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DISCOURSE PARSING AND ITS APPLICATION TO QUESTION GENERATION

Takshak Desai, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Dr. Dan I. Moldovan, Chair

Reading comprehension can be analyzed from three points of view: Semantics, Assessment,

and Cognition. Here, Semantics refers to the task of identifying discourse relations in text.

Assessment involves utilizing these relations to obtain meaningful question-answer pairs.

Cognition means categorizing questions according to their difficulty or complexity levels.

This dissertation addresses how to leverage or design natural language processing tools to

perform underlying tasks and ultimately craft a reading comprehension quiz for use in a

classroom environment.

Previous research has focused on mining shallow, sentence-level semantic relations and using

them to craft intra-sentential, factoid questions. These are not very consequential in the

context of large documents as they do not address how sentences coherently come together

to comprise the full text. Discourse relations are capable of providing a comprehensive

view of the text as they look beyond sentences. These relations focus on how sentences are

logically and structurally linked to each other and provide a summarized, high-level overview

of the document’s semantics. Likewise, one can expect inter-sentential questions generated

using discourse relations to be deep and inferential that can test comprehension abilities

like analysis of the document’s structure, identification of author’s intent, and evaluation

of stated arguments, among others. Testing these abilities allows one to assess student

interpretation of a text effectively.
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A deep multi-task learning framework is suggested that accurately deduces high-level dis-

course relations between text spans. The framework uses structure, syntax, and context-

aware text representations that are robust enough to capture the document’s meaning and

intent. A set of syntactic transformations and well-formed transformation templates con-

vert relations into question-answer pairs: the proposed model generates questions that are

grammatically valid and intricate enough to gauge text comprehension. Then, a rich, feature-

driven classifier categorizes these questions according to their difficulty levels. Results obtain

empirically show that inter-sentential questions that test the ability to deduce high-level se-

mantic relations in the text are more complex and meaningful than intra-sentential ones.

These modules are linked into a pipeline. The pipeline’s performance is evaluated on bench-

mark corpora and it is shown that this pipeline can generate high-quality question-answer

pairs that are more purposeful than human-designed ones and ones obtained from previously

designed systems. By enhancing reading comprehension datasets with such questions, one

can hope to advance research in question answering and reading comprehension.
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CHAPTER 1

INTRODUCTION

This chapter introduces readers to the problem statement, provides motivations for carry-

ing out the research described in this document, summarizes original work proposed, and

describes related theory pre-requisite to understanding the dissertation.

1.1 Problem Statement

Perform the following operations on a given a document D:

1. Induce a discourse tree G = (V,E) from the text where V is the set of nodes represent-

ing textual arguments, and E refers to the set of edges that label relations between

arguments. In the context of discourse analysis, G depicts high-level semantic rela-

tions, called discourse or coherence relations, that occur in the text and summarizes

the meaning of the document. Consider this example that associates a small paragraph

with its equivalent discourse tree:

Figure 1.1. Associating text with discourse trees

Here, Means relation indicates the manner in which an event is carried out (in this

example, press censorship). List relation is used to list out facts (here, a list of

evidences supporting how the mafia has censored the press).
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2. Translate the discourse tree G into question-answer pairs Q by applying syntactic

transformations on the relations described by G. Consider this example that takes the

discourse tree obtained from the previous step and transforms it into questions:

Figure 1.2. Transforming a discourse tree into questions

In this example, relations (as labelled by subtrees) are translated into questions by ap-

plying syntactic transformations on its arguments. Correspondence between relations

and questions is shown via coloring.

3. Given a set of question-answer pairs Q associated with D, assign a difficulty label

ck ∈ C where C is a set of difficulty levels to each pair qi ∈ Q. Consider the example

given below that associates obtained questions with a difficulty level between 1 and 3.

The higher the rating, the more difficult the question is.

Figure 1.3. Associating questions with difficulty levels

2



Here, the first question, being trivial, is given a rating of 1 (the answer is indicated by

the color green). A higher rating is given to the third question as it is inter-sentential

and needs an understanding of the complete paragraph. One must provide a reasonably

detailed response to answer such a question (answer indicated by the color orange).

An ultimate objective of performing these operations is to construct a reading compre-

hension assessment containing the text and associated questions ordered according to their

difficulty. One can perform all processes successively, i.e., put together in a pipeline to create

the quiz. Figure provides a pictorial view of this pipeline and its components. An article is

inputted to this pipeline as shown. Modules comprising this pipeline are successively applied

to the document to obtain a reading comprehension quiz.

Figure 1.4. A pipeline and its modules for creating a reading comprehension quiz

Modules making up this pipeline are:

1. Basic Text Processing: This is the first module in the pipeline and collectively refers

to tokenization and sentence boundary detection tasks. As text processing is relatively

trivial, we do not address it in this dissertation. We include this module in the pipeline

for the sake of completeness. We make use of the Stanford CoreNLP package (Manning

et al., 2014) for carrying out text pre-processing

2. Discourse Parsing: The second module in the pipeline performs discourse parsing. It

refers to the task of extracting high-level semantic relations between text spans in the

document. We use the Rhetorical Structure Theory or RST (Mann and Thompson,
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1988) as a framework for identifying such text-level relations. Specifically, this module

has two parts:

(a) Discourse Segmentation: Here, we identify arguments or text spans between which

relations potentially hold. These are also called segments or Elementary Discourse

Units (EDUs) and form nodes in the discourse tree.

(b) Relation Classification: This refers to the broad task of inducing a discourse tree

and mainly involves classifying relations between text spans. These relations are

also called discourse, coherence, or rhetorical relations and label edges in the

discourse tree.

3. Question Generation: The pipeline’s third module performs question generation. We

fashion a set of robust templates and well-defined syntactic transformations that trans-

late relations present in the discourse tree obtained from the previous module into

question-answer pairs.

4. Question Difficulty Classification: The pipeline’s final module carries out question

difficulty categorization. Question-answer pairs extracted from the previous step are

associated with difficulty or complexity levels using a rich feature-driven classifier.

This pipeline’s output is a reading comprehension quiz that comprises the document and

associated questions ordered according to their difficulty levels.

1.2 Motivation

Reading comprehension refers to the ability to understand and process text, gauge its pur-

pose, and identify the author’s point of view. The fundamental skills required for reading

comprehension include the facilities to:

1. Know and understand the meaning of a word from its context
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2. Identify the main idea(s) presented by the author(s) by understanding their intentions

3. Follow the passage’s organization and identify antecedents and references in it

4. Draw inferences from the text about its content, and so on.

A learning outcome of reading comprehension instruction is to help students develop

knowledge, skills, and experiences to become competent and enthusiastic readers.

Simply put, a good reader must correctly deduce semantic relations from text and an-

swer questions asked around them (Storey, 1993). A beginner would identify simple, intra-

sentential relations; an advanced reader should infer more complex, inter-sentential ones. In

other words, one can view reading comprehension from three related perspectives or lenses:

1. Semantics: This refers to identifying semantic relations that hold in text. By identify-

ing these relations, one can get a deep understanding of the passage and the author’s

intent behind writing it.

2. Assessment: This refers to the task of answering questions asked around the document’s

semantics. One can use low-level semantic relations to craft simple questions and high-

level ones to construct more profound and insightful questions.

3. Cognition: This means ranking the questions according to their difficulty or complexity.

A beginner can quickly answer trivial questions, while advanced readers should respond

to more difficult ones.

To motivate this idea, consider the reading comprehension assessment provided in Fig-

ure 1.5. It consists of the text and associated questions annotated with difficulty levels

(between 1 and 3). The higher the difficulty level, the more difficult it is to answer.

Briefly, the passage begins by stating that Mobil Corporation cut down the size of its

workforce. Then it provides additional details and background information about staff re-

ductions. Later, it outlines the reasons behind job cuts; and possible outcomes of said cuts.
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Passage:

Mobil Corp. is preparing to slash the size of its work force in the U.S., possibly as soon as next
month, say individuals familiar with the company’s strategy. The size of the cuts isn’t known,
but they’ll be centered in the exploration and production division, which is responsible for
locating oil reserves, drilling wells and pumping crude oil and natural gas. Employees haven’t
yet been notified. Sources said that [meetings to discuss the staff reductions have been
scheduled for Friday at Mobil offices in New Orleans and Denver]1.
Mobil’s latest move could signal the beginning of further reductions by other oil companies
in their domestic oil-producing operations. [In yesterday’s third-quarter earnings report, the
company alluded to a $40 million provision for restructuring costs involving U.S. exploration
and production operations. The report says that the restructuring will take place over a
two-year period and will principally involve the transfer and termination of employees in our
U.S. operations. A company spokesman, reached at his home last night, would only say that
there will be a public announcement of the reduction program by the end of the week.]4 [Most
oil companies, including Mobil, have been reporting lower third-quarter earnings, largely as
a result of lower earnings from chemicals as well as refining and marketing businesses.]5
Individuals familiar with Mobil’s strategy say that [Mobil is reducing its U.S. work force
because of declining U.S. output.]2
[Yesterday, Mobil said domestic exploration and production operations had a $16 million loss
in the third quarter, while comparable foreign operations earned $234 million.]5 [Industry
wide, oil production in this country fell by 500,000 barrels a day to 7.7 million barrels in
the first eight months of this year. Daily output is expected to decline by at least another
500,000 barrels next year.]3 Some Mobil executives were dismayed that a reference to the
cutbacks was included in the earnings report before workers were notified.

Sample Questions:

No. Question Difficulty
1 Where have meetings to discuss staff reduction been scheduled? 1
2 Why is Mobil Corp. reducing its U.S. work force? 1
3 Evaluate the situation of oil production in the Unites States. 2
4 What structural changes is Mobil Corp. undergoing? 2
5 Why is Mobil Corp. reporting lower third-quarter earnings? 3

Figure 1.5. A representative example from the corpus: the passage, generated questions and
their difficulty levels are shown.

As stated previously, this document can be viewed from different three points of view:

Semantics, Assessment and Cognition. It can be noted that the three are closely related to

each other.
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A reader at the beginners’ level would be able to detect sentence-level semantics. For

example, in sentence 1 in Figure 1.5, beginners can immediately identify the Location

relation between “meetings to discuss the staff reductions have been scheduled” and “Mobile

offices in New Orleans and Denver”. Likewise, they can quickly infer a Cause relation

between “Mobil is reducing its U.S. workforce” and “because of declining U.S. output” in

sentence 2 owing to the presence of the keyword ‘because’. This makes Questions 1 and 2

trivial.

A more advanced reader would identify inter-sentential relations like the ones shown in

examples 3, 4 and 5. Such questions require a deduction of high-level coherence relations

such as implicit Cause, Evaluation, Circumstance, and the construction of a detailed

response. Such questions are more challenging to answer than examples 1 and 2.

Previous research has primarily focused on sentence-level semantics (Moldovan and Blanco,

2012) and transforming simple assertions into questions (Heilman and Smith, 2010; Du et al.,

2017). These are too shallow in the context of large texts as shown in Figure 1.5. It would be

interesting to identify the more consequential discourse relations in a document and leverage

them to craft questions that cater to different reading levels. Motivated by this idea, the rest

of this dissertation focuses on how NLP tools can either be designed or leveraged to analyze

reading comprehension from the three perspectives mentioned previously, i.e., Semantics,

Assessment, and Cognition.

1.3 Summary of work done

Research work described in this document can be summarized thus:

1. The construction of text-level discourse parsers is considered a challenging problem for

several reasons, such as the sparsity of training data, the inherent nature of discourse,

complexity of relation classification, etc. This dissertation attempts to mitigate these

7



challenges by using a deep discourse segmenter and parser that accurately fashions

discourse trees from the text.

(a) We propose a deep model that leverages BERT’s (Devlin et al., 2019) complex

structure for performing discourse segmentation. By jointly learning syntactic

features and casting the problem as token classification (as opposed to the tra-

ditional way of sequence tagging), this dissertation advances the state-of-the-art

and inches closer to human performance (the proposed segmenter achieves an

F-score of 96.7 versus human performance of 98.3)

(b) We design a deep model leveraging the representational powers of BERT and

Hierarchical Attention Networks or HANs (Yang et al., 2016) to obtain syntax,

structure, and context-aware text representations. These representations are then

fed to a shift-reduce parser to carry out accurate text-level discourse parsing.

Evaluation on benchmark datasets shows that the model rivals the performance of

state-of-the-art feature-driven and neural parsers. Additionally, the use of HANs

allows one to get insights into the model’s behaviour and understand errors made

during classification.

2. Modern automated question generation systems either generate Wh-type questions

(Heilman and Smith, 2010), use shallow semantics and ontologies for developing ques-

tions (Graesser et al., 2003; Araki et al., 2016; Stasaski and Hearst, 2017) or use deep

learning for generating questions from one to few sentences (Du et al., 2017). This dis-

sertation suggests a method for generating inferential, inter-sentential questions that

test the ability to deduce high-level relations between text spans.

3. This dissertation defines what it means for a question to be ‘meaningful’ by describing a

set of metrics that measure its quality. In sharp contrast to measures like grammatical
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and semantic correctness, these metrics help gauge the quality and complexity of a

question.

4. A rich semantic feature-driven classifier is described that categorizes questions ac-

cording to their difficulty or complexity. Using these features allows one to model

information that cannot be captured by simple baselines, thereby observing a relative

improvement of 26% in model performance.

5. These modules are arranged into a pipeline and applied in succession to a benchmark

reading comprehension corpus: SQuAD (Rajpurkar et al., 2016). We show that this

pipeline can generate better quality questions that are more complex than those already

present in the corpus. One can hope to advance research in question answering by

analyzing such deep, inferential questions.

1.4 Related Work

The dissertation is motivated by two sources of information: The Rhetorical Structure The-

ory or RST (Mann and Thompson, 1988), a framework for analyzing document-level re-

lations, and Bloom’s taxonomy (Bloom, 1964), a cognitive framework for relating student

understanding to educational objectives and learning outcomes. This section highlights the

pre-requisite theory behind RST and Bloom’s taxonomy required to comprehend the rest

of this dissertation. Subsequent chapters in this dissertation describe computational models

and frameworks for performing discourse analysis and question generation.

1.4.1 Rhetorical Structure Theory

Documents are not a random collection of text spans but rather a structured list of tex-

tual components forming a discourse. Discourse structures describe their organization in

terms of coherence or rhetorical relations. Mann and Thompson (1988) presented Rhetorical
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Structure Theory (RST), a framework that defines the functional organization of textual

components in the text. RST describes relations between text parts called segments, iden-

tifying the relation’s transition point and the extent of the items related. It identifies a

hierarchical structure in the text, allowing one to get a high-level view of semantics at the

document-level.

While several discourse representation theories have been proposed over the years (Asher

et al., 2003; Prasad et al., 2008); reasons for choosing RST over these include:

1. From a linguistic point-of-view, RST provides a robust, hierarchical view of text orga-

nization.

2. It points to a tight relation between relations and coherence in text

3. From a computational point of view, it provides a characterization of text relations

that has been implemented in different systems and for applications as text generation

and summarization.

A typical RST-style discourse parser operates in two stages:

1. Discourse Segmentation: This refers to the task of fragmenting a document into mul-

tiple disjoint chunks of text called elementary discourse units or EDUs. In the context

of RST, these form the leaves of the discourse tree between which relations hold.

2. Relation Classification: Once the EDUs have been identified, a tree structure is induced

where directed arcs between EDUs and/or subtrees represent relations.

An example of a discourse tree is provided in Figure 1.6. It can be seen that nodes

represent EDUs or arguments between which relations hold and edges indicate relations.

One can also note that this tree is hierarchical, and the granularity of a relation reveals

the type of information it conveys. For example, the Cause relation between segments 4
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Figure 1.6. A representative example showing how a discourse tree is defined by the RST

and 5 in this tree is a trivial intra-sentential relation. Such a relation is not very meaningful

in the context of the entire document. However, it does summarize information conveyed by

the sentence. Likewise, the Means relation between segments 1 and 2 is an inter-sentential

relation. This relation is more meaningful than the Cause relation described previously. The

Explanation relation labels the root of the tree and the text’s main idea. This relation is

more high-level than all other relations described by the tree.

Typically, RST defines 4 objects to describe the construction of the discourse tree. Sub-

sequent subsections provide definitions and examples of each object:

Relations

Relations are defined between two disjoint contiguous chunks of text. Formally, a relation

has three attributes: R, N and S:

• R refers to the name of the relation that holds between text spans. For example, some

relations present in Figure 1.6 are Cause, Means, List etc.
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• N is the nucleus. The nucleus is a piece of text that is more central to the author’s

point of view and can be interpreted independently.

• S means satellite. The satellite is a chunk of text less central to the author’s intentions

and can only be interpreted with respect to the nucleus.

For example, in Figure 1.5, the Cause relation has ‘Within the past two months, a bomb

exploded in the offices of El Espectador in Bogota,’ as its Nucleus and ‘destroying a major

part of its installations and equipment’ as its Satellite.

Note that relations may be of two types: asymmetric relations that hold between a nucleus

and a satellite (consider examples Explanation, Means and Cause in Figure 1.6); and

symmetric relations that hold between multiple nuclei (for instance, in the List relation in

Figure 1.6 a series of nuclei is given without contrast or explicit comparison).

RST defines more than 70 relations in its inventory. However, only few (research focuses

on 16 in particular) are most commonly studied or referred. A complete list of these relations

along with their definitions and examples can be found in Carlson and Marcu (2001). The

most commonly studied relations are described in Table 1.4.1.
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Table 1.1. Description of most common relations found in RST. Relations annotated with an
asterisk (*) are always multi-nuclear. Definitions have been taken from Carlson and Marcu
(2001)
Relation Definition Example
Attribution Used to mark instances of re-

ported speech, both direct and
indirect. The satellite is the
source of the attribution, for ex-
ample, a clause containing a re-
porting verb, or a phrase begin-
ning with ‘according to’, and the
nucleus is the content of the re-
ported message which must be
in a separate clause.

Nucleus: The legendary GM
chairman declared
Satellite: that his company
would make “a car for every
purse and purpose.”

Background In this relation, the satellite
establishes the context or the
grounds with respect to which
the nucleus is to be inter-
preted. Understanding the
satellite helps the reader under-
stand the nucleus.

Nucleus: Banco Exterior was
created in 1929 to provide sub-
sidized credits for Spanish ex-
ports.
Satellite: The market for export
financing was liberalized in the
mid-1980s, however, forcing the
bank to face competition.

Cause The situation presented in the
nucleus is the cause of the sit-
uation presented in the satellite.
The cause, which is the nucleus,
is the most important part. The
satellite represents the result of
the action.

Nucleus: This year, a commis-
sion appointed by the mayor to
revise New York’s system of gov-
ernment completed a new char-
ter,
Satellite: expanding the City
Council to 51 from 35 members.

Comparison* Here, two textual spans are com-
pared along some dimension.
Some examples are similar, dif-
ferent, greater-than, less-than,
etc.

Nucleus: It said it expects full-
year net of 16 billion yen,
Nucleus: compared with 15 bil-
lion yen in the latest year.

Condition Here, the truth of the propo-
sition associated with the nu-
cleus is a consequence of the ful-
fillment of the condition in the
satellite. The satellite presents
a situation that is not realized.

Nucleus: S.A. brewing would
make a takeover offer for all of
Bell Resources
Satellite: if it exercises the op-
tion, according to the commis-
sion
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Relation Definition Example

Contrast* Here, two or more nuclei come in
contrast with each other along
some dimension. The contrast
may happen in only one or few
respects, while everything else
can remain the same in other
respects. Typically, a Con-
trast relation includes a con-
trastive discourse cue, such as
‘but’, ‘however’, ‘while’, whereas
a Comparison does not.

Nucleus: The proposal reiter-
ates the U.S. desire to scrap or
reduce a host of trade-distorting
subsidies on farm products.
Nucleus: But it would allow con-
siderable flexibility in determin-
ing how and when these goals
would be achieved.

Elaboration In this relation, the satellite
gives additional information or
detail about the situation pre-
sented in the nucleus. This rela-
tion is extremely common at all
levels of the discourse structure,
and is especially popular to show
relations across large spans.

Nucleus: Under a proposal by
Democrats to expand Individual
Retirement Accounts, a $2,000
contribution by a taxpayer in
the 33% bracket would save $330
on his taxes.
Nucleus: The savings was given
incorrectly in Friday’s edition.

Enablement In this relation, the situation
presented in the nucleus is un-
realized. The action presented
in the satellite increases the
chances of the situation in the
nucleus being realized.

Nucleus: The administration of
federal credit should closely par-
allel private lending practices,
including the development of a
loan loss reserve.
Nucleus: Establishing these
practices would permit earlier
identification of emerging finan-
cial crises and provide better
information for loan sales and
budgeting decisions.

Evaluation In an Evaluation relation, one
span assesses the situation pre-
sented in the other span of the
relationship on a scale of good
to bad. An evaluation can be an
appraisal, estimation, rating, in-
terpretation, or assessment of a
situation.

Nucleus: What defeated Gen-
eral Aoun was not only the
weight of the Syrian army. The
weight of Lebanon’s history was
also against him;
Nucleus: and it is a history Is-
rael is in danger of repeating.
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Relation Definition Example
Explanation An Explanation relation usu-

ally pertain to actions and sit-
uations that are independent of
the will of an animate agent.The
satellite provides a factual ex-
planation or empirical evidence
for the situation presented in the
nucleus.

Nucleus: That system has
worked.
Satellite: The standard of living
has increased steadily over the
past 40 years; more than 90% of
the people consider themselves
middle class.

Manner-means A means satellite specifies a
method, mechanism, instru-
ment, channel or conduit for
accomplishing some goal. It
should tell one how something
was or is to be accomplished.

Nucleus: Some underwriters
have been pressing for years to
tap the low-margin business
Satellite: by selling some poli-
cies directly to consumers.

Summary In a Summary relation, either
the nucleus or satellite summa-
rizes the information presented
in the satellite or nucleus respec-
tively. The size of the summary
is shorter than the size of the
text it is summarizing.

Nucleus(summary): The Singa-
pore and Kuala Lumpur stock
exchanges are bracing for a
turbulent separation, follow-
ing Malaysian Finance Minister
Daim-Zainuddins long-awaited
announcement that the ex-
changes will sever ties.
Satellite: On Friday, Datuk
Daim added spice to an oth-
erwise unremarkable address on
Malaysias proposed budget for
1990 by ordering the Kuala
Lumpur Stock Exchange to
take appropriate action immedi-
ately to cut its links with the
Stock Exchange of Singapore.
The delisting of Malaysian-
based companies from the Sin-
gapore exchange may not be
a smooth process, analysts say.
Though the split has long been
expected, the exchanges are not
fully prepared to go their sepa-
rate ways.
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Relation Definition Example

Same-Unit* A pseudo-relation used as a de-
vice for linking two discontinu-
ous text fragments that are re-
ally a single EDU, but which are
broken up by an embedded unit.

Nucleus: The yens softness
Nucleus: apparently stems from
Japanese investors interest
Nucleus: in buying dollars
against the yen to purchase U.S.
bond issues.

Temporal In this relation, the situation
present in the nucleus occurs
either before, during the same
time or after that presented in
the satellite.

Nucleus (occurs temporally after
satellite): RJR Nabisco Inc. is
disbanding its division responsi-
ble for buying network advertis-
ing time,
Satellite: just a month after
moving 11 of the groups 14 em-
ployees to New York from At-
lanta.

Textual-
Organization*

This is a multinuclear relation
used to link elements of the
structure of the text, for exam-
ple, to link a title with the body
of the text, a section title with
the text of a section, etc.

Nucleus (date): Friday, October
13, 1989
Nucleus (text): The key U.S.
and foreign annual interest rates
. . .

Topic-
Comment*

A general statement or topic of
discussion is introduced, after
which a specific remark is made
on the statement or topic. This
relation is always multinuclear,
as both spans are necessary to
understand the context.

Nucleus: As far as the pound
goes,
Nucleus: some traders say a
slide toward support at $1.5500
may be a favorable development
for the dollar this week. . . .

Topic-Shift The relation Topic-Shift is
used to link large textual spans
when there is a sharp change in
focus going from one segment to
the other. The same elements
are not in focus in the two spans.

Nucleus: South Africa freed the
ANCs Sisulu and seven other po-
litical prisoners.
Satellite: The Soviet Union re-
ported that thousands of goods
needed to ease widespread short-
ages across the nation were piled
up at ports and rail depots. The
delay in sending these goods to
the citizens has been attributed
to harsh winters.
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Relation Definition Example
Evidence Here, the situation presented in

the satellite provides evidence
or justification for the situation
presented in the nucleus. Evi-
dence is data on which judgment
of a conclusion may be based,
and is presented by the writer
or an agent in the article to con-
vince the reader of a point. An
evidence satellite increases the
chance of the reader accepting
the information presented in the
nucleus.

Nucleus: That system has
worked.
Satellite: The standard of living
has increased steadily over the
past 40 years; more than 90% of
the people consider themselves
middle class.

List* This is a multinuclear relation
whose elements can be listed,
but which are not in a compar-
ison, contrast or other, stronger
type of multinuclear relation. A
List relation usually exhibits
some sort of parallel structure
between the units involved in
the relation. At lower lev-
els of the discourse structure,
such as between clauses or sen-
tences, a List relation is of-
ten selected when there is some
sort of parallel syntactic or se-
mantic structure between the
units, such as in the examples
below. At higher levels of the
discourse structure, the relation
may be found when there are
paragraphs of items enumerated
in a similar fashion.

Nucleus: A union, sooner or
later, has to have an adversary,
Nucleus: and it has to have a
victory.

Schemas

Schemas define how text spans and relations structure the discourse tree. As an abstract data

type, a schema has three fields: (1) text spans that make up the leaves and subtrees of the

17



discourse tree, (2) definition and nuclearity of the relation(s) that hold between spans; and

(3) a specification of how the nuclei are related to the whole collection, i.e., the represented

document. The RST recognizes four schema types as depicted in Figure 1.7 that show how

text constituents make up a tree.

The first figure provides a simple example of the mono-nuclear Cause relation. The

relation is directed from nucleus to satellite, i.e., from A to B. The second figure provides an

example of two relations, i.e., Evaluation and Motivation creating a subtree rooted at

the node labeled as 6. The third and fourth diagrams give an example of the multi-nuclear

Joint and Sequence relations that are similar in structure to the List relation. Note that

these relations can hold between more than two nuclei (as indicated in the 4th diagram). To

simplify the view of such a tree, one can transform this into a right-branching binary tree.

In other words, the relation Sequence(H, I, J) can be interpreted as Sequence(I,J) and

Sequence(H, I:J) where I:J represents the text span containing segments I and J.

It is important to note that unlike constituency parsing that defines clear production

rules on how one can represent the grammar or the syntax of a language, RST is more

abstract. Therefore, the schema types diagrammed in Figure 1.7 are only loosely analogous to

constituency grammars and cannot be treated as production rules to carry out deterministic

parsing (Li et al., 2014).

Schema Applications

Schema application refers to how spans come together to constitute the discourse tree. Three

conventions determine the possible applications of schemas:

1. Unordered spans: Schema application place no constraints on the nucleus and satel-

lite arrangement in the text to which the schema is applied. As an example, consider

the List relation. Strictly from a structural perspective, the order in which nuclei of

the List relation occur is not important. From a semantic perspective, one may want

18



Figure 1.7. Diagrams showing schema types and how they can be used to construct a RST
tree. Letters A-J are placeholders for actual text

the most important list item to be at the beginning. However, schema applications

only care about the structure of the tree and not the underlying semantics.
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2. Optional relations: For schema involving many relations, all individual relations are

optional, but at least one must hold. For instance, in Figure 1.6, 4 out of the many

possible relations defined by RST hold. Other relation instances cannot be found in

this tree.

3. Repeated relations: A relation can be applied any number of times in a schema. For

instance, the Elaboration relation is fairly common and is often found many times

in the same discourse tree used to represent fairly large texts. Likewise, a relation may

also occur at multiple levels of tree granularity within the same discourse tree.

Structure

Similar to schema applications, following constraints hold with respect to the structural

composition of the discourse tree:

1. Completeness: All text spans present in the document must be covered by the

schema. As shown in Figure 1.5, every text span is related to at least one other

text span via a relation.

2. Connectedness: Except for the root node of the tree i.e. the node representing the

text in its entirety, every text span must be connected to at least one other text span.

3. Uniqueness: Every document must be represented by exactly 1 discourse tree. In

other words, more than 2 relations cannot hold between text spans. In the likely event

that is true, the more informative relation is selected. For example, consider this text:

Nucleus: The project under construction will raise Las Vegas’ supply of rooms by 20%.

Satellite: Clark county will have 18000 new jobs.
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Here, a Cause relation holds between the nucleus and satellite. Likewise, a Tem-

poral relation also holds between the two as Satellite will occur after Nucleus takes

place. However, the Cause relation takes precedence as it is more informative than

Temporal.

4. Adjacency: A left-to-right traversal of the tree yields the entire text as it appears in

the document. In other words, there is a direct edge between two adjacent text spans

while non-adjacent text spans are indirectly connected via a series of edges.

1.4.2 Bloom’s Taxonomy

The argument for a strong correlation between question difficulty and student perception

comes from Bloom’s taxonomy (Bloom, 1964). It is a framework that attempts to categorize

question difficulty by educational goals. The framework has undergone several revisions

over time and currently has six levels of perception in the cognitive domain: Remembering,

Understanding, Applying, Analyzing, Evaluating, and Creating (Anderson et al., 2001).

To get a deeper understanding of the goals laid out by the taxonomy, consider the de-

scription and examples provided in Table 1.2. While the lower levels of this taxonomy cater

to beginners, the higher levels cater to advanced readers. One may assume beginners to

be able to infer simple sentence-level semantic relations like Agent, explicit Cause and

Location and thus answer questions that cater to Levels 1 or 2 of the taxonomy. On the

other hand, intermediate to advanced readers should infer more complex relations such as

Evaluation, Solutionhood and so on; and thus answer questions that cater to Levels 3

or up in the taxonomy.

1.5 Dissertation Organization

This section outlines how the rest of this dissertation is organized and provides a motivation

for including each chapter.
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Table 1.2. A brief description and examples of questions as per Bloom’s taxonomy. Defini-
tions are taken from Anderson et al. (2001)

Level Description Example
Knowledge Involves recognizing or remember-

ing facts, terms, basic concepts, or
answers without necessarily under-
standing what they mean

Name different types of access
specifiers in C++.

Comprehension Involves demonstrating an under-
standing of facts and ideas by or-
ganizing, comparing, translating, in-
terpreting, giving descriptions, and
stating the main ideas

Differentiate between construc-
tors and destructors.

Application Involves using acquired knowledge-
solving problems in new situations by
applying acquired knowledge, facts,
techniques and rules

Predict the output of the given
C++ code.

Analysis Involves examining and breaking in-
formation into component parts, de-
termining how the parts relate to
one another, identifying motives or
causes, making inferences, and find-
ing evidence to support generaliza-
tions

Write a correctness proof for the
given algorithm.

Synthesis Involves building a structure or pat-
tern from diverse elements; it also
refers to the act of putting parts to-
gether to form a whole.

Complete the given incomplete
C++ code snippet.

Evaluation Involves presenting and defending
opinions by making judgments about
information, the validity of ideas, or
quality of work based on a set of cri-
teria.

Which of these algorithms is the
most efficient and why?

First, we provide a brief and directed review of deep learning models for natural language

processing in Chapter 2. Deep learning has been widely used in many language tasks (Col-

lobert et al., 2011) and has given state-of-the-art results on almost all of them. The chapter

provides explicit details on models and paradigms used for building the discourse parser.

22



Reading about these models will give one pre-requisite information required to understand

the parser’s functionality in depth.

Next, this dissertation dives into a study of the discourse parser. We divide the discussion

on the parser’s design into two chapters: the discourse segmenter (argument detection) in

Chapter 3; and the relation classifier (discourse tree induction) in Chapter 4. We provide

specific details on challenges associated with designing each module and how deep learning

can mitigate these issues. We also provide information on how the modules benefited from

a particular feature or model enhancement.

Post discourse parsing, Chapter 5 describes the vital syntactic transformations and tem-

plates designed to convert relation triples into question-answer pairs. These templates are

robust enough to generate valid and meaningful questions. Additionally, this chapter also

defines what it means for a question to be ‘meaningful’ and describes metrics for assessing

its quality.

Then, Chapter 6 describes how to categorize questions according to their difficulty level.

We outline typical challenges associated with question difficulty classification. When we

enrich the baseline model with distinct semantic features, it can accurately ascribe difficulty

levels to questions.

Chapter 7 provides a thorough assessment of the pipeline on the SQuAD dataset (Ra-

jpurkar et al., 2016) and enriches the questions already present in the corpus with inter-

sentential, inferential ones. We provide statistics on what fraction of relations extracted are

implicit (hard to identify) and what fraction of associated questions are easy or difficult in

complexity.

Finally, Chapter 8 wraps up this dissertation by providing conclusions and suggesting

potential avenues for further research.
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CHAPTER 2

REVIEW OF DEEP LEARNING

The field of Natural Language Processing has evolved from creating rule-based systems to

developing shallow models trained on high-dimensional, sparse data to using complex deep

learning architectures for tackling language problems. Deep learning, in particular, has made

impressive advances in this field by achieving state-of-the-art results on many disparate tasks

such as Sentiment Analysis, Question Answering, Dialogue Systems, Text Summarization,

among others. One can attribute the success of deep learning to its ability to automatically

identifying multi-level features from text. These features are more expressive than hand-

crafted ones. While an extraordinarily detailed and comprehensive summary of recent trends

in deep learning for Natural Language Processing can be found in Young et al. (2018), this

section summarizes only those models and approaches used in this Dissertation. Readers

familiar with deep learning can skip this chapter and proceed to the next one.

Specifically, this chapter provides details about two neural network architectures: BERT

(Devlin et al., 2019), a powerful language model that supplies deep contextualized represen-

tations, and HAN (Yang et al., 2016), a network used to model context and structure in long

inputs such as documents. It also familiarizes readers with multi-task learning (Caruana,

1997): a popular mechanism for learning multiple objective functions (in this case, language

tasks) simultaneously.

2.1 Need for Deep Learning

The inherent nature of natural language makes it difficult to represent it for computational

approaches. In particular, natural language possesses these properties that make it challeng-

ing to broach language tasks (Goldberg, 2016):

1. Language is symbolic and discrete. The most fundamental elements of language are

characters that, in turn, form words. These elements may represent concepts, events,

24



or ideas. Both characters and words are discrete symbols. But, words such as “leaf”

and “tree” are treated as a strings (sequences of characters) and not as pockets of

information. Subsequently, an inherent relation between these concepts cannot be

inferred by looking at these strings alone. One must consult a dictionary to identify

some form of association between the meanings of these words.

2. Language is compositional. Letters form words; words form phrases and sentences,

which in turn form paragraphs and documents. Interpretation of text requires one to

look beyond the meaning of its constituent words. The meaning of a document can

be larger than the meaning of the individual sentences that comprise it. Interpreting

these documents requires one to follow a set of intricate rules that govern the logical

connection between language elements.

3. There are practically infinite ways in which sentences can be formed from words.

Therefore, the number of grammatically and semantically correct sentences is also

practically infinite. One cannot possibly enumerate all such sentences. Additionally,

there is no clear way of identifying a relationship between two sentences, for instance,

defining how similar in meaning two sentences are to each other. This poses a challenge

when one uses supervised machine learning for language tasks: even with a vast amount

of training data, it is likely that one may encounter an example in the test data that

was not present in the training data.

Shallow machine learning models like Logistic Regression and Support Vector Machines

could yield decent results on some language tasks. However, even simple feed-forward neural

networks were able to outperform these models (Collobert et al., 2011). This difference in

performance is due to their ability to correctly represent inputs and effectively learn the

desired input-output mapping. This makes them more effective than traditional machine
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learning methods that rely on manually crafted features and sparse, high-dimensional input

representations.

As with any machine learning algorithm, a deep learning model also takes in some feature

vector as input, performs a series of successive transformations on this input, and predicts

the output. Concerning natural language, the feature vector encodes linguistic information

such as words, part-of-speech tags, parse-tree features, and so on. However, unlike tradi-

tional machine learning models, deep learning models do not one-hot encode the features.

Instead, they represent these features as dense vectors, i.e., each feature is embedded into a

d-dimensional space and represented as a vector in that feature space. The specific advantage

offered by dense representations over one-hot representations include:

1. Most neural networks do not work well with very high-dimensional, sparse representa-

tions. Using low-dimensional, dense features offers computational benefits.

2. Dense features can generalize better than sparse ones. One expects similar words to

have similar representations (McDonald and Ramscar, 2001) in a dense feature space.

So, for instance, one may expect the learned vector for the concept ‘leaf’ to be similar to

the learned vector for the concept ‘tree’ instead of the learned vector for ‘hamburger’.

Bengio et al. (2003) proposed a simple neural language model that learned vector repre-

sentations or embeddings for words: construction of word embeddings was inspired by the

distributional hypothesis. In simple words, this hypothesis states that semantically similar

words tend to occur in similar linguistic contexts. Learned embeddings were then concate-

nated to form an embedding for the entire sentence: this would help generalize better for

unseen sentences. Likewise, Collobert and Weston (2008) designed a neural network that

used pre-trained word embeddings for learning representations; and popularized their use

for carrying out NLP tasks.

26



The use of word embeddings was revolutionized by Mikolov et al. (2013); Pennington

et al. (2014) who came up with word2vec and GloVe, respectively: two approaches that

became immensely popular for obtaining good-quality embeddings. Additionally, using pre-

trained embeddings obtained from word2vec or GloVe in a transfer learning setup became

ubiquitous with learning almost all language tasks.

2.2 BERT

2.2.1 Need for Contextualized embeddings

The quality of word embeddings is determined by their ability to represent syntactic and

semantic information effectively. With word2vec and GloVe, every word is associated with

one embedding representation, regardless of the context in which it occurs. This particularly

poses a problem for polysemous words where one word may be associated with multiple word

senses. The responsibility of learning context lies on the deep model used. For instance,

consider the following sentences that contain the word ‘tree’:

(1) An AVL tree is a height-balanced binary search tree.

(2) The apple does not fall from the tree.

(3) Mr. Tree owns a farm in Hershey, PA.

In each of these sentences, the word ‘tree’ has a different meaning or word sense. It would

not be wise to represent ‘tree’ with the same embedding vector, as given by traditional word

embedding approaches like word2vec or GloVe. This calls for the need to leverage context

while obtaining word embeddings as these would lead to improved semantic representations.

Among the several approaches and architectures that provide such deep contextualized rep-

resentations, popular examples include ELMo (Peters et al., 2018), OpenAI-GPT (Radford

et al., 2018), BERT (Devlin et al., 2019), etc.
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Bidirectional Encoder Representations from Transformers (BERT), in particular, became

quite popular, due to its ability to provide powerful sentence representations that captured

almost all syntactic, semantic and positional dependencies between its constituent words.

Fine-tuned BERT models were able to outperform existing models by large margins, on key

language tasks such as Question-Answering, Named Entity Recognition, Natural Language

Inference, etc.

BERT was designed to train deep bidirectional representations using the Transformer

model (Vaswani et al., 2017) as its basic unit of repetition in a 12-layer architecture. The

Transformer itself consists of a simple feed-forward layer network and a unit of multi-head

self-attention.

2.2.2 Pre-training BERT

BERT is pre-trained using two unsupervised tasks: masked language model (LM) and next

sentence prediction (NSP).

To obtain a bidirectional representation of the sentence, the masked language model

begins by randomly masking some percentage of the input tokens at random; and then

predicting these masked tokens. The idea is similar to the cloze task in literature where one

must “fill in the blanks” with the correct word or token.

Language modeling does not capture the relation between two sentences: to train a

model that understands relations between sentences, BERT pre-trains for a simple binarized

sentence-prediction task which can be trivially generated from any corpus. In practice, two

sentences A and B are chosen from the corpus. 50% of the time, B follows A and 50% of the

time, B is chosen at random from the corpus.

BERT is pre-trained on a very large corpus containing more than 3,000 million words.

This makes it suitable for fine-tuning to any language task which may have very little training

data to work with.
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2.2.3 Fine-tuning BERT

Figure 2.1. Typical use-cases for BERT

Fine-tuning is relatively straightforward since the self-attention mechanism in the Trans-

former model allows BERT to model many downstream tasks, whether they involve single

text or text pairs, by swapping out the appropriate inputs and outputs. For each task,

one must simply plug in the task-specific inputs and outputs into BERT and fine-tune all
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the parameters end-to-end. At the input, sentence A and sentence B from pre-training are

analogous to (1) sentence pairs in paraphrasing, (2) hypothesis-premise pairs in entailment,

(3) question-passage pairs in question answering, and (4) a degenerate text-φ pair in text

classification or sequence tagging. At the output, the token representations are fed into

an output layer for token-level tasks, such as sequence tagging or question answering, and

the [CLS] representation is fed into an output layer for classification, such as entailment or

sentiment analysis.

Figure 2.1 provides an illustration of how BERT can be used for different language tasks1.

2.3 Hierarchical Attention Networks

To address the issue of compositionality in language, Yang et al. (2016) introduced Hierar-

chical Attention Networks or HANs for classifying documents (not sentences). HANs offer

two specific advantages over other neural network architectures:

1. HANs model the structure or layout of a document by attending to multiple levels of

the text hierarchy. In other words, they first focus on words, which make up sentences

and then on sentences that comprise the full text.

2. HANs can identify which words and sentences are more consequential in contributing to

the meaning of the text by weighing them differentially (according to their importance).

This allows them to specifically attend to those parts of the document that contribute

more significantly to the underlying language tasks while disregarding the rest.

To understand why HANs are useful in the context of document understanding, consider

the example given below. This example is taken from the IMDb Sentiment Review dataset

1Figure taken from Devlin et al. (2019)
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(Maas et al., 2011) where multi-sentence movie reviews are associated with a positive or

negative sentiment.

If you like adult comedy cartoons, like South Park, then this is nearly a similar format about

the small adventures of three teenage girls at Bromwell High. Keisha, Natella and Latrina

have given exploding sweets and behaved like bitches. I think Keisha is a good leader. There

are small stories going on with the teachers of the school. There’s the idiotic principal, Mr.

Bip, the nervous Maths teacher and many others. The cast is also fantastic. I didn’t know

this came from Canada, but it is very good. Very good!

In this fairly long review which has a positive sentiment associated with the text, not all

sentences and/or words are central to the classification problem. Words that are bolded are

clearly more important as compared to others. Likewise, sentences that are colored in red are

more meaningful in identifying the sentiment of this review, compared to other sentences.

HANs are able to identify such words and/or sentences and give them more importance

than other components making up the text. Figure 2.2 depicts the architecture of a HAN

network2.

Specifically the HAN model contains 4 important components that have been described

below. For understanding the functionality of these components, consider the following set

of notations:

Define a document T as a large chunk of text that consists of multiple sentences. Assume T

has m sentences and each sentence sj contains n words. Word wij represents the ith word in

the jth sentence where i ∈ [1, n] and j ∈ [1,m]. The HAN encoder constructs representations

2Figure taken from Yang et al. (2016)
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Figure 2.2. Architectural diagram showing the components of a HAN

for words and segments in a bottom-up fashion and then uses them to progressively obtain

a document representation for the full text.

1. Word Encoder: Given a sentence si containing n words wij, j ∈ [1, n], the model first

embeds the words into a d-dimensional space (embeddings may be initialized using

pre-trained embeddings like GloVe or word2vec). These embeddings are then fed to a

bidirectional GRU that captures sequential information across the segment. The final

representation for a word hij is obtained by concatenating the forward and backward

hidden states associated with the bidirectional GRU; as shown below:
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xij = BERT(wij)

−→
hij =

−−−→
GRU(wij)

←−
hij =

←−−−
GRU(wij)

hij = [
−→
hij;
←−
hij]

2. Word Attention: Next, the model uses the attention mechanism to figure out which

words are more important within the sentence. To do this, the representation hij

is first passed through a linear layer to obtain a representation uij. To obtain the

importance weight of a word αij, multiply the vector uij with a context vector uw and

pass it through a softmax function. The final representation of a sentence is obtained

by multiplying the hidden state representation hij and the weight vector αij.

uij = tanh(Wwhij + bw)

αij =
exp(uTijuw)∑
j exp(uTijuw)

si =
∑
j

αijhij

3. Sentence Encoder: Given a document T containing m sentences si, i ∈ [1,m], a bidi-

rectional GRU encodes the sentences to obtain a representation for T . The underlying

math is depicted in the equations shown below:

−→
hi =

−−−→
GRU(si)

←−
hi =

←−−−
GRU(si)

hi = [
−→
hi ;
←−
hi ]
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4. Sentence Attention: The representation ui is obtained by passing the hidden rep-

resentations from the GRU through a linear layer. Then, the context vector us is

multiplied with ui to obtain the attention vector αi. The final representation of the

document T will be the product of αi and hi. The equations shown below describe the

math behind how attention is calculated at the segment-level:

ui = tanh(Wshi + bs)

αi =
exp(uTi us)∑
j exp(uTi us)

T =
∑
i

αihi

The final representation T will be a representation of the entire document or text, that is

obtained by composing the word and sentence representations. This can be fed to a decoder

such as a linear layer to perform classification. Since this dissertation is also concerned

with document understanding and parsing, HANs will be useful here and can help identify

important words and segments that can be used to induce a discourse tree accurately.

2.4 Multi-task Learning

Typically, machine learning models are designed around improving the performance metric

(e.g. accuracy) of one task. For instance, to perform document classification, one can build

a HAN model as shown in the previous section. However, Caruana (1997) argues that by

being laser-focused on one task, one may be ignoring information that could help yield

better performance. Specifically, this information comes from related tasks. For example,

Named Entity Recognition could benefit from part-of-speech tagging or text classification

could benefit from semantic role labeling. By sharing representations between related tasks,

one can enable the model to generalize better on the original task. This approach is called

Multi-Task Learning or MTL (Ruder, 2017).
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One can view multi-task learning as a form of inductive transfer that can help improve

a model by introducing an inductive bias. This causes the model to prefer some hypotheses

over others. In the case of MTL, inductive bias is provided by auxiliary tasks, which cause

the model to prefer hypotheses that explain more than one task. Consequently, this helps

the model perform better generalization.

MTL can be performed using one of these ways in deep learning: (1) hard parameter

sharing, where MTL is applied by sharing hidden layers between all tasks, while keeping

several task-specific output layers; and (2) soft parameter sharing where each task has its

own model with its own parameters. Figure 2.3 gives examples of very simple neural network

structures that can be used in MTL3.

Figure 2.3. Hard and soft parameter sharing multi-task learning frameworks

There are several reasons why MTL leads to improved performances:

1. MTL effectively increases the sample size that is used for training the model. When

training a model that performs a certain task A, the objective is to learn a good repre-

sentation that ignores the data-dependent noise and generalizes well. As different tasks

have different noise patterns, a model that learns two tasks simultaneously is expected

to learn a better representation. Just learning task A bears the risk of overfitting,

3Figure taken from Ruder (2017)
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while learning A and an auxiliary task B jointly enables the model to obtain a more

general representation by averaging the noise patterns.

2. If a task is very noisy or data is limited and high-dimensional, it could be difficult for

a model to differentiate between relevant and irrelevant features. MTL can help the

model focus its attention on relevant features as other tasks will provide additional

evidence for the importance of those features.

3. Some features G are easy to learn for some task B, while difficult to learn for another

task A. This might either be because A interacts with the features in a more complex

way or because other features are impeding the model’s ability to learn G. Through

MTL, one can allow the model to learn G through task B.

4. MTL acts as a regularizer by introducing an inductive bias. This reduces the risk of

overfitting and the ability to capture random noise.

2.5 Conclusions

It is fairly evident that deep learning can help perform a myriad of language tasks with

high accuracy. It is also evident that leveraging universal sentence representations from a

complex language model like BERT can significantly improve the performance of any model.

In subsequent chapters, it is empirically shown that fine-tuning BERT with other layers in

the model architecture significantly helped improve model performance and achieve results

that rival the state-of-the-art.

Likewise, since this dissertation concerns with the identification of document-level seman-

tics, using HANs to model text hierarchy and compositionality can help locate specific parts

of the document that are central to understanding its meaning or uncovering a relation.
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Finally, joint learning can bolster both discourse segmentation and parsing by providing

an inductive bias to prevent overfitting. More importantly, any potential effects of the

sparsity of training data on model performance could also be averted.

Subsequent chapters will show each of these models or paradigms in action and provide

empirical evidence that support claims made in this chapter.
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CHAPTER 3

DISCOURSE SEGMENTATION

Chapter 1 briefly introduced readers to the task of discourse segmentation and its significance

in the context of discourse parsing. This chapter describes a deep, accurate model for

performing discourse segmentation.

3.1 Introduction

3.1.1 Problem Definition

Discourse segmentation refers to the task of fragmenting a document into minimal disjoint

chunks of text called elementary discourse units or EDUs. In the context of RST-style

discourse parsing, these EDUs form the leaves of the discourse tree; and edges label relations

between leaves and/or subtrees. Subsequent examples show how a sentence can be segmented

into EDUs (segments are shown via bracketing):

1. [The results underscore Sears’s difficulties] [in implementing the “everyday low pricing”

strategy] [that it adopted in March, as part of a broad attempt] [to revive its retailing

business.]

2. [“We have tried our best to tell the people in Bataan] [that maybe this time it will not

go to them,] [but certainly we will do our best to encourage other investors to go to

their province,”] [Mrs. Aquino told Manila-based foreign correspondents.]

It should be noted that while the definition of segmentation is applicable to the full

document, discourse segmentation is an intra-sentential phenomenon. In other words, one

can begin by first identifying all sentences in the document and then running a segmenter

model on top of each sentence. Following previous research (Lin et al., 2019; Muller et al.,
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2019), it is assumed that gold tokenization and sentence boundary detection outputs are

available and segmentation is performed on the sentence (not the full text).

3.1.2 Challenges to discourse segmentation

While at first discourse segmentation looks essentially like clause delimitation, it is considered

a challenging problem for several reasons.

First, the boundary between syntax and discourse is blurry. While Mann and Thompson

(1988) intuitively defined relations between clauses, Carlson et al. (2003) argue that applying

this idea to the task of consistently annotating a large corpus is difficult as relations hold

between arbitrary spans of text; regardless of whether or not they are grammatically or

lexically linked. To motivate the idea, consider the following examples:

1. [Xerox Corp.’s third-quarter net income grew 6.2% on 7.3% higher revenue.] [This

earned mixed reviews from Wall Street analysts.]

2. [Xerox Corp.’s third-quarter net income grew 6.2% on 7.3% higher revenue,] [which

earned mixed reviews from Wall Street analysts.]

3. [Xerox Corp.’s third-quarter net income grew 6.2% on 7.3% higher revenue,] [earning

mixed reviews from Wall Street analysts.]

4. [The 6.2% growth of Xerox Corp.’s third-quarter net income on 7.3% higher revenue

earned mixed reviews from Wall Street analysts.]

These examples convey the same meaning i.e. the presence of a consequence relation, but

range in structure from two distinct sentences to a single clause. Ideally, one would want to

capture such kind of rhetorical information irrespective of the syntactic form in which it is

represented. However, as example 4 indicates, separating syntax from semantic analysis is

not always easy as the sentence here is not segmented into two EDUs.
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Second, there is little to no agreement on what exactly constitutes a EDU. Some re-

searchers (Grimes, 1972; Givon, 1984) define clauses as EDUs, while some regard sentences

(Polanyi, 1988) as basic units of discourse. Likewise, some researchers also suggest taking

prosodic units (Hirschberg and Litman, 1993), turns of talks (Sacks et al., 1978) or inten-

tionally defined discourse segments (Grosz and Sidner, 1986) as EDUs. In order to find some

balance between the level of granularity and carrying out annotations consistently, annota-

tors came up with a set of well-defined principles to demarcate segment boundaries (Carlson

et al., 2003). While the clause is considered a basic EDU, segment boundaries are often

determined via lexical and syntactic cues. Descriptions and examples of these principles are

provided in Appendix A. It is important to note that these principles are fairly complicated

and it is difficult to construct an accurate, rule-based system around syntactic parse trees

that can segment sentences. Furthermore, errors made by systems that generate parse trees

can creep into the decision making process, hurting model performance.

Third, the amount of training data available for discourse segmentation is limited. This

makes training of complex, data-hungry models like neural networks difficult. For example,

the English RST-DT dataset (Carlson et al., 2003) contains 385 documents with 8,313 sen-

tences and 17,646 EDUs. Likewise, the Dutch Discourse Treebank (Redeker et al., 2012)

contains 80 documents having 1,707 sentences fragmented into 2,041 EDUs.

3.1.3 Related Work

Related work in discourse segmentation can be broadly classified into 3 types: models that

make use of (1) well-defined rules to obtain EDUs; (2) feature-driven traditional machine

learning algorithms; and (3) deep learning. Likewise, models can be also be classified on

the basis of whether they perform (1) token or boundary classification i.e. decide if a token

represents the beginning (boundary) of a new EDU or not; and (2) sequence tagging i.e. use

B-O tagging schemes to classify each token in the input as the beginning of a new EDU (B)
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or continuation of a previous EDU (I). While several segmenters have been built over the

years, this section describes the most important or frequently analyzed ones.

Soricut and Marcu (2003) introduced a probabilistic model called SPADE for performing

sentence-level discourse segmentation. They argue that injecting syntax into the decision

making process can help perform accurate discourse segmentation. The model makes use

of lexical and syntactic features such as POS tags, lexical heads of tokens as obtained from

constituency parse trees, etc. to decide if a token represents the beginning of a new EDU

or not. Using syntactic parse trees extracted via the Charniak parser (Charniak, 2000), the

model achieved an F-score of 84.7.

Subba and Di Eugenio (2007) follow Soricut and Marcu (2003) and model discourse

segmentation as a token classification problem. They use feed-forward neural networks with

a rich set of lexical and syntactic features like POS tags, syntactic parse tree features and

discourse cues to classify a token as the beginning of a new EDU or the continuation of a

previous EDU. They improved the F-score obtained by Soricut and Marcu (2003) to 86.0.

Hernault et al. (2010) modelled the task as sequence classification. They used the same

set of lexical and syntactic features as used by the work described above and trained a

Conditional Random Field (CRF) to classify tokens in a sentence with B-I tags. Performing

segmentation as sequence labelling helped improve the performance significantly: specifically

strong gains were observed in the precision score, leading to an improved F-score of 89.0.

Further, (Bach et al., 2012) built a reranking model on top of Hernault et al. (2010) using

subtree feature to further enhance the F-score to 91.0.

While these models achieved decent F-scores, the underlying issue of data insufficiency

prevented them from doing even better. To assuage this problem, Wang et al. (2018) and Lin

et al. (2019) proposed leveraging sentence representations from ELMo (Peters et al., 2018).

Wang et al. (2018) suggested using a restricted form of self-attention that minimizes the

size of window of tokens for carrying out segmentation and improved model performance.
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Likewise, Lin et al. (2019) suggested using pointer networks (Vinyals et al., 2015) to encode

and decode the sentence being segmented. With BERT (Devlin et al., 2019) emerging

as a popular language model for obtaining universal input representations, Muller et al.

(2019) introduced TonY: a model that leverages pre-trained representations from BERT

and contextualized character embeddings to perform accurate discourse segmentation and

achieve an impressive F-score of 96.0.

Some important lessons that can be learned from previous work done is that the quality

of segmentation depends on (1) smartly leveraging syntactic and lexical features; and (2)

utilizing pre-trained embeddings from universal sentence encoders like BERT and ELMo.

3.1.4 Dissertation Contributions

Following observations on previous research, this chapter proposes leveraging BERT’s struc-

ture and jointly learning syntactic features like part-of-speech tags and dependency parse

tree features to perform discourse segmentation. Main contributions of this chapter are:

1. Discourse segmentation is cast as a token classification problem, as opposed to sequence

tagging. This allows BERT to attend to one token at a time and not the entire sequence

enabling it to make better decisions. It is shown, both qualitatively and quantitatively

that representing the input in this fashion helps significantly improve the performance

of discourse segmenter. Performance gains are particularly observed in the precision

score, which is a common drawback faced by all previously designed segmenters.

2. A simple multi-task learning approach is suggested that uses the intermediate layers

of BERT to carry out part-of-speech tag prediction, and dependency relation classifi-

cation. This helps model performance, particularly for languages other than English.

Unlike related work that uses POS tags or parse trees as features, this work suggests

learning them in a multi-task fashion. Performance gains are observed, particularly
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for low-resource languages like Basque and Portuguese Brazilian, which highlights the

importance of learning syntactic features and even points out some limitations of a

model as complex as BERT in working with such languages.

3. Experiments were performed for different languages to demonstrate the cross-lingual

effectiveness of the framework. Multilingual BERT 1 was used as the sentence encoder.

Previous research work has focused mostly on English. This work suggests a model

that can work well with any language, boasting very good results across all.

4. A qualitative explanation is provided via error analysis. This provides deeper insights

into the models behaviour. Specifically, it is shown that proposed model enhancements

allow it work better with longer sentences and capture syntactic phenomena that are

not identified by baseline models.

3.2 Model Description

Figure 3.1 provides a logical view of the proposed model and its components. Subsequent

subsections describe the model and related details.

3.2.1 Multilingual BERT Encoder

To obtain sentence representations, the model makes use of multilingual BERT as its encoder.

To work with multiple languages, Devlin et al. (2019) released multilingual BERT: a single

language model that was pre-trained from shared multi-lingual corpora in more than 100

languages; using a shared multi-lingual vocabulary. Despite being a shared language model

that could potentially raise concerns about its effectiveness, it was empirically shown that

this model gives surprisingly good results for many language tasks (Pires et al., 2019; Wu

and Dredze, 2019).

1https://www.github.com/google-research/bert
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[CLS] Conservatives note [MASK] 43 governors have the  line-item veto to   use  on   state budgets [CLS] that

Multi-head attention + Fully-connected layer
(Layer #1 of multi-lingual BERT)

Multi-head attention + Fully-connected layer
(Layer #p of multi-lingual BERT)

This layer predicts the POS tags of each token in the sentence

Multilingual BERT

Multi-head attention + Fully-connected layer
(Layer #d of multi-lingual BERT)

This layer predicts the dependency relations with respect to the masked token in the sentence

Fully connected layer
(Predicts whether the masked token is the beginning of a new segment or not)

BeginSeg = Yes

Multi-head attention + Fully-connected layer
(Layer #n of multi-lingual BERT)

Figure 3.1. Model Architecture for Discourse Segmentation: The model attempts to classify
if the masked word ‘that’ represents the beginning of a new segment or not. The intermediate
layers carry out feature prediction i.e. the POS tags and dependency relations of all tokens
with respect to masked token in the sentence.

3.2.2 Input representation

As suggested by previous research, the problem can be either formulated as a sequence

tagging problem or as a token classification problem. Typically, deep learning frameworks
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cast this as a sequence tagging problem i.e. as a B-I tagging problem where B marks the

beginning of a segment and I indicates the continuation of a previous segment. Specifically,

if BERT is to be used, a sequence of tokens t1, t2, . . . tn would be represented as:

[CLS] t1, t2, . . . tn [SEP]

where [CLS] and [SEP] are special tokens used by BERT.

The proposed model casts this problem as token classification. Specifically, given a

sequence of tokens t1, t2, . . . tn, for each token ti, the input is to BERT is represented as:

[CLS] t1, t2, . . . [MASK] . . . tn [SEP] ti

where the token ti is replaced by a special [MASK] token.

A similar idea was applied to sentence boundary detection (Schweter and Ahmed, 2019)

where a window of k characters was defined for markers such as periods, question marks,

exclamation points, etc., and a deep network was trained to identify if the marker represents

a sentence boundary or not. In this case, markers are well-defined (i.e. a sentence must end

with a period, a question mark, an exclamation point or quotation marks). Unfortunately,

for discourse segmentation, such markers are not well-defined which requires checking all

tokens in a sentence for EDU boundaries.

It can be conjectured that casting the problem this way allows BERT to make better

decisions as it attends to each token and not the full sequence. This is particularly useful for

discourse segmentation as Wang et al. (2018) observed that demarcating a segment requires

only on a small window of neighbouring tokens. Trying to tag the full sequence may introduce

unnecessary noise and can lead to errors.
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3.2.3 Joint Learning of Syntactic Features

Syntactic features are very helpful in learning language tasks. Strubell et al. (2018) particu-

larly observed that jointly learning syntactic features improved the performance of semantic

role labeling systems. The idea is extended to discourse segmentation, by jointly predicting

the following features for the sentence:

1. Part-of-speech tags of all tokens in the sentence

2. Dependency parent, child(ren) and sibling(s) of the masked token

3. Dependency relation of the parent with masked token

Pepsi said it will spend $ 10 million advertising the promotion

NNS VBD PRP MD VB $ CD CD VBG DT NN

root

nsubj

nsubj

aux obj

nummod

compound

xcomp

det

obj

ccomp

Figure 3.2. An illustrative example showing the dependency parse tree and features extracted
for each sentence.

An example is provided in Figure 3.2. The following features are extracted: part-of-speech

tags of all tokens; and the dependency parent (and corresponding relation), child(ren) and

siblings of the masked token. For example, if the token ‘spend’ is masked, the classifier is

trained to learn ccomp relation between ‘said’ and ‘spend’; child relations with respect to

the tokens ‘it’, ‘will’, ‘$’, and ‘advertising’; sibling relation with respect to the token ‘said’

and norel with respect to every other token.

Joint training offers many advantages. Some of these have been listed in Chapter 2.

Here, it must be additionally noted that one can make use of gold POS tags and parse trees
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to provide signals for multi-task learning. This is particularly advantageous, as Braud et al.

(2017) observed, system-generated parse trees adversely affect segmentation as opposed to

gold trees that improved performance considerably.

As illustrated in Figure 3.1, the first p layers of BERT learn part-of-speech tags of tokens

under consideration. This layer passes information learned to the upper layers: d layers learn

dependency parse tree based features. The final layer (n = 12 in case of BERT) provides the

final contextualized representations that are fed to the decoder for performing classification.

3.2.4 Decoder

The design of the decoder is fairly simple. A fully connected layer is placed on top of BERT

that accepts the final hidden representation of the sentence and predicts whether the masked

token represents the beginning of a new segment or not. The softmax activation function is

utilized to convert the linear layers output to a probability distribution over labels B and I.

3.3 Experimental Results

3.3.1 Data

To test the performance of the model, experiments were performed with datasets in 5 different

languages:

1. The RST-DT corpus (Carlson et al., 2003) in English (eng.rst.rstdt)

2. The Potsdam Commentary corpus (Stede and Neumann, 2014) in German (deu.rst.pcc)

3. The Dutch Discourse Treebank (Redeker et al., 2012) (nld.rst.rstdt)

4. The Cross-document Structure Theory News Corpus (Cardoso et al., 2011) in Por-

tugeuse Brazilian (por.rst.cstn)
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5. Basque Discourse Treebank (Iruskieta, Aranzabe, de Ilarraza, Lersundi, and de Lacalle,

Iruskieta et al.) (eus.rst.rstdt)

Some statistics on how data is distributed in these corpora is provided in Table 3.1.

Table 3.1. Description of how the data is distributed in each dataset. Notice that the amount
of training data available for languages like Dutch and Basque is too small.

Dataset
Training Validation Test

# Docs # Sents # EDUs # Docs # Sents # EDUs # Docs # Sents # EDUs

eng.rst.rstdt 309 6,672 17,646 38 717 1,797 38 929 2,346
deu.rst.pcc 142 1,773 1,788 17 207 275 17 213 294
nld.rst.nldt 56 1,202 1,350 12 257 347 12 248 344
por.rst.cstn 110 1,595 1,772 14 232 552 12 123 265
eus.rst.rstdt 84 990 1,517 28 350 604 28 320 593

3.3.2 Setup and Code

This tool was implemented in PyTorch 2. The API provided by researchers at HuggingFace3

was used to fine-tune pre-trained BERT. All experiments were performed using NVIDIA-

GTX 1080 Ti GPUs. The code snippet shown below provides the core logic behind all ideas

described in the previous section:

import torch . nn as nn

class BERTForDiscourseSegmentation (nn . Module ) :

def i n i t ( s e l f , language model , po s d i c t , dep d ict ,

hidden =768 , c l a s s e s =2):

super ( BERTForDiscourseSegmentation , s e l f ) . i n i t ( )

s e l f . language model = language model # BERT

s e l f . s e g m e n t c l a s s i f i e r = nn . Linear ( hidden , c l a s s e s )

s e l f . p o s c l a s s i f i e r = nn . Linear ( hidden , len ( p o s d i c t ) )

2https://pytorch.org

3https://github.com/huggingface/transformers
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s e l f . d e p c l a s s i f i e r = nn . Linear ( hidden , len ( dep d i c t ) )

s e l f . l o s s = nn . CrossEntropyLoss ( )

s e l f . num pos = len ( p o s d i c t )

s e l f . num dep = len ( dep d i c t )

def forward ( s e l f , i nput id s , input masks , input segments ,

i n p u t l a b e l s=None , input pos=None , input parent=None , pos =10,

dparent =10):

poo led output = s e l f . language model ( i nput id s ,

attent ion mask=input masks ,

t o k e n t y p e i d s=input segments ) [ 2 ]

p r e d i c t e d r e l a t i o n s =

s e l f . s e g m e n t c l a s s i f i e r ( poo led output [ 1 2 ] ) [ : , −1]

i f i n p u t l a b e l s i s not None :

p r e d i c t e d t a g s =

s e l f . p o s c l a s s i f i e r ( poo led output [ pos ] ) [ : , − 1 ]

p r e d i c t e d d e p r e l s =

s e l f . d e p c l a s s i f i e r ( poo led output [ dparent ] )

return s e l f . l o s s ( p r e d i c t e d r e l a t i o n s . view (−1 , 2 ) ,

i n p u t l a b e l s . view (−1)) +

s e l f . l o s s ( p r e d i c t e d d e p r e l s . view (−1 , s e l f . num dep ) ,

input parent . view (−1)) +

s e l f . l o s s ( p r e d i c t e d t a g s . view (−1 , s e l f . num pos ) ,

input pos . view (−1))

return p r e d i c t e d r e l a t i o n s

For training, batches of size 16 were constructed. Cross-entropy was used for calculating

network loss. The Adam optimizer (Kingma and Ba, 2014) was used for updating network

weights. The learning rate is set to 3e−5. To tune the hyper-parameters, 10% of the training

data was held out as validation set: all hyper-parameters were tuned on this validation set.
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Experiments were conducted for different values of p, d ∈ {9, 10, 11}, but no significant

difference in the F-scores (±0.15) were observed. The best results for each dataset are

reported in this dissertation.

3.3.3 Empirical Results

Empirical results for discourse segmentation are reported in Table 3.2. As a baseline, seg-

mentation is cast as a BI tagging problem, following the guidelines provided by Devlin et al.

(2019). One can see that by casting it instead as token classification (Token), the F-score

improved significantly. In fact, simply casting the problem as token classification got us very

close to the state-of-the-art for the English RST-DT corpus (Muller et al., 2019). Likewise,

training for part-of-speech tags (Post) and dependency relations (Depend) also improved the

F-score for each language. The best improvements were observed for the German and Dutch

datasets; with F-scores improving by 4.47 and 2.87 points respectively.

Table 3.2. Empirical results and ablation study: As is evident from the obtained results,
casting the problem as a token classification (Token) problem led to significant improvement.
Likewise, training for POS tags (Post), dependency relations (Depend) or both (Both) im-
proved model performance across all languages.

Model
eng.rst.rstdt deu.rst.pcc nld.rst.rstdt por.rst.cstn eus.rst.rstdt

P R F P R F P R F P R F P R F

Baseline 86.86 90.41 88.60 84.91 91.84 88.24 84.87 88.08 86.44 84.67 83.40 84.03 75.85 77.46 75.66
Token 95.45 94.67 95.06 94.76 86.05 90.20 97.69 86.05 91.49 92.88 88.68 90.73 87.25 80.78 83.89
Post 96.17 96.21 96.19 93.34 95.58 94.45 93.86 93.31 93.59 87.72 94.34 90.91 84.63 84.49 84.56

Depend 94.41 97.19 95.78 92.74 95.58 94.14 95.73 91.28 93.45 90.98 91.32 91.15 88.87 82.13 85.36
Both 95.24 95.48 95.36 93.81 92.86 93.33 93.02 93.02 93.02 91.60 90.57 91.08 86.02 81.96 83.94

Ensemble 96.32 97.02 96.67 92.81 96.60 94.67 94.72 93.90 94.31 89.53 93.59 91.51 85.59 85.16 85.38

It can also be observed that training either for POS tags or for dependency relations

improves the F-score more significantly as compared to training for both (Both). A likely

explanation for this is that training for both leads to poor generalization thereby leading to

comparatively poor improvements. To assuage the problem, number of training iterations

were increased, but this led to severe overfitting. In general, ensembling (Baseline and Both
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are not considered during ensembling) helped and gave better scores when compared to these

models in isolation.

3.4 Analysis of Performance on English dataset

3.4.1 Comparison with related work

The analysis section begins by first comparing the results obtained for the eng.rst.rstdt cor-

pus with previous work done. To ensure fair comparison, results are reported for discourse

segmentation at the sentence-level and not at the document-level (Braud et al., 2017). Ta-

ble 3.3 reports the performance of the designed model and other competing systems. A

description of these systems has been provided in previous sections and is not repeated here

for the sake of brevity.

Table 3.3. Performance of the proposed model and other systems on the RST-DT dataset.
Results are reported assuming parse trees are extracted using the BLLIP parser (as used by
authors in the paper)

Model P R F

Soricut and Marcu (2003) 84.1 85.4 84.7
Subba and Di Eugenio (2007) 85.5 86.6 86.0

Hernault et al. (2010) 91.0 87.2 89.0
Bach et al. (2012) 91.5 90.4 91.0

Feng and Hirst (2014b) 92.8 92.3 92.6
Wang et al. (2018) 92.9 95.7 94.3
Lin et al. (2019) 94.1 96.6 95.4

Muller et al. (2019) 95.3 96.8 96.0
This research 96.3 97.0 96.7

Human 98.5 98.2 98.3

As is evident from Table 3.3, state-of-the-art results were obtained on the RST-DT corpus,

beating the previous state-of-the-art model by an absolute 0.7 points and by a relative 7.2

points. It can also be observed that many of these systems were high-recall systems i.e.

they end up predicting more EDUs than necessary. The proposed system achieved a higher
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precision than all, again beating the state-of-the-art by an absolute 1.0 points or relative 10

points.

3.4.2 Sentence length v/s Number of errors

Next, a comparison of the proportion of errors made by the models with respect to the length

of the sentence i.e. the number of tokens in the sentence is carried out. For the purpose of

evaluation, a sentence is considered to be incorrectly segmented regardless of whether the

type of error (Bach et al., 2012) is over (i.e. a sentence is segmented when it should not be)

or miss (a sentence is not segmented when it should be). In Figure 3.3, a graph is provided

showing the proportion of errors made by the models with respect to the sentence length.

The proportion of errors is calculated as the ratio of sentences that were incorrectly tagged

to the total number of sentences, grouped by the sentence length.

Figure 3.3. Graphs showing the proportion of errors made v/s the length of sentence.

As suspected, the baseline model performs poorly when the sentences are longer. How-

ever, formulating the problem in an alternate fashion and injecting syntax make the model

perform much better. This effect is more discernible for sentence lengths between 30 and

45, indicating that the baseline model could not segment a large fraction of longer sentences

correctly.
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3.4.3 Frequent Error Patterns

Table 3.4 lists the 8 most frequent tokens that were incorrectly segmented; and the total

number of errors made by each model. As one can infer from Table 3.4, all models give fewer

errors than the baseline model. The reduction in total number of errors is more than 62%

highlight the efficacy of the models. Additionally, training for syntax further reduced these

errors by more than 5%.

Table 3.4. Table showing the number of errors made by all models when tagging the 8 most
frequent tokens.

Token
Absolute number of Errors

Baseline Token Post Depend Both

and 40 21 15 20 16
that 32 11 8 6 7
to 31 22 18 21 16
the 17 9 9 8 7
as 14 4 2 3 1
in 10 3 4 3 2
for 10 7 7 6 6
if 10 3 4 3 3

Total 608 231 187 201 200

On mapping these errors to rules (Carlson and Marcu, 2001), the following were found

to be most frequently violated:

1. Confusion between infinitival complements and infinitival clauses: Infinitival

components of verbs are never fragmented into separate EDUs, whereas infinitival

clauses are segmented only if that clause functions as the satellite of a PURPOSE

relation. The model often confuses infinitival complements for infinitival clauses, which

leads to tagging errors.

2. Coordination in Sentences and Clauses: Coordinated sentences and clauses are

broken into separate EDUs, while coordinated verb phrases are not. Additionally,
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when coordination occurs in subordinate clauses, segmentation depends on whether or

not the subordinate construction would normally be segmented as an EDU if it were

a single clause, rather than a number of coordinated clauses. The model made some

errors in identifying such patterns.

3. Confusion among correlative subordinators: Correlative subordinators consist

of a combination of two markers, one in the subordinate clause and the other in the

superordinate clause. Examples include ‘as ... long as’, ‘either ... or’, etc. These

should be broken into separate EDUs, provided the subordinate clause contains a verb.

There was some confusion in correctly identifying such constructs and thus performing

accurate segmentation.

4. Punctuation: Punctuation symbols often indicates segment boundaries. However,

there may be cases where EDUs are not segmented. For instance, parenthetical ex-

pressions are usually segmented as EDUs, but if the expression is used to indicate

missing information, segmentation must not be carried out. Likewise, phrases sepa-

rated by semi-colons and commas are not EDUs.

While modeling segmentation as token classification helped remove these errors, injecting

syntax helped remove these errors further. In particular, it is observed that jointly training

for part-of-speech tags helped remove punctuation errors and resolve confusions between in-

finitival complements and clauses. Likewise, jointly training for dependency relations helped

remove errors related to coordination and correlative subordinators. Concrete examples of

each error type are provided in Table 3.5.

3.5 Conclusions

Results obtained and analysis performed show how incorporating syntax into the model

helped achieve better results. In particular, the joint learning of syntactic features allowed
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Table 3.5. Some common errors made by the model are highlighted. It is also shown learning
syntactic features helped eliminate such errors.

1

Segments: [With 700 branches in Spain and 12 banking subsidiaries, five branches
and 12 representative-offices abroad, the Banco Exterior group has a lot] [to offer
to a potential suitor.]

Explanation: Infinitival complements of verbs are not segmented as separate
EDUs. However, both Baseline and Token confuse the infinitival clause in the
sentence for a infinitival complement and end up leaving the sentence as a single
EDU. Training for dependency relations allowed the model to identify this correctly
as an infinitival clause and perform correct segmentation.

2

Segments: [The government directly owns 51.4%] [and Factorex, a financial ser-
vices company, holds 8.42%]

Explanation: The baseline makes an error as it cannot identify that the sen-
tence contains a superordinate and a subordinate clause; and therefore must be
segmented. Training for both part-of-speech tags and dependency relations allowed
the model to correctly identify these as two different clauses and segment them.

3

Segments: [A private market like this just isn’t big enough] [to absorb all the
business.]

Explanation: The baseline model fails to identify the comparative ‘enough . . . to’
as a correlative and does not segment the sentence. However, training for syntactic
features allowed the model to correctly identify this construct and hence perform
correct segmentation.

4

Segments: [On the Big Board, Crawford & Co., Atlanta,] [(CFD)] begins trading
today]

Explanation: Both baseline and token incorrectly assume that the parenthetical
expression expresses missing information and must not be segmented. However, by
predicting the POS tag of CFD as NNP which is the same as the POS tags of the
words preceding it, learning POS tags allowed the model to correctly segment this
sentence.

the model uncover complex syntactic patterns that could not be captured by simply fine-

tuning BERT. Further, the use of syntactic features helped achieve solid gains for languages

such as German and Dutch; highlighting both the importance of syntax; and also certain

limitations of multilingual BERT.
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Several complex cases of discourse segmentation could be effectively captured by the

proposed model. Having knowledge of sentence-level semantics may help identify such nu-

anced patterns even better. This was in fact empirically proven by Lin et al. (2019) who

jointly carried out discourse segmentation and coherence relation classification, observing an

incremental improvement in model performance.

A potential drawback of the system is that the time taken to tag a full sequence is

quite large as the model performs sentence segmentation in O(n) time while other models

take O(S) time, n being the number of tokens in the document, and S << n being the

number of sentences in the document. However, with a sufficiently large batch size; and

the availability of multiple GPUs, this bottleneck can be practically resolved by performing

sentence segmentation in parallel.
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CHAPTER 4

DISCOURSE PARSING

To recapitulate, in the context of RST (Mann and Thompson, 1988), a parser operates in

two stages: (1) Discourse segmentation, where the text is partitioned into EDUs; and (2)

Tree induction, where a discourse tree is made from segments. Chapter 3 described a model

for discourse segmentation. This is an important pre-requisite to carrying out tree induction.

This chapter describes a parsing model for RST-style discourse parsing.

4.1 Introduction

4.1.1 Problem Definition

Discourse parsing refers to the task of associating text with a hierarchical discourse tree that

illustrates how its components are logically connected to each other. The tree is structured

such that segments form its leaves, subtrees represent text spans, and arcs label relations

between them. An important characteristic of this tree is that it is hierarchical in nature:

granularity plays a very important role in depicting the level of the relation. Lower rungs

of the tree indicate relations between segments or EDUs and are largely intra-sentential in

nature. While upper rungs of the tree indicate higher level relations occur between text

spans and inter-sentential in nature. For a much bigger document, one may find relations

between even larger spans of text such as groups of sentences to paragraphs.

To understand this, consider an example shown in Figure 4.1. Leaf nodes (labelled as 1,

2 and 3) represent segments and edges between leaves and/or subtrees represent relations.

From the perspective of semantics, the discourse tree provides a condensed view of the

meaning of text. While lower rungs show low-level semantic relations between small spans

of text, upper levels of the tree capture higher level relations between larger spans of texts.

The root of the tree represents the main idea or the theme of the text. For instance, in the
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Figure 4.1. An example showing the discourse tree for a small document (Zeldes, 2016).

tree shown in Figure 4.1, the Attribution relation represents the main idea of the text,

while the Concession relation describes a relation between two smaller spans of text i.e.

leaf nodes 1 and 2.

Additionally, discourse parsing directly finds application in many language tasks, like

text summarization (Uzêda et al., 2008), machine translation (Joty et al., 2017) and question

answering (Verberne, 2007) among others.

While the original RST defines more than 75 relations that can potentially hold between

text spans, this dissertation focus on the most commonly studied relations for each language.

For instance, research efforts are focused on 13 most commonly found relation types for the
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English dataset (Carlson and Marcu, 2001). Definitions and examples of each relation type

can be found in Appendix B.

4.1.2 Challenges to Discourse Parsing

Text-level discourse parsing is a challenging problem for several reasons. Inducing the dis-

course tree requires a thorough understanding of the document’s structure and how its com-

ponents organize text. It involves several complex and interacting factors, touching upon

all layers of linguistic analysis, from syntax, semantics up to pragmatics. Additionally, in

order to perform accurate parsing, one requires knowledge of related linguistic tasks like

coreference resolution, sentence selection and semantic relation classification (Braud et al.,

2016).

As a direct consequence of this issue, coming up with labelled data for relation classifi-

cation is equally difficult and time-consuming (Carlson and Marcu, 2001). The sparsity of

training data makes it difficult to construct and train neural network based parsers.

Likewise, in some cases, more than one relation may hold between two textual segments.

For example, a causal and a temporal relation may hold between two segments simulta-

neously. The goal of the annotators was to label each node in a rhetorical structure tree

with only one relation. To resolve ambiguities, annotators preferred a local comparison of

saliency of relations as a criterion (Carlson and Marcu, 2001). For example, Temporal was

regarded as more general, and thus as less salient, than Condition. This may cause parsers

to confuse between two relations: this can be visualized in the confusion matrix depicted in

Lin et al. (2019) where the model confused Explanation for Cause; Background for

Temporal and so on.

It is also worth noting that unlike constituency parsing where clear production rules are

utilized to define phrases and sentences, a similar strategy cannot be used here directly (Li

et al., 2014). This prevents one from coming up with a deterministic parsing algorithm that
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often relies on such rules. However, previous work has shown that if such production rules

were to be defined and used as features, they can slightly improve model performance (Ji

and Eisenstein, 2014).

4.1.3 Related Work

Related work in discourse parsing can be classified on the basis of what model is used to

classify the relations; and what parsing framework is used to induce the tree structure.

Parsing Frameworks

Discourse parsers may also be classified on the basis of what framework they use to construct

the tree i.e. either they use transition-based systems or chart parsing. Transition-based

systems construct the tree greedily by performing a series of shift-reduce actions in either a

top-down or bottom-up fashion. While the latter use a ranking function to score trees and

identify the best-scoring representation using a dynamic programming algorithm like CKY.

Transition-based systems offer the advantage of inducing the tree in O(n) time where n is the

number of segments or EDUs in the document; while chart parsing frameworks take O(n3M)

time where M is the number of relations labels, usually a corpus-dependent constant.

An important lesson learned from previous research is that it is more time-efficient to use

transition-based parsing over chart parsing. It has been empirically observed that despite

being a greedy approach, transition-based parsing does not yield significantly poor results

when compared to chart parsing.

Previous Research

Related work in text-level discourse parsing can be broadly categorized into two types: (1)

traditional feature-based models and (2) models that leverage neural networks. Feature-

based models rely on manually crafted features extracted from constituency and/or depen-

dency parse trees and make use of traditional machine learning models like SVMs to perform
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discourse parsing. Neural nets on the other hand implictly learn these features and are ca-

pable of providing better text representations than feature-based classifiers. This section

describes the most popular or commonly analyzed text-level discourse parsers.

Feng and Hirst (2014a) uses a feature-driven bottom-up greedy parser with linear-chain

CRFs that exploits two levels of granularity in a document to perform discourse parsing.

Ji and Eisenstein (2014) use a feature-driven shift-reduce parser with an SVM classifier

to induce the discourse tree. Li et al. (2016) uses hierarchical LSTMs with a chart parsing

framework to encode the document and use this representation to generate the discourse tree.

Braud et al. (2016) perform discourse parsing in a multi-task learning setup where they learn

related tasks like coreference resolution, temporal relation extraction, etc. to improve model

performance. Mabona et al. (2019) propose a generative model using word-level beam search

for discourse parsing.

Following previous research, it can be conjectured that it is important to capture three

phenomena to perform accurate discourse parsing: (1) Structure i.e. how different com-

ponents come together to compose the text (Li et al., 2016); (2) Context i.e. what role

does a word or segment play in the context in which it occurs (Kishimoto et al., 2020) and

(3) Syntax i.e. how a discourse tree can be composed from the syntactic parse trees of its

constituent sentences (Yu et al., 2018).

4.1.4 Dissertation Contributions

With respect to discourse parsing, main ideas proposed in this chapter can be summarized

thus:

1. To capture structure and context, the problem is modelled using hierarchical atten-

tion networks or HANs (Yang et al., 2016). HANs are useful here as they model the

document’s layout by attending to multiple levels of the text hierarchy i.e. by differ-

entially focusing on words that make up segments; which in turn constitute the full
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text. This allows one to specifically attend to those parts of a text span that contribute

significantly to its meaning while giving less importance to the rest.

2. To capture context and as well to assuage the data insufficiency problem, the BERT

language model (Devlin et al., 2019) is leveraged by fine-tuning it along with other

layers of the model. As with discourse segmentation, BERT is expected to provide

high quality text representations that can be utilized to perform accurate parsing.

3. To capture syntax, syntactic features like part-of-speech tags and dependency parse

trees are jointly learned while training the model. Previous research has empirically

shown that learning such features can help improve discourse parsing (Yu et al., 2018),

particularly for low-resource languages (Braud et al., 2017) like Basque and Portuguese-

Brazilian. This has also been shown in Chapter 3, where learning such features helped

improve the performance of the discourse segmenter.

4.2 Model Description

A pictorial representation of the model used to design the parser is shown in Figure 4.2. For

defining this model, the following notation is utilized throughout the rest of this chapter:

Define a text span T as a large chunk of text that consists of multiple segments. Assume T

has m segments and each segment sj contains n words. Word wij represents the ith word in

the jth segment where i ∈ [1, n] and j ∈ [1,m]. The HAN encoder constructs representations

for words and segments in a bottom-up fashion and then uses them to progressively obtain

a document representation for the full text. These representations will then be fed to a

decoder that decides which action needs to be performed at a given timestep.
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Figure 4.2. Model Architecture for Discourse Parsing: The input to the model will be the
encapsulating sentence and not the segment: this has been omitted from the figure for the
sake of simplicity.
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4.2.1 Shift-Reduce Parsing

A shift-reduce parser (Dyer et al., 2016) is typically implemented using two data structures:

a stack and a queue. The stack is used to store partially generated subtrees and the queue

is used to hold unprocessed nodes. The parser is initialized by pushing all EDU nodes onto

the queue, with the stack being empty. At every timestep, it performs one of these two

operations:

1. Shift (e): Pop node e from the queue and push it onto the stack.

2. Reduce (l, d): Pop the first two nodes from the stack, create a subtree with these

nodes as its children and push it onto the stack. The relation between the two nodes

is l and its nuclearity is d ∈ {NN, NS, SN}.

Parsing ends when the queue is empty and the stack contains only one tree that represents

the full text. The shift-reduce actions performed to get the tree shown in Figure 4.1 are

provided in Table 4.1.

Table 4.1. The shift-reduce parser in action
Timestep Stack Queue Action Explanation

1 {} {e1, e2, e3} Shift(e1) Push node e1 onto stack
2 {e1} {e2, e3} Shift(e2) Push node ew onto stack
3 {e1, e2} {e3} Reduce(Concession, NS) Pop nodes e1, e2 from stack and create subtree e1:2
4 {e1:2} {e3} Shift(e3) Push node e3 onto stack
5 {e1:2, e3} {} Reduce(Attribution, SN) Pop nodes e1:2, e3 from stack and create subtree e1:3
6 {e1:3} {} - Parsing ends: e1:3 represents the full tree

4.2.2 Multilingual BERT

To design the encoder, the parser makes use of BERT (Devlin et al., 2019). In order to

work with languages other than English, the parser uses multilingual BERT. To obtain the

contextualized embeddings for a sequence of words, the encapsulating sentence (not segment)

S
′
= {w1, w2, ...wl} is considered. The input is presented to multilingual BERT as:
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[CLS] w1 w2 . . . wl

where [CLS] is a special token used by BERT. If the sequence of words one is interested in

is represented as wi, wi+1, ...wj, only the hidden states associated with these words from the

tensor output by BERT are considered.

There are several reasons for representing the input in this fashion. For example, one

may input the sequence wi, wi+1, ...wj, instead of its encapsulating sentence S
′

to BERT.

However, segments are not well-defined syntactic units (like sentences) (Carlson and Marcu,

2001) and previous work has shown that this leads to a significant drop in model performance

(Xu et al., 2020). Likewise, instead of building a HAN on top of BERT’s output, one may

also consider fine-tuning BERT directly for tree induction by inputting text spans to the

model. However, BERT has a limitation that input sequences cannot be longer than 512

tokens (or sub-tokens) and this condition is violated in this case as text spans are a lot

bigger. While there are work-arounds to handle larger inputs, obtained text representations

may not be structure-aware. The next subsection describes how HANs can help incorporate

structural information.

4.2.3 HAN Encoder

As described previously, the model must decide which of the two actions i.e. Shift or Reduce

should be performed at each timestep. To achieve this, text spans associated with the first

two subtrees in the stack and the first subtree in the queue are considered and encoded using

the HAN model. Specifically, Gated Recurrent Units or GRUs are used to capture sequence

information. Likewise, attention is also applied to identify important pieces of information

at the word- and segment-level.
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Word-level GRU and Attention

Given a segment si containing n words wij, j ∈ [1, n], the model first encodes the words

using the strategy described previously. These embeddings are then fed to a bidirectional

GRU that captures sequential information across the segment. The final representation for

a word hij is obtained by concatenating the forward and backward hidden states associated

with the bidirectional GRU; as shown below:

xij = BERT(wij)

−→
hij =

−−−→
GRU(wij)

←−
hij =

←−−−
GRU(wij)

hij = [
−→
hij;
←−
hij]

Next, the parser uses the attention mechanism to figure out which words are more im-

portant within the text span at a given timestep. To do this, the representation hij is first

passed through a linear layer to obtain a representation uij. To obtain the importance weight

of a word αij, multiply the vector uij with a context vector uw and pass it through a softmax

function. The final representation of a text segment is obtained by multiplying the hidden

state representation hij and the weight vector αij.

uij = tanh(Wwhij + bw)

αij =
exp(uTijuw)∑
j exp(uTijuw)

si =
∑
j

αijhij

The PyTorch code associated with this is shown below:

def matrix mul ( input , weight , b i a s=False ) :
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f e a t u r e l i s t = [ ]

for f e a t u r e in input :

f e a t u r e = torch .mm( fea ture , weight )

i f isinstance ( bias , torch . nn . parameter . Parameter ) :

f e a t u r e = f e a t u r e + b ia s . expand ( f e a t u r e . s i z e ( ) [ 0 ] , b i a s . s i z e ( ) [ 1 ] )

f e a t u r e = torch . tanh ( f e a t u r e ) . unsqueeze (0 )

f e a t u r e l i s t . append ( f e a t u r e )

return torch . cat ( f e a t u r e l i s t , 0 ) . squeeze ( )

def e lement wise mul ( input1 , input2 ) :

f e a t u r e l i s t = [ ]

for f e a tu r e 1 , f e a t u r e 2 in zip ( input1 , input2 ) :

f e a t u r e 2 = f e a t u r e 2 . unsqueeze ( 1 ) . expand as ( f e a t u r e 1 )

f e a t u r e = f e a t u r e 1 ∗ f e a t u r e 2

f e a t u r e l i s t . append ( f e a t u r e . unsqueeze ( 0 ) )

output = torch . cat ( f e a t u r e l i s t , 0)

return torch .sum( output , 0 ) . unsqueeze (0 )

class WordAttNet (nn . Module ) :

def i n i t ( s e l f , bert , embed s ize =768 , h i d d e n s i z e =100):

super ( WordAttNet , s e l f ) . i n i t ( )

s e l f . word weight = nn . Parameter ( torch . Tensor (2 ∗ h i d d e n s i z e

, 2 ∗ h i d d e n s i z e ) )

s e l f . word bias = nn . Parameter ( torch . Tensor (1 , 2 ∗ h i d d e n s i z e ) )

s e l f . context we ight = nn . Parameter ( torch . Tensor (2 ∗ h idden s i z e , 1 ) )

s e l f . ber t = bert

s e l f . gru = nn .GRU( embed size , h idden s i z e , b i d i r e c t i o n a l=True ,

b a t c h f i r s t=Fal se )

s e l f . c r e a t e w e i g h t s (mean=0.0 , s td =0.05)
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def c r e a t e w e i g h t s ( s e l f , mean=0.0 , s td =0.05) :

s e l f . word weight . data . normal (mean , std )

s e l f . context we ight . data . normal (mean , std )

def forward ( s e l f , input , h i dden s ta t e ) :

torch . autograd . s e t de t ec t anoma ly ( True )

output = s e l f . ber t ( input ) [ 0 ] . permute (1 , 0 , 2)

f output , h output = s e l f . gru ( output . f loat ( ) , h idden s ta t e )

output = matrix mul ( f output , s e l f . word weight , s e l f . word bias )

output = matrix mul ( output , s e l f . context we ight ) . permute (1 , 0)

output = F. softmax ( output , dim=−1)

output = element wise mul ( f output , output . permute (1 , 0 ) )

return output , h output

Segment-level GRU and attention

Given a text span T containing m segments si, i ∈ [1,m], first use a bidirectional GRU

to encode the segments and then use attention mechanism in a similar fashion to obtain a

representation for T . The underlying math is depicted in the equations shown below:

−→
hi =

−−−→
GRU(si)

←−
hi =

←−−−
GRU(si)

hi = [
−→
hi ;
←−
hi ]

The representation ui is obtained by passing the hidden representations from the GRU

through a linear layer. Then, the context vector us is multiplied with ui to obtain the

attention vector αi. The final representation of the text span T will be the product of αi
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and hi. The equations shown below describe the math behind how attention is calculated at

the segment-level:

ui = tanh(Wshi + bs)

αi =
exp(uTi us)∑
j exp(uTi us)

T =
∑
i

αihi

The PyTorch code associated with segment-level GRU and attention is provided here:

class SentAttNet (nn . Module ) :

def i n i t ( s e l f , s e n t h i d d e n s i z e =100 , word h idden s i z e =100):

super ( SentAttNet , s e l f ) . i n i t ( )

s e l f . s en t we ight = nn . Parameter ( torch . Tensor (2 ∗ s e n t h i d d e n s i z e ,

2 ∗ s e n t h i d d e n s i z e ) )

s e l f . s e n t b i a s = nn . Parameter ( torch . Tensor (1 , 2 ∗ s e n t h i d d e n s i z e ) )

s e l f . context we ight = nn . Parameter ( torch . Tensor (2 ∗ s e n t h i d d e n s i z e ,

1 ) )

s e l f . gru = nn .GRU(2 ∗ word hidden s i ze , s e n t h i d d e n s i z e ,

b i d i r e c t i o n a l=True , b a t c h f i r s t=Fal se )

s e l f . c r e a t e w e i g h t s (mean=0.0 , s td =0.05)

def c r e a t e w e i g h t s ( s e l f , mean=0.0 , s td =0.05) :

s e l f . s en t we ight . data . normal (mean , std )

s e l f . context we ight . data . normal (mean , std )

def forward ( s e l f , input , h i dden s ta t e ) :

torch . autograd . s e t de t ec t anoma ly ( True )

f output , h output = s e l f . gru ( input , h i dden s ta t e )
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output = matrix mul ( f output , s e l f . s ent we ight , s e l f . s e n t b i a s )

output = matrix mul ( output , s e l f . context we ight ) . permute (1 , 0)

output = F. softmax ( output , dim=−1)

output = element wise mul ( f output , output . permute (1 , 0 ) )

return output , h output

4.2.4 Jointly Learning for Syntax

Syntactic features are very helpful in learning language tasks like semantic role labeling

(Strubell et al., 2018) and discourse segmentation. Following the previous chapter, idea is

extended to discourse parsing, by using BERT to jointly predict the following features for

every sentence in the document:

1. Part-of-speech tags of all tokens in a sentence

2. Dependency parent, child(ren) and sibling(s) of the every token in the sentence

3. Dependency relation of parent token with respect to a token in the sentence

4.2.5 Decoder

The decoder performs two actions: First, it predicts what action must be performed at a

given timestep. As stated previously, it works with the span representations of the first two

nodes in the stack and the first node in the queue. These representations are denoted as

st1, st2 and q respectively. Second, it predicts the syntax features associated with a sentence

during joint training. For joint learning, simple dense layers are used to make predictions.

For the former, two special networks are used that are described below:
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Position-wise feed-forward network

This module predicts whether the parser must perform a Shift or Reduce action. First,

it concatenates the representations st1, st2 and q to obtain r: this is then fed to a two-layer

feed-forward network (Vaswani et al., 2017) that performs the prediction as shown:

ys = softmax(max(0, rW1 + b1)W2 + b2)

Here ys refers to the softmax distribution over two classes: Shift and Reduce.

Biaffine classifier

The biaffine classifier (Dozat and Manning, 2016) is a two-layer network that takes in the span

representations st1 and st2 as input and predicts the relation and its nuclearity (assuming

the reduce action is to be performed). The first layer is a linear layer with ELU activation

that maps the span representations into latent features l1 and l2. The second layer is a

bi-affine layer that obtains a softmax distribution yr over the labels:

l1 = ELU(stT1U1) l2 = ELU(stT2U2)

yr = softmax(lT1W12l2 + lT1W1 + lT2W2 + b)

This code snippet shows how to implement the biaffine classifier:

class L a b e l C l a s s i f i e r (nn . Module ) :

def i n i t ( s e l f , i n p u t s i z e , c l a s s i f i e r h i d d e n s i z e , c l a s s e s l a b e l ,

b i a s=True , dropout =0.1) :

super ( L a b e l C l a s s i f i e r , s e l f ) . i n i t ( )

s e l f . c l a s s i f i e r h i d d e n s i z e = c l a s s i f i e r h i d d e n s i z e
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s e l f . l a b e l s p a c e l e f t = nn . Linear ( i n p u t s i z e ,

c l a s s i f i e r h i d d e n s i z e , b i a s=b ia s )

s e l f . l a b e l s p a c e r i g h t = nn . Linear ( i n p u t s i z e ,

c l a s s i f i e r h i d d e n s i z e , b i a s=b ia s )

s e l f . w e i g h t l e f t = nn . Linear ( c l a s s i f i e r h i d d e n s i z e ,

c l a s s e s l a b e l , b i a s=b ia s )

s e l f . w e i g h t r i g h t = nn . Linear ( c l a s s i f i e r h i d d e n s i z e ,

c l a s s e s l a b e l , b i a s=b ia s )

s e l f . nnDropout = nn . Dropout ( dropout )

s e l f . w e i g h t b i l a t e r a l = nn . B i l i n e a r ( c l a s s i f i e r h i d d e n s i z e ,

c l a s s i f i e r h i d d e n s i z e , c l a s s e s l a b e l , b i a s=b ia s )

def forward ( s e l f , i n p u t l e f t , i n p u t r i g h t ) :

l a b e l s p a c e l e f t = F . e lu ( s e l f . l a b e l s p a c e l e f t ( i n p u t l e f t ) )

l a b e l s p a c e r i g h t = F. e lu ( s e l f . l a b e l s p a c e r i g h t ( i n p u t r i g h t ) )

union = torch . cat ( ( l a b e l s p a c e l e f t , l a b e l s p a c e r i g h t ) , 1)

union = s e l f . nnDropout ( union )

l a b e l s p a c e l e f t = union [ : , : s e l f . c l a s s i f i e r h i d d e n s i z e ]

l a b e l s p a c e r i g h t = union [ : , s e l f . c l a s s i f i e r h i d d e n s i z e : ]

output = ( s e l f . w e i g h t b i l a t e r a l ( l a b e l s p a c e l e f t , l a b e l s p a c e r i g h t ) +

s e l f . w e i g h t l e f t ( l a b e l s p a c e l e f t ) +

s e l f . w e i g h t r i g h t ( l a b e l s p a c e r i g h t ) )

return output

4.2.6 Training Loss

The objective of this network is to reduce the overall cross-entropy loss associated with the

model. This comprises of three losses: the structure loss that is associated with predicting
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correct shift-reduce actions; the relation loss, associated with the biaffine classifier and the

joint training loss, that comes from jointly learning for syntax. The overall loss is given by:

L(θP ) = Ls(θP ) + Lr(θP ) + Lj(θB) +
λ

2
||θP ||2

where θB and θP refers to the parameters of BERT and the entire model respectively,

Ls refers to the loss associated with learning structure, Lr is to the loss associated with

learning relations and Lj is the loss associated with joint learning. Additionally, L2-norm

(as indicated by regularization factor λ) is used to prevent model overfitting.

4.3 Experimental Results and Discussion

4.3.1 Data

To evaluate the effectiveness of the model, experiments were carried out with five different

languages. Note that these datasets are the same that were used to evaluate the performance

of the segmenter in the previous chapter.

1. The RST-DT corpus (Carlson et al., 2003) in English (eng.rst.rstdt)

2. The Potsdam Commentary corpus (Stede and Neumann, 2014) in German (deu.rst.pcc)

3. The Dutch Discourse Treebank (Redeker et al., 2012) (nld.rst.rstdt)

4. The Cross-document Structure Theory News Corpus (Cardoso et al., 2011) in Por-

tugeuse Brazilian (por.rst.cstn)

5. Basque Discourse Treebank (Iruskieta, Aranzabe, de Ilarraza, Lersundi, and de Lacalle,

Iruskieta et al.) (eus.rst.rstdt)
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Some statistics on the data present in these corpora are provided in Table 4.2. 1 One can

observe that the amount of training data available is very small, particularly for the Dutch

and Basque datasets. Likewise, the number of labels to be classified is fairly large.

Table 4.2. Distribution of data in each dataset. #Labels indicate the number of (rela-
tion+nuclearity) pairs.

Corpus #Trees #Words #Segments #Sentences #Relations #Labels
eng.rst.rstdt 385 206,300 21,789 8,318 56 110
deu.rst.pcc 173 32,274 2,790 2,193 32 58
nld.rst.nldt 80 27,920 2,345 1,707 31 51
por.rst.cstn 136 27,185 2,589 1,950 32 58
eus.rst.rstdt 85 27,982 2,396 1,660 31 50

4.3.2 Setup and Code

The Adam optimizer (Kingma and Ba, 2014) was used for updating network weights during

training. For all experiments, the hidden dimension of the GRU was set to 50: the concate-

nation of the forward and backward GRUs would therefore result in hidden representations

of size 100. Additionally, the first layer in both decoder classifiers used a hidden size of 100.

To tune these hyper-parameters, 10% portion of the training data was held out as valida-

tion set: all hyper-parameters were tuned on this validation set. Following previous research

(Li et al., 2016), it is assumed that the gold discourse segments are already available while

evaluating the parser’s performance.

This tool was implemented in PyTorch 2. The API provided by researchers at Hug-

gingFace3 was used to fine-tune pre-trained BERT. All experiments were performed using

NVIDIA-GTX 1080 Ti GPUs.

1The REST API available here was used to convert between different file formats:
https://github.com/NLPbox/rst-converter-service

2https://pytorch.org

3https://github.com/huggingface/transformers
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Code snippets for word- and segment-level HANs were shown previously. Combining these

together, the final hierarchical model is constructed thus:

class HierAttNet (nn . Module ) :

def i n i t ( s e l f , elmo , word h idden s i ze , s e n t h i d d e n s i z e ,

ba t ch s i z e , num classes ,

max sent length , max word length ) :

super ( HierAttNet , s e l f ) . i n i t ( )

s e l f . b a t c h s i z e = b a t c h s i z e

s e l f . word h idden s i z e = word h idden s i z e

s e l f . s e n t h i d d e n s i z e = s e n t h i d d e n s i z e

s e l f . max sent length = max sent length

s e l f . max word length = max word length

s e l f . word at t net = WordAttNet ( elmo , h i d d e n s i z e=word h idden s i z e )

s e l f . s e n t a t t n e t = SentAttNet ( s e n t h i d d e n s i z e , word h idden s i z e )

s e l f . w 1 = nn . Linear (2 ∗ s e n t h i d d e n s i z e , s e n t h i d d e n s i z e )

s e l f . w 2 = nn . Linear ( s e n t h i d d e n s i z e , 2)

s e l f . r e l = L a b e l C l a s s i f i e r (2 ∗ s e n t h i d d e n s i z e ,

s e n t h i d d e n s i z e , num classes )

s e l f . dropout = nn . Dropout ( 0 . 1 )

s e l f . word h idden state = torch . z e r o s (2 , ba t ch s i z e ,

s e l f . word h idden s i z e )

s e l f . s e n t h i d d e n s t a t e = torch . z e r o s (2 , s e l f . ba t ch s i z e ,

s e l f . s e n t h i d d e n s i z e )

s e l f . i n i t h i d d e n s t a t e ( )

def i n i t h i d d e n s t a t e ( s e l f , l a s t b a t c h s i z e=None ) :

i f l a s t b a t c h s i z e :

b a t c h s i z e = l a s t b a t c h s i z e
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else :

b a t c h s i z e = s e l f . b a t c h s i z e

s e l f . word h idden state = torch . z e r o s (2 , ba t ch s i z e ,

s e l f . word h idden s i z e )

s e l f . s e n t h i d d e n s t a t e = torch . z e r o s (2 , s e l f . ba t ch s i z e ,

s e l f . s e n t h i d d e n s i z e )

i f torch . cuda . i s a v a i l a b l e ( ) :

s e l f . word h idden state = s e l f . word h idden state . cuda ( )

s e l f . s e n t h i d d e n s t a t e = s e l f . s e n t h i d d e n s t a t e . cuda ( )

def forward ( s e l f , inp : torch . Tensor , do=True ) :

torch . autograd . s e t de t ec t anoma ly ( True )

i f do :

s e l f . i n i t h i d d e n s t a t e ( )

inp = inp . permute (1 , 2 , 0 , 3)

t r e e l i s t = [ ]

for t r e e in inp :

e d u l i s t = [ ]

for edu in t r e e :

output , s e l f . word h idden state = s e l f . word at t net ( edu ,

s e l f . word h idden state )

e d u l i s t . append ( output )

output = torch . cat ( e d u l i s t , 0)

output , s e l f . s e n t h i d d e n s t a t e = s e l f . s e n t a t t n e t ( output ,

s e l f . s e n t h i d d e n s t a t e )

t r e e l i s t . append ( output . squeeze ( 0 ) )

return s e l f . w 2 ( s e l f . dropout (F . r e l u ( s e l f . w 1

torch .sum( torch . s tack ( t r e e l i s t ) , 0 ) ) ) ) ) ,

s e l f . r e l ( t r e e l i s t [ 0 ] , t r e e l i s t [ 1 ] )
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4.3.3 Evaluation

The ParseEval metrics (Morey et al., 2018) were used for evaluating the performance of

the model. Evaluation is performed along 4 dimensions: (1) Span (S), that measures how

accurately the model predicted the structure of the tree, (2) Nuclearity (N), that measures

how the accuracy of predicting the nuclearity of a relation, (3) Relation (R) that measures the

accuracy of classifying the relations between text spans; and (4) Full (F) that measures the

performance associated with predicting both the relation and its nuclearity. Additionally,

similar to how dependency parse trees are scored, evaluation metrics can be reported as

both unlabelled (ULAS) and labelled attachment scores (LAS). ULAS scores typically do

not account for the structure of the tree i.e. who are the parent and children of a node.

LAS scoring is stricter as it takes into account the tree’s structure i.e. who the parents and

children of a node are.

To demonstrate the effectiveness of the proposed solution, results are presented using 4

different encoder styles:

Baseline: This is a simple model that contains a bidirectional GRU as its encoder. The

span representations are first embedded using their GloVe vectors (Pennington et al., 2014)

and then fed to the GRU that summarizes the contextual information for each word in the

span. The output of the last hidden state of the GRU is then fed to the decoder to perform

classification.

HAN: This model makes use of the HAN encoder to obtain structure-aware span representa-

tions and feeds them to the decoder for further processing. Here as well, GloVe embeddings

are used, not BERT to obtain word representations. To train both baseline and HAN, a

batch size of 64, a learning rate of 0.001 and the maximum number of iterations of 60 was

used to perform a fair comparison.
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HAN+BERT: This model uses both the HAN encoder and multilingual BERT to obtain

deep contextualized, structure-aware span representations.

HAN+BERT+Joint: Built on top of HAN+BERT, this model jointly captures syn-

tax by learning POS tags and dependency parse trees. To train both HAN+BERT and

HAN+BERT+Joint, the initial learning rate was set to 3 × 10−5, the batch size to 16 and

the maximum number of training iterations to 8.

An important distinction between these designs is that the baseline model does not gen-

erate structure-aware or contextualized representations, the HAN model generates structure-

aware but not contextualized representations. HAN+BERT generates contextualized, structure-

aware representations, while HAN+BERT+Joint captures structure, context and syntax.

This allows one to isolate the impact of each model component on the parser’s performance.

Note that the parameters used for training either model are also different. For instance,

training Baseline or HAN requires more iterations with a larger learning rate when com-

pared to training HAN+BERT or HAN+BERT+Joint that require very few iterations and

a small learning rate. This is done because the former two models need to be trained from

scratch, when compared to the latter which only need to be fine-tuned for a few iterations,

thanks to BERT.

Table 4.3 provides the experimental results on the datasets for each setting. ULAS scores

are reported for each model.

As one can see, leveraging HANs and jointly learning syntax features particularly helped

in accurately predicting the tree’s structure, as indicated by the span score. This empiri-

cally verifies our claim that capturing document structure is useful in accurately predicting

discourse trees. Likewise, jointly using HANs and BERT helped improve the accuracy of

classifying relations and/or their nuclearity. Best improvements in model performance were
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Table 4.3. Experimental results for the five datasets using our model
Dataset Model S N R F

eng.rst.rstdt

Baseline 58.2 33.4 22.1 20.9
HAN 65.3 53.2 41.3 40.6

HAN + BERT 84.5 64.8 54.9 54.1
HAN + BERT + Joint 85.3 65.6 55.4 54.7

deu.rst.pcc

Baseline 56.3 34.8 13.2 11.8
HAN 62.1 45.1 34.5 33.6

HAN + BERT 74.3 56.7 49.7 48.6
HAN + BERT + Joint 77.5 59.8 53.1 52.4

nld.rst.nldt

Baseline 48.9 31.5 18.0 16.5
HAN 56.7 42.1 31.4 30.6

HAN + BERT 67.9 53.6 42.5 43.7
HAN + BERT + Joint 70.8 54.7 44.6 44.1

por.rst.cstn

Baseline 51.7 30.4 20.1 19.3
HAN 58.4 37.6 27.4 26.9

HAN+BERT 62.3 42.1 31.8 30.9
HAN + BERT + Joint 64.1 45.6 32.4 31.7

eus.rst.rstdt

Baseline 56.2 34.9 18.8 17.5
HAN 63.4 41.5 31.6 30.9

HAN+BERT 65.8 44.3 35.7 34.1
HAN + BERT + Joint 67.4 45.9 37.6 36.4

observed with English and German datasets; with joint learning of syntactic features partic-

ularly helping German discourse parsing. It is also interesting to note that the performance

improvements were not substantial for Basque and Portuguese Brazilian, although this is

fairly consistent with the findings of related research work.

It is interesting to note that one can qualitatively analyze the behavior of HANs by

looking at the best scoring words and/or segments and the relation classified. By doing this,

one can get better insights into predictions made by the model. By leveraging both the

contextualized embeddings provided by BERT and the structural knowledge encapsulated

by HANs, our model makes better predictions than the baseline. In the next section, an

in-depth analysis of the English dataset is provided. Particularly an attempt is made to

understand how HANs help in better classifying rhetorical relations between text spans.
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4.4 Analysis of Performance on English dataset

This section provides an analysis of the model’s performance on the eng.rst.rstdt corpus.

4.4.1 Comparison with existing models

The performance of the model4 is compared with previous research in Table 4.4.

Table 4.4. Comparison of model performance with existing work. ULAS scores for MRCV19
were not available.

Model
ULAS LAS

S N R F S N R F

Feature-based parsers
Feng and Hirst (2014a) 84.3 69.4 56.9 56.2 68.6 55.9 45.8 44.6
Ji and Eisenstein (2014) 82.0 68.2 57.8 57.6 64.1 54.2 46.8 46.3

Neural parsers
Braud et al. (2016) 79.7 63.6 47.7 47.5 59.5 47.2 34.7 34.3

Li et al. (2016) 82.2 66.5 51.4 50.6 64.5 54.0 38.1 36.6
Mabona et al. (2019) - - - - 67.1 57.4 45.5 45.0

Our Work 85.3 65.6 55.4 54.7 68.7 54.8 45.1 44.5

As one can see, our parser achieves competitive results that rivals the performance of

both feature-based and neural parsers. It should be noted that our parser achieves the best

span score when compared to other models.

4.4.2 Analysis of word-level attention

Define an explicit discourse relation as one that is made apparent through the use of cue

words or discourse markers. For example, words like ‘because’ or ‘since’ are very good

indicators of the Cause relation. It can be conjectured that word-level attention should be

able to identify such cue words accurately to predict the correct relation. Table 4.5 displays

4To evaluate the model, the educe package: https://educe.readthedocs.io/en/latest/rst-dt.html is used
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the lemmas associated with words that were assigned the highest attention scores for each

relation type.

Table 4.5. Lemmas of highest scoring words grouped by relation
# Relation List of words
1 Attribution {say, declare, ask, tell}
2 Cause {as, because, since, to}
3 Condition {if, until, unless}
4 Contrast {but}
5 Manner-means {by}
6 Circumstance {since, then, by}

Clearly, Table 4.5 is able to identify cue words (Carlson and Marcu, 2001) that explicitly

signal a discourse relation. However, this may also lead to some confusion between labels.

For example, the word ‘since’ potentially signifies both Cause and Circumstance relation:

here the context in which the word occurs plays a crucial role. This context must be captured

at the segment level by the HAN encoder. Likewise, the burden of identifying implicit

discourse relations lies on segment-level GRUs and attention as these relations are not made

apparent through the use of cue words. Here, the segment-level GRU and attention must

identify the segment(s) that are most likely indicators of the relation to be classified.

4.4.3 Analysis of segment-level attention

Table 4.6 provides some examples of predictions made on the eng.rst.rstdt corpus. In these

examples, the segments that were ascribed the highest attention scores by the model are

highlighted. In other words, one is interested in observing if segment-level attention can

take representations provided by the word-level GRU and use it to rank segments according

to their relevance.

Specifically, segment-level attention is analyzed from 2 perspectives:
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1. Given that word-level attention correctly identifies a cue word or phrase as an explicit

discourse marker, can the segment-level attention identify its associated segment as

the most important one?

2. Given that the relation is implicit and no cue words can be picked up by word-level

attention, can segment-level attention identify the best segment(s) that indicate the

relation?

Examples #1 and 2 answer question 1, where word-level attention picks up cue words like

‘confirmed’ and ‘as’ correctly and segment-level attention picks up the correct segment(s)

and classifies the relation correctly. Likewise, examples #3 and 4 answer question 2, where

the relation is implicit and word-level attention cannot pick up any cue words (as they do

not exist). In example #3, the correct segment is identified and the relation is also predicted

correctly. Whereas, in example #4, the model cannot pick up the correct segment(s) as the

most relevant one(s) and mistags the relation as Explanation.

To conclude, while word- and segment-level attention work together to identify explicit

relations correctly, the burden of identifying implicit relations lies largely on the segment-

level attention.

4.5 Conclusions and Future Work

In this chapter, a simple yet effective neural framework was suggested for performing text-

level discourse parsing. Experimental results show that the model is able to accurately

generate parse trees for various languages; with their performance rivaling that of several

feature-based and neural RST parsers. Additionally, it was shown that learning syntactic

features helps learn better parse tree structures when compared to baseline models. Also,

using HANs allows one to interpret the behaviour of the model and gain insights into what

predictions are made by the parser.
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Table 4.6. Qualitative analysis of Segment-level Attention
# Nucleus Satellite True Relation Predicted Comments

1 that it received per-
mission late Thursday
from U.S. antitrust
regulators to increase
its Jaguar holdings
past the $15 million
level.

GM confirmed Friday Attribution Attribution The model correctly
predicts the relation as
Attribution by paying
maximum attention to
the word ‘confirmed’ that
explicitly indicates this
relation. Likewise, the first
segment in the nucleus
receives more attention
than the second as it is
a better indicator of the
relation.

2 “I’m not losing faith
in the market,” said
Boston lawyer Christo-
pher Sullivan

as he watched the mar-
ket plunge on a big
screen in front of a bro-
kerage firm.

Circumstance Circumstance Word-level attention cor-
rectly identifies the key-
word ‘as’ as a good indica-
tor of this relation between
the two text spans. Fur-
thermore, the model cor-
rectly identifies the context
in which this word is used,
pays attention to the cor-
rect segment and hence cor-
rectly classifies the relation.

3 but by the time Sol-
idarity took office in
September,

the damage was done Circumstance Circumstance The model correctly pre-
dicts the relation as Cir-
cumstance by identifying
the segment containing the
phrase ‘by the time’ as
an implicit indicator of the
temporal circumstance rela-
tion between the two text
spans

4 Are you kidding?
Looking for a job
was one of the most
anxious periods of my
life and is for most
people.

Your paper needs a re-
ality check.

Topic-
Comment

Explanation The model incorrectly pre-
dicts the relation as Ex-
planation. It picks the
wrong segment as the most
important one instead of
the one before it, that is
more relevant and should
have been considered for
correctly tagging the rela-
tion as Topic-Comment.

There are several potential avenues for future research. In this model, the focus was only

on jointly learning POS tags and dependency parse trees purely due to the non-availability

of data/corpora for related linguistic tasks like co-reference resolution or semantic relation

classification for languages other than English. However, learning such tasks jointly should

further benefit discourse parsing, especially with relation classification. Likewise, one may
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also want to leverage the output of an RST parser; and particularly use the attention scores

given by the HAN model to improve the performance of related linguistic tasks.
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CHAPTER 5

TEMPLATES FOR QUESTION GENERATION

Chapters 3 and 4 described models for discourse segmentation and parsing. The output of

the parser is a discourse tree that summarizes the text it represents by depicting discourse

relations between its spans. This tree can be leveraged to construct a reading comprehension

assessment where deep, inferential questions can be posed to test a reader’s understanding of

the text. This chapter describes a series of syntactic transformations and a template-driven

algorithm for obtaining questions from discourse relations.

5.1 Introduction

5.1.1 Problem Statement

Revisiting the problem of question generation (QG), the objective is to transform a discourse

tree into question-answer pairs. Recall that a discourse tree depicts multi-level semantic

relations that hold in text: relations described by lower rungs of the tree are intra-sentential

and low-level compared to those described by higher rungs of the tree that are inter-sentential

and more high-level. Hence, questions generated from low-level relations would test the

knowledge of semantic relations at the sentence-level while questions obtained from high-

level relations would be more general in scope and test the understanding of the text as a

whole.

5.1.2 Previous Work

Previous research efforts in QG have primarily focused on transforming declarations into

interrogative sentences, or using shallow semantic parsers to create factoid (Wh-type) ques-

tions.
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Mitkov and Ha (2003) made use of term extraction and shallow parsing to create questions

from simple sentences. Heilman and Smith (2010) suggested a system that over-generates

questions from a sentence. First, the sentence is simplified by discarding leading conjunc-

tions, sentence-level modifying phrases, and appositives. It is then transformed into a set of

candidate questions by carrying out a sequence of well-defined syntactic and lexical trans-

formations. Then, these questions are evaluated and ranked to identify the most suitable

one(s).

Similar approaches have been suggested over time to generate questions, like using a

recursive algorithm to explore parse trees of sentences in a top-down fashion (Curto et al.,

2012), creating fill-in-the-blank type questions by analyzing parse trees of sentences and

thereby identifying answer phrases (Becker et al., 2012) or using semantics-based templates

(Lindberg et al., 2013; Mazidi and Nielsen, 2014) to obtain question-answer pairs.

The generation of complex questions from multiple sentences or paragraphs was first

explored by Mannem et al. (2010). Discourse connectives such as ‘because’, ‘since’ and

‘as a result’ signal explicit coherence and can be used to generate Why-type questions.

Araki et al. (2016) created an event-centric information network where each node represents

an event and each edge represents an event-event relation. Using this network, multiple

choice questions (and a corresponding set of distractor choices) are generated. Olney et al.

(2012) suggested using concept maps to create inter-sentential questions where knowledge

in a book chapter is represented as a concept map to generate relevant exam questions.

Likewise, Papasalouros et al. (2008) and Stasaski and Hearst (2017) created questions using

information-rich ontologies.

Of late, several encoder-decoder models have been used in language generation. Yin et al.

(2015) and Du et al. (2017) argue that similar models can be used to automatically translate

narrative sentences into interrogative ones. Interested readers can refer to a survey paper

written by Pan et al. (2019) to know more about neural question generation methods.
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5.1.3 Limitations of previous work

Motivations for using discourse relations for generating questions were revealed in Chapter 1.

While a lot of work has been done in the field of QG, previously developed systems suffer

from important drawbacks that are redressed in this dissertation:

1. Most earlier QG systems create factoid questions from single sentences. Such questions

would not be very meaningful in the context of a large document. For instance, a

question like ‘What is the county seat of Tarrant County?’ is a naive question in the

context of a Wikipedia article on Tarrant County as this would simply require one to

look up the sentence that contains this information and quote the answer ‘Fort Worth’.

2. QG systems often focus on the grammatic and semantic correctness of a question as

opposed to its difficulty (Gao et al., 2018). Answering a good question requires one

to look beyond the clarity and conciseness of the language in which it is framed. It

requires the reader to think through and recall previously learned concepts to arrive

at the correct response.

3. Recent research in neural QG (Pan et al., 2019) has focused on constructing ques-

tions from more than one sentence. While using neural networks has allowed for the

creation of syntactically correct inter-sentential questions, these questions focus on sim-

pler aspects of inter-sentential phenomena such as coreference resolution and sentence

selection (Yin et al., 2015). It is imperative to generate inferential questions that test

the ability to deduce high-level relations like Cause, Solutionhood, Evidence and

so on (a complete list of these relations was provided in Table 1.4.1).

5.1.4 Dissertation Contributions

To remedy the drawbacks of previous systems, this dissertation suggests using two sources of

information, namely a cognitive taxonomy (Bloom, 1964) and discourse theory (Mann and
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Thompson, 1988) to devise a model that generates meaningful, inter-sentential questions.

Characteristics that set this system apart from previous research include:

• As opposed to generating questions from sentences, it generates questions from entire

paragraphs and/or documents. Generation of inter-sentential questions was rarely

explored by previous QG systems and this system ranks among the few, handful ones

that can generate such questions (Pan et al., 2019).

• The system leverages discourse relations to craft questions. It looks beyond inter-

sentential phenomena like coreference resolution and sentence selection to generate

meaningful questions that test the ability to deduce semantic relations in text. In

fact, questions generated by the system indirectly test the knowledge of coreference

resolution as it is often required to uncover discourse relations in text (Kishimoto

et al., 2020).

• Generated questions require readers to write detailed responses that may be as long

as a paragraph. Datasets like SQuAD (Rajpurkar et al., 2016) often require readers

to give the answer as a span of short tokens as found in the text. This makes such

questions often trivial as it simply requires the reader to identify which section of the

passage contains the required information and simply highlight or quote the response.

Writing a long response, on the other hand, requires some thinking and good knowledge

of grammar.

• Designed templates are robust. Unlike previous systems that work on structured inputs

such as sentences or events, this system should work around any type of input. Exper-

imental results shown in Table 5.5 show that generated questions are grammatically

correct and of good quality.
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• Systems such as Mannem et al. (2010) make use of cue-words i.e. explicit relations to

generate questions. For instance, a cue word such as ‘because’ is a very likely indicator

of the Cause relation. Such relations are easier to realize than implicit relations that

do not use cue words. The system described in this chapter uses both implicit and

explicit relations (Taboada, 2009) to generate questions.

5.2 Approach

The text from which questions are to be generated goes through the mini-pipeline shown in

Figure 5.1. A detailed description of each stage of the pipeline is provided in subsequent

subsections.

5.2.1 Data Preparation

Here the discourse tree associated with the document is input to the system. All relevant

nucleus-satellite pairs are extracted and represented as the triple: Relation (Nucleus,

Satellite). It should be noted that this works only for mono-nuclear relations (explained

in Chapter 1). For multi-nuclear relations, it is advised to convert the subtree into a right-

branching binary tree and thereby convert an n-ary relation into a set of binary relations

(Morey et al., 2018). This system uses only mono-nuclear relations for question generation.

Prior to applying any syntactic transformations on the text spans, all leading and/or

trailing conjunctions, adverbs and infinitive phrases are removed from the text span. Further,

if the span begins or ends with transition words or phrases like ‘As a result’ or ‘In addition

to’, these are removed out as well.

The inherent nature of discourse makes it difficult to interpret text spans as coherent

pockets of information. To facilitate the task of QG, text spans containing only one word

are ignored. Further, in several cases, it was observed that the questions make more sense
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Figure 5.1. A mini-pipeline showing transformations carried out on a document to construct
questions.

if coreference resolution is performed: this task was first carried out using automated coref-

erence resolution systems. However, the performance of these systems was poor and the

questions generated were vague. Hence this task was performed manually by a pair of hu-

man annotators who resolved all coreferents by replacing them with the concepts they were

referencing. Two types of coreference resolution are considered: event coreference resolution

(where coreferents referring to an event are replaced by the corresponding events) and entity

coreference resolution (where coreferents referring to entities are replaced by the correspond-

ing entities). Also, to make the questions sound more natural, some words were randomly
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picked from the question and replaced by their synonym (Araki et al., 2016) by consulting

WordNet (Glover et al., 1981).

5.2.2 Text-span Identification

Next, each text span is associated with a Type depending on its syntactic composition. The

assignment of Types to the text spans is independent of the coherence relations that hold

between them. Table 5.1 describes these Types with relevant examples.

Table 5.1. Text span Types with relevant examples
Span
type

Characteristic of span Example

Type 0 A group of many sentences A bomb exploded in the building. It
destroyed its installations.

Type 1 One sentence, or a phrase or clause
not beginning with a verb, but con-
taining one

The bomb destroyed the building.

Type 2 Phrase or clause beginning with a
verb

destroyed the buildings

Type 3 Phrase that does not contain a verb destruction of the building

5.2.3 Syntax transformations

If the text span is of Type 1 or Type 2, its parse tree is analyzed to perform a set of simple sur-

face syntax transformations and convert it into a form suitable for QG. First, a dependency

parser is employed to find the principal verb associated with the span, its part-of-speech tag

and the noun or noun phrase it is modifying. Then, according to the obtained information,

a set of syntactic transformations is applied to alter the text. Figure 5.2 describes these

transformations as a flowchart. No syntactic transformations are applied on text spans of

Type 0 or Type 3. Questions are directly crafted such text spans via templates.
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Figure 5.2. Syntactic transformations applied on text spans. These transformations convert
the spans to a form suitable for QG.

5.2.4 Question Generation

The transformations described in Figure 5.2 yield a text form suitable for QG . A template is

applied to this text to formulate the final question. Table 5.2 defines some of these templates.

The design of the chosen templates depends on the relation holding between the spans,

without considering the semantics or the meaning of the spans. Note that only 9 relations

have been considered for generating questions: other relations such as Elaboration were

considered too trivial or Topic-Drift were considered too complex for the QG task.

It must be noted that all transformation described upto Section 5.2.2 can be applied to

any text span regardless of which domain or relation it is a part of. This makes the system
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generic and thereby scalable to any domain as one would only have to define new templates

for each relation type.

To understand how the system operates, consider the discourse tree from Figure 1.6.

This example shows how the system will generate questions for the causal relations that

have been isolated in Figure 5.3.

Figure 5.3. Examples of a cause relation from the document

For the first example, begin by associating the satellite: “destroying a major part of its

installations and equipment” with Type 2. The principal verb ‘destroying’ is changed to

past tense form ‘destroyed’ and the pronoun ‘it’ is replaced by the entity it is referencing

i.e. ‘the offices of El Especatador’, to obtain the question stem: ‘destroyed a major part

of the installations and equipment of the offices of El Especatador’. The system then uses

the template for the cause relation for Type 2 to obtain the question: “What destroyed the

installations and equipment of the offices of El Especatador?”.

For the second example, begin by associating the satellite: “its installations destroyed”

with Type 2. The principal verb is ‘destroyed’ and the pronoun ‘its’ is replaced by the entity it

is referencing i.e. ‘Vanguardia Liberal’, to obtain the question stem: ‘destroyed installations
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Table 5.2. Templates for Question Generation

Relation Template for
type 0

Template for
type 1

Template for
type 2

Template for
type 3

Evidence What evidence
is provided to
support [Nu-
cleus]?

Why [Nu-
cleus]?

What [Nu-
cleus]?

What caused
[Nucleus]?

Explanation How do we
know that
[Nucleus]?

Why [Nu-
cleus]?

What [Nu-
cleus]?

What caused
[Nucleus]?

Background [Nucleus].
Under what
circumstances
does this
happen?

Under what
circumstances
[Nucleus]?

What cir-
cumstances
[Nucleus]?

What circum-
stances led to
[Nucleus]?

Cause [Satellite].
Explain the
reason for this
statement.

Why [Satel-
lite]?

What [Satel-
lite] ?

Explain the
reason for
[Satellite]?

Condition [Nucleus].
Under what
conditions did
this happen ?

Under what
conditions
[Nucleus]?

What condi-
tions [Nucleus]
?

What condi-
tions led to
[Nucleus]?

Evaluation [Nucleus].
What lets you
assess this
fact?

What lets
you assess
[Nucleus]?

What as-
sessment
[Nucleus]?

What as-
sessment can
be given for
[Nucleus]?

Means How is it that
[Nucleus]?

How [Nu-
cleus]?

In what man-
ner [Nucleus]?

How did [Nu-
cleus] happen?

Result [Nucleus].
Explain the
reason for this
statement.

Why [Nu-
cleus]?

What [Nu-
cleus] ?

Explain the
reason for
[Nucleus]

Solutionhood [Nucleus].
What is the
solution to
this problem?

What is the
solution to
[Nucleus]?

What solution
[Nucleus]?

What is the
solution to the
problem of
[Nucleus]?
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of Vanguardia Liberal’. The system then uses the template for the cause relation for Type

2 to obtain the question: “What destroyed the installations of Vanguardia Liberal?”.

5.2.5 Representative example

A representative example showing a large passage, the associated discourse relation triples

and generated questions has been provided in Figure 5.3. It can be seen that questions

generated are of varying scopes and sizes, testing on a high-level the understanding of the

complete passage and its constituent paragraphs.

5.3 Experimental Results

5.3.1 Data

For the purpose of experimentation, the English RST-DT (eng.rst.rstdt) corpus (Carlson

et al., 2003) is used that contains 385 annotated Wall Street Journal articles. Each article

is associated with a discourse tree that depicts coherence relations holding between its com-

ponents. These gold trees are directly used to generate questions: purely for the purpose of

evaluation. In the absence of discourse trees, one may want to run a discourse parser prior

to applying templates. In Chapter 7, a detailed study of the complete pipeline is provided

with respect to the SQuAD dataset (Rajpurkar et al., 2016).

5.3.2 Implementation Details

Part-of-Speech tagging and Dependency parsing were performed using the Stanford CoreNLP

package (Manning et al., 2014). Conversion between verb forms was carried out using the

powerful linguistics library provided by NodeBox 1. It is important to note that for the

purpose of evaluation, the system uses a heavily annotated corpus with several additional

1https://www.nodebox.net/code/index.php/Linguistics
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Passage:

Taiwan’s USI Far East Corp., a petrochemical company, initialed the agreement with an unidentified Japanese contractor to build a naphtha
cracker, according to Alson Lee, who heads the Philippine company set up to build and operate the complex. Mr. Lee, president of Luzon
Petrochemical Corp., said the contract was signed Wednesday in Tokyo with USI Far East officials. Contract details, however, haven’t been made
public. The complex is to be located in Batangas, about 70 miles south of Manila.
The proposed petrochemical plant would use naphtha to manufacture the petrochemicals propylene and ethylene and their resin derivatives,
polypropylene and polyethylene. These are the raw materials used in making plastics.
The contract signing represented a major step in the long-planned petrochemical project. At an estimated $360 million, the project would represent
the single largest foreign investment in the Philippines since President Corazon Aquino took office in February 1986. It also is considered critical
to the country’s efforts to both attract other investment from Taiwan and raise heavy industry capabilities. The project has been in and out of
the pipeline for more than a decade.
However, workers can’t break ground until legal maneuvers to block the complex are resolved, moves which caused the signing to remain questionable
up to the last moment. As previously reported, a member of the Philippines’ House of Representatives has sued to stop the plant. The legislator,
Enrique Garcia, had actively backed the plant, but at the original site in his constituency northwest of Manila. The country’s Supreme Court
dismissed the suit, but Mr. Garcia late last month filed for a reconsideration.
In addition, President Aquino has yet to sign into law a bill removing a stiff 48% tax on naphtha, the principal raw material to be used in the
cracker.
However, at a news conference Thursday, Mrs. Aquino backed the project and said her government was attempting to soothe the feelings of
residents at the original site, adjacent to the government’s major petroleum refinery in Bataan province. ”We have tried our best to tell the people
in Bataan that maybe this time it will not go to them, but certainly we will do our best to encourage other investors to go to their province,” Mrs.
Aquino told Manila-based foreign correspondents.
The project appeared to be on the rocks earlier this month when the other major partner in the project, China General Plastics Corp., backed
out. China General Plastics, another Taiwanese petrochemical manufacturer, was to have a 40% stake in Luzon Petrochemical.

Relation Triples:

Relation Nucleus Satellite
Background

The project appeared to be on the rocks earlier this month when the other major partner in the project, China General
Plastics Corp., backed out. China General Plastics, an-
other Taiwanese petrochemical manufacturer, was to have
a 40% stake in Luzon Petrochemical.

Background
As previously reported, a member of the Philippines’ House
of Representatives has sued to stop the plant.

The legislator, Enrique Garcia, had actively backed the
plant, but at the original site in his constituency north-
west of Manila.

Cause
a member of the Philippines’ House of Representatives has
sued

to stop the plant.

Condition
however workers can’t break ground until legal maneuvers to block the complex are resolved,

moves which caused the signing to remain questionable up
to the last moment. As previously reported, a member
of the Philippines’ House of Representatives has sued to
stop the plant. The legislator, Enrique Garcia, had actively
backed the plant, but at the original site in his constituency
northwest of Manila. The country’s Supreme Court dis-
missed the suit, but Mr. Garcia late last month filed for a
reconsideration. In addition, President Aquino has yet to
sign into law a bill removing a stiff 48% tax on naphtha,
the principal raw material to be used in the cracker.

Cause
The proposed petrochemical plant would use naphtha to manufacture the petrochemicals propylene and ethylene

and their resin derivatives, polypropylene and polyethy-
lene. These are the raw materials used in making plastics.

Generated Questions:

Sr. No. Question
1

Under what circumstances did the project appear to be on the rocks earlier this month?
2

Under what circumstances did Enrique Garcia sue to stop the plant?
3

Why has Enrique Garcia sued?
4

Under what conditions can employees not break ground?
5

Why would the proposed petrochemical plant use naptha?

Figure 5.4. A representative example: the passage and generated questions are shown here

amendments i.e. manually performed coreference resolution to support robust question gen-

eration.
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5.3.3 Evaluation Criteria

To evaluate the quality of generated questions, the system used a set of criteria that are

defined below. Proposed metrics measure both the correctness and difficulty of the question.

All the metrics use a two-point scale: a score of 1 indicates the question successfully passed

the metric, a score of 0 indicates otherwise.

• Grammatic correctness of questions: This metric checks whether the question gener-

ated is only syntactically correct. This metric does not take into account the semantics

of the question.

• Semantic correctness of questions: This metric accounts for the meaning of the gener-

ated question and whether it makes sense to the reader. It is assumed if a question is

grammatically incorrect, it is also semantically incorrect.

• Superfluous use of language: Since the system does not focus on shortening sentences or

removing redundant data from the text, generated questions may contain information

not required by the student to arrive at the answer. Such questions should be refined

to make them shorter and sound more fluent or natural.

• Question appropriateness: This metric judges whether the question is posed correctly

i.e. it checks if the question is not ambivalent and makes complete sense to the reader.

• Nature of coherence relation: Coherence relations are classified into two categories:

explicit (the relations that are made apparent through using discourse connectives)

and implicit (the relations that require a deep understanding of the text). Questions

generated through explicit coherence relations are easier to attempt as compared to the

ones generated via implicit coherence relations. A score of 1 is assigned to a question

generated from an implicit coherence relation and 0 to a question generated from an

explicit one.
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• Nature of question: This metric checks for the nature of generated question: If both

the answer and question are derived from the same sentence, a score of 0 is assigned.

Otherwise the score will be 1.

• Number of inference steps (Araki et al., 2016): To evaluate this metric, three semantic

concepts are considered: paraphrase detection, entity co-reference resolution and event

co-reference resolution. For each concept, the score is 1 if it is required to answer the

question and 0 if not. The arithmetic mean of these scores is taken to get the average

number of inference steps per question.

As an example, consider some relation triples from the RST-DT corpus. Table 5.3 ex-

plains how the generated questions evaluate against some of these criteria.

5.3.4 Results and Analysis

Questions were generated for the entire corpus using the QG system. For the 385 documents

contained within the RST-DT corpus, a total of 3609 questions were generated. Table 5.4

describes the statistics for the questions generated for each relation type.

It can be observed that a large fraction of generated questions belong to the Explana-

tion and Background relation types. This is largely because these relations occur more

frequently as compared to relations like Solutionhood or Evaluation which are more

scarce. More importantly, these are corpus (or discourse parser if used) dependent statistics

and have no bearing on the question generation system.

For evaluating the system, 20 questions were sampled for each relation type. Table 5.5

summarizes the results obtained for the system against each relation type. This process was

carried out by two evaluators who were familiar with the evaluation criteria, and were well

versed with the corpus and nature of generated questions. Table 5.5 reports the mean scores,

accounting for the assessment done by each evaluator.
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Table 5.3. Examples for metric evaluation

Metric
type

Relation Generated Question Evaluation

Nature
of co-
herence
relation

Nucleus: they are go-
ing to be in big trouble
with unionists over any
Jaguar deal.
Satellite: If they try to
build it somewhere else
in Europe besides the
U.K.,
Relation: Condition

Under what conditions
are General Motors
and Ford Motor Co.
going to be in big trouble
with unionists over any
Jaguar deal?

This is an example of an
explicit relation, made
apparent through the use
of discourse connective
‘If’ in the satellite

Nature
of ques-
tion

Nucleus: As a result,
Colombia will earn $500
million less from its cof-
fee this year than last.
Satellite: The 27-year
old coffee cartel had
to be formally dissolved
this summer.
Relation: Result

Why will Colombia earn
$500 million less from its
coffee this year than last?

Here, both the ques-
tion and answer are de-
rived from text spans be-
longing to different sen-
tences. Thus the score
assigned will be 1.

Number
of in-
ference
steps

Nucleus: Then, when it
would have been easier
to resist them, nothing
was done
Satellite: and my
brother was murdered
by the mafia three years
ago
Relation: Explanation

Why was the author’s
brother killed by the
mafia three years ago?

The student should be
able to correctly resolve
the pronoun ‘my’ to ‘the
author’ and know that
‘killed’ is a synonym of
‘murdered’. Thus two
semantic concepts, para-
phrase detection and en-
tity co-reference resolu-
tion, are tested here.

An analysis of the results reveals that many questions are syntactically and semantically

well-formed. Issues commonly arose due to errors made by the parser; and the inability

of NodeBox to convert between verb forms. Additionally, in very few cases, the templates

designed were unable to handle all text span Types either due to poor design or because
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Table 5.4. Statistics for Generated Questions
Relation type Fraction of generated questions

Evidence 0.0476
Explanation 0.22
Background 0.2447

Cause 0.1513
Condition 0.0601
Evaluation 0.0518

Manner-Means 0.0587
Result 0.151

Solutionhood 0.0139

Table 5.5. Average score for the evaluation criteria. Here R1: Explanation, R2: Background,
R3: Solutionhood, R4: Cause, R5: Result, R6: Condition, R7: Evaluation, R8: Evidence,
R9: Manner-means. The average scores for each criterion are indicated in the last column.

Evaluation
Criteria

R1 R2 R3 R4 R5 R6 R7 R8 R9 Average

Grammatical
Correctness

0.95 0.94 0.91 0.98 0.98 0.9 0.84 0.95 0.95 0.95

Semantic
Correctness

0.95 0.91 0.91 0.88 0.94 0.88 0.8 0.94 0.93 0.93

Superfluity of
Language

0.84 0.81 0.77 0.82 0.71 0.9 0.83 0.89 0.84 0.67

Question
Appropriateness

0.93 0.83 0.95 0.75 0.78 0.87 0.6 0.9 0.82 0.85

Nature of
coherence relation

0.79 0.38 1.0 0.33 0.27 0.22 0.94 0.92 0.91 0.52

Nature of
question

0.71 0.37 1.0 0.24 0.24 0.4 0.88 0.75 0.54 0.45

Average #
inference steps

0.43 0.46 0.42 0.56 0.39 0.33 0.27 0.49 0.44 0.42

the text span did not follow either definition of the defined Types. For example, some text

spans were phrased as questions and some had typographical errors (originally in the text):

this led to the generation of unnatural questions. Further, some text spans were arranged

in a way such that the main clause appeared after the subordinate clause (For example, the

sentence ‘If I am hungry, I will eat a cake’): handling such text spans would require us to
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modify the text such that the subordinate clause follows the main clause (In this example’s

case, ‘I will eat a cake if I am hungry’). However, to the best of our knowledge, there are no

known transformations that allow one to achieve this rearrangement.

Superfluity of language is of concern, as generated questions often contained redundant

information. However, identifying redundant information in a question would require a deep

understanding of the semantics of the text spans and of the relation that holds between

them. Currently, modern discourse parsers are partially capable of handling this aspect (Li

et al., 2016) and can perform reasonably well is the nature of relation is explicit.

The latter four metrics depend heavily on the corpus, and not the designed system.

Because of its ability to create inter-sentential questions and handle complex coherence

relations, the system was given a moderate to good score by both evaluators. Depending on

the text and its relations, these scores may vary. Of course, one should expect these scores

to increase considerably for a corpus containing many implicit relations between text spans

that are displaced far apart in the text.

Table 5.6 provides some statistics on common error sources that contributed to semantic

(and/or grammatical) errors in generated questions.

Table 5.6. Common error sources: The percentage of incorrect questions is the ratio of
incorrect to total questions with semantic/grammatical errors.

Source of Error % of incorrect questions

NodeBox errors 6.7%
Parsing errors 8.3%

Poor template design 13.3%
Incorrect type identification 6.7%

Clause rearrangement 6.7%
Other minor errors 6.7%

5.3.5 Comparison with previous work

Comparison with previous work is unwarranted largely because these systems focus on per-

forming simple syntactic transformations on single sentences. Nonetheless, to argue in favour
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of using discourse relations for QG and understanding their relevance in the context of a big

document, a qualitative analysis is carried out with Heilman and Smith (2010).

The quality of proposed system’s (abbreviated as QG) questions is compared with Heil-

man and Smith (2010) (abbreviated as MH) in Table 5.7. To obtain questions using MH,

the nucleus-satellite pair is directly input to the system. Questions given by both systems

are provided in Table 5.7.

In Table 5.7, both systems generate questions for example# 1 that seem relevant in the

context of the Condition relation between the Nucleus and Satellite although the wording

of questions is different. For example# 2, however, QG generates a more relevant question

than MH which asks a fairly trivial question. Examples # 3 and # 4 are inter-sentential

relations. MH, due to its inability to work with multiple sentences, ends up asking trivial

intra-sentential questions. QG on the other hand recognizes a discourse relation between

the nucleus and satellite and generates better quality questions. Clearly, QG is better suited

for generating deep, inferential reading comprehension questions when compared to previous

research work done.

5.4 Conclusions and future work

There are several avenues for potential research. This dissertation has focused only a subset

of relations making up the RST-DT corpus. Templates can also be defined for other rela-

tions to generate more questions. Further, Reed and Daskalopulu (1998) argue RST can be

complemented by defining more relations or relations specific to a particular domain. One

can potentially investigate the effectiveness of encoder-decoder models in obtaining questions

from Nucleus-Satellite relation pairs or directly from the document. This should eliminate

the need for manually performing coreference resolution and even paraphrasing.
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Table 5.7. Comparing questions generated by MH and QG for given nucleus-satellite pairs.
Nucleus Satellite Relation MH QG

She might
want to look
into a position
at Aetna,

if she was inter-
ested in a job that
would constantly
challenge her.

Condition What might she
want to look
into if she was
interested in a
job that would
constantly
challenge her?

Under what con-
ditions might
she want to look
into a position
at Aetna?

The banking
operation had
a loss of $8.7
million in
the second
quarter,

largely because
of problem real-
estate loans,

Cause What had a loss
of $8.7 million in
the second quar-
ter?

Why did the
banking opera-
tion have a loss
of $8.7 million
in the second
quarter?

The govern-
ment insists
that such a
possibility is
low.

It says that
despite loose
regulation of the
market itself, its
longstanding reg-
ulation of industry
will prevent such
crashes.

Explanation What does the
government in-
sist?

Why does the
government in-
sist that the pos-
sibility of a mar-
ket crash is low?

The Merc
received con-
siderable
criticism in
1987.

It was discovered
that its compli-
ance director,
Kevin P. Con-
way, who then
was responsible
for policing the
exchange’s busy
oil and metal pits,
”was engaged in
other personal
business activi-
ties on Exchange
time,” including
out-of-state trips.

Cause Who was re-
sponsible for
policing the
exchange’s busy
oil and metal
pits?

Why did the
Merc receive
considerable
condemnation
in 1987?
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CHAPTER 6

QUESTION DIFFICULTY CLASSIFICATION

Chapter 5 introduced readers to a system that generates questions from texts by using

coherence relations. Chapter 5 also proposed some metrics for evaluating the quality of

questions generated. While these metrics address how ‘meaningful’ the question is, they

shed little to no light on how difficult it is. This chapter lays the groundwork for defining

the difficulty or complexity of a question and describes a simple feature-driven model that

labels questions with difficulty levels.

6.1 Introduction

Reading comprehension is widely used in classroom and testing environments to gauge stu-

dent understanding; it requires a reader to identify high-level semantic relations that hold

between text components, and have a deep understanding of the content (Brooks et al.,

1977). In order to generate inferential questions for reading comprehension, Chapter 5 de-

scribed a rule-based system that applies a set of syntactic transformations on relation triples

to obtain question-answer pairs. These relations, which include Cause, Solutionhood,

Background and so on illustrate how text spans are functionally related to each other.

Questions generated are of varying lengths and scopes, with some derived from implicit

coherence relations; and some requiring the reader to give a detailed reply. Unlike factoid

questions that expect a simple scan through the text to look for the correct response, these

questions are more meaningful and require a deeper understanding of the text.

As a representative example, consider a of text and the questions that follow:

Kidder, Peabody & Co. is trying to struggle back. [Only a few months ago, the 124-year-old

securities firm seemed to be on the verge of a meltdown, racked by internal squabbles and
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defections.]1 [Its relationship with parent General Electric Co. had been frayed since a big

Kidder insider-trading scandal]3 ...... [More than 20 new managing directors and senior vice

presidents have been hired since January. The firm’s brokerage force has been trimmed and

its mergers-and-acquisitions staff increased to a record 55 people ...] 2

Question 1: Why was Kidder on the verge of a meltdown a few months ago?

Question 2: How has Kidder tried to fight back following the issues it was facing months

ago?

Question 3: What frayed the relationship between General Electric Co. and Kidder?

Here, Question 1 is an example of an intra-sentential question while Question 3 is an

example of an inter-sentential question. Question 2 is derived from an explicit relation made

apparent by the use of keyword ‘since’.

To understand how relatively complex the questions are with respect to each other, a

novel feature-driven approach is suggested that automatically classifies these questions into

their difficulty levels. A rich set of syntactic and semantic features is considered that takes

into account question-answer pairs and contextual information from the passage to perform

classification. The model gave an F-score of 0.68 against the corpus.

6.1.1 Measuring Question Difficulty

The task of measuring question difficulty is inherently subjective: perception of difficulty is

influenced by various factors (Torgesen, 2004) such as age, reasoning and inferential skills,

extent of conceptual knowledge, ability to perform accurate and fluent reading, etc. Further,

native speakers find questions easier compared to those for whom the language of the text

is a second language (Van Gelderen et al., 2004). It was also shown (Nunan and Keobke,

1995) that student perception of question difficulty differs from reality: A student may find a
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question more demanding if they are intimidated by the task and do not put in appropriate

effort to attempt it. Likewise, the question may seem apparently easy if they incorrectly

assume an aspect to be the task’s key aspect.

Despite the psychological barriers to question difficulty analysis, several techniques have

been proposed over the years to measure question complexity. One approach suggested

classifying questions via the scope of the document from which they are generated (Mannem

et al., 2010): a general level question focuses on almost the entire paragraph, a medium

level question concentrates on multiple clauses or sentences, and specific level questions are

derived from single sentences.

Likewise, psychometrics (the discipline of study in psychology and education concerned

with testing, measurement, assessment and related activities) suggests that the difficulty of

a multiple-choice question can be statistically gauged by the proportion of test takers who

answered it correctly: the value is estimated empirically by supervising a study before the

actual test (Holland and Thayer, 1985) is conducted.

6.1.2 Models for Measuring Question Difficulty

Several statistical models have been built over the years to predict question difficulty. Linear

SVMs were used (Yahya and Osama, 2011) to automatically classify questions into six classes.

It used an expert-curated dataset and a set of lexical features to achieve an accuracy of 0.85.

Another study proposed using associative cellular neural network (Namba, 2012) to classify

questions from a Java programming course into three levels: easy, standard and difficult.

Similar features were used (Hutzler et al., 2014) to design an automated ranking system for

an Intelligent Tutoring System. A regressor that makes use of textual features was built

(Sheehan et al., 2013) that measures the difficulty of listening comprehension items. The

use of word-embeddings with a CNN-based neural network was also suggested (Hsu et al.,

2018) to estimate the difficulty of multiple-choice questions.
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Previous research work done in question difficulty prediction has focused merely on ex-

tracting naive textual features from the question: work described in this document is signifi-

cantly different from these approaches as it takes into account both the question, the answer

and its context in the paragraph for measuring how complex the question is: this allows one

to achieve better accuracy in the classification task.

6.2 Problem Definition and Dataset

Formally, define the problem of question difficulty classification as follows:

Given a set of question-answer pairs (qi, Ai) ∈ Q generated for a document d, where the

answer Ai is obtained from d; and each question is associated with a difficulty level cj ∈ C =

{1, 2, 3}, build a model that approximates the function cj = f(qi, Ai). The smaller the value

of the difficulty level associated with a question, the easier it is.

6.2.1 Refining Questions

Templates described in Chapter 5 were used to craft questions. The system parses through

the document to identify coherence relation pairs and applies a set of syntax transforma-

tions to convert them into questions. Templates are defined for different types of coherence

relations as listed in Appendix B, etc.

To create a training corpus, 125 documents were sampled from the RST-DT dataset

and questions were generated using coherence relations for each document. Out of the 1109

questions generated, 894 questions (with/without modification) were included in the final

dataset.

Due to the arbitrary nature of discourse, some of the generated questions were erroneous.

Common reasons for this included grammatical and/or semantic incorrectness, redundancy

in question due to superfluity of language, ambiguity in question meaning, etc. Likewise,

some questions made no sense, and some were semantically identical to others. An evaluation
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of the questions revealed that 30% of the generated questions had extraneous use of language

and 15% of the questions were ambiguous. 9% of the questions were semantically incorrect:

an investigation of the sources of errors revealed the major reasons to be parsing errors,

inability to handle direct speech, subordinate clause - main clause rearrangement, etc.

To reduce the number of instances of questions having poor quality, some of the generated

questions were modified to make them sound more fluent. In general, it was observed that

inter-sentential questions had lots of superfluity as templates designed did not account for

this. Direct assessment of generated questions showed that 55% of the generated questions

had to be modified while 19% of the questions were discarded because they made no sense

or were semantically similar to other generated questions.

6.2.2 Annotating Questions

The task of question annotation was performed by a team of 2 annotators who carefully

perused each question and gave it a difficulty rating. To increase the κ value, it was ensured

that all annotators belonged to the same age group and spoke English as a second language

(Van Gelderen et al., 2004).

Thus, each question qi ∈ Q associated with document d is associated with a difficulty

level ci on a scale of 1 − 3. The dataset finally contains the documents, the coherence

relation tuples, the question derived from the relation tuples and a difficulty rating. Table 6.1

provides some statistics on the corpus and the inter-annotator agreement. To measure the

inter-annotator reliability, Cohen’s kappa and Pearson coefficient measures were used. A

reasonable agreement of κ = 0.91 and ρ = 0.89 was achieved.

6.2.3 Example

As an example, consider the same example that was given in Chapter 1. The article has

been shown once again in Figure 6.1 for better readability. Each question is associated with

a difficulty rating.
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Table 6.1. Corpus and inter-annotator agreement statistics
Dataset and Question Sizes
No. of documents 125
No. of Questions selected 894
Average No. of words per Question 12.65
Class Distribution
Ratio of questions with class 1 0.44
Ratio of questions with class 2 0.37
Ratio of questions with class 3 0.19
Inter-Annotator agreement
Cohen’s kappa κ 0.91
Pearson coefficient ρ 0.89

6.3 Classification

6.3.1 Models for classification and Implementation

Three classifiers: 1. Logistic Regression with L2 regularization, 2. Linear SVM and 3.

Random Forest Classifier with 100 decision tree estimators were used for training. Three

different classifiers have been used to verify if the effect of features on classification accuracy

is independent of the classifier used.

Thee scikit-learn library 1 is used to implement the classifiers. Classification is performed

using 10-fold cross validation: micro-averages of the performance metrics are reported for

each classifier and feature vector.

6.3.2 Enhancing the baseline

As a baseline, bag-of-words (Yahya and Osama, 2011) and tf-idf representation of questions

are chosen as baselines. An analysis of the feature space showed that the classifier ended up

giving more importance to irrelevant words such as ‘farmer’, ‘arena’ and ‘bullock’ which could

potentially hurt the accuracy. To identify important words that could improve classification

1http://scikit-learn.org/
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Passage:

Mobil Corp. is preparing to slash the size of its work force in the U.S., possibly as soon as next
month, say individuals familiar with the company’s strategy. The size of the cuts isn’t known,
but they’ll be centered in the exploration and production division, which is responsible
for locating oil reserves, drilling wells and pumping crude oil and natural gas. Employees
haven’t yet been notified. Sources said that meetings to discuss the staff reductions have
been scheduled for Friday at Mobil offices in New Orleans and Denver.
Mobil’s latest move could signal the beginning of further reductions by other oil companies
in their domestic oil-producing operations. [In yesterday’s third-quarter earnings report, the
company alluded to a $40 million provision for restructuring costs involving U.S. exploration
and production operations. The report says that the restructuring will take place over a
two-year period and will principally involve the transfer and termination of employees in our
U.S. operations. A company spokesman, reached at his home last night, would only say that
there will be a public announcement of the reduction program by the end of the week.]3 [Most
oil companies, including Mobil, have been reporting lower third-quarter earnings, largely as
a result of lower earnings from chemicals as well as refining and marketing businesses.]4
Individuals familiar with Mobil’s strategy say that [Mobil is reducing its U.S. work force
because of declining U.S. output.]1
[Yesterday, Mobil said domestic exploration and production operations had a $16 million loss
in the third quarter, while comparable foreign operations earned $234 million.]4 [Industry
wide, oil production in this country fell by 500,000 barrels a day to 7.7 million barrels in
the first eight months of this year. Daily output is expected to decline by at least another
500,000 barrels next year.]2 Some Mobil executives were dismayed that a reference to the
cutbacks was included in the earnings report before workers were notified.

Sample Questions:

No. Question Class
1 Why is Mobil Corp. reducing its U.S. work force? 1
2 Evaluate the situation of oil production in the Unites States. 2
3 What structural changes is Mobil Corp. undergoing? 2
4 Why is Mobil Corp. reporting lower third-quarter earnings? 3

Figure 6.1. A representative example from the corpus: the passage, generated questions and
their difficulty levels are shown

accuracy, the dataset was tokenized to identify all unique unigrams. Their frequencies of

occurrence were computed. To reduce the dependency of classifier on irrelevant words, a list

110



of most frequently occurring tokens (that are not stop words) was compiled and included in

the bag-of-words and tf-idf vectors.

The following tokens were identified as relevant features: why, what, how, circumstance,

condition, evidence, when, solution, cause, result. As one can see, these words seem to be

fairly important as they reveal the intent of the question, for example, a question containing

the word ‘cause’ is most likely to test a student on the cause-effect relationship.

Table 6.2 provides the results for the baseline feature representations. Performance im-

provements were observed for some representation-model combinations with feature reduc-

tion. Small improvements in performance were also observed for categorizing questions into

classes 1 and 2; however accuracy of performance for class 3 remained virtually the same. A

qualitative analysis of the obtained results revealed that a large fraction of questions that

contain the identified keywords belonged to classes 1 and 2. Thus, an improvement in accu-

racy of classification for these classes was expected. However to see performance gains for

class 3, special features such as length of the answer, nature of coherence relation, similar-

ity between question and the sentence(s) from which the question is derived, etc. may be

required The next sub-section describes these features and their effect on performance.

Table 6.2. Performance metrics for all feature representations and classifiers. Here, bow q:
bag-of-words representation of questions, tfidf q: tf-idf representation of questions, bow q*
and tfidf q*: corresponding representations with most frequent tokens.

Baselines
Logistic Regression Linear SVM Random Forest

P R F P R F P R F
bow q 0.45 0.48 0.46 0.44 0.46 0.45 0.46 0.50 0.48
tfidf q 0.38 0.48 0.42 0.44 0.49 0.46 0.48 0.51 0.49
bow q* 0.53 0.54 0.53 0.53 0.55 0.53 0.53 0.55 0.54
tfidf q* 0.54 0.55 0.54 0.54 0.55 0.54 0.54 0.55 0.54
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6.3.3 Features

To improve upon existing systems that measure the difficulty of a question, the following fea-

tures are considered in addition to each of the four representations described in the previous

Section:

1. Question Length: This is an integer given by the number of words in the question.

A longer question is expected to be easier to understand than a shorter one (Cannell

et al., 1981).

2. Count of complex syntactic structures: The ability to apply appropriate parsing

and inference rules to comprehend a question’s meaning may depend on the sentence’s

syntactic structure. Here, a simple count of the number of clauses and prepositional

phrases in the question (Cannell et al., 1981) is taken. The Stanford CoreNLP package

(Manning et al., 2014) to obtain constituency parses for counting.

3. Discourse connectives in the answer: This is a binary value that indicates whether

the coherence relation used to derive the question is implicit or explicit. Discourse con-

nectives in the answer such as ‘but’, ‘since’, ‘as a result’, etc. signal explicit coherence

(Taboada, 2009). Questions derived from explicit relations are expected to be easier

to answer as opposed to those generated from implicit ones.

4. Similarity ratio between Question and its Source: Some of the generated ques-

tions were summarized versions of sentences from which they are derived. All co-

referents were resolved by replacing them with the concepts they were referencing.

Further, some required a complete restructuring of the sentence as they were ambigu-

ous. Identifying such semantic relations (coreference resolution, paraphrase detection,

etc.) is particularly useful in gauging the breadth of knowledge of a language (Araki

et al., 2016). To quantify the semantic similarity between the question and question
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stem, the cosine distance between their vector representations was computed and cho-

sen as an important feature.

5. Nature of question: This is a binary feature that checks whether the question is

derived from multiple sentences; or from a single sentence or clause, allowing one to

determine how well one can identify and differentiate between inter- and intra-sentential

discourse relations and draw logical connections between ideas that may be displaced

far apart from each other in the text.

6. Nature of answer: This is a binary feature that checks whether the expected answer

is a single sentence or clause; or comprises multiple sentences. Questions that require

a long response are expected to be more difficult than those requiring short and direct

answers. The reason is that many of such questions require readers to interpret eval-

uations and assessments of opinions, identify multiple causes or evidences of an event

or detail a solution to some problem or issue.

Changes in experimental results post adding these features are shown in Table 6.3. When

features are appended to each of the baseline feature representations, the performance im-

proves considerably. An important reason for this change was identified as the significant

enhancement in F-score for Class 3. Hand-designed features were capable of distinguishing

tougher questions from the easier ones as now the system recognizes the nature of coher-

ence relations, questions and answers; and the paraphrasing of sentences yielding differently

worded questions. The best F-score was observed for the linear SVM classifier with bag-of-

words model containing the most frequent tokens. Additionally, to argue for the potency of

these features, effectiveness of each of them is investigated by incorporating them one at a

time into the model: Table 6.4 shows the results for the best feature-classifier combination.
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Table 6.3. Performance metrics for all feature representations: Model abbreviations are
identical to those given in Table 6.2.

Features
Logistic Regression Linear SVM Random Forest

P R F P R F P R F
bow q f 0.62 0.63 0.62 0.62 0.63 0.63 0.65 0.64 0.64
tfidf q f 0.67 0.68 0.67 0.67 0.67 0.67 0.63 0.64 0.64
bow q f* 0.66 0.67 0.66 0.67 0.68 0.68 0.62 0.62 0.62
tfidf q f* 0.64 0.65 0.65 0.64 0.65 0.64 0.63 0.64 0.63

Table 6.4. Improvements in F-scores for each class: each cell indicates how the F-score
increased with the incorporation of features: Here QL: Question Length, PC: Count of
complex syntactic structures, DC: Presence of discourse connectives, CR: Similarity ratio
between the question and its source, NQ: Nature of question; and NA: Nature of answer

Features Precision Recall Type F1
Baseline 0.53 0.55 0.53

+QL +0.02 +0.00 +0.01
+PC +0.005 -0.01 +0.005
+DC +0.05 +0.05 +0.05
+CR +0.03 +0.02 +0.03
+NQ +0.03 +0.02 +0.03
+NA +0.02 +0.01 +0.02

6.3.4 Qualitative Analysis

Table 6.5 highlights some of the question-answer pairs and how they fared against models.

Each of the mentioned example explain how the feature-driven classifiers are able to identify

the properties of question-answer pairs such as nature of question, nature of answer, nature

of relation, paraphrasing, etc. to correctly predict the class value of a question as opposed

to baselines that misclassify them.

6.3.5 On Differentiating between Classes 2 and 3

It was observed that the scores for class 3 were generally lower than those for labels 1 and

2. Some reasons for this poor performance are:
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Table 6.5. Qualitative Analysis of Results.
# Label Question Expected Answer Comments
1 2 How has Kidder

tried to struggle
back following the
issues it was facing
months ago?

More than 20 new manag-
ing directors and senior vice
presidents have been hired
since January. The firm’s
brokerage force has been
trimmed and its mergers-
and-acquisitions staff in-
creased to a record 55 peo-
ple

All baselines misclassi-
fied this as 1 probably
because they did not re-
alize the answer is a de-
tailed one. However,
with features, all classi-
fier correctly classified it.

2 2 Under what con-
ditions could Kid-
der’s hiring binge
backfire?

Kidder’s hiring binge in-
volving executive-level
staffers, some with
multiple-year contract
guarantees, could backfire
unless there are results.

The baselines classified
this as 3. However, the
features correctly identi-
fied the presence of ‘un-
less’ in the answer stem
and predicted this to be
an easier question.

3 2 What refueled
speculation that
Kidder is getting
out of the broker-
age business?

Mr. Carpenter this month
sold off Kidder’s eight bro-
kerage offices in Florida
and Puerto Rico to Merrill
Lynch & Co.

The baselines predicted
the class as 1. How-
ever, the question was a
summarized version of a
much larger nucleus in
the relation. Features
used the cosine similarity
to correctly predict the
class as 2.

4 3 How has GE cap-
ital started to ex-
ploit the synergy
between itself and
Kidder Peabody?

The Kidder units have
worked on 37 investment
banking deals this year

Both the baselines and
feature-driven classifiers
erroneously classified
this as class 2.

1. The class-distribution is skewed. As seen in Table 6.1, the dataset contains many

examples from classes 1 and 2, however only 19% were from class 3. The classifiers

probably did not have enough data to perform reasonably well.

2. Models found it difficult to differentiate between classes 2 and 3. While both classes

differed from class 1 in the sense that either most questions were inter-sentential or
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were derived from implicit relations; annotators revealed that differentiating between

classes 2 and 3 was challenging as it required them to make several judgement calls

such as differentiating between how deep the semantics of a relation is.

For example, in Table 6.5, example 4 shows an instance of misclassification: models

misclassified this as class 2. Annotators revealed that they had classified this question as

class 3 because not only was the question inter-sentential and the relation implicit in nature,

but it required a much deeper understanding of the text to arrive at the answer: designed

features probably could not to capture this effectively.

6.4 Conclusions and Future Work

Main contributions in this chapter can be briefly summarized as follows:

1. A novel reading comprehension corpus is released in which questions are annotated

with a difficulty level.

2. A feature-driven classifier is presented that classifies questions according to their diffi-

culty level. A rich set of semantic features is used to perform this task.

3. As opposed to considering factoid questions, high-level meaningful questions are con-

sidered that test a student’s understanding of discourse coherence and semantics.

There are several avenues for further research. Reading comprehension questions for

generic documents have been considered to make up the corpus: one can consider other

sources of data also such as science textbooks, political discourse, medical literature, etc.

Likewise, there are techniques that use sources of information other than coherence relations

to generate questions from discourse: such questions can also be analyzed for complexity.

Additionally, it would also be interesting to test the efficacy of word embeddings and neural

networks in performing question difficulty analysis.
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CHAPTER 7

PIPELINE IN ACTION

So far, this dissertation has been detailing on discourse parsing, question generation and

questions difficulty classification. Recall that these can be performed one after the other i.e.

put together as modules in a pipeline to construct a reading comprehension quiz as shown

in Figure 1.4. While previous chapters observed and evaluated these modules in isolation,

it would be interesting to note how effective the pipeline is in its entirety on a fresh, raw

document.

This chapter provides details on experiments performed with the pipeline on the SQuAD

dataset (Rajpurkar et al., 2016). It is empirically shown that the pipeline can generate

more meaningful questions than the ones already present in the corpus. Not only will this

help teachers as a useful tool for automated question generation, but also aid researchers

interested in question answering and reading comprehension.

7.1 Experimentation

7.1.1 Data

The Stanford Question Answering dataset or SQuAD (Rajpurkar et al., 2016) is a popular

corpus that is used in reading comprehension based question answering research. It consists

of 536 Wikipedia articles with more than 100,000 associated questions. To create the corpus,

Mechanical Turk crowd-workers were asked to manually craft questions based on paragraphs

of text from the articles. Workers were instructed to use their own words while constructing

questions. Later, another group of workers was asked to provide answers (as spans of tokens

in the text) to these questions.

An example of a paragraph from the corpus and associated questions is provided in

Figure 7.1.
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Passage:

The Amazon rainforest also known in English as Amazonia or the Amazon Jungle, is a
moist broadleaf forest that covers most of the Amazon basin of South America. This basin
encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square
kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory
belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of
the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in
Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments
in four nations contain ”Amazonas” in their names. The Amazon represents over half of
the planet’s remaining rainforests, and comprises the largest and most biodiverse tract of
tropical rainforest in the world, with an estimated 390 billion individual trees divided into
16,000 species.

Questions:

No. Question
1 Which name is also used to describe the Amazon rainforest?
2 How many square kilometers of rainforest is covered in the basin?
3 How many nations control this region in total?
4 How many nations contain “Amazonas” in their name?

Figure 7.1. A representative example from the SQuAD dataset

Reasons for choosing SQuAD include:

1. SQuAD is a benchmark dataset used to report results in Question Answering research

and consists of more than 100,000 manually generated questions. One can compare

questions generated by the pipeline with the ones already present. One can hope

to empirically show that the pipeline generates deep, inferential questions and are of

better quality than the manually crafted ones.

2. SQuAD consists of expository texts i.e. texts that can be used to instruct or educate

people which makes it suitable for pipeline evaluation. On the other hand, the RST-

DT corpus (Carlson and Marcu, 2001) that was used to train and evaluate the parser

contains Wall Street Journal news articles that may not necessarily be purposeful.
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3. Compared to RST-DT, SQuAD contains a lot bigger documents with more sentences

and tokens. Table 7.1 provides some lexical information on the two corpora. The

Stanford CoreNLP package (Manning et al., 2014) was used to obtain this information.

As one can see, the SQuAD dataset has more documents that are bigger in size (almost

10 times) with respect to number of sentences and tokens per document.

Table 7.1. A comparison of the SQuAD and RST-DT corpora

Statistic
RST-DT
(Train)

RST-DT
(Test)

SQuAD
(Train)

SQuAD
(Test)

# Documents 347 38 442 48
# Avg sentences

per document
22.73 25.9 219.19 226.67

# Avg tokens
per document

564.7 606.21 5833.73 6151.31

Despite being widely used in Question Answering research, SQuAD suffers from the same

limitations that were outlined in Chapter 5. These drawbacks include:

1. SQuAD mainly contains sentence-level questions.

2. The corpus contains factoid questions. As one can observe in Figure 7.1, questions

asked are fairly trivial and not very meaningful in the context of the entire paragraph

(or the document containing that paragraph).

3. Expected answers are a few span of tokens that can be directly found in the text. Du

et al. (2017) observed less than 0.17% of questions in the training set require answers

that span more than 1 sentence.

These limitations should be redressed by the pipeline. Upon successfully running the

entire pipeline, one can hope to generate deep, inferential questions that would be more

consequential in the context of the entire paragraph or document. It should be noted that
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the pipeline in run on the entire document and not individual paragraphs present in the

document. SQuAD requires only the paragraph (not the full document) as context to answer

a question. In order to answer questions obtained from the pipeline, the entire document

must be taken into account.

7.1.2 Applying the Pipeline

First, the Stanford CoreNLP (Manning et al., 2014) is used to perform basic text processing

i.e. tokenization and sentence boundary detection. Then, the entire dataset is lowercased to

make it suitable for further processing.

Then, the document progresses through the pipeline by undergoing segmentation and

parsing. The discourse trees obtained are fed to the question generation module that spits out

question-answer pairs. Finally, the question difficulty classifier ranks them in the increasing

order of their complexity.

7.2 Statistics

This section provides statistics on the relation triples extracted and correspondingly, the

questions generated. Note that the pipeline is transferred directly, in a zero-shot manner,

to the dataset. Therefore, performance metrics like accuracy cannot be reported unless

the outputs are manually observed and a human adjudicates them as correct or incorrect.

The zero-shot transfer strategy has found successful application in many tasks like event

extraction (Huang et al., 2018), visual question answering (Li et al., 2018) among others and

should yield good results here as well.

Results on the number of documents, sentences and tokens have already been provided in

Table 7.1. Subsequent sections will provide statistics on outputs provided by the segmenter,

relation classifier, question generator and difficulty classifier successively.
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7.2.1 Discourse Segmentation

Recall that a discourse segmenter identifies elementary discourse units (EDUs) or segments

in text that are potential arguments between which relations hold. The segmenter described

in Chapter 3 is run on the SQuAD dataset. Note that ensembling is used as described in the

chapter to achieve best results. Table 7.2 provides some statistics on the segments obtained

from the text.

Table 7.2. Statistics on segments obtained from discourse segmenter

Statistic
SQuAD
(train)

SQuAD
(test)

# Documents 442 48
# Avg Segments

per Document
542.59 458.54

# Avg Segments
per Sentence

1.94 2.02

# Avg Tokens
per Segment

13.7 13.41

The statistics shown in Table 7.2 can be compared with the values given for the English

RST-DT corpus in Table 3.1 for reference. On an average, the reference dataset has 2.63

segments per sentence and 10.07 words per segment. It can be inferred that the SQuAD

dataset has longer and fewer segments (per sentence). However, as the SQuAD dataset is

bigger in size, it has more segments per document than the RST-DT corpus.

7.2.2 Discourse Parsing

After obtaining segments from the previous module, a discourse parser is used to induce a

discourse tree and subsequently extract relation triples from the tree. Table 7.3 provides

statistics on key relations identified by the discourse parser.

A total of 187,838 and 21,962 relation triples were extracted in total for the train and

test portions of the SQuAD dataset respectively. Out of these, 9.74% and 10.16% of the

121



Table 7.3. Statistics on relation triples obtained from discourse parser: only the ones required
by the question generation tool are shown here

Relation
SQuAD
(Train)

SQuAD
(Test)

All Relations 187,838 21,962

Evidence 2 -
Explanation 1,606 209
Background 3,754 421

Cause 9,144 1,126
Result 67 11

Condition 647 111
Manner-means 1,667 205

relation triples are meaningful as these will be used by the question generation module for

constructing question-answer pairs. It should be noted that the parser could not find any

Solutionhood and Evaluation relations in the dataset. This may be attributed to 2

possible reasons:

1. These relations occur rarely in text. Since the parser is working with Wikipedia articles,

one can suspect the frequency of such relations to be very small to almost zero.

2. Since these relations occur rarely in text, it is probable that the parser never learned

a function for them in the first place. To test this conjecture, the output provided by

the parser on both the train and test datasets of the RST-DT corpus was analyzed. It

was found that the parser could find Solutionhood relation triples with an accuracy

of 50% in the train set and 23% in the test set. Likewise, the parser could find

Evaluation relation triples with a slightly greater accuracy of 56% in the train set

and 31% in the test set. More importantly, the parser often confused these relations

for Elaboration, a trivial relation that occurs very frequently. This suggests that

the parser needs to be redesigned to appropriately handle cases of less frequent labels.

This completes the analysis of outputs provided by the discourse segmenter and parser.

The next step is to transform obtained relation triples into question-answer pairs.
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7.2.3 Question Generation

Utilizing the syntactic transformations and templates defined in Chapter 5, discourse trees

obtained from the previous step are translated into question-answer pairs. Following Ta-

ble 7.3, a total of 16,887 questions were generated for the training portion and 2,083 questions

were obtained for the test portion of the corpus.

An important difference between the approach used in Chapter 5 and here is that the

output of the discourse parser is available in this case. This allows one to make use of the

attention weightings given by the HAN model to identify the most important segment(s) for

a given text span. This also allows one to use these segment(s) as representatives for large

text spans. By doing this, one can hope to see an improvement in the superfluity scores.

To assess these questions, evaluation criteria described in Chapter 5 are used. Here as

well, 2 annotators are employed to ascribe a score to the generated questions. Evaluation

was performed on 20 randomly sampled documents from the dataset. Table 7.4 tabulates

the average scores assigned by the evaluators. For the sake of comparison, scores obtained

for the RST-DT corpus are also provided in this Table (these scores are the same as those

reported in Table 5.5 and have been included for the sake of clarity).

Table 7.4. Scores assigned by annotators to generated question-answer pairs for each metric
defined in Chapter 5.

Relation RST-DT SQuAD

Grammatical Correctness 0.95 0.96
Semantic Correctness 0.93 0.94

Superfluity of language 0.67 0.72
Question Appropriateness 0.85 0.75

Nature of coherence relation 0.52 0.58
Nature of question 0.45 0.52

Average # inference steps 0.42 0.48

Table 7.4 reveals that a large fraction of generated questions are grammatically and

semantically correct: this further verifies the claim that templates used for crafting questions
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are robust enough to handle any type of input and can generate valid questions. However,

annotators gave a comparatively low score for question appropriateness. One of the most

important reasons identified for this was that the expected answer did not make sense in the

context of the question posed: this was likely due to errors made by the parser in classifying

a relation between the text spans. Another reason was that since the output of the HAN

model is used to isolate most important segments from text spans, it is likely that the HAN

misidentified a segment as the more relevant one, resulting in poor appropriateness scores.

However, one can hope this score will get boosted considerably once a more accurate parser

is available in the future.

As expected, SQuAD generates better-quality questions than the RST-DT corpus. SQuAD

gets better scores for nature of coherence relation and question as it contains more implicit

discourse relations (relations that are more difficult to realize in the absence of cue words)

and longer texts (thereby yielding more inter-sentential questions). Scores assigned by an-

notators to the pipeline for the SQuAD dataset show a lot of promise and one can hope to

advance research in question answering and reading comprehension with this newly created

set of questions.

7.2.4 Question Difficulty Classification

Finally, after running the question generation tool and obtaining the reading comprehension

quiz, the final step involves ranking or classifying these questions according to their difficulty.

To do this, an ensemble of classifiers described in Chapter 6 are utilized to categorize gener-

ated questions. Table 7.5 tabulates the ratio of questions grouped by the labels assigned by

the classifiers. For the sake of comparison, class distribution for the RST-DT corpus is also

provided in this Table (these scores are the same as those reported in Table 6.1 and have

been included for the sake of clarity).
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Table 7.5. Ratio of questions grouped by the labels assigned by difficulty classifiers. Class
distribution for the training set is also included here for the sake of comparison.

Class RST-DT SQuAD

1 0.44 0.41
2 0.37 0.34
3 0.19 0.25

It is evident from Table 7.5 that more difficult questions are generated from the SQuAD

dataset than the RST-DT corpus. This verifies claims that the SQuAD dataset is better-

suited than the RST-DT corpus for question generation and pipeline evaluation.

7.2.5 Example

In addition to the metrics described in the previous section, one can also compare questions

generated by the system with previous research work done. This study has been skipped

purely because such a comparison would be unfair: questions generated by previous systems

are intra-sentential and do not use discourse relations as a source of information. One can

anticipate that questions generated by the system described in this Chapter will clearly be

more superior than the ones suggested by other systems. As an example, consider Figure 7.2

a fairly small paragraph from the SQuAD dataset and questions that follow.

Figure 7.2 reveals that systems like Heilman and Smith (2010) and Du et al. (2017) are

able to generate sentence-level questions that are fairly trivial to answer. System described

in this document, on the other hand, generates deeper inferential questions that are more

difficult to attempt. These questions are inter-sentential and test the ability to deduce

discourse relations in text. Answering these questions requires a complete understanding of

the text and its meaning.

Some more examples of the output given by the pipeline on paragraphs present in the

SQuAD dataset are provided in Appendix C.
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Passage:

Kuznets’ curve predicts that income inequality will eventually decrease given time. As an
example, income inequality did fall in the United States during its High school movement
from 1910 to 1940 and thereafter. However, recent data shows that the level of income
inequality began to rise after the 1970s. This does not necessarily disprove Kuznets’ theory.
It may be possible that another Kuznets’ cycle is occurring, specifically the move from the
manufacturing sector to the service sector. This implies that it may be possible for multiple
Kuznets’ cycles to be in effect at any given time.

Questions by Heilman and Smith (2010):

No. Question
1 When does kuznets ’ curve predict that income inequality will eventually decrease?
2 Where did income inequality do fall during its High school movement

from 1910 to 1940 and thereafter?
3 May it be possible that another Kuznets’ cycle is occurring?

Questions by Du et al. (2017):

No. Question
1 Where did income inequality fall during its high school movement?
2 When did income inequality fall in the us?
3 When did high-school movement begin?

Questions by our system:

No. Question
1 Under what circumstances did income inequality fall in the US?
2 Why does rise in income inequality not necessarily disprove Kuznets theory
3 Kuznets’ curve suggests that income inequality will eventually decrease

given time. What evidence is provided in the text to support
this claim?

Figure 7.2. An example showing questions generated by previous work and system described
in this Chapter.

7.3 Conclusions

Thanks to a deep pipeline, the SQuAD dataset could be complemented with a set of in-

ferential, inter-sentential questions that are more involved than intra-sentential Wh-type
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questions. Potential research efforts could be directed towards building automated QA sys-

tems that could answer such questions.

While relations described by the RST are generic enough to work with any document

or text, domain-specific coherence relations can be defined for areas of interest like Biology,

Political Sciences, Math, etc. One can consider defining templates for asking questions

around texts written for such domains as well. Likewise, one can also consider other sources

of information like images, audio files, videos, etc. for generating questions. The objective

should be to generate meaningful questions asked around the semantics of the object under

consideration and not ask simple factoids that are fairly trivial to answer.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation addressed the tasks of (a) finding rhetorical relations in large texts, (b)

using these relations to generate meaningful question-answer pairs and (c) ranking generated

questions according to their difficulty. After assembling into a pipeline and running it on the

SQuAD dataset, it was empirically shown that generated questions are of better quality than

the ones already present or the ones generated by other automated QG systems (Heilman

and Smith, 2010; Du et al., 2017).

8.1 Conclusions

Main dissertation conclusions and contributions are summarized below:

1. The construction of text-level discourse parsers is considered a challenging problem for

several reasons, such as the sparsity of training data, the inherent nature of discourse,

complexity of relation classification, etc. This dissertation did away with most of these

challenges by coming up with a deep discourse segmenter and parser that accurately

builds discourse trees from text.

(a) A deep learning model was constructed that leverages BERT’s (Devlin et al.,

2019) complex structure for performing discourse segmentation. By jointly learn-

ing syntactic features and casting the problem as token classification (as opposed

to the traditional way of sequence tagging), research described in this document

advanced the state-of-the-art and inched closer to human performance (the pro-

posed segmenter achieves an F-score of 96.7 versus human performance of 98.3)

(b) A deep model leveraging the representational powers of BERT and Hierarchical

Attention Networks or HANs (Yang et al., 2016) was designed to obtain syntax,
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structure and context-aware representations. These representations were then fed

to a shift-reduce parser to perform accurate text-level discourse parsing. Evalu-

ation on benchmark datasets showed that the model rivalled the performance of

state-of-the-art feature-driven and neural parsers.

2. Modern automated question generation systems either generate Wh-type questions

(Heilman and Smith, 2010), use shallow semantics and/or ontologies for constructing

questions (Graesser et al., 2003; Araki et al., 2016; Stasaski and Hearst, 2017) or use

deep learning for generating questions from one to few sentences (Du et al., 2017). This

dissertation suggested a method for generating inferential, inter-sentential questions

that tests the ability to deduce high-level relations between text spans.

3. This dissertation defined what it means for a question to be ‘meaningful’ by describing

a set of metrics that measure its quality. In sharp contrast to measures like grammatical

and semantic correctness, these metrics are more helpful in gauging the quality and

complexity of a question.

4. A rich semantic feature-driven classifier was described that categorized questions ac-

cording to their difficulty or complexity. Using these features allows one to capture

dependencies that cannot be captured by simple baselines, thereby observing a relative

improvement of 26% in model performance.

5. These modules were arranged into a pipeline and applied in succession to a benchmark

reading comprehension corpus like SQuAD (Rajpurkar et al., 2016). It was empirically

shown that this pipeline can generate questions that are better in quality and com-

plexity in comparison to the ones that are already present. One can hope to advance

research in question answering by analyzing such deep, inferential questions.
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8.2 Future Work

There are many potential avenues for future work. Each subsection describes how modules

making up this dissertation/pipeline can be further enhanced.

8.2.1 Discourse Parsing

This dissertation proposed a simple yet effective deep learning framework that gathered

language information from three important lexical sources: syntax, structure and context

by using HANs and BERT and jointly learning syntactic features. Potential enhancements

that can further improve model performance are:

1. Joint learning of other tasks: The model captured syntactic information in a multi-

task learning fashion by using information from dependency parse trees. Other sources

of information or language tasks can also be considered here. Braud et al. (2016)

performed an analysis on importance of related linguistic tasks by jointly learning

models for coreference resolution, temporal relation classsification, identifying turns

in dialogue, etc. Likewise, Lin et al. (2019) jointly learned models for discourse seg-

mentation and sentence-level discourse parsing. Such sources of information were not

considered by this dissertation as these are mostly available for the English language.

More importantly, incorporating this information would unnecessarily complicate the

model by introducing a lot of parameters into its architecture.

2. Exploring text hierarchy: While training the HAN model, two levels of text hierar-

chy were considered: words and segments. One may also consider other levels of text

hierarchy such as characters, sentences, paragraphs, etc. These levels of granularity

were explored by Shi et al. (2020) who observed improvements in model performance,

especially in the classification of implicit discourse relations.
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3. Utilizing other language models: The advent of more advanced language models

(Zaheer et al., 2020; Brown et al., 2020) that can work with bigger inputs and yield

better text representations has significantly enhanced the performance of many com-

plex NLP applications. One may consider the possibility of fine-tuning such models

instead of BERT and expect an improvement in performance.

8.2.2 Question Generation

This dissertation argued that modern automated QA systems are not able to generate mean-

ingful, inferential questions as they either focus on single sentences or simple inter-sentential

phenomena like coreference resolution. Work described in Chapter 5 was able to do away

with such issues by coming up with a bunch of rule-based transformations that convert co-

herence relation triples into question-answer pairs. Some key limitations of this system and

how they can be overcome are described below:

1. Coreference resolution and paraphrasing: The designed system relied heavily

on automated coreference resolution systems. Unfortunately, these systems could not

yield very good results and in most cases, annotators ended up manually resolving

coreference. Likewise, in many cases, words were picked from questions at random

and replaced by their synonyms to distort the language. Yin et al. (2015) and Du

et al. (2017) showed that neural QG systems can be designed such that they are able

to automatically resolve coreference resolution and perform paraphrasing to generate

coherent, well-formed questions. If the proposed rule-based system were replaced by

a neural QG system, then one would not have to worry about coreference resolution

and paraphrasing and let the system bear the burden of performing these tasks. This

path was not chosen by the dissertation as training a neural QG system requires an-

notated data and such a corpus that contains inferential, inter-sentential questions is

not available. One can hope to use the pipeline described in this document to generate
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questions, fix any grammatical or semantic errors and finally use the obtained corpus

to train a neural QG system.

2. Domain adaptation: This research works with two corpora: the RST-DT corpus

(Carlson et al., 2003) and SQuAD dataset (Rajpurkar et al., 2016) that contains articles

from the Wall Street Journal and Wikipedia respectively. While the relations described

by the RST are generic enough to work with any document or text, specific coherence

relations can be defined for other domains like Biology, Political Sciences, Math, etc.

The advantage offered by the proposed system is that the syntactic transformations

described by Chapter 5 would work with any text, regardless of the domain or relation

inventory. However, specific templates would have to be defined for a new relation

type. Likewise, the discourse parser would have to be re-trained to account for this

new relation. Thus, by simply re-training the parser and adding a new template, one

can scale the system to a new domain.

3. Generating distractors: This dissertation does not address how to formulate mul-

tiple choice questions (Araki et al., 2016). To generate meaningful distractors for such

questions, one should consider exploiting discourse structures and look for confusing

relation triples in the tree. For instance, a correlation relation can be confused for

causation: strategies such as these can be utilized to craft smart distractors. However,

to generate such distractors, we clearly need a powerful discourse parser that itself does

not get confused between relations it is trying to categorize and more importantly, the

presence of discourse structures that would allow us to obtain them in the first place.

4. Evaluation of answers: We also have not addressed how to evaluate answers written

by students for a particular question. One strategy is to identify spans of tokens in

text that correspond to the answer: however, it is very likely that a student may have

written the answer in their own words. To account for this, a smart rating system
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must be designed that compares the expected answer with the given one (Shen et al.,

2019), and perhaps rates it on a scale to indicate how correct the answer is.

5. Multi-modal question generation: One can also consider other sources of infor-

mation like images, audio files, videos, etc. for generating questions. Once again, the

objective should be to generate meaningful questions. Several QA datasets have been

released by researchers (Zeng et al., 2017; Lei et al., 2018) that ask simple wh-type

questions around images and videos. These datasets can also be complemented with

meaningful questions like the ones generated by the pipeline. This would help advance

research in both multi-modal question generation and answering.
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APPENDIX A

PRINCIPLES OF DISCOURSE SEGMENTATION

This appendix summarizes the principles described in Carlson and Marcu (2001) for anno-

tating discourse segments in a document. The list given below gives concrete examples for

each principle with explanations (segment boundaries are indicated via bracketing):

1. Main Clause: The basic elementary discourse unit or EDU is a clause. For instance:

(1) [The company will shut down its plant.]

2. Subordinate clauses with discourse cues: Some clear-cut examples of sentences

containing two clausal EDUs are enumerated below – each of these has a superordinate

clause, and a subordinate clause, containing a discourse marker are listed below:

(2) [Such trappings suggest a glorious past] [but give no hint of a troubled present.]

(3) [Although Mr. Freeman is retiring,] [he will continue to work as a consultant for

American Express on a project basis.]

3. Clausal subjects and objects: Clausal subjects and objects of verbs should not be

treated as elementary discourse units:

(4) [Deciding what constitutes terrorism can be a legalistic exercise.]

(5) [Atco Ltd. said its utilities arm is considering building new electric power plants.]

4. Clausal Complements: Clausal complements of verbs are normally not fragmented

into separate EDUs. However, an exception is made in the case of attribution verbs as

shown later. Consider these examples:

(6) [Ideally, wed like to be the operator of the project and a modest equity investor.]

(7) [The company says] [it will shut down its plant.]
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An exception is made if the complement is a to-infinitival:

(8) [The company wants to shut down its plant.]

5. Coordinated sentences: Coordinated sentences and clauses are broken into separate

EDUs

(9) [Inventories are creeping up;] [car inventories are already high,] [and big auto

makers are idling plants.]

6. Coordination in Superordinate Clauses: When coordination clauses occur as su-

perordinate clauses, they are treated like coordinated sentences, and should be marked

as EDUs.

(10) [The company will shut down its plant,] [and dismiss several hundred employees.]

7. Coordination in Subordinate Clauses: If the subordinate construction is nor-

mally segmented as an EDU in the single clause case, then the coordinate clauses are

segmented as EDUs:

(11) [The company announced] [that it will shut down its plant] [and dismiss several

hundred employees.]

If the subordinate construction is not segmented as an EDU in the single clause case,

then the coordinate clauses are not segmented as EDUs:

(12) [The company plans to shut down its plant and dismiss several hundred employees.]

8. Syntactic Focusing Devices: When a syntactic focusing device, such as cleft,

pseudo-cleft or extraposition creates two clauses out of a single clause, the resulting

construction is regarded as a single EDU. An example is given below:

(13) [It is hard for the company to dismiss several hundred employees.]
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9. Temporal Clauses: Clausal temporal expressions are EDUs. Temporal clauses trig-

gered by before, after, may have a number of modifiers that are included in the EDU.

Example:

(14) [Just months before dismissing several hundred employees, ... ]

10. Temporal phrases: Temporal phrases, such as in the morning, in the past several

weeks, are not EDUs. Even if the temporal phrase is event-like in nature, it is not

marked as an EDU:

(15) [Just a week after the companys dismissal of several hundred employees, further

layoffs were announced.]

11. Correlative Subordinators: Correlative Subordinators are marked as separate EDUs.

Example:

(16) [No sooner had they announced the closing of the plant] [than massive protests

erupted on the premises.]

12. Embedded Discourse Units: Relative clauses, nominal postmodifiers, appositives,

parentheticals are treated as embedded EDUs. Embedded units are those which modify

a portion of an EDU, or break up another legitimate EDU. Examples:

(17) [The plant] [that the company will shut down] [is in Ohio.]

(18) [The plant] [(which is in Ohio)] [will be shut down in October.]
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APPENDIX B

DISCOURSE RELATION INVENTORY

This appendix provides definitions and examples of all relations found in the RST inventory.

Only the most important ones were enumerated in Table 1.4.1; here all other relation types

are described.

1. Analogy: Here, two textual spans, often quite dissimilar, are set in correspondence

in some respects. An analogy contains an inference that if two or more things agree

with one another in some respects, they will probably agree in other respects. In most

cases, the relation is multinuclear.

Example:

[And just as we did not believe the tendentious claims of the Congressmen and arms-

control advocates who visited Krasnoyarsk,] [we are in no way persuaded by the assent

to the tainted-meat theory by a U.S. team of scientists who met with Soviet counterparts

in Washington last year.]

2. Antithesis: Here, the situation presented in the nucleus comes in contrast with the

situation presented in the satellite. The contrast may happen in only one or few

respects, while everything else can remain the same in other respects.

Example:

[Although the legality of these sales is still an open question,] [the disclosure couldn’t

be better timed to support the position of export-control hawks in the Pentagon and the

intelligence community.]

3. Comment: In a Comment relation, the satellite constitutes a subjective remark on a

previous segment of the text. It is not an evaluation or an interpretation. The comment
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is usually presented from a perspective that is outside of the elements in focus in the

nucleus.

Example:

Sears said [claims from the storm,] [as expected,] [reduced its third quarter net by $80

million, or 23 cents a share.]

4. Concession: The situation indicated in the nucleus is contrary to expectation in the

light of the information presented in the satellite.

Example:

[Still, todays highest-yielding money funds may beat CDs over the next year] [even if

rates fall]

5. Conclusion: In this relation, the satellite presents a final statement that wraps up

the situation presented in the nucleus. The satellite is a reasoned judgment, inference,

necessary consequence, or final decision with respect to the situation presented in the

nucleus.

Example:

China could exhaust its foreign-exchange reserves as early as next year, a Western

government report says, unless imports are cut drastically to help narrow the balance-

of-payments deficit. According to the report, completed last month, if China’s trade gap

continues to widen at the pace seen in the first seven months of this year, the reserves

would be wiped out either in 1990 or 1991. [A country is considered financially healthy

if its reserves cover three months of its imports. The $14 billion of reserves China

had in June would cover just that much.] [The report by the Western government,

which declines to be identified, concludes that “a near-term foreign-exchange payment

problem can be avoided only if import growth drops to below 5% per annum.”]
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6. Contingeny: Here, the satellite suggests an abstract notion of recurrence or habitu-

ality. Hence, the expression of time, place, or condition is not the primary focus.

Example:

[They have a life of their own and can be counted on to look good and perform] [whenever

a cast isn’t up to either.]

7. Definition: Here, the satellite gives a definition of the nucleus.

Example:

[Deciding what constitutes terrorism can be a legalistic exercise.] [The U.S. defines it

as “premediated, politically motivated violence perpetrated against noncombatant targets

by subnational groups or clandestine state agents.”]

8. Disjunction: This is a multinuclear relation whose elements can be listed as alter-

natives, either positive or negative.

Example:

[Yet Israel will neither share power with all these Arabs] [nor, says its present prime

minister, redraw its borders closer to its pre-1967 Jewish heartland.]

9. Preference: The relation compares two situations, acts, events, etc., and assigns a

clear preference for one of the situations, acts, events, etc. The preferred situation,

act, event, etc. is the nucleus.

Example:

[She has thrown extravagant soirees for crowds of people,] [but prefers more intimate

gatherings.]

10. Proportion: A Proportion relation expresses a proportionality or equivalence of

tendency or degree between two nuclei. It is always multinuclear.
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Example:

“We can’t have this kind of thing happen very often. [When the little guy gets fright-

ened,] [the big guys hurt badly.] Merrill Lynch can’t survive without the little guy.”

11. Question-Answer: In such a relation, one textual span poses a question (not nec-

essarily realized as an interrogative sentence), and the other text span answers the

question. The relation may be mononuclear or multinuclear, depending on the con-

text. When the question is perceived as more important than the answer, the question

is assigned the role of nucleus and the answer is the satellite.

Example:

[But are these four players, three of them in their 80s, ready to assume a different role

after 88 years, collectively, of service on the high court?] [Every indication is that the

four are prepared to accept this new role, and the frustrations that go with it, but in

different ways. Justices Brennan and Stevens appear philosophical about it; Justices

Marshall and Blackmun appear fighting mad.]
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APPENDIX C

EXAMPLES SHOWING PIPELINE OUTPUT

In this appendix, some more examples of questions as generated by the pipeline described in

Chapter 7 are provided. The SQuAD dataset (Rajpurkar et al., 2016) was used to craft these

questions. In each case, it can be observed that the pipeline generates more general-level

questions than the ones posed by humans in SQuAD.

Passage:

There are three major types of rock: igneous, sedimentary, and metamorphic. The rock cycle
is an important concept in geology which illustrates the relationships between these three
types of rock, and magma. When a rock crystallizes from melt (magma and/or lava), it is
an igneous rock. This rock can be weathered and eroded, and then redeposited and lithified
into a sedimentary rock, or be turned into a metamorphic rock due to heat and pressure that
change the mineral content of the rock which gives it a characteristic fabric. The sedimentary
rock can then be subsequently turned into a metamorphic rock due to heat and pressure and
is then weathered, eroded, deposited, and lithified, ultimately becoming a sedimentary rock.
Sedimentary rock may also be re-eroded and redeposited, and metamorphic rock may also
undergo additional metamorphism. All three types of rocks may be re-melted; when this
happens, a new magma is formed, from which an igneous rock may once again crystallize.

Questions in SQuAD:

No. Question
1 An igneous rock is a rock that crystallizes from what?
2 Sedimentary rock can be turned into which three types of rock?
3 When the three types of rock are re-melted what is formed?
4 What are the three major types of rock?
5 What changes the mineral content of a rock?

Questions generated:

No. Question Difficulty
1 Why is the rock cycle an important concept in geology? 2
2 Under what circumstances is a rock an igneous rock? 1
3 How does an igneous rock turn into a metamorphic rock? 2
4 Under what circumstances is a new magma formed? 2
5 How may an igneous rock once again crystallize? 2
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Passage:

In 1755, six colonial governors in North America met with General Edward Braddock, the
newly arrived British Army commander, and planned a four-way attack on the French.
None succeeded and the main effort by Braddock was a disaster; he was defeated in the
Battle of the Monongahela on July 9, 1755 and died a few days later. British operations in
1755, 1756 and 1757 in the frontier areas of Pennsylvania and New York all failed, due to a
combination of poor management, internal divisions, and effective Canadian scouts, French
regular forces, and Indian warrior allies. In 1755, the British captured Fort Beausjour on
the border separating Nova Scotia from Acadia; soon afterward they ordered the expulsion
of the Acadians. Orders for the deportation were given by William Shirley, Commander-
in-Chief, North America, without direction from Great Britain. The Acadians, both those
captured in arms and those who had sworn the loyalty oath to His Britannic Majesty, were
expelled. Native Americans were likewise driven off their land to make way for settlers from
New England.

Questions in SQuAD:

No. Question
1 When did colonial governors meet with General Edward Braddock about

attack on the french?
2 How successful was initial effort by Braddock?
3 Why did British operation fail in 1755, 56, 57?
4 In 1755 what fort did British capture?
5 What order did British make of French?

Questions generated:

No. Question Difficulty
1 Why did six colonial governors in North America meet with Gen-

eral Edward Braddock, the newly arrived British Army comman-
der?

1

2 Why was the main effort by Braddock a disaster? 2
3 Why did British operations in 1755, 1756 and 1757 in the frontier

areas of Pennsylvania and New York all fail?
2

4 Under what conditions were orders for the deportation given by
William Shirley, Commander-in-Chief, North America?

3

5 Why were Native Americans likewise driven off? 2
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Passage:

The Doctor rarely travels alone and often brings one or more companions to share these
adventures. His companions are usually humans, as he has found a fascination with planet
Earth. He often finds events that pique his curiosity as he tries to prevent evil forces from
harming innocent people or changing history, using only his ingenuity and minimal resources,
such as his versatile sonic screwdriver. As a Time Lord, the Doctor has the ability to regen-
erate when his body is mortally damaged, taking on a new appearance and personality. The
Doctor has gained numerous reoccurring enemies during his travels, including the Daleks,
the Cybermen, and the Master, another renegade Time Lord.

Questions in SQuAD:

No. Question
1 How often does the Doctor travel by himself?
2 What enemy of Doctor Who is also a Time Lord?
3 What does Doctor Who do when his body is mortally damaged?
4 What type of beings does Doctor Who usually take with him on his travels?
5 What type of Lord is Doctor Who?

Questions generated:

No. Question Difficulty
1 Why are the Doctor’s companions usually human? 1
2 Under what circumstances does the Doctor find events that pique

his interest?
2

3 How does the Doctor try to prevent evil forces from harming
innocent people or changing history?

2

4 Under what circumstances does the Doctor take on a new ap-
pearance and personality?

3
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