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QUADRICS IN PSEUDO-EUCLIDEAN SPACES, INTEGRABLE BILLIARDS AND

EXTREMAL POLYNOMIALS

Anani Komla Adabrah, PhD
The University of Texas at Dallas, 2019

Supervising Professor: Vladimir Dragović, Chair

We study the geometry of confocal quadrics in pseudo-Euclidean spaces of dimensions 2,

3, and 4, respectively. Along with the notion of geometric quadrics, we also investigate

the relativistic quadrics which provide tools for further investigations of billiard dynamics.

The geometric quadrics of a confocal pencil and their types in pseudo-Euclidean spaces do

not share all of the usual properties with confocal quadrics in Euclidean spaces, including

those necessary for applications in billiard dynamics and separable mechanical systems in

general. For instance, in n-dimensional Euclidean space, there are n geometric types of

quadrics, whereas in n-dimensional pseudo-Euclidean space, there are n+ 1 geometric types

of quadrics. Relativistic quadrics enable us to define and use Jacobi coordinates in pseudo-

Euclidean settings. In the study of periodic billiard trajectories, we distinguish two cases:

trajectories which are periodic with respect to Cartesian coordinates, which are the usual

periodic trajectories, and the so-called elliptic periodic trajectories, which are periodic with

respect to Jacobi coordinates.

In the Minkowski plane, we derive necessary and sufficient conditions for periodic and elliptic

periodic trajectories of billiards within an ellipse in terms of an underlying elliptic curve. We

derive equivalent conditions in terms of polynomial equations as well. The corresponding

polynomials are related to the classical extremal polynomials. We have indicated the
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similarities and differences with respect to previously studied periodic billiard trajectories in

Euclidean cases.

The classification of hypersurfaces of degree 2 in four-dimensional pseudo-Euclidean space

has been done in signatures (3, 1) and (2, 2).

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Confocal conics in the Euclidean plane . . . . . . . . . . . . . . . . . . . . . 1

1.2 Confocal quadrics and their types in the Euclidean space . . . . . . . . . . . 3

1.3 Billiards in the Euclidean plane . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Pseudo-Euclidean spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Confocal conics in the Minkowski plane . . . . . . . . . . . . . . . . . . . . . 5

1.6 Billiards in the Minkowski plane . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Relativistics quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7.1 Relativistic conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 2 PERIODIC BILLIARDS WITHIN CONICS IN THE MINKOWSKI
PLANE AND AKHIEZER AND ZOLOTAREV POLYNOMIALS. . . . . . . . . . 31

2.1 Periodic trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Examples of periodic trajectories with small periods: 3 ≤ n ≤ 10 . . . . . . . 36

2.2.1 Table of summary on number of touching points with relativistic ellipses
and hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Cayley-type conditions and discriminantly factorizable polynomials . 53

2.2.3 Disciminantly separable polynomials . . . . . . . . . . . . . . . . . . 56

2.3 Elliptic periodic trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Examples of elliptic periodic trajectories with small periods: 3 ≤ n ≤ 7 . . . 61

2.5 Polynomial equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.6 Classical Extremal Polynomials and Caustics . . . . . . . . . . . . . . . . . . 81

2.6.1 Fundamental Properties of Extremal Polynomials . . . . . . . . . . . 81

2.6.2 Zolotarev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.6.3 Akhiezer polynomials on symmetric intervals [−1,−α] ∪ [α, 1] . . . . 93

2.6.4 General Akhiezer polynomials on unions of two intervals . . . . . . . 97

viii



2.7 Periodic light-like trajectories and Chebyshev polynomials . . . . . . . . . . 103

CHAPTER 3 THE CLASSIFICATION OF HYPERQUADRICS AND FAMILY OF
CONFOCAL QUADRICS IN FOUR DIMENSIONAL MINKOWSKI SPACE . . . 105

3.1 Classification of hypersurfaces of degree two in four dimensional space . . . . 105

3.2 Family of Confocal Quadrics in Four Dimensional Minkowski space . . . . . 109

3.2.1 The case of signature (3,1) . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2.2 The case of signature (2,2) . . . . . . . . . . . . . . . . . . . . . . . . 113

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

CURRICULUM VITAE

ix



LIST OF FIGURES

1.1 Family of confocal conics in the Euclidean plane. . . . . . . . . . . . . . . . . . 1

1.2 Billiard reflection law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Family of confocal conics in the Minkowski plane. . . . . . . . . . . . . . . . . . 6

1.4 Family of confocal conics in the Minkowski plane. Solid lines represent relativistic
ellipses, and dashed ones relativistic hyperbolas. . . . . . . . . . . . . . . . . . . 19

1.5 Minkowski plane divided into 9 regions by the four tangent lines to each conics. 20

2.1 Family of confocal conics in the Minkowski plane. . . . . . . . . . . . . . . . . . 32

2.2 A 3-periodic trajectory with an ellipse along the y-axis as caustic (a = 3, b = 2,
γ ≈ 2.332) is shown on the left, while another trajectory with an ellipse along the
x-axis as caustic (a = 7, b = 5, γ ≈ −4.589) is on the right. . . . . . . . . . . . . 37

2.3 A 4-periodic trajectory with an ellipse along the y-axis as caustic (a = 2, b = 4,
γ = 4/3) is shown on the left, while another trajectory with an ellipse along the
x-axis as caustic (a = 9, b = 3, γ = −9/4) is on the right. . . . . . . . . . . . . . 38

2.4 A 4-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3,
γ = −15/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 A 5-periodic trajectories with an ellipse along the y-axis as caustic. On the left,
the particle is bouncing 4 times off the relativistic ellipse and once off relativistic
hyperbola (a = 5, b = 2, γ ≈ 4.7375), while on the right the billiard particle is
reflected twice off relativistic ellipse and 3 times off relativistic hyperbola (a = 6,
b = 4, γ ≈ 1.4205). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 A 5-periodic trajectories with an ellipse along the x-axis as caustic. On the left,
the particle is bouncing once off the relativistic ellipse and 4 times off relativistic
hyperbola (a = 6, b = 4, γ ≈ −3.9947), while on the right the billiard particle is
reflected twice off relativistic hyperbola and 3 times off relativistic ellipse (a = 6,
b = 4, γ ≈ −1.5413). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 A 6-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3,
γ ≈ −3.2264 is shown on the left, while another trajectory with a hyperbola along
the y-axis as caustic (a = 3, b = 7 and γ ≈ 3.1189) is on the right. On the left,
the particle bounces off the relativistic ellipse twice and 4 times the relativistic
hyperbola while on the right the particle bounces off the relativistic ellipse 4 times
and the relativistic hyperbola twice. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 A 7-periodic trajectory with an ellipse along the x-axis as caustic (a = 3, b = 7,
γ ≈ −6.9712) is shown on the left, while another trajectory with an ellipse along
the y-axis as caustic (a = 7, b = 3 and γ ≈ 6.9712) is on the right. On the left,
the particle bounces once off the relativistic ellipse and 6 times off the relativistic
hyperbola while on the right the particle bounces 6 times off the relativistic ellipse
and once off the relativistic hyperbola. . . . . . . . . . . . . . . . . . . . . . . . 43

x



2.9 On the left, an 8-periodic trajectory with a hyperbola along x-axis as caustic
(a = 6, b = 3, γ ≈ −3.0151), with 2 vertices on relativistic ellipses and 6 on
relativistic hyperbolas. On the right, an 8-periodic trajectory with a hyperbola
along y-axis as caustic (a = 6, b = 3, γ ≈ 6.9168), with 6 vertices on relativistic
ellipses and 2 on relativistic hyperbolas. . . . . . . . . . . . . . . . . . . . . . . 44

2.10 An 8-periodic trajectory with an ellipse along y-axis as caustic. There are 2
reflections off relativistic hyperbola and 6 off relativistic ellipses. (a = 6, b = 3,
γ ≈ 5.3707). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 A 9-periodic trajectory with an ellipse along the x-axis as caustic (a = 5, b = 2
and λ0 ≈ −1.1777) is shown on the left, while another trajectory with an ellipse
along the y-axis as caustic (a = 7, b = 4 and λ0 ≈ 1.9097) is on the right. . . . . 47

2.12 On the left, a 10-periodic trajectory with a hyperbola along the y-axis as caustic
(a = 8, b = 5 and λ0 ≈ 40.0965,). On the right, a 10-periodic trajectory with a
hyperbola along the x-axis as caustic (a = 8, b = 5 and λ0 = −6.4196). . . . . . 49

2.13 A 10-periodic trajectory with an ellipse along the x-axis as caustic (a = 8, b = 5
and λ0 = −4.1502). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.14 A 2-elliptic periodic trajectories with ellipses as caustics. On the left, the caustic
is an ellipse along x-axis (a = 5, b = 3, γ = −15/8), and on the right an ellipse
along y-axis (a = 5, b = 7 and γ = 35/12). . . . . . . . . . . . . . . . . . . . . . 62

2.15 A 2-elliptic periodic trajectory with a hyperbola as caustic (a = 7, b = 3, γ = −5.25). 63

2.16 A 3-elliptic periodic trajectories with hyperbolas as caustics. On the left, the
caustic is orientied along the x-axis (a = 6, b = 3, γ ≈ −3.1595918), and on the
right along the y-axis (a = 3, b = 5, γ ≈ 3.2264236). . . . . . . . . . . . . . . . . 64

2.17 A 3-elliptic periodic trajectory without being 3-periodic with an ellipse along the
x-axis as caustic (a = 9, b = 2 and λ0 = −.8831827) on the let. On the right,a
3-elliptic periodic trajectories without being 3-periodic with an ellipse along the
y-axis as caustic (a = 4, b = 9 and λ0 = 1.312805). . . . . . . . . . . . . . . . . 64

2.18 A 4-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 5,
b = 3, γ ≈ 4.6216), and it is a hyperbola on the right (a = 5, b = 3, γ ≈ −3.0243). 66

2.19 A 4-elliptic periodic trajectory without being 4-periodic with a hyperbola along
the y-axis as caustic (a = 5, b = 3 and λ0 ≈ 5.4942). . . . . . . . . . . . . . . . . 66

2.20 A 5-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 7,
b = 4, γ ≈ −3.3848) and a hyperbola on the right (a = 3, b = 7, γ ≈ 3.4462). . . 67

2.21 A 5-elliptic periodic trajectories without being 5-periodic with a hyperbola along
the y-axis as caustic (a = 7, b = 4 and λ0 ≈ −4.9683) . . . . . . . . . . . . . . . 68

2.22 A 6-elliptic periodic trajectories. On the left, the caustic is an ellipse along the
x-axis (a = 3, b = 5 and λ0 ≈ −4.9755), and it is a hyperbola along the y-axis on
the right (a = 3, b = 4 and λ0 ≈ 2.9989). . . . . . . . . . . . . . . . . . . . . . . 71

xi



2.23 A 7-elliptic periodic trajectories. On the left, the caustic is a hyperbola along the
y-axis (a = 3, b = 7 and λ0 ≈ 3.7232), and it is a hyperbola along the x-axis on
the right (a = 3, b = 7 and λ0 ≈ −10.7847). . . . . . . . . . . . . . . . . . . . . 73

2.24 A 7-elliptic periodic trajectories. On the left, the caustic is an ellipse along the
y-axis (a = 5, b = 7 and λ0 ≈ 4.8394), and it is an ellipse along the x-axis on the
right (a = 3, b = 7 and λ0 ≈ −5.4467). . . . . . . . . . . . . . . . . . . . . . . . 73

2.25 b0 = γ, b1 = a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.26 b0 = −b, b1 = γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.27 b0 = −b, b1 = a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.28 b0 = −b, b1 = a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.29 Representation of extremal polynomial p̂3 corresponding to n = 3, n1 = 1 and
γ < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.30 Representation of extremal polynomial p̂3 corresponding to n = 3, n1 = 2 and
γ > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



CHAPTER 1

INTRODUCTION

1.1 Confocal conics in the Euclidean plane

Consider

ε :
x2

a
+
y2

b
= 1, a > b > 0 (1.1)

an ellipse in the plane with a and b fixed.

Cλ :
x2

a− λ
+

y2

b− λ
= 1, λ ∈ R. (1.2)

The family Cλ has two non-degenerate subfamilies:

• For λ < b, Cλ is an ellipse.

• For λ ∈ (b, a), Cλ is a hyperbola with the x-axis as the major axis.

The family Cλ is shown in Figure 1.1.

In the Euclidean plane, there are two types of conics in Cλ : ellipses and hyperbola with the

Figure 1.1: Family of confocal conics in the Euclidean plane.

x-axis as the major axis. We observed from Figure 1.1 that conics of the same type do not

1



intersect one another, whereas conics of different types do intersect one another. Each point

in the Euclidean plane is an intersection of two distinct conics.

Let

x2

a− λ
+

y2

b− λ
= 1, where λ ∈ R, a > b.

It follows that

x2(b− λ) + y2(a− λ) = (b− λ)(a− λ),

ab+ λ2 − (a+ b)λ = x2b+ y2a− (x2 + y2)λ,

which yields

λ2 − (a+ b)λ+ (x2 + y2)λ+ ab− (x2b+ y2a) = 0,

λ2 + (x2 + y2 − a− b)λ+ ab− bx2 − ay2 = 0.

We computed the discriminant ∆ as follows:

∆ = (x2 + y2 − a− b)2 − 4(ab− bx2 − ay2),

= x4 + y4 + a2 + b2 − 2ab+ 2x2y2 + 2(b− a)x2 + 2(a− b)y2,

where

x4 + 2(b− a)x2 + a2 + b2 − 2ab = x4 + 2(b− a)x2 + (b− a)2,

= (x2 + b− a)2,

hence

∆ = (x2 + b− a)2 + y4 + 2x2y2 + 2(a− b)y2, where a− b > 0, since a > b,

therefore

∆ > 0,

which means a point (x, y) in the plane is an intersection of two distinct conics.

The following section generalizes the two dimensional Euclidean plane.
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1.2 Confocal quadrics and their types in the Euclidean space

Consider the family of confocal quadrics

x21
a1 − λ

+ · · ·+
x2g

ag − λ
= 1, λ ∈ R (1.3)

in a g-dimensional Euclidean space, where a1 > a2 > · · · > ag > 0.

The family (1.3) has the following properties:

• The intersection of exactly g quadrics from (1.3) of different geometric types defines a

point of the space Eg.

• The family (1.3) contains exactly g-geometric types of non-degenerate quadrics. Each

type corresponds to one of the disjoint intervals (−∞, ag), (ag, ag−1), · · · , (a2, a1) of the

parameter λ.

Definition 1.2.1. (Jacobi coordinates)

The Jacobi coordinates are the parameters (λ1, · · · , λg) that correspond to the quadrics of

(1.3) that contain a given point in Eg.

In a g-dimensional Euclidean space, a general family of confocal quadrics contains g-geometric

types of quadrics.

1.3 Billiards in the Euclidean plane

A mathematical billiard, is a dynamical system, where a particle (a dimensionless billiard

ball) moves inside the domain (a billiard table) without a constraint. The particle moves

in a straight line with a constant speed until it hits the boundary. The reflection off the

boundary is elastic and subject to a billiard reflection law: the impact and reflection angles

are congruent to each other [26, 40], see Figure 1.2
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Figure 1.2: Billiard reflection law

At the impact point, the velocity of the particle decomposed into the normal and tangential

components. Upon reflection, the normal component instantaneously changes sign, while

the tangential one remains the same. The speed of the particle therefore does not change.

Such billiard system in the Euclidean space is a good model for the motion of light rays, with

mirror boundary [26, 40].

The above description of the billiard reflection does not only apply to the Euclidean

geometry but it also applies to other geometries in particular the pseudo-Euclidean geometry.

1.4 Pseudo-Euclidean spaces

In this section, we defined a pseudo-Euclidean space and a pseudo-Euclidean distance between

two points in the space.

Definition 1.4.1. A pseudo-Euclidean space Ep,q is a g-dimensional space Rg with a pseudo-

Euclidean scalar product: 〈x, y〉p,q = x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xgyg,

where p, q ∈ {1, · · · , g − 1}, p + q = g. The pair (p, q) is called the signature of the space

Ep,q.
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Definition 1.4.2. A pseudo-Euclidean distance between two points x and y is defined by:

distp,q(x, y) =
√
〈x− y, x− y〉p,q.

Note that the distance can take imaginary value since the scalar product can be negative.

Let l be a line in the pseudo-Euclidean space and let u be its vector, l is called:

• space-like if 〈u, u〉p,q > 0,

• time-like if 〈u, u〉p,q < 0,

• light-like if 〈u, u〉p,q = 0.

Two vectors u and v are orthogonal in the pseudo-Euclidean space if 〈u, v〉p,q = 0. A light-like

line is therefore orthogonal to itself.

1.5 Confocal conics in the Minkowski plane

We study the properties of family of confocal conics in the Minkowski plane and derived focal

properties of such families.

Let

εl :
x2

a
+
y2

b
= 1, a > b > 0 (1.4)

be an ellipse in the Minkowski plane with a and b fixed.

The associated family of confocal conics is

Coλ :
x2

a− λ
+

y2

b+ λ
= 1, λ ∈ R. (1.5)

The family Coλ is shown in Figure 1.3 below.

The family of conics Coλ has three non-degenerate subfamilies:

• For λ < −b, Coλ is a hyperbola with the x-axis as the major axis.

• For λ ∈ (−b, a), Coλ is an ellipse.

5



Figure 1.3: Family of confocal conics in the Minkowski plane.

• For λ > a, Coλ is a hyperbola with the y-axis as major axis.

The quadrics Coa, Cob and Co∞ corresponding to the y-axis, the x-axis and the line at

infinity respectively are the degenerate quadrics. The three pairs of foci F1(
√
a+ b, 0),

F2(−
√
a+ b, 0); G1(0,

√
a+ b), G2(0,−

√
a+ b, 0); and H1(1 : −1 : 0), H2(1 : 1 : 0) are on

the line at infinity.

Each non-degenerate member of the family Coλ is tangent to the following four lines called

the null lines.

x+ y =
√
a+ b, x+ y = −

√
a+ b

x− y =
√
a+ b, x− y = −

√
a+ b

These elementary results follow:

6



Proposition 1.5.1. 1) For each point on ellipse Coλ, λ ∈ (−b, a), either the sum or the

difference of its Minkowski distances from the foci F1 and F2 is equal to 2
√
a− λ; either

the sum or the difference of the distances from the other pair of foci G1 and G2 is equal

to 2i
√
b+ λ.

2) For each point on the hyperbola Coλ, λ ∈ (−∞,−b), either the sum or difference of its

Minkowski distances from the foci F1 and F2 is equal to 2
√
a− λ; for the other pair of

foci G1 and G2, it is equal to 2
√
−b− λ.

3) For each point on the hyperbola Coλ, λ ∈ (a,∞), either the sum or the difference of its

Minkowski distances from the foci F1 and F2 is equal to 2i
√
λ− a; for the other pair of

foci G1 and G2, it is equal to 2i
√
b+ λ.

The proof is straightforward.

Proof. 1) Let X be a point on Coλ for λ ∈ (−b, a), therefore a− λ > 0.

Let us evaluate dist1,1(X,F1) + dist1,1(X,F2). Set dist1,1(X,F1) + dist1,1(X,F2) = d.

dist1,1(X,F1) + dist1,1(X,F2) = d√
(x−

√
a+ b)2 − y2 +

√
(x+

√
a+ b)2 − y2 = d√

(x−
√
a+ b)2 − y2 = d−

√
(x+

√
a+ b)2 − y2

d2 + 4x
√
a+ b = 2d

√
(x+

√
a+ b)2 − y2

x2[16(a+ b)− 4d2] + 4d2y2 = 4d2(a+ b)− d4

x2[16(a+ b)− 4d2] + 4d2y2 = d2[−d2 + 4(a+ b)]

x2

d2

4

+
y2

−d2 + 4(a+ b)

4

= 1.

But since X(x, y) is on Coλ, it follows that

d2

4
= a− λ, with a− λ > 0

therefore d = 2
√
a− λ as expected.

7



Similarly

dist1,1(X,F1)− dist1,1(X,F2) = d√
(x−

√
a+ b)2 − y2 −

√
(x+

√
a+ b)2 − y2 = d√

(x−
√
a+ b)2 − y2 = d+

√
(x+

√
a+ b)2 − y2

d2 + 4x
√
a+ b = −2d

√
(x+

√
a+ b)2 − y2

x2[16(a+ b)− 4d2] + 4d2y2 = 4d2(a+ b)− d4

x2[16(a+ b)− 4d2] + 4d2y2 = d2[−d2 + 4(a+ b)]

x2

d2

4

+
y2

−d2 + 4(a+ b)

4

= 1.

But since X(x, y) is on Coλ, it follows that:

d2

4
= a− λ, with a− λ > 0

therefore d = 2
√
a− λ as we expected.

Let us evaluate dist1,1(X,G1) + dist1,1(X,G2). Set dist1,1(X,G1) + dist1,1(X,G2) = d.

dist1,1(X,G1) + dist1,1(X,G2) = d√
x2 − (y −

√
a+ b)2 +

√
x2 − (y +

√
a+ b)2 = d√

x2 − (y −
√
a+ b)2 = d−

√
x2 − (y +

√
a+ b)2

d2 − 4y
√
a+ b = 2d

√
x2 − (y +

√
a+ b)2

y2[16(a+ b) + 4d2]− 4d2x2 = −4d2(a+ b)− d4

4d2x2 − y2[16(a+ b) + 4d2] = d2[d2 + 4(a+ b)]

x2

d2 + 4(a+ b)

4

− y2

d2

4

= 1.

But since X(x, y) is on the ellipse Coλ, it follows that

−d
2

4
= b+ λ, with b+ λ > 0 and d2 < 0

therefore d = 2i
√
b+ λ. as expected.
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Similarly

dist1,1(X,G1)− dist1,1(X,G2) = d√
x2 − (y −

√
a+ b)2 −

√
x2 − (y +

√
a+ b)2 = d√

x2 − (y −
√
a+ b)2 = d+

√
x2 − (y +

√
a+ b)2

d2 − 4y
√
a+ b = −2d

√
x2 − (y +

√
a+ b)2

y2[16(a+ b) + 4d2]− 4d2x2 = −4d2(a+ b)− d4

4d2x2 − y2[16(a+ b) + 4d2] = d2[d2 + 4(a+ b)]

x2

d2 + 4(a+ b)

4

− y2

d2

4

= 1.

But since X(x, y) is on the ellipse Coλ, it follows that

−d
2

4
= b+ λ, with b+ λ > 0 and d2 < 0

therefore d = 2i
√
b+ λ, as expected.

2) Let X be a point on Coλ for λ ∈ (−∞,−b), therefore b+ λ < 0.

Let us evaluate dist1,1(X,F1) + dist1,1(X,F2). Set dist1,1(X,F1) + dist1,1(X,F2) = d.

dist1,1(X,F1) + dist1,1(X,F2) = d√
(x−

√
a+ b)2 − y2 +

√
(x+

√
a+ b)2 − y2 = d√

(x−
√
a+ b)2 − y2 = d−

√
(x+

√
a+ b)2 − y2

d2 + 4x
√
a+ b = 2d

√
(x+

√
a+ b)2 − y2

x2[16(a+ b)− 4d2] + 4d2y2 = 4d2(a+ b)− d4

x2[16(a+ b)− 4d2] + 4d2y2 = d2[−d2 + 4(a+ b)]

x2

d2

4

− y2

d2 − 4(a+ b)

4

= 1.

9



But since X(x, y) is on Coλ, it follows that:

d2 − 4(a+ b)

4
= −b− λ, with b+ λ < 0

therefore d = 2
√
a− λ as expected.

Similarly

dist1,1(X,F1)− dist1,1(X,F2) = d√
(x−

√
a+ b)2 − y2 −

√
(x+

√
a+ b)2 − y2 = d√

(x−
√
a+ b)2 − y2 = d+

√
(x+

√
a+ b)2 − y2

d2 + 4x
√
a+ b = −2d

√
(x+

√
a+ b)2 − y2

x2[16(a+ b)− 4d2] + 4d2y2 = 4d2(a+ b)− d4

x2[16(a+ b)− 4d2] + 4d2y2 = d2[−d2 + 4(a+ b)]

x2

d2

4

− y2

d2 − 4(a+ b)

4

= 1.

But since X(x, y) is on Coλ, it follows that:

d2 − 4(a+ b)

4
= −b− λ, with b+ λ < 0

therefore d = 2
√
a− λ as expected.

Let us evaluate dist1,1(X,G1) + dist1,1(X,G2). Set dist1,1(X,G1) + dist1,1(X,G2) = d.

dist1,1(X,G1) + dist1,1(X,G2) = d√
x2 − (y −

√
a+ b)2 +

√
x2 − (y +

√
a+ b)2 = d√

x2 − (y −
√
a+ b)2 = d−

√
x2 − (y +

√
a+ b)2

d2 − 4y
√
a+ b = 2d

√
x2 − (y +

√
a+ b)2

y2[16(a+ b) + 4d2]− 4d2x2 = −4d2(a+ b)− d4

4d2x2 − y2[16(a+ b) + 4d2] = d2[d2 + 4(a+ b)]

x2

d2 + 4(a+ b)

4

− y2

d2

4

= 1.
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But since X(x, y) is on the ellipse Coλ, it follows that:

d2 + 4(a+ b)

4
= a− λ, with b+ λ < 0

therefore d = 2
√
−b− λ as expected.

Similarly

dist1,1(X,G1)− dist1,1(X,G2) = d√
x2 − (y −

√
a+ b)2 −

√
x2 − (y +

√
a+ b)2 = d√

x2 − (y −
√
a+ b)2 = d+

√
x2 − (y +

√
a+ b)2

d2 − 4y
√
a+ b = −2d

√
x2 − (y +

√
a+ b)2

y2[16(a+ b) + 4d2]− 4d2x2 = −4d2(a+ b)− d4

4d2x2 − y2[16(a+ b) + 4d2] = d2[d2 + 4(a+ b)]

x2

d2 + 4(a+ b)

4

− y2

d2

4

= 1.

But since X(x, y) is on the ellipse Coλ, it follows that:

d2 + 4(a+ b)

4
= a− λ, with b+ λ < 0

therefore d = 2
√
−b− λ as expected.
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3) Let X be a point on Coλ for λ ∈ (a,∞), therefore a− λ < 0.

Let us evaluate dist1,1(X,F1) + dist1,1(X,F2). Set dist1,1(X,F1) + dist1,1(X,F2) = d.

dist1,1(X,F1) + dist1,1(X,F2) = d√
(x−

√
a+ b)2 − y2 +

√
(x+

√
a+ b)2 − y2 = d√

(x−
√
a+ b)2 − y2 = d−

√
(x+

√
a+ b)2 − y2

d2 + 4x
√
a+ b = 2d

√
(x+

√
a+ b)2 − y2

x2[16(a+ b)− 4d2] + 4d2y2 = 4d2(a+ b)− d4

x2[16(a+ b)− 4d2] + 4d2y2 = d2[−d2 + 4(a+ b)]

− x2

−d2

4

+
y2

−d2 + 4(a+ b)

4

= 1.

But since X(x, y) is on Coλ, it follows that:

−d2 + 4(a+ b)

4
= b+ λ, with a− λ < 0

therefore d = 2i
√
λ− a as expected.

Similarly

dist1,1(X,F1)− dist1,1(X,F2) = d√
(x−

√
a+ b)2 − y2 −

√
(x+

√
a+ b)2 − y2 = d√

(x−
√
a+ b)2 − y2 = d+

√
(x+

√
a+ b)2 − y2

d2 + 4x
√
a+ b = −2d

√
(x+

√
a+ b)2 − y2

x2[16(a+ b)− 4d2] + 4d2y2 = 4d2(a+ b)− d4

x2[16(a+ b)− 4d2] + 4d2y2 = d2[−d2 + 4(a+ b)]

− x2

−d2

4

+
y2

−d2 + 4(a+ b)

4

= 1.
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But since X(x, y) is on Coλ, it follows that:

−d2 + 4(a+ b)

4
= b+ λ, with a− λ < 0

therefore d = 2i
√
λ− a as expected.

Let us evaluate dist1,1(X,G1) + dist1,1(X,G2). Set dist1,1(X,G1) + dist1,1(X,G2) = d.

dist1,1(X,G1) + dist1,1(X,G2) = d√
x2 − (y −

√
a+ b)2 +

√
x2 − (y +

√
a+ b)2 = d√

x2 − (y −
√
a+ b)2 = d−

√
x2 − (y +

√
a+ b)2

d2 − 4y
√
a+ b = 2d

√
x2 − (y +

√
a+ b)2

y2[16(a+ b) + 4d2]− 4d2x2 = −4d2(a+ b)− d4

4d2x2 − y2[16(a+ b) + 4d2] = d2[d2 + 4(a+ b)]

− x2

−d2 − 4(a+ b)

4

+
y2

−d2

4

= 1

But since X(x, y) is on the ellipse Coλ, it follows that:

−d2 − 4(a+ b)

4
= λ− a, with a− λ < 0

therefore d = 2i
√
b+ λ as expected.

Similarly

dist1,1(X,G1)− dist1,1(X,G2) = d√
x2 − (y −

√
a+ b)2 −

√
x2 − (y +

√
a+ b)2 = d√

x2 − (y −
√
a+ b)2 = d+

√
x2 − (y +

√
a+ b)2

d2 − 4y
√
a+ b = −2d

√
x2 − (y +

√
a+ b)2

y2[16(a+ b) + 4d2]− 4d2x2 = −4d2(a+ b)− d4

4d2x2 − y2[16(a+ b) + 4d2] = d2[d2 + 4(a+ b)]

− x2

−d2 − 4(a+ b)

4

+
y2

−d2

4

= 1.
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But since X(x, y) is on the ellipse Coλ, it follows that:

−d2 − 4(a+ b)

4
= λ− a, with a− λ < 0

therefore d = 2i
√
b+ λ as expected.

1.6 Billiards in the Minkowski plane

The description here is not different from the one in Section 1.3. We add the fact that if the

normal component of the velocity of the particle is light-like i.e. belongs to the line that

contains the tangential component, then the billiard reflection is not defined. Also two lines

l and l′ are billiard reflection of each other if their intersection point l ∩ l′ belongs to the

boundary of the conic ε and the vectors of l and l′ are billiard reflections to each other.

1.7 Relativistics quadrics

The geometric quadrics of a confocal pencil and their types in the pseudo-Euclidean spaces

do not satisfy all of the usual properties of confocal quadrics in the Euclidean spaces. for

instance, in g-dimensional Euclidean space there are g-geometric types of quadrics while in

g-dimensional pseudo-Euclidean space there are (g + 1)-geometric types of quadrics.

1.7.1 Relativistic conics

Consider the two dimensional pseudo-Euclidean plane E1,1, called the Minkowski plane. We

have already mentioned that a family of confocal conics in the Minkowski plane contains

conics of three geometric types: ellipses, hyperbolas with the x-axis as the major axis and

hyperbola with the y-axis as the major axis as shown in Figure 1.3. It is however more

natural to consider the relativistic conics as analyzed by Birkhoff and Morris[10]. An account

of that analysis is given in details.
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Definition 1.7.1. Let x and y in E1,1 then 〈x, y〉1,1 = x1y1 − x2y2.

Definition 1.7.2. We define the Minkowki distance between two points x, y by:

dist1,1(x, y) =


√
〈x− y, x− y〉1,1, if 〈x− y, x− y〉1,1 ≥ 0,

i
√
−〈x− y, x− y〉1,1, if 〈x− y, x− y〉1,1 < 0.

It follows that dist1,1(x, y) ∈ R+ ∪ iR+.

Consider two points F1(
√
a+ b, 0) and F2(

√
a+ b, 0) in the Minkowski plane and c ∈ R+∪iR+.

Definition 1.7.3. A relativistic ellipse is the set of points X satisfying:

dist1,1(F1, X) + dist1,1(F2, X) = 2c. (1.6)

Definition 1.7.4. A relativistic hyperbola is the union of sets given by:

dist1,1(F1, X)− dist1,1(F2, X) = 2c,

dist1,1(F2, X)− dist1,1(F1, X) = 2c.

(1.7)

We can clearly derive from the definition that Equation (1.6) and Equation (1.7) lead to:

Z :
x2

c2
+

y2

a+ b− c2
= 1 (1.8)

Equation (1.8) is easily obtained by setting d = 2c in:

x2

d2

4

+
y2

−d2 + 4(a+ b)

4

= 1

which is an equation proved in Proposition 1.5.1.

Each geometrical conics Z is the union of pieces consisting of confocal relativistic conics (1.6)

and (1.7). The relativistic conics can be described as follows:

Let c ∈ R+,
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• if < c <
√
a+ b, then (1.8) is a geometrical ellipse Coa−c2 from the family (1.5) and

the relativistic conics lie on it.

If c2 > a+ b− c2, the geometrical foci are at (±
√

2c2 − a− b, 0) whereas the relativistic

foci are at F1 and F2.

If c2 < a+b−c2, the geometrical foci are at (0,±
√
a+ b− 2c2, 0) whereas the relativistic

are at F1 and F2.

• if c >
√
a+ b, then (1.8) is a geometrical hyperbola Coa−c2 with x-axis as major axis

from the family (1.5) and the relativistic conics lie on it.

Since c2 > c2 − a − b, the geometrical foci are at (±
√

2c2 − a− b, 0) whereas the

relativistic foci are still at F1 and F2.

Let c ∈ iR+.

• For c ∈ iR+, c2 < 0 and therefore (1.8) is a geometrical hyperbola Coa−c2 with y-axis

as major axis and the relativistic conics lie on it.

The following result follows:

Theorem 1.7.1. The relativistic conics that lie on each geometrical conic Z are geometrically

tangent to the null lines through the foci F1 and F2.

Proof. Let

x2

c2
+

y2

a+ b− c2
= 1.

By implicit differentiation, one has the following:

2x
dx

c2
+ 2y

dy

a+ b− c2
= 0

2x
dx

c2
= −2y

dy

a+ b− c2
dy

dx
= −x

y

a+ b− c2

c2
. (1.9)
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Let us now consider the geometric ellipses (1.8) where 0 < c <
√
a+ b with slope

λ =
dy

dx
= −x

y

a+ b− c2

c2
.

Let (x, x−
√
a+ b) be the points on the null line x− y =

√
a+ b through F1. Therefore

x2

c2
+

(x−
√
a+ b)2

a+ b− c2
= 1

(a+ b− c2)x2 + c2(x2 + (a+ b)− 2x
√
a+ b) = c2(a+ b− c2)

(a+ b)x2 − 2xc2
√
a+ b+ c4 = 0 Therefore

(c2 − x
√
a+ b)2 = 0 i.e.

c2 = x
√
a+ b.

Hence the slope

dy

dx
= − c2√

a+ b

1
c2√
a+b
−
√
a+ b

a+ b− c2

c2

dy

dx
= − c2√

a+ b

√
a+ b

c2 − (a+ b)

a+ b− c2

c2

dy

dx
= 1.

The slope of the ellipse (1.8) where 0 < c <
√
a+ b equals that of the null line at their

intersection point. We conclude that the null line is tangent to the ellipse at that point.

Let (x,−x−
√
a+ b) be the points on the null line x+y = −

√
a+ b through F2. Therefore

x2

c2
+

(x+
√
a+ b)2

a+ b− c2
= 1

(a+ b− c2)x2 + c2(x2 + (a+ b) + 2x
√
a+ b) = c2(a+ b− c2)

(a+ b)x2 + 2xc2
√
a+ b+ c4 = 0 Therefore

(c2 + x
√
a+ b)2 = 0 i.e.

c2 = −x
√
a+ b.
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Hence the slope

dy

dx
=

c2√
a+ b

1
c2√
a+b
−
√
a+ b

a+ b− c2

c2

dy

dx
=

c2√
a+ b

√
a+ b

c2 − (a+ b)

a+ b− c2

c2

dy

dx
= −1.

The slope of the ellipse (1.8) where 0 < c <
√
a+ b equals that of the null line at their

intersection point. We conclude that the null line is tangent to the ellipse at that point.

Tangency with the other null lines through the foci follows by symmetry in the axes. The

case of the geometric hyperbolas (1.8) where c >
√
a+ b follows similarly.

Corollary 1.7.1. [10] The relativistic foci of any conic are located at the intersections of

the tangent null lines.

One can pass from relativistic ellipse (1.6) to a hyperbola by analytic continuation. more

precisely, the following is true:

Theorem 1.7.2. [10] On the geometrical ellipses (1.8) where 0 < c <
√
a+ b, the segments

where the slope is less than 45◦ are relativistic ellipses; those having a slope of more than

45◦ are relativistic hyperbola. On the geometrical hyperbolas (1.8) where c >
√
a+ b, the

reverse is true.

The above facts are graphically depicted in the following Figure 1.4 in which the solid lines

represent the relativistic ellipses and the dotted lines represent the relativistic hyperbolas.

From Figure 1.4, and applying Theorem 1.7.1, one has the following summary:

• For 0 < c <
√
a+ b : the relativistic conics lie on the ellipse Coa−c2 which consists of

four arcs by touching points with the common four tangent null lines. The relativistic

ellipse is the union of the two arcs intersecting the y-axis while the relativistic hyperbola

is the union of the other two arcs.
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Figure 1.4: Family of confocal conics in the Minkowski plane. Solid lines represent relativistic
ellipses, and dashed ones relativistic hyperbolas.

• For c >
√
a+ b : the relativistic conics lie on the hyperbolas Coa−c2 with the x-axis as

the major axis. Each branch of the hyperbola is split into three arcs by touching points

with common tangent null lines. Thus, the relativistic ellipse is the union of the two

finite arcs, while the relativistic hyperbola is the union of the four infinite arcs.

• For c ∈ iR+ : the relativistic conics lie on the hyperbola Coa−c2 with the y-axis as the

major axis. Each branch is split into three arcs by touching points with the common

tangent null lines. The relativistic ellipse is the union of the four infinite arcs while the

relativistic hyperbola is the union of the other two finite arcs.
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Figure 1.5: Minkowski plane divided into 9 regions by the four tangent lines to each conics.

Remark 1.7.1. In Figure 1.5, every point in the regions (5), (6), (7), (8) and (9) is an

intersection of two distinct non-degenerate conics from the family (1.5) while every points in

(1), (2), (3) and (4) is either an intersection of two imaginary conics or degenerates conics .

Let us check the above results.

Proof. We consider the following family

x2

a− λ
+

y2

b+ λ
= 1, λ ∈ R, a > 0, b > 0.

It follows that:

x2(b+ λ) + y2(a− λ) = (a− λ)(b+ λ)

λ2 + (x2 − y2 + b− a)λ+ bx2 + ay2 − ab = 0.
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The discriminant is

∆ = (x2 − y2 + b− a)2 − 4(bx2 + ay2 − ab)

= x4 + y4 + (a+ b)2 − 2(a+ b)x2 − 2(a+ b)y2 − 2x2y2

=


(x2 − a− b)2 + y4 − 2(a+ b)y2 − 2x2y2

or

(y2 − a− b)2 + x4 − 2(a+ b)x2 − 2x2y2

=


(x2 − y2 − a− b)2 − 4(a+ b)y2,

or

(y2 − x2 − a− b)2 − 4(a+ b)x2.

Let (x, y) be in region (1) then 
y > x−

√
a+ b,

y > −x+
√
a+ b,

y < x+
√
a+ b.

case 1: 0 < x <
√
a+ b

−x+
√
a+ b < y < x+

√
a+ b

(−x+
√
a+ b)2 < y2 < (x+

√
a+ b)2

(−x+
√
a+ b)2 − (x2 + a+ b) < y2 − (x2 + a+ b) < (x+

√
a+ b)2 − (x2 + a+ b)

−2
√
a+ bx < y2 − (x2 + a+ b) < 2

√
a+ bx

| y2 − (x2 + a+ b) | < 2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,

that is ∆ < 0.

case 2:
√
a+ b < x i.e. x−

√
a+ b > 0 and x+

√
a+ b > 0
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we have

x−
√
a+ b < y < x+

√
a+ b

(x−
√
a+ b)2 < y2 < (x+

√
a+ b)2

−2
√
a+ bx < y2 − (x2 + a+ b) < 2

√
a+ bx

| y2 − (x2 + a+ b) | < 2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,

that is ∆ < 0,

hence ∀(x, y) ∈ (1), ∆ < 0.

Let (x, y) be in region (2) then


y < x−

√
a+ b,

y > −x−
√
a+ b,

y > x+
√
a+ b.

case 1: −
√
a+ b < x < 0 i.e. −x+

√
a+ b > 0 and x+

√
a+ b > 0.

x+
√
a+ b < y < −x+

√
a+ b

(x+
√
a+ b)2 < y2 < (−x+

√
a+ b)2

2
√
a+ bx < y2 − (x2 + a+ b) < −2

√
a+ bx

| y2 − (x2 + a+ b) | < −2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,
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that is ∆ < 0.

case 2: x < −
√
a+ b we have

−x−
√
a+ b < y < −x+

√
a+ b

(−x−
√
a+ b)2 < y2 < (−x+

√
a+ b)2

2
√
a+ bx < y2 − (x2 + a+ b) < −2

√
a+ bx

| y2 − (x2 + a+ b) | < −2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,

that is ∆ < 0.

hence ∀(x, y) ∈ (2), ∆ < 0.

Let (x, y) be in region (3) then


y < x+

√
a+ b,

y < −x−
√
a+ b,

y > x−
√
a+ b.

case 1: −
√
a+ b < x < 0, y < x+

√
a+ b always holds since y < 0.

x−
√
a+ b < y < −x−

√
a+ b

(x+
√
a+ b)2 < y2 < (x−

√
a+ b)2

2
√
a+ bx < y2 − (x2 + a+ b) < −2

√
a+ bx

| y2 − (x2 + a+ b) | < −2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,
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that is ∆ < 0.

case 2: x < −
√
a+ b, y < −x−

√
a+ b always holds we have

x−
√
a+ b < y < x+

√
a+ b

(x+
√
a+ b)2 < y2 < (x+

√
a+ b)2

2
√
a+ bx < y2 − (x2 + a+ b) < −2

√
a+ bx

| y2 − (x2 + a+ b) | < −2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,

that is ∆ < 0.

hence ∀(x, y) ∈ (3), ∆ < 0.

Let (x, y) be in region (4) then


y < x−

√
a+ b,

y < −x−
√
a+ b,

y > −x−
√
a+ b.

case 1: 0 < x <
√
a+ b, y < −x+

√
a+ b always holds

−x−
√
a+ b < y < x−

√
a+ b

(x−
√
a+ b)2 < y2 < (x+

√
a+ b)2

−2
√
a+ bx < y2 − (x2 + a+ b) < 2

√
a+ bx

| y2 − (x2 + a+ b) | < 2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,
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that is ∆ < 0.

case 2: >
√
a+ b we have

−x−
√
a+ b < y < −x+

√
a+ b

(x−
√
a+ b)2 < y2 < (x+

√
a+ b)2

−2
√
a+ bx < y2 − (x2 + a+ b) < 2

√
a+ bx

| y2 − (x2 + a+ b) | < 2
√
a+ bx

(y2 − (x2 + a+ b))2 < 4(a+ b)x2,

that is ∆ < 0.

hence ∀(x, y) ∈ (4), ∆ < 0.

Let (x, y) be in region (5) then
y < x−

√
a+ b,

y > −x+
√
a+ b,

x >
√
a+ b.

case 1: −x+
√
a+ b < y < 0 .

0 < y2 < (
√
a+ b− x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (−x+

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < −2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2 hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2,
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that is ∆ > 0.

case 2: 0 < y < x−
√
a+ b.

0 < y2 < (
√
a+ b− x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x−

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < −2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2 hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2,

that is ∆ > 0.

hence ∀(x, y) ∈ (5), ∆ > 0. Let (x, y) be in region (6) then
y > −x+

√
a+ b,

y > x+
√
a+ b,

y >
√
a+ b.

| x | < y −
√
a+ b

(| x | +
√
a+ b)2 < y2

(| x | +
√
a+ b)2 − (x2 + a+ b) < y2 − (x2 + a+ b)

2
√
a+ b | x | < y2 − (x2 + a+ b)

0 < (y2 − (x2 + a+ b))2 − 4(a+ b)x2,

that is ∆ > 0.

hence ∀(x, y) ∈ (6), ∆ > 0.

Similarly Let (x, y) be in region (8) then
y < −x−

√
a+ b,

y < x−
√
a+ b,

y < −
√
a+ b.
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| x | < −y −
√
a+ b

x2 < (y +
√
a+ b)2

x2 − (y2 +
√
a+ b) < (y +

√
a+ b)2 − (y2 +

√
a+ b)

x2 − (y2 +
√
a+ b) < 2

√
a+ by

x2 − (y2 +
√
a+ b) < 4y2(a+ b),

that is ∆ > 0.

hence ∀(x, y) ∈ (8), ∆ > 0.

Let (x, y) be in region (7) then


y < −x−

√
a+ b,

y > x+
√
a+ b,

x < −
√
a+ b.

case 1: x+
√
a+ b < y < 0.

0 < y2 < (
√
a+ b+ x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x+

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < 2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2, hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2,
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that is ∆ > 0.

case 2: 0 < y < −x−
√
a+ b.

0 < y2 < (
√
a+ b+ x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x+

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < 2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2, hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2,

that is ∆ > 0.

hence ∀(x, y) ∈ (7), ∆ > 0.

Let (x, y) be in region (9)

case 1: 
y < x+

√
a+ b,

y > −x−
√
a+ b,

−
√
a+ b < x < 0.

Subcase 1:

−x−
√
a+ b < y < 0

0 < y2 < (
√
a+ b+ x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x+

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < 2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2, hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2,
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Subcase 2:

0 < y < x+
√
a+ b

0 < y2 < (
√
a+ b+ x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x+

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < 2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2, hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2,

case 2: 
y < −x+

√
a+ b,

y > x−
√
a+ b,

0 < x <
√
a+ b.

Subcase 1:

x−
√
a+ b < y < 0

0 < y2 < (−
√
a+ b+ x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x−

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < −2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2, hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2.
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Subcase 2:

0 < y < −x+
√
a+ b

0 < y2 < (
√
a+ b− x)2

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < (x−

√
a+ b)2 − (x2 +

√
a+ b)

−(x2 +
√
a+ b) < y2 − (x2 +

√
a+ b) < −2

√
a+ b

4(a+ b)x2 < (y2 − (x2 +
√
a+ b))2 < (x2 + a+ b)2, hence

0 < (y2 − (x2 +
√
a+ b))2 − 4(a+ b)x2.

Whence the confirmation of Remark 1.7.1.

Remark 1.7.2. We observed that all relativistic ellipses are disjoint from each other as well

as all relativistic hyperbolas. Moreover, at the intersection point between a relativistic ellipse

that is part of the geometric conic Coλ1 from the family (1.5) and a relativistic hyperbola

that is part of the geometric conic Coλ2 from the family (1.5), λ1 < λ2 always holds, since

Coλ1 always traces the interval (−b, 0) and Coλ2 traces the interval (0, a) .

The above remark serves as a motivation for the introduction of relativistic types of

quadrics in higher dimensional pseudo-Euclidean spaces.

The quadrics in three dimensional Minkowski space is completely studied in [23] by V.

Dragović and M. Radnović. The Thesis focuses on the study of the two and four dimensional

Minkowski spaces in chapter two and three respectively. The most interesting thing about

the four dimensional Minkowski space is that, it has two signatures, (3, 1) and (2, 2). The

space with signature (3, 1) is fundamentally related to the study of relativity theory while

the space with signature (2, 2) has some good mathematical results.
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CHAPTER 2

PERIODIC BILLIARDS WITHIN CONICS IN THE MINKOWSKI PLANE

AND AKHIEZER AND ZOLOTAREV POLYNOMIALS.

This chapter is extracted from the following two submitted manuscripts: Anani Komla

Adabrah, Vladimir Dragović and Milena Radnović for the Proceedings of the International

Conference “ Scientific Heritage of Sergey A. Chaplygin: nonholonomic mechanics, vortex

structures and hydrodynamics”, June 2-6, 2019, I. N. Ulianov Chuvash State University,

Cheboksary, Russia, and Anani Komla Adabrah, Vladimir Dragović and Milena Radnović,

Periodic billiards within conics in the Minkowski plane and Akhiezer categories: ”math.AG,

...nlin.SI”, ”42 pages, 22 figures, 1 table” and ”arXiv:1906.04911”.

Introduction

Billiards within quadrics in pseudo-Euclidean spaces were studied in [33, 23, 24]. In [25, 26],

the relationship between the billiards within quadrics in the Euclidean spaces and extremal

polynomials has been studied. The aim of this chapter is to develop the connection between

extremal polynomials and billiards in the Minkowski plane.

Apart from similarities with previously studied Euclidean space, see [26], there are also

significant differences: for example, among the obtained extremal polynomials are such with

winding numbers (3, 1), which was never the case in the Euclidean setting.

Confocal conics

We recall the following:

E :
x2

a
+

y2

b
= 1, (2.1)

is an ellipse in the plane, with a, b being fixed positive numbers and the associated family of

confocal conics is

Cλ :
x2

a− λ
+

y2

b+ λ
= 1, λ ∈ R. (2.2)
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The family is shown on Figure 2.1. We may distinguish the following three subfamilies in

Figure 2.1: Family of confocal conics in the Minkowski plane.

the family Cλ:

• for λ ∈ (−b, a), conic Cλ is an ellipse;

• for λ < −b, conic Cλ is a hyperbola with x-axis as the major one;

• for λ > a, it is a hyperbola again, but now its major axis is y-axis.

In addition, there are three degenerated quadrics: Ca, Cb, C∞ corresponding to y-axis,

x-axis, and the line at the infinity respectively.

Each point inside the ellipse E has elliptic coordinates (λ1, λ2), such that −b < λ1 < 0 <

λ2 < a.

The differential equation of the lines touching a given conic Cγ is:

dλ1√
(a− λ1)(b+ λ1)(γ − λ1)

+
dλ2√

(a− λ2)(b+ λ2)(γ − λ2)
= 0. (2.3)

32



2.1 Periodic trajectories

Section 2.1–2.6 deal with the trajectories with non-degenerate caustic Cγ, which will mean

that γ ∈ R\{−b, a}. Such trajectories are either space-like or time-like. The case of light-like

trajectories, which correspond to the degenerate caustic C∞ is considered separately, in

Section 2.7.

The periodic trajectories of elliptical billiards in the Minkowski plane can be characterized

in algebro-geometric terms using the underlying elliptic curve:

Theorem 2.1.1. The billiard trajectories within E with caustic Cγ are n-periodic if and only

if nQ0 ∼ nQγ on the elliptic curve:

C : y2 = ε(a− x)(b+ x)(γ − x), (2.4)

with Q0 being a point of C corresponding to x = 0, and Qγ the point corresponding to x = γ,

and ε = sign γ.

Proof. Along a billiard trajectory within E with caustic Cγ, the elliptic coordinate λ1 traces

the segment [b0, 0], and λ2 the segment [0, b1], where b0 is the largest negative and b1 the

smallest positive member of the set {a,−b, γ}.

Case 1. If Cγ is an ellipse and γ < 0, then b0 = γ, b1 = a. The coordinate λ1 takes value

λ1 = γ at the touching points with the caustic and value λ1 = 0 at the reflection points off

the arcs of E where the restricted metric is time-like. On the other hand, λ2 takes value

λ2 = a at the intersections with y-axis, and λ2 = 0 at the reflection points off the arcs of E

where the restricted metric is space-like.

Case 2. If Cγ is an ellipse and γ > 0, then b0 = −b, b1 = γ. The coordinate λ1 takes value

λ1 = −b at the intersections with x-axis and value λ1 = 0 at the reflection points off the arcs

of E where the restricted metric is time-like. On the other hand, λ2 takes value λ2 = γ at
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the touching points with the caustic, and λ2 = 0 at the reflection points off the arcs of E

where the restrictes metric is space-like.

Case 3. If Cγ is a hyperbola, then b0 = −b, b1 = a. The coordinate λ1 takes value λ1 = −b

at the intersections with x-axis and value λ1 = 0 at the reflection points off the arcs of E

where the restricted metric is time-like. On the other hand, λ2 takes value λ2 = a at the

intersections with y-axis, and λ2 = 0 at the reflection points off the arcs of E where the

restricted metric is space-like.

In each case, the elliptic coordinates change monotonously between their extreme values.

Consider an n-periodic billiard trajectory and denote by n1 the number of reflections off

time-like arcs and n2 the number of reflections off space-like ones, n1 + n2 = n. Integrating

(2.3) along the trajectory, we get:

n1

∫ 0

b0

dλ1√
ε(a− λ1)(b+ λ1)(γ − λ1)

+ n2

∫ 0

b1

dλ2√
ε(a− λ2)(b+ λ2)(γ − λ2)

= 0, (2.5)

i.e.

n1(Q0 −Qc1) + n2(Q0 −Qb1) ∼ 0.

In Case 1, this is equivalent to

n1(Q0 −Qγ) + n2(Q0 −Qa) ∼ n(Q0 −Qγ),

since a closed trajectory crosses the y-axis even number of times, i.e n2 must be even, and

2Qa ∼ 2Qγ.

Similarly, in Case 2, it follows since n1 is even, and in Case 3 both n1 and n2 need to be

even.

From the proof of Theorem 2.1.1, we have:

Corollary 2.1.1. The period of a closed trajectory with a hyperbola as caustic is even.
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Theorem 2.1.2. The billiard trajectories within E with caustic Cγ are n-periodic if and only

if:

C2 = 0,

∣∣∣∣∣∣∣
C2 C3

C3 C4

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
C2 C3 C4

C3 C4 C5

C4 C5 C6

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 3, 5, 7, . . .

B3 = 0,

∣∣∣∣∣∣∣
B3 B4

B4 B5

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
B3 B4 B5

B4 B5 B6

B5 B6 B7

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 4, 6, 8, . . . .

Here, we denoted:

√
ε(a− x)(b+ x)(γ − x) = B0 +B1x+B2x

2 + . . . ,√
ε(a− x)(b+ x)(γ − x)

γ − x
= C0 + C1x+ C2x

2 + . . . ,

the Taylor expansions around x = 0.

Proof. Denote by Q∞ the point of C (2.4) corresponding to x =∞ and notice that

2Qγ ∼ 2Q∞. (2.6)

Consider first n even. Because of (2.6), the condition nQ0 ∼ nQγ is equivalent to

nQ0 ∼ nQ∞, which is equivalent to the existence of a meromorphic function of C with the

unique pole at Q∞ and unique zero at Q0, such that the pole and the zero are both of the

multiplicity n. The basis of L (nQ∞) is:

1, x, x2, . . . , xn/2, y, xy, xn/2−2y, (2.7)
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thus a non-trivial linear combination of those functions with a zero of order n at x = 0 exists

if and only if: ∣∣∣∣∣∣∣∣∣∣∣∣∣

Bn/2+1 Bn/2 . . . B3

Bn/2+2 Bn/2+1 . . . B4

. . .

Bn−1 Bn . . . Bn/2+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Now, suppose n is odd. Because of (2.6), the condition nQ0 ∼ nQγ is equivalent to

nQ0 ∼ (n− 1)Q∞ +Qγ , which is equivalent to the existence of a meromorphic function of C

with only two poles: of order n− 1 at Q∞ and a simple pole at Qγ, and unique zero at Q0.

The basis L ((n− 1)Q∞ +Qγ) is:

1, x, x2, . . . , x(n−1)/2,
y

γ − x
,
xy

γ − x
, . . . ,

x(n−1)/2−1y

γ − x
, (2.8)

thus a non-trivial linear combination of those functions with a zero of order n at x = 0 exists

if and only if: ∣∣∣∣∣∣∣∣∣∣∣∣∣

C(n−1)/2+1 C(n−1)/2 . . . C2

C(n−1)/2+2 C(n−1)/2+1 . . . C3

. . .

Cn−1 Cn . . . C(n−1)/2+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

2.2 Examples of periodic trajectories with small periods: 3 ≤ n ≤ 10

3-periodic trajectories

There is a 3-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cλ0
in the Minkowski plane if and only if

• the caustic is an ellipse, i.e. λ0 ∈ (−b, a); and
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• C2 = 0.

We solve the equation

C2 =
3a2b2 + 2a2bλ0 − a2λ20 − 2ab2λ0 − 2abλ20 − b2λ20

8(ab)
3
2λ

5
2
0

= 0, (2.9)

which yields the following two solutions for the parameter λ0 for the caustic:

λ01 =
ab

(a+ b)2
(a− b+ 2

√
a2 + ab+ b2). (2.10)

λ02 = − ab

(a+ b)2
(−a+ b+ 2

√
a2 + ab+ b2). (2.11)

Notice that both caustics Cλ02 and Cλ01 are ellipses since −b < λ02 < 0 < λ01 < a.

Two examples of a 3-periodic trajectories are shown in Figure 2.2.

Figure 2.2: A 3-periodic trajectory with an ellipse along the y-axis as caustic (a = 3, b = 2,
γ ≈ 2.332) is shown on the left, while another trajectory with an ellipse along the x-axis as
caustic (a = 7, b = 5, γ ≈ −4.589) is on the right.

4-periodic trajectories

There is a 4-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cλ0
in the Minkowski plane if and only if B3 = 0. We solve the equation

B3 = −(ab+ aλ0 + bλ0)(ab+ aλ0 − bλ0)(ab− aλ0 − bλ0)
16(abλ0)

5
2

= 0, (2.12)
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which yields the following solutions for the parameter λ0 for the caustic

λ01 = − ab

a+ b
, λ02 = − ab

a− b
, λ03 =

ab

a+ b
. (2.13)

Since λ01, λ03 ∈ (−b, a) and λ02 /∈ (−b, a), therefore conic Cλ02 is a hyperbola whereas conics

Cλ01 and Cλ03 are ellipses.

In Figure 2.3 and Figure 2.4, examples of a 4-periodic trajectories with each type of

caustic are shown.

Figure 2.3: A 4-periodic trajectory with an ellipse along the y-axis as caustic (a = 2, b = 4,
γ = 4/3) is shown on the left, while another trajectory with an ellipse along the x-axis as
caustic (a = 9, b = 3, γ = −9/4) is on the right.

Figure 2.4: A 4-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3,
γ = −15/2.
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5-periodic trajectories

There is a 5-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cλ0
in the Minkowski plane if and only if

• the caustic is an ellipse, i.e. λ0 ∈ (−b, a); and

• C2C4 − C2
3 = 0.

We computed

C2C4 − C2
3 =

2−10

a5b5λ70

(
(a+ b)6 λ60 − 2ab (−b+ a) (−3b+ a) (−b+ 3a) (a+ b)2 λ50

− a2b2
(
29a2 − 54ab+ 29b2

)
(a+ b)2 λ40 − 36a3b3 (−b+ a) (a+ b)2 λ30

− a4b4
(
9a2 + 34ab+ 9b2

)
λ20 + 10a5b5 (−b+ a)λ0 + 5a6b6

)
.

(2.14)

Examples of a 5-periodic billiard trajectories are shown in Figure 2.5 and Figure 2.6.

Figure 2.5: A 5-periodic trajectories with an ellipse along the y-axis as caustic. On the left,
the particle is bouncing 4 times off the relativistic ellipse and once off relativistic hyperbola
(a = 5, b = 2, γ ≈ 4.7375), while on the right the billiard particle is reflected twice off
relativistic ellipse and 3 times off relativistic hyperbola (a = 6, b = 4, γ ≈ 1.4205).
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Figure 2.6: A 5-periodic trajectories with an ellipse along the x-axis as caustic. On the left,
the particle is bouncing once off the relativistic ellipse and 4 times off relativistic hyperbola
(a = 6, b = 4, γ ≈ −3.9947), while on the right the billiard particle is reflected twice off
relativistic hyperbola and 3 times off relativistic ellipse (a = 6, b = 4, γ ≈ −1.5413).

6-periodic trajectories

There is a 6-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cλ0
in the Minkowski plane if and only if B3B5 −B2

4 = 0.

We computed

B3B5 −B2
4 =

2−14

a7b7λ7

(
− (a+ b)2λ20 + 2ab(a− b)λ0 + 3a2b2

)
×
(
(a+ b)(a− 3b)λ20 + 2ab(a+ b)λ0 + a2b2

)(
(a+ b)2λ20 + 2ab(a− b)λ0 + a2b2

)
×
(
− (a+ b)(3a− b)λ20 − 2ab(a+ b)λ0 + a2b2

)
.

(2.15)

Let us consider the condition

−(a+ b)2λ20 + 2ab(a− b)λ0.+ 3a2b2 = 0

This produces 3-periodic trajectories as already studied previously.
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The discriminant of the third factor (a+ b)2λ20 + 2ab(a− b)λ0 + a2b2 is −16a3b3 which is

negative, the expression has therefore no real roots in λ0.

Next, we consider

(a+ b)(a− 3b)λ20 + 2ab(a+ b)λ0 + a2b2 = 0,

the above equation has two real solutions which are

λ0 =
ab

(a+ b)(a− 3b)

(
− a− b± 2

√
ab+ b2

)
.

Finally we consider

−(a+ b)(3a− b)λ20 − 2ab(a+ b)λ0 + a2b2 = 0,

it has two real solutions

λ0 =
ab

(a+ b)(3a− b)

(
− a− b± 2

√
ab+ a2

)
.

An example of a 6-periodic trajectory with a hyperbola as caustic is shown in Figure 2.7.

Figure 2.7: A 6-periodic trajectory with a hyperbola along the x-axis as caustic (a = 5, b = 3,
γ ≈ −3.2264 is shown on the left, while another trajectory with a hyperbola along the y-axis
as caustic (a = 3, b = 7 and γ ≈ 3.1189) is on the right. On the left, the particle bounces
off the relativistic ellipse twice and 4 times the relativistic hyperbola while on the right the
particle bounces off the relativistic ellipse 4 times and the relativistic hyperbola twice.
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7-periodic trajectories

There is a 7-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cλ0
in the Minkowski plane if and only if

• the caustic is an ellipse, i.e. λ0 ∈ (−b, a); and

• ∣∣∣∣∣∣∣∣∣∣
C2 C3 C4

C3 C4 C5

C4 C5 C6

∣∣∣∣∣∣∣∣∣∣
= 0

.

We computed∣∣∣∣∣∣∣∣∣∣
C2 C3 C4

C3 C4 C5

C4 C5 C6

∣∣∣∣∣∣∣∣∣∣
=

1

(ab)2
21 21

2 λ
27
2
0

(
− (a+ b)12 λ120 + 4ab (a− b) (−3b+ a) (−b+ 3a)

(
a2 − 6ab+ b2

)
(a+ b)6 λ0

11 + 2a2b2
(
59a4 − 332a3b+ 626a2b2 − 332ab3 + 59b4

)
(a+ b)6 λ0

10

+ 28a3b3 (a− b)
(
13a2 − 38ab+ 13b2

)
(a+ b)6 λ0

9

+ a4b4
(
7a2 + 30ab+ 7b2

) (
63a4 − 84a3b− 38a2b2 − 84ab3 + 63b4

)
(a+ b)2 λ0

8 − 8a5b5 (a− b)
(
21a4 − 420a3b− 50a2b2 − 420ab3 + 21b4

)
(a+ b)2 λ0

7

− 12a6b6
(
105a4 − 420a3b+ 422a2b2 − 420ab3 + 105b4

)
(a+ b)2 λ0

6

− 24a7b7 (a− b)
(
75a2 − 106ab+ 75b2

)
(a+ b)2 λ0

5

− 3a8b8
(
437a2 − 726ab+ 437b2

)
(a+ b)2 λ0

4

− 4a9b9 (a− b)
(
121a2 + 250ab+ 121b2

)
λ0

3 − 14a10b10
(
3a2 + 14ab+ 3b2

)
λ0

2

+ 28a11b11 (a− b)λ+ 7a12b12
)
.

(2.16)
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Examples of a 7-periodic trajectories are shown in Figure 2.8.

Figure 2.8: A 7-periodic trajectory with an ellipse along the x-axis as caustic (a = 3, b = 7,
γ ≈ −6.9712) is shown on the left, while another trajectory with an ellipse along the y-axis
as caustic (a = 7, b = 3 and γ ≈ 6.9712) is on the right. On the left, the particle bounces
once off the relativistic ellipse and 6 times off the relativistic hyperbola while on the right
the particle bounces 6 times off the relativistic ellipse and once off the relativistic hyperbola.

8-periodic trajectories

There is an 8-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic

Cλ0 in the Minkowski plane if and only if∣∣∣∣∣∣∣∣∣∣
B3 B4 B5

B4 B5 B6

B5 B6 B7

∣∣∣∣∣∣∣∣∣∣
= 0,

We calculate
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∣∣∣∣∣∣∣∣∣∣
B3 B4 B5

B4 B5 B6

B5 B6 B7

∣∣∣∣∣∣∣∣∣∣
=

− 1

(225abλ0)
27
2

(ab− aλ0 − bλ0) (ab+ aλ0 + bλ0) (ab+ aλ0 − bλ0)(
(a+ b)4 λ0

4 − 4ab (a+ b) (−b+ a)2 λ0
3 − 2a2b2 (a+ b) (5a− 3b)λ0

2−

4a3b3 (a+ b)λ0 + a4b4
)(

(a+ b)4 λ0
4 + 4ab (a+ b) (−b+ a)2 λ0

3+

2a2b2 (a+ b) (3a− 5b)λ0
2 + 4a3b3 (a+ b)λ0 + a4b4

)( (
a2 − 6ab+ b2

)
(a+ b)2 λ0

4+

4ab (−b+ a) (a+ b)2 λ0
3 + 2a2b2

(
3a2 + 2ab+ 3b2

)
λ0

2 + 4a3b3 (−b+ a)λ0 + a4b4
)
.

(2.17)

In Figure 2.9 and Figure 2.10, three examples of an 8-periodic trajectories are shown.

Figure 2.9: On the left, an 8-periodic trajectory with a hyperbola along x-axis as caustic
(a = 6, b = 3, γ ≈ −3.0151), with 2 vertices on relativistic ellipses and 6 on relativistic
hyperbolas. On the right, an 8-periodic trajectory with a hyperbola along y-axis as caustic
(a = 6, b = 3, γ ≈ 6.9168), with 6 vertices on relativistic ellipses and 2 on relativistic
hyperbolas.
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Figure 2.10: An 8-periodic trajectory with an ellipse along y-axis as caustic. There are 2
reflections off relativistic hyperbola and 6 off relativistic ellipses. (a = 6, b = 3, γ ≈ 5.3707).

9-periodic trajectories

There is a 9-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic Cλ0
in the Minkowski plane if and only if

• the caustic is an ellipse, i.e. λ0 ∈ (−b, a); and

• ∣∣∣∣∣∣∣∣∣∣∣∣∣

C2 C3 C4 C5

C3 C4 C5 C6

C4 C5 C6 C7

C5 C6 C7 C8

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

.
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We computed∣∣∣∣∣∣∣∣∣∣∣∣∣

C2 C3 C4 C5

C3 C4 C5 C6

C4 C5 C6 C7

C5 C6 C7 C8

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

236(ab)18λ22
×
(

(a+ b)20λ20 − 4 ab(−b+ a)(a2 − 6 ab+ b2)(5 a2−

10 ab+ b2)(a2 − 10 ab+ 5 b2)(a+ b)12λ19 − 6 a2b2(55 a6 − 622 a5b+ 2521 a4b2

− 3844 a3b3 + 2521 a2b4 − 622 ab5 + 55 b6)(a+ b)12λ18 − 4 a3b3(−b+ a)(457 a4

− 3420 a3b+ 6838 a2b2 − 3420 ab3 + 457 b4)(a+ b)12λ17 − a4b4(4555 a10+

7790 a9b− 98897 a8b2 + 31528 a7b3 − 152698 a6b4 + 475860 a5b5 − 152698 a4b6+

31528 a3b7 − 98897 a2b8 + 7790 ab9 + 4555 b10)(a+ b)6λ16−

48 a5b5(−b+ a)(11 a8 + 2160 a7b− 5980 a6b2 + 9040 a5b3 − 23006 a4b4+

9040 a3b5 − 5980 a2b6 + 2160 ab7 + 11 b8)(a+ b)6λ15 + 8 a6b6(4265 a8−

50720 a7b+ 164204 a6b2 − 355488 a5b3 + 497238 a4b4 − 355488 a3b5+

164204 a2b6 − 50720 ab7 + 4265 b8)(a+ b)6λ14 + 16 a7b7(−b+ a)(7855 a6−

53094 a5b+ 131265 a4b2 − 207444 a3b3 + 131265 a2b4 − 53094 ab5+

7855 b6)(a+ b)6λ13 + 18 a8b8(14417 a6 − 89050 a5b+ 236351 a4b2 − 332076 a3b3+

236351 a2b4 − 89050 ab5 + 14417 b6)(a+ b)6λ12 + 8 a9b9(−b+ a)(44525 a8−

5200 a7b− 168100 a6b2 + 112400 a5b3 + 445166 a4b4 + 112400 a3b5−

168100 a2b6 − 5200 ab7 + 44525 b8)(a+ b)2λ11 + 4 a10b10(82225 a8−

Ctn on next page.

(2.18)
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Ctn from previous page

407700 a6b2 + 138432 a5b3 + 616518 a4b4 + 138432 a3b5 − 407700 a2b6+

82225 b8)(a+ b)2λ10 + 24 a11b11(−b+ a)(7475 a6 + 24050 a5b− 29827 a4b2−

39556 a3b3 − 29827 a2b4 + 24050 ab5 + 7475 b6)(a+ b)2λ9 + 2 a12b12(4225 a6+

282438 a5b− 404721 a4b2 + 118932 a3b3 − 404721 a2b4 + 282438 ab5+

4225 b6)(a+ b)2λ8 − 16 a13b13(−b+ a)(5269a4 − 24260a3b+ 8110a2b2−

24260ab3 + 5269b4)(a+ b)2λ7 − 24a14b14(3565a4 − 11220a3b+ 12318a2b2−

11220ab3 + 3565b4)(a+ b)2λ6 − 16a15b15(−b+ a)(2957a2 − 3622ab+

2957b2) (a+ b)2 λ5 − a16b16(16115a4 + 6220a3b− 20046a2b2 + 6220ab3+

16115b4)λ4 − 36a17b17(−b+ a)(85a2 + 178ab+ 85b2)λ3 − 6a18b18(23a2+

118ab+ 23b2)λ2 + 60a19b19(−b+ a)λ+ 9a20b20
)
.

Examples of a 9-periodic trajectories are shown in Figure 2.11.

Figure 2.11: A 9-periodic trajectory with an ellipse along the x-axis as caustic (a = 5, b = 2
and λ0 ≈ −1.1777) is shown on the left, while another trajectory with an ellipse along the
y-axis as caustic (a = 7, b = 4 and λ0 ≈ 1.9097) is on the right.
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10-periodic trajectory

There is a 10-periodic trajectory of the billiard within (2.1), with a non-degenerate caustic

Cλ0 in the Minkowski plane if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣

B3 B4 B5 B6

B4 B5 B6 B7

B5 B6 B7 B8

B6 B7 B8 B9

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

We computed∣∣∣∣∣∣∣∣∣∣∣∣∣

B3 B4 B5 B6

B4 B5 B6 B7

B5 B6 B7 B8

B6 B7 B8 B9

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

244(abλ0)22

(
(a+ b)6 λ60 − 2ab (−b+ a) (−3b+ a) (−b+ 3a)

(a+ b)2 λ5 − a2b2
(
29a2 − 54ab+ 29b2

)
(a+ b)2 λ0

4 − 36a3b3 (−b+ a) (a+ b)2

λ0
3 − a4b4

(
9a2 + 34ab+ 9b2

)
λ0

2 + 10a5b5 (−b+ a)λ0 + 5a6b6
)

(
(a+ b)6 λ0

6 + 2ab (−b+ a) (−3b+ a) (−b+ 3a) (a+ b)2 λ0
5

+ 5a2b2 (−b+ 3a) (−3b+ a) (a+ b)2 λ0
4 + 20a3b3 (−b+ a) (a+ b)2 λ0

3

+ a4b4
(
15a2 + 14ab+ 15b2

)
λ0

2 + 6a5b5 (−b+ a)λ+ a6b6
)( (

a2 − 10ab+ 5b2
)

(a+ b)4 λ0
6 + 2ab (3a− 5b) (a+ b)4 λ0

5

+ a2b2 (a+ b)
(
15a3 + 5a2b+ 45ab2 − 9b3

)
λ0

4

Ctn on next page

(2.19)
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+ 4a3b3 (a+ b)
(
5a2 − 10ab+ 9b2

)
λ0

3 + a4b4 (a+ b) (15a− 29b)λ0
2

+ 6a5b5 (a+ b)λ0 + a6b6
)

( (
5a2 − 10ab+ b2

)
(a+ b)4 λ0

6 + 2ab (5a− 3b) (a+ b)4 λ0
5

− a2b2 (a+ b)
(
9 a3 − 45 a2b− 5ab2 − 15b3

)
λ4

− 4a3b3 (a+ b)
(
9a2 − 10ab+ 5b2

)
λ0

3 − a4b4 (a+ b) (29a− 15b)λ0
2

− 6a5b5 (a+ b)λ0 + a6b6
)
.

In Figure 2.12 and Figure 2.13, three examples of an 10-periodic trajectories are shown.

Figure 2.12: On the left, a 10-periodic trajectory with a hyperbola along the y-axis as caustic
(a = 8, b = 5 and λ0 ≈ 40.0965,). On the right, a 10-periodic trajectory with a hyperbola
along the x-axis as caustic (a = 8, b = 5 and λ0 = −6.4196).
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Figure 2.13: A 10-periodic trajectory with an ellipse along the x-axis as caustic (a = 8, b = 5
and λ0 = −4.1502).

2.2.1 Table of summary on number of touching points with relativistic ellipses

and hyperbolas

In the table below , N.O.R.O.R.E. and N.O.R.O.R.H. stand for the number of reflections off

relativistic ellipses and the number of reflections off relativistic hyperbolas respectively.
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Table 2.1: Table of summary on number of touching points with relativistic ellipses and

hyperbolas

Periodicity n = n1 + n2 Caustic of the trajectory n1 : N.O.R.O.R.E. n2 : N.O.R.O.R.H.

n=3

Ellipse along y-axis 2 1

Ellipse along x-axis 1 2

n=4

Ellipse along x-axis 2 2

Ellipse along y-axis 2 2

Hyperbola along x-axis 2 2

n=5

Ellipse along y-axis 2 3

Ellipse along x-axis 3 2

n=5

Ellipse along y-axis 4 1

Ellipse along x-axis 1 4

Continued on next page.
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Periodicity n = n1 + n2 Caustic of the trajectory n1 : N.O.R.O.R.E. n2 : N.O.R.O.R.H.

n=6

Hyperbola along x-axis 2 4

Hyperbola along y-axis 4 2

n=7

Ellipse along x-axis 1 6

Ellipse along y-axis 6 1

n=8

Hyperbola along x-axis 2 6

Hyperbola along y-axis 6 2

Ellipse along x-axis 6 2

n=9

Ellipse along x-axis 5 4

Ellipse along y-axis 4 5

n=10

Hyperbola along y-axis 6 4

Hyperbola along x-axis 4 6

Ellipse along x-axis 4 6
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2.2.2 Cayley-type conditions and discriminantly factorizable polynomials

Example 2.2.1. Let us denote the numerator in the expression (2.9) as G2(λ0, a, b):

G2(λ0, a, b) = − (a+ b)2 λ0
2 + 2 ab (a− b)λ0 + 3 a2b2

Let us find the discriminant of G2 with respect to λ0

Dλ0G2 = 24
(
a2 + ab+ b2

)
a2b2.

It follows that G2 is a discriminantly factorizable polynomial.

Example 2.2.2. Let us denote the numerator in the expression (2.12) as G3(λ0, a, b):

G3(λ0, a, b) = −(ab+ aλ0 + bλ0)(ab+ aλ0 − bλ0)(ab− aλ0 − bλ0)

= − (a+ b)2 (a− b)λ3 − ab (a+ b)2 λ2 + a2b2 (a− b)λ+ a3b3

Let us find the discriminant of G3 with respect to λ0

Dλ0G3 = 26 a8b8 (a+ b)2 .

It follows that G3 is a discriminantly factorizable polynomial.

Example 2.2.3. Let us denote the numerator in the expression (2.14) as G4(λ0, a, b):

G6(λ0, a, b) = (a+ b)6 λ60 − 2ab (−b+ a) (−3b+ a) (−b+ 3a) (a+ b)2 λ50

− a2b2
(
29a2 − 54ab+ 29b2

)
(a+ b)2 λ40 − 36a3b3 (−b+ a) (a+ b)2 λ30

− a4b4
(
9a2 + 34ab+ 9b2

)
λ20 + 10a5b5 (−b+ a)λ0 + 5a6b6.

Let us find the discriminant of G6 with respect to λ0

Dλ0G6 = −5(2)44 (27 a6 + 81 a5b+ 322 a4b2 + 509 a3b3 + 322 a2b4

+ 81 ab5 + 27 b6) (a+ b)8 b38a38.

It follows that G3 is a discriminantly factorizable polynomial.
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Example 2.2.4. Let us denote the numerator in the expression (2.15) as G8(λ0, a, b):

G8(λ0, a, b) =

(3 a− b)(a− 3 b)(a+ b)6λ8 + 8 ab(a− b)(a+ b)6λ7 − 4 a2b2(3 a4 − 24 a3b+ 10 a2b2

− 24 ab3 + 3 b4) (a+ b)2 λ6 − 8 a3b3 (a− b)
(
9 a2 − 14 ab+ 9 b2

)
(a+ b)2 λ5

− 10 a4b4
(
11 a2 − 18 ab+ 11 b2

)
(a+ b)2 λ4 − 72 a5b5 (a− b) (a+ b)2 λ3

− 4 a6b6 (a+ 3 b) (3 a+ b)λ2 + 8 a7b7(a− b)λ+ 3 a8b8

Let us find the discriminant of G8 with respect to λ0

Dλ0G8 = −288
(
a2 + ab+ b2

)
(a+ b)18 b74a74.

It follows that G8 is a discriminantly factorizable polynomial.

Example 2.2.5. The discriminant Dλ0G12 of the polynomial numerator of the expression in

(2.16) is:

Dλ0G12 = −(2)184(7)2 (84375 a12 + 506250 a11b

+ 4266243 a10b2 + 16690590 a9b3 + 34989622 a8b4 + 45383698 a7b5 + 46564971 a6b6+

45383698 a5b7 + 34989622 a4b8 + 16690590 a3b9 + 4266243 a2b10 + 506250 ab11

+ 84375 b12) (a+ b)40 b172a172

It follows that G8 is a discriminantly factorizable polynomial.

Example 2.2.6. The discriminant Dλ0G15 of the polynomial numerator of the expression in

(2.17) is:

Dλ0G15 =

− 2246
(
27 a2 + 46 ab+ 27 b2

)
(a+ b)8 (8 a26 + 200 a25b+ 2427 a24b2 + 19048 a23b3+

108652 a22b4 + 479688 a21b5 + 1703702 a20b6 + 4993208 a19b7 + 12286692 a18b8

+ 25688608 a17b9 + 46007797 a16b10 + 70961808 a15b11 + 94556312 a14b12 + 108998288 a13b13
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Ctn from next page

+ 108671412 a12b14 + 93545968 a11b15 + 69297712 a10b16 + 43955208 a9b17+

23703317 a8b18 + 10761608 a7b19 + 4059132 a6b20 + 1248808 a5b21 + 305302 a4b22

+ 57048 a3b23 + 7652 a2b24 + 656 ab25 + 27 b26)(27 a26 + 656 a25b+ 7652 a24b2 + 57048 a23b3

+ 305302 a22b4 + 1248808 a21b5 + 4059132 a20b6 + 10761608 a19b7 + 23703317 a18b8

+ 43955208 a17b9 + 69297712 a16b10 + 93545968 a15b11 + 108671412 a14b12

+ 108998288 a13b13 + 94556312 a12b14 + 70961808 a11b15 + 46007797 a10b16

+ 25688608 a9b17 + 12286692 a8b18 + 4993208 a7b19 + 1703702 a6b20 + 479688 a5b21

+ 108652 a4b22 + 19048 a3b23 + 2427 a2b24 + 200 ab25 + 8 b26)
(
a5 + 5 a4b+ 10 a3b2

+ 10 a2b3 + 5 ab4 + b5
)

(a7 + 7 a6b+ 21 a5b2 + 35 a4b3 + 35 a3b4 + 21 a2b5

+ 7 ab6 + b7)b278a278

It follows that G15 is a discriminantly factorizable polynomial.

Example 2.2.7. The discriminant Dλ0G20 of the polynomial numerator of the expression in

(2.18) is:

Dλ0G20 =

(2)520(3)9
(
a2 + ab+ b2

)
(2573571875 a18 + 23162146875 a17b+ 343857834375 a16b2+

2225854012500 a15b3 + 7915637923674 a14b4 + 18294550565718 a13b5 + 35800011229590 a12b6

+ 71422154979456 a11b7 + 123117217701777 a10b8 + 150424579541609 a9b9

+ 123117217701777 a8b10 + 71422154979456 a7b11 + 35800011229590 a6b12

+ 18294550565718 a5b13 + 7915637923674 a4b14 + 2225854012500 a3b15

+ 343857834375 a2b16 + 23162146875 ab17 + 2573571875 b18) (a+ b)120 b500a500

It follows that G20 is a discriminantly factorizable polynomial.
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Example 2.2.8. The discriminant Dλ0G24 of the polynomial numerator of the expression in

(2.19) is:

Dλ0G24 = 5(2)776
(
64 a2 − 7 ab+ 64 b2

) (
64 a2 + 135 ab+ 135 b2

) (
135 a2 + 135 ab+ 64 b2

)
×(

27 a6 + 81 a5b+ 322 a4b2 + 509 a3b3 + 322 a2b4 + 81 ab5 + 27 b6
)

(a+ b)180 b732a732

It follows that G24 is a discriminantly factorizable polynomial.

Remark 2.2.1. We observed in the above examples that all polynomials are discriminantly

factorizable. However, it is important to note that their factors are homogeneous, thus, by a

change of variables (a, b) 7→ (a, b̂), with b̂ = b
a
, transforms the polynomials into discriminantly

separable polynomials in new variables (a, b̂).

2.2.3 Disciminantly separable polynomials

Similarly to the case of the Euclidean plane [26], the Cayley-type conditions obtained previ-

ously have a very interesting algebraic structure. Namely, the numerators of the corresponding

expressions are polynomials in 3 variables. As examples below show, those polynomials have

factorizable discriminants which, after a change of varibles, lead to discriminantly separable

polynomials in the sense of the following definition.

Definition 2.2.1. [17] A polynomial F (x1, . . . , xn) is discriminantly separable if there exist

polynomials f1(x1), . . . , fn(xn) such that the discriminant DxiF of F with respect to xi

satisfies:

DxiF (x1, . . . , x̂i, . . . , xn) =
∏
j 6=i

fj(xj),

for each i = 1, . . . , n.
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Discriminantly factorizable polynomials were introduced in [23] in connection with n-

valued groups. Various applications of discriminantly separable polynomials in continuous

and discrete integrable systems were presented in [27].The connection between Cayley-type

conditions in the Euclidean setting and discriminantly factorizable and separable polynomials

have been observed in [26]. As examples below show, the Cayley conditions in the Minkowski

plane provide examples of discriminantly factorisable polynomials which, after a change of

variables, have separable discriminants. It would be interesting to establish this relationship

as a general statement.

After applying Remark 2.2.1 to the previous first four examples, one gets the following

discriminantly separable polynomials in new variables (a, b̂):

Example 2.2.9.

Dλ0G2 = 24a8b̂2
(

1 + b̂+ b̂2
)
.

Example 2.2.10.

Dλ0G3 = 26a18b̂8
(

1 + b̂
)2
.

Example 2.2.11.

Dλ0G6 = −5244a90b̂38(27 + 81 b̂+ 322 b̂2 + 509 b̂3 + 322 b̂4

+ 81 b̂5 + 27 b6) (a+ b)8 .

Example 2.2.12.

Dλ0G8 = −288a168b̂74
(

1 + b̂+ b̂2
)(

1 + b̂
)18

.

2.3 Elliptic periodic trajectories

Points of the plane which are symmetric with respect to the coordinate axes share the

same elliptic coordinates, thus there is no bijection between the elliptic and the Cartesian

coordinates. Thus, we introduce a separate notion of periodicity in elliptic coordinates.
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Definition 2.3.1. A billiard trajectory is n-elliptic periodic is it is n-periodic in elliptic

coordinates joined to the confocal family Cλ.

Now, we will derive algebro-geometric conditions for elliptic periodic trajectories.

Theorem 2.3.1. A billiard trajectory within E with the caustic Cγ is n-elliptic periodic

without being n-periodic if and only if one of the following conditions is satisfied on C :

(a) Cγ is an ellipse, 0 < γ < a, and nQ0 − (n− 1)Qγ −Q−b ∼ 0;

(b) Cγ is an ellipse, −b < γ < 0, and nQ0 − (n− 1)Qγ −Qa ∼ 0;

(c) Cγ is a hyperbola, n is even and nQ0 − (n− 2)Qγ −Q−b −Qa ∼ 0;

(d) Cγ is a hyperbola, n is odd, and nQ0 − (n− 1)Qγ −Qa ∼ 0;

(e) Cγ is a hyperbola, n is odd, and nQ0 − (n− 1)Qγ −Q−b ∼ 0.

Moreover, such trajectories are always symmetric with respect to the origin in Case (c). They

are symmetric with respect to the x-axis in Cases (b) and (d), and with respect to the y-axis

in Cases (a) and (e).

Proof. Let M0 be the initial point of a given n-elliptic periodic trajectory, and M1 the next

point on the trajectory with the same elliptic coordinates. Then, integrating (2.3) M0 to M1

along the trajectory, we get:

n1(Q0 −Qc1) + n2(Q0 −Qb1) ∼ 0,

where n = n1 + n2, and n1 is the number of times that the particle hit the arcs of E with

time-like metrics, and n2 the number of times it hit the arcs with space-like metrics. We

denoted by c1 the largest negative member of the set {a,−b, γ}, and by b1 its smallest positive

member.

The trajectory is not n-periodic if and only if at least one of n1, n2 is odd, which then

leads to the stated conclusions.
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The explicit Cayley-type conditions for elliptic periodic trajectories are:

Theorem 2.3.2. A billiard trajectory within E with the caustic Qγ is n-elliptic periodic

without being n-periodic if and only if one of the following conditions is satisfied:

(a) Cγ is an ellipse, 0 < γ < a, and

D1 = 0,

∣∣∣∣∣∣∣
D1 D2

D2 D3

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
D1 D2 D3

D2 D3 D4

D3 D4 D5

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 2, 4, 6, . . .

E2 = 0,

∣∣∣∣∣∣∣
E2 E3

E3 E4

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
E2 E3 E4

E3 E4 E5

E4 E5 E6

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 3, 5, 7, . . . ;

(b) Cγ is an ellipse, −b < γ < 0, and

E1 = 0,

∣∣∣∣∣∣∣
E1 E2

E2 E3

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
E1 E2 E3

E2 E3 E4

E3 E4 E5

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 2, 4, 6, . . .

D2 = 0,

∣∣∣∣∣∣∣
D2 D3

D3 D4

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
D2 D3 D4

D3 D4 D5

D4 D5 D6

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 3, 5, 7, . . . ;

(c) Qγ is a hyperbola, n even and

C1 = 0,

∣∣∣∣∣∣∣
C1 C2

C2 C3

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
C1 C2 C3

C2 C3 C4

C3 C4 C5

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 2, 4, 6, . . .
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(d) Qγ is a hyperbola, n is odd, and

D2 = 0,

∣∣∣∣∣∣∣
D2 D3

D3 D4

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
D2 D3 D4

D3 D4 D5

D4 D5 D6

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 3, 5, 7, . . . .

(e) Qγ is a hyperbola, n is odd, and

E2 = 0,

∣∣∣∣∣∣∣
E2 E3

E3 E4

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
E2 E3 E4

E3 E4 E5

E4 E5 E6

∣∣∣∣∣∣∣∣∣∣
= 0, . . . for n = 3, 5, 7, . . . .

Here, we denoted: √
ε(a− x)(b+ x)(γ − x)

a− x
= D0 +D1x+D2x

2 + . . . ,√
ε(a− x)(b+ x)(γ − x)

b+ x
= E0 + E1x+ E2x

2 + . . . ,

the Taylor expansion around x = 0, while Bs and Cs are as in Theorem 2.1.2.

Proof. (a) Take first n even. Using Theorem 2.3.1, we have:

nQ0 ∼ (n−1)Qγ +Q−b ∼ (n−2)Q∞+Q−b+Qγ ∼ (n−2)Q∞+Q∞+Qa ∼ (n−1)Q∞+Qa.

The basis of L ((n− 1)Q∞ +Qa) is:

1, x, x2, . . . , xn/2−1,
y

x− a
,
xy

x− a
,
xn/2−1y

x− a
,

thus a non-trivial linear combination of these functions with a zero of order n at x = 0 exists

if and only if: ∣∣∣∣∣∣∣∣∣∣∣∣∣

Dn/2 Dn/2−1 . . . D1

Dn/2+1 Dn/2 . . . D2

. . .

Dn−1 Dn−2 . . . Dn/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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For odd n, we have:

nQ0 ∼ (n− 1)Qγ +Q−b ∼ (n− 1)Q∞ +Q−b.

The basis of L ((n− 1)Q∞ +Q−b) is:

1, x, x2, . . . , x(n−1)/2,
y

x+ b
,
xy

x+ b
,
x(n−1)/2−1y

x+ b
,

thus a non-trivial linear combination of these functions with a zero of order n at x = 0 exists

if and only if: ∣∣∣∣∣∣∣∣∣∣∣∣∣

E(n−1)/2+1 E(n−1)/2 . . . E2

E(n−1)/2+2 E(n−1)/2+1 . . . E3

. . .

En−1 En−2 . . . E(n−1)/2+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Case (b) is done similarly as (a).

(c) We have nQ0 ∼ (n− 2)Qγ +Q−b +Qa ∼ (n− 1)Q∞ +Qγ.

(d) We have nQ0 ∼ (n− 1)Qγ +Qa ∼ (n− 1)Q∞ +Qa.

(e) We have nQ0 ∼ (n− 1)Qγ +Q−b ∼ (n− 1)Q∞ +Q−b.

2.4 Examples of elliptic periodic trajectories with small periods: 3 ≤ n ≤ 7

2-elliptic periodic trajectories

There is a 2-elliptic periodic trajectory without being 2-periodic of the billiard within (2.1),

with a non-degenerate caustic Cγ0 in the Minkowski plane if and only if one of the following

is satisfied:

• the caustic is an ellipse, with γ0 ∈ (0, a); and D1 = 0.

• the caustic is an ellipse, with γ0 ∈ (−b, 0); and E1 = 0.

• the caustic is a hyperbola, and n even and C1 = 0.
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We solve the following equations

D1 =
(a+ b)λ− ab

2a
3
2
(bλ)

1
2

= 0,

E1 = −(a+ b)λ+ ab

2b
3
2
(bλ)

1
2

= 0,

C1 =
(a− b)λ+ ab

2λ
3
2
(ab)

1
2

= 0,

which respectively yield the solutions for the parameter γ0 for the caustic:

γ0 =
ab

a+ b
,

γ0 = − ab

a+ b
,

γ0 = − ab

a− b

Some examples of a 2-elliptic periodic trajectories without being 2-periodic are shown in

Figure 2.14 and Figure 2.15.

Figure 2.14: A 2-elliptic periodic trajectories with ellipses as caustics. On the left, the caustic
is an ellipse along x-axis (a = 5, b = 3, γ = −15/8), and on the right an ellipse along y-axis
(a = 5, b = 7 and γ = 35/12).
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Figure 2.15: A 2-elliptic periodic trajectory with a hyperbola as caustic (a = 7, b = 3,
γ = −5.25).

3-elliptic periodic trajectories

There is a 3-elliptic periodic trajectory without being 3-periodic of the billiard within (2.1),

with a non-degenerate caustic Cγ0 in the Minkowski plane if and only if one of the following

is satisfied:

• the caustic is an ellipse, with γ0 ∈ (0, a); and E2 = 0, or the caustic is a hyperbola with

n and E2 = 0.

• the caustic is an ellipse, with γ0 ∈ (−b, 0); and D2 = 0, or the caustic is a hyperbola

and D2 = 0.

The following equations are solved:

E2 = −1

8

1

b
5
2 (aλ)

3
2

(−(a+ b)(3a− b)λ2 − 2ab(a+ b)λ+ a2b2) = 0, (2.20)

D2 = −1

8

1

b
5
2 (aλ)

3
2

((a+ b)(a− 3b)λ2 + 2ab(a+ b)λ+ a2b2) = 0, (2.21)

which respectively yield the pair of solutions for the parameter γ0 for the caustic:
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γ0 =
(−a− b+ 2

√
a2 + ab)ba

(a+ b)(3a− b)
, and γ0 = −(−a− b+ 2

√
a2 + ab)ba

(a+ b)(3a− b)

γ0 =
(−a− b+ 2

√
b2 + ab)ba

(a+ b)(a− 3b)
, and γ0 = −(−a− b+ 2

√
b2 + ab)ba

(a+ b)(a− 3b)
.

Examples of a 3-elliptic periodic trajectories which are not 3-periodic are shown in

Figure 2.16 and Figure 2.17.

Figure 2.16: A 3-elliptic periodic trajectories with hyperbolas as caustics. On the left, the
caustic is orientied along the x-axis (a = 6, b = 3, γ ≈ −3.1595918), and on the right along
the y-axis (a = 3, b = 5, γ ≈ 3.2264236).

Figure 2.17: A 3-elliptic periodic trajectory without being 3-periodic with an ellipse along
the x-axis as caustic (a = 9, b = 2 and λ0 = −.8831827) on the let. On the right,a 3-elliptic
periodic trajectories without being 3-periodic with an ellipse along the y-axis as caustic
(a = 4, b = 9 and λ0 = 1.312805).
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4-elliptic periodic trajectories

There is a 4-elliptic periodic trajectory without being 4-periodic of the billiard within (2.1),

with a non-degenerate caustic Cγ0 in the Minkowski plane if and only if one of the following

is satisfied:

• the caustic is an ellipse, with γ0 ∈ (0, a); and D3D1 −D2
2 = 0.

• the caustic is an ellipse, with γ0 ∈ (−b, 0); and E3E1 − E2
2 = 0.

• the caustic is a hyperbola, and C3C1 − C2
2 = 0.

which respectively produce the following equations

D3D1 −D2
2 = (2.22)

((a+ b)4λ4 − 4ab(a+ b)(a− b)2λ3 − 2a2b2(a+ b)(5a− 3b)λ2 − 4a3b3(a+ b)λ+ a4b4)

a5(64bλ)3

(2.23)

E3E1 − E2
2 = (2.24)

((a+ b)4λ4 + 4ab(a+ b)(a− b)2λ3 + 2a2b2(a+ b)(3a− 5b)λ2 + 4a3b3(a+ b)λ+ a4b4)

64b5(aλ)3

(2.25)

C3C1 − C2
2 = (2.26)

1

64λ5(ab)3
× ((a2 − 6ab+ b2)(a+ b)2λ4 + 4ab(a− b)(a+ b)2λ3 (2.27)

+ 2a2b2(3a2 + 2ab+ 3b2)λ2 + 4a3b3(a− b)λ+ a4b4))

Each real solution γ0 for the above equations for some fixed values of a and b will produce a

4-elliptic periodic trajectory which is not 4-periodic.

Some examples are shown in Figure 2.18 and Figure 2.19
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Figure 2.18: A 4-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 5,
b = 3, γ ≈ 4.6216), and it is a hyperbola on the right (a = 5, b = 3, γ ≈ −3.0243).

Figure 2.19: A 4-elliptic periodic trajectory without being 4-periodic with a hyperbola along
the y-axis as caustic (a = 5, b = 3 and λ0 ≈ 5.4942).

5-elliptic periodic trajectories

There is a 5-elliptic periodic trajectory without being 5-periodic of the billiard within (2.1),

with a non-degenerate caustic Cγ0 if and only if one of the following is satisfied:
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• the caustic is an ellipse, with γ0 ∈ (0, a) or a hyperbola and E2E4 − E2
3 = 0.

• the caustic is an ellipse, with γ0 ∈ (−b, 0) or a hyperbola D2D4 −D2
3 = 0.

which yield the following equations

E2E4 − E2
3 =

2−10

b7(aλ)5
×
(

(5a2 − 10ab+ b2)(a+ b)4λ6 + 2ab(5a− 3b)(a+ b)4λ5

− a2b2(a+ b)(9a3 − 45a2b− 5ab2 − 15b3)λ4 − 4a3b3(a+ b)(9a2 − 10ab+ 5b2)λ3

− a4b4(a+ b)(29a− 15b)λ2 − 6a5b5(a+ b)λ+ a6b6
)

= 0

D2D4 −D2
3 =

2−10

1024a7(bλ)5
×
(

(a2 − 10ab+ 5b2)(a+ b)4λ6 + 2ab(3a− 5b)(a+ b)4λ5

+ a2b2(a+ b)(15a3 + 5a2b+ 45ab2 − 9b3)λ4 + 4a3b3(a+ b)(5a2 − 10ab+ 9b2)λ3

+ a4b4(a+ b)(15a− 29b)λ2 + 6a5b5(a+ b)λ+ a6b6
)

= 0

Each real solution γ0 for the above equations for some fixed values of a and b will produce a

4-elliptic periodic trajectory which is not 4-periodic.

Some examples are shown in Figure 2.20 and Figure 2.21

Figure 2.20: A 5-elliptic periodic trajectories. On the left, the caustic is an ellipse (a = 7,
b = 4, γ ≈ −3.3848) and a hyperbola on the right (a = 3, b = 7, γ ≈ 3.4462).
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Figure 2.21: A 5-elliptic periodic trajectories without being 5-periodic with a hyperbola along
the y-axis as caustic (a = 7, b = 4 and λ0 ≈ −4.9683)

A 6-elliptic periodic trajectories

There is a 6-elliptic periodic trajectory without being 6-periodic of the billiard within (2.1),

with a non-degenerate caustic Cγ0 in the Minkowski plane if and only if one of the following

is satisfied:

• the caustic is an ellipse, with γ0 ∈ (0, a); and

∣∣∣∣∣∣∣∣∣∣
D1 D2 D3

D2 D3 D4

D3 D4 D5

∣∣∣∣∣∣∣∣∣∣
= 0.

• the caustic is an ellipse, with γ0 ∈ (−b, 0); and

∣∣∣∣∣∣∣∣∣∣
E1 E2 E3

E2 E3 E4

E3 E4 E5

∣∣∣∣∣∣∣∣∣∣
= 0.
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• the caustic is a hyperbola, and by

∣∣∣∣∣∣∣∣∣∣
C1 C2 C3

C2 C3 C4

C3 C4 C5

∣∣∣∣∣∣∣∣∣∣
= 0.

which produces the following equations

•

(13a7 − 103a6b+ 293a5b2 − 823a4b3 + 1503a3b4 − 1677a2b5

+ 3055ab6 − 725b7)(a+ b)2λ10− a(14a7 − 171a6b+ 520a5b2 − 1481a4b3 + 3526a3b4

− 4989a2b5 + 6660ab6 − 3119b7)(a+ b)2λ9 − 2a2b(33a6 − 172a5b+ 481a4b2 − 1456a3b3

+ 2883a2b4 − 3268ab5 + 2459b6)(a+ b)2λ8 − 4a3b2(a+ b)(30a6 − 73a5b+ 213a4b2

− 554a3b3 + 488a2b4 + 67ab5 − 779b6)λ7 − 2b3a4(a+ b)(52a5 − 151a4b+ 370a3b2

− 744a2b3 + 474ab4 + 127b5)λ6 − 2a5b4(a+ b)(18a4 − 27a3b+ 43a2b2 − 193ab3+

167b4)λ5 + 4a6b5(a+ b)(9a3 − 8a2b+ 47ab2 − 16b3)λ4 + 4a7b6(a+ b)(26a2 + 29ab+

7b2)λ3 + a8b7(120a2 + 85ab+ 59b2)λ2 + a9b8(66a− 41b)λ+ 14a10b9 = 0

•

(a+ b)9λ9 + ab(3a− b)2(a− 3b)2(a+ b)4λ8 + 4a2b2(9a3−

53a2b+ 51ab2 − 15b3)(a+ b)4λ7 + 4b3a3(21a2 − 62ab+ 29b2)(a+ b)4λ6+

2a4b4(a+ b)(63a4 + 60a3b+ 26a2b2 − 132ab3 − 33b4)λ5 + 2a5b5(a+ b)(63a3 − 19a2b+

141ab2 − 33b3)λ4 + 4a6b6(a+ b)(21a2 − 38ab+ 29b2)λ3 + 12a7b7(a+ b)(3a− 5b)λ2+

9a8b8(a+ b)λ+ a9b9 = 0
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•

(26a6b− 178a5b2 + 308a4b3 − 308a3b4 + 178a2b5 − 26ab6

+ 21a6 − 154a5b+ 219a4b2 − 236a3b3 + 219a2b4 − 154ab5 + 21b6)(a+ b)4λ10

+ 2ab(37a5b− 44a4b2 + 94a3b3 − 44a2b4 + 37ab5 + 35a5 − 47a4b+ 46a3b2 − 46a2b3

+ 47ab4 − 35b5)(a+ b)4λ9 + a2b2(40a6b− 200a5b2 − 240a4b3 + 240a3b4 + 200a2b5

− 40ab6 + 85a6 − 146a5b+ 187a4b2 − 188a3b3 + 187a2b4 − 146ab5 + 85b6)(a+ b)2λ8

− 8a3b3(15a5b− 60a4b2 + 106a3b3 − 60a2b4 + 15ab5 − 5a5 + 7a4b− 20a3b2+

20a2b3 − 7ab4 + 5b5)(a+ b)2λ7 − 2a4b4(90a4b+ 26a3b2 − 26a2b3 − 90ab4 − 5a4+

44a3b+ 98a2b2 + 44ab3 − 5b4)(a+ b)2λ6 + 12a5b5(33a3b− 190a2b2 + 33ab3 − 5a3+

79a2b− 79ab2 + 5b3)(a+ b)2λ5 + 2a6b6(772a4b+ 228a3b2 − 228a2b3 − 772ab4−

295a4 + 748a3b+ 2086a2b2 + 748ab3 − 295b4)λ4 + 8a7b7(245a3b− 30a2b2+

245ab3 − 195a3 − 69a2b+ 69ab2 + 195b3)λ3 + a8b8(1130a2b− 1130ab2 − 1855a2+

154ab− 1855b2)λ2 + 50a9b9(5ab− 21a+ 21b)λ− 231a10b10 = 0.

Each real solution γ0 for the above equations for some fixed values of a and b will produce

a 6-elliptic periodic trajectory which is not 6-periodic.

Some examples are shown in Figure 2.22.
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Figure 2.22: A 6-elliptic periodic trajectories. On the left, the caustic is an ellipse along the
x-axis (a = 3, b = 5 and λ0 ≈ −4.9755), and it is a hyperbola along the y-axis on the right
(a = 3, b = 4 and λ0 ≈ 2.9989).

7-elliptic periodic trajectories

There is a 7-elliptic periodic trajectory without being 7-periodic of the billiard within (2.1),

with a non-degenerate caustic Cγ0 in the Minkowski plane if and only if one of the following

is satisfied:

• the caustic is an ellipse, with γ0 ∈ (0, a), or a hyperbola and by∣∣∣∣∣∣∣∣∣∣
E2 E3 E4

E3 E4 E5

E4 E5 E6

∣∣∣∣∣∣∣∣∣∣
= 0,.

• the caustic is an ellipse, with γ0 ∈ (−b, 0) or a hyperbola and by∣∣∣∣∣∣∣∣∣∣
D2 D3 D4

D3 D4 D5

D4 D5 D6

∣∣∣∣∣∣∣∣∣∣
= 0.

which produce the following equations
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•

− (7a3 − 35a2b+ 21ab2 − b3)(a+ b)9λ12 − 4ab(7a2 − 14ab+

3b2)(a+ b)9λ11 + 2a2b2(21a6 − 342a5b+ 375a4b2 − 804a3b3 + 435a2b4 − 38ab5

+ 33b6)(a+ b)4λ10 + 4a3b3(121a5 − 595a4b+ 1018a3b2 − 998a2b3 + 285ab4

− 55b5)(a+ b)4λ9 + a4b4(1311a4 − 4500a3b+ 6378a2b2 − 3188ab3

+ 495b4)(a+ b)4λ8 + 8a5b5(225a3 − 585a2b+ 499ab2 − 99b3)(a+ b)4λ7

+ 4a6b6(a+ b)(315a5 + 483a4b− 658a3b2 − 826a2b3 − 25ab4 + 231b5)λ6

+ 8a7b7(a+ b)(21a4 + 252a3b− 42a2b2 − 52ab3 − 99b4)λ5 − a8b8(a+ b)(441a3

− 1197a2b+ 235ab2 − 495b3)λ4 − 4a9b9(a+ b)(91a2 − 102ab+ 55b2)λ3

− 2a10b10(a+ b)(59a− 33b)λ2 − 12a11b11(a+ b)λ+ a12b12 = 0

•

(a3 − 21a2b+ 35ab2 − 7b3)(a+ b)9λ12 + 4ab(3a2 − 14ab+

7b2)(a+ b)9λ11 + 2a2b2(33a6 − 38a5b+ 435a4b2 − 804a3b3 + 375a2b4 − 342ab5

+ 21b6)(a+ b)4λ10 + 4a3b3(55a5 − 285a4b+ 998a3b2 − 1018a2b3 + 595ab4

− 121b5)(a+ b)4λ9 + a4b4(495a4 − 3188a3b+ 6378a2b2 − 4500ab3

+ 1311b4)(a+ b)4λ8 + 8a5b5(99a3 − 499a2b+ 585ab2 − 225b3)(a+ b)4λ7

+ 4a6b6(a+ b)(231a5 − 25a4b− 826a3b2 − 658a2b3 + 483ab4 + 315b5)λ6

+ 8a7b7(a+ b)(99a4 + 52a3b+ 42a2b2 − 252ab3 − 21b4)λ5 + a8b8(a+ b)(495a3

− 235a2b+ 1197ab2 − 441b3)λ4 + 4a9b9(a+ b)(55a2 − 102ab+ 91b2)λ3

+ 2a10b10(a+ b)(33a− 59b)λ2 + 12a11b11(a+ b)λ+ a12b12 = 0

Each real solution γ0 for the above equations for some fixed values of a and b will produce a

7-elliptic periodic trajectory which is not 7-periodic.
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Some examples of a 7-elliptic periodic trajectories without being 7-periodic are shown in

Figure 2.23 and Figure 2.23

Figure 2.23: A 7-elliptic periodic trajectories. On the left, the caustic is a hyperbola along
the y-axis (a = 3, b = 7 and λ0 ≈ 3.7232), and it is a hyperbola along the x-axis on the right
(a = 3, b = 7 and λ0 ≈ −10.7847).

Figure 2.24: A 7-elliptic periodic trajectories. On the left, the caustic is an ellipse along the
y-axis (a = 5, b = 7 and λ0 ≈ 4.8394), and it is an ellipse along the x-axis on the right (a = 3,
b = 7 and λ0 ≈ −5.4467).
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Discriminantly separable polynomials and elliptic periodicity

Since the case n = 2 is trivial, we start with the case n = 3.

From the numerator of E2 in Equation (2.20) and D2 in Equation (2.21), we have:

G1(a, b, γ) = −(a+ b)(3a− b)γ2 − 2ab(a+ b)γ + a2b2,

G2(a, b, γ) = (a+ b)(a− 3b)γ2 + 2ab(a+ b)γ + a2b2,

and we calculate the discriminants, which factorize as follows:

DγG1 = 16a3b2(a+ b), DγG2 = 16b3a2(a+ b).

Similarly, for n = 4, from the numerator of D3D1 −D2
2 in Equation (2.23), E3E1 − E2

2 in

Equation (2.25) and C3C1 − C2
2 in Equation (2.27), we have:

G3(a, b, γ) =

(a+ b)4γ4 − 4ab(a+ b)(a− b)2γ3 − 2a2b2(a+ b)(5a− 3b)γ2 − 4a3b3(a+ b)γ + a4b4,

G4(a, b, γ) =

(a+ b)4γ4 + 4ab(a+ b)(a− b)2γ3 + 2a2b2(a+ b)(3a− 5b)γ2 + 4a3b3(a+ b)γ + a4b4,

G5(a, b, γ) =

(a2 − 6ab+ b2)(a+ b)2γ4 + 4ab(a− b)(a+ b)2γ3 + 2a2b2(3a2 + 2ab+ 3b2)γ2

+ 4a3b3(a− b)γ + a4b4.

The discriminant of these polynomials factorizes as follows:

DγG3 = −216a16b14(8a2 + 8ab+ 27b2)(a+ b)4,

DγG4 = −216a14b16(27a2 + 8ab+ 8b2)(a+ b)4,

DγG5 = 212(32a6 − 491a5b− 439a4b2 + 194a3b3 − 62a2b4 − 39ab5 + 5b6)(a+ b)3b15a12.
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Using the transformation (a, b) 7→ (a, b̂), where b̂ = b
a
, we get:

DγG1 = 16a6b̂2(1 + b̂),

DγG2 = 16a5b̂3(1 + b̂),

DγG3 = −216a36b̂14(8 + 8b̂+ 27b̂2)(1 + b̂)4,

DγG4 = −216a36b̂16(27 + 8b̂+ 8b̂2)(1 + b̂)4,

DγG5 = 212a36b̂15(32− 491b̂− 439b̂2 + 194b̂3 − 62b̂4 − 39b̂5 + 5b̂6)(1 + b̂)3.

2.5 Polynomial equations

Now we want to express the periodicity conditions for billiard trajectories in the Minkowski

plane in terms of polynomial functions equations.

Theorem 2.5.1. The billiard trajectories within E with caustic Cγ are n-periodic if and only

if there exists a pair of real polynomials pd1 , qd2 of degrees d1, d2 respectively, and satisfying

the following:

(a) if n = 2m is even, then d1 = m, d2 = m− 2, and

p2m(s)− s
(
s− 1

a

)(
s+

1

b

)(
s− 1

γ

)
q2m−2(s) = 1;

(b) if n = 2m+ 1 is odd, then d1 = m, d2 = m− 1, and(
s− 1

γ

)
p2m(s)− s

(
s− 1

a

)(
s+

1

b

)
q2m−1(s) = −sign γ.

Proof. We note first that the proof of Theorem 2.1.2 implies that there is a non-trivial linear

combination of the bases (2.7) for n even, or (2.8) for n odd, with the zero of order n at

x = 0.

(a) For n = 2m, from there we get that there are real polynomials p∗m(x) and q∗m−2(x) of

degrees m and m− 2 respectively, such that the expression

p∗m(x)− q∗m−2(x)
√
ε(a− x)(b+ x)(γ − x)
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has a zero of order 2m at x = 0. Multiplying that expression by

p∗m(x) + q∗m−2(x)
√
ε(a− x)(b+ x)(γ − x),

we get that the polynomial (p∗m(x))2 − ε(a− x)(b+ x)(γ − x)(q∗m−2(x))2 has a zero of order

2m at x = 0. Since the degree of that polynomial is 2m, is follows that:

(p∗m(x))2 − ε(a− x)(b+ x)(γ − x)(q∗m−2(x))2 = cx2m,

for some constant c. Notice that c is positive, since it equals the square of the leading

coefficient of p∗m. Dividing the last relation by cx2m and introducing s = 1/x, we get the

requested relation.

(b) On the other hand, for n = 2m+ 1, we get that there are real polynomials p∗m(x) and

q∗m−1(x) of degrees m and m− 1 respectively, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(γ − x)

(
p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

)
,

we get that the polynomial (γ − x)(p∗m(x))2 − ε(a− x)(b+ x)(q∗m−1(x))2 has a zero of order

2m+ 1 at x = 0. Since the degree of that polynomial is 2m+ 1, is follows that:

(γ − x)(p∗m(x))2 − ε(a− x)(b+ x)(q∗m−1(x))2 = cx2m+1,

for some constant c. Notice that c is negative, since it equals the opposite of the square of the

leading coefficient of p∗m. Dividing the last relation by −εcx2m+1 and introducing s = 1/x,

we get the requested relation.

Corollary 2.5.1. If the billiard trajectories within E with caustic Cγ are n-periodic, then

there exist real polynomials p̂n and q̂n−2 of degrees n and n− 2 respectively, which satisfy

the Pell equation:

p̂2n(s)− s
(
s− 1

a

)(
s+

1

b

)(
s− 1

γ

)
q̂2n−2(s) = 1. (2.28)
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Proof. For n = 2m, take p̂n = 2p2m − 1 and q̂n−2 = 2pmqm−2. For n = 2m + 1, we set

p̂n = 2 (γs− 1) p2m + sign γ and q̂n−2 = 2pmqm−1.

Theorem 2.5.2. The billiard trajectories within E with caustic Cγ are elliptic n-periodic

without being n-periodic if and only if there exists a pair of real polynomials pd1 , qd2 of

degrees d1, d2 respectively, and satisfying the following:

(a) Cγ is an ellipse, 0 < γ < a, and

– n = 2m is even, d1 = d2 = m− 1,

s

(
s− 1

a

)
p2m−1(s)−

(
s+

1

b

)(
s− 1

γ

)
q2m−1(s) = 1;

– n = 2m+ 1 is odd, d1 = m, d2 = m− 1,(
s+

1

b

)
p2m(s)− s

(
s− 1

a

)(
s− 1

γ

)
q2m−1(s) = 1;

(b) Cγ is an ellipse, −b < γ < 0, and

– n = 2m is even, d1 = d2 = m− 1,

s

(
s+

1

b

)
p2m−1(s)−

(
s− 1

a

)(
s− 1

γ

)
q2m−1(s) = 1;

– n = 2m+ 1 is odd, d1 = m, d2 = m− 1,(
s− 1

a

)
p2m(s)− s

(
s+

1

b

)(
s− 1

γ

)
q2m−1(s) = −1;

(c) Cγ is a hyperbola and n = 2m is even, d1 = d2 = m− 1,(
s− 1

γ

)
p2m−1(s)− s

(
s− 1

a

)(
s+

1

b

)
q2m−1(s) = −sign γ;

(d) Cγ is a hyperbola, n = 2m+ 1 is odd, d1 = m, d2 = m− 1,(
s− 1

a

)
p2m(s)− s

(
s+

1

b

)(
s− 1

γ

)
q2m−1(s) = −1;
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(e) Cγ is a hyperbola, n = 2m+ 1 is odd, d1 = m, d2 = m− 1,(
s+

1

b

)
p2m(s)− s

(
s− 1

a

)(
s− 1

γ

)
q2m−1(s) = 1.

Proof. (a) For n = 2m, the proof of Theorem 2.3.2 implies that there are polynomials p∗m−1(x)

and q∗m−1(x) of degrees m− 1, such that the expression

p∗m−1(x)− q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

a− x

has a zero of order 2m at x = 0. Multiplying that expression by

(a− x)

(
p∗m−1(x) + q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

a− x

)
,

we get that the polynomial (a− x)(p∗m−1(x))2 − (a− x)(b+ x)(q∗m−1(x))2 has a zero of order

2m at x = 0. Since the degree of that polynomial is 2m, is follows that:

(a− x)(p∗m−1(x))2 − (b+ x)(γ − x)(q∗m−1(x))2 = cx2m,

for some constant c. Notice that c is positive, since it equals the square of the leading

coefficient of q∗m−1. Dividing the last relation by cx2m and introducing s = 1/x, we get the

requested relation.

For n = 2m+ 1, the proof of Theorem 2.3.2 implies that there are polynomials p∗m(x) and

q∗m−1(x) of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

b+ x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(b+ x)

(
p∗m(x) + q∗m−1(x)

√
(a− x)(b+ x)(γ − x)

b+ x

)
,

we get that the polynomial (b+ x)(p∗m(x))2 − (a− x)(γ − x)(q∗m−1(x))2 has a zero of order

2m+ 1 at x = 0. Since the degree of that polynomial is 2m+ 1, is follows that:

(b+ x)(p∗m(x))2 − (a− x)(γ − x)(q∗m−1(x))2 = cx2m+1
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for some constant c. Notice that c is positive, since it equals the square of the leading

coefficient of p∗m. Dividing the last relation by cx2m+1 and introducing s = 1/x, we get the

requested relation.

(b) For n = 2m, the proof of Theorem 2.3.2 implies that there are real polynomials

p∗m−1(x) and q∗m−1(x) of degrees m− 1, such that the expression

p∗m−1(x)− q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

b+ x

has a zero of order 2m at x = 0. Multiplying that expression by

(b+ x)

(
p∗m−1(x) + q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

b+ x

)
,

we get that the polynomial (b+ x)(p∗m−1(x))2 + (a− x)(γ − x)(q∗m−1(x))2 has a zero of order

2m at x = 0. Since the degree of that polynomial is 2m, is follows that:

(b+ x)(p∗m−1(x))2 + (a− x)(γ − x)(q∗m−1(x))2 = cx2m,

for some constant c. Notice that c is positive, since it equals to the square of the leading

coefficient of q∗m−1. Dividing the last relation by cx2m and introducing s = 1/x, we get the

requested relation.

For n = 2m+ 1, the proof of Theorem 2.3.2 implies that there are polynomials p∗m(x) and

q∗m−1(x) of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

a− x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(a− x)

(
p∗m(x) + q∗m−1(x)

√
−(a− x)(b+ x)(γ − x)

a− x

)
,

we get that the polynomial (a− x)(p∗m(x))2 + (b+ x)(γ − x)(q∗m−1(x))2 has a zero of order

2m+ 1 at x = 0. Since the degree of that polynomial is 2m+ 1, is follows that:

(a− x)(p∗m(x))2 + (b+ x)(γ − x)(q∗m−1(x))2 = cx2m+1
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for some constant c. Notice that c is negative, since it is opposite to the square of the leading

coefficient of p∗m. Dividing the last relation by −cx2m+1 and introducing s = 1/x, we get the

requested relation.

For (c), the proof of Theorem 2.3.2 implies that there are polynomials real p∗m(x) and

q∗m−1(x) of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(γ − x)

(
p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

γ − x

)
,

we get that the polynomial (γ − x)(p∗m(x))2 − ε(a− x)(b+ x)(q∗m−1(x))2 has a zero of order

2m+ 1 at x = 0. Since the degree of that polynomial is 2m+ 1, is follows that:

(γ − x)(p∗m(x))2 − ε(a− x)(b+ x)(q∗m−1(x))2 = cx2m+1

for some constant c. Notice that c is negative, since it is opposite to the square of the leading

coefficient of p∗m. Dividing the last relation by −εcx2m+1 and introducing s = 1/x, we get

the requested relation.

(d) The proof of Theorem 2.3.2 implies that there are real polynomials p∗m(x) and q∗m−1(x)

of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

a− x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(a− x)

(
p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

a− x

)
,

we get that the polynomial (a− x)(p∗m(x))2 − ε(b+ x)(γ − x)(q∗m−1(x))2 has a zero of order

2m+ 1 at x = 0. Since the degree of that polynomial is 2m+ 1, is follows that:

(a− x)(p∗m(x))2 − ε(b+ x)(γ − x)(q∗m−1(x))2 = cx2m+1
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for some constant c. Notice that c is negative, since it is opposite to the square of the leading

coefficient of p∗m. Dividing the last relation by −cx2m+1 and introducing s = 1/x, we get the

requested relation.

(e) For n = 2m+ 1, the proof of Theorem 2.3.2 implies that there are real polynomials

p∗m(x) and q∗m−1(x) of degrees m and m− 1, such that the expression

p∗m(x)− q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

b+ x

has a zero of order 2m+ 1 at x = 0. Multiplying that expression by

(b+ x)

(
p∗m(x) + q∗m−1(x)

√
ε(a− x)(b+ x)(γ − x)

b+ x

)
,

we get that the polynomial (b+ x)(p∗m(x))2 − ε(a− x)(γ − x)(q∗m−1(x))2 has a zero of order

2m+ 1 at x = 0. Since the degree of that polynomial is 2m+ 1, is follows that:

(b+ x)(p∗m(x))2 − ε(a− x)(γ − x)(q∗m−1(x))2 = cx2m+1

for some constant c. Notice that c is positive, since it equals the square of the leading

coefficient of p∗m. Dividing the last relation by cx2m+1 and introducing s = 1/x, we get the

requested relation.

After Corollary 2.5.1 and the relation Equation (2.28), we see that the Pell equations

arise as the functional polynomial conditions for periodicity. Let us recall some important

properties of the solutions of pell’s equations.

2.6 Classical Extremal Polynomials and Caustics

2.6.1 Fundamental Properties of Extremal Polynomials

From the previous section we know that the Pell’s equation plays a key role in functional-

polynomial formulation of periodicity conditions in the Minkowski plane. The solutions of
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the Pell’s equation are so-called extremal polynomials. Denote {c1, c2, c3, c4} = {0, 1
a
,−1

b
, 1
λ0
}

with the ordering c1 < c2 < c3 < c4. The polynomials p̂n are so called generalized Chebyshev

polynomials on two intervals [c1, c2] ∪ [c3, c4], with an appropriate normalization. Namely,

one can consider the question of finding the monic polynomial of certain degree n which

minimizes the maximum norm on the union of two intervals. Denote such a polynomial as

P̂n and its norm Ln. The fact that polynomial p̂n is a solution of the Pell’s equation on the

union of intervals [c1, c2] ∪ [c3, c4] is equivalent to the following conditions:

(i) p̂n = P̂n/± Ln

(ii) the set [c1, c2]∪[c3, c4] is the maximal subset of R for which P̂n is the minimal polynomial

in the sense above.

Chebyshev was the first who considered a similar problem on one interval, and this was

how celebrated Chebyshev polynomials emerged in XIXth century. We are going to say a bit

more about original Chebyshev polynomials below. Let us recall a fundamental result about

generalized Chebyshev polynomials [6, 7].

Theorem 2.6.1 (A corollary of the Krein-Levin-Nudelman Theorem). [35] There exists a

polynomial Pn of degree n which satisfies a Pell equation on the union of intervals [c1, c2] ∪

[c3, c4] if and only if there exists an integer n1 such that the equation holds:

n1

∫ c3

c2

f̂(s)ds = n

∫ ∞
c4

f̂(s)ds, where f̂(s) =
(√√√√ 4∏

i=1

(s− ci)
)−1

.. (2.29)

The modulus of the polynomial reaches its maximal values Ln at the points ci : |Pn(ci)| = Ln.

In addition, there are exactly τ1 = n− n1 − 1 internal extremal points of the interval [c3, c4]

where |Pn| reaches the value Ln, and there are τ2 = n1 − 1 internal extremal points of [c1, c2]

with the same property.

Definition 2.6.1. [26] We call the pair (n, n1) the partition and (τ1, τ2) the signature of the

generalized Chebyshev polynomial Pn.
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Now we are going to formulate and prove the main result of this Section, which relates n1, n2

the numbers of reflections off relativistic ellipses and off relativistic hyperbolas respectively

with the partition and the signature of the related solution of a Pell equation.

Theorem 2.6.2. Given a periodic billiard trajectory with period n = n1 +n2, where n1 is the

number of reflections off relativistic ellipses, n2 the number of reflections off the relativistic

hyperbolas, then the partition corresponding to this trajectory is (n, n1). The corresponding

extremal polynomial p̂n of degree n has n1 − 1 internal extremal points in the first interval

and n− n1 − 1 = n2 − 1 internal extremal points in the second interval.

Proof. Recall that c1 < c2 < c3 < c4. From the Equation (2.5), one has:

n1

∫ 0

b0

f(x)dx+ n2

∫ 0

b1

f(x)dx = 0 (2.30)

where b0 is the largest negative value in {a,−b, γ} and b1 the smallest positive value in

{a,−b, γ}.

Case 1: Cγ is an ellipse and γ < 0, shown on Figure 2.25

−b aγ 0

1

γ

1

a
−1

b
0

c1 c4c2 c3

Figure 2.25: b0 = γ, b1 = a.
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Equation (2.30) is equivalent to

n1

∫ 0

γ

f(x)dx+ n1

∫ a

0

f(x)dx+ n2

∫ 0

a

f(x)dx− n1

∫ a

0

f(x)dx = 0

n1

∫ a

γ

f(x)dx+ (n1 + n2)

∫ 0

a

f(x)dx = 0

n1

∫ a

γ

f(x)dx = (n1 + n2)

∫ a

0

f(x)dx

Since the cycles around the cuts on the elliptic curve are homologous:∫ a

γ

f(x)dx =

∫ −b
−∞

f(x)dx

Hence Equation (2.30) is equivalent to

n1

∫ −b
−∞

f(x)dx = (n1 + n2)

∫ a

0

f(x)dx

Let s = 1
x
, c1 = 1

γ
, c2 = −1

b
,c3 = 0, c4 = 1

a
(see Figure 2.25) and substitute in the above to get

n1

∫ 0

− 1
b

f̃(s)ds = (n1 + n2)

∫ ∞
1
a

f̃(s)ds⇔ n1

∫ c3

c2

f̃(s)ds = (n1 + n2)

∫ ∞
c4

f̃(s)ds

The right hand side of the above equivalent relation is tagged as follows

n1

∫ c3

c2

f̃(s)ds = (n1 + n2)

∫ ∞
c4

f̃(s)ds (2.31)

Case 2: Cγ is an ellipse and γ > 0, shown on Figure 2.26

−b a0 γ

−1

b

1

γ
0

1

a

c1 c4c2 c3

Figure 2.26: b0 = −b, b1 = γ.
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Equation (2.30) is equivalent to

n1

∫ 0

−b
f(x)dx+ n1

∫ γ

0

f(x)dx+ n2

∫ 0

γ

f(x)dx− n1

∫ γ

0

f(x)dx = 0

n1

∫ γ

−b
f(x)dx+ (n1 + n2)

∫ 0

γ

f(x)dx = 0

n1

∫ γ

−b
f(x)dx = (n1 + n2)

∫ γ

0

f(x)dx

Since the cycles around the cuts on the elliptic curve are homologous:∫ γ

−b
f(x)dx =

∫ ∞
a

f(x)dx

Hence Equation (2.30) is equivalent to

n1

∫ ∞
a

f(x)dx = (n1 + n2)

∫ γ

0

f(x)dx

Let s = 1
x
, c1 = −1

b
, c2 = 0, c3 = 1

a
, c4 = 1

γ
, (see Figure 2.26) and substitute in the above to get

n1

∫ 1
a

0

f̃(s)ds = (n1 + n2)

∫ ∞
1
γ

f̃(s)ds⇔ Equation (2.31).

Case 3: i.) Cγ is a hyperbola and γ < −b, shown on Figure 2.27

γ a−b 0

−1

b

1

a

1

γ
0

c1 c4c2 c3

Figure 2.27: b0 = −b, b1 = a.
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Equation (2.30) is equivalent to

n1

∫ 0

−b
f(x)dx+ n1

∫ a

0

f(x)dx+ n2

∫ 0

a

f(x)dx− n1

∫ a

0

f(x)dx = 0

n1

∫ a

−b
f(x)dx+ (n1 + n2)

∫ 0

a

f(x)dx = 0

n1

∫ a

−b
f(x)dx = (n1 + n2)

∫ a

0

f(x)dx

Since the cycles around the cuts on the elliptic curve are homologous:∫ a

−b
f(x)dx =

∫ γ

∞
f(x)dx

Hence Equation (2.30) is equivalent to

n1

∫ γ

∞
f(x)dx = (n1 + n2)

∫ a

0

f(x)dx⇔ ()

Let s = 1
x
, c1 = −1

b
, c2 = 1

γ
c3 = 0, c4 = 1

a
, , (see Figure 2.27) and substitute in the above to get

n1

∫ 0

1
γ

f̃(s)ds = (n1 + n2)

∫ ∞
1
a

f̃(s)ds⇔ Equation (2.31).

Case 3: ii.) Cγ is a hyperbola and γ > a, shown on Figure 2.28

−b γ0 a

−1

b

1

a
0

1

γ

c1 c4c2 c3

Figure 2.28: b0 = −b, b1 = a.
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Equation (2.30) is equivalent to

n1

∫ 0

−b
f(x)dx+ n1

∫ a

0

f(x)dx+ n2

∫ 0

a

f(x)dx− n1

∫ a

0

f(x)dx = 0

n1

∫ a

−b
f(x)dx+ (n1 + n2)

∫ 0

a

f(x)dx = 0

n1

∫ a

−b
f(x)dx = (n1 + n2)

∫ a

0

f(x)dx

Since the cycles around the cuts on the elliptic curve are homologous:∫ a

−b
f(x)dx =

∫ ∞
γ

f(x)dx

Hence Equation (2.30) is equivalent to

n1

∫ ∞
γ

f(x)dx = (n1 + n2)

∫ a

0

f(x)dx

Let s = 1
x
, c1 = −1

b
, c2 = 0, c3 = 1

γ
, c4 = 1

a
, (see Figure 2.28) and substitute in the above to get

n1

∫ 1
γ

0

f̃(s)ds = (n1 + n2)

∫ ∞
1
a

f̃(s)ds⇔ Equation (2.31).

We see that in each case we managed to rewrite Equation (2.5) in an equivalent form

of Equation (2.29). Thus the proof of the Theorem follows by applying the version of

Krein-Levin-Nudelman Theorem listed above.

In particular, for n = 3, if the caustic Cγ is an ellipse with γ < 0, then n1 = 1. The

corresponding extremal polynomial p̂3 has the following presentation on Figure 2.29.
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1

−1

c1 c2 c3 c4

Figure 2.29: Representation of extremal polynomial p̂3 corresponding to n = 3, n1 = 1 and
γ < 0 .

We will provide explicit formulae of such polynomials in terms of the general Akhiezer

polynomial below. Such polynomials and partitions (3, 1) do not arise in the study of

Euclidean billiard trajectories.

In the case n = 3 with the caustic Cγ being an ellipse with γ > 0, we have n1 = 2. The

corresponding extremal polynomial p̂3 has the following presentation on Figure 2.30.

1

−1

c1 c2 c3 c3

Figure 2.30: Representation of extremal polynomial p̂3 corresponding to n = 3, n1 = 2 and
γ > 0 .

Such polynomials can be explicitly expressed in terms of the Zolatarev polynomials, see

below, since their partition is (3, 2), they appeared before in the Euclidean case.
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Let us recall that the celebrated Chebyshev polynomials Tn(x), n = 0, 1, 2, . . . defined

by the recursion:

T0(x) = 1, T1(x) = x, Tn+1(x) + Tn−1(x) = 2xTn(x), (2.32)

for n = 1, 2 . . . can be parameterized as

Tn(x) = cosnφ, x = cosφ, (2.33)

or, alternatively:

Tn(x) =
1

2

(
vn +

1

vn

)
, x =

1

2

(
v +

1

v

)
. (2.34)

Denote L0 = 1 and Ln = 21−n, n = 1, 2, . . . . Then the Chebyshev Theorem states that the

polynomials LnTn(x) are characterized as the solutions of the following min-max problem:

find the polynomial of degree n with the leading coefficient equal 1 which minimizes the

uniform norm on the interval [−1, 1].

2.6.2 Zolotarev polynomials

Following the ideas of Chebyshev, his student Zolotarev posed and solved a handful of

problems, including the following [6, 26]:

For the given real parameter σ and all polynomials of degree n of the form:

p(x) = xn − nσxn−1 + p2x
n−2 + . . . pn, (2.35)

find the one with the minimal uniform norm on the interval [−1, 1].

Denote this minimal uniform norm as Ln = L(σ, n).

For σ > tan2(Π/2n), the solution zn has the following property ([6], p. 298, Fig. 9):

Π1 – The equation zn(x) = Ln has n − 2 double solutions in the open interval (−1, 1)

and simple solutions at −1, 1, α, β, where 1 < α < β, while in the union of the intervals

[−1, 1] ∪ [α, β] the inequality z2n ≤ Ln is satisfied and zn > Ln in the complement.
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The polynomials zn are given by the following explicit formulae:

zn = `n

(
v(u)n +

1

v(u)n

)
, x =

sn2u+ sn2K
n

sn2u− sn2K
n

, (2.36)

where

`n =
1

2n

( √
κθ21(0)

H1

(
K
n

)
θ1
(
K
n

))2n

, v(u) =
H
(
K
n
− u
)

H
(
K
n

+ u
)

and

σ =
2snK

n

cnK
n

dnK
n

(
1

sn2K
n

−
θ′
(
K
n

)
θ
(
K
n

) )− 1.

Formulae for the endpoints of the second interval are

α =
1 + κ2sn2K

n

dn2K
n

, β =
1 + sn2K

n

cn2K
n

, (2.37)

with

κ2 =
(α− 1)(β + 1)

(α + 1)(β − 1)
.

According to Cayley’s condition for n = 3 and λ0 ∈ (0, a) we have

λ0 =
ab(a− b) + 2ab

√
a2 + ab+ b2

(a+ b)2
.

In order to derive the formulas for p̂3 in terms of z3, let us construct an affine transformation:

h : [−1, 1] ∪ [α, β]→ [−b−1, 0] ∪ [a−1, λ−10 ], h(x) = âx+ b̂.

We immediately get

â = −b̂, â =
1

2b

and

α = 2t+ 1, (2.38)

λ0 =
2b

β − 1
(2.39)

where t = b/a.

Now we get the following
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Proposition 2.6.1. The polynomial p̂3 can be expressed through the Zolotarev polynoamil

z3 up to a nonessential constant factor:

p̂3(s) ∼ z3(2bs+ 1).

To verify the proposition, we should certify that the definition of α and β from Equa-

tion (2.37) for n = 3 and the relations Equation (2.38), Equation (2.39) are compatible with

the formula for λ0 we got before as Cayley condition, see Equation (2.10)

In order to do that we will use well-known identities for the Jacobi elliptic functions:

sn2u+ cn2u = 1, (2.40)

κ2sn2u+ dn2u = 1, (2.41)

sn(u+ v) =
snucn vdn v + sn vcnudnu

1− κ2sn2usn2v
, (2.42)

sn(K − u) =
cnu

dnu
. (2.43)

In particular, we get

sn

(
2K

3

)
=

2sn K
3

cn K
3

dn K
3

1− κ2sn4K
3

, (2.44)

sn

(
2

3
K

)
= sn

(
K − K

3

)
=

cn K
3

dn K
3

. (2.45)

Let us denote

Y = sn

(
K

3

)
,

then from the previous two relations we get as in [26]:

1− 2Y + 2κ2Y 3 − κ2Y 4 = 0.

We can express κ in terms of Y and get:

κ2 =
2Y − 1

Y 3(2− Y )
. (2.46)
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By plugging the last relation into Equation (2.37) for n = 3 we get

α =
Y 2 − 4Y + 1

Y 2 − 1
.

Since, at the same time from the Cayley condition we have α = 2t+ 1, with t = b/a, we can

express Y in terms of t:

tY 2 + 2Y − (t+ 1) = 0,

and

Y =
−1±

√
1 + t+ t2

t
. (2.47)

We plug the last relation into the formula for β from Equation (2.37) for n = 3

β =
1 + Y 2

1− Y 2
,

and we get another formula for β in terms of t:

β =
2t2 + t+ 2−±2

√
t2 + t+ 1

−t− 2± 2
√
t2 + t+ 1

. (2.48)

We see that the last formula with the choice of the + sign corresponds to a formula for β from

Equation (2.39). This formula relates β and λ0 from the Caley condition Equation (2.10).

From Equation (2.48), taking the positive sign in β yields,

β =
2t2 + t+ 2− 2

√
t2 + t+ 1

−t− 2 + 2
√
t2 + t+ 1

. (2.49)

Substituting Equation (2.49) into Equation (2.39) produces

λ0 =
2b

β − 1
= b

−2− t+ 2
√

1 + t+ t2

2 + t+ t2 − 2
√

1 + t+ t2
(2.50)

But from the Cayley formula Equation (2.10)

λ0 =
ab

(a+ b)2
(a− b+ 2

√
a2 + ab+ b2)
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Knowing that t = b
a
, the equation is equivalent to

λ0 = b
1− t+ 2

√
1 + t+ t2

(1 + t)2
(2.51)

In order to show that the two expressions in Equation (2.50) and Equation (2.51) are identical,

we simplify their difference that yields zero.This finalizes the verification. (One can observe

that the − sign option from the formula Equation (2.48) would correspond to the − sign in

the formula for λ0 Equation (2.11).

Among the polynomials p̂n the property of type Π1 can be attributed only to those with

n = 2k + 1 and winding numbers (2k + 1, 2k), in other words to those with the signature

(0, 2k − 1).

2.6.3 Akhiezer polynomials on symmetric intervals [−1,−α] ∪ [α, 1]

The problem of finding polynomials of degree n with the leading coefficient 1 and minimizing

the uniform norm on the union of two symmetric intervals [−1,−α]∪[α, 1], for given 0 < α < 1

appeared to be of a significant interest in radio-techniques applications. Following the ideas of

Chebyshev and Zolotarev, Akhiezer derived in 1928 the explicit formulae for such polynomials

An(x;α) with the deviation Ln(α) [6, 7].

These formulas are specially simple in the case of even degrees n = 2m, when Akhiezer

polynomials A2m are obtained by a quadratic substitution from the Chebyshev polynomial

Tm:

A2m(x;α) =
(1− α2)m

22m−1 Tm

(
2x2 − 1− α2

1− α2

)
, (2.52)

with

L2m(α) =
(1− α2)m

22m−1 .

We are going to construct p̂4(s) up to a nonessential constant factor as a composition of

A4(x;α) for certain α and an affine transformation. We are going to study the possibility to
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have an affine transformation

g : [−1,−α] ∪ [α, 1]→ [−b−1, λ−10 ] ∪ [0, a−1], g(x) = âx+ b̂,

which corresponds to the case when λ0 < −b ie a > b. For n = 4 such caustic is Equation (2.13)

λ0 =
ab

b− a
.

From g(−1) = −b−1, g(1) = a−1 we get

â =
a+ b

2ab
, b̂ =

b− a
2ab

.

Then, from g(α) = 0 we get

α =
a− b
a+ b

.

Finally, we calculate:

g(−α) =
a+ b

2ab

b− a
a+ b

+
b− a
2ab

=
b− a
ab

.

We recognize λ−10 on the right-hand side of the last relation.

This proves the following:

Proposition 2.6.2. In this case the polynomial p̂4(s) is equal up to a constant multiplier to

p̂4(s) ∼ T2(2abs
2 + 2(a− b)s+ 1), (2.53)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial and x = 1
a+b

(
2abs+ a− b

)
.

Let us study the possibility to have an affine transformation

f : [−1,−α] ∪ [α, 1]→ [−b−1, 0] ∪ [λ−10 , a−1], f(x) = âx+ b̂,

which corresponds to the case when λ0 > a ie a < b. For n = 4 such caustic is

λ0 =
ab

b− a
.
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From f(−1) = −b−1, f(1) = a−1 we get

â =
a+ b

2ab
, b̂ =

b− a
2ab

.

Then, from f(−α) = 0 we get

α =
b− a
a+ b

.

Finally, we calculate:

f(α) =
a+ b

2ab

b− a
a+ b

+
b− a
2ab

=
b− a
ab

.

We recognize λ−10 on the right-hand side of the last relation.

This proves the following proposition which is the same as Equation (2.53).

Proposition 2.6.3. In this case the polynomial p̂4(s) is equal up to a constant multiplier to

p̂4(s) ∼ T2(2abs
2 + 2(a− b)s+ 1), (2.54)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial and x = 1
a+b

(
2abs+ a− b

)
.

Let us study the possibility to have an affine transformation

h : [−1,−α] ∪ [α, 1]→ [λ−10 ,−b−1] ∪ [0, a−1], h(x) = âx+ b̂,

which corresponds to the case when λ0 ∈ (−b, 0). For n = 4 such caustic is

λ0 = − ab

a+ b
.

From h(1) = a−1, h(α) = 0 we get

â =
1

1− α
1

a
, b̂ = − α

1− α
1

a
.

Then, from h(−α) = −1
b

we get

α

1− α
=

a

2b
.
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ie

α =
a

a+ 2b
.

Finally, we calculate:

h(−1) = −
(
1 +

α

1− α
)1

a
− α

1− α
1

a
,

h(−1) = −
(
1 +

a

2b

)1

a
− a

2b

1

a
= −1

a
− 1

b
= −a+ b

ab
.

We recognize λ−10 on the right-hand side of the last relation.

This proves the following:

Proposition 2.6.4. In this case the polynomial p̂4(s) is equal up to a constant multiplier to

p̂4(s) ∼ T2

(8a2b2s2 + 8a2bs− 4b(a+ b)

4b(a+ b)

)
, (2.55)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial and x = 1
a+2b

(
2abs+ a

)
.

Let us study the possibility to have an affine transformation

l : [−1,−α] ∪ [α, 1]→ [−b−1, 0] ∪ [a−1, λ−10 ], l(x) = âx+ b̂,

which corresponds to the case when λ0 ∈ (0, a). For n = 4 such caustic is

λ0 =
ab

a+ b
.

From l(−1) = −b−1, l(−α) = 0 we get

â =
1

1− α
1

b
, b̂ =

α

1− α
1

b
.

Then, from l(α) = 1
a

we get

α

1− α
=

b

2a
.

ie

α =
b

b+ 2a
.
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Finally, we calculate:

l(1) =
(
1 +

α

1− α
)1

b
+

α

1− α
1

b
,

l(1) =
(
1 +

b

2a

)1

b
+

b

2a

1

b
=

1

a
+

1

b
=
a+ b

ab
.

We recognize λ−10 on the right-hand side of the last relation.

This proves the following:

Proposition 2.6.5. In this case the polynomial p̂4(s) is equal up to a constant multiplier to

p̂4(s) ∼ T2

(8a2b2s2 − 8ab2s− 4a(a+ b)

4a(a+ b)

)
, (2.56)

where T2(x) = 2x2 − 1 is the second Chebyshev polynomial and x = 1
2a+b

(
2abs− b

)
.

2.6.4 General Akhiezer polynomials on unions of two intervals

Following Akhiezer [3, 4, 5], let us consider the union of two intervals [−1, α] ∪ [β, 1], where

α = 1− 2sn2
(m
n
K
)
, β = 2sn2

(
n−m
n

K

)
− 1. (2.57)

Define

TAn(x,m, κ) = L

(
vn(u) +

1

vn(u)

)
, (2.58)

where

v(u) =
H
(
u− m

n
K
)

H
(
u+ m

n
K
) ,

x =
sn2(u)cn2

(
m
n
K
)

+ cn2(u)sn2
(
m
n
K
)

sn2(u)− sn2
(
m
n
K
) ,

and

L =
1

2n−1

(
θ(0)θ1(0)

θ
(
m
n
K
)
θ1
(
m
n
K
)) , κ2 =

2(β − α)

(1− α)(1 + β)
.

Here, θi, i = 0, 1, 2, 3, denote the standard Riemann theta functions, see for example [7] for

more details. Akhiezer proved the following result:
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Theorem 2.6.3 (Akhiezer). (a) The function TAn(x,m, κ) is a polynomial of degree n in

x with the leading coefficient 1 and the second coefficient equal to −nτ1, where

τ1 = −1 + 2
sn
(
m
n
K
)
cn
(
m
n
K
)

dn
(
m
n
K
) (

1

sn(2m
n
K)
−
θ′
(
m
n
K
)

θ
(
m
n
K
) ) .

(b) The maximum of the modulus of Tn on the union of the two intervals [−1, α] ∪ [β, 1] is

L.

(c) The function Tn takes values ±L with alternating signs at µ = n−m+ 1 consecutive

points of the interval [−1, α] and at ν = m+ 1 consecutive points of the interval [β, 1].

In addition

Tn(α,m, κ) = Tn(β,m, κ) = (−1)mL,

and for any x ∈ (α, β), it holds:

(−1)mTn(x,m, κ) > L.

(d) Let F be a polynomial of degree n in x with the leading coefficient 1, such that:

i.) max|F (x)| = L for x ∈ [−1, α] ∪ [β, 1];

ii) F(x) takes values ±L with alternating signs at n-m+1 consecutive points of the interval

[−1, α] and at m+1 consecutive points of the interval [β, 1].

Then F (x) = Tn(x,m, κ).

Let us determine the affine transformations when the caustic is an ellipse.

Case λ ∈ (−b, 0)

For

h : [−1, α] ∪ [β, 1]→ [λ−10 ,−b−1] ∪ [0, a−1], h(x) = âx+ b̂,

98



we get

â =
1

β − α
1

b
, b̂ =

−β
β − α

1

b
,

1− β
β − α

=
b

a
.

Thus:

λ =
β − 1

1 + β
a =

α− β
β + 1

b (2.59)

Example 2.6.1. For n = 3 and m = 2. From Equation (2.57), one gets:

α = 1− 2sn22

3
K, β = 2sn2K

3
− 1.

It follows that:

b

a
= t =

1− β
β − α

=
1− sn2K

3

sn2 2
3
K + sn2K

3
− 1

, (2.60)

Thus

λ = b
α− β
β + 1

= b
1− sn2K

3
− sn2 2

3
K

sn2K
3

. (2.61)

From the addition formula:

sn
2

3
K = sn(K − K

3
) =

snKcn−K
3
dn−K

3
+ sn−K

3
cnKdnK

1− κ2sn2−K
3
sn2K

,

Hence

sn22

3
K =

1− sn2K
3

1− κ2sn2K
3

,

ie

sn2K

3
=

sn2 2
3
K − 1

κ2sn2 2
3
K − 1

.

Let snK
3

= Z, from Equation (2.46)

κ2 =
2Z − 1

Z3(2− Z)
.

Also

α = −2
1− Z2

1−KZ2
+ 1, (2.62)
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simplifies to

α = 2Z2 − 4Z + 1, (2.63)

and

β = 2Z2 − 1.

Equation Equation (2.60) implies that

t =
1− Z2

2Z − 1
. (2.64)

Denote

q =
α− β
β + 1

,

therefore

q =
1− 2Z

Z2
.

Thus, we have two expressions for λ. One is from the Cayley condition Equation (2.11) and

the other is from Equation (2.59). We want to show that these two expressions are identical

that is

b
α− β
β + 1

= − ab

(a+ b)2
(−a+ b+ 2

√
a2 + ab+ b2) (2.65)

In order to do so, we first expressed both the left hand side and the right hand side of the

above in terms of t = b
a

and next transform both side in terms of Z and showed that the

L.H.S and the R.H.S yields the same expression.

q =
1− t− 2

√
1 + t+ t2

(1 + t)2

q(1 + t)2 + t− 1 = −2
√

1 + t+ t2

[q(1 + t)2 + t− 1]2 = 4(1 + t+ t2)2
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which is equivalent to

Z2 − Z + 1

2Z − 1
=
Z2 − Z + 1

2Z − 1

which evaluates to true, therefore Equation (2.65) holds.

Case λ ∈ (0, a)

For

l : [−1, α] ∪ [β, 1]→ [−b−1, 0] ∪ [a−1, λ−1], l(x) = âx+ b̂,

we get

â =
1

α + 1

1

b
, b̂ =

−α
α + 1

1

b
,
α + 1

β − α
=
a

b
.

Thus

λ =
α + 1

1− α
b (2.66)

Example 2.6.2. For n = 3, and m = 1. From Equation (2.57), one gets:

α = 1− 2sn2K

3
, β = 2sn22K

3
− 1.

b

a
= t =

β − α
α + 1

=
sn2 2

3
K + sn2K

3
− 1

1− sn2K
3

(2.67)

Thus

λ =
1− sn2K

3

sn2K
3

b.

From the addition formula:

sn
2K

3
= sn(K − K

3
) =

snKcn−K
3
dn−K

3
+ sn−K

3
cnKdnK

1− κ2sn2−K
3
sn2K

Hence

sn22

3
K =

1− sn2K
3

1− κ2sn2K
3
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Let snK
3

= Z, from Equation (2.46)

κ2 =
2Z − 1

Z3(2− Z)
.

Also

β = 2
1− Z2

1−KZ2
− 1, (2.68)

Simplifies to

β = −2Z2 + 4Z − 1, (2.69)

And

α = 1− 2Z2.

Equation Equation (2.67) implies that

t = −2Z − 1

Z2 − 1
, (2.70)

Denote

p =
1 + α

1− α

Therefore

p =
1− Z2

Z2
.

Thus, we have two expressions for λ. One is from the Cayley condition Equation (2.10) and

the other is from Equation (2.66). We want to show that these two expressions are identical

that is

b
1 + α

1− α
=

ab

(a+ b)2
(a− b+ 2

√
a2 + ab+ b2), (2.71)

In order to do so, we first expressed both the left hand side and the right hand side of the

above in terms of t = b
a

and next transform both side in terms of Z and showed that the

L.H.S and the R.H.S yields the same expression.

p =
1− t− 2

√
1 + t+ t2

(1 + t)2

102



p(1 + t)2 + t− 1 = 2
√

1 + t+ t2

[p(1 + t)2 + t− 1]2 = 4(1 + t+ t2)2

which is equivalent to

Z2 − Z + 1

2Z − 1
=
Z2 − Z + 1

2Z − 1

which evaluates to true, therefore Equation (2.71) holds.

Proposition 2.6.6. For n = 3 and λ ∈ (−b, 0), the polynomial p̂3 is up to a nonessential

factor equal to:

p̂3 ∼ TA3

(
2a(1− sn2K

3
)s+ 2sn2K

3
− 1; 2, κ

)
,

For n = 3 and λ ∈ (0, a), the polynomial p̂3 is up to a nonessential factor equal to:

p̂3 ∼ TA3

(
2b(1− sn2K

3
)s+ 1− 2sn2K

3
; 1, κ

)
Now, using the Akhiezer Theorem part (c), see Theorem 2.6.3, one can compare and see

that the number of internal extremal points coincides with n1 − 1 and n2 − 1 as proposed in

Theorem 2.6.2. These numbers match with Figure 2.29 and Figure 2.30 and the Table from

Section 2.2.1.

2.7 Periodic light-like trajectories and Chebyshev polynomials

Light-like billiard trajectories, by definition, have at each point the velocity v satisfying

〈v, v〉 = 0. Their caustic is the conic at infinity C∞. Since successive segments of such

trajectories are orthogonal to each other, the light-like trajectories can close only after an

even number of reflections. In ([23],Theorem 3.3), it is proved that a light-like billiard

trajectory within E is periodic with even period n if and only if

arccot

√
a

b
∈
{
kπ

n
| 1 ≤ k <

n

2
,
(
k,
n

2

)
= 1

}
. (2.72)
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For k not being relatively prime with n/2, the corresponding light-like trajectories are also

periodic, and their period is a divisor of n.

Applying the limit γ → +∞ in Corollary 2.5.1, we get the following proposition.

Proposition 2.7.1. A light-like trajectory within ellipse E is periodic with period n = 2m if

and only if there exist real polynomials p̂m(s) and q̂m−1(s) of degrees m and m−1 respectively

if and only if:

• p̂2m(s)−
(
s− 1

a

)(
s+

1

b

)
q̂2m−1(s) = 1; and

• q̂m−1(0) = 0.

The first condition from Proposition 2.7.1 is a standard Pell’s equation describing extremal

polynomials on one interval [−1/b, 1/a], thus polynomials p̂m can be obtained as Chebyshev

polynomials composed with an affine transformation [−1/b, 1/a]→ [−1, 1]. The additional

condition q̂m−1(0) = 0, which is equivalent to p̂′m(0) = 0 implies an additional constraint on

parameters a and b. We have the following

Proposition 2.7.2. • p̂m(s) = Tm

(
2ab

a+ b
s+

a− b
a+ b

)
, where Tm is defined by (2.33);

• the condition q̂m−1(0) = 0 is equivalent to (2.72).

Proof. The increasing affine transformation h : [−1/b, 1/a]→ [−1, 1] is given by the formula

h(s) = (2abs+ a− b)/(a+ b). The internal extremal points of the Chebyshev polynomial Tm

of degree m on the interval [−1, 1] are given by

xk = cos

(
k

m
π

)
, k = 1, . . . ,m− 1,

according to the formula (2.33). The second item follows from h(0) = xk. This is equivalent

to

a− b
a+ b

∈
{

cos

(
k

m
π

)
|k = 1, . . . ,m− 1

}
,

which is equivalent to (2.72).
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CHAPTER 3

THE CLASSIFICATION OF HYPERQUADRICS AND FAMILY OF

CONFOCAL QUADRICS IN FOUR DIMENSIONAL MINKOWSKI SPACE

3.1 Classification of hypersurfaces of degree two in four dimensional space

Let us consider the following two group of surfaces in which A,B,C and D are positive

numbers.

Ax21 + Bx22 + Cx23 + Dx24 + 1 = 0, (3.1)

Ax21 + Bx22 + Cx23 − Dx24 + 1 = 0, (3.2)

Ax21 + Bx22 − Cx23 − Dx24 + 1 = 0, (3.3)

Ax21 − Bx22 − Cx23 − Dx24 + 1 = 0, (3.4)

−Ax21 − Bx22 − Cx23 − Dx24 + 1 = 0, (3.5)

and

Ax21 + Bx22 + Cx23 + Dx24 − 1 = 0, (3.6)

Ax21 + Bx22 + Cx23 − Dx24 − 1 = 0, (3.7)

Ax21 − Bx22 − Cx23 − Dx24 − 1 = 0, (3.8)

Ax21 − Bx22 − Cx23 − Dx24 − 1 = 0, (3.9)

−Ax21 − Bx22 − Cx23 − Dx24 − 1 = 0. (3.10)

Let us classify each of them to type form. We applied the classification technique developed

in the section 5 of [11].

Surface Equation (3.1), ∆ > 0.

Let’s find the reduced form of the surface Equation (3.1). The quartic equation is of the form

t4 − J0t3 + J1t
2 − J2t+ A55 = 0,

105



where

J0 = A+B + C +D,

J1 = AB + AC + AD +BC +BD + CD,

J2 = ABC + ABD +BCD + ACD,

∆ = ABCD,

A55 = ABCD.

From what is above, it follows that

∆

A55
=
ABCD

ABCD
= 1,

and that A, B, C and D are the roots of the discriminating quartic equation, hence the

surface Equation (3.1) is of the form

Ax21 +Bx22 + Cx23 +Dx24 +
∆

A55
= 0,

Surface Equation (3.2), ∆ < 0.

Let’s find the reduced form of the surface (Equation (3.2)).The quartic equation is of the

form

t4 − J0t3 + J1t
2 − J2t+ A55 = 0,

J0 = A+B + C −D,

J1 = AB + AC − AD +BC −BD − CD,

J2 = ABC − ABD −BCD − ACD,

∆ = −ABCD,

A55 = −ABCD.

From what is above, it follows that

∆

A55
=
ABCD

ABCD
= 1,
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and that A, B, C and −D are the roots of the discriminating quartic equation, hence the

surface (Equation (3.2)) is of the form

Ax21 +Bx22 + Cx23 −Dx24 +
∆

A55
= 0,

Surface Equation (3.3), ∆ < 0.

Let’s find the reduced form of the surface Equation (3.3).The quartic equation is of the form

t4 − J0t3 + J1t
2 − J2t+ A55 = 0,

J0 = A+B − C −D,

J1 = AB − AC − AD −BC −BD + CD,

J2 = −ABC − ABD +BCD + ACD,

∆ = ABCD,

A55 = ABCD.

From what is above, it follows that

∆

A55
=
ABCD

ABCD
= 1,

and that A, B, −C and −D are the roots of the discriminating quartic equation, hence the

surface Equation (3.2) is of the form

Ax21 +Bx22 + Cx23 −Dx24 +
∆

A55
= 0,

Similar reductions were performed on the remaining surfaces and the results are put into two

group of surfaces, those of negative discriminant and those of positive discriminant. In fact,

the given surfaces are already in the reduced form, we just need to determine their type.
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Surfaces of positive discriminant and their types

Ax21 + Bx22 + Cx23 + Dx24 +
∆

ABCD
= 0 is of type 1,

Ax21 + Bx22 − Cx23 − Dx24 +
∆

ABCD
= 0 is of type 3,

−Ax21 − Bx22 − Cx23 − Dx24 +
∆

ABCD
= 0 is of type 5,

Ax21 + Bx22 + Cx23 − Dx24 − ∆

ABCD
= 0 is of type 2,

Ax21 − Bx22 − Cx23 − Dx24 − ∆

ABCD
= 0 is of type 4.

Surfaces of negative discriminant and their types

Ax21 + Bx22 + Cx23 − Dx24 − ∆

ABCD
= 0 is of type 4,

Ax21 − Bx22 − Cx23 − Dx24 − ∆

ABCD
= 0 is of type 2,

Ax21 + Bx22 + Cx23 + Dx24 +
∆

ABCD
= 0 is of type 5,

Ax21 + Bx22 − Cx23 − Dx24 +
∆

ABCD
= 0 is of type 3,

−Ax21 − Bx22 − Cx23 − Dx24 +
∆

ABCD
= 0 is of type 1.

ie

Ax21 + Bx22 + Cx23 + Dx24 + 1 = 0 is of type 1, (3.11)

Ax21 + Bx22 + Cx23 − Dx24 − 1 = 0 is of type 2, (3.12)

Ax21 + Bx22 − Cx23 − Dx24 + 1 = 0 is of type 3, (3.13)

Ax21 − Bx22 − Cx23 − Dx24 − 1 = 0 is of type 4, (3.14)

−Ax21 − Bx22 − Cx23 − Dx24 + 1 = 0 is of type 5. (3.15)
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and

−Ax21 − Bx22 − Cx23 − Dx24 + 1 = 0 is of type 1, (3.16)

Ax21 − Bx22 − Cx23 − Dx24 − 1 = 0 is of type 2, (3.17)

Ax21 + Bx22 − Cx23 − Dx24 + 1 = 0 is of type 3, (3.18)

Ax21 + Bx22 + Cx23 − Dx24 − 1 = 0 is of type 4, (3.19)

Ax21 + Bx22 + Cx23 + Dx24 + 1 = 0 is of type 5. (3.20)

The remaining chapters will utilize the following result in order to classify hyperquadrics.

−Ax21 − Bx22 − Cx23 − Dx24 + 1 = 0 is of type 1, (3.21)

Ax21 + Bx22 + Cx23 − Dx24 − 1 = 0 is of type 2, (3.22)

Ax21 + Bx22 − Cx23 − Dx24 + 1 = 0 is of type 3, (3.23)

Ax21 − Bx22 − Cx23 − Dx24 − 1 = 0 is of type 4, (3.24)

Ax21 + Bx22 + Cx23 + Dx24 + 1 = 0 is of type 5. (3.25)

where A, B, C and D are all positive numbers.

3.2 Family of Confocal Quadrics in Four Dimensional Minkowski space

The four dimensional Minkowski space has two signatures: (3, 1) and (2, 2). The family of

confocal quadrics are studied in both E3,1 and E2,2.

3.2.1 The case of signature (3,1)

Let us consider the four dimensional Minkowski space E3,1. A general family of confocal

hyperquadrics in E3,1 is given by
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(Rλ) :
x2

a− λ
+

y2

b− λ
+

z2

c− λ
+

w2

d+ λ
= 1, λ ∈ R and a > b > c > 0, d > 0. (3.26)

The family (Rλ) contains the following quadrics of five geometric types:

• For λ ∈ (−∞,−d) : the family (Rλ) is of type 2 oriented along the w-axis.

• For λ ∈ (−d, c) : the family (Rλ) is of type 1.

• For λ ∈ (c, b) : the family (Rλ) is of type 2 oriented along the z-axis.

• For λ ∈ (b, a) : the family (Rλ) is of type 3.

• For λ ∈ (a,∞) : the family (Rλ) is of type 4.

In addition, there are five degenerate quadrics: Ra, Rb, Rc, R−d and R∞ that are the

hyperplane x = 0, y = 0, z = 0, w = 0 and the hyperplane at infinity respectively. The

following quadrics are single out in the coordinate hyperplane.

• Hyperboloid of two sheets oriented along the w-axis Ryzw
a : − y2

a− b
− z2

a− c
+

w2

a+ d
= 1

in the hyperplane x = 0.

• Hyperboloid of one sheet oriented along the z-axis Rxzw
b :

x2

a− b
− z2

b− c
+

w2

b+ d
= 1

in the hyperplane y = 0.

• Ellipsoid Rxyw
c :

x2

a− c
+

y2

b− c
+

w2

c+ d
= 1 in the hyperplane z = 0.

• Ellipsoid Rxyz
−d :

x2

a+ d
+

y2

b+ d
+

w2

c+ d
= 1 in the hyperplane w = 0.

Tropic curves on quadrics in four dimensional Minkowski space and discriminant

set

Tropic curves are set of points at which the metrics induced on the tangent hyperplane are
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degenerate.

Tangent hyperplane at (x0, y0, z0, w0) of (Rλ) is given by

xx0
a− λ

+
yy0
b− λ

+
zz0
c− λ

− ww0

d+ λ
= 1. (3.27)

The induced metric is degenerate if and only if the parallel hyperplane that contains the

origin is tangential to x2 + y2 + z2 − w2 = 0 ie:

x20
(a− λ)2

+
y20

(b− λ)2
+

z20
(c− λ)2

− w2
0

(d+ λ)2
= 1. (3.28)

Proposition 3.2.1. The tropical manifold on (Rλ) are the intersection of the hyperquadrics

with the hypercone

x2

(a− λ)2
+

y2

(b− λ)2
+

z2

(c− λ)2
− w2

(d+ λ)2
= 1. (3.29)

Proposition 3.2.2. The union of the tropical manifold on all hyperquadrics Equation (3.26) is

a union of two hypersurfaces Σ+ and Σ−, which can be respectively parametrically represented

as



x =
a− λ√
a+ d

ρsin(ψ)cos(θ),

y =
b− λ√
b+ d

ρsin(ψ)sin(θ),

z =
c− λ√
c+ d

ρcos(ψ),

w = ±(d+ λ)

√
ρ2sin2(ψ)cos2(θ),

a+ d
+
ρ2sin2(ψ)sin2(θ)

b+ d
+
ρ2cos2(ψ)

c+ d
,

(3.30)

where ρ > 0, θ ∈ [0, 2π), λ ∈ R.

The intersection of the hypersurface in the hyperplane w = 0 is

x2

a+ d
+

y2

b+ d
+

z2

c+ d
= ρ2.
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Lemma 3.2.1. The tropical manifolds of the hyperquadric (Rλ) represent exactly the locus

of points (x, y, z, w) for which the equation

(Rλ) :
x2

a− λ
+

y2

b− λ
+

z2

c− λ
+

w2

d+ λ
= 1, has λ0 as multiple root. (3.31)

Proof. The Equation (3.31) is equivalent to

(a− λ)(b− λ)(c− λ)(d+ λ) = (b− λ)(c− λ)(d+ λ)x2 + (a− λ)(c− λ)(d+ λ)y2

+ (a− λ)(b− λ)(d+ λ)z2 + (a− λ)(b− λ)(c− λ)w2,

which is equivalent to:

λ4 + p3λ
3 + p2λ

2 + p1λ+ p0 = 0, (3.32)

where

p3 = x2 + y2 + z2 − w2 − a− b− c+ d,

p2 =

x2(−b− c+ d) + y2(−a− c+ d) + z2(−a− b+ d)− w2(a+ b+ c) + (bc+ ab+ ac−

bd− dc− ad),

p1 =

x2(bc− bd− cd) + y2(ac− ad− cd) + z2(−bd+ ab− ad)− w2(−bc− ab− ac)

+ (−abc+ dbc+ adb+ adc),

p0 = x2(dbc) + y2(acd) + z2(abd) + w2(abd)− (abcd).

Equation (3.32) has λ0 = 0 as triple zero if and only if p0 = p1 = p2 = 0. This is equivalent

to belonging to (R0).
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Additionally, we have:

p1 = x2(bc− bd− cd) + y2(ac− ad− cd) + z2(−bd+ ab− ad)− w2(−bc− ab− ac)

+ (−abc+ dbc+ adb+ adc),

= x2
(abc− abd− acd)

a
+ y2

(abc− abd− bcd)

b
+ z2

(−bcd+ abc− acd)

c

− w2 (bcd+ abd+ acd)

d
+ (−abc+ dbc+ abd+ acd),

= x2
abc− abd− acd− dbc+ dbc

a
+ y2

abc− abd− bcd− adc+ adc

b

+ z2
−bcd+ abc− acd− adb+ adb

c
− w2abc− abc+ bcd+ abd+ acd

d

− (abc− adb− adc− dbc)

= (abc− abd− acd− bcd)[
x2

a
+
y2

b
+
z2

c
+
w2

d
− 1] + x2

dbc

a
+ y2

adc

b
+ z2

adb

c
− w2abc

d
,

= (abc− abd− acd− bcd)[
x2

a
+
y2

b
+
z2

c
+
w2

d
− 1] + abcd[

x2

a2
+
y2

b2
+
z2

c2
− w2

d2
].

3.2.2 The case of signature (2,2)

We consider the four dimensional Minkowski space E3,1. A general family of confocal

hyperquadrics in E2,2 is given by:

(Sλ) :
x2

a− λ
+

y2

b− λ
+

z2

c+ λ
+

w2

d+ λ
= 1, λ ∈ R and a > b > 0, d > c > 0. (3.33)

The family (Sλ) contains the following quadrics of five geometric types:

• For λ ∈ (−∞,−c) : the family (Sλ) is of type 3.

• For λ ∈ (−c,−d) : the family (Sλ) is of type 2 oriented along w-axis.

• For λ ∈ (−d, b) : the family (Sλ) is of type 1.
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• For λ ∈ (b, a) : the family (Sλ) is of type 2 oriented along y-axis.

• For λ ∈ (a,∞) : the family (Sλ) is of type 4.

In addition, there are five degenerate quadrics: Sa, Sb, Sc, S−d and S∞ that are the

hyperplane x = 0, y = 0, z = 0, w = 0 and the hyperplane at infinity respectively. The

following quadrics are single out in the coordinate hyperplane.

• Hyperboloid of one sheet oriented along the y-axis S yzw
a : − y2

a− b
+

z2

a+ c
+

w2

a+ d
= 1

in the hyperplane x = 0.

• Ellipsoid S xzw
b :

x2

a− b
+

z2

b+ c
+

w2

b+ d
= 1 in the hyperplane y = 0.

• Ellipsoid S xyw
c :

x2

a+ c
+

y2

b+ c
+

w2

d− c
= 1 in the hyperplane z = 0.

• Hyperboloid of one sheet along the y-axis S xyz
−d :

x2

a+ d
+

y2

b+ d
− z2

d− c
= 1 in the

hyperplane w = 0.

Tropic curves on quadrics in four dimensional Minkowski space and discrimi-

nant set

Tropic curves are set of points at which the metrics induced on the tangent hyperplane are

degenerate.

Tangent hyperplane at (x0, y0, z0, w0) of (Rλ) is given by

xx0
a− λ

+
yy0
b− λ

− zz0
c+ λ

− ww0

d+ λ
= 1. (3.34)

The induced metric is degenerate if and only if the parallel hyperplane that contains the

origin is tangential to x2 + y2 − z2 − w2 = 0 ie

x20
(a− λ)2

+
y20

(b− λ)2
− z20

(c+ λ)2
− w2

0

(d+ λ)2
= 1. (3.35)

114



Proposition 3.2.3. The tropic curves on (Rλ) are the intersection of the hyperquadrics

with the hypercone

x2

(a− λ)2
+

y2

(b− λ)2
− z2

(c+ λ)2
− w2

(d+ λ)2
= 1. (3.36)

Proposition 3.2.4. The union of the tropical manifold on all hyperquadrics Equation (3.26) is

a union of two hypersurfaces Σ+ and Σ−, which can be respectively parametrically represented

as 

x =
a− λ√
a+ d

ρsin(ψ)cos(θ),

y =
b− λ√
b+ d

ρsin(ψ)sin(θ),

z =
c+ λ√
c+ d

ρcos(ψ),

w = ±(d+ λ)

√
ρ2sin2(ψ)cos2(θ),

a+ d
+
ρ2sin2(ψ)sin2(θ)

b+ d
− ρ2cos2(ψ)

c+ d
.

(3.37)

where ρ > 0, θ ∈ [0, 2π), λ ∈ R.

The intersection of the hypersurface in the hyperplane w = 0 is

x2

a+ d
+

y2

b+ d
− z2

d− c
= ρ2.

Lemma 3.2.2. The tropical manifolds of the hyperquadric (Sλ) represent exactly the locus

of points (x, y, z, w) for which the equation

(Rλ) :
x2

a− λ
+

y2

b− λ
+

z2

c+ λ
+

w2

d+ λ
= 1, has λ0 as multiple root. (3.38)

Proof. The Equation (3.38) is equivalent to:

(a− λ)(b− λ)(c+ λ)(d+ λ) = (b− λ)(c+ λ)(d+ λ)x2 + (a− λ)(c+ λ)(d+ λ)y2

+ (a− λ)(b− λ)(d+ λ)z2 + (a− λ)(b− λ)(c+ λ)w2,

which is equivalent to:

λ4 + l3λ
3 + l2λ

2 + l1λ+ l0 = 0, (3.39)
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where

l3 = −x2 − y2 + z2 + w2 + a+ b− c− d,

l2 =

x2(b− c+ d) + y2(a− c+ d) + z2(−a− b+ d) + w2(−a− b+ c)− (−bc+ ab− ac− bd+ dc

− ad),

l1 =

x2(bc+ bd− cd) + y2(ac+ ad− cd) + z2(−bd+ ab− ad) + w2(−bc+ ab− ac) + (abc− dbc

+ adb− adc),

l0 = x2(dbc) + y2(acd) + z2(abd) + w2(abc)− (abcd).

Equation (3.39) has λ0 = 0 as triple zero if and only if l0 = l1 = l2 = 0. This is equivalent to

belonging to (S0).

Additionally, we have:

l1 = x2(bc+ bd− cd) + y2(ac+ ad− cd) + z2(−bd+ ab+ ad) + w2(−bc+ ab− ac)

− (abc− dbc+ adb− adc),

= x2
(abc+ abd− acd)

a
+ y2

(abc+ abd− bcd)

b
+ z2

(−bcd+ abc− acd)

c

− w2 (−bcd+ abd− acd)

d
− (abc− dbc+ abd− acd),

= x2
abc+ abd− acd− dbc+ dbc

a
+ y2

abc+ abd− bcd− adc+ adc

b

+ z2
−bcd+ abc− acd− adb+ adb

c
+ w2abc− abc− bcd+ abd− acd

d

− (abc+ adb− adc− dbc),

= (abc+ abd− acd− bcd)[
x2

a
+
y2

b
+
z2

c
+
w2

d
− 1] + x2

dbc

a
+ y2

adc

b
− z2adb

c
− w2abc

d
,

= (abc+ abd− acd− bcd)[
x2

a
+
y2

b
+
z2

c
+
w2

d
− 1] + abcd[

x2

a2
+
y2

b2
− z2

c2
− w2

d2
].
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hometown), in Togo (his country). He spent most of his life in Daviémodzi which is a five
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