

posed framework, referred to as CASTLE-CLD, CASTLE-ICLD, and CASTLE-FLD. In

order to compare the classification result, we have used DXMiner (Masud et al., 2011) as

the baseline, since it is an efficient framework for classifying instances from an evolving data

streams, and focuses on solving many of the problems similar to the proposed framework.

Table 6.2: Comparison of classification performance on different datasets

Classification Method ForestCover PAMAP Synthetic10 Synthetic15
CASTLE 7.9% 2.36% 7.6% 8.4%
DXMiner 5.2% 48.3% 32.4% 39.49%

6.3.3 Classification Accuracy

In the first set of experiments, we compare the performance of the proposed approach (CAS-

TLE) with the baseline approach DXMiner. Table 6.2 shows the the classification perfor-

mance by these approaches. We observe that CASTLE shows significantly better accuracy

in case of PAMAP and synthetic datasets. On the other hand, it shows competitive accuracy

111

in case of ForestCover dataset. Please recall that CASTLE has the same principles as the

base method HSMiner. As the proposed designs for CASTLE do not loose any accuracy,

these also show the same accuracy as HSMiner. More comparison between HSMiner and

DXMiner in terms of other performance metrics can be found in (Parker et al., 2012).

6.3.4 Execution Time

We compare the execution time of the proposed framework with all the three MapReduce-

based designs with the sequential HSMiner in Figure 6.2. In this experiment, we use the

cluster in order to evaluate the execution time of the proposed designs. Since small data

chunk size often leads to bad model due to underfitting problem, and too large size of data

chunks may cause the overfitting problem, we have used different size of data chunk to

evaluate performance of the proposed designs.

We observe that the execution time of the sequential HSMiner increases almost linearly

with increasing chunk size. Initially for small size of data chunk, basic HSMiner shows better

performance. However, with increasing size of chunk, MapReduce-based frameworks show

significantly better performance in terms of execution time. The synthetic datasets have

a larger number of numeric features and therefore CASTLE requires lot more AdaBoost

ensembles to be formed on these datasets. So, the difference in execution time between basic

HSMiner and CASTLE with different MapReduce-based designs is more evident in case of

the synthetic dataset. This result on execution time is not surprising as Hadoop has its

own overhead that contributes to its greater execution time initially when the chunk size is

not large. As the chunk size gets larger, this overhead becomes well-paid and MapReduce

implementation shows better execution time.

ICLD shows better performance than CLD on all datasets. Please recall that ICLD uses

Hadoop’s secondary sorting mechanism to avoid feature-wise sorting on the list of values.

Therefore, ICLD has less memory requirement and achieves better execution time. On the

112

1 3 5 7 9 11 13 15

Size of Data Chunk (x 1000)

0

50

100

150

200

250

300
E

xe
cu

tio
n

T
im

e
(in

 S
ec

on
ds

)
HSMiner
CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(a) ForestCover

1 3 5 7 9 11 13 15

Size of Data Chunk (x 1000)

30

60

90

120

150

180

E
xe

cu
tio

n
T

im
e

(in
 S

ec
on

ds
)

HSMiner
CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(b) PAMAP

1 3 5 7 9 11 13 15 17 19 21 23 25

Size of Data Chunk (x 1000)

500

1000

1500

2000

2500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
on

ds
)

HSMiner
CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(c) Synthetic10

1 3 5 7 9 11 13 15 17 19 21 23 25

Size of Data Chunk (x 1000)

500

1000

1500

2000

2500

3000

E
xe

cu
tio

n
T

im
e

(in
 S

ec
on

ds
)

HSMiner
CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(d) Synthetic15

Figure 6.2: Comparison among Basic HSMiner and CASTLE in terms of execution time per
chunk

other hand, CLD shows slightly better performance than ICLD in case of PAMAP dataset.

PAMAP has larger number of classes and similar number of numeric features compared to

ForestCover. Therefore, in this case, extra computational and network overhead for shuffling

113

larger number of intermediate key-value pairs in ICLD overcome the cost for feature-wise

sorting in CLD. However, ICLD is still preferable than CLD for lower memory requirement.

In all cases, CASTLE with FLD outperforms both CASTLE with CLD and ICLD. This

supports the analysis given in Section 6.2.4. In FLD, all the features are distributed among

available Mappers for building AdaBoost ensembles on those features. So, MapReduce-based

parallelism is better exploited in FLD. As a result, FLD shows better performance than the

other two designs on all datasets.

6.3.5 Speed Up

In the next set of experiments, we compare the Speed Up achieved by the variants of CAS-

TLE. We define Speed Up by Tsq
Td

, where Tsq and Td are the time taken by the single machine

execution, and the cluster execution respectively. As shown in Figure 6.3, we observe that

all the variants of CASTLE achieve significant Speed Up as expected. Moreover, the Speed

Up increases with increasing size of chunks.

It is evident that CASTLE-FLD achieves the highest Speed Up among all the variants,

which is even more significant on the syntehtic datasets. For example, cluster execution of

CASTLE-FLD is around 40 times faster than the single node execution on the Synthetic15

dataset with chunk size 25× 103. The result is expected as FLD distributes data instances

among the worker nodes both horizontally and vertically. Therefore, it capitalizes the paral-

lelism better than other variants of the proposed framework. The difference in performance

becomes even more visible with increasing number of features and classes.

It is apparent from the experiment results that all the variants of CASTLE reduce ex-

ecution time of HSMiner to a great extent. Moreover, the Speed Up achieved by different

variants of CASTLE indicates that it would be useful in addressing the limited scalability

problem in data stream mining, especially when the number of features is very large.

114

1 3 5 7 9 11 13 15

Size of Data Chunk (x 1000)

5

10

15

20
S

pe
ed

 U
p

CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(a) ForestCover

1 3 5 7 9 11 13 15

Size of Data Chunk (x 1000)

5

10

15

20

25

S
pe

ed
 U

p

CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(b) PAMAP

1 3 5 7 9 11 13 15 17 19 21 23 25

Size of Data Chunk (x 1000)

5

10

15

20

25

30

35

S
pe

ed
 U

p

CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(c) Synthetic10

1 3 5 7 9 11 13 15 17 19 21 23 25

Size of Data Chunk (x 1000)

5

10

15

20

25

30

35

40

45

S
pe

ed
 U

p
CASTLE-CLD
CASTLE-ICLD
CASTLE-FLD

(d) Synthetic15

Figure 6.3: Speed Up achieved by CASTLE

115

CHAPTER 7

FUTURE WORK

In this chapter, first we briefly discuss the approaches presented in the dissertation. Subse-

quently, we provide some future directions on these approaches.

7.1 Discussion

The challenges in data stream mining stem from its own inherent properties, such as infinite

length, change in the underlying concepts, the emergence of a novel class, limited labeled

data, and sampling bias between the training and the test distribution. Moreover, in this

age of big data and Internet of Things (IoT) streams, scalability of an approach is also very

important to fit into the requirement. In this dissertation, we have proposed four paradigms

for addressing all these challenges. Next, we summarize each of them under respective

headings.

7.1.1 ECHO

We have proposed the first approach, referred to as ECHO, for handling infinite length,

concept drift and appearance of novel classes over the stream data in Chapter 3. ECHO

uses an ensemble classifier, where each model is trained using a semi-supervised clustering

method. It employs two estimators for estimating the classifier confidence in addition to

classifying each test data instance. ECHO detects any change in the underlying concepts in

data by monitoring the classifier confidence. Moreover, it selects important data instances

for updating the classifier using the estimated confidences. Once a concept drift is detected,

a new model is trained on the recent partially labeled data instances, and the ensemble

classifier is updated. It also detects any novel class in the stream by analyzing the outliers.

Empirical results indicate that ECHO achieves competitive accuracy, if not better, compared

to the baseline fully-supervised approaches using partially labeled data.

116

7.1.2 FUSION

We have proposed FUSION for efficient Multistream classification in Chapter 4, where unla-

beled test data from a target stream needs to be classified using labeled training data from

a source stream. The main challenges of Multistream classification are data shift, and asyn-

chronous concept drifts between source and target stream data. To address these challenges,

FUSION uses an ensemble classifier, where each model is trained using weighted instances

from the source stream. The density ratio between the target and the source distribution,

which is estimated by a Gaussian kernel model, is used as the importance weight for the

source instances. The same weights are also used for addressing asynchronous concept drifts.

Experiment results show the effectiveness of the proposed approach.

7.1.3 SDKMM

In Chapter 5, we have proposed a sampling-based distributed and parallel approach that

computes density ratios between training and test data distributions efficiently using the

Kernel Mean Matching (KMM) algorithm. These density ratios can be used for correcting

sampling bias in data. Empirical results indicate that the proposed approach is effective in

addressing the limited scalability problem in the original KMM algorithm. Therefore, it can

be very useful for addressing sampling bias problem in real-world data mining applications

on large volume of data.

7.1.4 CASTLE

We have proposed a scalable and distributed framework, referred to as CASTLE, for address-

ing various challenges in Big Data and IoT stream mining in Chapter 6. This framework

is based on HSMiner, which is a hierarchical classification model for data stream classifica-

tion (Parker et al., 2012). The bottleneck of this method is that it needs a large number of

117

feature-based AdaBoost ensembles for numeric features in data. Therefore, it may face lim-

ited scalability issue in case of Big Data stream, where the size of data chunk or the number

of features is large. We address this challenge by proposing three MapReduce based designs

for CASTLE. We have shown that all of these designs help to achieve significant Speed Up

over the base method. We have also analyzed different aspects of the designs. Results from

experiments also supports these analyses.

7.2 Future Directions

In the future, the performance of the proposed approaches in this dissertation can further be

improved in terms of execution time and memory requirement. Moreover, these approaches

can be applied to various domains in order to address challenges that are commonly present

in data stream mining. Next, we discuss some possible future extension to the proposed

approaches.

7.2.1 Ensemble FUSION

We introduced Multistream classification framework FUSION in Chapter 4. It uses a Gaus-

sian kernel model for estimating the importance weights, i.e., the density ratios. We have

analyzed the theoretical convergence rate of the approach. Empirical results show very

promising performance by FUSION in terms of classification accuracy. However, FUSION is

comparatively slower than the state-of-the-art approaches for analyzing a single stream due

to the execution of the density ratio estimation. In other words, the bottleneck in FUSION

is the batch learning of the Gaussian kernel model parameters. The parameters are learned

using the batch algorithm initially, when a new model is trained following a concept drift,

and then updated online. The time complexity of the batch algorithm is O(n2), where n is

the size of the sliding window.

118

We presented SDKMM in Chapter 5, in order to address the limited scalability problem

in the Kernel Mean Matching (KMM). In SDKMM, first, we split the test data and take

bootstrap samples from the training data to form train-test components. Next, we compute

instance weights from each component independently and in parallel. Finally, we aggregate

individual component outputs for calculating the final result. A similar idea can be applied

to improve the time complexity of the batch parameter learning algorithm of the Gaussian

kernel model used in FUSION. One can create similar train-test components, maintain an

ensemble of Gaussian kernel models on such components, and update the ensembles with

each incoming target instance. Since computation on different models in the ensemble can

be done in parallel, and the size of the window n would be much smaller for each component

model, it would significantly improve the time complexity of the overall process. Moreover,

due to aggregating the importance weights calculated from different models, this approach

should reduce the variance in estimated density ratio as well, and thereby possibly could

improve classification performance.

7.2.2 Multistream Regression

We focus on predicting the class of unseen test data from the target stream using the la-

beled data from the source stream in the Multistream classification problem. An interesting

research direction could be examining how significantly covariate shift, e.g., sampling bias

affect a regression scenario, where instead of predicting a category, a real value for the target

variable is predicted. The subsequent question to answer in this direction is how to define

and handle the covariate shift and the asynchronous concept drift in regression.

7.2.3 Multistream Domain Adaptation

In the Multistream classification problem, we assume two streams of data, i.e., source and

target streams, where the source stream generates only labeled training data, and the target

119

stream generates unlabeled test data. Moreover, although these streams generate data from

the same domain, the data distributions are not the same, but related by a covariate shift.

This type of scenarios may arise due to difficulty in collecting training instances with true

labels.

Although Multistream classification resembles the covariate shift problem in the stream-

ing setting, it does not cover another realm of data adaptation, known as the Domain

Adaptation or the Transductive Transfer Learning problem (Pan and Yang, 2010). In the

Multistream version of this problem, instead of producing data from the same domain, the

source and the target streams may generate data from different domains. This setting re-

sembles the scenarios, where data instances are very scarce in the target domain, but are

abundant in a different but related domain. Despite having a number of researches on domain

adaption using fixed size training and test data (Pan and Yang, 2010), application of this

in data stream mining has been mostly ignored. An obvious extension of the Multistream

classification is relaxing the constraint that the source and the target stream generate data

from the same domain.

7.2.4 Zero-day Attack Detection

Intrusion Detection System (IDS) is very important for safeguarding the computer networks

from malicious activities or policy violations. In IDS, patterns found in past malicious

attacks are analyzed for detecting any future attacks. Like most data streams, a major

difficulty in designing a IDS is the scarcity of labeled attack data instances, as it requires

time and many often human effort to confirm an attack on the network. In order to overcome

this scarcity of attack data problem, a number of systems have been proposed, for example

Honeypots (Vasilomanolakis et al., 2015), Honey-Patching (Araujo et al., 2014). In these

systems, the attacker is deceived as if the attack was successful, and more attack data is

collected as the attacker continues the attacks. However, based on the services, the location,

120

or the type of the network, some specific types of attacks may be carried out more often

than other types of attacks. It may introduce a sampling bias in the collected training data

with respect to the test data.

The above resembles the aspects of the Multistream classification problem. In addition

to the regular intrusion detection, another important problem is to detect previously unseen

cyber attacks before they reach any unpatched vulnerable computer systems, known as the

zero-day Attack Detection. The idea presented in Section 3.3 of Chapter 3 along with the

principles of FUSION could be used for effectively addressing the regular intrusion detection

and the zero-day attack problems, especially when the training data is biased with respect

to the test data.

7.2.5 Political Unrest Prediction

Predicting civil and political unrest ahead of time using various sources, such as tweets, news

articles, blogs, etc. have become an attractive research field recently (Ramakrishnan et al.,

2014). Civil and political unrest, especially the violent ones often claim a lot of property

damages, and even human lives. Therefore, the main motivation of this research is to prevent

loss of property and instability in the society. Although a lot of information about the world

and social affairs can be gathered from the sources mentioned above, collecting labeled

training data is still an issue. Furthermore, not every region, country, or ethnicity have a

similar presence in these sources. For example, some regions, such as the north-america and

middle-east-asia, may have a greater presence in news articles than the others. Moreover,

distribution of news may change based on the time period considered for collecting the

training data. All these factors may introduce sampling bias in the training data. Therefore,

predicting civil and political unrest using sampled labeled data would be an interesting

case-study for the techniques proposed in this dissertation.

121

REFERENCES

Aggarwal, C. C. (2006). On biased reservoir sampling in the presence of stream evolution.
In Proceedings of the 32Nd International Conference on Very Large Data Bases, VLDB
’06, pp. 607–618. VLDB Endowment.

Aggarwal, C. C. and P. S. Yu (2010). On classification of high-cardinality data streams. In
SDM, pp. 802–813. SIAM.

Al-Kateb, M., B. S. Lee, and X. S. Wang (2007). Adaptive-size reservoir sampling over data
streams. In Proceedings of the 19th International Conference on Scientific and Statistical
Database Management, SSDBM ’07, Washington, DC, USA, pp. 22–. IEEE Computer
Society.

Alippi, C., G. Boracchi, and M. Roveri (2013). Just-in-time classifiers for recurrent concepts.
IEEE Trans. Neural Netw. Learning Syst. 24 (4), 620–634.

Araujo, F., K. W. Hamlen, S. Biedermann, and S. Katzenbeisser (2014). From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinformation. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, New York, NY, USA, pp. 942–953. ACM.

Asuncion, A. and D. Newman (2007). Uci machine learning repository.

Baron, M. (1999). Convergence rates of change-point estimators and tail probabilities of the
first-passage-time process. Canadian J. of Statistics 27, 183–197.

Bergamo, A. and L. Torresani (2010). Exploiting weakly-labeled web images to improve
object classification: a domain adaptation approach. In Advances in Neural Information
Processing Systems, pp. 181–189.

Bickel, P. J. and D. A. Freedman (1981). Some Asymptotic Theory for the Bootstrap. The
Annals of Statistics 9 (6), 1196–1217.

Bifet, A. and R. Gavaldà (2007). Learning from time-changing data with adaptive windowing.
In SDM. SIAM.

Bifet, A., G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and T. Seidl (2010).
Moa: Massive online analysis, a framework for stream classification and clustering. In
Journal of Machine Learning Research, pp. 44–50.

Brzezinski, D. and J. Stefanowski (2014, May). Combining block-based and online methods
in learning ensembles from concept drifting data streams. Inf. Sci. 265, 50–67.

122

Chandra, S., A. Haque, L. Khan, and C. Aggarwal (2016). An adaptive framework for
multistream classification. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, CIKM ’16, pp. 1181–1190. ACM.

Chang, C.-C. and C.-J. Lin (2011). Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 2 (3), 27.

Chen, B., W. Lam, I. Tsang, and T.-L. Wong (2009). Extracting discriminative concepts for
domain adaptation in text mining. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 179–188.

Cieslak, D. and N. Chawla (2007, Oct). Detecting fractures in classifier performance. In
ICDM 2007, pp. 123–132.

Dahl, J. and L. Vandenberghe (2008). CVXOPT: A python package for convex optimization.

Dean, J. and S. Ghemawat (2008, January). Mapreduce: simplified data processing on large
clusters. Commun. ACM 51 (1), 107–113.

Dyer, K. B., R. Capo, and R. Polikar (2014). Compose: A semisupervised learning framework
for initially labeled nonstationary streaming data. IEEE Transactions on Neural Networks
and Learning Systems 25 (1), 12 – 26.

Efraimidis, P. S. and P. G. Spirakis (2006, March). Weighted random sampling with a
reservoir. Inf. Process. Lett. 97 (5), 181–185.

Efron, B. (1992). Bootstrap methods: another look at the jackknife. Springer.

Ester, M., H.-P. Kriegel, J. Sander, and X. Xu (1996). A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proc. of 2nd International Conference
on Knowledge Discovery and, pp. 226–231.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin (2008). Liblinear: A library
for large linear classification. The Journal of Machine Learning Research 9, 1871–1874.

Fan, W., Y. an Huang, H. Wang, and P. S. Yu (2004). Active mining of data streams. In in
Proceedings of the Fourth SIAM International Conference on Data Mining, pp. 457–461.

Faria, E., I. Goncalves, J. Gama, and A. Carvalho (2013, Oct). Evaluation methodology for
multiclass novelty detection algorithms. In Intelligent Systems (BRACIS), 2013 Brazilian
Conference on, pp. 19–25.

Freund, Y. and R. E. Schapire (1995). A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the Second European Conference on
Computational Learning Theory, EuroCOLT ’95, London, UK, UK, pp. 23–37. Springer-
Verlag.

123

Gama, J., P. Medas, G. Castillo, and P. Rodrigues (2004). Learning with drift detection. In
Advances in artificial intelligence–SBIA 2004, pp. 286–295. Springer.

Gama, J., I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia (2014). A survey on
concept drift adaptation. ACM Computing Surveys (CSUR) 46 (4), 44.

Gretton, A., A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf (2009).
Covariate shift by kernel mean matching. Dataset shift in machine learning 3 (4), 5.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten (2009,
November). The weka data mining software: An update. SIGKDD Explor. Newsl. 11 (1),
10–18.

Haque, A., L. Khan, and M. Baron (2016, Feb). Sand: Semi-supervised adaptive novel class
detection and classification over data stream. In Thirteenth AAAI Conference on Artificial
Intelligence, pp. 1652–1658.

Haque, A., L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal (2016, May). Efficient
handling of concept drift and concept evolution over stream data. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pp. 481–492.

Haque, A., B. Parker, and L. Khan (2013). Labeling instances in evolving data streams with
mapreduce. In 2013 IEEE International Congress on Big Data (BigData Congress), pp.
387–394.

Haque, A., B. Parker, L. Khan, and B. Thuraisingham (2014, June). Evolving big data
stream classification with mapreduce. In 2014 IEEE 7th International Conference on
Cloud Computing, pp. 570–577.

Haque, A., Z. Wang, S. Chandra, B. Dong, L. Khan, and K. W. Hamlen (2017). Fusion:
An online method for multistream classification. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, CIKM ’17, New York, NY, USA,
pp. 919–928. ACM.

Haque, A., Z. Wang, S. Chandra, Y. Gao, L. Khan, and C. Aggarwal (2016, Dec). Sampling-
based distributed kernel mean matching using spark. In 2016 IEEE International Confer-
ence on Big Data (Big Data), pp. 462–471.

Harel, M., S. Mannor, R. El-yaniv, and K. Crammer (2014). Concept drift detection through
resampling. In ICML-14, pp. 1009–1017. JMLR Workshop and Conference Proceedings.

Hayat, M. Z. and M. R. Hashemi (2010). A dct based approach for detecting novelty and
concept drift in data streams. In SoCPaR, pp. 373–378. IEEE.

124

Huang, J., A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola (2006). Correcting

sample selection bias by unlabeled data. In Advances in neural information processing

systems, pp. 601–608.

Jiang, J. and C. Zhai (2007). Instance weighting for domain adaptation in nlp. In ACL,

Volume 7, pp. 264–271.

Kanamori, T., S. Hido, and M. Sugiyama (2009). A least-squares approach to direct impor-

tance estimation. The Journal of Machine Learning Research 10, 1391–1445.

Kawahara, Y. and M. Sugiyama (2012, April). Sequential change-point detection based on

direct density-ratio estimation. Stat. Anal. Data Min. 5 (2), 114–127.

Kivinen, J., A. J. Smola, and R. C. Williamson (2004, August). Online Learning with

Kernels. IEEE Transactions on Signal Processing 52, 2165–2176.

Klinkenberg, R. (2004, August). Learning drifting concepts: Example selection vs. example

weighting. Intell. Data Anal. 8 (3), 281–300.

Kouloumpis, E., T. Wilson, and J. D. Moore (2011). Twitter sentiment analysis: The good

the bad and the omg! Icwsm 11, 538–541.

Koychev, I. (2000). Gradual forgetting for adaptation to concept drift. In In Proceedings of

ECAI 2000 Workshop Current Issues in Spatio-Temporal Reasoning, pp. 101–106.

Koychev, I. (2002). Tracking changing user interests through prior-learning of context. In

Adaptive Hypermedia and Adaptive Web-Based Systems, Volume 2347 of Lecture Notes in

Computer Science, pp. 223–232. Springer Berlin Heidelberg.

Kuncheva, L. I. and W. J. Faithfull (2012, Nov). Pca feature extraction for change detection

in multidimensional unlabelled streaming data. In Pattern Recognition (ICPR), 2012 21st

International Conference on, pp. 1140–1143.

Lichman, M. (2013). UCI machine learning repository.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. Thuraisingham (2010). Classification

and novel class detection in data streams with active mining. In Proceedings of the 14th

Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining - Volume

Part II, PAKDD’10, Berlin, Heidelberg, pp. 311–324. Springer-Verlag.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. M. Thuraisingham (2008). A practical

approach to classify evolving data streams: Training with limited amount of labeled data.

In ICDM, pp. 929–934.

125

Masud, M. M., J. Gao, L. Khan, J. Han, and B. M. Thuraisingham (2011). Classification
and novel class detection in concept-drifting data streams under time constraints. IEEE
Trans. Knowl. Data Eng. 23 (6), 859–874.

Miao, Y.-Q., A. K. Farahat, and M. S. Kamel (2015). Ensemble kernel mean matching. In
Data Mining (ICDM), 2015 IEEE International Conference on, pp. 330–338. IEEE.

MOA (2015). Moa massive online analysis-real time analytics for data streams repository
data sets. http://moa.cms.waikato.ac.nz/datasets/.

Nishida, K., K. Yamauchi, and T. Omori (2005). Ace: Adaptive classifiers-ensemble system
for concept-drifting environments. In Multiple Classifier Systems, Volume 3541 of Lecture
Notes in Computer Science, pp. 176–185. Springer.

Pan, S. J. and Q. Yang (2010). A survey on transfer learning. Knowledge and Data Engi-
neering, IEEE Transactions on 22 (10), 1345–1359.

Parker, B., A. M. Mustafa, and L. Khan (2012). Novel class detection and feature via a
tiered ensemble approach for stream mining. In ICTAI, pp. 1171–1178.

Parker, B. S. and L. Khan (2015). Detecting and tracking concept class drift and emergence
in non-stationary fast data streams. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI’15, pp. 2908–2913.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In Advances in Large Margin Classifiers, pp. 61–74. MIT
Press.

Ramakrishnan, N., P. Butler, S. Muthiah, N. Self, R. Khandpur, P. Saraf, W. Wang, J. Ca-
dena, A. Vullikanti, G. Korkmaz, C. Kuhlman, A. Marathe, L. Zhao, T. Hua, F. Chen,
C. T. Lu, B. Huang, A. Srinivasan, K. Trinh, L. Getoor, G. Katz, A. Doyle, C. Ackermann,
I. Zavorin, J. Ford, K. Summers, Y. Fayed, J. Arredondo, D. Gupta, and D. Mares (2014).
’beating the news’ with embers: Forecasting civil unrest using open source indicators. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, New York, NY, USA, pp. 1799–1808. ACM.

Reiss, A. and D. Stricker (2012). Introducing a new benchmarked dataset for activity mon-
itoring. In ISWC, pp. 108–109. IEEE.

Ross, G. J., D. K. Tasoulis, and N. M. Adams (2011). Nonparametric monitoring of data
streams for changes in location and scale. Technometrics 53 (4), 379–389.

Settles, B. (2009). Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison.

126

http://moa.cms.waikato.ac.nz/datasets/

Song, X., M. Wu, C. Jermaine, and S. Ranka (2007). Statistical change detection for multi-
dimensional data. In 13th ACM SIGKDD, NY, USA, pp. 667–676. ACM.

Spinosa, E. J., A. e. P. de Leon F. de Carvalho, and J. ao Gama (2008). Cluster-based novel
concept detection in data streams applied to intrusion detection in computer networks. In
ACM SAC, pp. 976–980.

Sugiyama, M., S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe (2008). Direct im-
portance estimation with model selection and its application to covariate shift adaptation.
In Advances in neural information processing systems, pp. 1433–1440.

Tumer, K. and J. Ghosh (1996). Error correlation and error reduction in ensemble classifiers.
Connection Science 8 (3-4), 385–403.

Vasilomanolakis, E., S. Karuppayah, M. Mühlhäuser, and M. Fischer (2015, May). Taxonomy
and survey of collaborative intrusion detection. ACM Comput. Surv. 47 (4), 55:1–55:33.

Wang, L., J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang,
C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu (2014, Feb). Bigdatabench: A big data
benchmark suite from internet services. In 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), pp. 488–499.

Widmer, G. and M. Kubat (1996). Learning in the presence of concept drift and hidden
contexts. Machine Learning 23 (1), 69–101.

Yin, S. and O. Kaynak (2015, Feb). Big data for modern industry: Challenges and trends
[point of view]. Proceedings of the IEEE 103 (2), 143–146.

Yu, Y.-l. and C. Szepesvári (2012). Analysis of kernel mean matching under covariate shift.
In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp.
607–614.

Zadrozny, B. Z. (2004). Learning and evaluating classifiers under sample selection bias. In
In International Conference on Machine Learning (ICML), pp. 903–910.

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica (2010). Spark: Cluster
computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing, pp. 10.

Zhu, X. (2010). Stream data mining repository. http://www.cse.fau.edu/~xqzhu/stream.
html.

Zhu, X., P. Zhang, X. Lin, and Y. Shi (2007, Oct). Active learning from data streams. In
Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 757–762.

127

http://www.cse.fau.edu/~xqzhu/stream.html
http://www.cse.fau.edu/~xqzhu/stream.html

Zhu, X., P. Zhang, X. Lin, and Y. Shi (2010, Dec). Active learning from stream data using
optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 40 (6), 1607–1621.

Zikopoulos, I., C. Eaton, and P. Zikopoulos (2011). Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data. Mcgraw-hill.

128

BIOGRAPHICAL SKETCH

Ahsanul Haque received his B.Sc. in Computer Science and Engineering from Bangladesh

University of Engineering and Technology (BUET) in February 2011. In the quest for higher

studies, Ahsanul joined The University of Texas at Dallas (UT Dallas) in 2012 as a graduate

student. He received his M.S. in computer science from UT Dallas in May 2016. The

Computer Science department recognized his extraordinary academic success by awarding

him the Certificate of Academic Excellence. Research focus of Ahsanul is on real-time stream

data analysis and semi-supervised learning including active learning and transfer learning.

His research works have been published in premier computer science conferences, such as

AAAI, CIKM, ICDE, ICDM, IEEE Big Data, etc. During his doctoral studies at UT Dallas,

Ahsanul received prestigious merit-based Lars Magnus Ericsson and ECS Louis Beecherl

Jr. Graduate Fellowships. Beyond academics, Ahsanul enjoys listening to music, reading

autobiographies, and traveling.

129

CURRICULUM VITAE

Ahsanul Haque
Email: ahsanul.haque@utdallas.edu

Educational History:

Ph.D., Computer Science, The University of Texas at Dallas (UT Dallas), 2017
M.S., Computer Science, The University of Texas at Dallas (UT Dallas), 2016
B.Sc., Computer Science and Engineering, Bangladesh University of Engineering and Tech-
nology (BUET), 2011

Semi-supervised Adaptive Classification over Data Streams
Ph.D. Dissertation
Department of Computer Science, UT Dallas
Advisor: Dr. Latifur Khan

Bandwidth Allocation and Scheduling in WiMAX Technology
Undergraduate Thesis
Department of Computer Science and Engineering, BUET
Advisor: Dr. Md. Humayun Kabir

Professional Experience:

Graduate Research/Teaching Assistant, UT Dallas, September 2012 – present
Research Science Intern, eBay, May 2017 – August 2017
Data Science Intern, JPMorgan Chase & Co., June 2015 – August 2015
Software Engineer, Samsung Electronics, March 2011 – July 2012

Honors and Awards:
Lars Magnus Ericsson Graduate Fellowship, Office of the Dean, Erik Jonsson School of
Engineering and Computer Science, UT Dallas, 2016.
Certificate of Academic Excellence, Department of Computer Science, UT Dallas, 2016
ECS Louis Beecherl, Jr. Graduate Fellowship, Office of the Dean, Erik Jonsson School of
Engineering and Computer Science, UT Dallas, 2015
Degree with Honors, BUET, 2011
Deans List award, Deans’ Office, Faculty of Electrical Engineering, BUET, 2006-2011

Selected Publications:

– Haque, A.; Wang, Z.; Chandra, S., Dong. B., Khan, L., FUSION - An Online Method
for Multistream Classification, in proceedings of the 26th ACM International Conference on
Information and Knowledge Management (CIKM), Singapore, Nov 2017, pp. 919-928.

– Haque, A.; Chandra, S.; Khan, L.; Aggarwal, C., Efficient Multistream Classification using
Direct Density Ratio Estimation, in proceedings of the 33rd IEEE International Conference
on Data Engineering (ICDE), San Diego, CA, 2017, pp. 155-158.
– Haque, A.; Khan, L.; Baron, M., SAND: Semi-Supervised Adaptive Novel Class Detection
and Classification over Data Stream, in proceedings of 30th AAAI Conference on Artificial
Intelligence, Phoenix, AZ, 2016, pp. 1652-1658.
– Haque, A.; Khan, L.; Baron, M.; Thuraisingham, B.; Aggarwal, C., Efficient Handling
of Concept Drift and Concept Evolution over Stream Data, in proceedings of 32nd IEEE
International Conference on Data Engineering (ICDE), Helsinki, Finland, 2016, pp. 481-
492.
– Chandra, S.; Haque, A.; Khan, L.; Aggarwal, C., Efficient Sampling-based Kernel Mean
Matching, in proceedings of the IEEE International Conference on Data Mining (ICDM),
Barcelona, Spain, 2016, pp. 811-816.
– Chandra, S.; Haque, A.; Khan, L.; Aggarwal, C., An Adaptive Framework for Multistream
Classification, in proceedings of the 25th ACM International Conference on Information and
Knowledge Management (CIKM), Indianapolis, IN, 2016, pp. 1181-1190.
– Haque, A.; Zhuoyi, W.; Chandra, S.; Gao, Y.; Khan, L.; Aggarwal, C., Sampling based
Distributed Kernel Mean Matching using Spark, in proceedings of IEEE International Con-
ference on Big Data (IEEE BigData), Washington, DC, 2016, pp. 462-471.
– Haque, A.; Khan, L.; Baron, M., Semi Supervised Adaptive Framework for Classifying
Evolving Data Stream, in proceedings of the 19th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), Ho Chi Minh City, Viet Nam, 2015, pp. 383-394.
– Haque, A.; Parker, B.; Khan, L.; Thuraisingham, B., Evolving Big Data Stream Classifi-
cation with MapReduce, in proceedings of the 7th IEEE International Conference on Cloud
Computing, Anchorage (IEEE Cloud), AK, 2014, pp. 570-577.
– Haque, A.; Chandra, S.; Khan, L.; Aggarwal, C., Distributed Adaptive Importance Sampling
on graphical models using MapReduce, in proceedings of IEEE International Conference on
Big Data (IEEE BigData), Washington, DC, 2014, pp. 597-602.
– Haque, A.; Parker, B.; Khan, L.; Thuraisingham, B., Intelligent MapReduce Based Frame-
work for Labeling Instances in Evolving Data Stream, in proceedings of the 5th IEEE Interna-
tional Conference on Cloud Computing Technology and Science (IEEE CloudCom), Bristol,
UK, 2013, pp. 299-304.
– Dong, B.; Li, Y.; Gao, Y.; Haque, A.; Khan, L., Multistream Regression with Asynchronous
Concept Drift Detection, accepted for publication in proceedings of IEEE International Con-
ference on Big Data (IEEE BigData), Boston, MA, 2017.
– Haque, A.; Tao, H.; Chandra, S.; Liu, J.; Khan, L., A Framework for Multistream Regres-
sion with Direct Density Ratio Estimation, accepted for publication in proceedings of 32nd

AAAI Conference on Artificial Intelligence, New Orleans, LA, 2018.

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Data Stream Classification
	Related Work

	Multistream Classification
	Data Shift Adaptation
	Problem Statement
	Prior Work

	ECHO: Data Stream Classification using Limited Labeled Data
	The Proposed Approach
	Training and Classification
	Novel Class Detection
	Calculation of Confidence Scores
	Justification of Confidence Estimators
	Objective Function
	Association
	Purity

	Effect of Concept Drift on Classifier Confidence
	Change Detection
	Updating the Ensemble using Limited Labeled Data
	Time and Space Complexity
	Performance Improvement
	Sporadic Execution
	Recursive Calculation
	Selective Execution

	Evaluation
	Datasets
	Experiment Setup
	Performance Metrics
	Classification
	Novel Class Detection
	Parameter Sensitivity
	Speed Up

	FUSION: An Online Method for Multistream Classification
	The Proposed Approach
	Density Ratio Estimation Module (DRM)
	Training and Classification
	Drift Detection Module (DDM)
	Classifier Update

	Theoretical Analysis
	Convergence Rate
	Time and Space Complexity

	Evaluation
	Datasets
	Baseline Methods
	Setup
	Classification Performance
	Parameter Sensitivity

	SDKMM: Sampling-based Distributed Kernel Mean Matching
	Background
	Notations
	Kernel Mean Matching
	Apache Spark

	The Proposed Approach
	Sampling-based KMM (SKMM)
	Sampling-based Distributed KMM (SDKMM)
	Challenges and Design Choices
	Complexity Analysis

	Evaluation
	Datasets
	Baseline Methods
	Setup
	Normalized Mean Square Error (NMSE)
	Execution Time
	Speed up
	Sensitivity

	CASTLE: A Distributed Framework for Data Stream Classification
	Background
	Hierarchical Stream Miner (HSMiner)
	MapReduce Programming Model

	Shortcomings and the proposed Solution
	Class Level Distribution (CLD)
	Improved Class Level Distribution (ICLD)
	Feature Level Distribution (FLD)
	Design Choices and Analysis on different aspects of design

	Evaluation
	Datasets
	Setup
	Classification Accuracy
	Execution Time
	Speed Up

	Future Work
	Discussion
	ECHO
	FUSION
	SDKMM
	CASTLE

	Future Directions
	Ensemble FUSION
	Multistream Regression
	Multistream Domain Adaptation
	Zero-day Attack Detection
	Political Unrest Prediction

	References
	Biographical Sketch
	Curriculum Vitae

