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We study the geometry of confocal quadrics in pseudo-Euclidean spaces of dimensions 2,
3, and 4, respectively. Along with the notion of geometric quadrics, we also investigate
the relativistic quadrics which provide tools for further investigations of billiard dynamics.
The geometric quadrics of a confocal pencil and their types in pseudo-Euclidean spaces do
not share all of the usual properties with confocal quadrics in Euclidean spaces, including
those necessary for applications in billiard dynamics and separable mechanical systems in
general. For instance, in n-dimensional Euclidean space, there are n geometric types of
quadrics, whereas in n-dimensional pseudo-Euclidean space, there are n 4+ 1 geometric types
of quadrics. Relativistic quadrics enable us to define and use Jacobi coordinates in pseudo-
Euclidean settings. In the study of periodic billiard trajectories, we distinguish two cases:
trajectories which are periodic with respect to Cartesian coordinates, which are the usual
periodic trajectories, and the so-called elliptic periodic trajectories, which are periodic with

respect to Jacobi coordinates.

In the Minkowski plane, we derive necessary and sufficient conditions for periodic and elliptic
periodic trajectories of billiards within an ellipse in terms of an underlying elliptic curve. We
derive equivalent conditions in terms of polynomial equations as well. The corresponding

polynomials are related to the classical extremal polynomials. We have indicated the
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similarities and differences with respect to previously studied periodic billiard trajectories in

Euclidean cases.

The classification of hypersurfaces of degree 2 in four-dimensional pseudo-Euclidean space

has been done in signatures (3,1) and (2, 2).
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CHAPTER 1

INTRODUCTION
1.1 Confocal conics in the Euclidean plane

Consider
2?2
—+ =1 >b>0 1.1

an ellipse in the plane with a and b fixed.

LL'2 y2
Gv: —5+7—5=1 AeR (1.2)

The family C) has two non-degenerate subfamilies:
e For A\ < b, C) is an ellipse.
e For A € (b,a), Cy is a hyperbola with the x-axis as the major axis.

The family C' is shown in Figure 1.1.

In the Euclidean plane, there are two types of conics in C) : ellipses and hyperbola with the

Figure 1.1: Family of confocal conics in the Euclidean plane.

x-axis as the major axis. We observed from Figure 1.1 that conics of the same type do not



intersect one another, whereas conics of different types do intersect one another. Each point
in the FEuclidean plane is an intersection of two distinct conics.

Let

=1, where A € R, a > b.
It follows that
22(b— N +y%(a—N) = (b—N)(a—N),
ab + A2 — (a+ b))\ = 2%b + y?a — (22 + y*)A,
which yields
N —(a+b)A+ (2* + y*)A + ab — (2°b + y?a) = 0,
N4 (22 + 9 —a—bA+ab—br* —ay® = 0.
We computed the discriminant A as follows:
A= (2* +y* —a—b)* —4(ab — br* — ay?),

=2t +yt +a® + b —2ab + 20%9y* +2(b — a)2® + 2(a — b)y?,

where
' +2(b— a)z? + a® + b* — 2ab = 2* +2(b — a)x® + (b — a)?,
= (a® +b—a)?,
hence
A= (2* +b—a)*+y* +22°y* + 2(a — b)y*, where a — b > 0, since a > b,
therefore

A >0,

which means a point (z,y) in the plane is an intersection of two distinct conics.

The following section generalizes the two dimensional Euclidean plane.



1.2 Confocal quadrics and their types in the Euclidean space

Consider the family of confocal quadrics

3 Ty
=1, AeR 1.
a1—>\+ +ag_/\ , AE (1.3)

in a g-dimensional Euclidean space, where a; > ag > --- > a4 > 0.

The family (1.3) has the following properties:

e The intersection of exactly g quadrics from (1.3) of different geometric types defines a

point of the space EY.

e The family (1.3) contains exactly g-geometric types of non-degenerate quadrics. Each
type corresponds to one of the disjoint intervals (—oo, a,), (a4, @g—1), - - - , (a2, a1) of the

parameter \.

Definition 1.2.1. (Jacobi coordinates)
The Jacobi coordinates are the parameters (Ay,---, A,) that correspond to the quadrics of

(1.3) that contain a given point in E9.

In a g-dimensional Euclidean space, a general family of confocal quadrics contains g-geometric

types of quadrics.

1.3 Billiards in the Euclidean plane

A mathematical billiard, is a dynamical system, where a particle (a dimensionless billiard
ball) moves inside the domain (a billiard table) without a constraint. The particle moves
in a straight line with a constant speed until it hits the boundary. The reflection off the
boundary is elastic and subject to a billiard reflection law: the impact and reflection angles

are congruent to each other [26, 10], see Figure 1.2



Figure 1.2: Billiard reflection law

At the impact point, the velocity of the particle decomposed into the normal and tangential
components. Upon reflection, the normal component instantaneously changes sign, while
the tangential one remains the same. The speed of the particle therefore does not change.
Such billiard system in the Euclidean space is a good model for the motion of light rays, with
mirror boundary [26, 10].

The above description of the billiard reflection does not only apply to the Euclidean

geometry but it also applies to other geometries in particular the pseudo-Euclidean geometry.

1.4 Pseudo-Euclidean spaces

In this section, we defined a pseudo-Euclidean space and a pseudo-Euclidean distance between

two points in the space.

Definition 1.4.1. A pseudo-Euclidean space [EP? is a g-dimensional space RY with a pseudo-
Euclidean scalar product: (z,y)pq = 11 + - + TpYp — Tpi1Ypt1 — =+ — LgYgs

where p,q € {1,--- ;g — 1}, p+ g = g. The pair (p, q) is called the signature of the space
EP4.



Definition 1.4.2. A pseudo-Euclidean distance between two points x and y is defined by:

distyq(z,y) = \/(x =y, — Y)pg-

Note that the distance can take imaginary value since the scalar product can be negative.

Let [ be a line in the pseudo-Euclidean space and let u be its vector, [ is called:

o space-like if (u,u)p,, > 0,
o time-like if (u,u),, <0,

o light-like if (u,u),, = 0.

Two vectors u and v are orthogonal in the pseudo-Euclidean space if (u,v),, = 0. A light-like

line is therefore orthogonal to itself.

1.5 Confocal conics in the Minkowski plane

We study the properties of family of confocal conics in the Minkowski plane and derived focal

properties of such families.

Let

2 2
gy x——l—y—:l, a>b>0
a b

be an ellipse in the Minkowski plane with a and b fixed.

The associated family of confocal conics is

L Y
Co, : =1, XeR
Ox a—>\+b+)\ s c

The family Co, is shown in Figure 1.3 below.

The family of conics Coy has three non-degenerate subfamilies:

e For A < —b, Co, is a hyperbola with the x-axis as the major axis.

e For A € (—b,a), Co, is an ellipse.

(1.4)

(1.5)



Figure 1.3: Family of confocal conics in the Minkowski plane.
e For \ > a, Co, is a hyperbola with the y-axis as major axis.

The quadrics Co,, Co, and Cos corresponding to the y-axis, the x-axis and the line at
infinity respectively are the degenerate quadrics. The three pairs of foci Fi(va + b,0),
Fy(—Va+b,0); G1(0,va +b), Go(0, —va +b,0); and Hy(1: —1:0), Hy(1:1:0) are on
the line at infinity.

Each non-degenerate member of the family Co, is tangent to the following four lines called

the null lines.

r+y=+va+b, r+y=—a+b

r—y=vVa+b rx—y=—VvVa+b

These elementary results follow:



Proposition 1.5.1. 1) For each point on ellipse Coy, A € (b, a), either the sum or the
difference of its Minkowski distances from the foci F} and F5 is equal to 2v/a — A; either

the sum or the difference of the distances from the other pair of foci G; and G5 is equal

to 2ivb + .

2) For each point on the hyperbola Coy, A € (—o0, —b), either the sum or difference of its
Minkowski distances from the foci F} and F5 is equal to 2v/a — A; for the other pair of
foci G and Ga, it is equal to 2/ —b — .

3) For each point on the hyperbola Coy, A € (a,0), either the sum or the difference of its
Minkowski distances from the foci [} and Fj is equal to 2iv/A — a; for the other pair of
foci G7 and Gs, it is equal to 2iv/b + A.

The proof is straightforward.

Proof. 1) Let X be a point on Coy for A\ € (=b,a), therefore a — A > 0.
Let us evaluate dist; (X, F1) + disty1(X, Fy). Set disty1(X, Fy) + dist11(X, Fy) = d.
disty 1(X, F1) + disty 1 (X, Fp) =d
V= Varbp—y2+ @+ VatbP -y =d
V= vVar bR -y —d—/(z+Vat b2y
d* +4zva+b = 2d\/(a: +Va+b)2 -y

2?[16(a + b) — 4d*] + 4d*y* = 4d*(a + b) — d*

2?[16(a + b) — 4d*] + 4d*y* = d*[—d® + 4(a + b)]

2 2
l’_2 + 2 4 =1
d —d* +4(a+b)
4 4
But since X (z,y) is on Coy, it follows that
d2

Z:a—)\, witha — A >0

therefore d = 2va — A as expected.



Similarly
disty 1 (X, ) — disty 1 (X, Fy) = d
Vi@ —VaTop -y /e + Vat b —y2 =d
Je—varbr—gr=d+ /i + vaThr—y
d* +4rva+b= —2d\/(:6 +Va+0b)? — 2

2?[16(a + b) — 4d*] + 4d*y* = 4d*(a + b) — d*

2?[16(a + b) — 4d*]) + 4d*y* = d*[—d* + 4(a + b)]

$2 y2

er —d2 4+ 4(a +b)
4 4
But since X (z,y) is on Coy, it follows that:

d2
Z:a—)\, with a — A >0

therefore d = 2va — A as we expected.
Let us evaluate dist; (X, Gy1) + disty1(X, Ga). Set disty 1(X, G1) + dist11(X,Gs) = d.

disty1(X,Gy) + dist11(X,Ge) =d
Var = (y—Var 0 + a2 — (y+ Var b2 =d
Va2 = (- Va0 —d— /a2 — (y+ Va1 by
4 — dyva+ b = 2d\/x2 — (y+ Va +b)?

y?[16(a + b) + 4d?] — 4d*2* = —4d*(a + b) — d*

4d*x* — y*[16(a + b) + 4d*] = d*[d* + 4(a + b)]

112 yQ

P +4a+d) &
4 4
But since X (z,y) is on the ellipse Co,, it follows that

2

d
T =hEA with b+ X > 0 and d* < 0

therefore d = 2ivb+ \. as expected.

= 1.



Similarly

disty (X, Gh) — dist11(X, Gs) = d
Va2 = (y—Va+ b2 — /a2 — (y+ VaT b2 =d
\/:r2— (y—Va+b)?=d+ \/x2— (y+ Va+b)?
d® —dyva+b= —2d\/x2 — (y+Va+1b)?

y?[16(a + b) + 4d°] — 4d*x* = —4d*(a + b) — d*

4d*x* — y*[16(a + b) + 4d°%] = d*[d* + 4(a + b)]

ey
d>+4(a+0b) d?
4 4

But since X (z,y) is on the ellipse Co,, it follows that

2

_Z:b+)\, withb+ A >0and &> <0

therefore d = 2ivb+ A, as expected.

2) Let X be a point on Coy for A € (—oo, —b), therefore b+ A < 0.

Let us evaluate diStLl(X, Fl) + d’iStl’l(X, FQ) Set d’L.StLl(X, Fl) + d’L.StLl(X, Fg) =d.

disty (X, 1) + disty (X, Fy) = d
\/(x_\/@—M)Z—szr\/(ﬂch\/a——Fb)z—yQ:d
Ve vaThr—yr=d— /o vaThr -y
@+ 40vV/a+b=2d\/ (v + Va+ b — y?

2?[16(a + b) — 4d*] + 4d*y* = 4d*(a + b) — d*

2?[16(a + b) — 4d*] + 4d*y* = d*[—d* + 4(a + b)]

L S
& & —4(a+b)
4 4



But since X (z,y) is on Coy, it follows that:
d*> —4(a + b)
4

therefore d = 2va — A as expected.

=—-b—A withb+A<0

Similarly
dist11(X, F1) — dist1 (X, F») =d
V- vVarop -y -\t VaTop -y =d
Vo var -y —d+ @+ VatbhyE -y
d* +4ava+ b= —2d\/(x +Va+b)?2—y?

2%[16(a + b) — 4d*] + 4d*y* = 4d*(a + b) — d*

2?[16(a + b) — 4d*] + 4d*y* = d*[—d* + 4(a + b)]

22 %
& & —4a+b)
4 4
But since X (z,y) is on Coy, it follows that:
d*> — 4(a +b)

1 =—-b—A withb+A<0

therefore d = 2v/a — A as expected.
Let us evaluate dist; (X, Gy) + dist;1(X, Ga). Set disty 1(X, G1) + dist11(X,Gs) = d.

dist, (X, Gy) + disti1(X,Gs) = d
\/x2— (y—\/a—er)2+\/.7c2—(y+\/a—+b)2 =d
Va2 = (y—Va+ b2 =d—/a? = (y+ Va+ by
d* —dyVa+b= 2d\/x2 — (y+Va+b)?

y?[16(a + b) + 4d?] — 4d*az* = —4d*(a + b) — d*

4d*z* — y*[16(a + b) + 4d*] = d*[d* + 4(a + b)]

x—Q_y_2:1
>+ 4(a+b) & '
4 4
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But since X (z,y) is on the ellipse Coy, it follows that:

d®> + 4(a +b)
4

therefore d=2vV—-b— )\ as expected.

—a—)\ withb+A<0

Similarly

dist1 (X, Gy) — disty1(X,Ga) = d

Va2 = (y—Vat b2 — /a2 — (y+ VaT b2 =d
\/xQ—(y—\/a——l—b)?:d+ \/x2—(y+\/a—+b)2
d* — dyva+ b= —2d\/x2 — (y +Va+b)?

y2[16(a + b) + 4d?] — 4d®x® = —4d*(a + b) — d*

4d*x* — y*[16(a + b) + 4d*] = d*[d* + 4(a + b)]

x—z_y_zzl
& +4(a+b) &>
4 4

But since X (z,y) is on the ellipse Coy, it follows that:

& + 4(a+b)
4

therefore d = 2v—b — A\ as expected.

=a—\, withb+A<0
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3) Let X be a point on Co) for A € (a, 00), therefore a — A < 0.

Let us evaluate disty (X, F1) + disty (X, Fy). Set disty1(X, Fy) + dist; (X, Fy) = d.

dist, (X, Fy) + disty (X, Fy) = d
\/(fE—\/G—M)Q—ZUQ+\/($+\/a——I—l?)2—y2:d
Ve—vaThr—gr—d—/wr VaThe—y
@+ 4av/a b= 2\ (z + Va £ 0)? — y?

2*[16(a + b) — 4d*] + 4d*y* = 4d*(a + b) — d*

2?[16(a + b) — 4d*] + 4d*y* = d*[—d® + 4(a + b)]

.T2 y2

— -1
R BT PR
4 4

But since X (z,y) is on Coy, it follows that:

—d? + 4(a + b)
4

therefore d = 2iv A — a as expected.

=b+ A witha—A<0

Similarly

distyy (X, Fy) — disty1 (X, Fy) = d

Vo —Vat -y et Vat by =d
Ve —varor -y =d+ ot Var oy -y
d* +4zva+b= —2d\/(x +Va+ D)2 —y?

2%[16(a + b) — 4d*] + 4d*y* = 4d*(a + b) — d*

2?[16(a + b) — 4d*] + 4d*y* = d*[—d* + 4(a + b)]

2 2
- $2+ 2 . =L
—d —d* +4(a +b)
4 4
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But since X (z,y) is on Coy, it follows that:

—d* +4(a + b)
4

therefore d = 2iv A — a as expected.
Let us evaluate dist; (X, Gy) + disty1(X, G2). Set disty 1(X, G1) + disty1(X,Gs) = d.

=b+ A witha—A<0

dist, (X, Gh) + disti 1 (X, Gs) = d
\/x2— (y—\/a—er)2+\/.7c2—(y+\/a—+b)2 =d
Va2 = (y=VaF b2 =d—/a? = (y+ Va+ by
d* —dyVa+b= 2d\/x2 — (y+Va+0b)?

y2[16(a + b) + 4d?] — 4d*z* = —4d*(a + b) — d*

4d*z* — y*[16(a + b) + 4d*] = d*[d* + 4(a + b)]

2 2
¢ L2
—d* —4(a+b) —d
4 4
But since X (z,y) is on the ellipse Coy, it follows that:
—d* —4(a+ D)

=A—a, witha—A<0

4
therefore d = 2ivb+ A\ as expected.

Similarly
dist11(X,G1) — dist11(X,Ge) =d
\/3:2—(y— a+b)?— \/3:2—(y+\/a—+b)2:d
V2= (y—VaT b2 =d+ /a2 — (y+ Va1
d* — 4yVa+b = —2d\/x2 — (y+ Va +b)?

y?[16(a + b) + 4d?] — 4d*x* = —4d*(a + b) — d*

4d*x* — y?[16(a + b) + 4d*] = d*[d* + 4(a + b)]

2 2

) ’ + y2:1'
—d* —4(a+b) —d
4 4
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But since X (z,y) is on the ellipse Coy, it follows that:

—d?> —4(a + D)
4

therefore d = 2ivb+ A as expected.

=A—a, witha—A<0

1.6 Billiards in the Minkowski plane

The description here is not different from the one in Section 1.3. We add the fact that if the
normal component of the velocity of the particle is light-like i.e. belongs to the line that
contains the tangential component, then the billiard reflection is not defined. Also two lines
[ and [" are billiard reflection of each other if their intersection point [ N{’ belongs to the

boundary of the conic e and the vectors of [ and [” are billiard reflections to each other.

1.7 Relativistics quadrics

The geometric quadrics of a confocal pencil and their types in the pseudo-Euclidean spaces
do not satisfy all of the usual properties of confocal quadrics in the Euclidean spaces. for
instance, in g-dimensional Euclidean space there are g-geometric types of quadrics while in

g-dimensional pseudo-Euclidean space there are (g + 1)-geometric types of quadrics.

1.7.1 Relativistic conics

Consider the two dimensional pseudo-Euclidean plane E!?!, called the Minkowski plane. We
have already mentioned that a family of confocal conics in the Minkowski plane contains
conics of three geometric types: ellipses, hyperbolas with the x-axis as the major axis and
hyperbola with the y-axis as the major axis as shown in Figure 1.3. It is however more
natural to consider the relativistic conics as analyzed by Birkhoff and Morris[10]. An account

of that analysis is given in details.
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Definition 1.7.1. Let z and y in EY! then (T, y)11 = T1y1 — T2Yo.

Definition 1.7.2. We define the Minkowki distance between two points x,y by:

\/(x_y7x_y>1,17 if <'I_y7w_y>1,1 Zoa
diStl,l('x> y) =

i\/—<$—y’x—y>1’17 if <$—y>$—y>1,1 < 0.
It follows that disty 1(z,y) € Rt UiR™.

Consider two points Fi(va + b,0) and Fp(v/a + b,0) in the Minkowski plane and ¢ € RTUIR™.

Definition 1.7.3. A relativistic ellipse is the set of points X satisfying:
dZ'StLl(Fl,X) + di8t171(F27X> = 2c. (16)

Definition 1.7.4. A relativistic hyperbola is the union of sets given by:

diStl’l(Fl, X) — diStLl (F27 X) = 20,
(1.7)
diStl’l(FQ, X) — dZ'StLl (Fl, X) = 2c.

We can clearly derive from the definition that Equation (1.6) and Equation (1.7) lead to:

2 2

7. S+ Y (1.8)

2 a+b—c?

Equation (1.8) is easily obtained by setting d = 2¢ in:

.CL'2 y2

i =1
a? * —d? + 4(a + b)

4 4

which is an equation proved in Proposition 1.5.1.
Each geometrical conics Z is the union of pieces consisting of confocal relativistic conics (1.6)

and (1.7). The relativistic conics can be described as follows:

Let c € RT,
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e if < ¢ < +/a+0b, then (1.8) is a geometrical ellipse Co,_.2 from the family (1.5) and
the relativistic conics lie on it.
If ¢ > a+b— c?, the geometrical foci are at (£+v/2c2 — a — b, 0) whereas the relativistic
foci are at F; and F5.
If ¢2 < a+b—c?, the geometrical foci are at (0, +v/a + b — 2¢2, 0) whereas the relativistic

are at I} and F5.

e if ¢ > +v/a+b, then (1.8) is a geometrical hyperbola Co,_. with x-axis as major axis
from the family (1.5) and the relativistic conics lie on it.

Since ¢ > ¢® — a — b, the geometrical foci are at (+v/2¢? —a — b,0) whereas the

relativistic foci are still at F} and F5.
Let ¢ € iR™.

e For c € iR", ¢ < 0 and therefore (1.8) is a geometrical hyperbola C'o,_.2 with y-axis

as major axis and the relativistic conics lie on it.
The following result follows:

Theorem 1.7.1. The relativistic conics that lie on each geometrical conic Z are geometrically

tangent to the null lines through the foci F; and F5.

Proof. Let
2 2
i A
2 a+b—c?

By implicit differentiation, one has the following;:

dx dy
20— + 2 =
x02+ ya+b—02
5 dx dy
l’_—_
c? ya+b—02
dy ra+b—c
BTy e (19)



Let us now consider the geometric ellipses (1.8) where 0 < ¢ < v/a + b with slope

dy  ma+b—¢
dr oy

Let (z,x —+v/a + b) be the points on the null line x — y = v/a + b through Fj. Therefore

22 (x—+Va+0b)?
c? a+b—c?

(a+b—ca? + A+ (a+b) —22va+b) =cEa+b—c?)
(a+b)2* - 22*Va+b+c* =0 Therefore
(F—a2vVa+b)?*=0 ie
¢t =ava+b.

Hence the slope

dy c? 1 a+b—c?
dx Ma+bﬁ%F—Va+b 2
dy c? Va+b a+b—c?

dr ~ VatbZ—(a+b) 2
dy

2 =1

dz

The slope of the ellipse (1.8) where 0 < ¢ < va + b equals that of the null line at their
intersection point. We conclude that the null line is tangent to the ellipse at that point.

Let (x, —x—+/a + b) be the points on the null line z+y = —+v/a + b through F». Therefore

2> (r++Va+b)?

I A

c? a+b—c?
(a+b—cA)a? +Aa® + (a+b) +22vVa+b) = Fla+b—c?)
(a+b)a? +22c>Va+ b+ c* =0 Therefore
(A +ava+b)?=0 ie.
= —xvVa+b.
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Hence the slope

dy c? 1 a+b—c?
dx_\/a—i-b\/%—\/a—l—b c?
dy ¢ Va+b a+b-c?
dr VJa+b—(a+b) 2

dy

A

dx

The slope of the ellipse (1.8) where 0 < ¢ < va + b equals that of the null line at their
intersection point. We conclude that the null line is tangent to the ellipse at that point.

Tangency with the other null lines through the foci follows by symmetry in the axes. The

case of the geometric hyperbolas (1.8) where ¢ > v/a + b follows similarly. O
Corollary 1.7.1. [10] The relativistic foci of any conic are located at the intersections of

the tangent null lines.

One can pass from relativistic ellipse (1.6) to a hyperbola by analytic continuation. more

precisely, the following is true:

Theorem 1.7.2. [10] On the geometrical ellipses (1.8) where 0 < ¢ < v/a + b, the segments
where the slope is less than 45° are relativistic ellipses; those having a slope of more than
45° are relativistic hyperbola. On the geometrical hyperbolas (1.8) where ¢ > v/a + b, the

reverse is true.

The above facts are graphically depicted in the following Figure 1.4 in which the solid lines
represent the relativistic ellipses and the dotted lines represent the relativistic hyperbolas.

From Figure 1.4, and applying Theorem 1.7.1, one has the following summary:

e For 0 < ¢ < va+ b : the relativistic conics lie on the ellipse C'o,_.2 which consists of
four arcs by touching points with the common four tangent null lines. The relativistic
ellipse is the union of the two arcs intersecting the y-axis while the relativistic hyperbola

is the union of the other two arcs.
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Figure 1.4: Family of confocal conics in the Minkowski plane. Solid lines represent relativistic
ellipses, and dashed ones relativistic hyperbolas.

e For ¢ > +/a + b : the relativistic conics lie on the hyperbolas Co,_.2 with the x-axis as
the major axis. Each branch of the hyperbola is split into three arcs by touching points
with common tangent null lines. Thus, the relativistic ellipse is the union of the two

finite arcs, while the relativistic hyperbola is the union of the four infinite arcs.

e For ¢ € iR™ : the relativistic conics lie on the hyperbola Co,_.» with the y-axis as the
major axis. Each branch is split into three arcs by touching points with the common
tangent null lines. The relativistic ellipse is the union of the four infinite arcs while the

relativistic hyperbola is the union of the other two finite arcs.
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Figure 1.5: Minkowski plane divided into 9 regions by the four tangent lines to each conics.

Remark 1.7.1. In Figure 1.5, every point in the regions (5), (6), (7), (8) and (9) is an
intersection of two distinct non-degenerate conics from the family (1.5) while every points in

(1), (2), (3) and (4) is either an intersection of two imaginary conics or degenerates conics .

Let us check the above results.

Proof. We consider the following family

+ =1, AeR,a>0,b>0.
It follows that:

2+ N) +y*(a—A) = (a—N)(b+\)

N4 (22 —y? +b—a)\+ bz® + ay® — ab = 0.
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The discriminant is

A= (2> —y* +b—a)’ —4(br* + ay® — ab)

=o'+ oyt + (a+b)? —2(a+b)a? —2(a+ b)y* — 22%y?

¢

(22 —a—b)?+y* —2(a +b)y* — 22%y*
= Jor

(> —a—b)* + 2t — 2(a + b)x? — 22%y?
(

(¢* = y* —a—b)* — 4(a + b)y?,

- or

(y* — 2* —a — b)* — 4(a + b)x>.

\
Let (z,y) be in region (1) then

(

y>x—+a+b,

y>—z+Va+b,

y<z++va+b.
\

case 1: O<ax<+a+b
—r+Vatb<y<z+Vatbd
(—z+Va+0b)? <y’ < (x+Va+b)?
(—z+Va+b)?— (2> +a+b) <y’ — (2> +a+d) < (x+Va+b)?— (2> +a+D)
—2Va+br <y? — (2 +a+b) <2Va+bx
|2 — (2 +a+b)| <2Va+bx
(v — (22 +a +b))? < 4(a + b)2?,

that is A < 0.

case 2: va+b<zxzie z—+vVa+b>0and x++vVa+b>0
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we have

x—\/a——l—b<y<x+\/a—+b
(- VaTB <4 < (24 Va T by
—2Va+br <y?— (2> +a+b) <2Va+ bx
|y — (2 +a+b)| <2Va+ba

(y* — (2 +a+1b))* < 4(a +b)z?,

that is A <0,
hence V(z,y) € (1), A <0.
Let (z,y) be in region (2) then

(

y<zx—+a+b,
Yy >—z—+Va+b,
y>2x++va+b.
\

case 1: —Vat+b<z<0ie. —xz++vVa+b>0and z++vVa-+b>0.

t+vVat+b<y<—z+va+b
(z +Va+0)? <y? < (—z+Va+0)?
2Va+br <y® — (2 +a+b) < —2Va+bx
|2 = (2®+a+D) | < —2Va + bz

(y? — (2* +a +0))? < 4(a + b)2?,
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that is A < 0.

case 2: 1 < —va+ b we have

—:z:—\/a——l—b<y<—x—|—\/a—+b
(—z —Va+b)?<y? < (—z+Va+b)?
2Va+br <y — (2 +a+b) < -2Va+br
|2 — (22 +a+0) | < —2va + bz

(y? — (2* +a +0))? < 4(a + b)2?,

that is A < 0.
hence V(z,y) € (2), A < 0.

Let (z,y) be in region (3) then

.
y<z++va+b,
y<—x—+a+b,
y>x—+va+b.

\

case 1: —Va+b<z<0,y<z++va+0balways holds since y < 0.

r—Va+tb<y<-—z—+a+b
(z +Va+0)? <y? < (x—Va+b)
2Va+br <y* — (2 +a+b) < —2Va+bx
|2 — (2 +a+D) | < —2Va+ bz

(y? — (2* +a +0))? < 4(a + b)2?,
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that is A < 0.

case 2: < —va+b, y<—x—+a+ balways holds we have

:z:—\/a——l—b<y<a:+\/a——l—b
(z+Va+b)? <y?<(z+Va+b)?
2vVa+br <y® — (P +a+b) < —2Va+bx
|2 — (22 +a+0) | < —2va + bz

(y? — (2* +a +0))? < 4(a + b)2?,

that is A < 0.
hence V(z,y) € (3), A <0.
Let (z,y) be in region (4) then

p

y<xr—+a+b,

y<—x—+a+b,

y>—x—+va+b.
\

case 1: O<z<+Va+b,y<—x++a+0balways holds

—a:—\/a—+b<y<a:—\/a—+b
(x—Vatb?<y® < (x4 Vatb)
—2vVa+br <y’ — (2 +a+b) <2Va+bx
|2 — (22 +a+b) | <2Va+ bz

(y* = (2 + a+b))* < 4(a + b)2?,
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that is A < 0.

case 2: > +/a -+ b we have

—z—Vat+b<y<-—-z+Va+b
(¢ = Va+b) <y < (z+Va+b)
—2Va+br<y?— (2 +a+b) <2Va+bx
|y — (2 +a+b) | <2Va+bx

(y* — (2% +a+1b))* < 4(a +b)z?,

that is A < 0.
hence V(z,y) € (4), A < 0.
Let (z,y) be in region (5) then

;

y<z—+va+b,
y>—z++Va+b,

x> +/a+b.

\

case 1: —xr++vVa+b<y<0.

0<y’ < (Va+b—z)?
—(@® +Va+b) <y — (@ +Va+b) < (—z+Va+b)?— (2 +Va+D)
—(@?+Va+b) <y’ — (@ +Va+b) < -2Va+b
4(a+b)z* < (y* — (2> +Va +b))? < (2> + a + b)* hence

0<(y?— (2 +Va+0b)?—4(a+b)z?
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that is A > 0.
case 2: O<y<z—+a+b.
0<y® < (Va+b—ux)?
—(@*+Va+b) <y’ — (2 +Va+b) < (z—Va+b)?— (2 +Va+b)
—(@* +Va+b) <y’ — (* +Va+b) < —-2Va+b
A(a+b)2® < (y* — (2* + Va+1b))* < (2® + a +b)* hence
0 < (y* — (2* + Va+b))* — 4(a +b)a?,

that is A > 0.
hence Y(z,y) € (5), A > 0. Let (z,y) be in region (6) then

.
y>—x++Va+b,
y>x++va+b,
y > +va+b.

\

2| <y—Va+b
(| = +Va+b)* <y’
(Jz|4+Va+b)?—(2*+a+b) <y®>— (2> +a+Db)
Wa+b|z|<y®— (2> +a+D)
0< (y*— (2> +a+0b))* —4(a+b)z?
that is A > 0.
hence V(z,y) € (6), A > 0.
Similarly Let (x,y) be in region (8) then
(y< —z—Va+b,
y<z—+a+b,
v < —Va+b.
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2| <—y—Va+th

22 < (y+Va+b)?
2= (P +Va+b) < (y+Va+b)?—(y*+Va+b)
2? — (y* +Va+b) < 2vVa + by

2> — (¥ + Va+b) < 4y*(a +b),

that is A > 0.
hence V(z,y) € (8), A > 0.

Let (z,y) be in region (7) then

p

y<-—x—+va+b,
y>x++va+b,

r < —+va+b.
\

case 1: z++va+b<y<O.

0<y’<(Va+b+ur)?
—(@*+Va+b) <y’ — (*+Va+b) < (z+Va+b)?— (2> +Va+D)
—(@?+Va+b) <y’ — (@ +Va+b) <2Va+b
4a+b)2? < (y? — (22 + Va1 0)? < (z2 +a+b)% hence

0< (¥ = (2® +Va+0b))* —4(a+b)a?,
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that is A > 0.

case 2: O<y<-—z—+Va+b.

0<y®<(Va+b+ur)?
—(@®+Va+b) <y — (P +Va+b) < (z+Va+b)?— (2> +Va+0)
—(@? +Va+b) <y’ — (@ +Va+b) <2Va+b
Aa+b)a? < (v — (2 +Va+b))* < (2® + a+b)?, hence

0< (¥ = (2® +Va+0b))* —4(a+b)a?,

that is A > 0.

hence V(z,y) € (7), A > 0.

Let (z,y) be in region (9)

case 1: )
y<x+\/a—+b,
y>—z—+a+b,
k—\/a——kb<x<0.
Subcase 1:
—:c—\/a——l-b<y<0
0<y’<(Va+b+ur)?

—(@®*+Va+b) <y’ — (@ +Va+b) < (v+Va+b)?— (2 +Va+b)
—(2* +Va+b) <y®— (2* +Va+b) <2Va+b
d(a+b)2® < (v* — (2> + Va+1b))* < (2* + a +b)*, hence

0< (¥ = (2® +Va+0b))* —4(a+b)a?,
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Subcase 2:

O<y<z++va+b
0<y®<(Va+b+ur)?
—(@*+Va+b) <y’ —(@*+Va+b) < (xz+Vatb)?— (2> +Va+b)
P4 VaTE) <4 — (2 4 VaTT) < 2/a T
4(a+b)2* < (y* — (2® + Va+1b))* < (2 + a+b)?, hence

0< (v — (2 +Va+b))? —4(a + b)x?

case 2:
y<-—x++Va+b,
Yy >x—+Va+b,
0<xz<+va+b.
\
Subcase 1:

r—Va+b<y<0
0<y?<(—Va+b+z)
~(@*+Va+b) <y’ — (2 +Va+b) < (z—Va+b)?— (2 +Va+b)
—(@+Va+b) <y’ — (@ +Va+b) < -2Va+b
Ala+b)a? < (y* — (2 +Va+1b))* < (2° + a+b)?, hence

0< (v — (2> +Va+0b)* —4(a+ b2’
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Subcase 2:

0<y<—x—|—\/a——|—b
0<y?<(Va+b—ux)?
—(@*+Va+b) <y’ — (@*+Va+b) < (z—Va+b)?— (2 +Va+b)
P ANaTH) <y (Pt VaTT) < VAT
Ala+b)a? < (y* — (2 +Va+1b))* < (2® + a+b)?, hence

0< (y* — (2 +Va+b)* —4(a+ b)z?.

Whence the confirmation of Remark 1.7.1.

]

Remark 1.7.2. We observed that all relativistic ellipses are disjoint from each other as well
as all relativistic hyperbolas. Moreover, at the intersection point between a relativistic ellipse
that is part of the geometric conic C'oy; from the family (1.5) and a relativistic hyperbola
that is part of the geometric conic Coyy from the family (1.5), A\; < Ay always holds, since

Coy; always traces the interval (—b,0) and Co,, traces the interval (0,a) .

The above remark serves as a motivation for the introduction of relativistic types of
quadrics in higher dimensional pseudo-Euclidean spaces.

The quadrics in three dimensional Minkowski space is completely studied in [23] by V.
Dragovi¢ and M. Radnovi¢. The Thesis focuses on the study of the two and four dimensional
Minkowski spaces in chapter two and three respectively. The most interesting thing about
the four dimensional Minkowski space is that, it has two signatures, (3,1) and (2,2). The
space with signature (3, 1) is fundamentally related to the study of relativity theory while

the space with signature (2,2) has some good mathematical results.
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CHAPTER 2
PERIODIC BILLIARDS WITHIN CONICS IN THE MINKOWSKI PLANE
AND AKHIEZER AND ZOLOTAREV POLYNOMIALS.

This chapter is extracted from the following two submitted manuscripts: Anani Komla
Adabrah, Vladimir Dragovi¢ and Milena Radnovié¢ for the Proceedings of the International
Conference “ Scientific Heritage of Sergey A. Chaplygin: nonholonomic mechanics, vortex
structures and hydrodynamics”, June 2-6, 2019, I. N. Ulianov Chuvash State University,
Cheboksary, Russia, and Anani Komla Adabrah, Vladimir Dragovi¢ and Milena Radnovi¢,
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Introduction

Billiards within quadrics in pseudo-Euclidean spaces were studied in [33, 23, 24]. In [25, 20],
the relationship between the billiards within quadrics in the Euclidean spaces and extremal
polynomials has been studied. The aim of this chapter is to develop the connection between
extremal polynomials and billiards in the Minkowski plane.

Apart from similarities with previously studied Euclidean space, see [20], there are also
significant differences: for example, among the obtained extremal polynomials are such with

winding numbers (3, 1), which was never the case in the Euclidean setting.

Confocal conics

We recall the following:
X2y
E: —4+==1 2.1
-ty =1 (2.1)

is an ellipse in the plane, with a, b being fixed positive numbers and the associated family of

confocal conics is

Ch: ——+-L =1 XeR. (2.2)



The family is shown on Figure 2.1. We may distinguish the following three subfamilies in

Figure 2.1: Family of confocal conics in the Minkowski plane.

the family Cy:
e for A € (—=b,a), conic C, is an ellipse;
e for A\ < —b, conic C, is a hyperbola with x-axis as the major one;
e for A\ > a, it is a hyperbola again, but now its major axis is y-axis.

In addition, there are three degenerated quadrics: C,, Cp, Cs corresponding to y-axis,
z-axis, and the line at the infinity respectively.

Each point inside the ellipse £ has elliptic coordinates (A1, Ag), such that —b < A\; <0 <
Ao < a.

The differential equation of the lines touching a given conic C, is:

d)\l d)\Q

=0. 2.3
Vie=2) 0+ )y —\) " Vi{a =) (b+ ) (v — A2) 23)
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2.1 Periodic trajectories

Section 2.1-2.6 deal with the trajectories with non-degenerate caustic C,, which will mean
that v € R\ {—b,a}. Such trajectories are either space-like or time-like. The case of light-like
trajectories, which correspond to the degenerate caustic C, is considered separately, in
Section 2.7.

The periodic trajectories of elliptical billiards in the Minkowski plane can be characterized

in algebro-geometric terms using the underlying elliptic curve:

Theorem 2.1.1. The billiard trajectories within £ with caustic C,, are n-periodic if and only

if nQo ~ nQ., on the elliptic curve:
€ vy =cla—2z)(b+a)(y—2x), (2.4)

with @y being a point of € corresponding to = 0, and @), the point corresponding to z =+,

and ¢ = sign .

Proof. Along a billiard trajectory within £ with caustic C,, the elliptic coordinate \; traces
the segment [by, 0], and Ay the segment [0, 1], where by is the largest negative and b; the
smallest positive member of the set {a, —b,~v}.

Case 1. If C, is an ellipse and v < 0, then by = v, by = a. The coordinate \; takes value
A1 = 7y at the touching points with the caustic and value A\; = 0 at the reflection points off
the arcs of £ where the restricted metric is time-like. On the other hand, )\, takes value
A2 = a at the intersections with y-axis, and Ay = 0 at the reflection points off the arcs of £
where the restricted metric is space-like.

Case 2. If C, is an ellipse and > 0, then by = —b, by = . The coordinate \; takes value
A1 = —b at the intersections with x-axis and value A\; = 0 at the reflection points off the arcs

of & where the restricted metric is time-like. On the other hand, Ay takes value Ay = v at
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the touching points with the caustic, and Ay = 0 at the reflection points off the arcs of &
where the restrictes metric is space-like.

Case 3. If C, is a hyperbola, then by = —b, by = a. The coordinate )\, takes value \y = —b
at the intersections with x-axis and value A\; = 0 at the reflection points off the arcs of £
where the restricted metric is time-like. On the other hand, A\, takes value Ay = a at the
intersections with y-axis, and Ay = 0 at the reflection points off the arcs of £ where the
restricted metric is space-like.

In each case, the elliptic coordinates change monotonously between their extreme values.

Consider an n-periodic billiard trajectory and denote by n; the number of reflections off
time-like arcs and ny the number of reflections off space-like ones, ny + ny = n. Integrating

(2.3) along the trajectory, we get:

0 A\ 0 dXs

T N N [Ty ) R ARV rp v [ e s e A

ni

ie.
n1(Qo — Qc,) + 12(Qo — Qp,) ~ 0.

In Case 1, this is equivalent to

ny (QO - Qw) + n2(Q0 - Qa) ~ n(QO - Qw)v

since a closed trajectory crosses the y-axis even number of times, i.e ny, must be even, and

2Qa ~ 2@7-
Similarly, in Case 2, it follows since n; is even, and in Case 3 both n; and ny need to be

even. O
From the proof of Theorem 2.1.1, we have:

Corollary 2.1.1. The period of a closed trajectory with a hyperbola as caustic is even.
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Theorem 2.1.2. The billiard trajectories within £ with caustic C,, are n-periodic if and only

if:
Cy C3 Cy
Cy Cf
Cy, =0, =0, Cy C, C5|=0,... for n=23,57...
Cs Cy
Cy C5 G
Bs; By Bs
Bs; By
B3 =0, =0, B, By Bg|=0,... for n=4,6,8,....
By B;
Bs Bg Br

Here, we denoted:

Vela—z)(b+x)(y —x) = By + Bix + Boa® + ...,

— 0 —
Vela x)v(_zx)ﬁ x):CO+Clx+CQx2+.-

the Taylor expansions around x = 0.
Proof. Denote by @, the point of ¢ (2.4) corresponding to x = oo and notice that
20, ~ 2Qw. (2.6)

Consider first n even. Because of (2.6), the condition n@)y ~ n@, is equivalent to
nQo ~ nl)s, which is equivalent to the existence of a meromorphic function of € with the

unique pole at (), and unique zero at )y, such that the pole and the zero are both of the

multiplicity n. The basis of £ (nQ«) is:

L, 2? .. 2"y, xy, 2™y, (2.7)
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thus a non-trivial linear combination of those functions with a zero of order n at x = 0 exists

if and only if:

Bn/2+1 Bn/2 ce BS
Bn/2+2 Bn/2+1 s B4 —0

Now, suppose n is odd. Because of (2.6), the condition n@Qy ~ n@, is equivalent to
nQo ~ (n — 1)Qs + Q-, which is equivalent to the existence of a meromorphic function of ¢
with only two poles: of order n — 1 at (o, and a simple pole at @), and unique zero at Q.

The basis Z((n — 1)Qu + Q) is:

n—1)/2—1
TL*l)/Q y ny ., CC( )/ y7 (28)

77_x7,7_x7" 7_‘r

thus a non-trivial linear combination of those functions with a zero of order n at x = 0 exists

if and only if:

Co-1y241 Cin—yz .. Gy
Cin-1)242 Cin—nyj241 ... Cs 0
Cn—l Cn cee C’(1171)/2+1

2.2 Examples of periodic trajectories with small periods: 3 <n < 10

3-periodic trajectories

There is a 3-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cy,

in the Minkowski plane if and only if

e the caustic is an ellipse, i.e. A\g € (—b,a); and
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® 02:0

We solve the equation

Cy = 3a’b? + 2a’b)\g — aQ)\g — 2ab?\g — Qab)\g — b2)\8 B

= - =
8(ab)2 A2

which yields the following two solutions for the parameter \y for the caustic:

b
Yo = D (@ —b+2va +abt b2 (2.10)

0, (2.9)

+b)?
Aoy = REFE ibb)z(—a+b+2\/a2+ab~l—b2). (2.11)

Notice that both caustics Cy,, and C,,, are ellipses since —b < A\gy < 0 < Aoy < a.

Two examples of a 3-periodic trajectories are shown in Figure 2.2.

2\

) s

Figure 2.2: A 3-periodic trajectory with an ellipse along the y-axis as caustic (a = 3, b = 2,
v & 2.332) is shown on the left, while another trajectory with an ellipse along the z-axis as
caustic (a =7, b =5, v ~ —4.589) is on the right.

4-periodic trajectories

There is a 4-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cy,

in the Minkowski plane if and only if B3 = 0. We solve the equation

B3 _ (ab + a)\o + b)\o)(ab + a)\o — b)\[))(ab — CL)\O — b)\o) _ O, (212)

16(abXo)3

37



which yields the following solutions for the parameter A\, for the caustic

ab ab ab

A e — e — — .
01 a—{—b’ 02 a_bv 03 a+b

(2.13)

Since Ao1, Aoz € (—b,a) and Mgy & (—b, a), therefore conic C,,, is a hyperbola whereas conics
C»,, and C,,, are ellipses.
In Figure 2.3 and Figure 2.4, examples of a 4-periodic trajectories with each type of

caustic are shown.

Figure 2.3: A 4-periodic trajectory with an ellipse along the y-axis as caustic (a = 2, b = 4,
v = 4/3) is shown on the left, while another trajectory with an ellipse along the z-axis as
caustic (a =9, b =3, v = —9/4) is on the right.

Figure 2.4: A 4-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3,
v =—15/2.
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5-periodic trajectories

There is a 5-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic C,,

in the Minkowski plane if and only if
e the caustic is an ellipse, i.e. Ay € (—b,a); and
[ ] 0204 — Cg =0.

We computed
~10
a’bP N}

— a®V? (290 — 5dab + 200%) (a + b)* A — 36a°0* (—b+ a) (a + )* A3 (214)

C,Cy — C2 = ( (a+b)° XS —2ab(—=b+a) (—3b+a) (=b+ 3a) (a +b)> )

— a*b* (9a% + 34ab + 96%) A2 + 10a°° (b + a) Ao + 5a6b6).

Examples of a 5-periodic billiard trajectories are shown in Figure 2.5 and Figure 2.6.

Figure 2.5: A 5-periodic trajectories with an ellipse along the y-axis as caustic. On the left,
the particle is bouncing 4 times off the relativistic ellipse and once off relativistic hyperbola
(a =5, b= 2, v~ 4.7375), while on the right the billiard particle is reflected twice off
relativistic ellipse and 3 times off relativistic hyperbola (a = 6, b = 4, v ~ 1.4205).

39



Figure 2.6: A 5-periodic trajectories with an ellipse along the x-axis as caustic. On the left,
the particle is bouncing once off the relativistic ellipse and 4 times off relativistic hyperbola
(a=6,b=4, v~ —3.9947), while on the right the billiard particle is reflected twice off
relativistic hyperbola and 3 times off relativistic ellipse (a = 6, b = 4, v &~ —1.5413).

6-periodic trajectories

There is a 6-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cy,
in the Minkowski plane if and only if B3Bs — B2 = 0.

We computed

—14
a’b’\7

x ((a+b)(a—3b)AJ + 2ab(a + b)Ag + a®b?) ((a + b)*A; + 2ab(a — b) Ao + a*b)

BsBs — B? ( — (a+b)222 + 2ab(a — b)Xo + 3a2b2>

x (= (a+b)(3a — b)A§ — 2ab(a + b)Xg + a’b?).
(2.15)

Let us consider the condition
—(a + b)*\§ + 2ab(a — b)\g. + 3a*b*> =0

This produces 3-periodic trajectories as already studied previously.
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The discriminant of the third factor (a + b)*A3 + 2ab(a — b)A\g + a®b? is —16a*b® which is
negative, the expression has therefore no real roots in A.

Next, we consider
(a+b)(a — 3b)A2 + 2ab(a + b)\g + a®b* = 0,
the above equation has two real solutions which are

Ao = (a+b>a(z_3b)(—a—bi2\/r+b2).

Finally we consider

—(a +b)(3a — b)A; — 2ab(a + b)\g + a*b* = 0,
it has two real solutions

Ao = <a+b)céa_b)<—a—bi2\/m>.

An example of a 6-periodic trajectory with a hyperbola as caustic is shown in Figure 2.7.

Figure 2.7: A 6-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3,
v &~ —3.2264 is shown on the left, while another trajectory with a hyperbola along the y-axis
as caustic (a = 3, b =7 and v ~ 3.1189) is on the right. On the left, the particle bounces
off the relativistic ellipse twice and 4 times the relativistic hyperbola while on the right the
particle bounces off the relativistic ellipse 4 times and the relativistic hyperbola twice.
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7-periodic trajectories

There is a 7-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cy,

in the Minkowski plane if and only if

e the caustic is an ellipse, i.e. Ay € (—b,a); and

We computed

Cy
Cs

Cy

&
Cy
Cs

Cy
Cs
Co

Cy
Cs
Cy

Cs
Cy
Cs

Cy
Cs
Cs

;< — (a+0)"? N2 + 4ab (a — b) (=3b+ a) (—b + 3a) (a® — 6ab + b?)
(ab)* > Ag

(a+b)° X" + 2ab* (59a* — 332a°b + 626ab* — 332ab* + 59b*) (a + b)° Ao™®
+28a%b* (a — b) (13a® — 38ab + 136%) (a + b)° \o°

+ a'b* (7a® 4 30ab + 7b?) (63a* — 84a’b — 38a°b* — 84ab® + 63b")

(a+)* \o® — 8a°V° (a — b) (21a* — 420a°b — 50a%6* — 420ab* + 216*) (a + b)* Ao
— 12a°° (105a* — 420a°b + 422a%b? — 420ab® + 1055 (a + b)* A\®

— 240" (a — b) (75a* — 106ab + T50%) (a + b)* Ay

— 3a®b® (437a® — 726ab + 437b%) (a + b)* \o*

— 4a°V’ (a — b) (121a® 4 250ab + 121b%) Ao® — 14a'%"" (3a® + 14ab + 3b*) Ay”

+ 28010 (0 — b) A + 7a12b12).
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Examples of a 7-periodic trajectories are shown in Figure 2.8.

PaN

\/
e A>
>

Figure 2.8: A 7-periodic trajectory with an ellipse along the x-axis as caustic (a =3, b =7,
v &~ —6.9712) is shown on the left, while another trajectory with an ellipse along the y-axis
as caustic (a =7, b =3 and vy ~ 6.9712) is on the right. On the left, the particle bounces
once off the relativistic ellipse and 6 times off the relativistic hyperbola while on the right
the particle bounces 6 times off the relativistic ellipse and once off the relativistic hyperbola.

8-periodic trajectories

There is an 8-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic

Cy, in the Minkowski plane if and only if

Bs B, Bs
B4 B5 BG :07

Bs Bg DBy

We calculate
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e — T (ab — CL)\O — b)\o) (&b + (1)\0 + b)\o) (ab + Cl)\o — b)\g)
(2.17)
( (a+b)* Mt — 4ab (a +b) (=b+ a)® \o® — 2aV? (a + b) (5a — 3b) Ag*—

4636 (a + b) o + a4b4) ( (a+b)* No* + dab (a + b) (—b + a)? \>+
2a2? (a + b) (3a — 5b) Ao + 4a°B® (a + b) Ao + a4b4> ( (a2 = 6ab + 1) (a + b)* \o*+
dab (—b+ a) (a +b)* Xo® + 2a%6* (3a + 2ab + 3b%) \o® + 4a’b* (—b + a) Ao + a4b4>.

In Figure 2.9 and Figure 2.10, three examples of an 8-periodic trajectories are shown.

Figure 2.9: On the left, an 8-periodic trajectory with a hyperbola along z-axis as caustic
(a =6,b =3, v~ —3.0151), with 2 vertices on relativistic ellipses and 6 on relativistic
hyperbolas. On the right, an 8-periodic trajectory with a hyperbola along y-axis as caustic
(a =6,b =3, v~ 6.9168), with 6 vertices on relativistic ellipses and 2 on relativistic

hyperbolas.
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Figure 2.10: An 8-periodic trajectory with an ellipse along y-axis as caustic. There are 2
reflections off relativistic hyperbola and 6 off relativistic ellipses. (a =6, b =3, v ~ 5.3707).

9-periodic trajectories

There is a 9-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cy,

in the Minkowski plane if and only if

e the caustic is an ellipse, i.e. Ay € (—b,a); and

Cy C5 Cy Cs
Cs Cy C5 Cg
Cy C5 Cs C7
Cs Cs Cr Cy
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We computed

C
Cs
Cy
Cs

10ab + b*)(a® — 10ab+ 5b%)(a + b)) A" — 6 a®b*(55a® — 622 a”b + 2521 a*b?
— 3844 a®b* + 2521 a*b* — 622 ab® + 550°) (a + b)2A™® — 46*V* (—b + a)(457 a*
— 3420 a®b + 6838 a?b* — 3420 ab® 4 457 b*)(a + b)) A7 — a*b* (4555 a'+
7790 a®b — 98897 a®b* + 31528 a”b® — 152698 a®b* + 475860 a’b® — 152698 a*b°+-
31528 a®b” — 98897 a*b® + 7790 ab” + 4555 b'%) (a + b)° A1 —
48 a°b°(—b + a)(11a® + 2160 a”b — 5980 a®b* + 9040 a°b* — 23006 a'*b*+
9040 a*b” — 5980 a®b° + 2160 ab” + 116%)(a + b)°A\'® + 8 a®b° (4265 a®—
50720 a”b + 164204 a®b? — 355488 a°b® + 497238 a*b* — 355488 a®b°+
164204 a*b® — 50720 ab” 4 4265 0°)(a + b)° A + 16 a"d" (—b + a) (7855 a®—
53094 a°b + 131265 a*b? — 207444 a*b® + 131265 a*b* — 53094 ab®+
7855b%) (a + b)° A + 18 a®b®(14417 a® — 89050 a®b + 236351 a*b* — 332076 a®b*+
236351 a®b* — 89050 ab® + 14417 6%)(a + b)° A" + 8 a’b”(—b + a) (44525 a®—
5200 a”b — 168100 a®b? + 112400 a°b® + 445166 a*b* + 112400 a®b°—

168100 a®b® — 5200 ab” + 44525 b%)(a + b)* A + 4.a'b'%(82225 a®—

Cs
Cy
Cs

Cs
1

Cy
Cs
Co
Cr

Cs

Ctn on next page.

X ((a +0)*A*° —4ab(—b+ a)(a®* — 6ab+ b*)(5a*—
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Ctn from previous page

407700 a®b* + 138432 a°b® + 616518 ab* 4 138432 a®b° — 407700 a*b°+
82225 b%)(a + b)2A'" + 24 a™b™ (—b + a) (7475 a® + 24050 a®b — 29827 a*b*—
39556 a®b® — 29827 a®b* + 24050 ab® + 747506°)(a + b)*\? + 2 a'?b'? (4225 a®+
282438 a°b — 404721 a*b* + 118932 a®b* — 404721 a*b* + 282438 ab®+

4225 %) (a + b)2A® — 16 a0 (b + a)(5269a* — 24260a’b + 8110a%b*—
24260ab* + 5269b*)(a + b)* A7 — 24a"*b"*(3565a* — 11220a°b 4 12318a2b*—
11220ab® 4 3565b6*) (a + b)2\S — 16a*°0'(—b + a)(2957a* — 3622ab+

2957b%) (a + b)* X° — a'®b9(16115a* + 6220a°b — 20046a°b* + 6220ab+
161156")A* — 36a' 76" (—b + a)(85a* + 178ab + 856*)\* — 6a'*b'®(23a>+

118ab + 23b%)A2 + 60a"°0"(—b + a)\ + 9a20b20) .

Examples of a 9-periodic trajectories are shown in Figure 2.11.

Figure 2.11: A 9-periodic trajectory with an ellipse along the z-axis as caustic (a =5, b =2
and A\g &~ —1.1777) is shown on the left, while another trajectory with an ellipse along the
y-axis as caustic (e =7, b =4 and Ay = 1.9097) is on the right.
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10-periodic trajectory

There is a 10-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic

Cy, in the Minkowski plane if and only if

By By Bs By
By Bs Bg By

We computed
Bs By Bs Bg

By Bs Bs Br
Bs Bs B; DBs

Bs Br Bs By
1

W < (a+ b)G A —2ab(—b+a) (—3b+a) (—b+ 3a)

(a+0)*\° — a?b* (29a® — 54ab + 296%) (a + b)*> \o* — 36a°b* (=b + a) (a + b)°

No* = a'b! (9% + 3ab + 98%) Ao? + 100°8° (=b + a) A + 5a°0° ) (2.19)
( (a+b)° Ao® + 2ab (—b + a) (—3b + a) (—b + 3a) (a + b)> Ay’

+5a%b% (=b + 3a) (=3b + a) (a + b)* \o" + 20636 (b + a) (a + b)* Ao

+ ' (150% + 14ab + 156%) Ao? + 60°° (~b + @) A+ a%° ) ( (a® = 10ab + 5¢2)

(a +b)* A% + 2ab (3a — 5b) (a + b)* A®

+a?b? (a +b) (15a® + 5a’b + 45ab® — 9b*) Ao*

Ctn on next page
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+4a°b? (a + b) (5a® — 10ab + 9b%) Ao® + a*b* (a + b) (15a — 29b) A
4606 (a -+ b) Mo + a6b6>

( (502 — 10ab + b?) (@ + b)* A" + 2ab (5a — 3b) (a + b)* Ao”

— a’b* (a+b) (9a® — 45a®b — 5ab® — 15b%) A*

— 4a°V’ (a + b) (9a® — 10ab + 5b°) Ao® — a'b* (a + b) (29a — 15b) Ao”
— 60V (a +b) Ao + a6b6>.

In Figure 2.12 and Figure 2.13, three examples of an 10-periodic trajectories are shown.

Figure 2.12: On the left, a 10-periodic trajectory with a hyperbola along the y-axis as caustic
(a =8, b=>5and A\ ~ 40.0965,). On the right, a 10-periodic trajectory with a hyperbola
along the z-axis as caustic (a =8, b =15 and \g = —6.4196).

49



Figure 2.13: A 10-periodic trajectory with an ellipse along the x-axis as caustic (a =8, b =15
and \g = —4.1502).

2.2.1 Table of summary on number of touching points with relativistic ellipses

and hyperbolas

In the table below , N.O.R.O.R.E. and N.O.R.O.R.H. stand for the number of reflections off

relativistic ellipses and the number of reflections off relativistic hyperbolas respectively.
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Table 2.1: Table of summary on number of touching points with relativistic ellipses and

hyperbolas
Periodicity n = ny + ny | Caustic of the trajectory | n; : N.O.R.O.R.E. | ny : N.O.R.O.R.H.
n=3
Ellipse along y-axis 2 1
Ellipse along x-axis 1 2
n=4
Ellipse along x-axis 2 2
Ellipse along y-axis 2 2
Hyperbola along x-axis 2 2
n=>y
Ellipse along y-axis 2 3
Ellipse along x-axis 3 2
n=>y
Ellipse along y-axis 4 1
Ellipse along x-axis 1 4

Continued on next page.
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Periodicity n = ny 4+ ns

Caustic of the trajectory

ny : N.O.R.O.R.E.

ny : N.O.R.O.R.H.

n=6
Hyperbola along x-axis 2 4
Hyperbola along y-axis 4 2

n="7
Ellipse along x-axis 1 6
Ellipse along y-axis 6 1

n=_y§
Hyperbola along x-axis 2 6
Hyperbola along y-axis 6 2
Ellipse along x-axis 6 2

n=9
Ellipse along x-axis 5 4
Ellipse along y-axis 4 )

n=10
Hyperbola along y-axis 6 4
Hyperbola along x-axis 4 6
Ellipse along x-axis 4 6
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2.2.2 Cayley-type conditions and discriminantly factorizable polynomials
Example 2.2.1. Let us denote the numerator in the expression (2.9) as Ga(\o, a, b):
Gy( Mo, a,b) = — (a—+b)* Xg® + 2ab (a — b) Ao + 3 a?b?

Let us find the discriminant of Gy with respect to A

DgGy = 24 (a2 + ab + b2) a’b?.
It follows that Gg is a discriminantly factorizable polynomial.
Example 2.2.2. Let us denote the numerator in the expression (2.12) as Gz(Ao, a, b):
G3(Ao, @, b) = —(ab + aXg + bAg)(ab + aXg — bAg)(ab — aXg — bAg)
= —(a+b)’(a—b) N —ab(a+b)> N+ a*?(a —b) N+ a’b®

Let us find the discriminant of Gs with respect to \g

DoGs = 2°a®0® (a + b)°.
It follows that Gs is a discriminantly factorizable polynomial.

Example 2.2.3. Let us denote the numerator in the expression (2.14) as G4(o, a, b):

Gs( Mo, a,b) = (a+b)° \s — 2ab (—b+ a) (—3b + a) (=b+ 3a) (a + b)* )
— a®b? (29a® — 5dab + 29b%) (a + b)* A§ — 36a%6° (—b + a) (a + b)* A}
— a'b* (9a® 4 34ab + 9b*) A} + 10a°b” (=b + a) Ao + 5a°b°.

Let us find the discriminant of Gg with respect to \g

DroGe = —5(2)* (27 a® + 81 a°b + 322 a*b? + 509 a®b* + 322 ab*

+ 81 ab® +271°%) (a + b)° b*a®.

It follows that G is a discriminantly factorizable polynomial.
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Example 2.2.4. Let us denote the numerator in the expression (2.15) as Gg(Ao, a, b):
Gs (Ao, a,b) =
(3a —b)(a—3b)(a+b)° *+8ab(a — b)(a+b)°\" — 4a**(3a* — 24ab + 10 a®b?
—24ab® + 3b%) (a + b)*> \° — 8a°b® (a — b) (9a®> —14ab+9b?) (a+ b)* \°
—10a’"* (11a* — 18ab + 110?) (a + b)* X' — 72a°V° (a — b) (a + b)* N

—4a° (a+3b) (3a+b) N\ +8a"b (a—b)A+3a%®

Let us find the discriminant of Gg with respect to \g

DroGs = —2% (a® + ab+b*) (a + b)"® b7,
It follows that Gg is a discriminantly factorizable polynomial.

Example 2.2.5. The discriminant %,,G;5 of the polynomial numerator of the expression in
(2.16) is:
DroGia = —(2)14(7)? (84375 a™* + 506250 a''b
+ 4266243 a'°b* + 16690590 a’b® + 34989622 a®b* + 45383698 a’b® + 46564971 a®b°+
45383698 a°b” + 34989622 a*b® 4 16690590 a*b” + 4266243 a*b™° + 506250 ab'*

+ 843750'%) (a + b)) b' %!
It follows that Gg is a discriminantly factorizable polynomial.

Example 2.2.6. The discriminant %,,G;5 of the polynomial numerator of the expression in
(2.17) is:
DroGis =
— 2216 (27a% + 46 ab + 27b7) (a + b)® (8 ™ + 200 a*b + 2427 a®'b* + 19048 a®*b*+
108652 a**b* + 479688 a*'b° + 1703702 a*°b° + 4993208 a'b" + 12286692 a'®b°®

+ 25688608 a7 + 46007797 a*6b'° + 70961808 a'°b!! + 94556312 a'4b'% + 108998288 ¢'3p'?
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+ 108671412 a'?b™ 4 93545968 6" + 69297712 a'%b'® + 43955208 a°b' "+

23703317 a®b'® + 10761608 a”b" + 4059132 a®b* + 1248808 a®b*' + 305302 a*b*

+ 57048 a®b?® 4 7652 a?b** + 656 ab® + 27 b*)(27 a®® + 656 a*b + 7652 a**b* 4 57048 a**b?
+ 305302 a?2b* + 1248808 a*'b° 4 4059132 a?°b°® + 10761608 a'b" + 23703317 a'®b®

+ 43955208 a'"b? + 69297712 a*°b'° + 93545968 a'°b'! + 108671412 a**b*?

+ 108998288 a*b** + 94556312 a'?b™* 4 70961808 a''b'® + 46007797 a'b'

+ 25688608 a”b'7 + 12286692 a®b'® + 4993208 a”b'? + 1703702 a®b?° 4 479688 a*b*!

+ 108652 a*b* + 19048 a®b* + 2427 a*b** + 200 ab® + 8 b*°) (a5 +5a'b +10a’b?
410625 + 5ab + b5> (a7 +7a% + 21 a®0 + 35 a6 + 35 a3b* + 21 a?P°

7 ab® 4 bT)b22T
It follows that Gi5 is a discriminantly factorizable polynomial.

Example 2.2.7. The discriminant %,,Gyg of the polynomial numerator of the expression in

(2.18) is:

DroGao =

(2)°%°(3)? (a® + ab + b”) (2573571875 a'® + 23162146875 a'"b + 343857834375 a'°b*+
2225854012500 a'®b® + 7915637923674 a**b* 4 18294550565718 a'3b° + 35800011229590 a'2b°
4 71422154979456 a*'b” + 123117217701777 a'°b® + 150424579541609 a’b°
+123117217701777 a®b'® + 71422154979456 a"b'' + 35800011229590 a°b'?

4 18294550565718 a°b*® + 7915637923674 a*b™* + 2225854012500 ab*®

+ 343857834375 a*b'® + 23162146875 ab'” 4 2573571875 b'®) (a 4 b)"*° H**a>*

It follows that Gy is a discriminantly factorizable polynomial.
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Example 2.2.8. The discriminant %,(Gs4 of the polynomial numerator of the expression in

(2.19) is:

Dr0Gaa = 5(2)7° (640 — Tab+ 64b*) (64a” + 135ab+ 135b%) (135a” + 135ab + 64 b*) x

(27a% + 81a°b + 322 a*6* + 509 a®b® + 322 %" + 81 ab® + 2715) (a + b)'™ b2
It follows that Go4 is a discriminantly factorizable polynomial.

Remark 2.2.1. We observed in the above examples that all polynomials are discriminantly
factorizable. However, it is important to note that their factors are homogeneous, thus, by a
change of variables (a, b) — (a, l;), with b = 2, transforms the polynomials into discriminantly

separable polynomials in new variables (a,b).

2.2.3 Disciminantly separable polynomials

Similarly to the case of the Euclidean plane [20], the Cayley-type conditions obtained previ-
ously have a very interesting algebraic structure. Namely, the numerators of the corresponding
expressions are polynomials in 3 variables. As examples below show, those polynomials have
factorizable discriminants which, after a change of varibles, lead to discriminantly separable

polynomials in the sense of the following definition.

Definition 2.2.1. [17] A polynomial F(zy,...,x,) is discriminantly separable if there exist
polynomials fi(z1),..., fu(z,) such that the discriminant 2, F of F with respect to x;

satisfies:

.@xiF(l’l, e ,i’z‘, e ,an) = Hfj(.?ﬁj),
J7#i

foreachi=1,...,n.
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Discriminantly factorizable polynomials were introduced in [23] in connection with n-
valued groups. Various applications of discriminantly separable polynomials in continuous
and discrete integrable systems were presented in [27].The connection between Cayley-type
conditions in the Euclidean setting and discriminantly factorizable and separable polynomials
have been observed in [20]. As examples below show, the Cayley conditions in the Minkowski
plane provide examples of discriminantly factorisable polynomials which, after a change of
variables, have separable discriminants. It would be interesting to establish this relationship

as a general statement.

After applying Remark 2.2.1 to the previous first four examples, one gets the following

discriminantly separable polynomials in new variables (a, l;)

Example 2.2.9.
DGy = 2%aBH? <1 +b+ 82> :

Example 2.2.10.
. N 2
Doy = 2°a185° (1 n b) .

Example 2.2.11.

DnoGs = —52%4a”b% (27 + 81 b+ 3221 + 509 b* + 322b*

+810° 4 270°%) (a+b)°.
Example 2.2.12.
. S 18
DGy = — 238108574 (1 tht b2) (1 + b) .
2.3 Elliptic periodic trajectories

Points of the plane which are symmetric with respect to the coordinate axes share the
same elliptic coordinates, thus there is no bijection between the elliptic and the Cartesian

coordinates. Thus, we introduce a separate notion of periodicity in elliptic coordinates.
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Definition 2.3.1. A billiard trajectory is n-elliptic periodic is it is n-periodic in elliptic

coordinates joined to the confocal family C,.
Now, we will derive algebro-geometric conditions for elliptic periodic trajectories.

Theorem 2.3.1. A billiard trajectory within £ with the caustic C, is n-elliptic periodic

without being n-periodic if and only if one of the following conditions is satisfied on €
(a) C, is an ellipse, 0 < v < a, and nQy — (n — 1)Q, — Q—p ~ 0;
(b) C, is an ellipse, —b < v < 0, and nQy — (n — 1)@, — Q, ~ 0;
(c) C, is a hyperbola, n is even and nQy — (n — 2)Q, — Q_p — Q4 ~ 0;
(d) C, is a hyperbola, n is odd, and nQy — (n — 1)Q, — Q, ~ 0;
(e) C, is a hyperbola, n is odd, and nQy — (n — 1)@, — Q_ ~ 0.

Moreover, such trajectories are always symmetric with respect to the origin in Case (c¢). They
are symmetric with respect to the x-axis in Cases (b) and (d), and with respect to the y-axis

in Cases (a) and (e).

Proof. Let My be the initial point of a given n-elliptic periodic trajectory, and M; the next
point on the trajectory with the same elliptic coordinates. Then, integrating (2.3) My to M,

along the trajectory, we get:

n1(Qo — Qc,) + 12(Qo — Qp,) ~ 0,

where n = n; + ne, and n, is the number of times that the particle hit the arcs of £ with
time-like metrics, and ny the number of times it hit the arcs with space-like metrics. We
denoted by ¢; the largest negative member of the set {a, —b,~}, and by b; its smallest positive
member.

The trajectory is not n-periodic if and only if at least one of ny, ns is odd, which then

leads to the stated conclusions. O
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The explicit Cayley-type conditions for elliptic periodic trajectories are:

Theorem 2.3.2. A billiard trajectory within £ with the caustic Q. is n-elliptic periodic

without being n-periodic if and only if one of the following conditions is satisfied:

(a) C, is an ellipse, 0 < v < a, and

Dy Dy Dy
Dy D,
D; =0, =0, Dy Dy Dy |=0,... for n=246,...
Dy Dg
D3 Dy Ds
Ey E3 Eu
Ey, Ej
Ey, =0, =0, Es E, E;|=0,... for n=3,57,...;
E3 E,
Ey E5 Eg
(b) C, is an ellipse, —b < v < 0, and
Ey FEy, Ej
Ey E
Ey =0, =0, FEy Ey E,|=0,... for n=246,...
Ey Ej
Es E, Ej
Dy Dy Dy
Dy Dg
Dy =0, =0, Dy D, Ds|=0,... for n=3,57,...;
D3 Dy
Dy Ds D
(c) Q. is a hyperbola, n even and
¢y Gy G
Cr Gy
C, =0, =0, Cy Cy Cy|=0,... for n=246,...
Cy Cs
Cs Cy Cj
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(d) Q, is a hyperbola, n is odd, and

Dy D3 Dy
Dy Ds
Dy =0, =0, Dy D, Ds|=0,... for n=3,57,....
D; Dy
Dy Ds Dg
(e) Q, is a hyperbola, n is odd, and
Ey E3 Ey
Ey Ej3
Ey, =0, =0, Es E, E;|=0,... for n=3,57,....
Es E,
Ey Es Eg

Here, we denoted:

Vela—2)(b+)(y —2)

a—x

vela—z)(b+z)(y — 7)

b+ x

:D0+D1$+D2$2+...,

:E0+E1x+E2.Z'2+...,

the Taylor expansion around x = 0, while Bs and C's are as in Theorem 2.1.2.

Proof. (a) Take first n even. Using Theorem 2.3.1, we have:
nQO ~ (n_l)Q'Y_'_Q*b ~ (n_2>Qoo+be+Q’y ~ (n_2)Qoo+Qoo+Qa ~ (n_l)Qoo+Qa-

The basis of Z((n — 1)Qu + Q4) is:

n/2—1
1,z,2%,. .. "%t 4 T Y

) ) ) )
r—a r—a IT—a

thus a non-trivial linear combination of these functions with a zero of order n at x = 0 exists

if and only if:

Dn/2 Dn/271 cee Dl
Dn/g_;,_l Dn/g ... Dy _ 0
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For odd n, we have:
nQo ~ (n—1)Qy + Q—p ~ (n — 1)Qcc + Q.

The basis of Z((n — 1)@ + Q) is:

n-1)2 _Y wy xR

"r+bxz+b x+b

Y

)

thus a non-trivial linear combination of these functions with a zero of order n at x = 0 exists

if and only if:

Em-vj241 Bw-vp .- B
Ew-n/2+2 Eg-vj2+1 .. Es o
o Epes . Bty
Case (b) is done similarly as (a).
(c) We have nQo ~ (n —2)Q, + Q_p + Qo ~ (n — 1) Qoo + Q.
(d) We have nQp ~ (n —1)Qy + Qo ~ (n — 1)Quso + Q-
(e) We have nQo ~ (n —1)Qy + Q—p ~ (n — 1)Quc + Q. O

2.4 Examples of elliptic periodic trajectories with small periods: 3 <n <7

2-elliptic periodic trajectories

There is a 2-elliptic periodic trajectory without being 2-periodic of the billiard within (2.1),
with a non-degenerate caustic C,, in the Minkowski plane if and only if one of the following

is satisfied:
e the caustic is an ellipse, with vy € (0,a); and Dy = 0.
e the caustic is an ellipse, with vy € (=b,0); and E; = 0.

e the caustic is a hyperbola, and n even and C; = 0.
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We solve the following equations

(a+b)A—ab
2ag(b>\)% B
(a+b)A+ab

Cogpent

o — (a—b))\—i—ab:

Dl = 07

b = 0,

0,
o\3(an)?

which respectively yield the solutions for the parameter 7, for the caustic:

B ab
Mo = a+b

B ab
%__a——i—b’

B ab
’Yo——a_b

Some examples of a 2-elliptic periodic trajectories without being 2-periodic are shown in

Figure 2.14 and Figure 2.15.

PaN
// N\

7

Figure 2.14: A 2-elliptic periodic trajectories with ellipses as caustics. On the left, the caustic
is an ellipse along x-axis (a =5, b =3, v = —15/8), and on the right an ellipse along y-axis
(a=>5,b=7and v =35/12).
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Figure 2.15: A 2-elliptic periodic trajectory with a hyperbola as caustic (a = 7, b = 3,
v = —5.25).

3-elliptic periodic trajectories

There is a 3-elliptic periodic trajectory without being 3-periodic of the billiard within (2.1),
with a non-degenerate caustic C,, in the Minkowski plane if and only if one of the following

is satisfied:

e the caustic is an ellipse, with vy € (0, a); and Es = 0, or the caustic is a hyperbola with

n and Fy = 0.

e the caustic is an ellipse, with vy € (—b,0); and Dy = 0, or the caustic is a hyperbola

and Dy = 0.

The following equations are solved:

1 1

By= ot (0 h)a— N~ 2aba DA+ =0, (220)
8b§(a)\)§
1 1

Dy = —————((a+b)(a— 3b)A* + 2ab(a + b)\ + a*b*) = 0, (2.21)
8b§(a)\)§

which respectively yield the pair of solutions for the parameter v, for the caustic:
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(—a — b+ 2va? + ab)ba (—a — b+ 2va? + ab)ba

0= T By 0T T T B = b
_ (—a—b+2vVb2 + ab)ba 4 e _(=a—=b+2Vb* +ab)ba
T Gt o)a—3y) T (@+b)(a—30)

Examples of a 3-elliptic periodic trajectories which are not 3-periodic are shown in

Figure 2.16 and Figure 2.17.

Figure 2.16: A 3-elliptic periodic trajectories with hyperbolas as caustics. On the left, the
caustic is orientied along the z-axis (a = 6, b = 3, 7 = —3.1595918), and on the right along

the y-axis (a = 3, b =5, v ~ 3.2264236).

/‘

Figure 2.17: A 3-elliptic periodic trajectory without being 3-periodic with an ellipse along
the z-axis as caustic (a =9, b =2 and \g = —.8831827) on the let. On the right,a 3-elliptic
periodic trajectories without being 3-periodic with an ellipse along the y-axis as caustic
(a=4,b=9and Ay = 1.312805).
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4-elliptic periodic trajectories

There is a 4-elliptic periodic trajectory without being 4-periodic of the billiard within (2.1),
with a non-degenerate caustic C,, in the Minkowski plane if and only if one of the following

is satisfied:

e the caustic is an ellipse, with v € (0,a); and D3D; — D3 = 0.
e the caustic is an ellipse, with vy € (—=b,0); and E3E; — E3 = 0.
e the caustic is a hyperbola, and C5C; — C2 = 0.

which respectively produce the following equations

D3sD, — D3 = (2.22)
((a + b)*\* — 4ab(a + b)(a — b)2\* — 2a*b*(a + b)(5a — 3b)\? — 4a®b*(a + b)X + a’b?)
a®(64bA)?
(2.23)
EsE, — B2 = (2.24)
((a+ b)*\* + 4ab(a + b)(a — b)2\® + 2a2b*(a + b)(3a — 5b)A? + 4a®b®(a + b))\ + a*b?)
6405 (aN)?
(2.25)
C3Ch — C3 = (2.26)
1
64)\5—<ab)3 X ((CL2 — 6ab + b2)(a + b)2>\4 + 4ab(a — b)(a + b)2)\3 (227)

+ 2a%b*(3a? + 2ab + 3b*)\* + 4a3b* (a — b)\ + a'b?))

Each real solution 7, for the above equations for some fixed values of a and b will produce a
4-elliptic periodic trajectory which is not 4-periodic.

Some examples are shown in Figure 2.18 and Figure 2.19
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Figure 2.18: A 4-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 5,
b =3, v~ 4.6216), and it is a hyperbola on the right (a =5, b = 3, 7 &~ —3.0243).

Figure 2.19: A 4-elliptic periodic trajectory without being 4-periodic with a hyperbola along
the y-axis as caustic (a =5, b =3 and Ay ~ 5.4942).

5-elliptic periodic trajectories

There is a 5-elliptic periodic trajectory without being 5-periodic of the billiard within (2.1),

with a non-degenerate caustic C,, if and only if one of the following is satisfied:
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e the caustic is an ellipse, with v € (0,a) or a hyperbola and EyEy — E3 = 0.
e the caustic is an ellipse, with vy € (—=b,0) or a hyperbola DyD, — D% = 0.

which yield the following equations

2—10

BBy — E2 = TPV <(5a2 — 10ab + b?)(a + bY*X° + 2ab(5a — 3b)(a + b)*N°

— a*b*(a + b)(9a® — 45a%b — 5ab® — 156*)\* — 4a’b*(a + b)(9a® — 10ab + 5b*)\?

— a'bi(a + b)(29a — 15b)A? — 6a°b%(a + D) + a6b6> =0

2—10

DoDy — D? = X ((a2 — 10ab + 56%)(a + b)*A® + 2ab(3a — 5b)(a + b)*A°

1024a7(bA)
+ a®b*(a + b)(15a® + 5a®b + 45ab* — 9b*)A\* + 4a*b* (a + b)(5a* — 10ab + 9b*)\*
+ %t (a + b)(15a — 296)A% + 6a°b%(a + b)A + a6b6> —0

Each real solution 7, for the above equations for some fixed values of a and b will produce a

4-elliptic periodic trajectory which is not 4-periodic.

Some examples are shown in Figure 2.20 and Figure 2.21

Figure 2.20: A 5-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 7,
b =4, v~ —3.3848) and a hyperbola on the right (a =3, b =7, 7 ~ 3.4462).
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Figure 2.21: A 5-elliptic periodic trajectories without being 5-periodic with a hyperbola along
the y-axis as caustic (a =7, b =4 and \g &~ —4.9683)

A 6-elliptic periodic trajectories

There is a 6-elliptic periodic trajectory without being 6-periodic of the billiard within (2.1),
with a non-degenerate caustic C,, in the Minkowski plane if and only if one of the following

is satisfied:

e the caustic is an ellipse, with v € (0, a); and

e the caustic is an ellipse, with vy € (—b,0); and
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C, Cy Cs
e the caustic is a hyperbola, and by | ¢, ¢y €, | =0.

Cs Cy Cs

which produces the following equations

(13a™ — 103a%b + 293a°b* — 823a*b® + 1503a’b* — 1677ab°

4 3055ab® — 725b7)(a + b)*A\'0 — a(14a” — 171a%b + 520a°b* — 1481a*b* + 3526a°b*

— 4989ab° + 6660ab° — 3119b7)(a + b)*\? — 2a2b(33a® — 172a°b + 481a*b* — 1456a°b°
4 2883a%b* — 3268ab” + 24590°%)(a + b)*\® — 4ab*(a + b)(30a° — 73a°b + 213a*D?

— 55400 + 488a?b* + 67ab® — T79°)\” — 2b%a*(a + b)(52a° — 151a*b + 370a°b*

— T44a*b® + 474ab* + 1276°)\° — 2a°b* (a + b)(18a* — 27a’b + 43ab* — 193ab®+
1676")\° + 4a°0°(a + b)(9a® — 8a?b + 47ab* — 16b*)\* + 4a”b%(a + b)(26a* + 29ab+

T6*)\* + a®b" (120a” + 85ab + 596%) A + a”b®(66a — 41b) A + 14a'%b’ = 0

(a4 b\ + ab(3a — b)*(a — 3b)*(a + b)*\* + 4a*b*(9a>—

53a?b + 51ab® — 156%)(a + b)* A + 4b%a*(21a* — 62ab + 29b?)(a + b)* N+

2a*b*(a + b)(63a* + 60a®b 4 26a%b* — 132ab® — 33b*) A% + 2a°b°(a + b)(63a® — 19a°b+
141ab® — 33b°)A* + 4a°0°(a + b)(21a® — 38ab + 296°)\* + 12a"b" (a + b)(3a — 5b)\*+

9a%b%(a + b)A + a®b’ = 0
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(26a°b — 178a°b* + 308a*b* — 308a’b* + 1784a%h° — 26ab°
+ 21a® — 154a°b + 219a*b* — 236a°b® + 219a%b* — 154ab® + 210°)(a + b)*A'°
+ 2ab(37a°b — 44a*b? + 94a’b® — 44a*b* + 37ab® + 35a° — 47a'b + 46a°b* — 464D
+ 47ab* — 35b°)(a + b)*\? + a?b*(40a°b — 200a°b? — 240a*b* + 240a°b* + 200425
— 40ab® + 85a° — 146a°b + 187a*b* — 188a”b* + 187a*b* — 146ab® + 85b°)(a + b)*\®
— 8a’b*(15a°b — 60a*b* 4 106a*b® — 60a*b* + 15ab” — 5a° + Ta*b — 20a°b*+
20a°b* — 7ab* + 5b°)(a + b)*\" — 2a*b*(90a*b + 26a°b* — 26a%b* — 90ab* — 5a’+
44a°b + 98ab* + 44ab® — 5b*)(a + b)*A\°® + 12a°6°(33ab — 190a*b® + 33ab® — 5a*+
79a%b — 79ab® + 5b%)(a + b)*\° + 2a°6°(772a*b + 228a°b* — 228a*b* — T72ab*—
295a* + 748ab + 2086ab* + 748ab® — 295b*)\* + 8a’b" (245ab — 30a*b*+
245ab* — 195a® — 69ab + 69ab® + 1956*)\* + a®b®(1130a*b — 1130ab* — 1855a°+

154ab — 18550*)\% + 506" (5ab — 21a + 21b)\ — 231a'b™ = 0.

Each real solution 7 for the above equations for some fixed values of @ and b will produce
a 6-elliptic periodic trajectory which is not 6-periodic.

Some examples are shown in Figure 2.22.
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Figure 2.22: A 6-elliptic periodic trajectories. On the left, the caustic is an ellipse along the
z-axis (e =3, b="5 and \g =~ —4.9755), and it is a hyperbola along the y-axis on the right
(a=3,b=4and \g ~ 2.9989).

7-elliptic periodic trajectories

There is a 7-elliptic periodic trajectory without being 7-periodic of the billiard within (2.1),
with a non-degenerate caustic C,, in the Minkowski plane if and only if one of the following

is satisfied:

e the caustic is an ellipse, with vy € (0,a), or a hyperbola and by

E, E3 Ey
Es E, Es|=0,.
E, E;5 Fs
e the caustic is an ellipse, with 79 € (—b,0) or a hyperbola and by
Dy D3 Dy
Dy Dy D5 |=0.
D, D5 Dg

which produce the following equations
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— (7a® — 35a®b + 21ab* — b*)(a + b)°A\'? — dab(7a* — 14ab+

30%)(a + b)? A" 4 2a?b*(21a® — 342a°b + 375a*b* — 804a’b® + 435a*b* — 38ab®
4 33b%) (a + b)* A + 4a®b*(1216° — 595a*b + 1018a*b* — 998a%b* + 285ab*
—556°)(a + b)*\? + a*b*(1311a* — 4500a°b + 6378a*b* — 3188ab®

+ 4956 (a + b)*A® + 8a°b°(225a® — 585ab 4 499ab® — 99b%)(a + b)*\”

+ 4a°0%(a + b)(315a° + 483ab — 658a°b* — 826a%b* — 25ab* + 2315°)\°
+8a"b"(a + b)(21a* + 252a°b — 42a*b* — 52ab® — 996" )\° — a®b%(a + b)(441a®
— 1197ab + 235ab* — 4956°)A* — 4a°V° (a + b)(91a® — 102ab + 55b%)\3

— 20" (a + b)(59a — 33b)A\* — 12a"b" (a + b)A + a'*b™ = 0

(a® — 21a%b + 35ab* — 7b)(a + b)?A\'2 + 4ab(3a* — 14ab+

76%)(a + b)° A + 2a%b*(33a° — 38a°b + 435a*b* — 804a*V® + 375a%b* — 342ab°
+218%) (a + b)* A1 + 406 (55a° — 285a*b + 998a°b* — 1018a*b® + 595ab*
—1216°)(a + b)*\? + a*b*(495a* — 3188a°b 4 6378a%b* — 4500ab®
+13116%) (a + b)*\® + 8a°6°(99a” — 499a%b + 585ab* — 225b6%)(a + b)*\*

+ 4a%05(a + ) (231a® — 25a*b — 8264°b* — 658a2b® 4 483ab® + 3156°)\°
+8a"b"(a + b)(99a* + 52a%b 4 42a2b* — 252ab® — 21b*)N\° 4 a®b®(a + b)(4954°
— 235a%b + 1197ab* — 4416*)A* + 4a°V° (a + b)(55a® — 102ab + 91b*)\3

+2a'""(a + b)(33a — 59b)A* + 124" 0" (a + )X + a'?b'* = 0

Each real solution =, for the above equations for some fixed values of a and b will produce a

T-elliptic periodic trajectory which is not 7-periodic.
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Some examples of a 7-elliptic periodic trajectories without being 7-periodic are shown in

Figure 2.23 and Figure 2.23

Figure 2.23: A T-elliptic periodic trajectories. On the left, the caustic is a hyperbola along
the y-axis (a = 3, b =7 and \g & 3.7232), and it is a hyperbola along the x-axis on the right
(a=3,b="7and \g = —10.7847).

Figure 2.24: A T-elliptic periodic trajectories. On the left, the caustic is an ellipse along the
y-axis (a =5, b =7 and Ay =~ 4.8394), and it is an ellipse along the z-axis on the right (a = 3,
b=Tand \g ~ —5.4467).
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Discriminantly separable polynomials and elliptic periodicity

Since the case n = 2 is trivial, we start with the case n = 3.

From the numerator of Ey in Equation (2.20) and D, in Equation (2.21), we have:

Gi(a,b,7) = —(a+ b)(3a — b)y* — 2ab(a + b)y + a*b?,

Go(a,b,y) = (a+ b)(a — 3b)y* + 2ab(a + b)y + a’b?,
and we calculate the discriminants, which factorize as follows:
2,G, = 16a°V*(a +b), 2,Gy = 16b°a*(a + b).

Similarly, for n = 4, from the numerator of D3D; — D3 in Equation (2.23), EsE; — E2 in

Equation (2.25) and C3C; — C3 in Equation (2.27), we have:

Gs(a,b,v) =

(a4 b)*y* — dab(a + b)(a — b)*~* — 2a*b*(a + b)(5a — 3b)7* — 4ab*(a + b)y + a'b?,
Gy(a,b,v) =

(a +b)*y* + dab(a + b)(a — b)*y* + 2a*b*(a + b)(3a — 5b)7* + 4a’b* (a + b)y + a*b?,
Gs(a,b,v) =

(a® — 6ab + b*)(a + b)*y* + dab(a — b)(a + b)*y* + 2a%b*(3a® + 2ab + 3b%)~?

+4a*b*(a — b)y + a*b.
The discriminant of these polynomials factorizes as follows:

2.,G3 = —2'%a'0"(8a” + 8ab + 27b%)(a + b)*,
2,Gy = —2"%a"0"°(27a* + 8ab + 8b*)(a + b)*,

2,Gs = 2'2(32a° — 491a°b — 439a*V? + 194a®b® — 62a°b* — 39ab® + 5b°%)(a + b)*b'a'?.
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Using the transformation (a,b) — (a,b), where b = b we get:
2,Gy = 16a°0*(1 + b),
2,Gy = 16a°b*(1 + b),
2,Gy = —2'%6%0™(8 + 8b + 270%) (1 + b)*,
2,Gy = —2"a0'%(27 + 8b + 8b?)(1 + b)*,

D,Gs = 220" (32 — 491b — 4390% + 1940° — 62b* — 39b° + 50°)(1 + b)°.

2.5 Polynomial equations

Now we want to express the periodicity conditions for billiard trajectories in the Minkowski

plane in terms of polynomial functions equations.

Theorem 2.5.1. The billiard trajectories within £ with caustic C., are n-periodic if and only
if there exists a pair of real polynomials py,, qq, of degrees dy, dy respectively, and satisfying

the following:

(a) if n = 2m is even, then d; = m, dy = m — 2, and

Pn(s) = s (s - 2) <s + %) (5 - %) @ols) = 1;

(b) if n=2m + 11is odd, then d; =m, dy = m — 1, and

(3 _ %) P2 (s) — s (s - %) (s + %) 2 (s) = —sign~.

Proof. We note first that the proof of Theorem 2.1.2 implies that there is a non-trivial linear
combination of the bases (2.7) for n even, or (2.8) for n odd, with the zero of order n at
x = 0.

(a) For n = 2m, from there we get that there are real polynomials p}, (z) and ¢, ,(x) of

degrees m and m — 2 respectively, such that the expression

Pi(@) = @ a(2)V/e(a — 2) (b + 2)(y — @)
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has a zero of order 2m at = = 0. Multiplying that expression by

Prn(@) + @, 2(2)Ve(a = 2) (b + 2) (v — @),

we get that the polynomial (pf,(x))* —e(a — x)(b+ x)(v — z)(q},_5(z))?* has a zero of order

2m at x = 0. Since the degree of that polynomial is 2m, is follows that:

(P (@))* = ea = 2)(b+ 2)(y — 2)(5,5(2))* = ca™,

for some constant ¢. Notice that ¢ is positive, since it equals the square of the leading
coefficient of p* . Dividing the last relation by cx®™ and introducing s = 1/z, we get the
requested relation.

(b) On the other hand, for n = 2m + 1, we get that there are real polynomials p}, (z) and

¢, _1(x) of degrees m and m — 1 respectively, such that the expression

Vela—2)(b+2)(y — )

Y=

Pr(T) = @1 ()

has a zero of order 2m + 1 at z = 0. Multiplying that expression by

)¢e<a—x><b+x><v—x>>

Y=

(v — ) (piél(:v) + G (2

we get that the polynomial (v — x)(p;,(2))? — e(a — z)(b+ x)(q},_(x))?* has a zero of order

2m + 1 at z = 0. Since the degree of that polynomial is 2m + 1, is follows that:

(v = 2) (P (@) — ela — 2)(b+ 2) (g, (2))* = ca™ ",

for some constant c. Notice that c is negative, since it equals the opposite of the square of the

2m—+1

leading coefficient of p; . Dividing the last relation by —ccz and introducing s = 1/z,

we get the requested relation. O]

Corollary 2.5.1. If the billiard trajectories within £ with caustic C, are n-periodic, then

there exist real polynomials p,, and ¢, o of degrees n and n — 2 respectively, which satisfy

P(s) — s (s - é) <s + %) <s _ %) P2 (s) = 1. (2.98)

the Pell equation:



Proof. For n = 2m, take p, = 2p2, — 1 and G,_2 = 2pmGm_2. For n = 2m + 1, we set

~

Pn = 2 (’YS - 1)]7?” + sign7 and (jn—2 - 2mem—1- O

Theorem 2.5.2. The billiard trajectories within £ with caustic C, are elliptic n-periodic
without being n-periodic if and only if there exists a pair of real polynomials pg,, qq, of

degrees dy, d, respectively, and satisfying the following:
(a) C, is an ellipse, 0 < v < a, and

—n=2miseven,d, =dy,=m—1,

s(s= 1)@= (s+5) (52 ) o =1

—n=2m+1isodd, dy =m, dy =m — 1,

(b) C, is an ellipse, —b < v < 0, and

—n=2miseven,dy =dy=m—1,

s (8 + %) P (8) — (8 - é) <8 - %) Gm-1(s) = 1;

—n=2m+1lisodd,di =m, dy =m — 1,

(c) C, is a hyperbola and n = 2m is even, dy = dy = m — 1,

(s= 1)t =s (5= 1) (s 5) ato) = —simn

(d) C, is a hyperbola, n = 2m + 1 is odd, d; = m, dy = m — 1,

(s=2)me=s(s+5) (5= 1) st =1

7



(e) C, is a hyperbola, n =2m+1is odd, d; =m, dy = m — 1,

<s + %) P2 (s) — s (s _ 2) <s _ %) 2 (s) = 1.

Proof. (a) For n = 2m, the proof of Theorem 2.3.2 implies that there are polynomials p¥,_,(z)

and ¢, ;(x) of degrees m — 1, such that the expression

)\/(a—w)(bJrI)(v—x)

a—x

D1 (x) - Q:nq(x

has a zero of order 2m at x = 0. Multiplying that expression by

¢<a—x><b+x><w—x>>

(a —x) (an_1(95) + d1(2) a—x

we get that the polynomial (@ — x)(pf,_;(7))* — (a — z)(b+ x)(¢},_,(x))? has a zero of order

2m at x = 0. Since the degree of that polynomial is 2m, is follows that:

(a—2)(pr1 (@) = (0+2) (v — 2) (g1 (2))* = c2™,

for some constant c¢. Notice that ¢ is positive, since it equals the square of the leading
coefficient of ¢¥, ;. Dividing the last relation by cz®™ and introducing s = 1/z, we get the
requested relation.

For n = 2m + 1, the proof of Theorem 2.3.2 implies that there are polynomials p}, (z) and

¢,_1(x) of degrees m and m — 1, such that the expression

( )\/(a—af)(b+:v)(7—-r)

pm<x) — Gy \T b—f— T

has a zero of order 2m + 1 at = 0. Multiplying that expression by

@ \/(a—w)(b+fﬂ)(7—w)>

b+ x

(b+x) (pi‘n(fv) + Gy

we get that the polynomial (b+ x)(p’, (z))? — (a — z)(y — x)(q},_;(z))? has a zero of order

2m + 1 at x = 0. Since the degree of that polynomial is 2m + 1, is follows that:

(b+2)(pr(2))* = (a = 2)(y = 2)(g7 1 (2))* = ca®™ ™
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for some constant c¢. Notice that ¢ is positive, since it equals the square of the leading

2mtl and introducing s = 1/x, we get the

coefficient of p},. Dividing the last relation by cx
requested relation.
(b) For n = 2m, the proof of Theorem 2.3.2 implies that there are real polynomials

ph,_1(z) and ¢, (x) of degrees m — 1, such that the expression

V—(a—2)(b+2)(y — )
b+x

P (T) = @y ()

has a zero of order 2m at x = 0. Multiplying that expression by

¢—<a—x><b+x><v—x>)

we get that the polynomial (b+ x)(pf,_(x))* + (@ — z)(y — z)(q},_, (x))* has a zero of order

2m at x = 0. Since the degree of that polynomial is 2m, is follows that:

(b+ 2) (P (2))* + (@ — 2)(v — 2) (g, 1 (2))* = c2™™,

for some constant c¢. Notice that ¢ is positive, since it equals to the square of the leading
coefficient of ¢*, ;. Dividing the last relation by cx®™ and introducing s = 1/x, we get the
requested relation.

For n = 2m + 1, the proof of Theorem 2.3.2 implies that there are polynomials p}, (z) and

¢, (x) of degrees m and m — 1, such that the expression

V—(a—z)(b+z)(y—7)

a—x

Pr() — @y (@)

has a zero of order 2m + 1 at x = 0. Multiplying that expression by

\/—(a—x)(b+x)(v—x)>

a—x

(a—x) (pin(w) + G ()

we get that the polynomial (a — z)(pf,(2))* + (b+ z)(v — x)(¢},_,(x))? has a zero of order

2m + 1 at x = 0. Since the degree of that polynomial is 2m + 1, is follows that:

(a =) (2))* + (b + ) (v = 2) (g, (2))* = ca®™
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for some constant c. Notice that ¢ is negative, since it is opposite to the square of the leading

2m+1 and introducing s = 1/x, we get the

coefficient of p;,. Dividing the last relation by —cz
requested relation.

For (c), the proof of Theorem 2.3.2 implies that there are polynomials real p! () and
¢, (x) of degrees m and m — 1, such that the expression
Vela— D1 90 —a)

Y=

() — 1 ()

has a zero of order 2m + 1 at x = 0. Multiplying that expression by

)¢da—@@+va—@>

(v —2) (pfn(x) + g (2 po—

we get that the polynomial (v — z)(pk,(2))? — e(a — z)(b+ z)(g},_1(z))?* has a zero of order

2m + 1 at z = 0. Since the degree of that polynomial is 2m + 1, is follows that:

(v = 2) (P (2))* — ela — 2) (b + 2)(g, 1 (2))* = cx™™ "

for some constant c¢. Notice that ¢ is negative, since it is opposite to the square of the leading

2mtl and introducing s = 1/z, we get

coefficient of p; . Dividing the last relation by —ecx
the requested relation.
(d) The proof of Theorem 2.3.2 implies that there are real polynomials p? (x) and ¢}, _;(x)

of degrees m and m — 1, such that the expression

Vela—2)(b+2)(y — )

a—x

Pr() — @y ()

has a zero of order 2m + 1 at x = 0. Multiplying that expression by

)¢da—ww+wxv—w>

a—x

(a—x) (pfn(w) + G (z

we get that the polynomial (@ — z)(pf,())* —e(b+ z)(y — x)(q},_1(x))?* has a zero of order

2m + 1 at x = 0. Since the degree of that polynomial is 2m + 1, is follows that:

(a — ), (2))* — (b + 2)(y — 2)(g5-1 ())* = ca™*
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for some constant c. Notice that ¢ is negative, since it is opposite to the square of the leading

2mtl and introducing s = 1/x, we get the

coefficient of p;,. Dividing the last relation by —cx
requested relation.
(e) For n = 2m + 1, the proof of Theorem 2.3.2 implies that there are real polynomials

ph(x) and ¢f,_,(z) of degrees m and m — 1, such that the expression

Vela—2)(b+)(y — =)
b+x

() — 1 ()

has a zero of order 2m + 1 at x = 0. Multiplying that expression by

¢s<a—x><b+x><v—x>>

(b+2) (p;(x) + G2 () bt

we get that the polynomial (b+ x)(p:,(7))? — e(a — x) (v — 2)(q,_,(z))?* has a zero of order

2m + 1 at x = 0. Since the degree of that polynomial is 2m + 1, is follows that:

(b+2)(pr, ()" — e(a — 2)(y — 2)(g5, 4 ())* = ca™ "

for some constant c¢. Notice that ¢ is positive, since it equals the square of the leading

2m+1

coefficient of p},. Dividing the last relation by cx and introducing s = 1/x, we get the

requested relation. O

After Corollary 2.5.1 and the relation Equation (2.28), we see that the Pell equations
arise as the functional polynomial conditions for periodicity. Let us recall some important

properties of the solutions of pell’s equations.

2.6 Classical Extremal Polynomials and Caustics

2.6.1 Fundamental Properties of Extremal Polynomials

From the previous section we know that the Pell’s equation plays a key role in functional-

polynomial formulation of periodicity conditions in the Minkowski plane. The solutions of
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the Pell’s equation are so-called extremal polynomials. Denote {c1, co, c3, ¢4} = {0, %, —%, %

with the ordering ¢; < ¢y < ¢3 < ¢4. The polynomials p,, are so called generalized Chebyshev
polynomials on two intervals [c1, o] U [c3, ¢4], with an appropriate normalization. Namely,
one can consider the question of finding the monic polynomial of certain degree n which
minimizes the maximum norm on the union of two intervals. Denote such a polynomial as
B, and its norm L,,. The fact that polynomial p,, is a solution of the Pell’s equation on the

union of intervals [c1, co] U [e3, ¢4] is equivalent to the following conditions:

(ii) the set [c1, co]U[cs, ¢4] is the maximal subset of R for which P, is the minimal polynomial

in the sense above.

Chebyshev was the first who considered a similar problem on one interval, and this was
how celebrated Chebyshev polynomials emerged in XIXth century. We are going to say a bit
more about original Chebyshev polynomials below. Let us recall a fundamental result about

generalized Chebyshev polynomials [0, 7].
Theorem 2.6.1 (A corollary of the Krein-Levin-Nudelman Theorem). [35] There exists a
polynomial P, of degree n which satisfies a Pell equation on the union of intervals [c;, ¢o] U
[c3, c4] if and only if there exists an integer n; such that the equation holds:

4

=1

(s — ci)>1.. (2.29)

n /63 f(s)ds = n/oo f(s)ds, where f(s)= <

The modulus of the polynomial reaches its maximal values L,, at the points ¢; : |P,(¢;)| = L.
In addition, there are exactly 71 = n — n; — 1 internal extremal points of the interval [e3, ¢4]
where | P, | reaches the value L,, and there are 75 = ny; — 1 internal extremal points of [cy, ¢3]

with the same property.

Definition 2.6.1. [26] We call the pair (n,n;) the partition and (71, 72) the signature of the

generalized Chebyshev polynomial P,.
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Now we are going to formulate and prove the main result of this Section, which relates nq, no
the numbers of reflections off relativistic ellipses and off relativistic hyperbolas respectively

with the partition and the signature of the related solution of a Pell equation.

Theorem 2.6.2. Given a periodic billiard trajectory with period n = n; +ns, where n; is the
number of reflections off relativistic ellipses, no the number of reflections off the relativistic
hyperbolas, then the partition corresponding to this trajectory is (n,n1). The corresponding
extremal polynomial p,, of degree n has n; — 1 internal extremal points in the first interval

and n — ny — 1 = ny — 1 internal extremal points in the second interval.
Proof. Recall that ¢; < ¢3 < ¢3 < ¢4. From the Equation (2.5), one has:
0 0
ny [ fx)de+ne [ f(x)de =0 (2.30)
bo bl

where by is the largest negative value in {a,—b,v} and b; the smallest positive value in

{a,—b,~}.

Case 1: %, is an ellipse and 7 < 0, shown on Figure 2.25

@ @ @

—b Y 0 a
@ @ @ @
1 1 1
— _ O _
vy b a
@ @ @ @
(&S] Co C3 Cy

Figure 2.25: by = v, by = a.
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Equation (2.30) is equivalent to

n /70 F(@)dz + e /0 (@) + s /ao F(@)de —m /O F@)dz = 0

ny laf(x)dx+ (nq —|—n2)/a0f(a:)da: =0

Since the cycles around the cuts on the elliptic curve are homologous:

/{a f(z)dz = /_C:f(x)dx

Hence Equation (2.30) is equivalent to

LetS:%, C1 =

m 2 F(s)ds = (m1 + o) / s e [ Fes = o) [ fos

The right hand side of the above equivalent relation is tagged as follows

n / F(s)ds = (ny + ng) /C:o F(s)ds

Case 2: ¢, is an ellipse and v > 0, shown on Figure 2.26

,77

102

n1/ f(z)dz = ( n1+n2/f

b7

ny [Ya f(x)dx = (ng + n2) /Oa f(z)dx

c3=0,c4 = % (see Figure 2.25) and substitute in the above to get

. . ® ®
-b 0 Y a
s . ® ®
1 1 1
__ 0 — -~
b a Y
e ® ® ®
¢ Co C3 Cy
Figure 2.26: by = —b, by =~
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Equation (2.30) is equivalent to

ny /_Zf(:z:)dx+n1 /va(:c)d:v—irng[ff(x)dx—nl /va(a:)dx:
ny /_Zf(:v)d:v%—(m+n2)/70f(:v)d:v:
ny /_Zf(a:)da:: (n1+n2)/07f(a:)da:

Since the cycles around the cuts on the elliptic curve are homologous:

/Zf(x)dx - /aoo f()dz

Hence Equation (2.30) is equivalent to

/f dx—nl—i—nQ/f

Let s = %, 1 = co=0,c3=72,¢c4= (see Figure 2.26) and substitute in the above to get

b?

ny /Oa f(s)ds = (ny +ny) /;O f(s)ds < Equation (2.31).

Case 3: i.) %, is a hyperbola and v < —b, shown on Figure 2.27

® @ @
Y -b 0 a
@ @ @ @
1 1 1
_- — 0 -
Y a
@ @ @ @
Ci Co C3 Cy

Figure 2.27: by = —b, b = a.
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Equation (2.30) is equivalent to

nl/_if(x)dx+n1/Oaf(x)dw+n2/aof(x)dx—nl/oaf(x)dx:O
nl/j)f(:c)d:c—ir(nl—l—ng)/aof(a:)dxzo
ny /_Zf(a:)dx:(n1+n2)/0af(x)da:

Since the cycles around the cuts on the elliptic curve are homologous:

/Zf(x)dx:/.:f(x)dx

Hence Equation (2.30) is equivalent to

nlfozf(x)dx = (n —i—ng)/oaf(x)dx = ()

Let s = %, c1 = —%, Ccy = % c3=0,c4 = %, , (see Figure 2.27) and substitute in the above to get

ny KO f(s)ds = (ny + ny) Koo f(s)ds < Equation (2.31).

Case 3: it.) ¢, is a hyperbola and v > a, shown on Figure 2.28

® @ @ @
-b 0 a Y
@ @ @ ®
1 1 1
—— 0 — —
Y a

@ @ L @
Ci Co C3 Cy

Figure 2.28: by = —b, b = a.
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Equation (2.30) is equivalent to

ny /_Zf(x)dx+n1 /Oaf(x)dw+n2 /aof(x)dx —ny /Oaf(x)dx =
n /_Zf(x)d:c + (m1 + ) /ao f(a)dn =
ny /_Zf(a:)da: = (n1 + no) /Oa f(z)dx

Since the cycles around the cuts on the elliptic curve are homologous:

/Zf(x)dx - /:O f(2)dz

Hence Equation (2.30) is equivalent to

/f dx—n1+n2/f

Let s = %, € = ca=0,c3=2,¢4= (see Figure 2.28) and substitute in the above to get

b’ 7

’ f(s)ds = (ny +ny / f(s)ds & Equation (2.31).
0

We see that in each case we managed to rewrite Equation (2.5) in an equivalent form
of Equation (2.29). Thus the proof of the Theorem follows by applying the version of

Krein-Levin-Nudelman Theorem listed above. O

In particular, for n = 3, if the caustic ¢, is an ellipse with v < 0, then n; = 1. The

corresponding extremal polynomial ps has the following presentation on Figure 2.29.
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cY 71t cY Cy

—1 ° ° ®

Figure 2.29: Representation of extremal polynomial p3 corresponding to n = 3, ny = 1 and
v<0.

We will provide explicit formulae of such polynomials in terms of the general Akhiezer
polynomial below. Such polynomials and partitions (3,1) do not arise in the study of
FEuclidean billiard trajectories.

In the case n = 3 with the caustic &, being an ellipse with v > 0, we have n; = 2. The

corresponding extremal polynomial ps has the following presentation on Figure 2.30.

1 e

Cl‘

Figure 2.30: Representation of extremal polynomial p3 corresponding to n = 3, ny = 2 and
v>0.

Such polynomials can be explicitly expressed in terms of the Zolatarev polynomials, see

below, since their partition is (3,2), they appeared before in the Euclidean case.
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Let us recall that the celebrated Chebyshev polynomials T,,(x),n = 0,1,2,... defined

by the recursion:
To(x) =1, T\(z) =z, Th1(x) + Tho1(z) = 22T, (), (2.32)
for n =1,2... can be parameterized as

T, (z) = cosng, x = cos ¢, (2.33)

T,(z) = % (v” + Uin) . 1= % (v + %) . (2.34)

Denote Ly =1 and L, = 27" n =1,2,.... Then the Chebyshev Theorem states that the

or, alternatively:

polynomials L, T, (z) are characterized as the solutions of the following min-max problem:
find the polynomial of degree n with the leading coefficient equal 1 which minimizes the

uniform norm on the interval [—1, 1].

2.6.2 Zolotarev polynomials

Following the ideas of Chebyshev, his student Zolotarev posed and solved a handful of
problems, including the following [0, 20]:

For the given real parameter o and all polynomials of degree n of the form:
p(z) = 2" —nox" '+ pax™ 7 + ... py, (2.35)

find the one with the minimal uniform norm on the interval [—1,1].

Denote this minimal uniform norm as L,, = L(o,n).

For ¢ > tan?(I1/2n), the solution z, has the following property ([0], p. 298, Fig. 9):

11 - The equation z,(x) = L, has n — 2 double solutions in the open interval (—1,1)
and simple solutions at —1,1,«, B, where 1 < o < B, while in the union of the intervals

[—1,1) U [a, B] the inequality 22 < L,, is satisfied and z, > L, in the complement.
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The polynomials z, are given by the following explicit formulae:

. 1 sn’u + sn?&
Zn = gn <U(U) + v(u)") y = m, (236)
where o
o _ L[ V/E) o) = L =)
Cor\m(D)e(n)) H (5 +u)
and

I S S ) A N
O T mEmE (@ 9 (E) )

Formulae for the endpoints of the second interval are

1+ ,%28112% 1+ SDQ%
a=————"1 =—"
dn?& cn2&

n n

(2.37)

with
W2 — (a—=1)(B+1)
(a+1)(B-1)

According to Cayley’s condition for n = 3 and A\ € (0,a) we have

ab(a — b) + 2abv/a? + ab + b?
(a+0b)? '

Ao =

In order to derive the formulas for ps in terms of 23, let us construct an affine transformation:

A~

h:[-1,1]U]a,B] = [-b"100Ua ™, A\Y], h(z) = ax + b.

We immediately get

~ 1
S b oA
a ya= o
and
a=2t+1, (2.38)
2b
where t = b/a.

Now we get the following

90



Proposition 2.6.1. The polynomial p3 can be expressed through the Zolotarev polynoamil

z3 up to a nonessential constant factor:
P3(s) ~ z3(2bs + 1).

To verify the proposition, we should certify that the definition of a and £ from Equa-
tion (2.37) for n = 3 and the relations Equation (2.38), Equation (2.39) are compatible with
the formula for Ay we got before as Cayley condition, see Equation (2.10)

In order to do that we will use well-known identities for the Jacobi elliptic functions:

sn*u + cn’u = 1, (2.40)
k?sn’u + dn’u = 1, (2.41)
sn ucn vdn v 4+ snven udn u
= 2.42
sn(u +0) 1 — x2sn2usn?v ’ (2:42)
cnu
K—u)=——. 2.43
(K —u) = S (2.43)
In particular, we get

2K 2sn Een Ldn £

sn|— | = 3 3 3 (2.44)
3 1 — K?snis

2 K cn &
2K = K—-——)= 3 2.45
Sn(3 ) Sn( 3) dn% ( )

K
Y=sm(=
sn(g),

then from the previous two relations we get as in [20]:

Let us denote

1—2Y +2£%Y3 — k2Y* = 0.

We can express « in terms of Y and get:

,  2Y—1

il (2.46)

K
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By plugging the last relation into Equation (2.37) for n = 3 we get

Y2 -4Y +1

VR |

Since, at the same time from the Cayley condition we have o = 2t + 1, with ¢t = b/a, we can
express Y in terms of ¢:

tY?2 +2Y — (t+1) =0,

and
—1+V1+t+¢2
Yy — t* R (2.47)
We plug the last relation into the formula for § from Equation (2.37) for n = 3
1+ Y?
5 - 1 _ Y27
and we get another formula for § in terms of t:
2+t +2— 212+t +1

—t—2+2vV2+t+1
We see that the last formula with the choice of the + sign corresponds to a formula for 8 from
Equation (2.39). This formula relates 8 and ¢ from the Caley condition Equation (2.10).

From Equation (2.48), taking the positive sign in f yields,

24+ 22Vt 41

2.49
b —t—242Vt2+t+1 ( )
Substituting Equation (2.49) into Equation (2.39) produces
2b —2—t4+2vV1+t+1t?
A = _ TeVIHET (2.50)

S B-1 24t a2_2/IrtL

But from the Cayley formula Equation (2.10)

ab
Ao = (a+b)2(a—b+2\/a2+ab+b2)
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Knowing that ¢ = %, the equation is equivalent to

Lottt

A
’ (1+1)

(2.51)

In order to show that the two expressions in Equation (2.50) and Equation (2.51) are identical,
we simplify their difference that yields zero.This finalizes the verification. (One can observe
that the — sign option from the formula Equation (2.48) would correspond to the — sign in
the formula for Ay Equation (2.11).

Among the polynomials p,, the property of type II1 can be attributed only to those with
n = 2k + 1 and winding numbers (2k + 1, 2k), in other words to those with the signature
0,2k —1).

2.6.3 Akhiezer polynomials on symmetric intervals [—1, —a] U [a, 1]

The problem of finding polynomials of degree n with the leading coefficient 1 and minimizing
the uniform norm on the union of two symmetric intervals [—1, —a]U]a, 1], for given 0 < av < 1
appeared to be of a significant interest in radio-techniques applications. Following the ideas of
Chebyshev and Zolotarev, Akhiezer derived in 1928 the explicit formulae for such polynomials
A, (x; ) with the deviation L, («) [0, 7].

These formulas are specially simple in the case of even degrees n = 2m, when Akhiezer
polynomials Ay, are obtained by a quadratic substitution from the Chebyshev polynomial

T

22'm71 1— &2

Agp(2:0) = L= )" (2“32 - 0‘2) , (2.52)

with
(1—a®)m
Lom(@) = 5

We are going to construct py(s) up to a nonessential constant factor as a composition of

Ay(z; «0) for certain o and an affine transformation. We are going to study the possibility to

93



have an afline transformation

ab
Ay =
"Tbh—a
From g(—1) = =b7!, g(1) = a=* we get
~ a—+ b l; b—a
a = =
2ab ’ 2ab
Then, from g(a) = 0 we get
a—>b
o= :
a+b

Finally, we calculate:
(— )_a+bb—a+b—a_b—a
g Q_Qaba—i-b 2ab  ab

We recognize A\, ' on the right-hand side of the last relation.

This proves the following:
Proposition 2.6.2. In this case the polynomial p4(s) is equal up to a constant multiplier to
pa(s) ~ To(2abs® + 2(a — b)s + 1), (2.53)
where Ty(x) = 222 — 1 is the second Chebyshev polynomial and z = #b (2abs +a— b).
Let us study the possibility to have an affine transformation
fi[-1,—alUla,1] = [0l UMt e, flz)=az +0b,
which corresponds to the case when A\g > a ie a < b. For n = 4 such caustic is

Ao =

b—a
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From f(—1)=-b"1, f(1) = a ! we get

A_CL‘Fb (;_b—(l
T 0w T oab
Then, from f(—a) =0 we get
b—a
o= .
a+b

Finally, we calculate:

at+bb—a b—a b—a

flo) = 2ab a+b+ oab  ab

We recognize A\, 1 on the right-hand side of the last relation.

This proves the following proposition which is the same as Equation (2.53).
Proposition 2.6.3. In this case the polynomial ps(s) is equal up to a constant multiplier to
Pa(s) ~ Tp(2abs® +2(a — b)s + 1), (2.54)
where Ty(x) = 22% — 1 is the second Chebyshev polynomial and z = #b (Zabs +a— b).
Let us study the possibility to have an affine transformation

h:[-1,—a]U[a, 1] = [N\g', =01 U 0,07 Y], h(z) =azx +0b,

ab
T a+b
From h(1) = a !, h(a) = 0 we get
1 1 -
= Lo S .
l—aa l—aa
Then, from h(—a) = —3 we get
a  a
l—a 2b
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ie

Finally, we calculate:

We recognize A, 1 on the right-hand side of the last relation.

This proves the following:
Proposition 2.6.4. In this case the polynomial p4(s) is equal up to a constant multiplier to

(2.55)

. 8a?b?s? + 8a’bs — 4b(a + b)
Pa(s) NTQ( 4b(a + b) )’

where Ty(x) = 222 — 1 is the second Chebyshev polynomial and z = ﬁ (2abs + a).

Let us study the possibility to have an affine transformation

~

l:[-1,—a]Ufa, 1] = [-b7H0]Ua b, N\ Y,  I(z) = ax + b,

which corresponds to the case when Ay € (0,a). For n = 4 such caustic is

ab
Ao = :
T a+b
From I(—1) = =b~ !, I(—a) = 0 we get
1 1.
o= e
1—ab 1 -«
Then, from I(a) = 1 we get
a b
l—-a 2a
ie
b
o =
b+ 2a



Finally, we calculate:

a 1 a 1

l<1):<1+1—0¢)5 1—ab’
b.1 b1 1 1 a+d

1 — 1 _ ) — —_— = — —_ =
‘(1) (+2a)b 2a b a+b ab

We recognize A\, ' on the right-hand side of the last relation.

This proves the following:

Proposition 2.6.5. In this case the polynomial ps(s) is equal up to a constant multiplier to

8a?b?s* — 8ab*s — da(a +b)
5 NT< ), 2.56
p4(8) 2 4@(@ + b) ( )
where Ty(x) = 222 — 1 is the second Chebyshev polynomial and z = #er (2abs — b).
2.6.4 General Akhiezer polynomials on unions of two intervals
Following Akhiezer [3, 4, 5], let us consider the union of two intervals [—1, o] U [, 1], where
a=1—2sn> (TK>, B3 = 2sn? (”_mK) ~1. (2.57)
n n
Define
1
TA,(z,m, k) =L v , 2.58
(wom) =L (00 + ) (2.58)
where
H(u—2K
vy H = 2E)
H (u + 2K )
sn*(u)en® (2K) + cn?(u)sn? (2K)
x = :
sn?(u) — sn? (2K)
and

L 1( 0(0)61(0) ) o 2AB-0)
2T \0(2K) 0 (2K) ) (

Here, 0;, i =0,1,2,3, denote the standard Riemann theta functions, see for example [7] for

more details. Akhiezer proved the following result:
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Theorem 2.6.3 (Akhiezer). (a) The function T'A, (z, m, k) is a polynomial of degree n in

x with the leading coefficient 1 and the second coefficient equal to —n7y, where

an (%K) cn(%K) 1 _9’ (%K) ‘
dn (2K) sn(2K) 6 (2K)

n=—-1+

(b) The maximum of the modulus of 7}, on the union of the two intervals [—1,a] U [3,1] is

L.

(c¢) The function T;, takes values £L with alternating signs at © = n — m + 1 consecutive
points of the interval [—1, o] and at ¥ = m + 1 consecutive points of the interval [, 1].
In addition

To(a,m,k) =T,(8,m,k) = (=1)"L,

and for any = € («, 3), it holds:
(=)™ (z,m, k) > L.
(d) Let F' be a polynomial of degree n in z with the leading coefficient 1, such that:
i.) max|F(x)| = L for x € [-1,a] U [, 1];

ii) F(x) takes values £L with alternating signs at n-m+1 consecutive points of the interval

[—1, o] and at m+1 consecutive points of the interval [, 1].
Then F(z) = T,,(z,m, k).

Let us determine the affine transformations when the caustic is an ellipse.

Case )\ € (—b,0)

For

h:l-1,a)U[B,1] = [N b U0,a7], h(x)=az+b,
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we get

L 11, —f11-8
CB—ab’ f—ab f—a a
Thus:
p—1 a—f3
A= — b 2.59
148" B+1 (2:59)

Example 2.6.1. For n = 3 and m = 2. From Equation (2.57), one gets:
2 K
a=1-— 25n2§K, b= 25n2§ — 1.

It follows that:

b 1-— 1 — sn2k&
by 128 s (2.60)
a f—a sn2iK +sn?5 —1
Thus
2K 22
oz—ﬂ: 1—sn§;sn§K (2.61)
b+1 sn25
From the addition formula:
2 K snKen=EKdn=L + sn=EenKdnK
sn=K =sn(K — —) = : L3 ;
3 3 1-— HQSHQTSHQK
Hence
2 1 — sn2&
2 3
K= 773
o 3 1— /€2STL2%’
ie
K sn2§K -1
SN = .
3 /<;25n2§K —1
Let sn4 = Z, from Equation (2.46)
, 271
K= ———.
Z3(2—-27)
Also
1— 72
=—-2—— — +1 2.62
o b (2.62)



simplifies to

a=27* 47 +1, (2.63)

and

p=27%—1.

Equation Equation (2.60) implies that

t = . 2.64
27 —1 ( )
Denote
_a—p
q - /8 + 1 9
therefore
1-27
q = Z2 *

Thus, we have two expressions for A. One is from the Cayley condition Equation (2.11) and
the other is from Equation (2.59). We want to show that these two expressions are identical

that is
04—6__ ab
B+1  (a+b)?

In order to do so, we first expressed both the left hand side and the right hand side of the

(—a+b+2Va®+ab+b?) (2.65)

above in terms of t = g and next transform both side in terms of Z and showed that the
L.H.S and the R.H.S yields the same expression.

o l—t—2/TFt+ 22

(141)2

q

gL+t +t—1=—-2V1+t+¢2
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which is equivalent to
P —Z4+1 ZP—-Z+1
22 -1  2Z-1

which evaluates to true, therefore Equation (2.65) holds.

Case \ € (0,a)

For
l [—1705] U [57 1] — [_b_lao] U [(1_17 /\_1]7 l(l’) = ar + 67
we get
R 1 1 i —al a+1 a
a = — — — — —
a+1b’ a+1b B—a b
Thus
a+1
= b 2.66
o (2.66)
Example 2.6.2. For n = 3, and m = 1. From Equation (2.57), one gets:
K 2K
a=1-—2sn’—, f=2sn*"— — 1.
3 3
b _ 22K 1 gn2kK
L e i il (2.67)
a a+1 1 —sn?%
Thus
1—sn?%

3

From the addition formula:

2K K snKen=Edn=% + sn=2enKdnK
sn— =sn(K — —) = 3 3 — 3
3 3 1-— RQSHQTSHQK
Hence

2 1 — sn2&
2 3

il G

o 3 1-— m23n2§
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Let sn% = Z, from Equation (2.46)

2 27 —1
32— 2)
Also
1-22
=2———1 2.
B2 -1, (2.68)
Simplifies to
B=-27°+47 —1, (2.69)
And
a=1-27"%
Equation Equation (2.67) implies that
27 —1
Denote
1+«
1l-a
Therefore
1— 72
b= 72

Thus, we have two expressions for X\. One is from the Cayley condition Equation (2.10) and
the other is from Equation (2.66). We want to show that these two expressions are identical

that is
ab

l+a
b = — b+ 2Va? b+ b? 2.71
N (a+b)2(a +2va? + ab+ b?), (2.71)

In order to do so, we first expressed both the left hand side and the right hand side of the

above in terms of ¢ = g and next transform both side in terms of Z and showed that the
L.H.S and the R.H.S yields the same expression.

1t —2/1 it

(1+1¢)2

p
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p(L+t)+t—1=2V1+1t+12
[p(L+t)? +t — 112 =4(1 +t +t*)?
which is equivalent to

P—7Z+1 72— Z+1
°Z -1  2Z7-—1

which evaluates to true, therefore Equation (2.71) holds.

Proposition 2.6.6. For n = 3 and A\ € (—b,0), the polynomial p3 is up to a nonessential
factor equal to:

K K
p3 ~ T A3 (2@(1 — STL2§)S + 28n2§ - 1;2, Ii),

For n =3 and A € (0, a), the polynomial ps is up to a nonessential factor equal to:
K K
Py ~ TAs (21)(1 — Sn2§)s +1- 23n2§; 1, /1)

Now, using the Akhiezer Theorem part (c), see Theorem 2.6.3, one can compare and see
that the number of internal extremal points coincides with n; — 1 and ny — 1 as proposed in
Theorem 2.6.2. These numbers match with Figure 2.29 and Figure 2.30 and the Table from

Section 2.2.1.

2.7 Periodic light-like trajectories and Chebyshev polynomials

Light-like billiard trajectories, by definition, have at each point the velocity v satisfying
(v,v) = 0. Their caustic is the conic at infinity C,. Since successive segments of such
trajectories are orthogonal to each other, the light-like trajectories can close only after an
even number of reflections. In ([23],Theorem 3.3), it is proved that a light-like billiard

trajectory within &£ is periodic with even period n if and only if
t /% e ]m|1<k;<"(k"> 1 (2.72)
arccoty | — — — —]=15. .
b n - 2°\7 2
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For k not being relatively prime with n/2, the corresponding light-like trajectories are also
periodic, and their period is a divisor of n.

Applying the limit v — 400 in Corollary 2.5.1, we get the following proposition.

Proposition 2.7.1. A light-like trajectory within ellipse £ is periodic with period n = 2m if
and only if there exist real polynomials p,,(s) and §,,—1(s) of degrees m and m — 1 respectively
if and only if:

o 2(s) (5— 2) <5—|— %) P (s) = 1 and

® Gu1(0) =0.

The first condition from Proposition 2.7.1 is a standard Pell’s equation describing extremal
polynomials on one interval [—1/b,1/a|, thus polynomials p,, can be obtained as Chebyshev
polynomials composed with an affine transformation [—1/b,1/a] — [—1,1]. The additional
condition §,,—1(0) = 0, which is equivalent to p/ (0) = 0 implies an additional constraint on

parameters a and b. We have the following

. . B 2ab a—2b . .
Proposition 2.7.2. e Dn(s) =T, <a n ;S + . b)’ where T, is defined by (2.33);

e the condition ¢,,—1(0) = 0 is equivalent to (2.72).

Proof. The increasing affine transformation h : [—1/b,1/a] — [—1,1] is given by the formula
h(s) = (2abs + a — b)/(a +b). The internal extremal points of the Chebyshev polynomial 7,

of degree m on the interval [—1, 1] are given by

k
xk:cos(—w>, k=1,....,m—1,

m

according to the formula (2.33). The second item follows from h(0) = . This is equivalent

a_bE{COS(£W> |k:1,...,m—1},
a-+b m

which is equivalent to (2.72). O

to
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THE CLASSIFICATION OF HYPERQUADRICS AND FAMILY OF

CHAPTER 3

CONFOCAL QUADRICS IN FOUR DIMENSIONAL MINKOWSKI SPACE

3.1 Classification of hypersurfaces of degree two in four dimensional space

Let us consider the following two group of surfaces in which A, B,C' and D are positive

numbers.
Axd + B}
Az? + B}
Az} + B}
Azt — B}
—Az? - B}
and
Az + Bx)
Az + Bx}
Az — B}
Azt — Bx)
—Az? — Bx3

Cxy +
Cri —
Crs —
Criy —

2

Cay +
Cri —
Cr; —
Cr; —

2
Cx; —

Dz
Daz?
Dz
Dz

2
Dx}

Dz
Da?
Dz
Dz

2
Dxy

+ o+ 4+ o+ o+

(3.1)
(3.2)
(3.3)
(3.4)

(3.5)

(3.6)
(3.7)
(3.8)
(3.9)

(3.10)

Let us classify each of them to type form. We applied the classification technique developed

in the section 5 of [11].

Surface Equation (3.1), A > 0.

Let’s find the reduced form of the surface Equation (3.1). The quartic equation is of the form
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where

Jo=A+B+C+D,
J, = AB + AC + AD + BC + BD + CD,
Jo = ABC + ABD + BCD + ACD

A = ABCD,

A = ABCD.

From what is above, it follows that

A ABCD
A% ABCD

L,

and that A, B, C' and D are the roots of the discriminating quartic equation, hence the

surface Equation (3.1) is of the form

A
:07

Am%—l—Bm%—l—Cm%—l—Dwi%—F

Surface Equation (3.2), A <0.
Let’s find the reduced form of the surface (Equation (3.2)).The quartic equation is of the
form

tt— Jot? + Jit? — Jot + Asy = 0,

Jo=A+B+C-D,

J, = AB+ AC — AD + BC — BD — CD,
Jo = ABC' — ABD — BCD — ACD,

A = —ABCD,

A = —ABCD.

From what is above, it follows that

A ABCD
A% ABCD

L,
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and that A, B, C and —D are the roots of the discriminating quartic equation, hence the

surface (Equation (3.2)) is of the form

A
207

AJZ%-{-Bx%—i—Cm% —D:Ei‘l—ﬂ

Surface Equation (3.3), A <0.

Let’s find the reduced form of the surface Equation (3.3).The quartic equation is of the form

t4 - Jotg + Jltz - Jgt + A55 == O,

Jo=A+B—C-D,
Jy = AB — AC — AD — BC — BD + CD,
Jo = —ABC — ABD + BCD + ACD,

A = ABCD,

A% = ABCD.

From what is above, it follows that

A ABCD
A% ABCD

L,

and that A, B, —C and —D are the roots of the discriminating quartic equation, hence the

surface Equation (3.2) is of the form

A
:O,

Az? + Baj + Oz — Daf + VES

Similar reductions were performed on the remaining surfaces and the results are put into two
group of surfaces, those of negative discriminant and those of positive discriminant. In fact,

the given surfaces are already in the reduced form, we just need to determine their type.
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Surfaces of positive discriminant and their types

ie

Az +
Azt +
— Ax% —
Az? +
Az —
Surfaces
Az? +
Az —
Azt +
Axrd +
—Az? —
Az? +
Azt +
Az? +
Az} —
— Ax% —

Bxj
B}
B}
B}

2
Bx;

of negative discriminant and their types

B}
B}
B}
B}

2
Bz;

B}
B}
Bz}
B}

2
Bz;

Cr3
Cx;
Cr3
Cx;

2
Cxs

Crl
Cr3
Crl
Cx;

2
Cxs

Cxi
Cxi
Cal
Cr3

2
Cxs

Dz}
Dz
Dz
Dz?

2
Dy

Da?
Dz
Da?
Dz

2
Dx}

Dz}
Dz}
Da?
Dz}

2
Dy
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ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

=0 is of type 1,

=0 is of type 3,

=0 is of type 5,

=0 is of type 2,

=0 is of type 4.

=0 is of type 4,

=0 is of type 2,

=0 is of type 5,

=0 is of type 3,

=0 is of type 1.

is of type 1,
is of type 2,
is of type 3,
is of type 4,

is of type 5.

(3.11)
(3.12)
(3.13)
(3.14)

(3.15)



and

—Azx] — Bxs — Cr; — Dxj + 1=0 isoftypel, (3.16)
Az — Bxy — Ca; — Dxj — 1=0 isof type 2, (3.17)
Ay + Bxy — Cri — Dx] + 1=0 isof type 3, (3.18)
Az + Br; + Cx; — Dzi — 1=0 isof type 4, (3.19)

Az + Bxy + Cr; + Dx] + 1=0 isoftype 5. (3.20)

The remaining chapters will utilize the following result in order to classify hyperquadrics.

—Az? — Bry — Cri — Dx] + 1=0 isoftypel, (3.21)
Az? + Bzy + Cxs — Da5 — 1=0 isof type 2, (3.22)
Az o+ Bry — Cai — Dz? + 1=0 isoftype3, (3.23)
Az — Bxy — Ca; — Dxj — 1=0 isof type 4, (3.24)

Az + Bxy + Crx; + Dz + 1=0 isof type5. (3.25)

where A, B, C' and D are all positive numbers.

3.2 Family of Confocal Quadrics in Four Dimensional Minkowski space

The four dimensional Minkowski space has two signatures: (3,1) and (2,2). The family of

confocal quadrics are studied in both E*! and E??2.

3.2.1 The case of signature (3,1)

Let us consider the four dimensional Minkowski space E3!. A general family of confocal

hyperquadrics in E3! is given by
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1.2 y2 22 ,w2

Y s Wy v vt B

=1, XéRanda>b>c>0, d>0. (3.26)

The family (%)) contains the following quadrics of five geometric types:

e For A € (=00, —d) : the family (Z,) is of type 2 oriented along the w-axis.

For A\ € (—d, c) : the family (#)) is of type 1.

For X\ € (¢,b) : the family (%)) is of type 2 oriented along the z-axis.

For A € (b,a) : the family (%)) is of type 3.

For A € (a,00) : the family (%)) is of type 4.

In addition, there are five degenerate quadrics: %,, %y, %., #_4 and %, that are the
hyperplane x = 0, y = 0, z = 0, w = 0 and the hyperplane at infinity respectively. The

following quadrics are single out in the coordinate hyperplane.

e Hyperboloid of two sheets oriented along the w-axis ZY** : — —

in the hyperplane z = 0.

e Hyperboloid of one sheet oriented along the z-axis Zy*" :

in the hyperplane y = 0.

72 y? w?
e Ellipsoid Z*v" : + + = 1 in the hyperplane z = 0.
a—c b—c c+d
72 y? w?
e Ellipsoid ZY : + + = 1 in the hyperplane w = 0.

a+d b+d c+d

Tropic curves on quadrics in four dimensional Minkowski space and discriminant
set

Tropic curves are set of points at which the metrics induced on the tangent hyperplane are
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degenerate.

Tangent hyperplane at (xg, Yo, 20, wo) of (%)) is given by

o YYo Z20 _ wWWo —1
a—X b—X c—X d+ X\

(3.27)

The induced metric is degenerate if and only if the parallel hyperplane that contains the
origin is tangential to x? + 3% + 22 — w? = 0 ie:

2 2 2 2

x Y, z w,

0 0 0 0
_l’_

a2 T oo T e

(3.28)

Proposition 3.2.1. The tropical manifold on (%)) are the intersection of the hyperquadrics
with the hypercone

72 2 2 w?
e T e T e ;=1
(a—N) (b—\) (c—N) (d+ M)

(3.29)

Proposition 3.2.2. The union of the tropical manifold on all hyperquadrics Equation (3.26) is
a union of two hypersurfaces ¥ and X~, which can be respectively parametrically represented

as

r = aa_+)\dpsin(¢)cos(0),
y= b—_ A psin()sin(0)
o | (3.30)
c—A
- \/C_I_—dpcos(w)a
w = +(d+ A)\/PQSinZ(@D)COs?(@), p23i712(1/1)8in2(9) R ,026082(1/1)’
N a+d b+d c+d

where p > 0, 0 € [0,27), A € R.
The intersection of the hypersurface in the hyperplane w = 0 is

.1'2 y2 22 N

ard brd exa "
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Lemma 3.2.1. The tropical manifolds of the hyperquadric (%)) represent exactly the locus

of points (z,y, z,w) for which the equation

1’2 2 2,’2 w2
(%) s

a— X " bh—\ C—)\+d—|—)\ , has Ay as multiple root (3.31)

Proof. The Equation (3.31) is equivalent to

(@a—=XN)(b—=Nc—AN(d+ ) =(b—=N(c—N(d+Nz*+ (a—N)(c— N (d+ Ny
+ (@ =N =N (d+N)2*+ (a—A)(b—N)(c— Nw?,
which is equivalent to:
M psd® 4 N2+ pi A +po =0, (3.32)
where
pr=2 4y + 22 —w—a—b—c+d,
Py =
22 (=b—c+d)+y*(—a—c+d)+ 2*(—a—b+d) —w(a+b+c)+ (bc+ ab+ ac—
bd — dc — ad),
P11 =
2%(bc — bd — cd) + y*(ac — ad — cd) + 2*(—bd + ab — ad) — w*(—bc — ab — ac)
+ (—abc + dbe + adb + adc),
po = 2°(dbc) + y*(acd) + 2*(abd) + w*(abd) — (abcd).
Equation (3.32) has A\g = 0 as triple zero if and only if pg = p; = p» = 0. This is equivalent

to belonging to (%).
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Additionally, we have:

p1 = 2°(be — bd — cd) + y*(ac — ad — ed) + 2°(—bd + ab — ad) — w*(—bc — ab — ac)

+ (—abc + dbe + adb + adc),

o (abc —abd — acd)  ,(abc — abd — bed) 5 (—bed + abe — acd)
T +y b +z c

a
5 (bed + abd + acd)

—w y + (—abc + dbe + abd + acd),
yabc — abd — acd — dbc + dbc ~ ,abc — abd — bed — adc + adc
- a Ty b
z2—bcd~|— abc — acd — adb + adb w? abc — abc + bed 4 abd + acd
c d

— (abc — adb — adc — dbe)
2 2 2 2

= (abc—abd—acd—bcd)[x——l—y—+Z——|—w——1]+x2d—bc+y2a;dc—l—22aiu)—w2a—bc,
a b c d a b c d
2 2 2 2 242 2 g2

oyt 22w x
:(abc—abd—acd—bcd)[;—l—?+?—|—7—1]+abcd[¥+ﬁ+§—ﬁ],

3.2.2 The case of signature (2,2)

We consider the four dimensional Minkowski space E*!. A general family of confocal

hyperquadrics in E*? is given by:

Z‘2 2 22 w2
(y)\) . + i

=1 R . ‘
a—\ b—)\+c+)\+d+)\ , AeRanda>b>0, d>c>0. (3.33)

The family (%)) contains the following quadrics of five geometric types:
e For \ € (—o0, —c) : the family (.#)) is of type 3.
e For \ € (—¢,—d) : the family (.#)) is of type 2 oriented along w-axis.

e For A € (—d,b) : the family (%)) is of type 1.
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e For A\ € (b,a) : the family (.#)) is of type 2 oriented along y-axis.
e For A\ € (a,00) : the family (%) is of type 4.

In addition, there are five degenerate quadrics: .%,, .%, %, %4 and %, that are the
hyperplane x = 0, y = 0, 2 = 0, w = 0 and the hyperplane at infinity respectively. The

following quadrics are single out in the coordinate hyperplane.

y2 22 w2

+ + =
a—b a+c a-+d

e Hyperboloid of one sheet oriented along the y-axis .#7*" : —

in the hyperplane z = 0.

x? 22 w?

«—b btc btrd

e Ellipsoid 77" : =1 in the hyperplane y = 0.

I,Z y2 U)2

e Ellipsoid .7 : . + brc + T 1 in the hyperplane z = 0.

1‘2 y2 2,2

ord T byd d_c Linthe

e Hyperboloid of one sheet along the y-axis .7 :

hyperplane w = 0.

Tropic curves on quadrics in four dimensional Minkowski space and discrimi-
nant set
Tropic curves are set of points at which the metrics induced on the tangent hyperplane are
degenerate.

Tangent hyperplane at (xo, Yo, 20, wo) of (%)) is given by

Ty YYo _ Z20 _ wWWo .
a—X b—X c+X d+\

1. (3.34)

The induced metric is degenerate if and only if the parallel hyperplane that contains the

origin is tangential to x* + 3% — 22 —w? = 0 ie

(@a—=AN)2  (b—=X)?2 (c+N)? (d+)N)? ' '
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Proposition 3.2.3. The tropic curves on (%)) are the intersection of the hyperquadrics
with the hypercone

£B2 y2 22 U)2 B
@2 T e e @A L (3.36)

Proposition 3.2.4. The union of the tropical manifold on all hyperquadrics Equation (3.26) is

a union of two hypersurfaces ¥ and X~, which can be respectively parametrically represented

as
—A

a—l—d

b— .
y = \@:Emeﬁm@% (3.37)

c+ A
Vera W)

B p*sin?()cos(0), — p*sin®(Y)sin®(0)  p*cos® (1))
\w—i(dj%)\/ a+d + b+d c+d

psin(y)cos(0),

z =

where p >0, 0 € [0,27), A € R.

The intersection of the hypersurface in the hyperplane w = 0 is

(L’Q y2 22 )

atd bid d—ec

Lemma 3.2.2. The tropical manifolds of the hyperquadric (.#)) represent exactly the locus

of points (z,y, z,w) for which the equation

22 % 2 w?
(%) — + Y + Y + T 1, has )¢ as multiple root. (3.38)

Proof. The Equation (3.38) is equivalent to:

(@—N)(b=N(c+N(d+A) = (b= N (c+A)(d+ N2+ (@ —N(e+ N (d+ \)y?

+(@—=N)(b =N (d+N)2*+ (@ —A)(b—N)(c+ Nw?

which is equivalent to:

M AN+ N2+ LA+ 1 =0, (3.39)

115



where
Is=—2? -y +22+w* +a+b—c—d,
Iy =
2?’(b—c+d)+y*(a—c+d) +2*(—a—b+d) +w*(—a—b+c) — (=bc+ ab— ac — bd + dc
— ad),
I, =
z?(be + bd — cd) + y*(ac + ad — ed) + 2*(—bd + ab — ad) + w*(—bc + ab — ac) + (abc — dbe
+ adb — adc),
lo = 2*(dbc) + y*(acd) + 2*(abd) + w?(abc) — (abed).
Equation (3.39) has Ao = 0 as triple zero if and only if [y = [; = Iy = 0. This is equivalent to
belonging to (#%).

Additionally, we have:

ly = 2*(be + bd — cd) + y*(ac + ad — cd) + 2*(—bd + ab + ad) + w*(—bc + ab — ac)

— (abc — dbe + adb — adc),

_ ,(abc+abd —acd) 4 (abc+ abd —bed) — ,(—bed + abe — acd)
=x a +y b +z .

—bed 4 abd — acd
—w2< c +C; ac)—(abc—dbc—l—abd—acd),

sabc 4 abd — acd — dbc 4+ dbc ~ ,abc + abd — bed — ade + adc
-7 a Ty b
o —bed + abe — acd — adb + adb yabc — abc — bed + abd — acd
z : +w p

— (abc + adb — ade — dbc),

2 2 db d db b
(abc—irabd—acd—bcd)[% %+%+%—1]+x2—c yQ%—zZ%—wQ%,
2 2 2w 2 2 2w
(abc—i—abd—acd—bcd)[; ?+?+7—1]+abcd[§+b—2—§—§].
O
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