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COEFFICIENTS OF CATALAN STATES OF LATTICE CROSSING

Che-Yu Wu, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Mieczyslaw K. Dabkowski, Chair

Skein modules are algebraic invariants of oriented 3-manifolds motivated by knot theory.

The Kauffman bracket skein module is the most extensively studied skein module due to its

relation with the Jones polynomial. Results of this dissertation can naturally be regarded as

contributions to further development of the theory of skein modules. The lattice crossing was

first studied by Dabkowski, Li, and Przytycki in 2015 as a part of an effort to find closed-form

formulas for the natural product in the Kauffman bracket skein algebra of a four-punctured

sphere. In this dissertation, we focus on finding coefficients of Catalan states obtained from

lattice crossing and derive some relations between the coefficients of two different Catalan

states. In particular, we develop methods for computing coefficients of Catalan states and

find closed-form formulas for the coefficients of Catalan states obtained from lattice crossing

with 4 vertical strands. We also examine the unimodality property of the coefficients of

Catalan states. The generalized crossing is an n-tangle obtained as a half-twist of n vertical

strands related to the lattice crossing. In the last part of this dissertation, we present some

results concerning coefficients of Catalan states obtained from generalized crossing.
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CHAPTER 1

INTRODUCTION

Skein modules are invariants of oriented 3-manifolds M that were introduced independently

by Przytycki [24] and Turaev [29]. They are defined as quotients of a free module generated

by the ambient isotopy classes of links modulo some selected skein relations. The Kauff-

man bracket skein module (KBSM) is the most studied skein module based on the Kauff-

man bracket skein relation [16] and it has been computed for several classes of 3-manifolds

[24, 13, 14, 15, 18, 23, 21, 22, 19]. Unfortunately, there are no general methods for calcu-

lating KBSM of 3-manifolds. Hence, the set of examples of M for which KBSM is known

remains still quite limited. This, in turn, limits our ability to understand important relations

between the algebraic structure of KBSM of M and the geometry of M . However, when the

underlying ring is a field, as first conjectured by E. Witten (see [3]) and then proved in 2019

by Gunningham, Jordan, and Safronov [12], the KBSM of any closed oriented 3-manifolds

becomes a finite-dimensional vector space.

When a 3-manifold is a product of an oriented surface F and an interval I = [0, 1], the

KBSM has a natural structure of an algebra that is called Kauffman bracket skein algebra

(KBSA) of F . The product of two links L1 ∗ L2 in the KBSA of F is defined by placing L1

above L2. This algebra is commutative when F is a 2-dimensional sphere or a punctured

2-sphere with at most three boundary components. The first and the simplest example

of a surface with a non-commutative KBSA is a 2-dimensional torus or a four-punctured

sphere. In 2000, Frohman and Gelca [11] found an elegant formula – known as the product-

to-sum formula – for the product of curves in KBSA of 2-torus. It is then quite natural to

ask whether a similar formula can be found for KBSA of a four-punctured sphere. In [1],

the authors considered the double branched cover of a four-punctured sphere to obtain an

algorithm for the product of curves in KBSA of a four-punctured sphere. The algorithm is

rather involved and quite difficult to apply which makes it not practical to use. Therefore,
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the idea used in [7] for finding closed-form formulas for the coefficients of the product of

curves in KBSA of a four-punctured sphere seems to be a reasonable approach. Namely,

we start by considering an (m+ n)-tangle L(m,n) called lattice crossing [7] and try to find

formulas for the coefficients of the crossingless connections between 2(m + n) points on the

circle. Such connections are called Catalan states and they form a basis of the Relative

Kauffman Bracket Skein Module (RKBSM) of a 3-ball B3 with 2(m+ n) points fixed on its

boundary. Therefore, in such a setting lattice crossing L(m,n) can be expressed by a linear

combination of Catalan states with coefficients in some commutative ring with identity. The

first main result obtained by Dabkowski, Li, and Przytycki in [7] gives the necessary and

sufficient conditions for a Catalan state to show up the linear combination for L(m,n) in

the RKBSM, and another one gives a counting formula for the number of Catalan states

that appear in this linear combination. In the sequel paper, Dabkowski and Przytycki [9]

introduced the plucking polynomial of a plane rooted tree with a delay function for computing

coefficients of some particular classes of Catalan states (Catalan states with no returns on

one side). The plucking polynomial of a plane rooted tree was introduced by Przytycki [26]

and it was motivated by the problem of finding the coefficients of Catalan states that was

considered in [7]. The strict unimodality of coefficients of the plucking polynomial of a plane

rooted tree was studied later in [5]. Furthermore, the necessary and sufficient conditions for

a polynomial to be obtained as a plucking polynomial of a plane rooted tree were found in

[4], and finally, the problem of finding conditions for different plane rooted trees that have

the same plucking polynomials was studied in [6].

The generalized crossing is an n-tangle obtained as a half-twist of n vertical parallel

strands. This tangle was first studied in [20] in the context of finding a relationship with

lattice crossing. As shown in [20], every Catalan state of generalized crossing is realizable. In

this dissertation, we develop further results concerning coefficients of Catalan states obtained

from generalized crossing.
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The main contribution of this dissertation is the development of methods for computing

coefficients of arbitrary Catalan states obtained from lattice crossing and analyzing their

properties. The dissertation is organized as follows. In Chapter 2, we provide a summary of

the necessary definitions and results that are needed in later chapters.

In Chapter 3, we focus on the development of methods for finding coefficients of Catalan

states. In particular, we give general results that allow us to establish relations between

the coefficient of a given Catalan state and coefficients of some other related Catalan states.

This allows us to find the coefficient of a given state in terms of coefficients of some other

Catalan states for which coefficients can be computed. The method we develop updates

the connections of Catalan states near the top and bottom boundaries of the Catalan state

but leaves the connections in the middle unchanged. This technique, called the first-row

expansion, was used in its simpler version in [9] to find coefficients of Catalan states with

no returns on one side. Another observation we make is that, after a finite number of the

first-row expansions, we can get Catalan states with certain similar patterns of connections.

These observations gave an idea for our method, that is, to find the coefficient of a given

Catalan state, we can find the coefficient of some larger Catalan states with ”good properties”

(for instance those discussed in [9]) and then apply the first-row expansions till this given

Catalan state appears.

In Section 3.1, after we introduce some relevant terminology, we give an algorithm that

splits all Catalan states into groups according to the way they decompose into smaller pieces

and the operations that can be applied to each piece. Then we show how to reduce problems

on finding coefficients of general Catalan states into problems for which we already know the

answer. Furthermore, once we know how to do such a reduction, we know how to compute

coefficients for all other Catalan states in the same group. Thus, our algorithm is not just

simply finding the coefficient of a particular Catalan state but rather finding coefficients

for a family of Catalan states. In the same section, we prove a very useful lemma about
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plucking polynomial of a plane rooted tree with a delay function. Moreover, We establish a

relation between coefficients of a Catalan state C and the Catalan state C ′ obtained from

C by removing some of its arcs. These results play an important role in this dissertation

as they will allow us to justify theorems in later sections. In Section 3.2, we study some

classes of Catalan states for which our reduction has a particularly simple form. This allows

us to find coefficients of such Catalan states using methods that are different than the one

obtained from the algorithm in Section 3.1. Since the number of groups, into which we split

Catalan states, depends only on n and it is finite, we list all such reduction formulas for

small values of n.

In Chapter 4, we find closed-form formulas for coefficients of Catalan states obtained

from lattice crossing L(m,n) when n is small and we obtain results concerning unimodality

of coefficients of Catalan states that admit a horizontal line that has four intersections with

such a Catalan state.

In Section 4.1, we find closed-form formulas for n = 3, 4. Although such formulas for

n = 3 were obtained in [9], we prove a stronger version of results given in there. The main

idea for n = 4 in our proof is to decompose Catalan states into small pieces, use formulas

developed in Chapter 3 to find the contribution of each piece to the coefficients of Catalan

states. Furthermore, to reconstruct the Catalan state from such pieces one must follow rules

described by walks in a directed graph. The unimodality of coefficients of Catalan states is

discussed in Section 4.2. We prove that coefficients of Catalan states for n ≤ 3 are Laurent

polynomials with unimodal coefficients and when n ≥ 5 we give examples of Catalan states

with coefficients that are not unimodal. For the case n = 4, we show that if a Catalan state

is a vertical product of some other Catalan states, then its coefficient is unimodal.

In the last chapter, based on the idea similar to the first-row expansion that was used for

lattice crossing, we develop a method for computing coefficients of Catalan states obtained

from generalized crossing and then we apply it to find coefficients for two infinite families of
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Catalan states. Analyzing properties of those coefficients and developing efficient methods

for finding them will be part of my future research projects.
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CHAPTER 2

PRELIMINARIES

In this chapter, we recall all necessary definitions and results that we will use in the remaining

chapters of this dissertation.

2.1 Kauffman Bracket Skein Modules

A link L in a 3-manifold M3 is defined as the image of an embedding of a disjoint union of

circles into M3, and the image of each circle is called a component of the link. One component

link is called a knot. A framed link is a link with integers assigned to its components that

represent the twist numbers while regarding each component as a ribbon knot. We also may

view a framed link L as the image of an embedding of a disjoint union of annuli into M3

with S1 × {0} of annulus A2 = S1 × [0, 1] regarded as L.

Links in R3 can be studied via their diagrams up to the natural moves that correspond

to ambient isotopies of R3. Namely, given a link L in R3, its projection onto a plane which

avoids diagrams shown in Figure 2.1 together with the information at each double point

about which arc is above or below is called a link diagram of L.

Theorem 2.1.1 (Reidemeister [27]). Given two links L1, L2 in R3 suppose that D1 and

D2 are their link diagrams. Then L1 is ambient isotopic to L2 if and only if D1 can be

obtained from D2 by a finite sequence of Reidemeister moves R1, R2, or R3, as shown in the

Figure 2.2.

The above theorem allows us to work with the link diagrams in R2 rather than links in

R3. In particular, we can define invariants of links in R3 using their diagrams. One of the

most important invariant for us is the Kauffman bracket.
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Figure 2.1. Diagrams are not allowed

R2R1 R3

Figure 2.2. Reidemeister moves

Theorem 2.1.2 (Kauffman [16]). Given a fixed invertible element A, define bracket polyno-

mial of an unoriented link in R3 as follows:

〈 〉 = 1,

〈 〉
= A

〈 〉
+ A−1

〈 〉
,

and

〈 t L 〉 = −(A2 + A−2)〈L〉,

where links involved in the second relation are identical outside of a neighborhood of the

crossing, and the circle in the first and third relations denotes the unknot. Then 〈L〉 is

invariant under Reidemeister moves R2 and R3.

We will say that link diagrams D1 and D2 are related via regular isotopy of diagrams if

D1 can be obtained from D2 by a finite sequence of R2 and R3 moves.

As we mentioned in Chapter 1, the theory of skein modules gives the natural context

for the results of this dissertation. We recall the definition of the Kauffman bracket skein

module (KBSM) of an oriented 3-manifold M3. This invariant was defined by Przytycki as

a generalization of the Kauffman bracket polynomial (defined for links in R3) to links in an

arbitrary oriented 3-manifold. In particular, the KBSM of M3 is a sound algebraic structure

that allows us to study links in M3.
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Definition 2.1.3 (Przytycki [24]). Given an oriented 3-manifold M3, a commutative ring

R, and an invertible element A in R. Denote by Lfr the set of all ambient isotopy classes

of unoriented framed links in M3 including the empty link ∅. Let RLfr be the free R-module

with basis Lfr and S2,∞ be the submodule of RLfr generated by

−A −A−1 and t L+ (A2 + A−2)L, (2.1)

where the skein triple in the first relation represents framed links which are identical outside

of a neighborhood of the crossing, and the circle in the second relation denotes the unknot.

Then the Kauffman bracket skein module (KBSM) of M3 is defined by

S2,∞(M3;R,A) = RLfr/S2,∞.

Denote by Fg,b an oriented surface of genus g with b boundary components and let I =

[0, 1] be the unit interval. One defines a natural multiplication ∗ on S2,∞(Fg,b× I;Z[A±1], A)

as follows: For links L1 and L2 in Fg,b × I, let L1 ∗ L2 be the link that obtained by placing

L1 above L2, more precisely, we put L1 in F × [1
2
, 1] and L2 in F × [0, 1

2
]. The Kauffman

bracket skein algebra (KBSA) of Fg,b is then the KBSM S2,∞(Fg,b × I;Z[A±1], A) together

with the multiplication ∗ and we denote it by S∗2,∞(Fg,b×I). The following results concerning

KBSA were obtained by Bullock and Przytycki. Since the main motivation for this work is

to obtain closed-form formulas for the coefficients in the product of parallel copies of curves

in a four-punctured sphere F0,4, results of this dissertation are directly related to part (e) of

the theorem below in which a presentation for KBSA of F0,4 is given.

Theorem 2.1.4 (Bullock-Przytycki [2]). Let Fg,b be an oriented surface of genus g with b

boundary components and R = Z[A±1].

(a) S∗2,∞(F0,0 × I) ' S∗2,∞(F0,1 × I) ' R.

(b) S∗2,∞(F0,2 × I) ' R[x], where x is a curve parallel to a boundary component of F0,2.
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(c) S∗2,∞(F0,3 × I) ' R[x, y, z], where x, y, z are curves parallel to boundary components of

F0,3.

(d) S∗2,∞(F1,0 × I) ' R〈x, y, z〉/I1,0, where x, y, z are (1, 0)-curve, (0, 1)-curve, and (1, 1)-

curve, respectively, on F1,0 and I1,0 is generated by

Axy − A−1yx− (A2 − A−2)z,

Ayz − A−1zy − (A2 − A−2)x,

Azx− A−1xz − (A2 − A−2)y,

and

A2x2 + A−2y2 + A2z2 − Axyz − 2A2 − 2A−2.

(e) S∗2,∞(F0,4 × I) ' R[a1, a2, a3, a4]〈x, y, z〉/I0,4, where x, y, z, a1, a2, a3, a4 are (1, 0)-

curve, (0, 1)-curve, (1, 1)-curve, four curves parallel to different boundary components,

respectively, on F0,4 as shown in Figure 2.3, and I0,4 is generated by

A2xy − A−2yx− (A4 − A−4)z − (A2 − A−2)(a1a3 + a2a4),

A2yz − A−2zy − (A4 − A−4)x− (A2 − A−2)(a1a4 + a2a3),

A2zx− A−2xz − (A4 − A−4)y − (A2 − A−2)(a1a2 + a3a4),

and

A4x2 + A−4y2 + A4z2 − A2xyz − (A2 + A−2)2 + a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4

+ A2(a1a4 + a2a3)x+ A−2(a1a2 + a3a4)y + A2(a1a3 + a2a4)z.

We note that S∗2,∞(Fg,b× I) is commutative if and only if (g, b) ∈ {(0, 0), (0, 1), (0, 2), (0, 3)}.

As we see from the above, when KBSA of Fg,b is non-commutative, the product of curves

is rather difficult to find. However, there is an elegant multiplicative formula for the product

of curves on the 2-dimensional torus. Namely, there is a closed-form formula for the product

in S∗2,∞(F1,0 × I) that is known as the product-to-sum formula obtained by Frohman and
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x

y z

a1

a2

a4

a3

(a) Curves a1a2a3a4 on F0,4 (b) Curve x on F0,4

(c) Curve y on F0,4 (d) Curve z on F0,4

Figure 2.3. Curves on F0,4

Gelca. This formula sparked an effort by Dabkowski, Li and Przytycki to find a similar

formula for the product of curves on F0,4 and motivated lots of new development, such as,

for instance, plucking polynomial of a plane rooted tree with a delay function. We will recall

the result by Frohman and Gelca mentioned before. Let Tn(x) be the polynomials defined

recursively by T0(x) = 2, T1(x) = x, Tn(x) = xTn−1(x) − Tn−2(x) for n ≥ 2. For integers p

and q, one defines the general (p, q)-curve by (p, q)T = Tgcd(p,q)

(
( p

gcd(p,q)
, q

gcd(p,q)
)
)

with the

convention gcd(0, 0) = 0.

Theorem 2.1.5 (Frohman-Gelca [11]). For any integers p, q, r, s,

(p, q)T ∗ (r, s)T = Aps−qr(p+ r, q + s)T + A−(ps−qr)(p− r, q − s)T

in S∗2,∞(F1,0 × I).

In order to find the product yn ∗ xm of n parallel copies of the curve y and m parallel

copies of the curve x in S∗2,∞(F0,4× I), we start by considering the diagram of yn ∗xm on F0,4

10



(see Figure 2.4(a)) locally. To make our considerations more precise, recall the definition of

the relative Kauffman bracket skein module (RKBSM) of an oriented 3-manifold with 2n

framed points (or equivalently intervals) on its boundary.

Definition 2.1.6 (Przytycki [25]). Given an oriented 3-manifold M3, a commutative ring

R with identity, and an invertible element A in R. Let {xi}2n
i=1 be 2n framed points in ∂M3,

and denote by Lfr(n) the set of unoriented framed relative links in (M3, ∂M3) such that

L ∩ ∂M3 = ∂L = {xi}2n
i=1, up to ambient isotopy that fixes ∂M3. Let RLfr(n) be the R-

module with basis Lfr(n) and S2,∞(n) be the submodule of RLfr(n) generated by (2.1). Then

the relative Kauffman bracket skein module (RKBSM) of M3 is defined by

S2,∞(M3, {xi}2n
i=1;R,A) = RLfr(n)/S2,∞(n).

Let us consider the diagram L(m,n) of yn ∗ xm which is inside the disk D2 shown in

Figure 2.4. As it can easily be seen this diagram is (m+ n)-tangle obtained as a projection

of the framed relative link in the cylinder D2 × [0, 1] with 2(m+ n) points on its boundary.

The following results by Przytycki are of great importance to our further discussion of lat-

tice crossing L(m,n) as they give us the necessary mathematical setup for the problem we

consider in this dissertation.

Proposition 2.1.7 (Przytycki [25]). The RKBSM S2,∞(M3, {xi}2n
i=1;R,A) depends only on

the distribution points {xi}2n
i=1 among the boundary components of M , but not on the exact

position of {xi}2n
i=1. In particular, if ∂M is connected, we can denote it by S2,∞(M3, n;R,A).

The following result describes a basis of the RKBSM in the case of Fg,b×I with 2n points

on its boundary, which is relevant to our farther discussion.

Theorem 2.1.8 (Przytycki [25]). S2,∞(Fg,b × I, {xi}2n
i=1;R,A) is a free R-module for b ≥ 1,

and its basis consists of framed relative links on F without trivial components.

11



Since the boundary of D2 × I is certainly connected, the following result allows us to

define the coefficient of a Catalan state C of lattice crossing L(m,n) as we will discuss later.

The main idea to keep in mind here is that a Catalan state is nothing but an element of the

basis of the RKBSM of D2 × I with 2(m + n) points described in Corollary 2.1.9 and the

coefficient C(A) of the Catalan state C is nothing but the coefficient of C when the relative

link L(m,n) is written in the basis of S2,∞(D2× I, n;R,A). We will make it more precise in

the section that follows.

Corollary 2.1.9 (Przytycki [25]). S2,∞(D2×I, n;R,A) is a free R-module with 1
n+1

(
2n
n

)
basic

elements, which consist of all framed crossingless connections between 2n boundary points.

2.2 Lattice Crossing – Definition and Summary of Results

In [7], Dabkowski, Li, and Przytycki began their study of an (m + n)-tangle L(m,n) called

lattice crossing in order to analyze the product of n parallel copies of framed link y and

m parallel copies of framed link x locally. More precisely, they considered the diagram of

yn ∗ xm on F0,4 inside the disk D2 shown in Figure 2.4(a). For convenience, we consider the

rectangle R2
m,n instead of the disk D2 with 2(m + n) points Xm,n = {xi, x′i}ni=1 ∪ {yj, y′j}mj=1

fixed on its boundary and placed as shown in Figure 2.4(b). We define lattice crossing

L(m,n) as a framed relative link
(⊔n

i=1 xix
′
i

)
∗
(⊔m

j=1 yjy
′
j

)
in R2

m,n × I that consists of n

parallel framed line segments xix′i joining pairs of boundary points xi and x′i placed above

the m parallel framed line segments yiy′i joining pairs of boundary points yi and y′i as shown

in Figure 2.4(c). Let Catm,n be the set of all crossingless connections between points of Xm,n.

By Corollary 2.1.9, this set is a basis of S2,∞(R2
m,n × I,Xm,n;Z[A±1], A). Hence

L(m,n) =
∑

C∈Catm,n

C(A)C

for some C(A) ∈ Z[A±1]. Elements of Catm,n are called Catalan states and the coefficient

C(A) of C in above linear combination is called the coefficient of the Catalan state C.

12



(c) Lattice crossing L(m,n)(b) Rectangle R2
m,n

(d) +1 marker and −1 marker

+1 −1

(a) Product yn ∗ xm in S∗2,∞(F0,4 × I)

yn

xm

L(m,n)

x1 x2 xnxn−1

x′1 x′2 x′nx′n−1

ym−1

ym

y2

y1

y′m−1

y′m

y′2

y′1

x1 x2 xnxn−1

x′1 x′2 x′nx′n−1

ym−1

ym

y2

y1

y′m−1

y′m

y′2

y′1

Figure 2.4. R2
m,n, L(m,n), +1 marker and −1 markers
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x1 x2 xnxn−1

x′1 x′2 x′nx′n−1

ym−1

ym

y2

y1

y′m−1

y′m

y′2

y′1
lh1

lh2

lhm−1

lv1 lvn−1

lhm

lh0

lv0 lvn

Figure 2.5. Straight lines lvi and lhj

Let Matm,n({±1}) be the set of m × n matrices whose entries are either 1 or −1. A

Kauffman state of L(m,n) is an assignment of +1 or −1 markers on the mn crossings of

L(m,n) according to s ∈ Matm,n({±1}). A Catalan state is realized by a Kauffman state s

if it can be obtained by smoothing crossings of L(m,n) that follow the rule in Figure 2.4(d)

according to the markers determined by s and after removing all trivial components. A

Catalan state is realizable if it can be realized by some Kauffman states. As one checks for

m = n = 2 there are 14 Catalan states of L(2, 2) with 12 that are realizable.

Theorem below gives a complete characterization of realizable Catalan states.

Theorem 2.2.1 (Dabkowski-Li-Przytycki [7]). A Catalan state C is realizable if and only

if |lvi ∩ C| ≤ m for all 1 ≤ i ≤ n − 1 and |lhj ∩ C| ≤ n for all 1 ≤ j ≤ m − 1, where lvi and

lhj are shown in Figure 2.5 and |l ∩ C| denotes the minimal number of intersections between

curves l and C.

Furthermore, one is able to give a formula that counts the realizable Catalan states.
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Theorem 2.2.2 (Dabkowski-Li-Przytycki [7]). The number of realizable Catalan states of

L(m,n) is

1

m+ n+ 1

(
2m+ 2n

m+ n

)
−
∞∑
i=0

[(
2m+ 2n

m− i(n+ 3)− 2

)
− 2

(
2m+ 2n

m− i(n+ 3)− 3

)
+

(
2m+ 2n

m− i(n+ 3)− 4

)]
−
∞∑
i=0

[(
2m+ 2n

n− i(m+ 3)− 2

)
− 2

(
2m+ 2n

n− i(m+ 3)− 3

)
+

(
2m+ 2n

n− i(m+ 3)− 4

)]
.

The edge of the rectangle R2
m,n that contains {xi} (respectively {x′i}, {yj}, and {y′j}) is

called the top boundary (respectively bottom boundary, left boundary, and right boundary)

of R2
m,n. A return of a Calatan state C is an arc of C with both endpoints lying on the

same boundary of R2
m,n. Let CatFm,n be the set of realizable Catalan states of L(m,n) with

no returns on the bottom boundary.

Definition 2.2.3 (Dabkowski-Przytycki [9]). Given C ∈ CatFm,n. Let b(C) denote the setb = (b1, . . . , bm) ∈ {0, 1, . . . , n}m

∣∣∣∣∣∣∣∣∣∣


sb(b1)

...

sb(bm)

 realizes C

 ,

where the function sb maps i to a 1 × n row vector [1, . . . , 1︸ ︷︷ ︸
i

,−1, . . . ,−1︸ ︷︷ ︸
n−i

]. The maximal

sequence bM(C) is defined as the maximal element of the the set b(C) ordered by the lexico-

graphic order.

The bM(C) is well-defined as a consequence of the following result.

Theorem 2.2.4 (Dabkowski-Przytycki [9]). The set b(C) is nonempty for all C ∈ CatFm,n.

For a Catalan state C with no returns on the bottom boundary one defines the plane

rooted tree with a delay function T (C) as follows. This tree will be used to compute the

coefficient C(A).
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Definition 2.2.5 (Dabkowski-Przytycki [9]). Given C ∈ CatFm,n. Let CF be a tangle obtained

from C by removing all of its arcs with one of the endpoints on the bottom boundary of R2
m,n.

Denote by T (C) the dual graph of CF . There is a natural choice for the root v0 of T (C) that

corresponds to the region of CF containing points {x′i}. Define a delay function f on the

set of leaves of T (C) different than v0 that sends a leaf v to j if the points on the boundary

of the region determined by CF that corresponds to v are labeled by {yj−1, yj} or {y′j−1, y
′
j}.

Otherwise we define f(v) = 1. The plane rooted tree with a delay function determined by a

Catalan state C with no returns on the bottom boundary is the triple T (C) = (T (C), v0, f).

For a Catalan state C with no returns on the bottom boundary we define a polynomial

in terms of the graph T (C) associated to C. This polynomial is our main computational

tool for C(A).

Definition 2.2.6 (Dabkowski-Przytycki [9]). Let (T, v0, f) be a plane rooted tree T with root

v0 and a delay function f and let L1(T ) be the set of all leaves v different than v0 for which

f(v) = 1. The plucking polynomial Q(T, v0, f) is a polynomial in q defined by Q(T, v0, f) = 1

if T has no edges, and

Q(T, v0, f) =
∑

v∈L1(T )

qr(T,v0,v)Q(T − v, v0, fv)

otherwise, where r(T, v0, v) is the number of vertices of T to the right1 of the unique path

from v to v0, and fv is a delay function defined on leaves of T − v different than v0 and such

that fv(u) = max{1, f(u)− 1} if u is a leaf of T and fv(u) = 1 if u is a new leaf of T − v.

The following result describes a very important relation between plucking polynomial

of a plane rooted tree with a delay function and the coefficient of a Catalan state with no

returns on the bottom boundary. In particular, the result below provides us with an effective

method to compute C(A).

1Consider the plane rooted tree (T, v0) embedded in the xy-plane such that all vertices of T except v0 have
positive y coordinate, v0 is the origin, and the unique path from v to v0 are on the y-axis, then r(T, v0, v) is
the number of vertices belonging the first quadrant.
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Theorem 2.2.7 (Dabkowski-Przytycki [9]). The coefficient C(A) of C ∈ CatFm,n is given by

C(A) = A2‖bM (C)‖−mn+4·mindegq Q(T (C)) ·Q(T (C))
∣∣
q=A−4 ,

where ‖bM(C)‖ =
∑m

i=1 bi if bM(C) = (b1, . . . , bm) and mindegqQ(T (C)) denotes the mini-

mum degree of q in Q(T (C)).

We note Theorem 2.2.7 is very important result that we will use in Chapter 3 and

Chapter 4. The following example shows its application.

Example 2.2.8. Given a Catalan state C ∈ CatF5,3 shown in Figure 2.6(a). To find C(A)

we need both the plucking polynomial Q(T (C)) of the plane rooted tree with a delay function

T (C) and the maximal sequence bM(C) in order to apply the formula given in Theorem 2.2.7

that allows us to find C(A). The plane rooted tree (T (C), v0) is shown in Figure 2.6(b), and

the delay function f defined on the leaves of T (C) different than v0 is

f(v) =


2, if v = v1,

1, if v = v2, v3,

3, if v = v4.

Therefore we can find Q(T (C)) as follows:

Q(T (C)) = Q


v0

2
1

1

3

 = (q + q2)Q


v0

1
1

2

 = (q + q2)2Q


v0

1
1

1



= q2(1 + q)3Q


v0

1
1

1

 = q2(1 + q)3Q


v0

1
1

1

1



= q2(1 + q)3Q


v0

1
1

1

 = q2(1 + q)3.
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x1 x2 x3

y1

y2

y3 y′3

y′4

y′2

y′1

(a) Catalan state C ∈ CatF5,3 (b) T (C) and its root v0

b1 = 3

b2 = 2

b5 = 2

b4 = 2

b3 = 3

(c) The sequence bM (C)

v1

v2 v3

v4

v0

Figure 2.6. C ∈ CatFm,n in Example 2.2.8

The maximal sequence bM(C) = (3, 2, 3, 2, 2) is shown in Figure 2.6(c). Hence,

C(A) = A2‖bM (C)‖−mn+4·mindegq Q(T (C)) ·Q(T (C))
∣∣
q=A−4

= A2(3+2+3+2+2)−5·3+4·2 · (A−4)2(1 + A−4)3

= A9(1 + A−4)3.

We note that the plucking polynomial of a plane rooted tree was first defined in [26]. It

can be obtained by taking f ≡ 1 in Definition 2.2.6. Thus, we simply denoted it by Q(T, v0)

and it can be used to compute coefficients of Catalan states with no returns on three sides.

Let [n]q = 1 + q + . . .+ qn−1, [n]q! = [1]q [2]q . . . [n]q and the q-multinomial coefficient(
n1 + n2 + . . .+ nk
n1, n2, . . . , nk

)
q

=
[n1 + n2 + . . .+ nk]q!

[n1]q! [n2]q! . . . [nk]q!
.

Theorem 2.2.9 (Przytycki [26]). Suppose that a plane rooted tree (T, v0) is a wedge product

of plane rooted trees (Ti, v0), i = 1, . . . , k (see Figure 2.7). Then the plucking polynomial of

(T, v0) is given by

Q(T, v0) =

(
|E(T )|

|E(T1)|, |E(T2)|, . . . , |E(Tk)|

)
q

k∏
i=1

Q(Ti, v0),

where |E(T )| denotes the number of edges of T .
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v0

T1

T2

Tk

...

Figure 2.7. Wedge product of (Ti, v0), i = 1, . . . , k

There is no simple formula for C(A), however, when there is a horizontal (respectively

vertical) line that cuts C in n (respectively m) points, the computation of C(A) becomes

significantly easier. This is due to the following result that allows us to split C into the simpler

Catalan states C1 and C2, find separately C1(A) and C2(A), and then C(A) = C1(A)C2(A).

Theorem 2.2.10 (Dabkowski-Przytycki [9]). Given C ∈ Catm,n. Suppose that |lhs ∩ C| = n

for some 1 ≤ s ≤ m − 1, and let {z1, . . . , zm} be the intersection points. Splitting C into

two Catalan states C1 and C2 according to the horizontal line lhs in the following way: C1

is a Catalan state of Cats,n such that its 2(s + n) endpoints are {xi, zi}ni=1 ∪ {yj, y′j}sj=1 and

the connections are induced from C, and C2 is a Catalan state of Catm−s,n such that its

2(m − s + n) endpoints are {x′i, zi}ni=1 ∪ {yj, y′j}mj=s+1 and the connections are induced from

C, see Figure 2.8. Then

C(A) = C1(A)C2(A).

We will finish this section with the following result that gives a simple formula for co-

efficients of realizable Catalan states of L(m, 3). Furthermore, this description allows us to

start our discussion concerning the properties of coefficients C(A) of the Catalan state C.

Proposition 2.2.11 (Dabkowski-Przytycki [9]). For a realizable C ∈ Catm,3 its coefficient

C(A) (up to a power of A) equals [2]kA−4 [3]A−4, [2]kA−4, or (A2+A−2)2k−1
(A2+A−2)2−1

if |lhi ∩ C| < 3 for all

1 ≤ i ≤ m− 1, and [2]kA−4 [3]k
′

A−4 otherwise.
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x1 x2 x4x3

x′
1 x′

2 x′
4x′

3

y4

y5

y2

y1

y′4

y′5

y′2

y′1

lh3

y3 y′3

x1 x2 x4x3

x′
1 x′

2 x′
4x′

3

y4

y5

y2

y1

y′4

y′5

y′2

y′1

y3 y′3

z1 z2 z3 z4

z1

z1

z2

z2 z3

z3

z4

z4C

C1

C2

Figure 2.8. Splitting C into C1 and C2

2.3 Generalized Crossing – Definition and Summary of Results

The generalized crossing G(k) is a k-tangle obtained a positive half-twist on k strands (see

Figure 2.9(a) and (b) for the case k = 5), which was first considered by Li [20], though he

used a negative half-twist. In this dissertation, we will use the diagram of G(k) shown in

Figure 2.9(c) instead of Figure 2.9(d) – the version used in Li [20]. We will denote by G̃(k)

the latter tangle. One can easily see that properties of G(k) are same as of G̃(k), since G(k)

is just a reflection of G̃(k) about the line lr, so there is a trivial correspondence between

G(k) and G̃(k).

All questions that have been asked thus far for lattice crossing L(m,n) have their equiv-

alent version for G(k). Let 4k be a triangle with 2k points Xk = {xi, yi}ki=1 on its boundary

as shown in Figure 2.9(c). Denote by Catk the set of all crossingless connections between

points of Xk. By the Corollary 2.1.9, Catk is a basis of S2,∞(4k × I,Xk;Z[A±1], A). Hence,

G(k) =
∑

C∈Catk

C(A)C
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1
2

x1 x2 x3 x4 x5

y1

y2

y3

y4

y5

(a) Tangle of 5 strands (b) A half-twist applied on a tangle of 5 strands

(c) Generalized crossing G(5) (d) Generalized crossing G̃(5)

lr

45

Figure 2.9. Generalized crossing G(5)

for some C(A) ∈ Z[A±1]. Elements of Catk are called Catalan states, and the coefficient

C(A) of a Catalan state C in the linear combination above is called the coefficient of C.

We conclude this section with the definition of realizable Catalan states of generalized

crossing. That is, let MatUk ({±1}) be the set of (k − 1) × (k − 1) upper triangle matrices

whose (i, j)-entry is either 1 or −1 for i ≤ j. We say that a Kauffman state s ∈ MatUk ({±1})

of G(k) realizes a Catalan state C ∈ Catk if smoothing all crossings of G(k) according to

s and removing all trivial components results in C. A Catalan state C ∈ Catk is called

realizable if there is a Kauffman state s that realizes C.
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The following result describes realizable Catalan states of G(k).

Theorem 2.3.1 (Li [20]). Every Catalan state C ∈ Catk of generalized crossing G(k) is

realizable.
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CHAPTER 3

METHODS FOR COMPUTING COEFFICIENTS

3.1 General Results and the Algorithm

Given a Catalan state C ∈ Catm,n, we can determine m and n from C, so there is no

need to state m and n explicitly. We introduce some terminologies and notations related to

Catalan states that will be used later. Let Cs denote the Catalan state obtained from C by

reflecting C about a vertical line and Cr,θ the Catalan state obtained by a θ-rotation, where

θ ∈ {±π
2
, π}, of C.

Lemma 3.1.1. Let C be a Catalan state, then

(a) Cs(A) = C(A−1),

(b) Cr,π(A) = C(A), and

(c) Cr,±π
2 (A) = C(A−1).

Proof. Suppose that C ∈ Catm,n. Consider the map sending s = [si,j] ∈ Matm,n({±1}) to

s′ = [−si,n+1−j] ∈ Matm,n({±1}). It is easy to see that this map is a bijection, if s realizes C

then s′ realizes Cs, and the number of trivial components after smoothing crossings according

to s and s′ are the same, so part (a) holds. Parts (b) and (c) can be proved in an analogous

way.

Each Catalan state C can be decomposed into two tangles by splitting it along a hor-

izontal line lhj , 0 ≤ j ≤ m (see Figure 2.5) so that lhj ∩ C has the minimum number of

intersections. The tangle that contains the top boundary (respectively the bottom bound-

ary) of R2
m,n is called the roof state (respectively floor state). Roof and floor states have three

boundaries with the points on them inherited from R2
m,n. Arcs of C with both endpoints on

the boundaries of a tangle are called closed arcs otherwise we will call them open arcs. The
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number of fixed points on the top boundary (respectively the bottom boundary) of the roof

state (respectively the floor state) is called the width of the state while the number of fixed

points on the left boundary is referred to as height of the state. We write C = R∗v F when

a Catalan state C is decomposed into a roof state R and a floor state F . Conversely, given a

roof state R and a floor state F with the same width and the same number of open arcs, we

can concatenate them vertically to obtain a Catalan state R ∗v F . In Figure 3.1 the tangle

R is a roof state of width 6 and height 3 and the tangle F is a floor state of width 6 and

height 4. The reflection and rotation operations defined as the above for Catalan states can

also be applied to roof and floor states. For example, Rr,π yields a floor state for any roof

state R. Given roof R and floor F states, define (R,F) = C(A) if C = R∗v F is a Catalan

state, and 0 otherwise. If R ∗v F = L(m,n) where mn = 0, then we set (R,F) = 1.

A floor state of height zero is called a bottom state. For a floor state F , we denote by F b

the bottom state obtained from F as shown in Figure 3.1. More precisely, F b is the floor

state of F r,π ∗v F whose height is zero.

Let Bn be the set of all bottom states of width n. Define a map Φn on Bn as follows.

Given F ∈ Bn, suppose that the left endpoint of closed arcs of F are x′i1 , . . . , x
′
ik

, then

we set Φn(F) = {i1, i2, . . . , ik}. For example, for the floor state F shown in Figure 3.1,

Φ6(F b) = {3, 4}. Let Vn := {Φn(F) | F ∈ Bn} denote the image of Φn, then Φn : Bn → Vn

is a bijection. Algorithm 3.1.2 gives a method for computing Φ−1
n (I) for I = {i1, . . . , ik} ∈ Vn.

In Figure 3.2 we showed an example of Algorithm 3.1.2 for finding Φ−1
n (I).

Define an order �F on Vn as follows. For I, J ∈ Vn, I �F J if all closed arcs of Φ−1
n (I)

are also closed arcs in Φ−1
n (J). Posets (Vn,�F ), for n = 3, 4, 5, 6, are shown in Figure 3.3.

We see that, for n ≥ 4, {2} �F {1, 2} and {1} 6�F {1, 2} in Vn. Moreover, it follows from

the definition of (Vn,�F ) that, for all n ∈ N, (Vn,�F ) is a subposet of (Vn+1,�F ).

Given a floor state F of width n ≥ 2 and a set I = {i1, . . . , ik} ∈ Vn define a floor

state FI as follows. If I �F Φn(F b), let FI be the floor state obtained from F by removing
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(a) C = F ∗v R (b) Roof state R and floor state F

x′
1 x′

2 x′
3 x′

4 x′
5 x′

6

x1 x2 x3 x4 x5 x6

(c) Top state Rt and bottom state Fb (d) Floor state F{4}

x′
1 x′

2 x′
3 x′

4 x′
5 x′

6

x1 x2 x3 x4 x5 x6

R

F

x′
1 x′

2 x′
3 x′

4

F{4}

x1 x2 x3 x4 x5 x6

x′
1 x′

2 x′
3 x′

4 x′
5 x′

6

Fb

Rt

Figure 3.1. Notations on Catalan states in L(m,n)

Algorithm 3.1.2 Find the image of Φ−1
n

1: procedure FindPhiInverse(I, n)
2: F ← a bottom state of width n and has no returns on its bottom boundary
3: if I 6= ∅ then
4: Order the elements of I = {i1 < . . . < ik}
5: J ← {1, . . . , n}
6: for j ← k to 1 do
7: i∗ ← min{i ∈ J | i > ij}
8: Remove the open arcs whose endpoints are x′ij and x′i∗ in F
9: Connect x′ij and x′i∗ by a closed arc in F

10: J ← J \ {ij, i∗}
11: return F
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Step 0 : J = {1, 2, 3, 4, 5, 6, 7},

x′1 x′2 x′3 x′4 x′5 x′6 x′7

Step 1 : j = 3, i∗ = min{i ∈ J | i > i3 = 5} = 6,

F =
x′1 x′2 x′3 x′4 x′5 x′6 x′7

J = {1, 2, 3, 4, 5, 6, 7} \ {5, 6} = {1, 2, 3, 4, 7}.

F =

Step 2 : j = 2, i∗ = min{i ∈ J | i > i2 = 4} = 7,

F =
x′1 x′2 x′3 x′4 x′5 x′6 x′7

J = {1, 2, 3, 4, 7} \ {4, 7} = {1, 2, 3}.

Step 3 : j = 1, i∗ = min{i ∈ J | i > i1 = 1} = 2,

F =
x′1 x′2 x′3 x′4 x′5 x′6 x′7

J = {1, 2, 3} \ {1, 2} = {3}.

Given k = 3, I = {i1, i2, i3} = {1, 4, 5}, and n = 7.

Figure 3.2. Example of Algorithm 3.1.2

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}

{1, 3}{1, 2} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5}

∅

{1} {2} {3} {4} {5}

{1, 3}{1, 2} {1, 4} {2, 3} {2, 4}

∅

{1} {2} {3} {4}

{1, 3}{1, 2}

∅

{1} {2} {3}

∅

{1} {2}

(a) (V3,�F ) (b) (V4,�F ) (c) (V5,�F )

(d) (V6,�F )

Figure 3.3. Posets (Vn,�F )
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|I| returns of F with left endpoint x′i, i ∈ I, together with their corresponding endpoints.

Otherwise, if I 6�F Φn(F b), then we set FI to be the empty graph K0. It is easy to see that,

when FI 6= K0 then FI is a floor state of same height as F and width is decreased by 2|I|.

Clearly, F∅ = F , (K0)I = K0, and (R, K0) = 0.

Lemma 3.1.3. Let F be a floor state of width n. Suppose that I = {i1 < . . . < ik} ∈ Vn

and J = {j1 < . . . < jl} ∈ Vn−2|I|, then

(a)
(
F{i1,...,ik}

)
{j1,...,jl}

=
((
F{i1,...,ik}

)
{jl}

)
{j1,...,jl−1}

, and

(b)
(
F{i1,...,ik}

)
{j} = F{i1,...,ik,i∗}, where i∗ = j + 2

∑k
t=1 1{it≤j}.

Proof. Part (a) follows directly from the definition of FI (we can see it by simply drawing a

floor state F and then removing its returns). For part (b), notice that before applying the

operation of removing returns corresponding to {i1, . . . , ik}, the original index of the point

p = x′j in F{i1,...,ik} is x′i∗ in F . Indeed, if it ≤ j, then removing each return corresponding

to each left endpoint x′it decreases index of p by 2. Therefore, the original index of p is

i∗ = j + 2
∑k

t=1 1{it≤j} as claimed.

Let I, J ⊂ N, define product I ∗̂J as follows:

I ∗̂J =


I, if J = ∅,

I ∪ {j + 2
∑k

t=1 1{it≤j}}, if J = {j}, I = {i1, . . . , ik}

(I ∗̂{jM}) ∗̂(J \ {jM}), otherwise,

where jM is the maximal element of J . One checks that ∅∗̂J = J and by Lemma 3.1.3, if

I ∈ Vn and J ∈ Vn−2|I|, then I ∗̂J ∈ Vn, and (FI)J = FI∗̂J for all I, J ⊂ N

Let a0, an, aj be arcs with endpoints {y1, x1}, {xn, y′1}, {xj, xj+1} for 1 ≤ i ≤ n − 1,

respectively. Given a roof stateR of width n ≥ 1, denote by J (R) the set {j ∈ {0, 1, . . . , n} |

aj ∈ R}. Let J = {j1, . . . , jk} ⊆ J (R) and define RJ as the roof state obtained from R by
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moving points y1 and y′1 along boundaries to the top boundary of R and then removing arcs

aj1 , . . . , ajk together with their endpoints from R.

Our next result is based on the idea of analyzing the resolving tree of L(m,n) obtained

after smoothing of its first row of crossings according to all possible assignments of markers

and applying regular isotopy. This idea was first used in [9] (see the proof of Proposition 2.1)

and we call it the first-row expansion of L(m,n). Consider I = {i1, . . . , it} ∈ Vn and

J = {j1, . . . , jt+1} ⊆ J (R), t ≥ 0, if j1 < i1 < j2 < i2 < · · · < it < jt+1 then we write I ∝ J .

Proposition 3.1.4. Let C = R∗vF be a Catalan state with the roof state R of width n and

positive height. Then

(R,F) =
∑

{(I,J):I∈Vn, J⊆J (R), I∝J}

A−n+2(‖J‖−‖I‖) (RJ ,FI), (3.1)

where ‖I‖ is the sum of elements of I.

Proof. In order to compute coefficient C(A) of the Catalan state C, we proceed as follows. We

start from the first row of crossings L(m,n) (starting from its top) and consider all 2n possible

assignments of markers. Among such assignments, we choose these which, after a regular

isotopy of the diagrams (one that gives the minimal number of crossings), has a potential to

realize Catalan state C. For example, among all 25 assignments of markers to the first row

of crossings of L(6, 5), we only choose three (−1,−1,−1,−1,−1), (+1,+1,+1,−1,−1), and

(−1,−1,+1,−1,−1) that give the first vertices of the computation tree for the coefficient of

C shown in Figure 3.4. More precisely, we choose the following:

(1) Assignments with the first marker −1 or the last marker +1 that realize an arc of C

with endpoints {x1, y1} or {xn, y′1}.

(2) Assignments with consecutive markers +1,−1 that realize an arc of C with endpoints

{xi, xi+1} on its top boundary.
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(3) Assignments with consecutive markers −1,+1 that realize, after regular isotopy of

diagram, an arc of C with endpoints {x′i, x′i+1} on its bottom boundary.

We observe that since the Kauffman bracket is an invariant of tangles, the coefficient C(A)

does not depend on the regular isotopy of diagrams and on the order in which crossings of

L(m,n) are being smoothed. Therefore, the procedure described above yields a recursive

algorithm for finding C(A). That is, after applying the first-row expansion to the first

row of L(m,n), the problem of finding C(A) reduces to computing coefficients of Catalan

states C ′ obtained from corresponding lattice crossings L(m − 1, n′), n′ ≤ n. As shown in

Figure 3.4, the problem of finding C(A) = (R,F) reduces to computing coefficients (R{0},F),

(R{3},F), and (R{0,3},F{2}). Thus, we note that equation (3.1) simply gives an algebraic

description of the recursive procedure discussed above (called the first-row expansion). It

then remains to show that the power of A is −n + 2(‖J‖ − ‖I‖). Indeed, if I = {i1, . . . , it}

and J = {j1, . . . , jt+1}, with I ∈ Vn, J ⊆ J (R), and I ∝ J , describe realization of arcs of

C that are obtained using I and J , then the corresponding assignment of markers to the

first row of L(m,n) is shown in Figure 3.5. The power of A is then obtained as a result

of first assigning +1 to all crossings in the first row of L(m,n), and then changing markers

of all crossings between jk and ik + 1 strands to −1, where k = 1, . . . , t + 1, and it+1 = n.

Therefore, the corresponding power of A is given by

n− 2
t+1∑
k=1

(ik − jk) = n− 2
t∑

k=1

ik − 2n+ 2
t+1∑
k=1

jk = −n+ 2(‖J‖ − ‖I‖),

which completes our proof.

For a roof state R and I ⊂ N, denote by [R, I] a function that assigns the coefficient

(R,FI) of R ∗v FI to each floor state F , i.e.,

[R, I](F) = (R,FI).

We are now ready to formulate our main result:
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(A) = A−5 (A) + A1 (A) + A−3 (A)

regular isotopy

(−1,−1,−1,−1,−1) (+1,+1,+1,−1,−1) (−1,−1,+1,−1,−1)

or or

J (R) = {0, 3}
Φ5(Fb) = {2}

F

R

x′1 x′2 x′3 x′4 x′5

x1 x2 x3 x4 x5

y1 y′1

(1) ∅ ∝ {0}
(2) ∅ ∝ {3}
(3) {2} ∝ {0, 3}

I ∈ Vn, J ⊆ J (R), I ∝ J,

⇒ (R,F) = A−5+2·0 (R{0},F) + A−5+2·3 (R{3},F) + A−5+2·(0+3−2) (R{0,3},F{2})

and I ⊆ Φ5(Fb):

Figure 3.4. Example of the first-row expansion

xj1 xj2 xjt+1

x′
i1

x′
it

Figure 3.5. Proof of Proposition 3.1.4
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Definition 3.1.5. Let R be a roof state, Ri be roof states with the same number of open

arcs as R and no returns on its top boundary, Ii ⊂ N, 1 ≤ i ≤ k, k ∈ N. A relation in the

form

Z(A) [R, ∅] =
k∑
i=1

Zi(A) [Ri, Ii], (3.2)

where Z(A), Zi(A) are non-zero Laurent polynomials, is called an RF -formula for R.

Remark 3.1.6. We note that for a given roof state R, there might be several RF -formulas.

More importantly, we would like to point out here that if R has an RF -formula then the

problem of finding the coefficient of C = R ∗v F reduces to a problem of finding coefficient

for Ri ∗v FIi. Since each such a state is either a Catalan state with no returns on the top

boundary or it is not defined (hence its coefficient is 0 by the definition), we can always find

C(A). Notice that, since Z(A) 6= 0, we can divide (3.2) by Z(A) to get

[R, ∅] =
k∑
i=1

Qi(A) [Ri, Ii], (3.3)

where Qi(A) = Zi(A)/Z(A) are rational functions of A. In what follows we use (3.3) instead

of (3.2), and we will also refer to it as an RF -formula for R. As we show later, for

any R there is an RF -formula in the form given in (3.2) for which Z(A) is a product of

[n] = [n]q=A4 = 1+A4 + . . .+A4(n−1). Thus, if A is not a root of unity, the RF -formula (3.3)

is equivalent to (3.2). Furthermore, for any floor state F , [R, ∅](F) ∈ Z[A±1]. Since (3.3)

holds for all but finite number of A ∈ C, the right side of (3.3) is also a Laurent polynomial

for any F .

Lemma 3.1.7. Let R be a roof state and suppose that R has an RF -formula

Z(A) [R, ∅] =
∑
i

Zi(A) [Ri, Ii],

then for all I ⊂ N

Z(A) [R, I] =
∑
i

Zi(A) [Ri, I ∗̂Ii].
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Proof. Let F be a floor state. Then

Z(A) [R, I](F) = Z(A) (R,FI) = Z(A) [R, ∅](FI)

=
∑
i

Zi(A) [Ri, Ii](FI) =
∑
i

Zi(A) (Ri, (FI)Ii)

=
∑
i

Zi(A) (Ri,FI∗̂Ii) =
∑
i

Zi(A) [Ri, I ∗̂Ii](F).

Hence the proof is completed.

Given a Catalan state C ∈ Catm,n, its decomposition into roof and floor states is not

unique. Define an order �R on the set of all roof states of C as follows. Let C = Ri ∗v Fi,

where Ri and Fi are obtained by cutting C along the horizontal line lhi . Then Ri ≺R Rj if

i < j. In particular, R0 ≺R R1 ≺R . . . ≺R Rn.

Given a Catalan state C ∈ Catm,n, suppose that C = R∗vF , whereR and F are obtained

by cutting C along the horizontal line lhi and C = R′ ∗vF ′, where R′ and F ′ are obtained by

cutting C along the horizontal line lhi′ . Assume that i′ > i then R ≺R R′ and the tangle M

obtained by taking the part of C between lines lhi and lhi′ can be defined. That is,M consists

of parts the left and right boundary of R2
m,n, with same number of points on them, closed

arcs, and open arcs resulted by cutting C along lhi and along lhi′ respectively. Therefore,

C = R∗vM∗v F ′, R′ = R∗vM, F =M∗v F ′, andM = R′ \R = F \F ′ (see Figure 3.6).

Notice that if F =M∗v F ′ then FI = (M∗v F ′)I =M∗v F ′I , so M = F \ F ′ = FI \ F ′I .

Lemma 3.1.8. Suppose that R has an RF -formula. Then

(a) Rs has an RF -formula, and

(b) if R′ is a roof state, such that, R �R R′, then R′ also has an RF -formula.

Proof. Let F be a floor state of width n. Then, by Lemma 3.1.1, (R ∗v F s)(A) = (Rs ∗v

F)s(A) = (Rs ∗v F)(A−1). Let I ′i = Φn((Φ−1
n (Ii))

s), so (Rs
i ∗v FI′i)(A) = (Ri ∗v F sIi)

s(A) =
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F ′

R′

F

R R

M

F ′

C

Figure 3.6. Decomposition of C = R ∗vM∗v F ′

(Ri ∗v F sIi)(A
−1). Then

Z(A−1) [Rs, ∅](F)(A) = Z(A−1) (Rs ∗v F)(A) = Z(A−1) (R ∗v F s)(A−1)

= Z(A−1) [R, ∅](F s)(A−1) =
∑
i

Zi(A
−1) [Ri, Ii](F s)(A−1)

=
∑
i

Zi(A
−1) (Ri ∗v F sIi)(A

−1) =
∑
i

Zi(A
−1) (Rs

i ∗v FI′i)(A)

=
∑
i

Zi(A
−1) [Rs

i , I
′
i](F)(A),

so Rs has an RF -formula

Z(A−1) [Rs, ∅] =
∑
i

Zi(A
−1) [Rs

i , I
′
i].

This proves the first statement.

Let R �R R′ and M = R′ \ R. Given a floor state F ′, define F = M ∗v F ′ if the

vertical product is defined or F = K0 otherwise, and we see that (R′,F ′) = (R,F). Let

R′i = Ri ∗vM and since M = F \ F ′ = FIi \ F ′Ii and (R′i,F ′Ii) = (Ri,FIi),

Z(A) [R′, ∅](F ′) = Z(A) (R′,F ′) = Z(A) (R,F) = Z(A) [R, ∅](F)

=
∑
i

Zi(A) [Ri, Ii](F) =
∑
i

Zi(A) (Ri,FIi)

=
∑
i

Zi(A) (R′i,F ′Ii) =
∑
i

Zi(A) [R′i, Ii](F ′).
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This shows that R′ has also an RF -formula

Z(A) [R′, ∅] =
∑
i

Zi(A) [R′i, Ii].

Our proof is completed.

A top state is a roof state of height zero. Each roof state R yields a top state that we

denote by Rt (see Figure 3.1). More precisely, Rt is defined as the roof state of R ∗v Rr,π

whose height is zero. Notice that Rt �R R for any roof state R. Let Tn be the set of all top

states of width n. Clearly, Tn is finite.

Lemma 3.1.9. There are
(

n
bn/2c

)
distinct top states of width n, that is, |Tn| =

(
n
bn/2c

)
.

Proof. Let Wn be a set of all words w of length n on alphabet {u, r} in which u occurs at

least as many times as r in any prefix of w (initial segment of w), that is,

Wn = {w1 . . . wn | wi ∈ {u, r} and Nu(w1 . . . wk) ≥ Nr(w1 . . . wk), 1 ≤ k ≤ n} ,

where Nu(w) and Nr(w) are numbers of u and r in w, respectively. There is a bijection

f between Tn and Wn defined as follows. Let R ∈ Tn and x1, x2, . . . , xn be points on the

top boundary of R listed from left to right. We put f(R) = w1 . . . wn, where wi = u if xi

is the left endpoint of a closed arc or an endpoint of an open arc, and wi = r otherwise

(see Figure 3.7(a)). Now, it suffices to show that |Wn| =
(

n
bn/2c

)
. Indeed, let u = (0, 1) and

r = (1, 0), then each word w ∈ Wn can be represented as a lattice path that starts from (0, 0)

with steps u and r, end up at a point on x + y = n and does not touch the line x − y = 1

(see Figure 3.7(b)). Let an = |Wn|, then an satisfies the following recursion

an =

 2an−1, if 2 | n,

2an−1 − C(n−1)/2, if 2 - n,

where Ck = 1
k+1

(
2k
k

)
is the k’th Catalan number. The result follows by induction.
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n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

x

y

u

r

x1 x2 x3 x4 x6x5 x7

R

u u r u u u r

(a) f(R) = uuruuur (b) u-move and r-move on the xy-plane

Figure 3.7. Proof of Lemma 3.1.9

If n = 1, then a1 = 1 =
(

1
b1/2c

)
. Assume that n = 2k, a2k =

(
2k
k

)
. Then

a2k+1 = 2a2k − Ck = 2

(
2k

k

)
− 1

k + 1

(
2k

k

)
=

2(2k)!

k!k!
− (2k)!

(k + 1)!k!
=

(
2k + 1

k

)
.

Assume that n = 2k − 1, a2k−1 =
(

2k−1
k−1

)
. Then

a2k = 2a2k−1 = 2

(
2k − 1

k − 1

)
=

2(2k − 1)!

k!(k − 1)!
=

(2k)!

k!k!
=

(
2k

k

)
.

Therefore, an =
(

n
bn/2c

)
for all n ∈ N.

Lemma 3.1.10. Let Rn,k be the roof state as shown in Figure 3.8, 1 ≤ k ≤ n− 1. Then

[Rn,k, ∅] =
∑

I∈Vn, |I|≤min{k,n−k}

Qn,k,I(A)
[
R′n,k,|I|, I

]
, (3.4)

where Qn,k,I(A) = A(n−2k)(min{k,n−k}−|I|) (R′′n,k,|I|,Φ−1
n (I)) and the roof states R′n,k,l and R′′n,k,l

are shown in Figure 3.8.
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k

k

k − 1

n− k

n− k

k − 1
n− 2k

k

k
n− k − 1

n− k

n− k

n− k − 1
2k − n

(a) Rn,k for 1 ≤ k ≤ bn2 c (b) Rn,k for bn2 c ≤ k ≤ n− 1

k

k

k − 1

n− k

n− k

k − 1
n− 2k

k

k
n− k − 1

n− k

n− k

n− k − 1
2k − n

k − l k − l n− 2k n− k − l n− k − l2k − n

(c) R′
n,k,l for 1 ≤ k ≤ bn2 c (d) R′

n,k,l for bn2 c ≤ k ≤ n− 1

n− k − lk − l k − l n− k − l

(e) R′′
n,k,l for 1 ≤ k ≤ bn2 c (f) R′′

n,k,l for bn2 c ≤ k ≤ n− 1

Figure 3.8. Roof states Rn,k, R′n,k,l, R′′n,k,l
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Proof. We start by showing that after applying (n− 1) times the first-row expansions (3.1)

on Rn,k results in the formula

[Rn,k, ∅] =
∑

I∈Vn, |I|≤min{k,n−k}

Q′n,k,I(A)
[
R′n,k,|I|, I

]
, (3.5)

for some Q′n,k,I(A). Assume that 1 ≤ k ≤ bn
2
c. One can easily see that, after applying m

times first-row expansions (3.1) on [Rn,k, ∅], 1 ≤ m ≤ n− 1, results in the following formula

[Rn,k, ∅] =
∑
i

Q̃
(m)
i (A) [R(m)

i , I
(m)
i ],

where Q̃
(m)
i (A) ∈ Z[A±1] are non-zero Laurent polynomials, and the following are satisfied

(1) R(m)
i is of height (n− 1)−m and width n− 2|I(m)

i |,

(2) 1 ≤ |J (R(m)
i )| ≤ 2, and

(3) if J (R(m)
i ) = {j}, then j = k − |I(m)

i |, and if J (R(m)
i ) = {j1, j2}, then |j1 − j2| =

n−m− |I(m)
i |.

We prove the above statement by induction on m. The case m = 0 is obvious, since R(0)
i =

Rn,k and I
(0)
i = ∅. We show that applying first-row expansion (m + 1) times on [Rn,k, ∅]

results in the same formula as the one obtained by applying a single first-row expansion on

Q̃
(m)
i (A) [R(m)

i , I
(m)
i ]. There are two cases of R(m)

i :

• If |J (R(m)
i )| = 1, then J (R(m)

i ) = {k − |I(m)
i |}. One can check that R(m+1)

i =

(R(m)
i ){k−|I(m)

i |} and I
(m+1)
i = I

(m)
i satisfy (1)–(3).

• If |J (R(m)
i )| = 2, then J (R(m)

i ) = {j1 < j2} for some j2− j1 = n−m− |I(m)
i |. We see

that, after applying the first-row expansion,[
R(m)
i , I

(m)
i

]
= A−(n−2|I(m)

i |)+2j1
[
(R(m)

i ){j1}, I
(m)
i

]
+ A−(n−2|I(m)

i |)+2j2
[
(R(m)

i ){j2}, I
(m)
i

]
+

j2−1∑
l=j1+1

A−(n−2|I(m)
i |)+2(j1+j2−l)

[
(R(m)

i ){j1,j2}, I
(m)
i ∗̂{l}

]
.
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It is easy to see that for the first two terms, pairs ((R(m)
i ){j1}, I

(m)
i ), ((R(m)

i ){j2}, I
(m)
i )

satisfy (1)–(3). While for the last summation, we let R(m+1)
i = (R(m)

i ){j1,j2} and

I
(m+1)
i = I

(m)
i ∗̂{l}. If |J (R(m+1)

i )| = 2 then J (R(m+1)
i ) = {j1, j2−2}, thus (j2−2)−j1 =

n−m− |I(m)
i | − 2 = n− (m+ 1)− |I(m+1)

i |, i.e., (3) holds. Statements (1) and (2) are

obvious. Case |J (R(m+1)
i )| = 1 can be dealt with by similar argument as the above.

Since for m = n−1 in (3), |j1− j2| = n− (n−1)−|Ii| = 1−|Ii| ≤ 1 which is not possible, so

it must be |J (R(n−1)
i )| = 1 and hence J (R(n−1)

i ) = {k − |I(n−1)
i |}. Notice that the first-row

expansions always realizes arcs on or near the top boundary, so if there is an arc l1 below to

l2 that is parallel to l2, then l2 is realized earlier than l1. Hence R(n−1)
i = R′

n,k,|I(n−1)
i |

. The

argument above proves the existence of Q′n,k,I(A) in (3.5). The case bn
2
c ≤ k ≤ n− 1 can be

proved by applying Lemma 3.1.8.

Now we show that Q′n,k,I(A) = Qn,k,I(A) for all I ∈ Vn, |I| ≤ min{k, n − k}. Assume

that 1 ≤ k ≤ bn
2
c and define Mn,k,l = Fn,k,l \ Φ−1

n−2l(∅) for l ≤ min{k, n − k}, where Fn,k,l

is shown in Figure 3.9(a). Given I ∈ Vn, take F ′n,k,I = Mn,k,|I| ∗v Φ−1
n (I). Then for any

J ≺R I, J ∈ Vn,

[
R′n,k,|J |, J

]
(F ′n,k,I) = (R′n,k,|J |,Mn,k,|I| ∗v (Φ−1

n (I))J) = 0,

because the line lv in Figure 3.9(b) has the number of intersections k − |J | > k − |I|,

the Catalan state R′n,k,|J | ∗vMn,k,|I| ∗v (Φ−1
n (I))J is not realizable by Theorem 2.2.1, so its

coefficient is 0. Therefore, (3.5) reduces to

[Rn,k, ∅] (F ′n,k,I) = Q′n,k,I(A)
[
R′n,k,|I|, I

]
(F ′n,k,I)

or

(Rn,k,F ′n,k,I) = Q′n,k,I(A) · A−(n−2k)(k−|I|),
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k − |I| k − |I|

k − |I| k − |I|

k − |J | k − |J |

n− 2|J |

lv

n− 2|I|

k − |I| k − |I| n− 2k

n− 2k

k − lk − l

(a) Floor state Fn,k,l (b) Catalan state R′n,k,|J| ∗vMn,k,|I| ∗v (Φ−1n (I))J

(c) Catalan state R′n,k,|I| ∗v Fn,k,|I|

n− 2l

Figure 3.9. Proof of Lemma 3.1.10

since (R′n,k,|I|, (F ′n,k,I)I) = (R′n,k,|I|,Fn,k,I) = A−(n−2k)(k−|I|) as shown in Figure 3.9(c). Then

Q′n,k,I(A) = A(n−2k)(k−|I|) · (Rn,k,Mn,k,|I| ∗v Φ−1
n (I))

= A(n−2k)(k−|I|) ·
(
R′′n,k,|I|,Φ−1

n (I)
)

= Qn,k,I(A),

which completes our proof.

Example 3.1.11. We find (3.4) for n = 2, 3.

If n = 2, k = 1, and V2 = {∅, {1}}. Then

[R2,1, ∅] =
∑

I∈V2, |I|≤min{1,2−1}

Q2,1,I(A)
[
R′2,1,|I|, I

]
= Q2,1,∅(A)

[
R′2,1,0, ∅

]
+Q2,1,{1}(A)

[
R′2,1,1, {1}

]
= A(2−2)(1−0)

(
(A)
) [
R′2,1,0, ∅

]
+ A(2−2)(1−1)

(
(A)
) [
R′2,1,1, {1}

]
= A−2[2]

[
R′2,1,0, ∅

]
+
[
R′2,1,1, {1}

]
,
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since
( )

(A) = A−2[2] and clearly
( )

(A) = 1. Indeed, for C = , the corre-

sponding plane rooted tree with a delay function T (C) =
(

v0

1 1
)

. Thus, by Theorem 2.2.9,

its plucking polynomial is [2]q. Furthermore, since the maximal sequence bM(C) = (2, 1), it

follows that C(A) = A2·(2+1)−2·2[2]q=A−4 = A−2[2] by Theorem 2.2.7. We note that the above

formula can also be obtained directly applying the first-row expansion (3.1). Indeed, given a

floor state F , we see that

[R2,1, ∅] (F) =
(

,F
)

= A−2+2·0 ( ,F
)

+ A−2+2·2 ( ,F
)

+ A−2+2(0+2−1)
(

,F{1}
)

= A−2[2]
(
R′2,1,0,F∅

)
+
(
R′2,1,1,F{1}

)
.

If n = 3, then k = 1, 2 and V3 = {∅, {1}, {2}}. Assume that k = 1, then

[R3,1, ∅] = Q3,1,∅(A)
[
R′3,1,0, ∅

]
+Q3,1,{1}(A)

[
R′3,1,1, {1}

]
+Q3,1,{2}(A)

[
R′3,1,1, {2}

]
= A(3−2)(1−0)

(
(A)
) [
R′3,1,0, ∅

]
+ A(3−2)(1−1)

(
(A)
) [
R′3,1,1, {1}

]
+ A(3−2)(1−1)

(
(A)
) [
R′3,1,1, {2}

]
= A−6[3]

[
R′3,1,0, ∅

]
+ A−4[2]

[
R′3,1,1, {1}

]
+ A−2

[
R′3,1,1, {2}

]
,

since coefficients (A) = A−7[3], (A) = A−4[2] and (A) = A−2. Indeed, we see

that:

• The plucking polynomial for C1 = is [3]q, and the maximal sequence bM(C1) =

(3, 1, 1), so C1(A) = A2(3+1+1)−3·3 · [3]q=A−4 = A−7[3].

• Since , the coefficient is A−2 · A−2[2].

• Since , the coefficient is A−2 · A−2 · A2.
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As before, we note that the formula for [R3,1, ∅] can be directly obtained using the first-row

expansion (3.1), i.e.

[R3,1, ∅] (F) =
(

,F
)

= A−3+2·0
(

,F
)

+ A−3+2·3
(

,F
)

+ A−3+2·(0+3−1)
(

,F{1}
)

+ A−3+2·(0+3−2)
(

,F{2}
)

= A−3
(
A−3+2·0 (R′3,1,0,F∅)+ A−3+2·2 (R′3,1,0,F∅)+ A−3+2·(0+2−1)

(
R′3,1,1,F{1}

))
+ A3 · A−3+2·1 (R′3,1,0,F∅)+ A · A−1+2·0 (R′3,1,1,F{1})+ A−1 · A−1+2·0 (R′3,1,1,F{2})
= A−6[3]

(
R′3,1,0,F∅

)
+ A−4[2]

(
R′3,1,1,F{1}

)
+ A−2

(
R′3,1,1,F{2}

)
.

Now, from our proof of Lemma 3.1.8, we can easily see that Φ3((Φ−1
3 ({1}))s) = {2} and

Φ3((Φ−1
3 ({2}))s) = {1}, thus

[
Rs

3,1, ∅
]

= Q3,1,∅(A
−1)

[
(R′3,1,0)s, ∅

]
+Q3,1,{1}(A

−1)
[
(R′3,1,1)s, {2}

]
+Q3,1,{2}(A

−1)
[
(R′3,1,1)s, {1}

]
.

Furthermore, notice that (R′3,1,0)s = R′3,2,0 and (R′3,1,1)s = R′3,2,1. Hence, for n = 3 and

k = 2,

[R3,2, ∅] = A6[3]q=A−4

[
R′3,2,0, ∅

]
+ A4[2]q=A−4

[
R′3,2,1, {2}

]
+ A2

[
R′3,2,1, {1}

]
= A−2[3]

[
R′3,2,0, ∅

]
+ A2

[
R′3,2,1, {1}

]
+ [2]

[
R′3,2,1, {2}

]
.

Let R be a roof state of width n and j∗(R) = min{j | j ∈ J (R)}. We construct new roof

state R′ using R via the process of adding a cup at i, 1 ≤ i ≤ n− 1, that first adds a closed

arc together with its two endpoints p, q to the top boundary of R between xi, xi+1, and then

moves points x1 and xn along the boundaries to left and right boundary, respectively. For

instance, Figure 3.10 shows the new roof state R′ obtained from R by adding a cup at 2.

This process can be considered as an inverse operation of R{i} on R. Given a roof state R

with width n and n − 2k open arcs, we say that R satisfies the horizontal line condition if

|(R ∗v Fn,k,0) ∩ lhi | ≤ n for all i, where the floor state Fn,k,l is shown in Figure 3.9.
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R R′

Figure 3.10. Adding a cup

Algorithm 3.1.12 Find an RF -formula for a roof state R
1: procedure FindRFFormula(R, I)
2: n← width of R
3: if n < 2|I| or R does not satisfy the horizontal line conditions then . Case 0
4: RF ← 0
5: else if R has no returns on its top boundary then . Case 1
6: RF ← [R, I]
7: else if the height of R is greater than zero then . Case 2
8: M←R \Rt

9:
∑

iQi(A) [Ri, Ii]← FindRFFormula(Rt, ∅)
10: RF ←

∑
iQi(A) [Ri ∗vM, I ∗̂Ii]

11: else if |J (R)| = 1 then . Case 3
12: j∗ ← j∗(R)
13: k ← 0
14: R′ ← R
15: while (R′)t 6= R′n,j∗,0 do
16: R′ ← the roof state obtained from R′ by adding a cup at j∗
17: k ← k + 1

18: M←R′ \ R′n,j∗,0
19: for J ∈ Vn with |J | ≤ min{j∗, n− j∗} do
20: QJ(A)← Qn,j∗,J(A) from Lemma 3.1.10

21: RF ← [Rn,j∗ ∗vM, I]−
∑

J 6=∅QJ(A) · FindRFFormula(R′n,j∗,|J | ∗vM, I ∗̂J)

22: RF ← A(n−2j∗)kQ∅(A)−1 ·RF
23: else . Case 4
24: j′∗ ← min{j ∈ J | j > j∗}
25: R′ ← a roof state obtained from R by adding n− j′∗ cups at j∗
26: Apply the first-row expansion (3.1) n− j′∗ times to get
27: [R′, ∅] = A(−n+2j∗)(n−j′∗)[R, ∅] +

∑
iQi(A) [Ri, Ii]

28: RF ← FindRFFormula(R′, I)−
∑

iQi(A) · FindRFFormula(Ri, I ∗̂Ii)
29: RF ← A(n−2j∗)(n−j′∗) ·RF
30: return RF

42



Theorem 3.1.13. Every roof state has an RF -formula. In particular, Algorithm 3.1.12

provides a method to find it.

Proof. Our proof is by induction on the width n of a roof state R given as an input to

Algorithm 3.1.12. For n = 0 or 1, the statement is obvious. Assume that the statement

holds for all roof states of width less than n. Let R be a roof state of width n. If R is as

in Case 1 of Algorithm 3.1.12, then F is clearly an RF -formula for R. Assume that R is as

in Case 2 of Algorithm 3.1.12. Using Lemma 3.1.8, we see that once we find an RF -formula

for Rt, then we can also find it for R (with an RF -formula is provided in the proof of the

lemma).

Now, let R be a top state with a single return on its boundary, that is, R is as in Case 3.

Assume that after adding k cups at j∗, the new roof state R′ satisfies (R′)t = R′n,j∗,0. We

apply k times first-row expansions (3.1) and notice that, |J (·)| = |{j∗}| = 1 at each time

the expansion is used, so there is only one term on the right hand side of (3.1). Therefore,

[R′, ∅] = A(−n+2j∗)k [R, ∅]. Using Lemma 3.1.10 and our proof of Lemma 3.1.8 with M =

R′ \ (R′)t, one obtains

[Rn,j∗ ∗vM, ∅] = Q∅(A)[R′, ∅] +
∑

J∈Vn, 0<|J |≤min{j∗,n−j∗}

QJ(A) [R′n,j∗,|J | ∗vM, J ].

Hence,

[R, ∅] = A(n−2j∗)kQ∅(A)−1

[Rn,j∗ ∗vM, ∅]−
∑
J∈Vn,

0<|J |≤min{j∗n−j∗}

QJ(A) [R′n,j∗,|J | ∗vM, J ]


and, by Lemma 3.1.7

[R, I] = A(n−2j∗)kQ∅(A)−1

[Rn,j∗ ∗vM, I]−
∑
J∈Vn,

0<|J |≤min{j∗n−j∗}

QJ(A) [R′n,j∗,|J | ∗vM, I ∗̂J ]

 .

Each roof stateR′n,j∗,|J | has width n−2|J | < n, so it also has an RF -formula by the induction

hypothesis. Hence for R as in Case 3 of Algorithm 3.1.12 there is an RF -formula.
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IfR is as in Case 4 of Algorithm 3.1.12, i.e., R is a top state with |J (R)| > 1. One notices

that each roof state Ri and Ii involved in the formulas that appear in the corresponding

part of Algorithm 3.1.12 satisfies at least one of the following:

(1) Ri is either as in Case 1, Case 2, or Case 3,

(2) |Ii| > 0, or

(3) j∗(Rt
i) > j∗(R).

If in [Ri, Ii], |Ii| > 0, then since the width of Ri is n− 2|Ii| < n, we can apply the induction

hypothesis. If j∗(Rt
i) > j∗(R), the index j∗(·) of the top state of Ri strictly increases but

it is bounded by n. Hence after applying FindRFFormula at most (n− 1) times, we can

eliminate roof states of such type.

The following result concerning plucking polynomials with a delay function generalizes

Theorem 2.2.9, and it plays an important role in the remaining part of this chapter as well

as in Chapter 4.

Lemma 3.1.14. Let (T, v0, f) be the plane rooted tree with a delay function. Suppose there

is a subtree T ′ of T rooted at v′0 with f(u) ≤ f(w) for all u ∈ L(T ′) and w ∈ L(T ) \ L(T ′),

where L(T ) denotes the set of leaves of T different than its root. Let f ′ = f |T ′ be the

restriction of f to L(T ′) and T ′′ be the tree obtained from T by replacing T ′ by a simple

path Pm of length m = |E(T ′)| (see Figure 3.11). Denote by f ′′ the delay function defined

on leaves of T ′′ whose value f ′′(v) is f(v) if v ∈ L(T ) \ L(T ′) and 1 otherwise. Then

Q(T, v0, f) = Q(T ′, v′0, f
′) ·Q(T ′′, v0, f

′′).

Proof. When m = 0, there is nothing to prove. Thus, assume that m ≥ 1. We will prove

the statement by induction on the number of vertices |V (T )|. The case |V (T )| = 2 is trivial.

Assume that the statement is true for |V (T )| − 1. Let T ′′′ be the tree obtained from T by
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T

T ′

T ′
T ′′

|E(T ′)|

v0

v′0 v′0

v′0
v0

, f , f ′ , f ′′Q = Q ·Q

1

Figure 3.11. Product formula for plucking polynomials

replacing T ′ by a simple path Pm−1 of length m− 1 and f ′′′ be the delay function defined on

the leaves of T ′′′ whose value for v is max{f(v)− 1, 1} if v ∈ L(T ) \ L(T ′) and 1 otherwise.

We see that∑
v∈L1(T ′)

qr(T,v0,v) Q(T − v, v0, fv) =
∑

v∈L1(T ′)

qr(T,v0,v) Q(T ′′′, v0, f
′′′)Q(T ′ − v, v′0, f ′v)

= qr(T
′) Q(T ′′′, v0, f

′′′)
∑

v∈L1(T ′)

qr(T,v0,v)−r(T ′) Q(T ′ − v, v′0, f ′v)

= qr(T
′) Q(T ′′′, v0, f

′′′)Q(T ′, v′0, f
′),

where r(T ′) = min{r(T, v0, v) | v ∈ L(T ′)}.

Let f ′∗ be the delay function defined on leaves of T ′ that takes value max{f(v)− 1, 1} for

each v ∈ L(T ′), then∑
v∈L1(T )\L1(T ′)

qr(T,v0,v) Q(T − v, v0, fv) =
∑

v∈L1(T )\L1(T ′)

qr(T,v0,v) Q(T ′′ − v, v0, f
′′
v )Q(T ′, v′0, f

′
∗)

= Q(T ′, v′0, f
′
∗)

∑
v∈L1(T )\L1(T ′)

qr(T,v0,v) Q(T ′′ − v, v0, f
′′
v ).

Hence,

Q(T, f) =
∑

v∈L1(T ′)

qr(T,v0,v)Q(T − v, v0, fv) +
∑

v∈L1(T )\L1(T ′)

qr(T,v0,v) Q(T − v, v0, fv)

= qr(T
′) Q(T ′′′, v0, f

′′′)Q(T ′, v′0, f
′) +Q(T ′, v′0, f

′
∗)

∑
v∈L1(T )\L1(T ′)

qr(T,v0,v) Q(T ′′ − v, v0, f
′′
v )

= Q(T ′, v′0, f
′)Q(T ′′, v0, f

′′),

where the last equality is either due to L1(T ) \ L1(T ′) = ∅ or f ′∗ = f |T ′ ≡ 1.
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Figure 3.12. Computation of C ′(A)

Example 3.1.15. We find the coefficient C(A) of the Catalan state

C = ∈ Cat9,5.

We see that its roof state R = is as described in Case 2 of Algorithm 3.1.12. There-

fore, applying Lemma 3.1.10 we find its RF -formula. Let C = R ∗v F . Then FI 6= K0 only

if I = ∅ or I = {4}. Take F in (3.4) with n = 5 and k = 1, then

[R5,1, ∅] (F) = Q5,1,∅(A)
[
R′5,1,0, ∅

]
(F) +Q5,1,{4}(A)

[
R′5,1,1, {4}

]
(F),
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and we obtain the following coefficients:

Q5,1,∅(A) = A(5−2)(1−0) (A) = A3 · A2(5+1+1+1+1)−5·5 · [5]q=A−4 = A−20[5],

Q5,1,{4}(A) = A(5−2)(1−1) (A) = (A−3)4 = A−12.

Hence,

C(A) = (A) = (R′5,1,0,F) =
1

Q5,1,∅(A)
(R5,1,F)−

Q5,1,{4}(A)

Q5,1,∅(A)
(R′5,1,1,F{4})

=
A20

[5]

︸ ︷︷ ︸
C′

(A)− A8

[5]

︸ ︷︷ ︸
C′′

(A).

The coefficient of C ′′ is easy to find. Indeed,

C ′′(A) =

A3

A−3

A−3

A−3

A−3

A−3

A−3

A3

A3

(A) = A−9.

However, computing the coefficient of C ′ is much harder. Since bM(C ′) is the maximal

sequence that realizes C ′ (see Figure 3.12(b)), ‖bM(C ′)‖ = 28. Furthermore, one checks that

the plane rooted tree with a delay function for C ′ is shown in Figure 3.12(c). Therefore, the
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plucking polynomial of T (C ′) is:

Q(T (C ′)) = Q

 1

12
 ·Q

 5

1

6 5

 ·Q
 9

1

10 9



= Q

 1

12
 · q4Q

 1

12
 · q8Q

 1

12


= q12([2]q + q[4]q)
3 = q12(1 + 2q + q2 + q3 + q4)3.

Hence,

C ′(A) = A2·28−13·5 (1 + 2q + q2 + q3 + q4)3
∣∣
q=A−4 = A−21(A4 + 2 + A−4 + A−8 + A−12)3.

Therefore, the coefficient of C is:

C(A) =
A20

[5]
· A−21(A4 + 2 + A−4 + A−8 + A−12)3 − A8

[5]
· A−9

= A−1 (A4 + 2 + A−4 + A−8 + A−12)3 − 1

[5]

= A−13
(
(A4 + 2 + A−4 + A−8 + A−12)2 + (A4 + 2 + A−4 + A−8 + A−12) + 1

)
= A−37(1 + 2A4 + 3A8 + 7A12 + 8A16 + 7A20 + 9A24 + 5A28 + A32).

Theorem 3.1.16. Let C ∈ Catm,n and assume that there is an arc l of C connecting yi and

y′j, where |i − j| ≤ 2. Let C ′ be the Catalan state obtained from C by removing the arc l

together with its two endpoints (see Figure 3.13). Then

C(A) = Aj−iC ′(A).

Proof. By Theorem 3.1.13, it suffices to show that the statement holds for Catalan states C

with no returns on the bottom boundary. Assume that n is even and j = i+ 2. Notice that

after applying first-row expansions on both C and C ′ sufficient number of times (call it k)

we may assume that the arc l connects x1 and y′2. Since there is a one-to-one correspondence

between assignment of markers that realize C and C ′, terms of both expansions for C and C ′
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Figure 3.13. Removing an arc

coincide up to the stage k. Therefore, it suffices to prove that C(A) = A2C ′(A) for Catalan

states C with no returns on the bottom boundary and with an arc l that connects x1 and y′2,

and the Catalan state C ′ = C− l obtained by removing l from C together with its endpoints

and then shifting y1 to the top so it becomes a point on the top boundary.

Notice that, by Lemma 3.1.14, C and C ′ have the same plucking polynomial. Assume

that bM(C) = (b1, b2, . . . , bm) and bM(C ′) = (b′1, b
′
2, . . . , b

′
m−1) are maximal sequences that

realize C and C ′, respectively. Let t be the index of bi in bM(C) which corresponds to the

realization of l in C and 1 < i1 < . . . < is < t be the indices of bi in bM(C) that realize

closed arcs of C on the right boundary before l is realized. Then

(1) bt = t,

(2) n = 2(t− s− 1),

(3)
t−1∑
i=1

b′i =
t−1∑
i=1

bi + s, and

(4) b′i = bi+1 for all t ≤ i ≤ m− 1.

We say that the left (right) index of l is i if the left (right) endpoint of l is xi, and we say

that the right index of l is n+ j if the endpoint is y′j for j = 1, 2.
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We see that after the first arc of C is realized by the first term of the sequence bM(C), the

left index of l (initially equals 1) increases by 1. Since the arc l is realized after (t− 1) steps

using the first (t−1) terms of bM(C), when l is realized, its left index becomes 1+(t−1) = t,

and it is same as bt. This proves (1). Now we analyze the right index of l, which initially

equals n+ 2. Notice that after the first arc of C is realized by the first term of the sequence

bM(C), the right index decreases by 1 if the arc is inside of the regions bounded by l and

the top boundary of the Catalan state, otherwise it increases by 1. Indices ij’s, j = 1, . . . , s,

give terms of the sequence bM(C) that realize arcs which are not inside the region bounded

by l and the top boundary. When l is realized, its right index is (n + 2)− (t− 1) + 2s and

it is equal bt + 1 = t + 1. Hence, n = 2(t − s − 1) and thus we completed our proof for

(2). Notice that presence of l in C causes ”delays” in realization of an arc from the top

right corner of C by 1, hence the total number of such delays is exactly s, this proves (3).

For example, for the Catalan states shown in Figure 3.14, bM(C) = (b1, b2, . . . , b9, . . .) =

(9, 9, 8, 10, 7, 7, 10, 10, 9, . . .) and bM(C ′) = (b′1, b
′
2, . . . , b

′
8, . . .) = (9, 9, 10, 9, 7, 10, 10, 9, . . .).

We see that b3 and b′4 realize the same arc. Although b′3 + b′4 differs from b3 + b4 by 1 as

i1 = 4. Similarly, b6 and b′8 realize the same arc, while the sums b′6 + b′7 + b′8 and b6 + b7 + b8

differ by 2 as i2 = 7 and i3 = 8. After we realize the first t arcs of C following the first t

terms of the maximal sequence bM(C) and realizing (t− 1) arcs of C ′ following the maximal

sequence bM(C ′), we see that the remaining floor states are the same, hence our proof of (4)

is completed.

Therefore, (2‖bM(C)‖ −mn) − (2‖bM(C ′)‖ − (m − 1)n) = 2(−s + t) − n = 2, and the

result follows by Theorem 2.2.7. Since the number of points between endpoints of l are even,

it remains to show that the statement holds when (i) n is even and i = j or i = j + 2, or (ii)

n is odd and i = j + 1 or j = i+ 1. The cases (i) when i = j and (ii) when j = i+ 1 follow

by an argument similar to the above and (i) when i = j + 2 and (ii) when i = j + 1 follow

by considering the Catalan state Cs instead of C and applying Lemma 3.1.1.
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C C ′

bM (C) = (9, 9, 8, 10, 7, 7, 10, 10, 9, . . .) bM (C ′) = (9, 9, 10, 9, 7, 10, 10, 9, . . .)

Figure 3.14. Proof of Theorem 3.1.16

3.2 Formulas for Particular Roof States

RF -formulas resulting from an application of Algorithm 3.1.12 are usually not simple. There-

fore, for some roof states, alternative methods may be used to find them. Given n, let κ1, κ2

be non-negative integers such that ν = n−κ1−κ2
2

is also a non-negative integer. Let Rn(κ1, κ2)

be the set of roof states shown in Figure 3.15, where C is a crossingless connections inside

the region bounded by the dotted curve.

Lemma 3.2.1. Let κ1, κ2, k be non-negative integers such that ν = n−κ1−κ2
2

is also a non-

negative integer and k ≤ µ = n+κ1−κ2
2

. Suppose that C0, . . . , Cs are some crossingless connec-
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n

κ1 κ2
C

κ1 κ1κ2 κ2

C

C
n

n

Figure 3.15. Rn(κ1, κ2)

tions (possibly empty), inside of each dotted circle (see (3.6) below), s ≥ 0. Then

n

κ1 κ2

k

n− k C0

C1

Cs
s

l1

ls−1

, ∅


= Q(A) ·



n

κ1 κ2

µn− µ

, ∅


, (3.6)

where

Q(A) =

n

κ1 + ν κ2 + ν

k

n− k C0

C1

Cs
s (A)

n

κ1 + ν κ2 + ν

µn− µ

(A)

. (3.7)

In particular, if for all i, Ci = ∅ then Q(A) = As(2k−n).

Proof. Denote by R1 the roof state shown on the left of (3.6) and by R2 the roof state on

the right of (3.6). Consider a floor state F of width n and κ1 +κ2 open arcs. Let C1 = (R1∗v

F)r,π ∈ Catm1,n and C2 = (R2 ∗v F)r,π ∈ Catm2,n and one notes that m1 = m2 + (s+ µ− k).
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By Lemma 3.1.1, C1(A) = (R1,F) and C2(A) = (R2,F). Let T (C2) = (T (C2), v′0, f2) be the

plane rooted tree with a delay function for C2 and bM(C2) = (b1, b2, . . . , bm2) be the maximal

sequence that realizes C2. Then the plane rooted tree of T (C1) = (T (C1), v0, f1) for C1 is

T (C1) =
T0

T1

Ts−1
Ts

T (C2)

v0

v′0 ,

where Ti is the dual graph of Ci. Since f1 = f2 on the set of leaves of T (C2) and f1(v) ≥ f1(w),

for all v ∈ L1(T (C2)), w ∈ L1(T (C1)) \ L1(T (C2)), by Lemma 3.1.14, plucking polynomials

for T (C1) and T (C2) are related as follows Q(T (C1)) = Q(T (C2)) ·Q for some polynomial Q

that depends only on
⋃s
i=0 Ti. We note that the maximal sequence bM(C1) = (b′1, b

′
2, . . . , b

′
m1

)

that realizes C1 must realize arcs of R1 in the same order regardless of the choice made for F .

In fact, κ1 open arcs of R1 are realized as first, and then κ2 open arcs of R1, arcs of Cs, the

line ls−1, arcs of Cs−1, the line ls−2, arcs of Cs−2, etc. Therefore, b′i = bi for 1 ≤ i ≤ m2 and

b′i depends only on R1, for m2 + 1 ≤ i ≤ m1. Let B =
∑m1

i=m2+1 b
′
i, then by Theorem 2.2.7,

C1(A) = A2‖bM (C1)‖−m1n+4 mindegq Q(T (C1)) ·Q(T (C1))
∣∣
q=A−4

= A2‖bM (C2)‖+2B−(m2+s+µ−k)n+4(mindegq Q(T (C2))+mindegq Q) ·Q(T (C2))
∣∣
q=A−4 · Q

∣∣
q=A−4

= A2B−(s+µ−k)n+4 mindegq Q · Q
∣∣
q=A−4 · C2(A).

Hence, [R1, ∅](F) = C1(A) = Q(A)C2(A) = Q(A) [R2, ∅](F), for some

Q(A) = A2B−(s+µ−k)n+4 mindegq Q · Q
∣∣
q=A−4

which does not depend on F . If F does not have width n or κ1 + κ2 open arcs, then

[R1, ∅](F) = 0 = Q(A) · 0 = [R2, ∅](F).

Thus, for all F , [R1, ∅](F) = Q(A) [R2, ∅](F). Choosing for the floor state
κ1 + κ2 νν

in

(3.6) yields (3.7).
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µ− t

κ1 κ2

n− µ− t

Figure 3.16. Roof state Rn,κ1,κ2,t

Now we state the main result in this section.

Theorem 3.2.2. Let n, κ1, κ2 be non-negative integers such that ν = n−κ1−κ2
2

is also a

non-negative integer. Then, for any roof state R ∈ Rn(κ1, κ2), there is an RF -formula

[R, ∅] =
∑

I∈Vn, |I|≤ν

Qn,R,I(A) ·
[
Rn,κ1,κ2,|I|, I

]
, (3.8)

where Rn,κ1,κ2,t is shown in Figure 3.16 and µ = n+κ1−κ2
2

.

In particular, for every I ∈ Vn, if Fn,κ1,κ2,I denotes a floor state of width n that satisfies

Φn(F bn,κ1,κ2,I) = I and
(
Rn,κ1,κ2,|I|, (Fn,κ1,κ2,I)I

)
6= 0, then

Qn,R,I(A) =
∑
J�F I

(R,Fn,κ1,κ2,J)(
Rn,κ1,κ2,|I|, (Fn,κ1,κ2,I)I

) · S(n, κ1, κ2, I, J), (3.9)

where

S(n, κ1, κ2, I, J) =
∑

J=I0≺F ···≺F Is=I

(−1)s
s∏
i=1

(
Rn,κ1,κ2,|Ii−1|, (Fn,κ1,κ2,Ii)Ii−1

)(
Rn,κ1,κ2,|Ii−1|, (Fn,κ1,κ2,Ii−1

)Ii−1

) (3.10)

if I 6= J , and 1 otherwise.

Proof. First, we prove the existence of Qn,R,I(A)’s in

[R, ∅] =
∑
I∈Vn

Qn,R,I(A) ·
[
Rn,κ1,κ2,|I|, I

]
. (3.11)
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Without loss of generality, we may assume that κ1 ≤ κ2. Otherwise, since R ∈ Rn(κ1, κ2)

if and only if Rs ∈ Rn(κ2, κ1) we can find an RF -formula for Rs and use our proof of

Lemma 3.1.8 to find an RF -formula for R. We first prove the existence of Qn,R,I(A) in

(3.11), for all R ∈ Rn(κ1, κ2) ∩ Tn. Let j∗ = j∗(R), then j∗ − κ1 ≤ n−κ1−κ2
2

= ν by the

definition of j∗. We prove formula (3.11) by induction on n.

Consider the roof stateR′ obtained fromR by adding N ≥ 0 cups at j∗, such that (R′)t =

R′n,j∗,0, where R′n,k,l is shown in Figure 3.8. Let M = R′ \ R′n,j∗,0, then by Lemma 3.1.10,

[R′, ∅] =
[
R′n,j∗,0 ∗vM, ∅

]
= Qn,j∗,∅(A)−1

[Rn,j∗ ∗vM, ∅]−
∑

I∈Vn, 1≤|I|≤j∗

Qn,j∗,I(A)
[
R′n,j∗,|I| ∗vM, I

] ,

where Qn,k,I(A) and Rn,k are defined in Lemma 3.1.10. Notice that Rn,j∗ ∗vM is a roof state

in the form that is on the left side of (3.6), hence

[Rn,j∗ ∗vM, ∅] = Q(A) · [Rn,κ1,κ2,0, ∅]

for some Q(A) defined in Lemma 3.2.1. Since R′n,j∗,|I| ∗vM∈ Rn−2|I|(κ1, κ2) and |I| ≥ 1, the

induction hypothesis applies for these roof states. It follows that [R′, ∅] can be represented

in the form given on the right hand side of (3.11).

Applying N ≥ 1 times the first-row expansions (3.1) yields

[R′, ∅] = A(−n+2j∗)N [R, ∅] +
∑
i

[Ri, Ii]

for some [Ri, Ii], with either (1) j∗(Ri) > j∗ and Ri ∈ Rn(κ1, κ2) ∩ Tn, or (2) Ri ∈

Rn−2|Ii|(κ1, κ2) with |Ii| > 0. If [Ri, Ii] is as in (2), then by induction hypothesis, we can

express it in the form as it is on the right hand side of (3.11). Thus, we only left those

[Ri, Ii] for which Ii = ∅ and j∗(Ri) > j∗(R) increased by 1. In such a case, we apply the

same process for Ri as we did for R′. Since j∗(·) increases, this process finally reaches some

roof states R′′ with j∗ = µ. Let R′′′ be the roof state obtained by adding N ′ cups at µ on
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R′′ so that (R′′′)t = R′n,µ,0. Define M′ = R′′′ \ R′n,µ,0, then using the first-row expansions

and Lemma 3.1.10 gives

[R′′, ∅] = A(n−2µ)N ′ [R′′′, ∅] = A(n−2µ)N ′ [R′n,µ,0 ∗vM′, ∅]

= A(n−2µ)N ′Qn,µ,∅(A)−1

[Rn,µ ∗vM, ∅]−
∑

I∈Vn, 1≤|I|≤µ

Qn,µ,I(A)
[
R′n,µ,|I| ∗vM, I

] .

Using the same argument as we did for R′, we see that [R′′, ∅] can be represented in the

form of the right hand side of (3.11).

Therefore, our proof for the existence of (3.11) for all R ∈ Rn(κ1, κ2) ∩ Tn is completed.

Now, given R ∈ Rn(κ1, κ2), applying the first-row expansion (3.1) on R sufficiently many

times yields

[R, ∅] =
∑
i

Qi(A) · [Ri, Ii] ,

where Ri ∈ Rn(κ1, κ2) ∩ Tn if Ii = ∅ or Ri ∈ Rn−2|Ii|(κ1, κ2) otherwise. Thus, the above

observations and the induction hypothesis imply that (3.11) holds for all R ∈ Rn(κ1, κ2).

Notice that the width ofRn,κ1,κ2,|I| is n−2|I|, hence [Rn,κ1,κ2,|I|, I] ≡ 0 unless n−2|I| ≥ κ1+κ2

by Theorem 2.2.1, which means that |I| ≤ n−κ1−κ2
2

= ν, and therefore the proof for existence

of Qn,R,I(A) in (3.8) is completed.

Now we prove (3.9) by induction on |I|. Indeed, choosing the floor state Fn,κ1,κ2,∅ in (3.8)

gives:

Qn,R,∅(A) =
(R,Fn,κ1,κ2,∅)(

Rn,κ1,κ2,0, (Fn,κ1,κ2,∅)∅
) ,

i.e., (3.9) holds when |I| = 0. Assume that (3.9) holds for all J ∈ Vn with |J | < |I| and

notice that (Fn,κ1,κ2,I)I′ = K0 unless I ′ �F I. So, taking the floor state Fn,κ1,κ2,I in (3.8),

yields

Qn,R,I(A) =
(R,Fn,κ1,κ2,I)(

Rn,κ1,κ2,|I|, (Fn,κ1,κ2,I)I
)

−
∑

J∈Vn,J≺F I

Qn,R,J(A) ·
(
Rn,κ1,κ2,|J |, (Fn,κ1,κ2,I)J

)(
Rn,κ1,κ2,|I|, (Fn,κ1,κ2,I)I

) ,
and then (3.9) follows by the induction hypothesis on Qn,R,J(A)’s.
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C1 C2 Cn−2|I|+1

n− 2|I|

T1 T2 Tn−2|I|+1

n− 2t

n−k
2 − t

n−k
2 − t

k

(b) Mn,k,t(a) Φ−1n (I)

Figure 3.17. Φ−1
n (I) and Mn,k,t

According to the theorem, we can find Qn,R,I(A) by choosing an appropriate Fn,κ1,κ2,I ’s

and then computing (3.9) and (3.10). One such a choice for floor states is given in the next

lemma.

Lemma 3.2.3. Let n, κ1, κ2 be non-negative integers such that ν = n−κ1−κ2
2

is also a non-

negative integer. Given I ∈ Vn, suppose that Φ−1
n (I) has the form that is shown in Fig-

ure 3.17(a), where Ci is some crossingless connections inside dotted circle, and Ti is the

plane rooted tree obtained as the dual graph of Cr,πi . Then the coefficient of Rn,κ1,κ2,0 ∗v

Mn,κ1+κ2,|I| ∗v Φ−1
n (I) is

A−2‖I‖+|I|·(3|I|−n−κ1−κ2+1)+n
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n− |I|
µ

] n−2|I|+1∏
i=1

Q(Ti)
∣∣
q=A4

[∑i
j=1 |V (Tj)| − 1

|V (Ti)| − 1

]
,

where Rn,κ1,κ2,t and Mn,k,t are shown in Figure 3.16 and Figure 3.17(b), respectively, µ =

n+κ1−κ2
2

, ‖I‖ =
∑

i∈I i, and Q(Ti) is the plucking polynomial of Ti.
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Proof. Instead of calculating the coefficient of

C = Rn,κ1,κ2,0 ∗vMn,κ1+κ2,|I| ∗v Φ−1
n (I) =

n− µ
µ

n− µ− |I|

n− 2|I|+ κ1

Φ−1
n (I)

κ1

,

we calculate the coefficient of

C ′ = (Cr,π)s =

n− 2|I|+ κ1

n− µ
µ

n− µ− |I|

Φ−1
n (I)

κ1

.

One can easily see that

T (C ′) =
κ1 + n− µ− |I|+ 1

T1

T2

Tn−2|I|+1

κ1

,

thus by Lemma 3.1.14,

Q∗(T (C ′)) = q−mindegq T (C′)Q(T (C ′)) =

[
n− |I|
µ

]
q

n−2|I|+1∏
i=1

Q(Ti) ·
[∑i

j=1 |V (Tj)| − 1

|V (Ti)| − 1

]
q

.
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Notice that ‖bM(C ′)‖ = ‖I‖+ |I|(|I|−1)
2

+ |I|(n− 2|I|+ κ1 − µ) + n(n− µ− |I|) + (n− µ)µ.

Indeed, this is true since

(1) We first realize all the arcs corresponding to elements of I, and if I = {i1 < i2 < . . . <

it}, then (b1, . . . , bt) must be (it, it−1 + 1, . . . , i1 + t− 1). Hence, the total contribution

of bM(C ′) is ‖I‖+ |I|(|I|−1)
2

.

(2) Then, as the second, we realize all arcs with an endpoint yj, 1 ≤ j ≤ n− 2|I|+κ1−µ,

after realizing |I| returns on the top boundary. For these arcs bi = |I| in the maximal

sequence bM(C ′), thus the total contribution of these arcs to ‖bM(C ′)‖ is |I|(n−2|I|+

κ1 − µ).

(3) For arcs with an endpoint y′κ1+j, 1 ≤ j ≤ n− µ− |I|, bi = n in the maximal sequence

bM(C ′). Therefore, the total contribution of these arcs to ‖bM(C ′)‖ is n(n− µ− |I|).

(4) The remaining µ arcs contribute (n− µ)µ to ‖bM(C ′)‖.

Therefore,

C ′(A) = A2‖bM (C′)‖−n·(2n−2|I|−µ+κ1) ·Q∗(T (C ′))
∣∣
q=A−4

= A2‖I‖−|I|·(3|I|−n−κ1−κ2+1)−n
2

(3κ1−κ2)− 1
2

(κ1−κ2)2 ·Q∗(T (C ′))
∣∣
q=A−4

by Theorem 2.2.7, and the result follows since C(A) = C ′(A−1).

When |I| is small, we can compute (3.10) directly.

Lemma 3.2.4. Suppose all assumptions of Theorem 3.2.2 hold and let

Fn,κ1,κ2,I =Mn,κ1+κ2,|I| ∗v Φ−1
n (I),

where Mn,k,t is shown in Figure 3.17(b). Then, for all J �F I with 0 ≤ |I| − |J | ≤ 3,

S(n, κ1, κ2, I, J) = (−1)|I|−|J | · A−2(|I|−|J |)(|I|−|J |−1)

[
2(n−|I|−|J |)+1
n−|I|−|J |

] (
Rn,κ1,κ2,|J |, (Fn,κ1,κ2,I)J

)[
2(n−|I|−|J |)+1

n−2|J |

] (
Rn,κ1,κ2,|J |, (Fn,κ1,κ2,J)J

) .
(3.12)
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Proof. We simply consider all possible J and I, and then use Lemma 3.2.3 to compute

(3.10). In order to simplify notations, let CI,J = (Rn,κ1,κ2,|J |, (Fn,κ1,κ2,I)J). When I = J , our

statement is obviously true. Thus, consider I 6= J and denote by

S(I, J) =
∑

J=I0≺F ···≺F Is=I

(−1)s
s∏
i=1

CIi,Ii−1

CIi−1,Ii−1

and

S ′(I, J) = (−1)|I|−|J | · A−2(|I|−|J |)(|I|−|J |−1)

[
2(n−|I|−|J |)+1
n−|I|−|J |

]
CI,J[

2(n−|I|−|J |)+1
n−2|J |

]
CJ,J

.

We show that S(I, J) = S ′(I, J), for all J ≺F I with I, J ∈ Vn. If |I| − |J | = 1, then

S(I, J) = −CI,J
CJ,J

= (−1)1 · A−2·1·(1−1)

[
2n−4|J |−1
n−2|J |−1

]
CI,J[

2n−4|J |−1
n−2|J |

]
CJ,J

= S ′(I, J).

Now, when |I| − |J | = 2, there are two cases to consider: I \ J = {i1 < i2} with i2 = i1 + 1

or i2 > i1 + 1. Let n′ = n− 2|J |, µ′ = µ− |J |, i′1 = i1 − 2|{j ∈ J | j < i1}|, i′2 = i2 − 2|{j ∈

J | j < i2}|, I ′ = {i′1, i′2}.

For i2 = i1 + 1, we obtain

• J ≺F I or

• J ≺F J ∪ {i1 + 1} ≺F I.

So,

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1+1},J

CJ,J
·

CI,J∪{i1+1}

CJ∪{i1+1},J∪{i1+1}
.

By Lemma 3.2.3,

CI,J = A−2(2i′1+1)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 2

µ′

][
i′1 + 1

2

]
,

CJ∪{i1+1},J = A−2(i′1+1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 1

µ′

]
[i′1 + 1],

CI,J∪{i1+1} = A−2(i′1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 3

µ′ − 1

]
[i′1],
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and

CJ∪{i1+1},J∪{i1+1} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2

[
n′ − 2

µ′ − 1

]
.

Then,

CJ∪{i1+1},J ·
CI,J∪{i1+1}

CJ∪{i1+1},J∪{i1+1}
− CI,J

= A−2‖I′‖+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2

· [i′1][i′1 + 1][n′ − 3]!

[2][µ′]![n′ − µ′ − 2]!

(
A−4[n′ − 1][2]− [n′ − 2]

)
= CI,J ·

A−4[n′]

[n′ − 2]
= CI,J · A−2·2·(2−1) ·

[
2n′−3
n′−2

][
2n′−3
n′

] .
Therefore,

S(I, J) = (−1)2A−2·2·(2−1) ·

[
2n−4|J |−3
n−2|J |−2

]
CI,J[

2n−4|J |−3
n−2|J |

]
CJ,J

= S ′(I, J).

For i2 > i1 + 1, one obtains

• J ≺F I,

• J ≺F J ∪ {i1} ≺F I, or

• J ≺F J ∪ {i2} ≺F I.

So

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1},J
CJ,J

·
CI,J∪{i1}

CJ∪{i1},J∪{i1}
+
CJ∪{i2},J
CJ,J

·
CI,J∪{i2}

CJ∪{i2},J∪{i2}
.

By Lemma 3.2.3,

CI,J = A−2(i′1+i′2)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 2

µ′

]
[i′1][i′2 − 1],

CJ∪{i1},J = A−2(i′1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 1

µ′

]
[i′1],

CI,J∪{i1} = A−2(i′2−2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 3

µ′ − 1

]
[i′2 − 2],
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CJ∪{i2},J = A−2(i′2)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 1

µ′

]
[i′2],

CI,J∪{i2} = A−2(i′1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2
[
n′ − 3

µ′ − 1

]
[i′1],

and

CJ∪{i1},J∪{i1} = CJ∪{i2},J∪{i2} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2

[
n′ − 2

µ′ − 1

]
.

Then,

CJ∪{i1},J ·
CI,J∪{i1}

CJ∪{i1},J∪{i1}
+ CJ∪{i2},J ·

CI,J∪{i2}
CJ∪{i2},J∪{i2}

− CI,J

= A−2‖I′‖+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 [i′1]

·

([
n′−1
µ′

][
n′−3
µ′−1

]
[i′2 − 2] + A−4

[
n′−1
µ′

][
n′−3
µ′−1

]
[i′2][

n′−2
µ′−1

] −
[
n′ − 2

µ′

]
[i′2 − 1]

)

= A−2‖I′‖+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2

· [i′1][n′ − 3]!

[µ′]![n′ − 2− µ′]!
(
[n′ − 1][i′2 − 2] + A−4[n′ − 1][i′2]− [n′ − 2][i′2 − 1]

)
= CI,J ·

A−4[n′]

[n′ − 2]
= CI,J · A−2·2·(2−1) ·

[
2n′−3
n′−2

][
2n′−3
n′

] ,
since

[n− 1]q [k − 2]q + q−1[n− 1]q [k]q − [n− 2]q [k − 1]q

=[n− 1]q (1 + q + . . .+ qk−3 + q−1 + 1 + q + . . .+ qk−2)− [n− 2]q [k − 1]q

=[n− 1]q q
−1 [2]q [k − 1]q − [n− 2]q [k − 1]q

=[k − 1]q
(
(q−1 + 2 + 2q + . . .+ 2qn−3 + qn−2)− (1 + q + . . .+ qn−3)

)
=[k − 1]q q

−1 [n]q.

Therefore,

S(I, J) = (−1)2A−2·2·(2−1) ·

[
2n−4|J |−3
n−2|J |−2

]
CI,J[

2n−4|J |−3
n−2|J |

]
CJ,J

= S ′(I, J).

Above discussions show that S(I, J) = S ′(I, J) for all |I| − |J | = 2.

The cases |I| − |J | = 3 is rather long, so its proof is given in Appendix A.
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There might not be a general method for simplifying (3.10). However, according to the

above calculations, we believe that it is true for all J �F I and leave it here as the following

open problem.

Conjecture 3.2.5. Suppose all assumptions of Theorem 3.2.2 hold and let

Fn,κ1,κ2,I =Mn,κ1+κ2,|I| ∗v Φ−1
n (I),

where Mn,k,t is shown in Figure 3.17(b). Then for all J �F I,

S(n, κ1, κ2, I, J) = (−1)|I|−|J | · A−2(|I|−|J |)(|I|−|J |−1)

[
2(n−|I|−|J |)+1
n−|I|−|J |

] (
Rn,κ1,κ2,|J |, (Fn,κ1,κ2,I)J

)[
2(n−|I|−|J |)+1

n−2|J |

] (
Rn,κ1,κ2,|J |, (Fn,κ1,κ2,J)J

) .
Now, we list all RF -formulas for the top states of width n = 2, 3, 4.

Corollary 3.2.6. The RF -formula for the top state (with a return) in T2 is

[
, ∅
]

=
A2

[2]

[
, ∅
]
− A2

[2]

[
, {1}

]
.

Proof. The RF formula in this case was already found in Example 3.1.11.

Corollary 3.2.7. The RF -formulas for top states (with returns) in T3 are

[
, ∅
]

=
A6

[3]

[
, ∅
]
− A2[2]

[3]

[
, {1}

]
− A4

[3]

[
, {2}

]
,

[
, ∅
]

=
A2

[3]

[
, ∅
]
− A4

[3]

[
, {1}

]
− A2[2]

[3]

[
, {2}

]
.

Proof. The RF formulas in this case were already found in Example 3.1.11.
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Corollary 3.2.8. The formulas for top states (with returns) in T4 are[
, ∅
]

=
A8[2]

[4][3]

[
, ∅
]
− A6

[4]

[
, {1}

]
− A4[2]

[4]

[
, {2}

]
− A6

[4]

[
, {3}

]
+
A4

[3]

[
, {1, 2}

]
+

A6

[3][2]

[
, {1, 3}

]
,[

, ∅
]

=
A8[2]

[4][3]

[
, ∅
]
− A4[2]

[4]

[
, {1}

]
− A2[2]2

[4]

[
, {2}

]
− A4[2]

[4]

[
, {3}

]
,[

, ∅
]

=
A12

[4]

[
, ∅
]
− A2[3]

[4]

[
, {1}

]
− A4[2]

[4]

[
, {2}

]
− A6

[4]

[
, {3}

]
,[

, ∅
]

=
1

[4]

[
, ∅
]
− A6

[4]

[
, {1}

]
− A4[2]

[4]

[
, {2}

]
− A2[3]

[4]

[
, {3}

]
,[

, ∅
]

=
A6[2]2

[4][3]

[
, ∅
]
− A4[2]

[4]

[
, {1}

]
− 2A6

[4]

[
, {2}

]
− A4[2]

[4]

[
, {3}

]
+

A6

[3][2]

[
, {1, 2}

]
+
A4

[3]

[
, {1, 3}

]
.

Proof. By Theorem 3.2.2,(
,F∅
)

= Q∅(A)
(

,F∅
)

+Q{1}(A)
(

,F{1}
)

+Q{2}(A)
(

,F{2}
)

+Q{3}(A)
(

,F{3}
)

+Q{1,2}(A)
(

,F{1,2}
)

+Q{1,3}(A)
(

,F{1,3}
)
,

for some QI(A), I �F V4.

Take F = . Then

(A) = Q∅(A) · (A)

or

1 = Q∅(A) · A−8

[
4

2

]
.

Hence, Q∅(A) = A8[2]
[4][3]

.
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Take F = . Then

(A) = Q∅(A) · (A) +Q{1}(A) · (A)

or

0 =
A8[2]

[4][3]
· A−4[3] +Q{1}(A) · A−2[2].

Hence, Q{1}(A) = −A6

[4]
.

Take F = . Then

(A) = Q∅(A) · (A) +Q{2}(A) · (A)

or

0 =
A8[2]

[4][3]
· A−6[3][2] +Q{2}(A) · A−2[2].

Hence, Q{2}(A) = −A4[2]
[4]

.

Take F = . Then

(A) = Q∅(A) · (A) +Q{3}(A) · (A)

or

0 =
A8[2]

[4][3]
· A−4[3] +Q{3}(A) · A−2[2].

Hence, Q{3}(A) = −A6

[4]
.

Take F = . Then

(A) = Q∅(A) · (A) +Q{2}(A) · (A) +Q{1,2}(A) · (A)

or

0 =
A8[2]

[4][3]
· 1− A4[2]

[4]
· 1 +Q{1,2}(A) · 1.

Hence, Q{1,2}(A) = A4

[3]
.
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Take F = . Then

(A) = Q∅(A) · (A) +Q{1}(A) · (A)

+Q{3}(A) · (A) +Q{1,3}(A) · (A)

or

0 =
A8[2]

[4][3]
· A−2[2]− A6

[4]
· 1− A6

[4]
· 1 +Q{1,3}(A) · 1.

Hence, Q{1,3}(A) = A6

[3][2]
. Therefore, the RF -formula for

[
, ∅
]

follows.

According to the Algorithm 3.1.12,[
, ∅
]

=
[

, ∅
]

=
A8[2]

[4][3]

[
, ∅
]
− A6

[4]

[
, {1}

]
− A4[2]

[4]

[
, {2}

]
− A6

[4]

[
, {3}

]
=
A8[2]

[4][3]

[
, ∅
]
− A4[2]

[4]

[
, {1}

]
− A2[2]2

[4]

[
, {2}

]
− A4[2]

[4]

[
, {3}

]
,

since (A) = A−2[2].

Taking n = 4, k = 1 in Lemma 3.1.10 yields, 0 ≤ |I| ≤ min{1, 4 − 1} = 1, i.e.,

I = ∅, {1}, {2}, {3}, and[
, ∅
]

= Q4,1,∅(A)
[

, ∅
]

+Q4,1,{1}(A)
[

, {1}
]

+Q4,1,{2}(A)
[

, {2}
]

+Q4,1,{3}(A)
[

, {3}
]
,

where

Q4,1,∅(A) = A(4−2)(1−0) (A) = A−12[4],

Q4,1,{1}(A) = A(4−2)(1−1) (A) = A−10[3],

Q4,1,{2}(A) = A(4−2)(1−1) (A) = A−8[2],

Q4,1,{3}(A) = A(4−2)(1−1) (A) = A−6.
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Thus,

[
, ∅
]

=
1

Q4,1,∅(A)

[
, ∅
]
−
Q4,1,{1}(A)

Q4,1,∅(A)

[
, {1}

]
−
Q4,1,{2}(A)

Q4,1,∅(A)

[
, {2}

]
−
Q4,1,{3}(A)

Q4,1,∅(A)

[
, {3}

]
,

which is the RF -formula for .

By Lemma 3.1.8, for a floor state F :

(
,F
)

(A) =
(

,F s
)

(A−1)

=
A−12

[4]q=A−4

(
,F s

)
(A−1)−

A−2[3]q=A−4

[4]q=A−4

(
, (F s){1}

)
(A−1)

−
A−4[2]q=A−4

[4]q=A−4

(
, (F s){2}

)
(A−1)− A−6

[4]q=A−4

(
, (F s){3}

)
(A−1)

=
1

[4]

(
,F s

)
(A−1)− A2[3]

[4]

(
, (F{3})s

)
(A−1)

− A4[2]

[4]

(
, (F{2})s

)
(A−1)− A6

[4]

(
, (F{1})s

)
(A−1)

=
1

[4]

(
,F
)

(A)− A6

[4]

(
,F{1}

)
(A)− A4[2]

[4]

(
,F{2}

)
(A)

− A2[3]

[4]

(
,F{3}

)
(A).

To find an RF -formula for R = , we use Theorem 3.2.2, Lemma 3.2.3, and

Lemma 3.2.4. Since n = 4, κ1 = κ2 = 0, V4 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}. Then

Q4,R,I(A) can be calculated as follows.

Since (A) = [2]q=A−4 · A2(3+2+4+4)−4·4 = A6[2] and (A) = A−2·0[4
2

]
= [4][3]

[2]
,

Q4,R,∅(A) =

(A)

(A)

=
A6[2]2

[4][3]
.
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Since (A) = A2 · A−2[2] = [2], (A) = A−2·1+(3−4−0−0+1)
[

4−1
2

]
[1] = A−2[3] and

(A) = 0, it follows that

Q4,R,{1}(A) =

(A)

(A)

· (−1)1A−2·1·(1−1)

[
7
3

]
· (A)[

7
4

]
· (A)

+

(A)

(A)

· 1 = −A
4[2]

[4]
.

Since (A) = A−2·2+(3−4−0−0+1)
[

4−1
2

]
[2] = A−4[3][2] and (A) = A2, it follows

that

Q4,R,{2}(A) =

(A)

(A)

· (−1)1A−2·1·(1−1)

[
7
3

]
· (A)[

7
4

]
· (A)

+

(A)

(A)

· 1

= −A
2[2]2

[4]
+
A2

[2]
= −2A6

[4]
.

Since (A) = A−2·3+(3−4−0−0+1)
[

4−1
2

]
[3] = A−6[3]2 and (A) = A2 · A−2[2] = [2],

it follows that

Q4,R,{3}(A) =

(A)

(A)

· (−1)1A−2·1·(1−1)

[
7
3

]
· (A)[

7
4

]
· (A)

+

(A)

(A)

· 1

= − [3][2]

[4]
+ 1 = −A

4[2]

[4]
.

Since (A) = (A) = (A) = 1 and (A) = 0,

Q4,R,{1,2}(A) =

(A)

(A)

· (−1)2A−2·2·(2−1)

[
5
2

]
· (A)[

5
4

]
· (A)

+

(A)

(A)

· (−1)1A−2·1·(1−1)

[
3
1

]
· (A)[

3
2

]
· (A)

+

(A)

(A)

· 1

=
A2[2]

[3]
− A2

[2]
=

A6

[3][2]
.
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Since (A) = A−2·(1+3)+2(6−4−0−0+1)
[

4−2
2

]
[1][3− 1] = A−2[2] and (A) = 0,

Q4,R,{1,3}(A) =

(A)

(A)

· (−1)2A−2·2·(2−1)

[
5
2

]
· (A)[

5
4

]
· (A)

+

(A)

(A)

· (−1)1A−2·1·(1−1)

[
3
1

]
· (A)[

3
2

]
· (A)

+

(A)

(A)

· (−1)1A−2·1·(1−1)

[
3
1

]
· (A)[

3
2

]
· (A)

+

(A)

(A)

· 1

=
[2]2

[3]
− 1 =

A4

[3]
.

We finish our discussions by giving an examples of applications of results obtained in this

section.

Example 3.2.9. We find the coefficient of

C =

6

2k

∈ Cat2k,6

for k ≥ 1. We start by finding an RF -formula for R = . By Theorem 3.2.2, there

are QI = Q6,R,I ’s, for I ∈ V6, such that

[R, ∅] =
∑

I∈V6,|I|≤3

QI(A) [R6,0,0,|I|, I],

where Rn,κ1,κ2,t is shown in Figure 3.16. Let F̂ be the floor state such that C = R ∗v F̂ .

Since Φ6(F̂ b) = {1, 3, 5},

C(A) = [R, ∅](F̂) =
∑

I∈V6,|I|≤3

QI(A) [R6,0,0,|I|, I](F̂) =
∑

I∈V6,I�F {1,3,5}

QI(A)
(
R6,0,0,|I|, F̂I

)
,
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and one can easily see that
(
R6,0,0,3, F̂{1,3,5}

)
= 0. Thus, we just need to find QI ’s for

I ≺F {1, 3, 5}. For brevity, let Z(F) =
∑

I∈V6, I 6≺F {1,3,5}QI(A) (R6,0,0,3,FI), then

(R,F) =
∑

I∈V6,I≺F {1,3,5}

QI(A)
(
R6,0,0,|I|,FI

)
+ Z(F). (3.13)

Take F = , then

Q∅(A) =

(A)

(A)

=
A12[3]2[2]2

[6][5][4]
,

since

(A) = A−2(1+3+5)+3(9−6+1)

[
6− 3

3

]
[1][2][3] = A−6[3][2]

and

(A) = A2(6+6+6+3+3+3)−6·6
[
6

3

]
q=A−4

= A−18 [6][5][4]

[3][2]
.

Take F = , then

Q{1}(A) =

(A)−Q∅(A) · (A)

(A)

= −A
8[3][2]2

[6][4]
,

since (A) = 0,

(A) = A2(5+5+5+3+3)−6·5
[
5

2

]
q=A−4

= A−12 [5][4]

[2]
,

and

(A) = A2(4+4+2+2)−4·4
[
4

2

]
q=A−4

= A−8 [4][3]

[2]
.
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Take F = , then

Q{3}(A) =

(A)−Q∅(A) · (A)

(A)

= −A
8[2]2(1 + 3A4 + A8)

[6][4]
,

since

(A) = (A−2[2])2 = A−4[2]2

and

(A) = A2(6+6+5+3+3)−6·5[3]q=A−4

[
5

2

]
q=A−4

= A−16 [5][4][3]

[2]
.

Take F = , then

Q{5}(A) =

(A)−Q∅(A) · (A)

(A)

= −A
8[3][2]2

[6][4]
,

since (A) = 0 and

(A) = (A−1) = A−12 [5][4]

[2]
.

Take F = , then

Q{1,3}(A) =

(A)−Q∅(A) · (A)−Q{1}(A) · (A)−Q{3}(A) · (A)

(A)

=
0− A12[3]2[2]2

[6][5][4]
· A−8[4][2] + (A

8[3][2]2

[6][4]
+ A8[2]2(1+3A4+A8)

[6][4]
) · A−4[3]

A−2[2]
=
A6[2]4

[5][4]
,
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since (A) = 0, (A) = A−2[2],

(A) = A2(5+4+4+3)−6·4[2]q=A−4 [4]q=A−4 = A−8[4][2],

and

(A) = A2(3+3+2)−4·3[3]q=A−4 = A−4[3].

Take F = , then

Q{1,5}(A) =

(A)−Q∅(A) · (A)−Q{1}(A) · (A)−Q{5}(A) · (A)

(A)

=
0− A12[3]2[2]2

[6][5][4]
· A−8 [4][3]

[2]
+ (A

8[3][2]2

[6][4]
+ A8[3][2]2

[6][4]
) · A−4[3]

A−2[2]
=
A6[3][2]2

[5][4]
,

since (A) = 0,

(A) = A2(5+5+3+3)−6·4
[
4

2

]
q=A−4

= A−8 [4][3]

[2]
,

and

(A) = (A−1) = A−4[3].

Take F = , then

Q{3,5}(A) =

(A)−Q∅(A) · (A)−Q{3}(A) · (A)−Q{5}(A) · (A)

(A)

=
0− A12[3]2[2]2

[6][5][4]
· A−8[4][2] + (A

8[2]2(1+3A4+A8)
[6][4]

+ A8[3][2]2

[6][4]
) · A−4[3]

A−2[2]
=
A6[2]4

[5][4]
,
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since (A) = 0 and

(A) = (A−1) = A−8[4][2].

Now take F = F̂ in (3.13), thus

C(A) =
A12[3]2[2]2

[6][5][4]

6

2k
(A)

−
(
A8[3][2]2

[6][4]
+
A8[2]2(1 + 3A4 + A8)

[6][4]
+
A8[3][2]2

[6][4]

)
2k

(A)

+

(
A6[2]4

[5][4]
+
A6[3][2]2

[5][4]
+
A6[2]4

[5][4]

)
2k

(A).

We find the coefficient of

C ′ =

6

2k

∈ Cat2k+3,6.
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Indeed, its plucking polynomial is

Q(T (C ′)) = Q

 11 1 2 424

2k 2k

 = Q

 11

1
 · k∏

i=1

Q

 1

2i2i

2i + 1


= [3]q[2]q ·

k∏
i=1

(
q2i−1[4]q[3]q

)
= qk

2

[4]kq [3]k+1
q [2]q,

and its maximal sequence bM(C ′) = (5, 6, 5, 6, . . . , 5, 6, 5, 4, 3) ⇒ ‖bM(C ′)‖ = 11k + 12.

Therefore, by Theorem 2.2.7, the coefficient is

C ′(A) = A2(11k+12)−6(2k+3)[4]kq=A−4 [3]k+1
q=A−4 [2]q=A−4 = A−10k−6[4]k[3]k+1[2].

Similarly, one finds

2k

(A) = A2(3+4+3+4+...+4+3+2)−4(2k+2)[3]kq=A−4 [2]k+1
q=A−4 = A−6k−2[3]k[2]k+1

and

2k

(A) = (A−2[2])k = A−2k[2]k.

Therefore, C(A) is

A−2k+6[2]3

[6][5][4]

(
A−8k[4]k[3]k+3 − A−4k[5][3]k[2]k(3 + 5A4 + 3A8) + [6][2]k−1(3 + 5A4 + 3A8)

)
.

Remark 3.2.10. The formula for C(A) in Example 3.2.9 is different than the one given in

[8]. In particular, C(A) in [8] was obtained directly as a rather involved recursive formula

comparing to the one given in here. However, C(A) obtained in [8] can be used to give a

simple argument that shows unimodality of C(A) (see Section 4.2 for the definition), while

ours is not.
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CHAPTER 4

APPLICATIONS

In this chapter, we discuss some applications of the results obtained in the previous chapter.

These results, in particular, allow us to compute coefficients of realizable Catalan states

of L(m, 4) and study their properties. We regard it as a first step toward developing a

new method for finding closed-form formulas for coefficients of realizable Catalan states of

L(m,n).

4.1 Coefficients of Realizable Catalan States of L(m, 4)

In this section, we find the closed-form formulas for coefficients of L(m,n) when n ≤ 4. As

the cases n = 1 or n = 2 are both quite simple, we discuss them here only very briefly. We

also note that in [9], authors analyzed coefficients of realizable Catalan states when n = 3

and they showed that these coefficients are product of some Laurent polynomials. In this

dissertation, we give closed-form formulas for them. The most interesting case is, of course,

when n = 4, which is the main result of this section.

We start by finding plucking polynomials of some plane rooted trees with a delay function

that are needed later.

Lemma 4.1.1. Let T (i)
k , i = 1, 2, 3, 4, be plane rooted trees with a delay function shown in

Figure 4.1. Then their plucking polynomials are given by

Q(T (1)
k ) = qk

2−kB̃k(q), Q(T (2)
k ) = qk

2+k−1Ãk(q), Q(T (3)
k ) = qk

2 C̃k(q), Q(T (4)
k ) = qk

2+2kC̃k(q),

where

Ãk(q) =
[2]2kq [4]q − qk

[3]q
, B̃k(q) =

[2]2kq [4]q − qk+3

[3]q
, C̃k(q) =

[2]2k+1
q [4]q + qk+2

[3]q
.
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(a) T (1)
k (b) T (2)

k

(c) T (3)
k (d) T (4)

k

...

...

...

...

...

...
...

...

Figure 4.1. T (1)
k , T (2)

k , T (3)
k , T (4)

k

Proof. For brevity, let Q
(i)
k = Q(T (i)

k ) for i = 1, 2, 3, 4. Then Q
(1)
1 = [2]q + q [3]q = 1 + 2q +

q2 + q3 and Q
(3)
1 = q([2]q + q [3]q) + q2 [2]q [3]q = q + 3q2 + 3q3 + 3q4 + q5. By the definition,

for k ≥ 2:

Q
(1)
k = qk−1 [2]q q

k−1Q
(1)
k−1 + qkQ

(3)
k−1 = q2k−2 [2]qQ

(1)
k−1 + qkQ

(3)
k−1,

Q
(3)
k = qkQ

(1)
k + qk+1 [2]q q

k−1Q
(3)
k−1 = q3k−2 [2]qQ

(1)
k−1 + q2k (2 + q)Q

(3)
k−1.

Let Q̃
(1)
k = q−k

2+kQ
(1)
k and Q̃

(3)
k = q−k

2

[2]q
Q

(3)
k , then the above equations become

Q̃
(1)
k = (1 + q) Q̃

(1)
k−1 + q(1 + q) Q̃

(3)
k−1,

Q̃
(3)
k = Q̃

(1)
k−1 + q(2 + q) Q̃

(3)
k−1.

Notice that

Q̃
(1)
k − Q̃

(3)
k = q(Q̃

(1)
k−1 − Q̃

(3)
k−1) = . . . = qk−1(Q̃

(1)
1 − Q̃

(3)
1 )

= qk−1

(
(1 + 2q + q2 + q3)− q−1(q + 3q2 + 3q3 + 3q4 + q4)

1 + q

)
= − qk+2

1 + q
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and

Q̃
(1)
k + q(1 + q) Q̃

(3)
k = [2]2q(Q̃

(1)
k−1 + q(1 + q) Q̃

(3)
k−1) = . . . = [2]2k−2

q (Q̃
(1)
1 + q(1 + q) Q̃

(3)
1 )

= [2]2k−2
q

(
(1 + 2q + q2 + q3) + q(1 + q)

q−1(q + 3q2 + 3q3 + 3q4 + q4)

1 + q

)
= [2]2kq [4]q.

Finally, we find Q̃
(1)
k =

[2]2kq [4]q − qk+3

[3]q
and Q̃

(3)
k =

[2]2k+1
q [4]q + qk+2

[3]q[2]q
, and hence

Q
(1)
k = qk

2−k Q̃
(1)
k = qk

2−kB̃k(q), Q(3)
k = qk

2

[2]q Q̃
(3)
k = qk

2 C̃k(q).

Similarly, we can show that

Q(T (2)
k ) = qk

2+k−1Ãk(q), Q(T (4)
k ) = qk

2+2kC̃k(q).

Define the Laurent polynomials

Ak(q) = q−k−1
[2]2kq [4]q − qk

[3]q
, Bk(q) = q−k

[2]2kq [4]q − qk+3

[3]q
, Ck(q) = q−k−1

[2]2k+1
q [4]q + qk+2

[3]q
,

for k ∈ Z≥0.

Now, we rewrite RF -formulas for cases n = 4 as follows.

Lemma 4.1.2. For the four top states in T4, RF -formulas are given by[
, ∅
]

=
A8[2]

[4][3]

[
, ∅
]
− A6

[4]

[
, {1}

]
− A4[2]

[4]

[
, {2}

]
− A6

[4]

[
, {3}

]
,

[
, ∅
]

=
A12

[4]

[
, ∅
]
− A6[3]

[4]

[
, {1}

]
− A8[2]

[4]

[
, {2}

]
− A10

[4]

[
, {3}

]
,
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[
, ∅
]

=
1

[4]

[
, ∅
]
− A2

[4]

[
, {1}

]
− [2]

[4]

[
, {2}

]
− A−2[3]

[4]

[
, {3}

]
,

and[
, ∅
]

=
A6[2]2

[4][3]

[
, ∅
]
− A4[2]

[4]

[
, {1}

]
− 2A6

[4]

[
, {2}

]
− A4[2]

[4]

[
, {3}

]
+

A6

[3][2]

[
, {1, 2}

]
+
A4

[3]

[
, {1, 3}

]
.

Proof. The above RF -formulas are a consequence of Corollary 3.2.8 after applying Theo-

rem 2.2.10 and using the formulas (A) = A−2[2], (A) = A−4 and (A) = A4 on

the right hand sides of the first three formulas. The last formula is unchanged.

Let C ∈ Catm,n, we call C vertically irreducible if |C ∩ lhi | < n, for all 1 ≤ i ≤ m − 1.

Now we state our main result:

Theorem 4.1.3. Let C be a realizable Catalan state of L(m, 4). Then C(A) is given by one

of the following closed-form formulas:

A2a[2]b[3]c[4]d
r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4),

(a, b, c, d, r, s, t) ∈ Ω0,

(4.1)

A2a[2]u+b

[4]

(
C0(A4)b

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)− 1

)
,

u ∈ {0, 1, 2}, (a, b, r, s, t) ∈ Ω
(u)
1 ,

A2a[2]b

[4]

(
C0(A4)b

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)− A−4[3]

)
,

(a, b, r, s, t) ∈ Ω2,

and

A2a[2]u+b

[4]

(
A−4[2]2C0(A4)b

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)− 2

)
,

u ∈ {1, 2}, (a, b, r, s, t) ∈ Ω
(u)
3 ,
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where αi, βj ∈ N, γk ∈ Z≥0, Ω0 = {(a, b, c, d, r, s, t) ∈ Z2 × (Z≥0)5 | b ≥ −min{c, d}}, and

sets Ω
(u)
1 ,Ω2,Ω

(u)
3 are defined in the proof.

Furthermore, the converse is also true, i.e., if P (A) ∈ Z[A±] equals to one of the above

rational functions in A, then there is m ∈ N and a realizable Catalan state C of L(m, 4),

such that C(A) = P (A).

Proof. Our proof is divided into six steps. In the first four steps, we prove that C(A) must

be given by one of the above formulas when C is vertically irreducible and has returns on

both top and bottom boundaries. In the fifth step, we prove the converse of our statement in

this case. Finally, in the last step, we consider all the remaining cases of realizable Catalan

states C of L(m, 4).

Step 1: Classification. If C is not vertically irreducible, then C can be decomposed

into vertically irreducible Catalan states C1, C2, . . . , Ck, and by Theorem 2.2.10, C(A) =∏k
i=1Ci(A). We will consider the cases of Catalan states C with no returns on top or

bottom boundary later, so now we make the following assumption:

Assumption 1. C satisfies |C ∩ lhi | < 4 for all 0 ≤ i ≤ m.

Under our assumption, there are returns on both top and bottom boundaries, there are

5 possibilities for the top and bottom states. Moreover, we do not need to consider neither

the top state nor the bottom state . This is because a Catalan state

with top (respectively bottom) state has same coefficient as the Catalan state obtained after

a finite number of first-row expansions with the top state is (respectively bottom

state is ). Since C(A) = Cr,π(A), so it suffices to consider the following 10 cases:

, , , , , , , , , .
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Step 2: Decomposing Catalan States into Tangles According to Theorem 3.1.16,

we can simplify the Catalan state C by removing all of its arcs that connect yi and y′j with

|i − j| ≤ 2, since they only change C(A) by a factor of A±2. Similarly, we can remove

arcs of two endpoints {x2, y
′
1}, {x3, y1}, {x′2, y′m}, or {x′3, ym} according to Lemma 4.1.2 and

Theorem 3.1.16. Therefore, we can make the following assumption:

Assumption 2. No arcs of C that connect yi and y′j with |i− j| ≤ 2, or

{x2, y
′
1}, {x3, y1}, {x′2, y′m}, {x′3, ym}.

By Lemma 4.1.2, to find C(A) for a Catalan state C that satisfies both Assumptions 1

and 2, it is sufficient to find C ′(A) for some Catalan states C ′ (those which appear on the

right hand side of the RF -formulas given in the lemma) whose roof and floor states are

shown in the first column of Table 4.1. Hence, we consider the Catalan state C? on the right

hand side of the RF -formula that has the same width as C and it satisfies Assumption 2

and additionally

Assumption 3. For all 1 ≤ i ≤ m − 1, |C? ∩ lhi | < 4 and the roof and

floor states of C? are shown in the first column of Table 4.1.

An arc a of a Catalan state C is called a long arc if its endpoints {yi, yj}, {yi, y′j}, or

{y′i, y′j} satisfy |i− j| > 2. Let ih(a) = min{i, j} and il(a) = max{i, j}.

Algorithm 4.1.4 gives a decomposition of C? after removing its roof and floor states

(shown in the first column of Table 4.1) into tangles shown in Table 4.2 and then it outputs

a word on the alphabet

A = {N0, N1, . . . , N6,M
(k+1)
1 ,M

(k+1)
2 ,M

(k)
3 ,M

(k)
4 , E}k∈Z≥0

.

Figure 4.2 gives examples of decomposition of Catalan states C? after removing their

corresponding roof and floor states shown in the first column in Table 4.1. Table 4.2 shows
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Table 4.1. Contributions of roof and floor states to C ′(A)

Tangle (b1, b2, . . .) Q(·) C ′(·) Tangle (b1, b2, . . .) Q(·) C ′(·)

(4, 4, 2) [4]q [3]q
[2]q

A−8 [4][3]
[2]

(2, 1) [2]q A−2[2]

(4, 1) [4]q A−10[4] (0) 1 A−2

(4, 4) [4]q A−4[4] (2) 1 A2

N/A N/A 1 N/A N/A 1

N/A N/A 1 N/A N/A A2

N/A N/A A−6 N/A N/A A−2

Algorithm 4.1.4 Decompose C? ∈ Catm,4
1: procedure DecomposeCatalanState(C?)
2: Remove roof and floor states shown in the first column of Table 4.1 from C?

3: for k ← 2 to m− 2 do
4: if |C? ∩ lk| = 0 then . A virtual tangle
5: Split C? along lhk and assign E between the two tangles determined by lhk
6: else if lhk intersects a long arc a of C? then
7: if k − ih(a) == 1 or il(a)− k == 2 then
8: Split C? along lhk
9: if k − ih(a) == 1 and il(a)− k == 2 then . Another virtual tangle

10: Assign E ′ between the two tangles determined by lhk
11: Replace each tangle by a letter according to Table 4.2
12: Replace E ′ by M

(0)
3 if N1 or N3 appears before E ′

13: Replace E ′ by M
(0)
4 if N2 or N4 appears before E ′

14: return The word formed by concatenating letters starting from the top to the bottom
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Table 4.2. Contributions of tangles to C ′(A)

Label Tangle
n = 4 n = 2

(bi+1, bi+2, . . .) Q∗(·) P4(·) (bi+1, bi+2, . . .) Q∗(·) P2(·)

N0
i

(4, 3) [3]q[2]q A−6[3][2] (2, 1) [2]q A−2[2]

N1
i

(4, 3) [2]q A2[2] (2, 0) 1 1

N2
i

(2, 4) [2]q [2] (0, 2) 1 1

N3
i

(4, 3) 1 A6 (2, 0) 1 1

N4
i

(1, 4) 1 A2 (0, 2) 1 1

N5
i

(4, 3) [3]q A−2[3] (2, 1) [2]q A−2[2]

N6
i

(4, 2) [3]q A−4[3] (2, 1) [2]q A−2[2]

M
(k)
1

i

(4, 2, . . . , 4︸ ︷︷ ︸
2k−1

) Ãk(q) A−4Bk(A4) (2, 0, . . . , 2︸ ︷︷ ︸
2k−1

) 1 A2

M
(k)
2

i

(2, 4, . . . , 2︸ ︷︷ ︸
2k−1

) B̃k(q) A−4Ak(A4) (0, 2, . . . , 0︸ ︷︷ ︸
2k−1

) 1 A−2

M
(k)
3

i

(4, 2, . . . , 2︸ ︷︷ ︸
2k

) C̃k(q) A−4Ck(A4) (2, 0, . . . , 0︸ ︷︷ ︸
2k

) 1 1

M
(k)
4

i

(2, 4, . . . , 4︸ ︷︷ ︸
2k

) C̃k(q) A−4Ck(A4) (0, 2, , . . . , 2︸ ︷︷ ︸
2k

) 1 1

E
i

( ) 1 1 ( ) 1 1
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Figure 4.2. Decomposing Catalan states by Algorithm 4.1.4

contribution of each tangle to the plucking polynomial of T (C ′) and to the maximal se-

quence bM(C ′). Let Q∗(·) = q−mindegq(Q)Q(·), where Q is the plucking polynomial (see

Definition 2.2.6). Using Theorem 2.2.7, for T ∈ A of height h that is a subtangle of C ′ of

width n, we define the Laurent polynomial

Pn(T ) = A2(
∑h
j=1 bi+j)−nhQ∗(Tn)

∣∣
q=A−4 ,

where Tn is the plane rooted tree with a delay function corresponding to T . Polynomials

Pn(T ) are the building blocks of coefficient C ′(A) as we will see it later.

Consider a Catalan state C? with M
(k)
1 as its subtangle. Figure 4.3 shows T (C?) and

the subsequence of bM(C?) corresponding to M
(k)
1 . Using Lemma 3.1.14 and Lemma 4.1.1,
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i+ 2

i+ 1

i+ 3

T

T ′
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Figure 4.3. T (C?) and subsequence of bM(C?) corresponding to M
(k)
1

since |V (T )| = i+ 1, the plucking polynomial for a Catalan state C? is

Q



i+ 1

i+ 3

i+ 2k − 1

ii+ 2
i+ 4

i+ 2k − 2

...

...

T

T ′


= Q(T ) ·Q



i+ 1

i+ 3

i+ 2k − 1

ii+ 2
i+ 4

i+ 2k − 2

...

...

T ′

1

i


=Q(T ) · qk(i−1) Q

(
T

(2)
k

)
·Q(T ′′) = Q(T ) · qk(i−1)+k2+k−1Ãk(q) ·Q(T ′′),

where T
(2)
k is the tree shown in Figure 4.1 and T ′′ is obtained by appending T ′ by a simple

path described in Lemma 3.1.14.

Words on the alphabet A = {N0, N1, . . . , N6,M
(k+1)
1 ,M

(k+1)
2 ,M

(k)
3 ,M

(k)
4 , E}k∈Z≥0

that

are obtained from Algorithm 4.1.4 are not arbitrary, but rather they satisfy certain rules.

Namely, such words are walks in the directed graphG shown in Figure 4.4 starting and ending

at vertices N3, N4 or E. We also note that M
(0)
3 and M

(0)
4 were introduced in Algorithm 4.1.4

for the convenience of our description of outputs of Algorithm 4.1.4 by the graph in Figure 4.4.

Furthermore, we also would like to add that although M
(0)
3 and M

(0)
4 have no contribution

to bM(C?), they still both contribute to the plucking polynomial of T (C?) by a factor

C̃0(q) = [3]q.
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M
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(k)
1

N1

N6

N2

N3 N4

E

N0

Figure 4.4. Directed graph G for words on A

Step 3: Expressing C(A) in terms of Pn(W). Recall, the function Pn : A→ Z[A±1]

assigns to each letter of A a unique Laurent polynomial according to Table 4.2 for n = 2, 4.

We can extend Pn to the set of non-empty words W = {W = a1a2 . . . al | ai ∈ A} on alphabet

A recursively as follows: Pn(W1W2) = Pn(W1) · Pn(W2) for n = 2, 4 and W1,W2 ∈W. Let

Wv0→vk be a walk in G starting at vertex v0 and ending at vertex vk.

Using Lemma 4.1.2, Steps 2, and Table 4.1 for the roof and floor states, we obtain the

following formulas.

(1)

W (A) =

(
A8[2]

[4][3]

)2

· W (A)− A6

[4]
· W (A)

=
A8[2]

[4]

(
P4(WE→E)

[3]
− A−4P2(WE→E)

)
.
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(2)

W (A) =
A12

[4]
· A

8[2]

[4][3]
· W (A)− A10

[4]
· W (A)

=
A6

[4]
(P4(WE→N4)− [2]P2(WE→N4)) .

(3)

W (A) =
1

[4]
· A

8[2]

[4][3]
· W (A)− A2

[4]
· W (A)

=
1

[4]

(
P4(WE→N3)− A2[2]P2(WE→N3)

)
.

(4)

W (A) =
A6[2]2

[4][3]
· A

8[2]

[4][3]
· W (A)− 2A8

[4][2]
· W (A)

=
A6

[4]

(
[2]2P4(WE→E)

[3]
− 2P2(WE→E)

)
.

(5)

W (A) =

(
A12

[4]

)2

· W (A)− A14

[4]
· W (A)

=
A8

[4]

(
P4(WN4→N4)− A2P2(WN4→N4)

)
.

(6)

W (A) =
A12

[4]
· 1

[4]
· W (A)− A2[3]

[4]
· W (A)

=
A2

[4]
(P4(WN4→N3)− [3]P2(WN4→N3)) .

(7)

W (A) =
A12

[4]
· A

6[2]2

[4][3]
· W (A)− A8[2]

[4]
· W (A)

=
A4[2]

[4]
(P4(WE→N4)− [2]P2(WE→N4)) .
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(8)

W (A) =

(
1

[4]

)2

· W (A)− A−2

[4]
· W (A)

=
A−4

[4]

(
P4(WN3→N3)− A6P2(WN3→N3)

)
.

(9)

W (A) =
1

[4]
· A

6[2]2

[4][3]
· W (A)− [2]

[4]
· W (A)

=
A−2[2]

[4]

(
P4(WE→N3)− A2[2]P2(WE→N3)

)
.

(10)

W (A) =

(
A6[2]2

[4][3]

)2

· W (A)− 2A6

[4]
· W (A)

=
A4[2]

[4]

(
[2]2P4(WE→E)

[3]
− 2P2(WE→E)

)
.

Step 4: Weights Adjustment. Formulas in Step 3 are rather inconvenient to use, so

we will adjust weights Pn(v), v ∈ V (G) to make the computation of C(A) simpler. Such

an adjustment cannot be arbitrary, but it needs to follow some rules determined by G. For

instance, we notice that, if vi = M
(k)
1 or M

(k)
3 is a vertex of W = v0v1 . . . vl then vi−1 must

be N1 or N3. Therefore, when weights of M
(k)
1 and M

(k)
3 are multiplied by A4, then weights

of N1 and N3 need to be multiplied by A−4. Therefore, we make an adjustment of weights

Pn(v), v ∈ V (G) so that, after this modification, the total weight of a directed walk W in G

is preserved if the weights of its first and last vertices are not changed. However, if weights

of these two vertices are modified, we can multiply the new weight of W by some factor

(depending only on these two vertices) to preserve the total weight of W . Figure 4.5 and

Figure 4.6 show the adjustments of weights for each v ∈ V (G), and Table 4.3 gives the new
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N5

M
(k)
3 M

(k)
2M

(k)
4M

(k)
1

N1

N6

N2

N3 N4

E

N0
(i) (P4,P2) = (A−6[3][2], A−2[2])

(1, 1)

(A−2[3], A−2[2]) (A−4[3], A−2[2])

(A2[2], 1) ([2], 1)

(A2, 1)(A6, 1) (A−4Bk, A
2)

(A−4Ck, 1) (A−4Ck, 1)

(A−4Ak, A
−2)

N5

M
(k)
3 M

(k)
2M

(k)
4M

(k)
1

N1

N6

N2

N3 N4

E

N0
(ii) (A−6[3][2], A−2[2])

(1, 1)

(A−2[3], A−2[2]) (A−4[3], A−2[2])

(A−2[2], 1) (A−4[2], 1)

(A−2, 1)(A2, 1) (Bk, A
2)

(Ck, 1) (Ck, 1)

(Ak, A
−2)

Figure 4.5. Weights adjustments on G
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N5

M
(k)
3 M

(k)
2M

(k)
4M

(k)
1

N1

N6

N2

N3 N4

E

N0
(iii) (1, 1)

(A−6[3][2], A−2[2])

(A2, 1) (1, 1)

(1, 1) (A−2, 1)

(A−2, 1)(A2, 1) (Bk, A
2)

(Ck, 1) (Ck, 1)

(Ak, A
−2)

N5

M
(k)
3 M

(k)
2M

(k)
4M

(k)
1

N1

N6

N2

N3 N4

E

N0
(iv) (P̃4, P̃2) = (1, 1)

(A−6[3][2], A−2[2])

(1, 1) (1, 1)

(1, 1) (1, 1)

(1, 1)(1, 1) (A2Bk, A
2)

(Ck, 1) (Ck, 1)

(A−2Ak, A
−2)

Figure 4.6. Weights adjustments on G (continued)
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Table 4.3. Correction factors on walks

Name P̃4(·) P̃2(·)
Ni for i = 0, 1, . . . , 6 1 1

M
(k)
1 A2Bk(A4) A2

M
(k)
2 A−2Ak(A4) A−2

M
(k)
3 Ck(A4) 1

M
(k)
4 Ck(A4) 1

E A−6[3][2] A−2[2]
Correction factor on N3 → A2 1
Correction factor on N4 → 1 1
Correction factor on E → A4/[3] A2/[2]
Correction factor on → N3 A4 1
Correction factor on → N4 A2 1
Correction factor on → E A2/[2] 1

values of weights together with the some correction factors for N3, N4, E when these vertices

are the first or last in a walk.

Let W = v0v1 . . . vl and assume that l ≥ 1. Denote by W∗ the walk obtained from W by

removing its first and last vertex, i.e., W∗ = v1v2 . . . vl−1. Then the formulas in Step 3 can

be written as:

(1)

W (A) =
A8[2]

[4]

(
A6 P̃4(WE→E)

[3]2 [2]
− A−2 P̃2(WE→E)

[2]

)

=
A2[2]2

[4]

(
P̃4(W∗E→E)− P̃2(W∗E→E)

)
.

(2)

W (A) =
A6

[4]

(
A6 P̃4(WE→N4)

[3]
− A2 P̃2(WE→N4)

)

=
A6[2]

[4]

(
P̃4(W∗E→N4

)− P̃2(W∗E→N4
)
)
.
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(3)

W (A) =
1

[4]

(
A8 P̃4(WE→N3)

[3]
− A4 P̃2(WE→N3)

)

=
A2[2]

[4]

(
P̃4(W∗E→N3

)− P̃2(W∗E→N3
)
)
.

(4)

W (A) =
A6

[4]

(
A6 [2] P̃4(WE→E)

[3]2
− 2A2 P̃2(WE→E)

[2]

)

=
A4[2]

[4]

(
A−4 [2]2 P̃4(W∗E→E)− 2 P̃2(W∗E→E)

)
.

(5)

W (A) =
A8

[4]

(
A2 P̃4(WN4→N4)− A2 P̃2(WN4→N4)

)
=
A10

[4]

(
P̃4(W∗N4→N4

)− P̃2(W∗N4→N4
)
)
.

(6)

W (A) =
A2

[4]

(
A4 P̃4(WN4→N3)− [3] P̃2(WN4→N3)

)
=
A6

[4]

(
P̃4(W∗N4→N3

)− A−4[3] P̃2(W∗N4→N3
)
)
.

(7)

W (A) =
A4[2]

[4]

(
A6 P̃4(WE→N4)

[3]
− A2 P̃2(WE→N4)

)

=
A4[2]2

[4]

(
P̃4(W∗E→N4

)− P̃2(W∗E→N4
)
)
.

(8)

W (A) =
A−4

[4]

(
A6 P̃4(WN3→N3)− A6 P̃2(WN3→N3)

)
=
A2

[4]

(
P̃4(W∗N3→N3

)− P̃2(W∗N3→N3
)
)
.
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(9)

W (A) =
A−2[2]

[4]

(
A8 P̃4(WE→N3)

[3]
− A4 P̃2(WE→N3)

)

=
[2]2

[4]

(
P̃4(W∗E→N3

)− P̃2(W∗E→N3
)
)
.

(10)

W (A) =
A4[2]

[4]

(
A6[2] P̃4(WE→E)

[3]2
− 2A2 P̃2(WE→E)

[2]

)

=
A2[2]2

[4]

(
A−4[2]2 P̃4(W∗E→E)− 2 P̃2(W∗E→E)

)
.

Since possible values for P̃4/2(·) = P̃4(·)/P̃2(·) are: 1,Ak(A4),Bk(A4), Ck(A4), C0(A4) (=

A−4[3]) and P̃2 = Ac[2]d for some c, d. We conclude that the coefficient of C satisfying

Assumptions 1 and 2 is given by one of the following closed-form formulas:

Ac[2]d

[4]

(
C0(A4)b

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)− 1

)
, (4.2)

Ac[2]d

[4]

(
C0(A4)b

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)− A−4[3]

)
(4.3)

and

Ac[2]d

[4]

(
A−4[2]2C0(A4)b

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)− 2

)
, (4.4)

where b (respectively r, s, t) is the number of times E (respectively M
(k)
2 ,M

(k)
1 and M

(k)
3 or

M
(k)
4 ) appears in W∗, c ∈ Z, d, γk ∈ Z≥0 and αi, βj ∈ N.

Step 5: Sets Ω
(u)
1 ,Ω2,Ω

(u)
3 . Given a Catalan state C satisfying Assumptions 1 and 2

introduced in Step 2, we showed that its coefficient C(A) must be given by one of the

closed-form formulas (4.2)–(4.4) for some (c, d, b, r, s, t) ∈ Z× (Z≥0)5. Now, we consider the

questions which Laurent polynomials above are coefficients of some realizable Catalan states.
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i

i i

N0 N0L− N0L+

Figure 4.7. L− and L+

Therefore, we would like to find the converse of statement given in Step 4. That is, we want

to find conditions for c, d, b, r, s, t which assure that there is a Catalan state C ∈ Catm,4 for

which C(A) is one of (4.2)–(4.4).

Since each Catalan state, after removing its roof and floor states shown in Table 4.1,

corresponds to a unique walk in Figure 4.4, so we focus on walks in the form E → E,

E → N3, E → N4, N4 → N4, N4 → N3, and N3 → N3. We introduce two letters L+

and L−, where L+ (respectively L−) represents parallel copies of arcs that connect yj, y
′
j−2

(respectively yj−2, y
′
j), see Figure 4.7.

The letter L+ can be inserted into each walk W after N0, N2, N4 and N6. Analogously,

the letter and L− can be inserted into W after N0, N1, N3 and N5. Notice that, each arc

of L+ (respectively L−) changes the coefficient C(A) by a factor of A−2 (respectively A2).

Since L+ and L− can be inserted into a walk W without changing the sequence of letters

in W that are in A, so we will still use the same notation for the words on the extended

alphabet A ∪ {L+, L−}. Let

b(W∗) = |{w ∈ W∗ : w = E}|

r(W∗) = |{w ∈ W∗ : w = M
(k)
2 for some k}|

s(W∗) = |{w ∈ W∗ : w = M
(k)
1 for some k}|

t(W∗) = |{w ∈ W∗ : w = M
(k)
3 or M

(k)
4 for some k}|

e(W∗) = (# of arcs in L−)− (# of arcs in L+)

and

ω(W∗) = (e(W∗), b(W∗), r(W∗), s(W∗), t(W∗)).
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We want to find relations among tuples (e, b, r, s, t) that assure existence ofW∗ with ω(W∗) =

(e, b, r, s, t). We analyze each of the six types of walks and check which tuples (e, b, r, s, t)

can be realized by them. Define the set Ω = Z× (Z≥0)4.

(i) E → E:

• t = 2k + 1 ≥ 1 and r, s, b ≥ 0:

W = (EN0)bEN2L+(M2N4)rM4(N3M3N4M4)bt/2c(N3M1)sN5L−E;

• t = 2k ≥ 2 and r, s, b ≥ 0:

W = (EN0)bEN1L−M3(N4M2)rN4L+M4(N3M3N4M4)bt/2c−1(N3M1)sN5E;

• s = t = b = 0 and r ≥ 1:

W = EN2L+(M2N4)r−1M2N6E;

• r = t = b = 0 and s ≥ 1:

W = EN1L−(M1M3)s−1M1N5E;

• t = 0 and r, s, b ≥ 1:

W = EN2L+(M2N4)r−1M2N6(EN0)b−1EN1L−(M1N3)s−1M1N5E;

• s = t = 0 and r, b ≥ 1:

W = (EN0)bL±EN2(M2N4)r−1M2N6E;

• r = t = 0 and s, b ≥ 1:

W = (EN0)bL±EN1(M1N3)s−1M1N5E;

• r = s = t = 0 and b ≥ 0:

W = (EN0)b+1L±E;

• (e, b, r, s, t) ∈ VE→E, where

VE→E = {(e, 0, r, s, 0) | (e, 0, r, s, 0) ∈ Ω, r, s ≥ 1}

∪ {(e, 0, r, 0, 0) | (e, 0, r, 0, 0) ∈ Ω, r ≥ 1, e ≥ 1}

∪ {(e, 0, 0, s, 0) | (e, 0, 0, s, 0) ∈ Ω, s ≥ 1, e ≤ −1}.
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In this case, W does not exist.

(ii) E → N3:

• t = 2k + 1 ≥ 1 and b, r, s ≥ 0:

W = (EN0)bEN2L+(M2N4)rM4(N3M3N4M4)bt/2c(N3M1)sN3L−;

• t = 2k ≥ 2 and b, r, s ≥ 0:

W = (EN0)bEN1L−M3N4L+(M2N4)rM4(N3M3N4M4)bt/2c−1(N3M1)sN3;

• b = r = t = 0 and s ≥ 1:

W = EN1L−(M1N3)s;

• t = 0 and b, r, s ≥ 1:

W = EN2L+(M2N4)r−1M2N6(EN0)b−1EN1L−(M1N3)s;

• r = t = 0 and b, s ≥ 1:

W = (EN0)bL±EN1(M1N3)s;

• (e, b, r, s, t) ∈ VE→N3 , where

VE→N3 = {(e, 0, r, s, 0) | (e, 0, r, s, 0) ∈ Ω, r, s ≥ 1}

∪ {(e, 0, 0, s, 0) | (e, 0, 0, s, 0) ∈ Ω, s ≥ 1, e ≤ −1}

∪ {(e, b, r, 0, 0) | (e, b, r, 0, 0) ∈ Ω}.

In this case, W does not exist.

(iii) E → N4:

• t = 2k + 1 ≥ 1 and b, r, s ≥ 0:

W = (EN0)bEN1L−(M1N3)sM3(N4M4N3M3)bt/2c(N4M2)rN4L+;

• t = 2k ≥ 2 and b, r, s ≥ 0:

W = (EN0)bEN2L+M4N3L−(M1N3)sM3(N4M4N3M3)bt/2c−1(N4M2)rN4;
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• b = s = t = 0 and r ≥ 1:

W = EN2L+(M2N4)r;

• t = 0 and b, r, s ≥ 1:

W = EN1L−(M1N3)s−1M1N5(EN0)b−1EN2L+(M2N4)r;

• s = t = 0 and b, r ≥ 1:

W = (EN0)bL±EN2(M2N4)r;

• (e, b, r, s, t) ∈ VE→N4 , where

VE→N4 = {(e, 0, r, s, 0) | (e, 0, r, s, 0) ∈ Ω, r, s ≥ 1}

∪ {(e, 0, r, 0, 0) | (e, 0, r, 0, 0) ∈ Ω, r ≥ 1, e ≥ 1}

∪ {(e, b, 0, s, 0) | (e, b, 0, s, 0) ∈ Ω}.

In this case, W does not exist.

(iv) N4 → N4:

• b = 0, t = 2k ≥ 2 and r, s ≥ 0:

W = (N4M2)rN4L+M4(N3M1)s(N3M3N4M4)bt/2c−1N3L−M3N4;

• b = s = t = 0 and r ≥ 1:

W = (N4M2)rN4L+;

• t = 2k ≥ 2, b ≥ 1 and r, s ≥ 0:

W = (N4M2)rN4L+M4N5(EN0)b−1EN1L−(M1N3)sM3(N4M4N3M3)bt/2c−1N4;

• t = 2k + 1 ≥ 3, b ≥ 1, r = 0 and s ≥ 0:

W = N4M4(N3M1)sN3L−M3N6L+(EN0)b−1EN1M3(N4M4N3M3)bt/2c−1N4;

• t = 2k + 1 ≥ 1, s ≥ 0 and b, r ≥ 1:

W = (N4M2)rN6L+(EN0)b−1EN1L−(M1N3)sM3(N4M4N3M3)bt/2cN4;
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• t = 0, s ≥ 1 and b, r ≥ 2:

W = N4M2N6L+EN1L−(M1N3)s−1M1N5(EN0)b−2EN2(M2N4)r−1;

• s = t = 0, b = 1 and r ≥ 2:

W = N4M2N6L+EN2(M2N4)r−1;

• s = t = 0 and b, r ≥ 2:

W = N4M2N6(EN0)b−1L±EN2(M2N4)r−1;

• (e, b, r, s, t) ∈ VN4→N4 , where

VN4→N4 = {(e, 0, r, s, t) | (e, 0, r, s, t) ∈ Ω, t is odd}

∪ {(e, b, 0, s, 1) | (e, b, 0, s, 1) ∈ Ω, b ≥ 1}

∪ {(e, b, 0, s, 0) | (e, b, 0, s, 0) ∈ Ω}

∪ {(e, 0, r, 0, 0) | (e, 0, r, 0, 0) ∈ Ω, r ≥ 1, e ≥ 1}

∪ {(e, 1, r, 0, 0) | (e, 1, r, 0, 0) ∈ Ω, r ≥ 2, e ≥ 1}

∪ {(e, b, r, s, 0) | (e, b, r, s, 0) ∈ Ω, b ≤ 1, r, s ≥ 1}

∪ {(e, b, 1, s, 0) | (e, b, 1, s, 0) ∈ Ω, b ≥ 1}.

In this case, W does not exist.

(v) N4 → N3:

• b = 0, t = 2k + 1 ≥ 1 and r, s ≥ 0:

W = (N4M2)rN4L+M4(N3M1)s(N3M3N4M4)bt/2cN3L−;

• t = 1, r ≥ 0 and b, s ≥ 1:

W = (N4M2)rN4L+M4N5L−(EN0)b−1EN1(M1N3)s;

• t = 2k + 1 ≥ 3, b ≥ 1 and r, s ≥ 0:

W = (N4M2)rN4L+M4N5L−(EN0)b−1EN1(M3N4M4N3)bt/2c(M1N3)s;
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• t = 2k ≥ 2, b ≥ 1 and r, s ≥ 0:

W = (N4M2)rN4L+M4N5L−(EN0)b−1EN2M4(N3M3N4M4)bt/2c−1(N3M1)sN3;

• t = 1, s ≥ 0 and b, r ≥ 1:

W = (N4M2)rN6L+(EN0)b−1EN2M4(N3M1)sN3L−;

• t = 0 and b, r, s ≥ 1:

W = (N4M2)rN6L+(EN0)b−1EN1L−(M1N3)s;

• (e, b, r, s, t) ∈ VN4→N3 , where

VN4→N3 = {(e, 0, r, s, t) | (e, 0, r, s, t) ∈ Ω, t is even}

∪ {(e, b, 0, 0, 1) | (e, b, 0, 0, 1) ∈ Ω, b ≥ 1}

∪ {(e, b, r, s, 0) | (e, b, r, s, 0) ∈ Ω, rs = 0}.

In this case, W does not exist.

(vi) N3 → N3:

• b = 0, t = 2k ≥ 2 and r, s ≥ 0:

W = (N3M1)sN3L−M3(N4M2)r(N4M4N3M3)bt/2c−1N4L+M4N3;

• b = r = t = 0 and s ≥ 1:

W = (N3M1)sN3L−;

• t = 2k ≥ 2, b ≥ 1 and r, s ≥ 0:

W = (N3M1)sN3L−M3N6(EN0)b−1EN2L+(M2N4)rM4(N3M3N4M4)bt/2c−1N3;

• t = 2k + 1 ≥ 3, b ≥ 1, s = 0 and r ≥ 0:

W = N3M3(N4M2)rN4L+M4N5L−(EN0)b−1EN2M4(N3M3N4M4)bt/2c−1N3;

• t = 2k + 1 ≥ 1, r ≥ 0 and b, s ≥ 1:

W = (N3M1)sN5L−(EN0)b−1EN2L+(M2N4)rM4(N3M3N4M4)bt/2cN3;
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• t = 0, r ≥ 1 and b, s ≥ 2:

W = N3M1N5L−EN2L+(M2N4)r−1M2N6(EN0)b−2EN1(M1N3)s−1;

• r = t = 0, b = 1 and s ≥ 2:

W = N3M1N5L−EN1(M1N3)s−1;

• r = t = 0 and b, s ≥ 2:

W = N3M1N5(EN0)b−1L±EN1(M1N3)s−1;

• (e, b, r, s, t) ∈ VN3→N3 , where

VN3→N3 = {(e, 0, r, s, t) | (e, 0, r, s, t) ∈ Ω, t is odd}

∪ {(e, b, r, 0, 1) | (e, b, r, 0, 1) ∈ Ω, b ≥ 1}

∪ {(e, b, r, 0, 0) | (e, b, r, 0, 0) ∈ Ω}

∪ {(e, 0, 0, s, 0) | (e, 0, 0, s, 0) ∈ Ω, s ≥ 1, e ≤ −1}

∪ {(e, 1, 0, s, 0) | (e, 1, 0, s, 0) ∈ Ω, s ≥ 2, e ≤ −1}

∪ {(e, b, r, s, 0) | (e, b, r, s, 0) ∈ Ω, b ≤ 1, r, s ≥ 1}

∪ {(e, b, r, 1, 0) | (e, b, r, 1, 0) ∈ Ω, b ≥ 1}.

In this case, W does not exist.

Now we can consider formulas (4.2)–(4.4).

1. For formula (4.2): We see that this formula results from one of the cases (1), (2), (3),

(5), (7), (8) and (9) in Step 4.

• Case (1): A2+2s−2r+2e−2b[2]2+b

(
P̃4/2(W∗E→E)− 1

[4]

)
. Define the set

I1 = {(1 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→E}.

• Case (2): A6+2s−2r+2e−2b[2]1+b

(
P̃4/2(W∗E→N4

)− 1

[4]

)
. Define the set

I2 = {(3 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→N4}.
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• Case (3): A2+2s−2r+2e−2b[2]1+b

(
P̃4/2(W∗E→N3

)− 1

[4]

)
. Define the set

I3 = {(1 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→N3}.

• Case (5): A10+2s−2r+2e−2b[2]b

(
P̃4/2(W∗N4→N4

)− 1

[4]

)
. Define the set

I5 = {(5 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VN4→N4}.

• Case (7): A4+2s−2r+2e−2b[2]2+b

(
P̃4/2(W∗E→N4

)− 1

[4]

)
. Define the set

I7 = {(2 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→N4}.

• Case (8): A2+2s−2r+2e−2b[2]b

(
P̃4/2(W∗N3→N3

)− 1

[4]

)
. Define the set

I8 = {(1 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VN3→N3}.

• Case (9): A2s−2r+2e−2b[2]2+b

(
P̃4/2(W∗E→N3

)− 1

[4]

)
. Define the set

I9 = {(s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→N3}.

Denote by Ω
(0)
1 = I5 ∪ I8, Ω

(1)
1 = I2 ∪ I3, and Ω

(2)
1 = I1 ∪ I7 ∪ I9.

2. For formula (4.3): This formula is obtained from the case (6) in Step 4:

A6+2s−2r+2e−2b[2]b

(
P̃4/2(W∗N4→N3

)− A−4[3]

[4]

)
.

Denote by Ω2 = {(3 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VN4→N3}.

3. For formula (4.4): This formula results from cases (4) or (10) in Step 4:

• Case (4): A4+2s−2r+2e−2b[2]1+b

(
A−4[2]2P̃4/2(W∗E→E)− 2

[4]

)
. Define the set

Ω
(1)
3 = {(2 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→E}.
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• Case (10): A2+2s−2r+2e−2b[2]2+b

(
A−4[2]2P̃4/2(W∗E→E)− 2

[4]

)
. Define the set

Ω
(2)
3 = {(1 + s− r + e− b, b, r, s, t) | (e, b, r, s, t) ∈ Ω \ VE→E}.

Then the sets Ω
(u)
1 ,Ω2,Ω

(u′)
3 for u ∈ {0, 1, 2}, u′ ∈ {1, 2} defined above are indeed all feasible

tuples (a, b, r, s, t) for the formulas. This finishes our discussion of all cases that satisfy

Assumption 1.

Step 6: Set Ω0. Consider the Catalan states C with |C ∩ lhi | = 4, for some 0 ≤ i ≤

m. Using lines lhi we split C into a finite number of vertically irreducible Catalan states

C1, C2, . . . , Cl.

Since the number of crossings of L(m, 4) is 4m, the exponent of A in the formula (4.1)

must be even. We notice that each Ci has no returns on its bottom boundary except possibly

for Cl. However, after a π-rotation of Ck we may assume that all Ci have no returns on the

bottom boundary. Figure 4.8 shows the list of all infinite families of roof sates except those

with an arc that have endpoints xi and x′j. These were obtained by considering, in particular,

all possible roof states that have one arc with one of its endpoints xi and the other either yk,

y′k, k ≥ 4, and the roof states with all of its arcs with an endpoint xi and the other either yk

or y′k, k ≤ 3, or xj. We notice that if a Catalan state C has an arc with endpoints xi and x′j

then the plucking polynomial of T (C) is a product of [2]q’s and [3]q’s. Moreover, one shows

that the plucking polynomial corresponding to families of the roof states in Figure 4.8 are,

up to a power of q, products of [4]q [3]q
[2]q

, [2]q, [3]q, [4]q and Ãα(q), B̃β(q), C̃γ(q). To compute

C(A), notice that by Theorem 3.1.16, we can remove from C all arcs with endpoints yi and

y′j with |i − j| ≤ 2. Cutting off the roof state above the line lhk and one of the floor states

shown in the first column of Table 4.1 results in tangleM for which we can use an algorithm

this similar to Algorithm 4.1.4 and decompose M into tangles in Table 4.2. Then using

Step 2, we translate this decomposition of M into the corresponding directed walk W in
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Figure 4.8. Roof states for vertically irreducible Catalan states of L(m, 4)

the directed graph G (see Figure 4.4). Using Step 3, we compute the corresponding Laurent

polynomial P4(W). Therefore, contribution of M to Ci(A) is a product of [2], [3], Aα(A4),

Bβ(A4) and Cγ(A4). Hence C(A) must be of the form:

A2a

(
[4][3]

[2]

)ā
[2]b̄[3]c̄[4]d̄

r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)

=A2a[2]b[3]c[4]d
r∏
i=1

Aαi(A4)
s∏
j=1

Bβj(A4)
t∏

k=1

Cγk(A4)

for ā, b̄, c̄, d̄ ≥ 0. Notice that in the above, b = b̄− ā, c = c̄+ ā, d = d̄+ ā. This implies that

b+ c ≥ 0, b+ d ≥ 0, so b ≥ −min{c, d}.
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To prove the converse, we construct a Catalan state C for which C(A) is the Laurent

polynomial as the above. Such C can be constructed by vertical product of Catalan state

C†, , , , , , , and a π-rotation of C‡, where C† and C‡ are defined

below. Let T̂ , T̂ s, B̂, L−B̂, B̂s be roof and floor states shown in Figure 4.9. Notice that,

if the roof state T̂ (respectively T̂ s) is used to construct C† (respectively C‡) then it needs

to be followed by a walk N4 → (respectively N3 →) that originates at N4 (respectively

N3). Moreover, the roof state T̂ (respectively T̂ s) contributes a factor A−2 (respectively A2)

to C†(A) (respectively C‡(A)). If the floor state B̂ (respectively L−B̂, B̂s) is used in the

construction of C† or C‡ then the walk → N3 (respectively → N3, → N4) we use needs to

end with N3 (respectively N3, N4). The floor state B̂ (respectively L−B̂, B̂s) contribute a

factor 1 (respectively A2, A−6) to C†(A) or C‡(A). Given (a, b, c, d, r, s, t) ∈ Ω0, we construct

Catalan states C†, C‡ as follows:

• If t is even, then C† is the Catalan state obtained as concatenation of T̂ with the tangle

corresponding to the walk W = N4(M2N4)r, and the floor state B̂s is used; If t is odd,

we use T̂ , W = N4(M2N4)rM4N3 and B̂ to construct C†.

• C‡ is constructed by concatenation of the roof state T̂ s with the tangle corresponding to

walk W = N3(M1N3)s(M3N4M4N3)bt/2c and one of the floor states Lu−B̂ (u ∈ {0, 1}).

One shows that:

(A) = A−8 [4][3]

[2]
, (A) = A−14[4], (A) = A−8[3],

(A) = A−2[2], (A) = A4, (A) = A−4.

Let ā = max{−b, 0}, b̄ = b+ ā, c̄ = c− ā, d̄ = d− ā. Then we construct C by concatenating C†

with ā, b̄, c̄, d̄ of , , , ’s, suitable number of ’s or ’s and a π-rotation

of C‡ with u ∈ {0, 1} suitably chosen. One checks that C(A) is the Laurent polynomial of

the form (4.1) determined by (a, b, c, d, r, s, t) ∈ Ω0.
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T̂ T̂ s B̂ L−B̂ B̂s

Figure 4.9. Roof and floor states for C† and C‡

Remark 4.1.5. Theorem 4.1.3 gives a closed-form formulas for coefficients of realizable

Catalan states of a lattice crossing with four vertical strands. However, when m is fixed,

finding a similar formula for realizable Catalan states of L(m, 4) is rather difficult task. This

is because, sets Ω0,Ω
(u)
1 ,Ω2,Ω

(u)
3 need to be modified appropriately. In particular, to make

such modifications we define a height function h(·) that assigns to each tangle from Table

4.2 (and some other) the number of points on the right (or left) boundary as its value. For

example, h(N0) = 2, h(M
(k)
1 ) = 2k − 1, h(E) = 0. Then one adds an additional condition in

the Step 5-6 of our proof: if C can be decomposed into tangles t1, . . . , tk, then
∑k

i=1 h(ti) = m.

Similar results for n = 1, 2, 3 can be obtained. Indeed, for n = 1, C(A) equals Aa for

some a ∈ Z. When n = 2, C(A) = A2a[2]b, for some a ∈ Z, b ∈ Z≥0. For n = 3, C(A) is

given as a result of following theorem.

Theorem 4.1.6. Let C be a realizable Catalan state of L(m, 3). Then C(A) is given by one

of the following closed-form formulas:

Aa[2]b[3]c, (a, b, c) ∈ Z× Z≥0 × Z≥0

and

Aa[2]u

[3]

(
A−4b[2]2b − 1

)
, u ∈ {0, 1}, (a, b) ∈ Z× N.

Furthermore, the converse is true, i.e., suppose that P (A) ∈ Z[A±] is in the form above,

then there is m ∈ N and a realizable Catalan state C of L(m, 3), such that C(A) = P (A).
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Figure 4.10. Proof of Theorem 4.1.6

Proof. Our proof is similar to the case n = 4. First we consider the cases C ∈ Catm,3

satisfying |C ∩ lhi | < 3, for 0 ≤ i ≤ m. When n = 3, there are only two possible top or

bottom states. After removing all arcs that connect yj and y′j±1, up to a π-rotation, we are

left with the following Catalan states C
(k)
1 , C

(k)
2 , C

(k)
3 shown in Figure 4.10. As one checks

that C
(k)
4 (A) = A−4k−1[2]2k, C

(k)
5 (A) = A−4k−4[2]2k+1, C

(k)
6 (A) = A, C

(k)
7 (A) = 1, thus by

Corollary 3.2.7,

C
(k)
1 (A) =

A6

[3]
C

(k)
4 (A)− A4

[3]
C

(k)
6 (A) =

A5

[3]

(
A−4k[2]2k − 1

)
,

C
(k)
2 (A) =

A2

[3]
(C

(k)
4 )s(A)− A4

[3]
(C

(k)
6 )s(A) =

A3

[3]

(
A−4k[2]2k − 1

)
,

and

C
(k)
3 (A) =

A6

[3]
C

(k)
5 (A)− A2[2]

[3]
C

(k)
7 (A) =

A2[2]

[3]

(
A−4k[2]2k − 1

)
.

Putting back arcs connecting yj and y′j±1 to C
(k)
1 , C

(k)
2 , C

(k)
3 , when k ≥ 2, results in the

second formula for (a, b) ∈ Z × (N \ {1}). The case b = 1 can be dealt as the next case

discussed below.

Now we consider cases of Catalan states for which there is 0 ≤ i ≤ m, such that |C∩ lhi | =

3. In such a case, like in the case n = 4, we split C into vertically irreducible Catalan states,

and after classifying all possible tops and bottoms, for each irreducible state, one shows that

C(A) must a Laurent polynomial in the form Aa[2]b[3]c, (a, b, c) ∈ Z× Z≥0 × Z≥0.

105



For the converse, one sees that

(A) = A−7[3], (A) = A−2[2], (A) = A−3,

( )s(A) = A3, (A) = A−1, ( )s(A) = A.

So given (a, b, c) ∈ Z × Z≥0 × Z≥0, one constructs a Catalan state C using b of ’s, c

of ’s, some number of ’s or ( )s, and possibly one of the states or ( )s.

Clearly, for such C, C(A) = Aa[2]b[3]c. The second formula is already discussed above.

4.2 The Unimodality of Coefficients of Catalan States

Recall, a sequence (ai)
n
i=0 = (a0, a1, . . . , an) of real numbers is unimodal if a0 ≤ a1 ≤ . . . ≤

ai ≥ ai+1 ≥ . . . ≥ an, for some 0 ≤ i ≤ n. A polynomial P (q) = a0 + a1q + . . . + anq
n is

called unimodal if the sequence of its coefficients (a0, a1, . . . , an) is unimodal. Unimodality

of the coefficient C(A) of a Catalan state C is defined as follows:

Definition 4.2.1. Let C be a realizable Catalan state of L(m,n) and

C(A) = Ak
l∑

i=0

aiA
4i

be its coefficient, k ∈ Z and l ∈ Z≥0. We say that C(A) is unimodal if the sequence (ai)
l
i=0

is unimodal.

The main results of this section give partial answers to the following questions:

Question 4.2.2.

• Are coefficients of realizable Catalan states of L(m, 4) unimodal?

• For which pairs (m,n), coefficients of all realizable Catalan states of L(m,n) are uni-

modal?
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Recall, the following definitions: Let (ai)
n
i=0 = (a0, a1, . . . , an) be a unimodal sequence of

real numbers, the index 0 ≤ i ≤ n such that a0 ≤ a1 ≤ . . . ≤ ai ≥ ai+1 ≥ . . . ≥ an is called

a mode of (ai)
n
i=0. A sequence (ai)

n
i=0 is log-concave if a2

i ≥ ai−1ai+1, for all 1 ≤ i ≤ n − 1.

A sequence (ai)
n
i=0 has no internal zeros if there is no integers 0 ≤ i < j < k ≤ n satisfying

ai 6= 0, aj = 0, and ak 6= 0. A sequence (ai)
n
i=0 is symmetric if ai = an−i, for all 0 ≤ i ≤ n.

A polynomial P (q) = a0 + a1q + . . . + anq
n is log-concave (respectively symmetric) if the

sequence of its coefficients (a0, a1, . . . , an) is log-concave (respectively symmetric). It can

easily be seen that positive log-concave sequences are unimodal.

Theorem 4.2.3 (Stanley [28], Keilson-Gerber [17]). Given polynomials A(q) and B(q) with

nonnegative coefficients.

(a) If coefficients of A(q) and B(q) are log-concave and have no internal zeros, then coef-

ficients of A(q)B(q) have the same properties.

(b) If A(q) is unimodal and B(q) is log-concave, then A(q)B(q) is unimodal.

Recall, polynomials Ãk(q), B̃k(q), and C̃k(q) are defined by:

Ãk(q) =
[2]2kq [4]q − qk

[3]q
= a0 + a1q + . . .+ a2k+1q

2k+1,

B̃k(q) =
[2]2kq [4]q − qk+3

[3]q
= b0 + b1q + . . .+ b2k+1q

2k+1,

and

C̃k(q) =
[2]2k+1

q [4]q + qk+2

[3]q
= c0 + c1q + . . .+ c2k+2q

2k+2,

for k ≥ 0.

Lemma 4.2.4. Polynomials Ãk(q), B̃k(q), and C̃k(q) satisfy the following properties

(a) a2k+1−i = ai for all i 6= k, k + 1 and ak+1 = ak + 1,

(b) bi = a2k+1−i for all i, and
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(c) ci = ai + ai−1 for all i 6= k and ck = ak + ak−1 + 1, where a−1 = a2k+2 = 0.

Proof. It is sufficient to notice that properties (a)–(c) are the consequences of the following

observations:

Ãk(q)− B̃k(q) =
qk+3 − qk

[3]q
= qk+1 − qk,

Ãk(q−1) =
q−2k−3[2]2kq [4]q − q−k

q−2[3]q
= q−2k−1B̃k(q),

and

C̃k(q)− Ãk(q)[2]q = qk.

We see that substituting for B̃k(q) from the first equation into the second and comparing the

coefficients yields (a). Properties (b) and (c) follow from (a) and the above identities.

Lemma 4.2.5. Let Ãk(q), B̃k(q), and C̃k(q) be polynomials defined above. Then

(a) Coefficients of Ãk(q) are non-negative and unimodal with the mode k + 1,

(b) Coefficients of B̃k(q) are non-negative and unimodal with the mode k, and

(c) Coefficients of C̃k(q) are non-negative, symmetric and unimodal with a mode k + 1.

Proof. We prove (a) by induction on k. When k = 0 or k = 1, Ã0(q) = q and Ã1(q) =

1 + q + 2q2 + q3 both polynomials have non-negative unimodal coefficients with the mode 1

or 2 respectively.

Assume that Ãk(q) = a0 +a1q+ . . .+a2k+1q
2k+1 and a0 ≤ a1 ≤ . . . ≤ ak ≤ ak+1 ≥ ak+2 ≥

. . . ≥ a2k+1. Since

Ãk+1(q) =
[2]2k+2

q [4]q − qk+1

[3]q
=

[2]2q([3]qÃk(q) + qk)− qk+1

[3]q
= [2]2qÃk(q) + qk,

if Ãk+1(q) = a′0 + a′1q + . . . + a′2k+3q
2k+3, then a′i = ai + 2ai−1 + ai−2, for all 0 ≤ i ≤ 2k + 3

except when i = k, a′k = ak + 2ak−1 + ak−2 + 1, where a−1 = a−2 = a2k+2 = a2k+3 = 0. By
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Lemma 4.2.4, it suffices to show that a′0 ≤ a′1 ≤ . . . ≤ a′k ≤ a′k+1. Since a′i = ai + 2ai−1 +

ai−2 ≤ ai+1 + 2ai + ai−1 ≤ a′i+1, for all 0 ≤ i ≤ k − 1, and a′k = ak + 2ak−1 + ak−2 + 1 =

ak+1 + 2ak−1 + ak−2 ≤ ak+1 + 2ak + ak−1 ≤ a′k+1, statement given in (a) follows.

Statement (b) is a consequence of (a) and Lemma 4.2.4.

Since

C̃k(q−1) =
q−2k−4[2]2k+1

q [4]q + q−k−2

q−2[3]q
= q−2k−2C̃k(q),

polynomial C̃k(q) is symmetric. By Lemma 4.2.4, ci−1 = ai−1 + ai−2 ≤ ai + ai−1 ≤ ci, for all

1 ≤ i ≤ k and ck = ak+ak−1 +1 = ak+1 +ak−1 ≤ ak+1 +ak ≤ ck+1. Since C̃k(q) is symmetric,

statement (c) follows.

Lemma 4.2.6. Ãk(q) and B̃k(q) are log-concave for k ≥ 2 and C̃k(q) is log-concave for

k ≥ 1.

Proof. We prove that Ãk(q) is log-concave for k ≥ 2 by induction on k. One checks that

Ã2(q) = 1 + 4q+ 5q2 + 6q3 + 4q4 + q5 is log-concave. Let Ãk(q) = a0 + a1q+ . . .+ a2k+1q
2k+1

and Ãk+1(q) = a′0 + a′1q + . . . + a′2k+3q
2k+3 and assume that Ãk(q) is log-concave. In the

proof of Lemma 4.2.5 we showed a′i = ai + 2ai−1 + ai−2 for all 0 ≤ i ≤ 2k + 3 except i = k,

which is a′k = ak + 2ak−1 + ak−2 + 1, where a−1 = a−2 = a2k+2 = a2k+3 = 0. Moreover, by

the induction hypothesis a2
i − ai+1ai−1 ≥ 0 for all 0 ≤ i ≤ 2k + 1.

• For 0 ≤ i ≤ k − 2 and k + 2 ≤ i ≤ 2k + 3:

(a′i)
2 − a′i+1a

′
i−1 = (ai + 2ai−1 + ai−2)2 − (ai+1 + 2ai + ai−1)(ai−1 + 2ai−2 + ai−3)

= (a2
i + 4a2

i−1 + a2
i−2 + 4aiai−1 + 2aiai−2 + 4ai−1ai−2)

− (ai+1ai−1 + 2ai+1ai−2 + ai+1ai−3 + 2aiai−1 + 4aiai−2

+ 2aiai−3 + ai−1ai−1 + 2ai−1ai−2 + ai−1ai−3)

= a2
i + 3a2

i−1 + a2
i−2 + 2aiai−1 − 2aiai−2 + 2ai−1ai−2

− ai+1ai−1 − 2ai+1ai−2 − ai+1ai−3 − 2aiai−3 − ai−1ai−3 ≥ 0,

because aiai−1 ≥ ai+1ai−2 and a2
i−1 ≥ ai+1ai−3.
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• For i = k − 1,

(a′k−1)2 − a′ka′k−2

=(ak−1 + 2ak−2 + ak−3)2 − (ak + 2ak−1 + ak−2 + 1)(ak−2 + 2ak−3 + ak−4)

=(ak+2 + 2ak+3 + ak+4)2 − (ak+1 + 2ak+2 + ak+3)(ak+3 + 2ak+4 + ak+5)

=(a′k+4)2 − a′k+3a
′
k+5 ≥ 0,

by Lemma 4.2.4 and previous case when i = k + 4.

• For i = k,

(a′k)
2 − a′k+1a

′
k−1

=(ak + 2ak−1 + ak−2 + 1)2 − (ak+1 + 2ak + ak−1)(ak−1 + 2ak−2 + ak−3)

≥(ak + 2ak−1 + ak−2)2 − (ak+1 + 2ak + ak−1)(ak−1 + 2ak−2 + ak−3) ≥ 0,

using arguments similar to the first case.

• For i = k + 1,

(a′k+1)2 − a′k+2a
′
k = (ak+1 + 2ak + ak−1)2 − (ak+2 + 2ak+1 + ak)(ak + 2ak−1 + ak−2 + 1)

= (3ak + ak−1 + 1)2 − (3ak + ak−1 + 2)(ak + 2ak−1 + ak−2 + 1)

= (6a2
k + ak)− (3akak−2 + akak−1 + a2

k−1 + ak−1ak−2 + 3ak−1 + 2ak−2 + 1)

≥ (5akak−1 + 3ak−1 + ak)− (3akak−2 + a2
k−1 + ak−1ak−2 + 2ak−2 + 1) ≥ 0,

since by Lemma 4.2.4, a2
k ≥ ak+1ak−1 = (ak + 1)ak−1 and ak ≥ 1 (which is clearly true

for Ãk(q) when k ≥ 1).

By Lemma 4.2.4, it follows that B̃k(q) for k ≥ 2 is log-concave.

Clearly, C̃1(q) = 1 + 3q + 3q2 + 3q3 + q4 is log-concave. For k ≥ 2, to show that C̃k(q) is

log-concave, we use the relation ci = ai + ai−1, for i 6= k, and ck = ak + ak−1 + 1.
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• For 0 ≤ i ≤ k − 2 and k + 2 ≤ i ≤ 2k + 2

c2
i − ci+1ci−1 = (ai + ai−1)2 − (ai+1 + ai)(ai−1 + ai−2)

= (a2
i + a2

i−1 + 2aiai−1)− (ai+1ai−1 + ai+1ai−2 + aiai−1 + aiai−2) ≥ 0,

because aiai−1 ≥ ai+1ai−2.

• For i = k − 1,

c2
k−1 − ckck−2

=(ak−1 + ak−2)2 − (ak + ak−1 + 1)(ak−2 + ak−3)

=(ak+2 + ak+3)2 − (ak+1 + ak+2)(ak+3 + ak+4)

=c2
k+3 − ck+2ck+4 ≥ 0,

using Lemma 4.2.4 and previous case with i = k + 3.

• For i = k,

c2
k − ck+1ck−1

=(ak + ak−1 + 1)2 − (ak+1 + ak)(ak−1 + ak−2)

≥(ak + ak−1)2 − (ak+1 + ak)(ak−1 + ak−2) ≥ 0,

by arguments similar as in the first case.

• For i = k + 1,

c2
k+1 − ck+2ck = (ak+1 + ak)

2 − (ak+2 + ak+1)(ak + ak−1 + 1)

= (ak+1 + ak)
2 − (ak+1 + ak−1)2 ≥ 0,

since ak ≥ ak−1.

This completes our proof.

Theorem 4.2.7. Let C be a realizable Catalan state of L(m, 4). If |C ∩ lhi | = 4 for some

0 ≤ i ≤ m, then C(A) is unimodal.
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Cm,k C ′
k

k

m m

k

Figure 4.11. Examples of non-unimodal cases

Proof. According to Theorem 4.1.3, it suffices to show that[
4

2

]a
q

[2]bq [3]cq [4]dq

r∏
i=1

Ãαi(q)
s∏
j=1

B̃βj(q)
t∏

k=1

C̃γk(q),

is unimodal, for all a, b, c, d ∈ Z≥0 and αi, βj, γk ∈ N. Polynomials [2]q, [3]q, [4]q are log-

concave and by Lemma 4.2.6 Ãk(q), B̃k(q), C̃k′(q) are also log-concave (and their coefficients

are non-negative and have no internal zeros), for k ≥ 2 and k′ ≥ 1. One checks that Ã1(q)n is

log-concave for n = 3, 4, 5. Since for n ≥ 6, n = 3n1 + 4n2, for some n1, n2 ≥ 0, it follows by

Theorem 4.2.3 that Ã1(q)n = (Ã1(q)3)n1(Ã1(q)4)n2 is log-concave. Therefore, for all n ≥ 3,

Ã1(q)n is log-concave. The above argument also applies for B̃1(q)n and
[

4
2

]n
q
. Finally, one

checks that
[

4
2

]a
q
Ã1(q)nB̃1(q)n

′
are unimodal, for all 0 ≤ a, n, n′ ≤ 3. Therefore, we conclude

our statement by applying Theorem 4.2.3.

The following lemma partially answers the second part of the Question 4.2.2.

Lemma 4.2.8. Coefficients Cm,k(A) and C ′k(A) of Catalan states Cm,k ∈ Cat4+m+k,4+m and

C ′k ∈ Cat9+k,5 are not unimodal, for all m ≥ 2, k ≥ 0, where Cm,k and C ′k are shown in

Figure 4.11.
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Proof. We find Cm,0(A) by applying the first-row expansion (3.1) and Lemma 3.1.1,

m

m

(A) = A−(m+4)+2·1 ·

m

m

(A)

+ A−(m+4)+2(m+4) ·
m

m

(A) + A−(m+4)+2(1+(m+4)−(m+3)) ·

m

m

(A)

= A−m−2 · m

m

(A−1) + Am+4 · m

m

(A−1) + A−m ·
m

m

(A−1).

The last three Catalan states have no returns on the bottom boundary, thus we can

compute their coefficients using Theorem 2.2.7:

• For C =
m

m

, one checks that

bM(C) = (m+ 2,m+ 3, . . . ,m+ 3︸ ︷︷ ︸
m+1

,m+ 1,m+ 1)⇒ ‖bM(C)‖ = m2 + 7m+ 7

and the plucking polynomial with a delay function associated to C is given by

Q

 2

1 2

m

 = q

[
m+ 3

2

]
q

.

Hence, C(A) = A2(m2+7m+7)−(m+3)(m+4)
[
m+3

2

]
q=A−4 .

• For C =
m

m

, one verifies that

bM(C) = (m+ 2,m+ 3, . . . ,m+ 3︸ ︷︷ ︸
m+1

,m+ 2, 1)⇒ ‖bM(C)‖ = m2 + 6m+ 8
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and the plucking polynomial with a delay function associated with C is given by

Q


m+ 3

1 2

m1

 = q
(
[m+ 2]q + qm+1[2]q

)
[2]q.

Hence, C(A) = A2(m2+6m+8)−(m+3)(m+4)
(

([m+ 2]q + qm+1[2]q) [2]q
)
q=A−4 .

• For C =
m

m

, one checks that

bM(C) = (m+ 2, . . . ,m+ 2︸ ︷︷ ︸
m+1

,m+ 1)⇒ ‖bM(C)‖ = m2 + 4m+ 3

and the plucking polynomial with a delay function associated with C is given by

Q


1

m+ 11

 = [m+ 2]q.

Hence, C(A) = A2(m2+4m+3)−(m+3)(m+2)[m+ 2]q=A−4 .

It follows that the coefficient of Cm,0 is

Cm,0(A) = A−m
2−8m−4

(
[m+ 3][m+ 2]

[2]
+ A4m+4[2]([m+ 2] + A4m+4[2]) + A4m+4[m+ 2]

)
= A−m

2−8m−4
(
A8m+16 + 3A8m+12 + 5A8m+8 + 4A8m+4 + 5A8m +Q(A)

)
,

where Q(A) is a polynomial of A with degAQ(A) ≤ 8m − 4. This shows that Cm,0(A) is

not unimodal. Using the first-row expansion (3.1), we see that Cm,k(A) = A−(m+2)kCm,0(A).

Therefore, Cm,k(A) is also not unimodal.

The coefficient C ′0(A) was found in Example 3.1.15 and it is not unimodal. Since using the

first-row expansion (3.1), C ′k(A) = A−3kC ′0(A), it follows that C ′k(A) is also not unimodal.

It is known that coefficients of realizable Catalan states of L(m,n), n = 1, 2, 3, are

Laurent polynomials with unimodal coefficients. Using a computer, one verifies that all

114



coefficients of realizable Catalan states of L(m, 5), where 1 ≤ m ≤ 8, are also unimodal.

Hence, to answer the second part of Question 4.2.2 we only need to answer its first part.

Using Theorem 4.1.3, it is then suffices to prove the following conjecture:

Conjecture 4.2.9. If the rational functions given by (4.2), (4.3) and (4.4) are Laurent

polynomials, then they are unimodal.
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CHAPTER 5

GENERALIZED CROSSING AND FUTURE WORK

5.1 Coefficients of Catalan States of Generalized Crossing

Let G(k,m) and G̃(k, n,m) be tangles shown in Figure 5.1(c) and Figure 5.1(d), and let a
(k)
n ,

ã
(k)
m = b

(k)
k−m, c

(k)
∗ be arcs with endpoints {xn, xn+1}, {ym, ym+1}, {x1, yk}, respectively, as in

Figure 5.1(b). We see that G(k, 1) = G(k) and G(k, k) = G(k − 1) c
(k)
∗ , where G(k − 1) c

(k)
∗

is the generalized crossing G(k − 1) with the arc c
(k)
∗ and its two endpoints added. For

convenience, let G(0, 1) = G(0). After smoothing the crossing c of G(k,m) and G̃(k, n,m),

in the RKBSM, one obtains

G(k,m) = A G̃(k,m+ 1,m) + A−1 G(k,m+ 1)

= A G̃(k,m+ 1,m) + A−1
[
A G̃(k,m+ 2,m+ 1) + A−1 G(k,m+ 2)

]
=

[
k−m∑
j=1

A2−j G̃(k,m+ j,m+ j − 1)

]
+ Am−k G(k, k)

and

G̃(k, n,m) = AG(k − 2, n− 2) a
(k)
n−1 ã

(k)
m + A−1 G̃(k, n− 1,m)

= AG(k − 2, n− 2) a
(k)
n−1 ã

(k)
m

+ A−1
[
AG(k − 2, n− 3) a

(k)
n−2 ã

(k)
m + A−1 G̃(k, n− 2,m)

]
=

[
n−2∑
i=1

A3−n+i G(k − 2, i) a
(k)
i+1 ã

(k)
m

]
+ A2−n G(k − 2, 1) a

(k)
1 ã(k)

m

=
n−2∑
i=0

A3−n+i−1{i=0} G(k − 2,max{i, 1}) a(k)
i+1 ã

(k)
m ,
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(c) G(k,m), 1 ≤ m ≤ k (d) G̃(k, n,m), 2 ≤ n ≤ m+ 1 ≤ k

x1 x2 xk
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(a) G(k) = G(k, 1)

ym

xn
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x1 x2 xk

y1

y2
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(b) a
(k)
n , ã

(k)
m = b

(k)
k−m, c

(k)
∗ , 1 ≤ n,m ≤ k − 1

ym

xn

ã
(k)
m = b

(k)
k−m

a
(k)
n

c
(k)
∗

xn+1

ym+1

ym+1
c

c

Figure 5.1. Tangles G(k),G(k,m), G̃(k, n,m) and arcs a
(k)
n , ã

(k)
m , c

(k)
∗

where G(k − 2, i) a
(k)
n ã

(k)
m is the tangle G(k − 2, i) with the arcs a

(k)
n and ã

(k)
m together with

their two endpoints added (see Figure 5.1(b)). Thus,

G(k,m)

=

k−m∑
j=1

A2−j

(m+j)−2∑
i=0

A3−(m+j)+i−1{i=0} G(k − 2,max{i, 1}) a(k)
i+1 ã

(k)
m+j−1

+ Am−k G(k, k),

and, after the change of indices: i→ k − i− 1 and j → j −m+ 1, one obtains:

G∗(k,m) = A−mG(k,m)

=

 ∑
(i,j)∈I(k,m)

A1+2(k−i−j) G∗(k − 2,max{k − i− 1, 1}) a(k)
k−i b

(k)
k−j

+ A1−k G∗(k − 1, 1) c(k)
∗ ,

(5.1)
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+3

−5

v0

(a) C ∈ Cat7 (b) The dual graph of C in 47 (c) T (C)

−2
0

Figure 5.2. Dual tree T (C) for C ∈ Catk

where I(k,m) = {(i, j) ∈ N× N | i ≤ k − 1, m ≤ j ≤ k − 1, i+ j ≥ k} is the feasible set of

indices for a
(k)
k−i and b

(k)
k−j.

Using the above equation, we see that there is a recursion that computes coefficients

of Catalan states of G(k) that is an analog of the first-row expansion for lattice crossing

L(m,n).

Definition 5.1.1. Define a plane rooted tree with a label function associated to a Catalan

state C ∈ Catk as follows. Denote by T (C) the dual graph of C in 4k. The root v0 of T (C)

is the vertex that corresponds to the region containing the hypotenuse of 4k. Define the label

function f from the set of leaves L(T (C)) of T (C) different than v0 as follows. For a leaf v

let f(v) = −i if v corresponds to the region bounded by the arc with boundary {xk−i, xk−i+1},

and f(v) = j if v corresponds to the region determined by the arc with boundary {yj, yj+1},

respectively, for 1 ≤ i, j ≤ k − 1, and we put f(v) = 0 if the region corresponding to v is

determined by the arc with endpoints {xk, y1} (see Figure 5.2). The plane rooted tree with a

delay function determined by a Catalan state C is the triple T (C) = (T (C), v0, f).

Definition 5.1.2. Let T = (T, v0, f) be a plane rooted tree (T, v0) with the root v0 and a

label function f defined on the set L(T ) of all leaves v different that v0 and let F(k,m) =
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{(v, u) ∈ L(T ) | (−f(v), f(u)) ∈ I(k,m)} be the feasible set of leaves. Define a polynomial

Q̃k,m(T (C)) of A, k ≥ 0 and 1 ≤ m ≤ max{k, 1}, recursively as follows.

Let Q̃k,m(T, v0, f) = 0 if T is not a tree, Q̃0,1(T, v0, f) = 1 if T has no edges, and

Q̃k,m(T, v0, f) = A1−k Q̃k−1,1(T − v0, v
′
0, fv0)

+
∑

(v,u)∈F(k,m)

A1+2(k+f(v)−f(u)) Q̃k−2,max{k+f(v)−1,1}(T − {v, u}, v0, fv,u),
(5.2)

where v′0 is the vertex that is incident to the unique edge that is incident to v0 in T , provided

that T − v0 is a tree, fv0(w) = f(w) for all w ∈ L(T − v0), and1

fv,u(w) =


f(w), if f(v) < f(w) < f(u),

sgn(f(w′)) · (|f(w′)| − 1), if w is a new leaf, {w,w′} ∈ E(T ) for w′ ∈ {v, u},

sgn(f(w)) · (|f(w)| − 2), otherwise,

for all w ∈ L(T − {v, u}).

Proposition 5.1.3. Given a Catalan state C of G(k). Let T (C) be the plane rooted tree

with a label function associated with C. Then

C(A) = Q̃k,1(T (C)),

where Q̃k,1(·) is defined as in Definition 5.1.2.

Proof. Let C be a Catalan state of G(k), and let (C)k,m be the coefficient of Catalan state

C of G∗(k,m) = A−m · G(k,m). According to (5.1),

(C)k,m =

 ∑
(i,j)∈I(k,m)

A1+2(k−i−j)
(
C − {a(k)

k−i, b
(k)
k−j}

)
k−2,max{k−i−1,1}

+ A1−k (C − c(k)
∗
)
k−1,1

.

Let Q̃k,m(T (C)) = A · (C)k,m. It is easy to see that (5.2) is same as the equation above, and

the initial condition Q̃0,1(T (C)) = 1 = A · A−1 = A · (C)0,1 since (C)0,1 is the coefficient of

G∗(0, 1) = A−1G(0, 1). Therefore, the C(A) = A · (C)k,1 = Q̃k,1(T (C)).

1The sgn function defined as: sgn(i) = 1 if i > 0, sgn(i) = −1 if i < 0, and sgn(0) = 0.
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Example 5.1.4. We can calculate the Catalan state C ∈ Cat7 shown in Figure 5.2, as

follows.

Q̃7,1

 3

−5

v0

−2

0
 = A1−7 Q̃6,1

 3

−5

v0

−2

0


︸ ︷︷ ︸
remove the root

+A1+2(7−5−3) Q̃5,1

 2

v0

−2

0


︸ ︷︷ ︸
(5,3)∈I(7,1), (2,3)6∈I(7,1)

= A−6 · A1+2(6−5−3) Q̃4,1

 2

v0

−2

0


︸ ︷︷ ︸
(5,3)∈I(6,1), (2,3)6∈I(6,1)

+A−1 · A1−5 Q̃4,1

 2

v0

−2

0


︸ ︷︷ ︸
remove the root

= A−9[2] Q̃4,1

 2

v0

−2

0


= A−9[2]

A1−4 Q̃3,1


v0

0

−2 2


︸ ︷︷ ︸

remove the root

+A1+2(4−2−2) Q̃2,1


v0

0


︸ ︷︷ ︸
(2,2)∈I(4,1)



= A−9[2]

A−3 · A1+2(3−2−2) Q̃1,1


v0

0


︸ ︷︷ ︸
(2,2)∈I(3,1)

+A · A1−2 Q̃1,1


v0

0


︸ ︷︷ ︸
remove the root


= A−9[2] · A−4[2] · (A1−1 · 1) = A−13[2]2.

An immediate consequence of Proposition 5.1.3 is the following theorem.

Theorem 5.1.5. The coefficients of Catalan states of G(k) are Laurent polynomials with

non-negative coefficients.

In the remaining part of this section, we find coefficients for two families of Catalan states

of G(k) for some k.

Example 5.1.6. Given a Catalan state Cn,k,m ∈ Catn+2k+m shown in Figure 5.3(a). Let

P
(n,k,m)
l = Q̃n+2k+m,l(T (Cn,k,m)), where the plane rooted tree with a label function T (Cn,k,m)
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−(n+ k) n+ k

0

k k

n

m

k

k

n

m

(a) Cn,k,m (b) T (Cn,k,m)

Figure 5.3. Cn,k,m and T (Cn,k,m) in Example 5.1.6

is shown in Figure 5.3(b). We consider the case n = 0 first. For m ≥ 1,

P
(0,k,m)
l = A1−(2k+m) P

(0,k,m−1)
1 = . . . = A

∑m
i=1(1−(2k+i))P

(0,k,0)
1 = A−2km−m(m−1)

2 P
(0,k,0)
1 ,

and, for k ≥ 1

P
(0,k,0)
1 = A1+2(2k−k−k)P

(0,k−1,0)
max{k−1,1} = A1P

(0,k−1,0)
max{k−1,1} = . . . = AkP

(0,0,0)
1 = Ak.

Hence, P
(0,k,m)
l = Ak(1−2m)−m(m−1)

2 . Then P
(n,0,m)
l = P

(0,0,n+m)
l = A−

(n+m)(n+m−1)
2 .

For m = 0 and n, k ≥ 1,

P
(n,k,0)
1 = A1+2(n+2k−(n+k)−(n+k))P

(n,k−1,0)
max{k−1,1} = A1−2nP

(n,k−1,0)
max{k−1,1} = . . .

= Ak(1−2n)P
(n,0,0)
1 = Ak(1−2n)−n(n−1)

2 .

Now, for n, k,m ∈ N,

P
(n,k,m)
1 = A1−(n+2k+m)P

(n,k,m−1)
1 · 1{m≥1}

+ A1+2((n+2k+m)−(n+k)−(n+k))P
(n,k−1,m)
max{k+m−1,1} · 1{n≥m, k+m≥1}

= A1−(n+2k+m)P
(n,k,m−1)
1 · 1{m≥1} + A1+2m−2nP

(n,k−1,m)
max{k+m−1,1} · 1{n≥m, k+m≥1}

and

P
(n,k−1,m)
max{k+m−1,1} = A1−(n+2(k−1)+m)P

(n,k−1,m−1)
1 · 1{m≥1}

+ A1+2((n+2(k−1)+m)−(n+k−1)−(n+k−1))P
(n,k−2,m)
max{k+m−2,1} · 1{n≥m, k+m≥2}

= A1−(n+2k+m)+2P
(n,k−1,m−1)
1 · 1{m≥1} + A1+2m−2nP

(n,k−2,m)
max{k+m−2,1} · 1{n≥m, k+m≥2}.
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So if m > n ≥ 1, then

P
(n,k,m)
1 = A1−(n+2k+m)P

(n,k,m−1)
1 = A1−(n+2k+m)A1−(n+2k+m−1)P

(n,k,m−2)
1 = . . .

= A(1−n−2k−m)(m−n)+
∑m−n−1
i=0 iP

(n,k,n)
1 = A(1−n−2k−m)(m−n)+

(m−n−1)(m−n)
2 P

(n,k,n)
1 ,

and if n ≥ m ≥ 1, then

P
(n,k,m)
1 = A1−(n+2k+m)

k−1∑
i=0

A(3+2m−2n)iP
(n,k−i,m−1)
1 + A(1+2m−2n)kP

(n,0,m)
max{m,1}

= A1−(n+2k+m)

k∑
i=1

A(3+2m−2n)(k−i)P
(n,i,m−1)
1 + A(1+2m−2n)kP

(n,0,m)
max{m,1}.

(5.3)

However,

P
(n,0,m)
max{m,1} = P

(0,0,n+m)
max{m,1} = A1−(n+m)P

(0,0,n+m−1)
1 = P

(0,0,n+m)
1 = P

(n,0,m)
1 ,

if we define P̃
(n,k,m)
1 = A−(1+2m−2n)kP

(n,k,m)
1 , then (5.3) becomes

P̃
(n,k,m)
1 = P̃

(n,0,m)
1 + A1−n−m

k∑
i=1

A−4iP̃
(n,i,m−1)
1 .

So,

P̃
(n,k,m)
1 = P̃

(n,0,m)
1 + A1−n−m

k∑
i1=1

A−4i1

(
P̃

(n,0,m−1)
1 + A1−n−(m−1)

i1∑
i2=1

A−4i2P̃
(n,i2,m−2)
1

)

= P̃
(n,0,m)
1 + A1−n−mP̃

(n,0,m−1)
1

(
k∑

i1=1

A−4i1

)
+ A2(1−n−m)+1

(
k∑

i1=1

i1∑
i2=1

A−4i1−4i2P̃
(n,i2,m−2)
1

)

= . . .

= P̃
(n,0,m)
1 + A1−n−mP̃

(n,0,m−1)
1

(
k∑

i1=1

A−4i1

)
+ A2(1−n−m)+1P̃

(n,0,m−2)
1

(
k∑

i1=1

i1∑
i2=1

A−4i1−4i2

)

+ . . .+ As(1−n−m)+
∑s−1
i=0 iP̃

(n,0,m−s)
1

(
k∑

i1=1

i1∑
i2=1

· · ·
is−1∑
is=1

A−4i1−4i2−...−4is

)
+ . . .

+ Am(1−n−m)+
∑m−1
i=0 i

(
k∑

i1=1

i1∑
i2=1

· · ·
im−1∑
im=1

A−4i1−4i2−...−4imP̃
(n,im,0)
1

)
.
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−(2k − 1)

−1

2k − 1

1
3
5

2k

(a) Ck (b) T (Ck)

−3
−5

Figure 5.4. Ck and T (Ck) in Example 5.1.7

Since

k∑
i1=1

i1∑
i2=1

. . .

is−1∑
is=1

qi1+i2+...+is =
∑

0≤is−1≤is−1−1≤...≤i1−1≤k−1

q(i1−1)+(i2−1)+...+(is−1) · qs

= qs
[
s+ k − 1

s

]
q

,

and

P̃
(n,im,0)
1 = A−(1+0−2n)imP

(n,im,0)
1 = A−(1−2n)im · Aim(1−2n)−n(n−1)

2 = A−
n(n−1)

2 ,

then

P̃
(n,k,m)
1 =

m∑
s=0

As(1−n−m)+
s(s−1)

2 A−4s

[
s+ k − 1

s

]
q=A−4

· A−
(n+m−s)(n+m−s−1)

2

= A−
(m+n)(m+n−1)

2

m∑
s=0

A−4s

[
s+ k − 1

s

]
q=A−4

and hence

P
(n,k,m)
1 = A(1+2m−2n)kP̃

(n,k,m)
1 = A(1+2m−2n)k− (m+n)(m+n−1)

2

m∑
s=0

A−4s

[
s+ k − 1

s

]
q=A−4

.

Then, we conclude that, for all m,n, k ∈ N,

Cn,k,m(A) = P
(n,k,m)
1 = A(1−2|m−n|)k− (m+n)(m+n−1)

2

min{m,n}∑
s=0

A−4s

[
s+ k − 1

s

]
q=A−4

.
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Example 5.1.7. Given a Catalan state Ck ∈ Cat2k shown in Figure 5.4(a). Let P
(k)
l =

Q̃2k,l(T (Ck)), where the plane rooted tree with a label function T (Ck) is shown in Fig-

ure 5.4(b). Let T (Ck) = (T (Ck), v0, f), then {f(v) | v ∈ L(T (C))} = {2i− 1 | −k + 1 ≤ i ≤

k}, so

P
(k)
1 =

k−1∑
i1=0

k∑
j1=k−i1

A1+2(2k−(2i1+1)−(2j1−1))P
(k−1)
max{2k−(2i1+1)−1,1}

=
k−1∑
i1=0

A1−4i1 [i1 + 1]P
(k−1)
max{2k−2i1−2,1}

and

P
(k−s)
max{2k−2is−2s,1}

=
k−s−1∑
is+1=0

k−s∑
js+1=max{k−s−is+1,k−s−is+1}

A1+2(2(k−s)−(2is+1+1)−(2js+1−1))P
(k−s−1)
max{2(k−s)−(2is+1+1)−1,1}

=
k−s−1∑
is+1=0

A1−4is+1 [min{is+1 + 1, is}]P (k−s−1)
max{2k−2is+1−2s−2,1}

for 1 ≤ s ≤ k, where [n] = [n]q=A4 = 1 + A4 + . . .+ A4(n−1). Hence

P
(k)
1 =

k−1∑
i1=0

k−2∑
i2=0

. . .
0∑

ik=0

Ak−4(i1+i2+...+ik)[i1 + 1]
k−1∏
l=1

[min{il+1 + 1, il}].

One shows after some small computations that

P
(1)
1 = A

P
(2)
1 = A−2[2]

P
(3)
1 = A−9[2]3

P
(4)
1 = A−20[2]3(1 + 2A4 + 3A8 + A12)

P
(5)
1 = A−35[2]5(1 + 2A4 + 5A8 + 5A12 + 5A16 + A20).

Proposition 5.1.8. Given C ∈ Catk. Let C ′ be the Catalan state obtained from C by a

reflection about line lr (see Figure 2.9). Then

C ′(A) = C(A).
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Proof. Notice that, if s = (si,j) ∈ MatUk ({±1}) realizes C, then s′ = (sk−j,k−i) realizes

C ′ obtained by the reflection about the lr. Since the map s = (si,j) 7→ s′ = (sk−j,k−i) is

invertible, s, s′ have same number of positive and negative markers, and they create the

same number of trivial components when realizing C and C ′, respectively, it follows that

C ′(A) = C(A).

5.2 Future Work

There are several questions that remain still unanswered and I plan to address them in my

future work.

1. Questions related to lattice crossing:

• Conjecture 3.2.5. In order to solve the general cases we may need to understand

some properties of posets involved and to understand how to expand appropriately(
Rn,κ1,κ2,|J |, (Fn,κ1,κ2,I)J

)
for J �F I. This conjecture is rather a technical result

that worth of addressing since it will make calculations of Qn,R,I in Theorem 3.2.2

much simpler.

• What can we say on coefficients of realizable Catalan states of L(m,n), n ≥ 5?

Unfortunately, our methods used in case n = 4 do not apply when n ≥ 5 since

plucking polynomials corresponding to Catalan states of L(m,n) do not factor

into plucking polynomials of some simple tangles that could be easily analyzed.

The hope is to find other relations between plucking polynomials of plane rooted

trees with a delay function or calculate coefficients of Catalan states using different

methods.

• Conjecture 4.2.9. The problem of determining the unimodality of a sum of Laurent

polynomials is not a simple problem. This is even more difficult in our case, since

the closed-form formulas are not even such kinds of expressions.
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• Other properties of coefficients of realizable Catalan states of L(m,n). Given

C ∈ Catm,n, one may ask whether C is realizable if and only if C(A) 6= 0, and if

C(A) = Ak
∑l

i=0 aiA
4i with a0al 6= 0 then a0 = al = 1 and all ai’s are positive.

One may also ask whether the coefficient of a symmetric Catalan state C, that is

C = Cs, or a Catalan state with returns on at most three sides is unimodal?

2. Questions related to generalized crossing:

• Formulas or efficient methods for finding coefficients of Catalan states of G(k).

We see that all formulas and results obtained for the lattice crossing are developed

based on the method of the first-row expansion Proposition 3.1.4. We showed an

analog of this method for generalized crossing (see Proposition 5.1.3). Therefore,

one might wonder whether we can use similar ideas to those presented in Chapter 3

in order to find formulas or efficient methods for computing coefficients of the

Catalan states of generalized crossing. Unfortunately, this is not that straight

forward due to the difficulties related to the lack of good methods to deal with

index set I(k,m).

• Properties on the coefficients of Catalan states of G(k). Given C ∈ Catk, we know

that the leading coefficient of C(A) is not always 1 and the coefficients of C(A)

are not always positive (hence the coefficients of C(A) are not unimodal). For

instance

(A) = 2A−5 + A−9, (A) = A−1 + A−9.

However, it is still unknown if C(A) 6= 0 for all C ∈ Catk.

• Applications. Generalized crossing is obtained by a half twist of n parallel strands

and it is a tangle often mentioned in context of some other problems in knot the-

ory. However, finding more direct applications of results that we obtained for
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generalized crossing in knot theory problems requires further research investiga-

tions. In particular, finding a relation between coefficients of Catalan states of

lattice crossing and the coefficients of Catalan states of generalized crossing is

another open problem worth further considerations.

3. Closure of tangles:

• B-type lattice crossing LB(m,n). Let LB(m,n) be the tangle shown in Fig-

ure 5.5(a). Some results concerning counting realizable Catalan states of LB(m,n)

and computing their coefficients were obtained by M. Dabkowski and M. Rako-

tomalala. However, no general methods for finding closed-form formulas for co-

efficients of Catalan states are known thus far. I had found an analog of the

first-row expansion for Catalan states of LB(m,n). This might be regarded as

the first step to toward solving this problem. The immediate consequence of this

expansion is that C(A) ∈ Z≥0[A±1].

• Closure LC(m,n) of L(m,n) with four fixed punctures P1, P2, P3, P4 (see Fig-

ure 5.5(b)). Given the standard basis of S∗2,∞(F0,4 × I), we consider the problem

of finding coefficients of basis elements that are obtained from LC(m,n). This

problem is similar to our original one, that is, to the problem of finding the co-

efficients of the standard basis of yn ∗ xm in S∗2,∞(F0,4 × I). It appears that this

problem is related to the famous open problem known as the meander problem.

• Other perspective. TheA-type Gram determinant is invertible whenA is not a root

of unity, see [10]. In such a case, let {Ci} be the basis of S2,∞(D2×I, n+m;R,A)

described in Corollary 2.1.9 and N = 1
m+n+1

(
2(m+n)
m+n

)
. If L(m,n) =

∑
iCi(A) ·Ci,

〈a, b〉 is the product of tangles a, b with 2(m + n) fixed points on the boundary

defined in a natural way, V = [〈C1, L(m,n)〉 〈C2, L(m,n)〉 · · · 〈CN , L(m,n)〉],
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(a) LB(m,n) (b) LC(m,n)

P

P1

P2

P3

P4

Figure 5.5. LB(m,n) and LC(m,n)

and U = [C1(A) C2(A) · · · CN(A)], then

V = U ·DN ,

where DN is the A-type Gram determinant. Thus, Ci(A) = [V ·D−1
N ]i. This idea

can also be applied to find coefficients of Catalan states of generalized crossing.

It is worth checking if this approach leads to an efficient method for finding

coefficients of Catalan states of L(m,n) and G(k).
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APPENDIX A

PROOF OF LEMMA 3.2.4

For |I| − |J | = 3, there are five cases I \ J = {i1 < i2 < i3} with

(1) i3 = i2 + 1 = i1 + 2,

(2) i3 = i2 + 2 = i1 + 3,

(3) i3 = i2 + 1 > i1 + 2,

(4) i3 > i2 + 2 = i1 + 3, or

(5) i3 > i2 + 1 > i1 + 2.

Let n′ = n − 2|J |, µ′ = µ − |J |, i′1 = i1 − 2|{j ∈ J | j < i1}|, i′2 = i2 − 2|{j ∈ J | j < i2}|,

i′3 = i3 − 2|{j ∈ J | j < i3}|, I ′ = {i′1, i′2, i′3}.

For the case (1), I = {i1, i1 + 1, i1 + 2}, and then

• J ≺F I,

• J ≺F J ∪ {i1 + 2} ≺F I,

• J ≺F J ∪ {i1 + 1, i1 + 2} ≺F I, or

• J ≺F J ∪ {i1 + 2} ≺F J ∪ {i1 + 1, i1 + 2} ≺F I.

So,

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1+2},J

CJ,J
·

CI,J∪{i1+2}

CJ∪{i1+2},J∪{i1+2}

+
CJ∪{i1+1,i1+2},J

CJ,J
·

CI,J∪{i1+1,i1+2}

CJ∪{i1+1,i1+2},J∪{i1+1,i1+2}

−
CJ∪{i1+2},J

CJ,J
·
CJ∪{i1+1,i1+2},J∪{i1+2}

CJ∪{i1+2},J∪{i1+2}
·

CI,J∪{i1+1,i1+2}

CJ∪{i1+1,i1+2},J∪{i1+1,i1+2}
.
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By Lemma 3.2.3,

CI,J = A−2(3i′1+3)+3(9−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′

][
i′1 + 2

3

]
,

CJ∪{i1+2},J = A−2(i′1+2)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′1 + 2],

CI,J∪{i1+2} = A−2(2i′1+1)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

][
i′1 + 1

2

]
,

CJ∪{i1+2},J∪{i1+2} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 2

µ′ − 1

]
,

CJ∪{i1+1,i1+2},J = A−2(2i′1+3)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

][
i′1 + 2

2

]
,

CI,J∪{i1+1,i1+2} = A−2(i′1)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′1],

CJ∪{i1+1,i1+2},J∪{i1+1,i1+2} = A
n′−4

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 4

µ′ − 2

]
,

and

CJ∪{i1+1,i1+2},J∪{i1+2} = A−2(i′1+1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1 + 1].

Then,

CJ,J · S(I, J) = CI,J ·

(
−1 +

A−8
[
n′−1
µ′

]
[i′1 + 2]

[
n′−4
µ′−1

][
i′1+1

2

][
n′−2
µ′−1

][
n′−3
µ′

][
i′1+2

3

]
+
A−8

[
n′−2
µ′

][
i′1+2

2

][
n′−5
µ′−2

]
[i′1][

n′−4
µ′−2

][
n′−3
µ′

][
i′1+2

3

] −
A−12

[
n′−1
µ′

]
[i′1 + 2]

[
n′−3
µ′−1

]
[i′1 + 1]

[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

][
i′1+2

3

] )

= CI,J ·
(
−1 + A−8 [3][n′ − 1]

[n′ − 3]
+ A−8 [3][n′ − 2]

[n′ − 4]
− A−12 [2][3][n′ − 1]

[n′ − 4]

)
= CI,J ·

(
−1 + A−8 [3][n′ − 1]

[n′ − 3]
− A−12 [3][n′]

[n′ − 4]

)
= CI,J ·

(
A−8 [2][n′]

[n′ − 3]
− A−12 [3][n′]

[n′ − 4]

)
= −CI,J ·

A−12[n′][n′ − 1]

[n′ − 3][n′ − 4]
= (−1)3A−2·3·(3−1) ·

[
2n′−5
n′−3

][
2n′−5
n′

]CI,J ,
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since

[n− 2]q − q−1 [2]q [n− 1]q = (1 + q + . . .+ qn−3)− q−1(1 + q)(1 + q + . . .+ qn−2)

= (1 + q + . . .+ qn−3)− (q−1 + 2 + 2q + . . .+ 2qn−3 + qn−2)

=− (q−1 + 1 + . . .+ qn−3 + qn−2)

= −q−1[n]q,

q−2 [3]q [n− 1]q − [n− 3]q =(q−2 + 2q−1 + 3 + 3q + . . .+ 3qn−4 + 2qn−3 + qn−2)

− (1 + q + . . .+ qn−4)

=q−2 + 2q−1 + 2 + . . .+ 2qn−3 + qn−2

=q−2 [2]q [n]q,

and

[2]q [n− 4]q − q−1 [3]q [n− 3]q =(1 + 2q + 2q2 + . . .+ 2qn−5 + qn−4)

− (q−1 + 2 + 3q + 3q2 + . . .+ 3qn−5 + 2qn−4 + qn−3)

=− (q−1 + 1 + . . .+ qn−4 + qn−3)

=− q−1 [n− 1]q.

Therefore,

S(I, J) = (−1)3A−2·3·(3−1) ·

[
2n−4|J |−5
n−2|J |−3

]
CI,J[

2n−4|J |−5
n−2|J |

]
CJ,J

= S ′(I, J).

For the case (2), I = {i1, i1 + 1, i1 + 3}, and then

• J ≺F I,

• J ≺F J ∪ {i1 + 1} ≺F I,

• J ≺F J ∪ {i1 + 3} ≺F I,

• J ≺F J ∪ {i1 + 1, i1 + 3} ≺F I,
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• J ≺F J ∪ {i1 + 1} ≺F J ∪ {i1 + 1, i1 + 3} ≺F I, or

• J ≺F J ∪ {i1 + 3} ≺F J ∪ {i1 + 1, i1 + 3} ≺F I.

So,

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1+1},J

CJ,J
·

CI,J∪{i1+1}

CJ∪{i1+1},J∪{i1+1}
+
CJ∪{i1+3},J

CJ,J
·

CI,J∪{i1+3}

CJ∪{i1+3},J∪{i1+3}

+
CJ∪{i1+1,i1+3},J

CJ,J
·

CI,J∪{i1+1,i1+3}

CJ∪{i1+1,i1+3},J∪{i1+1,i1+3}

−
CJ∪{i1+1},J

CJ,J
·
CJ∪{i1+1,i1+3},J∪{i1+1}

CJ∪{i1+1},J∪{i1+1}
·

CI,J∪{i1+1,i1+3}

CJ∪{i1+1,i1+3},J∪{i1+1,i1+3}

−
CJ∪{i1+3},J

CJ,J
·
CJ∪{i1+1,i1+3},J∪{i1+3}

CJ∪{i1+3},J∪{i1+3}
·

CI,J∪{i1+1,i1+3}

CJ∪{i1+1,i1+3},J∪{i1+1,i1+3}
.

By Lemma 3.2.3,

CI,J = A−2(3i′1+4)+3(9−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′

][
i′1 + 2

3

]
[2],

CJ∪{i1+1},J = A−2(i′1+1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′1 + 1],

CI,J∪{i1+1} = CI,J∪{i1+3}

=A−2(2i′1+1)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

][
i′1 + 1

2

]
,

CJ∪{i1+1},J∪{i1+1} = CJ∪{i1+3},J∪{i1+3} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 2

µ′ − 1

]
,

CJ∪{i1+3},J = A−2(i′1+3)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′1 + 3],

CJ∪{i1+1,i1+3},J = A−2(2i′1+4)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

]
[i′1 + 1][i′1 + 2],

CI,J∪{i1+1,i1+3} = A−2(i′1)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′1],

CJ∪{i1+1,i1+3},J∪{i1+1,i1+3} = A
n′−4

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 4

µ′ − 2

]
,
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and

CJ∪{i1+1,i1+3},J∪{i1+1} = CJ∪{i1+1,i1+3},J∪{i1+3}

=A−2(i′1+1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1 + 1].

Thus, using previously established results, it follows that

CJ,J · S(I, J) = CI,J ·

(
−1 +

A−4
[
n′−1
µ′

]
[i′1 + 1]

[
n′−4
µ′−1

][
i′1+1

2

][
n′−2
µ′−1

][
n′−3
µ′

][
i′1+2

3

]
[2]

+
A−8

[
n′−1
µ′

]
[i′1 + 3]

[
n′−4
µ′−1

][
i′1+1

2

][
n′−2
µ′−1

][
n′−3
µ′

][
i′1+2

3

]
[2]

+
A−8

[
n′−2
µ′

]
[i′1 + 1][i′1 + 2]

[
n′−5
µ′−2

]
[i′1][

n′−4
µ′−2

][
n′−3
µ′

][
i′1+2

3

]
[2]

−
A−8

[
n′−1
µ′

]
[i′1 + 1]

[
n′−3
µ′−1

]
[i′1 + 1]

[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

][
i′1+2

3

]
[2]

−
A−12

[
n′−1
µ′

]
[i′1 + 3]

[
n′−3
µ′−1

]
[i′1 + 1]

[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

][
i′1+2

3

]
[2]

)

= CI,J ·
(
−1 + A−8 [3][n′ − 1]

[n′ − 3]
+ A−8 [3][n′ − 2]

[n′ − 4]
− A−12 [2][3][n′ − 1]

[n′ − 4]

)
= (−1)3A−2·3·(3−1) ·

[
2n′−5
n′−3

][
2n′−5
n′

]CI,J .
Therefore,

S(I, J) = (−1)3A−2·3·(3−1) ·

[
2n−4|J |−5
n−2|J |−3

]
CI,J[

2n−4|J |−5
n−2|J |

]
CJ,J

= S ′(I, J).

For the case (3), I = {i1, i2, i2 + 1} with i1 + 1 < i2, and then

• J ≺F I,

• J ≺F J ∪ {i1} ≺F I,

• J ≺F J ∪ {i2 + 1} ≺F I,

• J ≺F J ∪ {i1, i2 + 1} ≺F I,

• J ≺F J ∪ {i2, i2 + 1} ≺F I,

• J ≺F J ∪ {i1} ≺F J ∪ {i1, i2 + 1} ≺F I,
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• J ≺F J ∪ {i2 + 1} ≺F J ∪ {i1, i2 + 1} ≺F I, or

• J ≺F J ∪ {i2 + 1} ≺F J ∪ {i2, i2 + 1} ≺F I.

So,

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1},J
CJ,J

·
CI,J∪{i1}

CJ∪{i1},J∪{i1}
+
CJ∪{i2+1},J

CJ,J
·

CI,J∪{i2+1}

CJ∪{i2+1},J∪{i2+1}

+
CJ∪{i1,i2+1},J

CJ,J
·

CI,J∪{i1,i2+1}

CJ∪{i1,i2+1},J∪{i1,i2+1}
+
CJ∪{i2,i2+1},J

CJ,J
·

CI,J∪{i2,i2+1}

CJ∪{i2,i2+1},J∪{i2,i2+1}

−
CJ∪{i1},J
CJ,J

·
CJ∪{i1,i2+1},J∪{i1}

CJ∪{i1},J∪{i1}
·

CI,J∪{i1,i2+1}

CJ∪{i1,i2+1},J∪{i1,i2+1}

−
CJ∪{i2+1},J

CJ,J
·
CJ∪{i1,i2+1},J∪{i2+1}

CJ∪{i2+1},J∪{i2+1}
·

CI,J∪{i1,i2+1}

CJ∪{i1,i2+1},J∪{i1,i2+1}

−
CJ∪{i2+1},J

CJ,J
·
CJ∪{i2,i2+1},J∪{i2+1}

CJ∪{i2+1},J∪{i2+1}
·

CI,J∪{i2,i2+1}

CJ∪{i2,i2+1},J∪{i2,i2+1}
.

By Lemma 3.2.3,

CI,J = A−2(i′1+2i′2+1)+3(9−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′

]
[i′1]

[
i′2
2

]
,

CJ∪{i1},J = A−2(i′1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′1],

CI,J∪{i1} = A−2(2i′2−3)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

][
i′2 − 1

2

]
,

CJ∪{i1},J∪{i1} = CJ∪{i2+1},J∪{i2+1} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 2

µ′ − 1

]
,

CJ∪{i2+1},J = A−2(i′2+1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′2 + 1],

CI,J∪{i2+1} = A−2(i′1+i′2)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

]
[i′1][i′2 − 1],

CJ∪{i1,i2+1},J = A−2(i′1+i′2+1)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

]
[i′1][i′2],

CI,J∪{i1,i2+1} = A−2(i′2−2)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′2 − 2],

CJ∪{i1,i2+1},J∪{i1,i2+1} = CJ∪{i2,i2+1},J∪{i2,i2+1} = A
n′−4

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 4

µ′ − 2

]
,
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CJ∪{i2,i2+1},J = A−2(2i′2+1)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

][
i′2 + 1

2

]
,

CI,J∪{i2,i2+1} = A−2(i′1)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′1],

CJ∪{i1,i2+1},J∪{i1} = A−2(i′2−1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′2 − 1],

CJ∪{i1,i2+1},J∪{i2+1} = A−2(i′1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1],

and

CJ∪{i2,i2+1},J∪{i2+1} = A−2(i′2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′2].

Thus, from the previous results, it follows that

CJ,J · S(I, J) = CI,J ·

(
−1 +

[
n′−1
µ′

]
[i′1]
[
n′−4
µ′−1

][
i′2−1

2

][
n′−2
µ′−1

][
n′−3
µ′

]
[i′1]
[
i′2
2

] +
A−8

[
n′−1
µ′

]
[i′2 + 1]

[
n′−4
µ′−1

]
[i′1][i′2 − 1][

n′−2
µ′−1

][
n′−3
µ′

]
[i′1]
[
i′2
2

]
+
A−4

[
n′−2
µ′

]
[i′1][i′2]

[
n′−5
µ′−2

]
[i′2 − 2][

n′−4
µ′−2

][
n′−3
µ′

]
[i′1]
[
i′2
2

] +
A−8

[
n′−2
µ′

][
i′2+1

2

][
n′−5
µ′−2

]
[i′1][

n′−4
µ′−2

][
n′−3
µ′

]
[i′1]
[
i′2
2

]
−
A−4

[
n′−1
µ′

]
[i′1]
[
n′−3
µ′−1

]
[i′2 − 1]

[
n′−5
µ′−2

]
[i′2 − 2][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1]
[
i′2
2

] −
A−8

[
n′−1
µ′

]
[i′2 + 1]

[
n′−3
µ′−1

]
[i′1]
[
n′−5
µ′−2

]
[i′2 − 2][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1]
[
i′2
2

]
−
A−12

[
n′−1
µ′

]
[i′2 + 1]

[
n′−3
µ′−1

]
[i′2]
[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1]
[
i′2
2

] )

= CI,J ·
(
−1 +

[n′ − 1]

[n′ − 3][i′2]

(
[i′2 − 2] + A−8[i′2 + 1][2]

)
+

A−8[n′ − 2]

[n′ − 4][i′2 − 1]

(
A4[i′2 − 2][2]

+[i′2 + 1])− A−12[n′ − 1][2]

[n′ − 4]

(
A8[i′2 − 2]

[i′2]
+
A4[i′2 − 2][i′2 + 1]

[i′2][i′2 − 1]
+

[i′2 + 1]

[i′2 − 1]

))
= CI,J ·

(
−1 +

A−8[n′ − 1][3]

[n′ − 3]
+
A−8[n′ − 2][3]

[n′ − 4]
− A−12[n′ − 1][3][2]

[n′ − 4]

)
= (−1)3A−2·3·(3−1) ·

[
2n′−5
n′−3

][
2n′−5
n′

]CI,J ,
since

[n− 2]q + q−2 [n+ 1]q [2]q =(1 + q + . . .+ qn−3) + q−2(1 + 2q + 2q2 + . . .+ 2qn + qn+1)

=q−2(1 + 2q + 3q2 + 3q3 + . . .+ 3qn−1 + 2qn + qn+1)

=q−2 [n]q [3]q,
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q [n− 2]q [2]q + [n+ 1]q =q(1 + 2q + 2q2 + . . .+ 2qn−3 + qn−2) + (1 + q + . . .+ qn)

=1 + 2q + 3q2 + 3q3 + . . .+ 3qn−2 + 2qn−1 + qn

=[n− 1]q [3]q,

and

q2 [n− 2]q
[n]q

+
q [n− 2]q [n+ 1]q

[n]q [n− 1]q
+

[n+ 1]q
[n− 1]q

=
q2 [n− 2]q

[n]q
+

[n+ 1]q
[n]q [n− 1]q

(q(1 + q + q2 + . . .+ qn−3) + (1 + q + . . .+ qn−1))

=
q2 [n− 2]q

[n]q
+

[n+ 1]q
[n]q [n− 1]q

[2]q [n− 1]q

=
1

[n]q

(
q2(1 + q + . . .+ qn−3) + (1 + q)(1 + q + . . .+ qn)

)
=

1

[n]q
[3]q [n]q = [3]q.

Therefore,

S(I, J) = (−1)3A−2·3·(3−1) ·

[
2n−4|J |−5
n−2|J |−3

]
CI,J[

2n−4|J |−5
n−2|J |

]
CJ,J

= S ′(I, J).

For the case (4), I = {i1, i1 + 1, i3} with i1 + 3 < i3, and then

• J ≺F I,

• J ≺F J ∪ {i1 + 1} ≺F I,

• J ≺F J ∪ {i3} ≺F I,

• J ≺F J ∪ {i1, i1 + 1} ≺F I,

• J ≺F J ∪ {i1 + 1, i3} ≺F I,

• J ≺F J ∪ {i1 + 1} ≺F J ∪ {i1, i1 + 1} ≺F I,

• J ≺F J ∪ {i1 + 1} ≺F J ∪ {i1 + 1, i3} ≺F I, or
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• J ≺F J ∪ {i3} ≺F J ∪ {i1 + 1, i3} ≺F I.

So,

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1+1},J

CJ,J
·

CI,J∪{i1+1}

CJ∪{i1+1},J∪{i1+1}
+
CJ∪{i3},J
CJ,J

·
CI,J∪{i3}

CJ∪{i3},J∪{i3}

+
CJ∪{i1,i1+1},J

CJ,J
·

CI,J∪{i1,i1+1}

CJ∪{i1,i1+1},J∪{i1,i1+1}
+
CJ∪{i1+1,i3},J

CJ,J
·

CI,J∪{i1+1,i3}

CJ∪{i1+1,i3},J∪{i1+1,i3}

−
CJ∪{i1+1},J

CJ,J
·
CJ∪{i1,i1+1},J∪{i1}

CJ∪{i1},J∪{i1}
·

CI,J∪{i1,i1+1}

CJ∪{i1,i1+1},J∪{i1,i1+1}

−
CJ∪{i1+1},J

CJ,J
·
CJ∪{i1+1,i3},J∪{i1+1}

CJ∪{i1+1},J∪{i1+1}
·

CI,J∪{i1+1,i3}

CJ∪{i1+1,i3},J∪{i1+1,i3}

−
CJ∪{i3},J
CJ,J

·
CJ∪{i1+1,i3},J∪{i3}

CJ∪{i3},J∪{i3}
·

CI,J∪{i1+1,i3}

CJ∪{i1+1,i3},J∪{i1+1,i3}
.

By Lemma 3.2.3,

CI,J = A−2(2i′1+i′3+1)+3(9−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′

][
i′1 + 1

2

]
[i′3 − 2],

CJ∪{i1+1},J = A−2(i′1+1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′1 + 1],

CI,J∪{i1+1} = A−2(i′1+i′3−2)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

]
[i′1][i′3 − 3],

CJ∪{i1+1},J∪{i1+1} = CJ∪{i3},J∪{i3} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 2

µ′ − 1

]
,

CJ∪{i3},J = A−2(i′3)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′3],

CI,J∪{i3} = A−2(2i′1+1)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

][
i′1 + 1

2

]
,

CJ∪{i1,i1+1},J = A−2(2i′1+1)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

][
i′1 + 1

2

]
,

CI,J∪{i1,i1+1} = A−2(i′3−4)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′3 − 4],

CJ∪{i1,i1+1},J∪{i1,i1+1} = CJ∪{i1+1,i3},J∪{i1+1,i3} = A
n′−4

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 4

µ′ − 2

]
,

CJ∪{i1+1,i3},J = A−2(i′1+i′3+1)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

]
[i′1 + 1][i′3 − 1],
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CI,J∪{i1+1,i3} = A−2(i′1)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′1],

CJ∪{i1,i1+1},J∪{i1+1} = A−2(i′1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1],

CJ∪{i1+1,i3},J∪{i1+1} = A−2(i′3−2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′3 − 2]

and

CJ∪{i1+1,i3},J∪{i3} = A−2(i′1+1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1 + 1].

Then, using previous results, it follows that

CJ,J · S(I, J) = CI,J ·

(
−1 +

A−4
[
n′−1
µ′

]
[i′1 + 1]

[
n′−4
µ′−1

]
[i′1][i′3 − 3][

n′−2
µ′−1

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

+
A−8

[
n′−1
µ′

]
[i′3]
[
n′−4
µ′−1

][
i′1+1

2

][
n′−2
µ′−1

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

+

[
n′−2
µ′

][
i′1+1

2

][
n′−5
µ′−2

]
[i′3 − 4][

n′−4
µ′−2

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

+
A−8

[
n′−2
µ′

]
[i′1 + 1][i′3 − 1]

[
n′−5
µ′−2

]
[i′1][

n′−4
µ′−2

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

−
A−4

[
n′−1
µ′

]
[i′1 + 1]

[
n′−3
µ′−1

]
[i′1]
[
n′−5
µ′−2

]
[i′3 − 4][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

−
A−8

[
n′−1
µ′

]
[i′1 + 1]

[
n′−3
µ′−1

]
[i′3 − 2]

[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

−
A−12

[
n′−1
µ′

]
[i′3]
[
n′−3
µ′−1

]
[i′1 + 1]

[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

][
i′1+1

2

]
[i′3 − 2]

)

= CI,J ·
(
−1 +

A−8[n′ − 1]

[n′ − 3][i′3 − 2]

(
A4[i′3 − 3][2] + [i′3]

)
+

[n′ − 2]

[n′ − 4][i′3 − 2]
([i′3 − 4]

+A−8[i′3 − 1][2]
)
− A−12[n′ − 1][2]

[n′ − 4]

(
A8[i′3 − 4]

[i′3 − 2]
+ A4 +

[i′3]

[i′3 − 2]

))
= CI,J ·

(
−1 +

A−8[n′ − 1][3]

[n′ − 3]
+
A−8[n′ − 2][3]

[n′ − 4]
− A−12[n′ − 1][3][2]

[n′ − 4]

)
= (−1)3A−2·3·(3−1) ·

[
2n′−5
n′−3

][
2n′−5
n′

]CI,J ,
since

q [n− 3]q [2]q + [n]q =q(1 + 2q + 2q2 + . . .+ 2qn−4 + qn−3) + (1 + q + . . .+ qn−1)

=1 + 2q + 3q2 + 3q3 + . . .+ 3qn−3 + 2qn−2 + qn−1)

=[n− 2]q [3]q,
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[n− 4]q + q−2 [n− 1]q [2]q =(1 + q + . . .+ qn−5) + q−2(1 + 2q + 2q2 + . . .+ 2qn−2 + qn−3)

=q−2(1 + 2q + 3q2 + 3q3 + . . .+ 3qn−3 + 2qn−2 + qn−1)

=q−2 [n− 2]q [3]q,

and

q2 [n− 4]q + q [n− 2]q [n]q =q2(1 + q + . . .+ qn−5) + q(1 + q + . . .+ qn−3)

+ (1 + q + . . .+ qn−1)

=1 + 2q + 3q2 + 3q3 + . . .+ 3qn−3 + 2qn−2 + qn−1

=[n− 2]q [3]q.

Therefore,

S(I, J) = (−1)3A−2·3·(3−1) ·

[
2n−4|J |−5
n−2|J |−3

]
CI,J[

2n−4|J |−5
n−2|J |

]
CJ,J

= S ′(I, J).

For the case (5), I = {i1, i2, i3} with i1 + 2 < i2 + 1 < i3, and then

• J ≺F I,

• J ≺F J ∪ {i1} ≺F I,

• J ≺F J ∪ {i2} ≺F I,

• J ≺F J ∪ {i3} ≺F I,

• J ≺F J ∪ {i1, i2} ≺F I,

• J ≺F J ∪ {i1, i3} ≺F I,

• J ≺F J ∪ {i2, i3} ≺F I,

• J ≺F J ∪ {i1} ≺F J ∪ {i1, i2} ≺F I,

• J ≺F J ∪ {i2} ≺F J ∪ {i1, i2} ≺F I,
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• J ≺F J ∪ {i1} ≺F J ∪ {i1, i3} ≺F I,

• J ≺F J ∪ {i3} ≺F J ∪ {i1, i3} ≺F I,

• J ≺F J ∪ {i2} ≺F J ∪ {i2, i3} ≺F I, or

• J ≺F J ∪ {i3} ≺F J ∪ {i2, i3} ≺F I.

So,

S(I, J) = −CI,J
CJ,J

+
CJ∪{i1},J
CJ,J

·
CI,J∪{i1}

CJ∪{i1},J∪{i1}
+
CJ∪{i2},J
CJ,J

·
CI,J∪{i2}

CJ∪{i2},J∪{i2}

+
CJ∪{i3},J
CJ,J

·
CI,J∪{i3}

CJ∪{i3},J∪{i3}
+
CJ∪{i1,i2},J

CJ,J
·

CI,J∪{i1,i2}
CJ∪{i1,i2},J∪{i1,i2}

+
CJ∪{i1,i3},J

CJ,J
·

CI,J∪{i1,i3}
CJ∪{i1,i3},J∪{i1,i3}

+
CJ∪{i2,i3},J

CJ,J
·

CI,J∪{i2,i3}
CJ∪{i2,i3},J∪{i2,i3}

−
CJ∪{i1},J
CJ,J

·
CJ∪{i1,i2},J∪{i1}
CJ∪{i1},J∪{i1}

·
CI,J∪{i1,i2}

CJ∪{i1,i2},J∪{i1,i2}

−
CJ∪{i2},J
CJ,J

·
CJ∪{i1,i2},J∪{i2}
CJ∪{i2},J∪{i2}

·
CI,J∪{i1,i2}

CJ∪{i1,i2},J∪{i1,i2}

−
CJ∪{i1},J
CJ,J

·
CJ∪{i1,i3},J∪{i1}
CJ∪{i1},J∪{i1}

·
CI,J∪{i1,i3}

CJ∪{i1,i3},J∪{i1,i3}

−
CJ∪{i3},J
CJ,J

·
CJ∪{i1,i3},J∪{i3}
CJ∪{i3},J∪{i3}

·
CI,J∪{i1,i3}

CJ∪{i1,i3},J∪{i1,i3}

−
CJ∪{i2},J
CJ,J

·
CJ∪{i2,i3},J∪{i2}
CJ∪{i2},J∪{i2}

·
CI,J∪{i2,i3}

CJ∪{i2,i3},J∪{i2,i3}

−
CJ∪{i3},J
CJ,J

·
CJ∪{i2,i3},J∪{i3}
CJ∪{i3},J∪{i3}

·
CI,J∪{i2,i3}

CJ∪{i2,i3},J∪{i2,i3}
.

By Lemma 3.2.3,

CI,J = A−2(i′1+i′2+i′3)+3(9−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′

]
[i′1][i′2 − 1][i′3 − 2],

CJ∪{i1},J = A−2(i′1)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′1],

CI,J∪{i1} = A−2(i′2+i′3−4)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

]
[i′2 − 2][i′3 − 3],

CJ∪{i1},J∪{i1} = CJ∪{i2},J∪{i2} = CJ∪{i3},J∪{i3} = A
n′−2

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 2

µ′ − 1

]
,
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CJ∪{i2},J = A−2(i′2)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′2],

CI,J∪{i2} = A−2(i′1+i′3−2)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

]
[i′1][i′3 − 3],

CJ∪{i3},J = A−2(i′3)+(3−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 1

µ′

]
[i′3],

CI,J∪{i3} = A−2(i′1+i′2)+2(6−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 4

µ′ − 1

]
[i′1][i′2 − 1],

CJ∪{i1,i2},J = A−2(i′1+i′2)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

]
[i′1][i′2 − 1],

CI,J∪{i1,i2} = A−2(i′3−4)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′3 − 4],

CJ∪{i1,i2},J∪{i1,i2} = CJ∪{i1,i3},J∪{i1,i3} = CJ∪{i2,i3},J∪{i2,i3} = A
n′−4

2
(3κ1−κ2)+ 1

2
(κ1−κ2)2 ·

[
n′ − 4

µ′ − 2

]
,

CJ∪{i1,i3},J = A−2(i′1+i′3)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

]
[i′1][i′3 − 1],

CI,J∪{i1,i3} = A−2(i′2−2)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′2 − 2],

CJ∪{i2,i3},J = A−2(i′2+i′3)+2(6−n′−κ1−κ2+1)+n′
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 2

µ′

]
[i′2][i′3 − 1],

CI,J∪{i2,i3} = A−2(i′1)+(3−(n′−4)−κ1−κ2+1)+n′−4
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 5

µ′ − 2

]
[i′1],

CJ∪{i1,i2},J∪{i1} = A−2(i′2−2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′2 − 2],

CJ∪{i1,i2},J∪{i2} = A−2(i′1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1],

CJ∪{i1,i3},J∪{i1} = A−2(i′3−2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′3 − 2],

CJ∪{i1,i3},J∪{i3} = A−2(i′1)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′1],

CJ∪{i2,i3},J∪{i2} = A−2(i′3−2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′3 − 2],

and

CJ∪{i2,i3},J∪{i3} = A−2(i′2)+(3−(n′−2)−κ1−κ2+1)+n′−2
2

(3κ1−κ2)+ 1
2

(κ1−κ2)2 ·
[
n′ − 3

µ′ − 1

]
[i′2].
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Thus, from the previous results, it follows that

CJ,J · S(I, J) = CI,J ·

(
−1 +

[
n′−1
µ′

]
[i′1]
[
n′−4
µ′−1

]
[i′2 − 2][i′3 − 3][

n′−2
µ′−1

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

+
A−4

[
n′−1
µ′

]
[i′2]
[
n′−4
µ′−1

]
[i′1][i′3 − 3][

n′−2
µ′−1

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

+
A−8

[
n′−1
µ′

]
[i′3]
[
n′−4
µ′−1

]
[i′1][i′2 − 1][

n′−2
µ′−1

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

+

[
n′−2
µ′

]
[i′1][i′2 − 1]

[
n′−5
µ′−2

]
[i′3 − 4][

n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

+
A−4

[
n′−2
µ′

]
[i′1][i′3 − 1]

[
n′−5
µ′−2

]
[i′2 − 2][

n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

+
A−8

[
n′−2
µ′

]
[i′2][i′3 − 1]

[
n′−5
µ′−2

]
[i′1][

n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

−
[
n′−1
µ′

]
[i′1]
[
n′−3
µ′−1

]
[i′2 − 2]

[
n′−5
µ′−2

]
[i′3 − 4][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

−
A−4

[
n′−1
µ′

]
[i′2]
[
n′−3
µ′−1

]
[i′1]
[
n′−5
µ′−2

]
[i′3 − 4][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

−
A−4

[
n′−1
µ′

]
[i′1]
[
n′−3
µ′−1

]
[i′3 − 2]

[
n′−5
µ′−2

]
[i′2 − 2][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

−
A−8

[
n′−1
µ′

]
[i′3]
[
n′−3
µ′−1

]
[i′1]
[
n′−5
µ′−2

]
[i′2 − 2][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

−
A−8

[
n′−1
µ′

]
[i′2]
[
n′−3
µ′−1

]
[i′3 − 2]

[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

−
A−12

[
n′−1
µ′

]
[i′3]
[
n′−3
µ′−1

]
[i′2]
[
n′−5
µ′−2

]
[i′1][

n′−2
µ′−1

][
n′−4
µ′−2

][
n′−3
µ′

]
[i′1][i′2 − 1][i′3 − 2]

)

= CI,J ·
(
−1 +

A−8[n′ − 1]

[n′ − 3][i′2 − 1][i′3 − 2]

(
A8[i′2 − 2][i′3 − 3] + A4[i′2][i′3 − 3] + [i′2 − 1][i′3]

)
+

A−8[n′ − 2]

[n′ − 4][i′2 − 1][i′3 − 2]

(
A8[i′2 − 1][i′3 − 4] + A4[i′2 − 2][i′3 − 1] + [i′2][i′3 − 1]

)
− A−8[n′ − 1][i′2 − 2]

[n′ − 4][i′2 − 1][i′3 − 2]

(
A8[i′3 − 4] + A4[i′3 − 2] + [i′3]

)
− A−12[n′ − 1][i′2]

[n′ − 4][i′2 − 1][i′3 − 2]

(
A8[i′3 − 4] + A4[i′3 − 2] + [i′3]

))
= CI,J ·

(
−1 +

A−8[n′ − 1][3]

[n′ − 3]
+
A−8[n′ − 2][3]

[n′ − 4]
− A−12[n′ − 1][3][2]

[n′ − 4]

)
= (−1)3A−2·3·(3−1) ·

[
2n′−5
n′−3

][
2n′−5
n′

]CI,J ,
Therefore,

S(I, J) = (−1)3A−2·3·(3−1) ·

[
2n−4|J |−5
n−2|J |−3

]
CI,J[

2n−4|J |−5
n−2|J |

]
CJ,J

= S ′(I, J).
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[18] Lê, T. T. Q. (2006). The colored Jones polynomial and the A-polynomial of knots. Adv.
Math. 207 (2), 782–804.
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