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Supplementary material for the partial1

wave analysis of χc2 → KKπ2
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Figure 1: The diagrams of the quasi-two body decays and the direct three-body decay
for χc2 → KKπ

In this analysis, three processes shown in Fig. 1 are considered in the partial wave5

analysis (PWA). For the quasi-two body decays χc2(λ0) → a2(λ1)π, a2 → KK (Figure 16

(a)), where λi(i = 0, 1) indicate helicities for the χc2, and a2, respectively. The spin7

indexes for pion and koans are suppressed due to the 0-spin values they have. The8

helicity-coupling amplitude is given by:9

A1(λ0) =
∑

λ1

F χc2

λ1,0
(r1)D

2∗

λ0,λ1
(φ0, θ0, 0)BW (mKK)F

a2
0,0(r2)D

2∗

λ1,0
(φ1, θ1, 0) (1)

where r1(r2) is the momentum differences between a2 and π (two kaons) in the rest10

frame of χc2 (a2), and θ0(φ0), θ1(φ1) are the polar (azimuthal) helicity angles of the11

momentum vector of π (kaon) in the helicity system of χc2(a2). For the decay a2 →12

K+K−, the z-axis of helicity system is taken along the direction of kaon momentum13

(pK) in the a2 rest frame, and x-axis is taken in the plane formed by the momentum14

of a2 (pa) in the χc2 rest frame and the momentum (pK). The y-axis, together with15

the z, x-axes forms a right hand system. The BW (m) denotes the Breit-Wigner for16

the resonance a2, BW (m) = 1
m2−m2

0−imΓ
, with mass m and width Γ. The helicity-17

coupling amplitudes FX
λi,λj

is calculated in the LS-coupling scheme [1]. For a decay18
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a(J, ηJ) → b(s, ηs) + c(σ, ησ), where the quantum number (J, ηJ) denotes (spin,parity),19

one has:20

F J
λ,ν =

∑

ls

gls

(

2l + 1

2J + 1

)1/2

〈l0Sδ|Jδ〉〈 sλσ − ν|Sδ〉 rl Bl(r)

Bl(r0)
, (2)

where gls is a coupling constant taken as complex number, r = pb−pc, and r0 corresponds
to the (pb + pc)

2 = m2
a, where ma is the mass of parent particle a. The conservation

of CP parity is implied in the above equation. Bl(p) is the Blatt-Weisskopf factor, and
taken as:

L = 0 : B(p) = 1,

L = 1 : B(p) =
1

√

1 + (qp)2
,

L = 2 : B(p) =
1

√

9 + 3(qp)2 + (qp)4
,

L = 3 : B(p) =
1

√

225 + 45(qp)2 + 6(qp)4 + (qp)6
,

L = 4 : B(p) =
1

√

11025 + 1575(qp)2 + 135(qp)4 + 10(qp)6 + (qp)8
,

where q is constant fixed to 3 GeV−1 for the meson final states.21

For the quasi-two-body decay χc2(J, λ0) → K∗(R, λ1)K, K∗(R, λ1) → Kπ (Fig. 1(b)),22

The λi(i = 0, 1) indicate helicities for the χc2 and K∗, respectively, The helicity ampli-23

tude is given by:24

A2(λ0) =
∑

λ1

F χc2

λ1,0
(r1)D

2∗

λ0,λ1
(φ0, θ0, 0)BW (mKπ)F

K∗

0,0 (r2)D
R∗

λ1,0
(φ1, θ1, 0) (3)

where r1(r2) is the momentum differences between K∗ and K (K and π) in the rest25

frame of χc2(K
∗), and θ0(φ0), θ1(φ1) are the polar (azimuthal) helicity angles of the26

momentum vector of K∗(π) in the helicity-system of χc2(K
∗). The helicity-coupling27

amplitudes FX
λi,λj

is calculated using Eq. 2. The BW (m) denotes the Breit-Wigner for28

the resonance K∗.29

For the amplitude (A3) of direct three-body decay χc2 → KKπ (Fig. 1 (c)), we model30

the pair of KK or Kπ to be 2+ system.31

For the charged conjugate modes, we assume that they have the same decay rate32

due to the SU(3) symmetry. Hence, the magnitudes and the phase of their coupling33

constants are taken as the same value in the amplitude.34

The total amplitude is obtained by adding these three processes coherently:35

A(λ0) =
3

∑

i=1

Ai(λ0). (4)
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The decay rate is given by:36

dσ

dφ3

=

(

3

8π2

)

∑

λ0,λ′

0

ρ(λ0, λ
′
0)A(λ0)A

∗(λ′0), (5)

where the dφ3 is the element of standard three-body phase space, and the spin density37

matrix ρ(λ0, λ
′
0) describing the χc2 production can be estimated from the e+e− → ψ′ →38

γχc2 process, which is determined by39

ρ(λ0, λ
′
0) =

∫

d cos θ0dφ0

∑

M,λγ=±1

D1
M,λγ−λ0

(θ0, φ0)D
1∗
M,λγ−λ′

0
(θ0, φ0)A

(J)
λγ ,λ0

A
(J)∗
λγ ,λ′

0
, (6)

where M,λγ and λ0 are the helicity values for ψ′, photon and χc2 states, respectively,40

and Aλγ ,λ0
is the helicity amplitude for ψ′ → γχc2 with the helicity angle Ω0(θ0, φ0). The41

sum over M takes M = ±1 since the ψ′ is produced from the e+e− annihilation. Recent42

measurement shows that the contribution of high magnetic- and electric-multipole to43

the χc2 production is negligible, and E1−transition dominates this process [2]. Hence,44

components of helicity amplitude are chosen to satisfy the E1-relation [3], namely, A1,2 =45 √
2A1,1 =

√
6A1,0. Further considering the requirement of parity conservation, one has46

a relation A−λγ ,−m1
= (−1)JAλγ ,m1

. Thus the spin densities are determined to be47

ρ = diag{y2, x2, 2, x2, y2}, with x = A1,1/A1,0, y = A1,2/A1,0, (7)

with the E1-relations, one has ρ ∝ diag{2, 1, 2/3, 1, 2} [4].48

2 Fit strategy49

The relative magnitudes and phases for coupling constants are determined by an un-50

binned maximum likelihood fit. The joint probability density for observing the N events51

in the data sample is52

L =

N
∏

i=1

P (xi), (8)

where P (xi) is a probability to produce event i with four-vector momentum xi =53

(pK , pK̄ , pπ)i.54

The normalized P (xi) is calculated from the differential cross section55

P (xi) =
(dσ/dφ3)i
σMC

, (9)

where the normalization factor σMC is calculated from a MC sample with NMC accepted56

events, which are generated with a phase space model and then subject to the detector57

simulation, and are passed through the same event selection criteria as applied to the58

data analysis. With an MC sample of sufficiently large size, the σMC is evaluated with59

σMC =
1

NMC

NMC
∑

i=1

(

dσ

dφ3

)

i

. (10)
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For technical reasons, rather than maximizing L, S = − lnL is minimized using the60

package MINUIT. The backgrounds are subtracted from the likelihood:61

lnL = lnLdata − lnLbg. (11)

3 Estimation of signal yield and statistical uncertainty62

After the parameters are determined in the fit, the signal yields of a given resonance can63

be estimated by scaling its cross section ratio Ri to the net event numbers, i.e..64

Ni = Ri ∗ (Nobs −Nbg), with Ri =
σi
σtot

, (12)

where σi is the cross section for the i-th resonance, and σtot is the total cross section,65

and Nobs and Nbg are the numbers of observed events and background events.66

The statistical error, δNi, associated with signal yields Ni is estimated based on the67

covariance matrix, V , obtained in the fit according to:68

δN2
i =

Npars
∑

m=1

Npars
∑

n=1

(

∂Ni

∂Xm

∂Ni

∂Xn

)

X=µ

Vmn(X), (13)

where X is a vector containing parameters, and µ contains the fitted values for all69

parameters. The sum runs over all Npars parameters.70

4 Input/Output check of the PWA71

A pseudo data is generated with inclusion of all intermediate states in the baseline so-72

lution (K∗(892), K∗
2 (1430), K

∗
3(1780), a2(1320), and include the PHSP), and coupling73

constants are fixed to the PWA solution, and then the events are subject to the detec-74

tor simulation. The candidate events of the input are obtained by applying the same75

selection criteria to the pseudo data events. To compare with the data sample, we take76

the same size of input events as that we selected in the data, and the same PWA fit77

procedure is performed to the input events. Table 1 shows the output results compared78

to input numbers, and they are consistent with each other within the statistical errors.79

Table 1: I/O full check for χc2 → K∗±K∓ → K+K−π0 channel

Input Output
K∗(892) 140.4± 14.5 148.7± 25.3
K∗

2(1430) 547.0± 26.8 536.3± 26.5
K∗

3(1780) 35.3± 9.2 37.2± 9.5
a2(1320) 115.5± 16.6 116.2± 16.9
PHSP 163.6± 22.3 164.9± 21.2
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