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When describing unstructured data, e.g., images and texts, humans often resort to similarity

defining the characteristics of these data in relative terms rather than absolute terms. The

subtle differences between such data can be indicated by a human easily while completely

describing a single instance of them is a challenging task. For example, in an image retrieval

task, to determine if two images are describing the same object, humans may simply ignore

the differences in illumination, scaling, background, occlusion, viewpoint and only pay atten-

tion to the object itself. On the other hand, describing an image with all its information is

hard and unnecessary. Cognitive evidence also suggests that we interpret objects by relating

them to prototypical examples stored in our brain. Thus, the similarity is a fundamental

property and of great importance in classification and retrieval tasks alike.

Metric learning is the process of determining a non-negative, symmetric, and subadditive

distance function d(a, b) that aims to establish the similarity or dissimilarity between objects.

It reduces the distance between similar objects and increases the distance between dissimilar

objects. From the human’s perspective, metric learning can be viewed as determining a

function that best matches the user interpretation of the similarity and dissimilarity relation

between data items.
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In this dissertation, we explore the possibilities to enhance the classification and retrieval per-

formance by mining semantic similarity relations in data via metric learning. Unfortunately,

existing metric learning solutions have several drawbacks. First, most metric learning mod-

els have a fixed model capacity that cannot be changed for adaption to input data. Second,

existing online metric learning models learn a linear metric function which limits the model’s

expressiveness. Third, they usually require a user-specified margin sensitive to input data

and ignore a lot of failure cases during learning. To address these drawbacks, we propose a

novel online metric learning framework OAHU that automatically adjusts model capacity

based on input data, and introduce an Adaptive Bound Triplet Loss (ABTL) to avoid failure

cases during learning. On the other hand, as an important subarea of classification, imbal-

anced classification is critical to the success of many real-world applications, but few existing

solutions have ever considered utilizing data similarity to assist imbalanced learning. Based

on this observation, we introduce a novel framework named SetConv, which customizes

the feature extraction process for each input sample by considering its semantic similarity

relation to the minority class to alleviate the model bias towards the majority classes. We

also incorporate metric/similarity learning into a novel open-world stream classifier SIM to

handle classifications on open-ended data distribution.

Based on our research, we demonstrate that mining semantic similarity relation in data is

critical to improving the performance of real-world classification and retrieval tasks.
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CHAPTER 1

INTRODUCTION 1 2 3

The past two decades have witnessed tremendous growth of unstructured data on the in-

ternet, which exist in various forms, e.g., images, texts, videos, etc. Applications such as

personalized marketing (Hite et al., 1998) and visual search (Zhang et al., 2018; Zhai et al.,

2019) has spurred the demand for technologies to analyze such data. Unfortunately, under-

standing unstructured data is easy for humans but can be extremely difficult for machines

in many cases. For example, given pictures of a product taken from different perspectives, a

human can easily tell that all these pictures represent the same product while machines may

fail in this task. An important reason is that when describing unstructured data, humans

often resort to similarity defining the characteristics of these data in relative terms rather

than absolute terms. For example, in a visual search or an image retrieval task, to determine

if two images refer to the same object, we may simply ignore their differences in illumina-

tion, scaling, background, occlusion, viewpoint, and only focus on the object itself. In fact,

describing an image with all its information is hard and unnecessary. Cognitive evidence also

suggests that humans interpret objects by relating them to prototypical objects stored in our

1This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Yu Lin, Latifur Khan.
“SetConv: A New Approach for Learning from Imbalanced Data”, In proceedings of The Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1284-1294. 2020. Lead author, Yang Gao,
conducted the majority of the research, including the full writing, the full design, the full implementation,
and most of the evaluation.

2This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Swarup Chandra, Lati-
fur Khan, and Bhavani Thuraisingham. ”Towards self-adaptive metric learning on the fly.” In The World
Wide Web Conference (WWW), pp. 503-513. 2019, https://doi.org/10.1145/3308558.3313503. Lead au-
thor, Yang Gao, conducted the majority of the research, including the full writing, the full design, the full
implementation, and most of the evaluation.

3This chapter contains material previously published as: ©2019 IEEE. Reprinted, with permission, from
Yang Gao, Yi-Fan Li, Bo Dong, Yu Lin, and Latifur Khan. ”SIM: Open-World Multi-Task Stream Classifier
with Integral Similarity Metrics.” In IEEE International Conference on Big Data (Big Data), pp. 751-760.
December, 2019. Lead author, Yang Gao, conducted the majority of the research, including the full writing,
the full design, the full implementation, and most of the evaluation.
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brain. Thus, the similarity is a fundamental property and critical to helping the machines

understand the semantic meanings of unstructured data in many real-world applications.

Metric/Similarity learning is a learning paradigm that automatically determines a non-

negative, symmetric, and sub-additive distance function d(a, b) to establish the similarity or

dissimilarity relations between objects. It reduces the distance between similar objects and

increases that between dissimilar objects. In other words, metric/similarity learning helps

us identify characteristic patterns that reveal the underlying similarity and dissimilarity

relations in the unstructured data. That is, given two data instances, a metric/similarity

learning model is capable of extracting the most representative features from the input

instances and provides a quantitative measure of how similar or dissimilar they are.

We, therefore, explore the possibilities to enhance the classification and retrieval per-

formance by mining semantic similarity relations from data via metric/similarity learning.

Specifically, we focus on several common applications including Content-Based Image Re-

trieval (CBIR), image/text classification, and those derived applications such as face verifi-

cation, incident detection, and so on.

1.1 Content-Based Image Retrieval (CBIR)

Content-based image retrieval is the problem of searching for digital images in a large

database given a query image. “content-based” means that the search analyzes the contents

of the image rather than the metadata such as keywords, tags, or descriptions associated

with the image.

In content-based image retrieval, there are three key issues i.e., image representation,

image organization, and image similarity measurement (Zhou et al., 2017). Image repre-

sentation originates from the fact that the intrinsic problem of CBIR is image comparison.

For ease of comparison, an image is usually transformed into some kind of feature space,
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Figure 1.1: Classification in real-world scenarios.

in which the resulting image representation is expected to be descriptive and discrimina-

tive to distinguish similar and dissimilar images. More importantly, the representation is

also expected to be invariant to various transformations, such as translation, rotation, scal-

ing, illumination change, etc. On the other hand, the similarity measure between images

should reflect the relevance in semantics, which, however, is difficult due to the hardness in

describing high-level semantic concepts with low-level visual features.

Fortunately, metric/similarity learning can save us from this dilemma. It addresses these

issues by forcing the model to find a latent feature space where the representations of similar

images are close to each other and those of dissimilar images are far away from each other.

Hence, searching for those images similar to a given query image is easy in this latent feature

space.

1.2 Classification

In many existing classification settings, the training data and test data are both balanced

under a closed-world assumption, e.g., the ImageNet dataset. However, this setting is not a

good proxy of the real-world scenario. As shown in Fig. 1.1, in most real-world cases, people
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Figure 1.2: The differences between balanced classification, imbalanced classification, open-set
classification, and open-world classification.

are bothered by the imbalanced and open-ended distribution from all sorts of datasets:

faces, fashion brands, sentiments, network attacks, etc. Therefore, a practical system shall

be able to classify among a few common categories and many rare categories, to formulate the

concept of a single category from limited samples, and to identify novelty upon an instance of

a never seen category. For ease of analysis, based on their prior assumptions, we divide some

common classification problems into four categories, i.e., balanced classification, imbalanced

classification, open-set classification, and open-world classification.

As shown in Fig. 1.2, in balanced classification, the size of each class in the training

or test set is the same. In contrast, the distribution of examples across the known classes

is biased or skewed in both training and test sets for imbalanced classification. Open-set

classification is a variant of the content-based retrieval problem, where the classes of the test

set and training set are disjoint. In this situation, the query data can be classified based
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on the neighbors’ vote or verified based on a distance threshold in the embedding space. A

typical application is face-verification (Masi et al., 2018). In open-world classification, the

training set classes are a subset of the test set classes. That is, an open-world classifier is

required to not only correctly classify instances of known classes but also identify instances

from those categories that were never seen in the training dataset. A notable example of

this is the classification of an evolving data stream. In all these classification paradigms,

a well-clustered embedding space can significantly boost the model performance. Hence,

metric/similarity learning can play a critical role here, since it directly learns from data and

automatically finds such a latent feature space where similar data are close together and

dissimilar data are far apart. Conversely, the complexity of these classification paradigms

also presents a few challenges to metric/similarity learning.

1.2.1 Online Adaptive Metric Learning

Since similarity metrics can significantly facilitate the performance of many large-scale, real-

world applications, developing scalable techniques for learning high-quality similarity metrics

is becoming more and more important. Most of the existing Online Metric Learning (OML)

solutions (Jain et al., 2008a; Jin et al., 2009a; Chechik et al., 2010a; Li et al., 2018a) are

unable to precisely measure the non-linear similarity among instances in complex real-world

applications because they are designed to learn a pre-selected linear metric from a stream

of pairwise or triplet constraints. Moreover, these algorithms often suffer the issue of low

constraint utilization, since their learning process focuses only on the “hard” constraints and

are biased towards them, leading to the weakened model robustness.

To overcome these model defects, the “Online Adaptive Metric Learning” (OAML) open

challenge (Gao et al., 2019) is introduced, i.e., how to learn a metric model that automat-

ically adjusts its model complexity as more constraints are observed in the input stream

and maintain high constraint utilization during the learning process? In other words, the
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hypothesis space of the learned metric function is dynamic, including functions from pure

linear stage to highly non-linear regime.

To address the OAML challenge, our proposed framework OAHU first amends the com-

mon ANN architecture by attaching an independent metric embedding layer (MEL) to every

hidden layer of the network. The output of a hidden layer is hence the input to its corre-

sponding MEL. Each MEL is associated with a metric weight, measuring its importance in

the entire metric model. In other words, OAHU may be regarded as an ensemble of met-

ric models with various complexities sharing the low-level knowledge. We further propose a

novel Adaptive-Bound Triplet Loss (ABTL) to eliminate the dependency of existing methods

on those “hard” constraints, which improves the constraint utilization. An Adaptive Hedge

Update (AHU) method is introduced to update the metric models in the ensemble as well

as the associated metric weights. In summary, with all these innovations, OAHU is capable

of making full use of input constraints to learn a suitable similarity metric and dynamically

adapting its model complexity based on input constraints when necessary.

1.2.2 Imbalanced Classification

Another major challenge is how to alleviate the bias towards the majority classes in im-

balanced classification. Solutions proposed in existing studies can be generally divided into

three categories (Krawczyk, 2016): (1) Data-level methods. These methods employ under-

sampling or over-sampling technique to balance the class distributions (Barua et al., 2014;

Smith et al., 2014; Sobhani et al., 2014; Zheng et al., 2015). (2) Algorithm-level methods.

These algorithms concentrate on modifying existing learners to alleviate the model bias to-

wards the majority classes. The most popular branch is the cost-sensitive algorithms, which

assign a higher cost on misclassifying the minority class instances (Dı́az-Vico et al., 2018).

(3) Hybrid methods. These approaches attempt to combine the advantages of both data-level

and algorithm-level methods to extract their strong points and reduce their weakness (Galar

et al., 2012; Wang et al., 2015).
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Despite the success of existing solutions on some applications, they have several intrinsic

drawbacks. First, for data-level methods, the under-sampling approaches need to remove lots

of majority class samples from the dataset, which may lose important information. On the

other hand, the over-sampling approaches increase the adverse correlation among samples

by introducing a large amount of synthetic minority-class samples into the dataset (Wu

et al., 2017). Second, in many cases, it is often difficult to set the actual cost values for

cost-sensitive approaches, since they are usually required to be given by expert beforehand

or even hard to define in practical scenarios (Krawczyk, 2016). Finally, many open questions

remain to be answered in the field of hybrid imbalance learning methods. For example, how

to guarantee and utilize the diversity of base learners in an ensemble for prediction when

classes are imbalanced is still unclear yet (Wu et al., 2017; Huo et al., 2016).

Unfortunately, directly applying metric/similarity learning may not help in this case.

The main reason is that there is a limited number of minority class instances, which restricts

the number of constraints reflecting the intra-class similarity that we can produce for these

classes. If we over-sample the minority class instances to produce more constraints, we are

facing the same issues as those over-sampling methods.

To overcome the above issues, we propose a novel set convolution (SetConv) operation

and a new training strategy episodic training to assist learning from imbalanced class dis-

tributions. To capture the semantic similarity as metric/similarity learning, the proposed

SetConv operation directly estimates the convolution kernel weights based on the intra-

class and inter-class correlations and applies the learned kernel to extract features from data,

which are discriminative among different classes. These features are then compressed into

a single class representative that is used for classification. In this way, SetConv helps

the model focus on the latent concept not only common to different samples of the same

class but also discriminative to other classes. In episodic training, we assign equal weights

to different classes in spite of their relative sizes and do not perform re-sampling on data.
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During the training process, at each iteration, the model is fed with an episode formed by a

set of samples where the class imbalance ratio is preserved. The model is hence encouraged

to extract discriminative features even when class distribution is unbalanced. Moreover, the

proposed episodic training has no dependence on unknown prior knowledge. The only prior

knowledge required is the class imbalance ratio, which can be easily obtained from data in

real-world applications.

1.2.3 Open-World Classification

Classical supervised learning typically relies on a closed-world assumption, which says that

all the test classes have been observed in the training process. However, the real world is

open, dynamic, and full of unknowns. That is, instances of unexpected classes may appear in

the test or application data. Figure 1.3 shows examples of crossroad scenes that a commercial

self-driving car has to deal with in real life. Apparently, Figure 1.3a and Figure 1.3b provide

two common crossroad scenes that can be easily collected to train a self-driving car. However,

Figure 1.3c and Figure 1.3d describe two rare crossroad scenes that are hard to see in daily

life. Unfortunately, a commercial self-driving car must be able to make correct decisions

while facing these rare and difficult cases. Therefore, having a model that is robust to

unseen classes and can be continuously updated to incorporate these cases is critical to the

success of many practical applications.

Existing stream classifiers usually address the open-world classification problem by first

detecting instances from unseen classes (a.k.a novel classes) and then updating the classifier

to incorporate information from those instances. The novel class detection mechanisms of

previous solutions are based on the existence of strong cohesion and large separation of data

in observed feature space. In other words, instances from the same class are closer than

those from different classes. Unfortunately, this assumption may not be valid in complex

high-dimensional data streams, e.g., a product image stream.
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(a) (b)
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Figure 1.3: Examples of common (a,b) and rare (c,d) crossroad scenes that a commercial self-driving
car has to deal with.

To address this challenge, we propose a novel framework SIM that is able to perform

open-world classification on data streams. In contrast to existing solutions, our method

performs similarity/metric learning to actively search for a latent feature space where the

strong cohesion and large separation data property holds so that instances from novel classes

can be easily detected within this latent space. The metric learning task serves as an auxiliary
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task to both the classification and novel class detection tasks, and all these tasks are jointly

learned in the proposed SIM framework.

1.3 Contribution of this dissertation

In summary, the contribution of this dissertation is as follows:

1.3.1 Online Adaptive Metric Learning

• We introduce a new framework OAHU designed to address the “Online Adaptive

Metric Learning” open challenge. It learns a neural-network-based metric model with

adaptive model complexity and full constraint utilization.

• We show the theoretical regret bound of OAHU and prove the optimal range for

hyper-parameter selection.

• We empirically demonstrate the superiority of OAHU over existing state-of-the-art

solutions on three typical tasks including image classification, face verification, and

image retrieval.

1.3.2 Imbalanced Classification

• We propose a novel SetConv operation and a new episodic training strategy to assist

learning from imbalanced class distributions.

• SetConv is a data-sensitive convolution operation, which helps the model to cus-

tomize the feature extraction process for each input sample and potentially improves

the model performance.

• SetConv guarantees automatic class balancing. No matter how much data of a class

is fed into SetConv, it always produces a single class representative, so that the
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subsequent classifier, which takes these class representatives as input, always perceives

a balanced class distribution.

• The proposed episodic training strategy has no dependency on unknown prior knowl-

edge. The only prior knowledge required is the class imbalance ratio, which can be

easily obtained from data in real-world applications.

1.3.3 Open-World Classification

• We propose a novel framework SIM that actively searches for a latent feature space

suitable for both classification and novel class detection on real-world high-dimensional

image streams.

• We propose a unified multi-task open-world classifier that is capable of performing

metric learning, stream classification, and novel class detection simultaneously.

1.4 Outlines of this dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives a background of ap-

proaches discussed in this dissertation. Chapter 3 discusses the approach proposed to address

the “online adaptive metric learning” open challenge. Chapter 4 presents our solution for

learning from the imbalanced data distribution. Chapter 5 outlines our open-world classifier

for learning from the open-end data distribution. Chapter 6 summarizes this dissertation

and discusses the future work.
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CHAPTER 2

BACKGROUND 1 2 3

In this chapter, we present relevant background information of metric/similarity learning

and its derived applications, e.g., imbalanced classification, open-world classification, etc.

2.1 Metric Learning

In this section, we start by introducing the Mahalanobis distance that is widely adopted in

Online Metric Learning (OML) algorithms. We then briefly describe representative OML

approaches and discuss the drawbacks of existing OML algorithms. Finally, we introduce the

open challenge “Online Adaptive Metric Learning” that aims to address these drawbacks.

2.1.1 Mahalanobis Distance

The Mahalanobis distance is a distance measure that incorporates the correlation between

features.

dM(x,x′) =
√

(x− x′)TM(x− x′) (2.1)

1This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Yu Lin, Latifur Khan.
“SetConv: A New Approach for Learning from Imbalanced Data”, In proceedings of The Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1284-1294. 2020. Lead author, Yang Gao,
conducted the majority of the research, including the full writing, the full design, the full implementation,
and most of the evaluation.

2This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Swarup Chandra, Lati-
fur Khan, and Bhavani Thuraisingham. ”Towards self-adaptive metric learning on the fly.” In The World
Wide Web Conference (WWW), pp. 503-513. 2019, https://doi.org/10.1145/3308558.3313503. Lead au-
thor, Yang Gao, conducted the majority of the research, including the full writing, the full design, the full
implementation, and most of the evaluation.

3This chapter contains material previously published as: ©2019 IEEE. Reprinted, with permission, from
Yang Gao, Yi-Fan Li, Bo Dong, Yu Lin, and Latifur Khan. ”SIM: Open-World Multi-Task Stream Classifier
with Integral Similarity Metrics.” In IEEE International Conference on Big Data (Big Data), pp. 751-760.
December, 2019. Lead author, Yang Gao, conducted the majority of the research, including the full writing,
the full design, the full implementation, and most of the evaluation.
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Table 2.1: Summary of the notations.

Notation Description
R Set of real numbers
Rd Set of d-dimensional real-valued vectors
Rc×d Set of c× d real-valued matrices
Sd+ Cone of symmetric PSD d× d real-valued matrices
X Input (instance) space
Y Output (label) space
x An arbitrary vector
M An arbitrary matrix
M � 0 PSD matrix M
I Identity matrix
tr(M) Trace of matrix M
|| · ||F Frobenius norm
[t]+ = max(0, 1− t) Hinge loss function

where x and x′ are random vectors from the same distribution and M ∈ Sd+. Here Sd+ is

the cone of symmetric positive semi-definite (PSD) d× d real-valued matrices (Bellet et al.,

2013).

The Mahalanobis distance dM is indeed a pseudo-distance: ∀x,x′,x′′ ∈ X ,

1. Non-negative: dM(x,x′) ≥ 0;

2. Identity: dM(x,x) = 0;

3. Symmetric: dM(x,x′) = dM(x′,x);

4. Triangle inequality: dM(x,x′′) ≤ dM(x,x′) + dM(x′,x′′).

If M is an identity matrix, i.e., M = I, dM is equivalent to the well-known Euclidean

distance. Otherwise, we can decompose M = LTL, where L ∈ Rk×d and k is the rank of M.

dM(x,x′) =
√

(x− x′)TM(x− x′)

=
√

(x− x′)TLTL(x− x′)

=
√

(Lx− Lx′)T (Lx− Lx′)

(2.2)

Thus, a Mahalanobis distance is implicitly equivalent to computing the Euclidean distance

after the linear projection of data characterized by L.
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2.1.2 Online Metric Learning

In online metric learning, the algorithm receives training constraints one at a time and up-

date at each step the current hypothesis. Two kinds of constraints, i.e., pairwise and triplet

constraints, are widely adopted in existing studies. A pairwise constraint consists of two sim-

ilar or dissimilar instances, while a triplet constraint takes the form (A,B,C), where instance

A is similar to instance B but is dissimilar to instance C. Online metric learning algorithms

are highly effective to cope with large-scale problems where offline methods typically fail due

to time and space limitations.

POLA (Shalev-Shwartz et al., 2004a)

POLA (Pseudo-metric Online Learning Algorithm) is the first online Mahalanobis distance

learning approach, which learns a parameter matrix M and a threshold b ≥ 1. At each

iteration, POLA receives a pair (xi,xj, yij), where yij = 1 if xi is similar to xj and yij = 0

otherwise. It performs two successive orthogonal projections:

Step 1: POLA projects the current solution (Mt−1, bt−1) onto the set {(M, b) ∈ Rd2+1 :

[yij
(
d2
M(xi,xj) − b

)
+ 1]+ = 0}, which requires the distance between two instances of same

(different) labels to be below (above) the threshold b with a margin 1. As a result, an

intermediate solution (Mt− 1
2 , bt−

1
2 ) that satisfies this constraint and stays as close as possible

to the previous solution can be obtained at this step.

Step 2: POLA projects the intermediate solution (Mt− 1
2 , bt−

1
2 ) onto the set {(M, b) ∈

Rd2+1 : M ∈ Sd+, b ≥ 1}, which produces a new solution (Mt, bt) that yields a valid Maha-

lanobis distance.

LEGO (Jain et al., 2008a)

LEGO (LogDet Exact Gradient Online) is an improved version of POLA (Shalev-Shwartz

et al., 2004a), which updates a learned Mahalanobis metric based on LogDet regularization
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and gradient descent. It features tighter regret bound, more efficient updates, and better

practical performance.

dA(xi,xj) = (xi − xj)
TA(xi − xj) (2.3)

At+1 = arg min
A�0

D(A,At) + ηl
(
dA(xti,x

t
j), yt

)
(2.4)

where D(A,At) = tr(AA−1
t ) − log det(AA−1

t ) − d is a regularization function and η > 0 is

the regularization parameter.

RDML (Jin et al., 2009a)

RDML is a flexible version of POLA that does not force the input margin constraint to be

satisfied. At each step t, it performs a gradient descent step as follows:

Mt = πSd+

(
Mt−1 − λyij(xi − xj)(xi − xj)

T
)

(2.5)

where πSd+ is the projection to PSD cone. The parameter λ is the trade-off between satisfying

the pairwise constraint and staying close to the previous matrix Mt−1. This update can be

performed by resolving a regular convex quadratic program instead of resorting to eigenvalue

decomposition like POLA.

OASIS (Chechik et al., 2010a)

In contrast to the approaches discussed above, OASIS learns a bilinear similarity metric of

the form:

SM(xi,xj) = xTi Mxj (2.6)

where M ∈ Rd×d is not required to be PSD nor symmetric. The bilinear similarity metric

has two advantages (Bellet et al., 2013). First, it is efficiently computable for sparse inputs.

If xi and xj have n1 and n2 non-zero elements respectively, SM can be computed in O(n1n2)

time. Second, M does not need to be a square matrix. That is, the bilinear similarity can

be defined between instances of different dimensions.
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SM can be optimized using the passive-aggressive family of learning algorithms with a

large margin criterion and an efficient hinge loss cost. Specifically, M is first initialized to

be I. Then at each step, the algorithm samples a triplet (xi,xj,xk) where xi is similar to xj

but dissimilar to xk, and solves the following convex problem:

Mt = arg min
M,ξ

1

2
||Mt −Mt−1||2F + Cξ

s.t. 1− d2
M(xi,xj) + d2

M(xi,xk) ≤ ξ

ξ ≥ 0

(2.7)

where C ≥ 0 is the trade-off between satisfying the triplet constraint and staying as close as

possible to the previous parameter matrix Mt−1.

OPML (Li et al., 2018a)

To achieve a low computational cost when performing online metric learning for large-scale

data, OPML adopts a one-pass triplet construction strategy, and employs a closed-form

solution to update the Mahalanobis distance metric for new coming samples, leading to

a low space (i.e., O(d)) and time (i.e., O(d2)) complexity. Specifically, the optimization

problem of OPML is defined as:

Lt = arg min
L

1

2
||L− Lt−1||2F +

γ

2
[1 + ||L(xi − xj)||22 − ||L(xi − xk)||22]+ (2.8)

where γ ∈ (0, 1
4
) is the regularization parameter.

2.1.3 Online Adaptive Metric Learning

Despite their success in some real-world applications, existing OML algorithms have sev-

eral intrinsic drawbacks. First, most of these algorithms make an attempt to learn a linear

similarity metric, e.g., a Mahalanobis or bilinear metric, from the input data. The pro-

jection mappings learned by these metrics are purely linear, which is unable to precisely
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measure the non-linear semantic similarities among instances in complex real-world applica-

tions. Second, the performance of existing OML solutions depends heavily on the quality of

input constraints. Only those “hard” constraints within the input contribute to the learning

of these models. Here a constraint is considered as “hard” if the dissimilar instances in it

are computed as similar by current metric and vice-versa. Hence, existing OML solutions

are biased towards these “hard” constraints, thereby weakening their robustness. Last but

not least, in practical scenarios, the data are often generated from multiple sources such as

Google Search and Twitter, and we have little control over these data sources. Filtering

out “hard” constraints from the massive data produced by these sources is computationally

expensive and even impossible in a real-time setting. Therefore, a real-world stream usually

contains a limited amount of “hard” constraints, and existing OML approaches often suffer

the issue of low constraint utilization, which degrades the model performance.

To overcome these model defects, the “Online Adaptive Metric Learning” (OAML) open

challenge (Gao et al., 2019) is introduced, i.e., how to learn a metric model that automat-

ically adjusts its model complexity as more constraints are observed in the input stream

and maintain high constraint utilization during the learning process? In other words, the

hypothesis space of the learned metric function is dynamic, including functions from pure

linear stage to highly non-linear regime. We will discuss our proposed solution to this open

challenge in Chapter 3.

2.2 Imbalanced Classification

Class imbalance in the datasets can dramatically skew the performance of classifiers, intro-

ducing a prediction bias towards the majority class. As a result, it becomes quite difficult

for learners to effectively distinguish between the majority and minority classes, especially

when the class imbalance is extreme. Moreover, the prediction bias of the learner may lead to

severe consequences in situations where the occurrence of false negatives is relatively costlier
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than false positives. In this section, we briefly summarize recently published studies focusing

on imbalanced learning. These methods can be roughly divided into three general categories,

i.e., data-level methods, algorithm-level methods, and hybrid methods (Krawczyk, 2016).

2.2.1 Data-Level Methods

Data-level methods can be further sub-grouped into data-sampling methods and feature-

selection methods. The data-sampling methods modify the collection of examples via re-

sampling to balance class distributions and can be roughly classified into two categories:

(1) Under-sampling methods: these methods balance the distribution between the majority

and minority classes by removing the majority class instances from the given dataset, where

the removal is largely performed randomly. (2) Over-sampling methods: these methods

balance the class distribution by adding minority class samples to the given dataset, where

the replication is done either randomly or using a specified algorithmic approach. Feature

selection methods may also help select the most influential features (or attributes) that can

yield unique knowledge for inter-class discrimination. It reduces the adverse effect of class

imbalance on classification performance (Yin et al., 2013; Zheng et al., 2004).

Instance Hardness Threshold (IHT) (Smith et al., 2014) propose to performs under-

sampling based on instance hardness. They posit that each instance in a dataset has a

hardness property indicating the likelihood that it will be misclassified. For example, out-

liers are expected to have high instance hardness since a learner will have to overfit to

classify them correctly. Those instances with their hardness higher than a user-specified

threshold are removed from the dataset. Evolutionary Under-Sampling (EUS) (Triguero

et al., 2016) is introduced to deal with the severe class imbalance in big data. EUS provides

a fitness function for prototype selection, where the fitness function aims to find a proper

balance between under-sampling of training data instances and classification performance.

SMOTE (Chawla et al., 2002) is the first synthetic minority over-sampling technique. The
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minority class is over-sampled by taking each minority class sample and introducing synthetic

examples along the line segments joining any/all of the k minority class nearest neighbors.

MWMOTE (Barua et al., 2014) first identifies the hard-to-learn informative minority class

samples and then uses the weighted version of these samples to generate synthetic samples.

Recently, based on k-means clustering and SMOTE, KMEANS-SMOTE (Last et al., 2017)

is introduced to eliminate both intra-class and inter-class imbalance while at the same time

avoiding the generation of noisy samples.

Addressing class imbalance via feature selection methods is a largely unexplored research

area. Zheng et al. (Zheng et al., 2004) investigate feature selection for text categorization on

imbalanced data. Their framework selects the positive and negative features separately, and

then combine them explicitly afterward. Yin et al. (Yin et al., 2013) provide a new feature

selection approach based on class decomposition. Specifically, they partition the majority

classes into smaller pseudo-subclasses and assign the pseudo-class labels accordingly. In

this process, Hellinger’s distance is used as a measure of distribution divergence for feature

selection.

Although data-level methods are able to partially address the class imbalance issues, they

have some intrinsic drawbacks. For highly unbalanced data, data-sampling methods either

discard a large number of samples from the majority class or introduce many synthetic

samples into the minority class. It either loses important information (under-sampling)

or improperly increases the adverse correlation among samples (over-sampling), leading to

performance degradation (Krawczyk, 2016). On the other hand, the extra computational

cost of feature-selection methods is an issue of concern when applying them for imbalanced

learning (Ali et al., 2015).

2.2.2 Algorithm-Level Methods

Algorithm-level methods attempt to modify existing learners to alleviate their bias towards

the majority classes. The most popular branch is the cost-sensitive approach that assigns a
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higher cost on incorrectly classifying the minority class instances. Cost-sensitive SVM (Cao

et al., 2013a) is an effective wrapper framework that incorporates the evaluation measure,

such as AUC and G-mean, into the objective function to improve the classification perfor-

mance. It simultaneously optimizes the best pair of feature subset, intrinsic parameters, and

misclassification cost parameters. In a related study PSOCS-NN (Cao et al., 2013b), the

authors propose to replace cost-sensitive SVM with a cost-sensitive neural network, where

Particle Swarm Optimization (PSO) is used to train the model. CLEMS (Huang and Lin,

2017) introduces a cost-sensitive label embedding technique that takes the cost function of

interest into account. The proposed algorithm approximates the cost information with the

distances of the embedded vectors by using the classic multidimensional scaling approach for

manifold learning. CS-DMLP (Dı́az-Vico et al., 2018) is a deep multi-layer perceptron model

utilizing cost-sensitive learning to regularize the posterior probability distribution predicted

for a given sample.

Despite the success of cost-sensitive approaches in addressing well-defined imbalanced

learning research problems, they may not be suitable for solving practical problems, since

they usually depend on a cost matrix, which is often not given by experts beforehand and

sometimes even impossible to set in some cases. (Krawczyk, 2016).

2.2.3 Hybrid Methods

Hybrid methods concentrate on combining data-level and algorithm-level methods to extract

their strong points and reduce their weaknesses. Building robust and efficient learners by

merging data-level solutions with classifier ensembles is quite popular. A typical example

is an ensemble model named WEOB2 (Wang et al., 2015). It combines under-sampling

based online bagging with adaptive weight adjustment to effectively adjust the learning bias

from the majority class to the minority class. Some other works propose hybrid sampling

techniques and cost-sensitive approaches. For example, Cost-sensitive MCS (Krawczyk et al.,
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2014) is an effective ensemble of cost-sensitive decision trees for imbalanced classification.

The base classifiers in this ensemble are constructed based on a given cost matrix and are

trained on random feature subspaces to ensure the diversity of the ensemble members.

Unfortunately, there are some open questions that remain to be answered in this field (Krawczyk,

2016). First, there is a lack of a good understanding of diversity in imbalanced learning.

For example, is the diversity in majority classes as important as that in minority classes?

How to guarantee diversity during the learning process? Second, there is no clue how large

ensembles should be constructed. Is there a way to compute the ideal ensemble size for a

given imbalanced dataset? Third, there is no clear indicator on how to utilize base learners

in an imbalanced ensemble model for prediction. Most of the imbalanced ensemble tech-

niques utilize the majority voting combination method. However, it may not be suitable for

imbalanced learning, especially in the case of randomized methods. The individual qualities

of base learners trained using sampling methods may differ since they are based on examples

with varying difficulties. This property should be considered when combining predictions of

base learners to make the final decision.

2.2.4 SetConv

To address the drawbacks of existing solutions, we propose a novel set convolution operation

SetConv and a new training strategy episodic training to assist learning from imbalanced

data distributions (Gao et al., 2020). Compared to existing studies, our framework has

several benefits:

Data-Sensitive Convolution

SetConv explicitly estimates the convolution kernel weights for each input sample based on

its relation to the minority class and extracts discriminative features from it for classification
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using the learned weights. Thus, SetConv is data-sensitive, which helps the model cus-

tomize the feature extraction process of input samples, and potentially improves the model

performance.

Automatic Class Balancing

At each iteration, no matter how many data instances of a class is fed into the SetConv

layer, it always produces a single class representative containing the most discriminative and

representative information of these data. The subsequent classifier, which takes these class

representatives as input, always perceives a balanced class distribution.

No dependence on unknown prior knowledge

Thanks to episodic training, our framework has no dependence on unknown prior knowledge.

The only prior knowledge required is the class imbalance ratio, which can be easily obtained

from data in real-world applications.

The proposed SetConv framework will be discussed in details in Chapter 4.

2.3 Open-World Classification

In contrast to the common closed set (or static environment) assumption, in real-world classi-

fication tasks, it is usually difficult to collect examples that exhaust all classes when training

a classifier. A more realistic scenario is often open and non-stationary, where incomplete

world knowledge is given at training time, and unknown classes can be sent to the model at

test time. The classifiers are required to not only correctly classify instances from the known

classes, but also identify unseen ones. In this section, we describe this essential problem, i.e.,

concept evolution, in the context of open-world stream classification.
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2.3.1 Concept Evolution

Concept evolution in stream classification refers to the scenario where instances from novel

classes, i.e., classes that are never observed before, occur along the stream. In other words,

the classifier is never trained or updated using instances associated with these classes. Ex-

isting studies typically address this problem by first detecting those novel class instances,

and then updating the classifier to incorporate their information for future predictions.

A series of studies (Masud et al., 2009a, 2011a; Al-Khateeb et al., 2012a; Haque et al.,

2016b) have utilized an unsupervised algorithm named as q-NSC to detect novel classes.

In q-NSC, a test instance is declared as a filtered outlier or F-outlier, if it falls outside of

the decision boundary of a cluster ensemble produced via a clustering algorithm such as

K-Means. Then, the model finds the q, c-neighborhood of an F-outlier x (q, c(x) for short),

which is the set of q instances from class c that are nearest to x. The q-NSC score of x is

given by:

q-NSC(x) =
D̄cmin,q(x)− D̄cout,q(x)

max(D̄cmin,q(x), D̄cout,q(x))
(2.9)

where D̄cout,q(x) is the mean distance of an F-outlier x to its q-nearest F-outlier neighbors

and D̄cmin,q(x) is the minimum among all D̄c,q(x), c ∈ {Set of existing classes}. The q-NSC

score considers both cohesion and separation, and yields a value in [−1,+1]. A positive

q-NSC score indicates that x is far away from instances of existing classes and is very likely

to be from novel classes. Alternatively, Senc-MaS (Mu et al., 2017a) and AMaSC (Zhang

et al., 2018a) store the frequent directions of stream data in a global sketch. If an incoming

instance is far away from all the stored frequent directions, it is taken as coming from a novel

class.

In spite of the success of these methods on open-world stream classification, they rely

on the existence of strong intra-class cohesion and large inter-class separation in observed

feature space to detect novel classes (Masud et al., 2011b). That is, in the observed feature
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Figure 2.1: Two similar digits 1 and 7.

space, instances from the same class are assumed to be closer than those of different classes,

which is referred as intrinsic cohesion and separation assumption. However, this assumption

may not be valid in real-world scenarios, especially for high-dimensional sparse data. For

example, as shown in Fig. 2.1, in a handwritten digit recognition application, images of digit

“1” may look very similar to those of digit “7”.

To address this challenge, we propose a semi-supervised algorithm named as SIM that

leverages a metric learning mechanism to actively search for a latent feature space suitable

for both classification and novel class detection. The unified multi-task open-world classifier

in SIM jointly performs metric learning, stream classification, and novel class detection. We

discuss SIM in details in Chapter 5.
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CHAPTER 3

TOWARDS SELF-ADAPTIVE METRIC LEARNING ON THE FLY 1

3.1 Approach

In this chapter, we discuss the OAHU framework that aims to address the “Online Adaptive

Metric Learning” (OAML) open challenge in details.

3.1.1 Problem Setting

With an input triplet constraint stream S = {(xt,x
+
t ,x

−
t )}Tt=1, where xt ∈ Rd (anchor)

is similar to x+
t ∈ Rd (positive) but is dissimilar to x−

t ∈ Rd (negative), the objective of

OAML is to learn a model F : Rd 7→ Rd′ such that ||F (xt)−F (x+
t )||2 � ||F (xt)−F (x−

t )||2.

Moreover, the metric model F should have an adaptive complexity so that its hypothesis

space is automatically expanded or shrunk as necessary, and can be learned from the input

triplet constraint stream in an online fashion with a high constraint utilization rate.

In real-world applications, we may generate the input triplet constraint stream as follows.

First, user clicks are tracked and logged, and a few seed triplets are constructed from these

logs. Then, transitive closures is applied over these seed triplets to form more triplets.

Specifically, if (x1,x2) and (x1,x3) are two similar pairs, then (x2,x3) is also a similar pair.

If (x1,x2) and (x2,x3) are two similar pairs, then (x1,x3) is also a similar pair. On the

other hand, If (x1,x2) is a similar pair and (x1,x3) is a dissimilar pair, then x2 and x3 is

dissimilar to each other. If (x1,x2) is a similar pair and (x2,x3) is a dissimilar pair, then

x1 and x3 is dissimilar to each other. The generated triplets are inserted into the stream in

chronological order of creation.

1This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Swarup Chandra, Lati-
fur Khan, and Bhavani Thuraisingham. ”Towards self-adaptive metric learning on the fly.” In The World
Wide Web Conference (WWW), pp. 503-513. 2019, https://doi.org/10.1145/3308558.3313503. Lead au-
thor, Yang Gao, conducted the majority of the research, including the full writing, the full design, the full
implementation, and most of the evaluation.
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Figure 3.1: Overall architecture of the proposed framework OAHU. The chromatic dashed arrows
indicate the gradient backpropagation contributions. Each Li ∈ {L1, L2, . . .} represents a linear
transformation layer followed by a ReLU activation. Ei ∈ {E0, E1, . . . } is the metric embedding
layer of the ith metric model, which is attached to either an input or a hidden layer. Note E0

represents a pure linear metric model, i.e., a linear transformation from the observed feature space
to the metric embedding space.

3.1.2 Overview

To address the online adaptive metric learning challenge, we need to answer an important

question: when and how to change the “complexity” of a metric model in the online learning

process? In this section, we discuss our proposed framework OAHU in details, which is a

natural solution to this question.

The architecture of the proposed OAHU framework is illustrated in Figure 3.1. Inspired

by recent works (Srinivas and Babu, 2016; Huang et al., 2016), we automatically adapt the

effective depth of an over-complete network based on input constraints to learn a metric

function with appropriate complexity. Given a feedforward neural network with L hidden

layers, we attach an independent metric embedding layer to each of the network input and

hidden layers. Every embedding layer is a projection to a latent space where similar instances

are closer to each other than those dissimilar instances. Thus, in contrast to existing online

metric learning solutions that usually learn a linear metric model, the proposed OAHU

framework is indeed an ensemble of metric models having various complexities and sharing
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low-level knowledge. As shown in Figure 3.1, we use El ∈ {E0, E1, E2, . . . , EL} to denote

the lth metric model in OAHU, which is the sub-network starting from the input layer to

the lth metric embedding layer. Note that E0 represents a linear transformation from the

observed feature space to the metric embedding space, and is the simplest model in OAHU.

Each metric model El is associated with a unique weight α(l) ∈ [0, 1], which measures the

importance of El in OAHU.

At step t, for an input triplet constraint (xt,x
+
t ,x

−
t ), the metric embedding of x∗

t ∈

{xt,x
+
t ,x

−
t } generated by El is

f (l)(x∗
t ) = h(l)Θ(l) (3.1)

where h(l) = σ(W (l)h(l−1)) (l ≥ 1, l ∈ N) represents the activation of lth hidden layer, and

h(0) = x∗
t . To reduce the potential model search space and accelerate the training, we

explicitly constrain the learned metric embedding f (l)(x∗
t ) residing on a unit sphere, i.e.,

||f (l)(x∗
t )||2 = 1.

Once the metric embeddings f (l)(x∗
t ) are obtained, we evaluate the similarity and dis-

similarity errors based on these embeddings and produce a local loss L(l) for metric model

El. The overall loss introduced by this input triplet is given by

Loverall(xt,x
+
t ,x

−
t ) =

L∑
l=0

α(l) · L(l)(xt,x
+
t ,x

−
t ) (3.2)

Apparently, in addition to the network parameters, our framework OAHU has introduced

two sets of new parameters, i.e., Θ(l) (parameters of lth metric embedding layer) and α(l)

(weight of El), which have to be learned in the online training process. Therefore, the final

optimization problem to solve in OAHU at step t is:

minimize
Θ(l),W (l),α(l)

Loverall

subject to ||f (l)(x∗
t )||2 = 1,∀l = 0, . . . , L.

(3.3)
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To evaluate L(l), in Section 3.1.3, we introduce a novel Adaptive-Bound Triplet Loss

(ABTL). In addition, we update Θ(l), W (l) and α(l) in an online fashion with a novel Adaptive

Hedge Update (AHU) method, which will be discussed in Section 3.1.4.

3.1.3 Adaptive-Bound Triplet Loss

Limitations of Existing Pairwise/Triplet Loss

Existing online metric learning solutions typically optimize a pairwise loss (Shalev-Shwartz

et al., 2004b) or a triplet loss (Li et al., 2018b) to learn a similarity metric, which are

described in Eq. 3.4 and Eq. 3.5 respectively:

L(xt, x
′
t) = max{0, yt(d2(xt, x

′
t)− b) + 1} (3.4)

L(xt, x
+
t , x

−
t ) = max{0, b+ d(xt, x

+
t )− d(xt, x

−
t )} (3.5)

where yt = 1 and yt = −1 indicate that xt is similar or dissimilar to x′t respectively, and

b ∈ R is a user-specified constant margin. In contrast to the triplet loss, which takes

both similarity and dissimilarity relations into account, the pairwise loss only focuses on

one of these two relations at a time, leading to poor metric quality. On the other hand,

an improper margin causes the restriction of a triplet loss to be loose, which may result

in many failure cases. In these situations, the triplet loss is evaluated to be zero, but

the dissimilar instances are closer than the similar instances. For example, as shown in

Figure 3.2, although the positive instance x+
t is erroneously closer to the negative instance

x−t rather than the anchor xt, the loss corresponding to this triplet (xt, x
+
t , x

−
t ) is 0 since the

constraint b+ d(xt, x
+
t )− d(xt, x

−
t ) ≤ 0 is satisfied. Models optimizing the triplet loss would

incorrectly ignore this input triplet constraint. In addition, selecting an appropriate margin

for a triplet loss is hard and requires extensive domain knowledge due to its data-sensitive

property. Furthermore, as the model improves over time, this margin needs to be increased

to avoid failure cases.
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Figure 3.2: A failure case example in traditional fixed-margin triplet loss.

Figure 3.3: Schematic illustration of ABTL.

Observing these drawbacks, we propose an adaptive-bound triplet loss that naturally

solves these issues.
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Adaptive-Bound Triplet Loss (ABTL)

In our framework, similar instances are required to be mutually attractive to each other,

while dissimilar instances are required to be mutually repulsive to each other. Therefore, for

any input triplet (xt,x
+
t ,x

−
t ), we can define an attractive loss Lattr ∈ [0, 1] between xt and

x+
t , and a repulsive loss Lrep ∈ [0, 1] between xt and x−

t . To compute these two losses, for

the lth metric model El ∈ {E0, . . . , EL}, we rely on a distance measure D(l)(xi,xj) that is

defined as follows:

D(l)(xi,xj) =||f (l)(xi)− f (l)(xj)||2, ∀l = 0, 1, 2, . . . , L (3.6)

where f (l)(x)
(
||f (l)(x)||2 = 1

)
represents the embedding produced by El and D(l)(xi,xj) ∈

[0, 2]. For convenience, let D
(l)
orig(x1,x2) be the distance between x1 and x2 before updat-

ing f (l) (i.e., updating Θ(l) and {W (j)}lj=0), and D
(l)
update(x1,x2) denotes the distance after

applying the update.

The main idea of ABTL is illustrated in Figure 3.3. The goal is to find a latent fea-

ture space where the distance D
(l)
update(xt,x

+
t ) between two similar instances xt and x+

t is

less than or equal to a similarity threshold d
(l)
sim(xt,x

+
t ) and the distance D

(l)
update(xt,x

−
t )

between two dissimilar instances xt and x−
t is greater than or equal to a dissimilarity

threshold d
(l)
dis(xt,x

−
t ). In this space, both the attractive loss L(l)

attr(xt,x
+
t ) and repulsive

loss L(l)
rep(xt,x

−
t ) drop to zero. These constraints are formally presented in Eq. 3.7:

D
(l)
update(xt,x

+
t ) ≤ d

(l)
sim(xt,x

+
t )

D
(l)
update(xt,x

−
t ) ≥ d

(l)
dis(xt,x

−
t )

(3.7)

Note that d
(l)
sim(xt,x

+
t ) and d

(l)
dis(xt,x

−
t ) vary with different input constraints. To deter-

mine d
(l)
sim(xt,x

+
t ) and d

(l)
dis(xt,x

−
t ), we introduce a user-specified hyper-parameter τ > 0 to
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explicitly constrain their ranges. It reduces the model search space and accelerates the train-

ing. We denote the upper bound of d
(l)
sim(xt,x

+
t ) as T (l)

sim, and the lower bound of d
(l)
dis(xt,x

−
t )

as T (l)
dis :


T (l)
sim = τ ≥ d

(l)
sim(xt,x

+
t )

T (l)
dis = 2− τ ≤ d

(l)
dis(xt,x

−
t )

(3.8)

Without loss of generality, we formulate d
(l)
sim(xt,x

+
t ) and d

(l)
dis(xt,x

−
t ) as:


d

(l)
sim(xt,x

+
t ) = a1eD

(l)
orig(xt,x

+
t ) + b1

d
(l)
dis(xt,x

−
t ) = −a2e−D

(l)
orig(xt,x

−
t ) + b2

(3.9)

Here, a1, a2, b1 and b2 are coefficients need to be determined. We choose this formu-

lation so that d
(l)
sim(xt,x

+
t ) and d

(l)
dis(xt,x

−
t ) are monotonically increasing and decreasing

with D
(l)
orig(xt,x

+
t ), respectively. It means that d

(l)
sim(xt,x

+
t ) preserves the relative similarity

among data. If D
(l)
orig(x1,x2) < D

(l)
orig(x1,x3), x1 should still be closer to x2 than x3 after

updating, i.e., d
(l)
sim(x1,x2) < d

(l)
sim(x1,x3). This property is critical to fine-grained similar-

ity comparison and is of tremendous benefit to many practical applications such as image

retrieval.

To determine the coefficients a1, b1, a2 and b2, we require d
(l)
sim(xt,x

+
t ) and d

(l)
dis(xt,x

−
t )

to satisfy the following boundary conditions:
d

(l)
sim|D(l)

orig(xt,x
+
t )=2

≤ T (l)
sim = τ d

(l)
sim|D(l)

orig(xt,x
+
t )=0

= 0

d
(l)
dis|D(l)

orig(xt,x
−
t )=0

≥ T (l)
dis = 2− τ d

(l)
dis|D(l)

orig(xt,x
−
t )=2

= 2
(3.10)

Therefore, 
d

(l)
sim

(
xt,x

+
t

)
= τ

e2−1

(
eD

(l)
orig(xt,x

+
t ) − 1

)

d
(l)
dis

(
xt,x

−
t

)
= −2−(2−τ)

1−e−2

(
e−D

(l)
orig(xt,x

−
t ) − 1

)
+ (2− τ)

(3.11)
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Given d
(l)
sim and d

(l)
dis, the attractive loss Lattr and repulsive loss Lrep are evaluated by


L(l)
attr(xt,x

+
t ) = max

{
0, 1

2−d(l)sim(xt,x
+
t )
D

(l)
orig(xt,x

+
t )− d

(l)
sim(xt,x

+
t )

2−d(l)sim(xt,x
+
t )

}

L(l)
rep(xt,x

−
t ) = max

{
0, −1

d
(l)
dis(xt,x

−
t )
D

(l)
orig(xt,x

−
t ) + 1

} (3.12)

The local loss L(l)(xt,x
+
t ,x

−
t ) is simply the average of the attractive loss and the repulsive

loss. It measures both the similarity and dissimilarity errors of an input triplet (xt,x
+
t ,x

−
t )

for the metric model El.

L(l)(xt,x
+
t ,x

−
t ) =

1

2

(
L(l)
attr(xt,x

+
t ) + L(l)

rep(xt,x
−
t )
)

(3.13)

Note that there is an important question that remains to be answered: what is the

best value of τ? In fact, the theoretical optimal range of τ is (0, 2
3
), which is proved in

Theorem 1. Therefore, the best value of τ can be selected empirically within this range via

cross-validation in the experiment.

Theorem 1. With the proposed adaptive-bound triplet loss, if τ ∈ (0, 2
3
), different classes

can be separated in the learned metric embedding space.

Proof. Let D(c1, c2) denotes the minimal distance between classes c1 and c2, i.e., the distance

between two closest instances from c1 and c2 respectively. Consider an arbitrary quadrupole

(x1, x2, x3, x4) ∈ Q where {x1, x2} ∈ c1, {x3, x4} ∈ c2, and Q is the set of all possible

quadrupoles generated from class c1 and c2. Suppose (x2, x3) is the closest dissimilar pair

among all possible dissimilar pairs that can be extracted from (x1, x2, x3, x4) 2. We first

prove that the lower bound of D(c1, c2) is given by min
(x1,x2,x3,x4)∈Q

D(l)(x1, x4)−D(l)(x1, x2)−

D(l)(x3, x4). Due to the triangle inequality property of p-norm distance, we have

D(l)(x1, x4) ≤ D(l)(x1, x2) +D(l)(x2, x4)

≤ D(l)(x1, x2) +D(l)(x2, x3) +D(l)(x3, x4)

(3.14)

2it can always be achieved by re-arranging symbols of x1,x2,x3 and x4
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Therefore,

D(c1, c2) = min
(x1,x2,x3,x4)∈Q

D(l)(x2, x3)

≥ min
(x1,x2,x3,x4)∈Q

D(l)(x1, x4)−D(l)(x1, x2)−D(l)(x3, x4)

(3.15)

By optimizing the adaptive-bound triplet loss, the following constraints are satisfied



D(l)(x1, x2) ≤ d
(l)
sim(x1, x2) ≤ T (l)

sim

D(l)(x3, x4) ≤ d
(l)
sim(x3, x4) ≤ T (l)

sim

D(l)(x1, x4) ≥ d
(l)
dis(x1, x4) ≥ T (l)

dis

(3.16)

Thus

D(c1, c2) ≥ min
(x1,x2,x3,x4)∈Q

D(l)(x1, x4)−D(l)(x1, x2)−D(l)(x3, x4)

≥ T (l)
dis − 2T (l)

sim

= 2− τ − 2τ

= 2− 3τ

(3.17)

if τ ∈ (0, 2
3
), we have 3τ < 2. Therefore,

D(c1, c2) ≥ 2− 3τ > 0 (3.18)

Eq. 3.18 indicates that the minimal distance between class c1 and c2 is always positive so

that these two classes are separated.

The Advantages of ABTL

In summary, compared to the existing pairwise or triplet loss, the proposed ABTL has several

advantages:
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• In contrast to the pairwise loss, it simultaneously evaluates both the similarity and

dissimilarity errors to learn a good metric function.

• It preserves the relative similarity among data, which is critical to fine-grained simi-

larity learning. Moreover, it eliminates the failure cases of the triplet loss by learning

from every input constraint, leading to a higher constraint utilization rate.

• The theoretical optimal range of its sole hyper-parameter τ is provided.

3.1.4 Adaptive Hedge Update (AHU)

The overall loss Loverall(xt,x
+
t ,x

−
t ) in OAHU is:

Loverall(xt,x
+
t ,x

−
t ) =

L∑
l=0

α(l) · L(l)(xt,x
+
t ,x

−
t )

=
L∑
l=0

α(l)

2

(
L(l)
attr(xt,x

+
t ) + L(l)

rep(xt,x
−
t )
) (3.19)

To learn the metric weights {α(l)}Ll=0, we adopt the Hedge Algorithm (Freund and Schapire,

1997). Specifically, all metric weights are uniformly initialized, i.e., α(l) = 1
L+1

, l = 0, 1, 2, . . . , L.

At each iteration, for each metric model El, α
(l) is updated based on the local loss suffered

by El:

α
(l)
t+1 ←


α

(l)
t β

L(l) β
min
l
L(l)

logL(l) > β − 1

α
(l)
t [1− (1− β)L(l)] otherwise

(3.20)

where β ∈ (0, 1) is the discount factor. In this way, we maximize the update of {α(l)}Ll=0

at each step. That is, at step t, if a metric model El produces a high local loss L(l), its

associated metric weight α(l) tends to gain as much decrement as possible. In contrast, if

a metric model El produces a low local loss L(l), its associated metric weight α(l) will be

increased as much as possible. Thus, in the proposed framework OAHU, those metric models

with good performance are highlighted and vice versa. However, OAHU may excessively
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reduce the weights of deeper models and unfairly favor the shallow models since they converge

faster at the beginning of the training process, leading to the model bias issue (Chen et al.,

2015; Gülçehre et al., 2016). To address this issue, we force the minimal weight of each

metric model to be s
L+1

, where s is the smooth factor. Hence, after updating {α(l)}Ll=0 based

on Eq. 3.20, we set the weights as α
(l)
t+1 = max(α

(l)
t+1,

s
L+1

). These metric weights are then

normalized so that
L∑
l=0

α
(l)
t+1 = 1.

The parameters Θ(l) and W (l) can be updated via Online Gradient Descent (OGD):

Θ
(l)
t+1 ← Θ

(l)
t − η∇Θ

(l)
t
Loverall(xt,x

+
t ,x

−
t )

= Θ
(l)
t − η

α(l)

2

(
∇

Θ
(l)
t
L(l)
attr(xt,x

+
t ) +∇

Θ
(l)
t
L(l)
rep(xt,x

−
t )
) (3.21)

W
(l)
t+1 ← W

(l)
t − η∇W

(l)
t
Loverall(xt,x

+
t ,x

−
t )

= W
(l)
t − η

L∑
j=l

α(j)

2

(
∇
W

(l)
t
L(j)
attr(xt,x

+
t ) +∇

W
(l)
t
L(j)
rep(xt,x

−
t )
) (3.22)

Since Θ(l) are the parameters of the metric embedding layer and are specific to the metric

model El, updating them is simple and is described in Eq. 3.21. In contrast, as shown in

Eq. 3.22, because the deeper metric models in OAHU share the low-level knowledge with

the shallower metric models, all those models deeper than l layers contribute to the update

of W (l). In summary, the training process of OAHU is outlined in Algorithm 1.

3.1.5 Regret Bound

In general, the Hedge Algorithm (Freund and Schapire, 1997) has a regret bound of RT ≤
√
T lnN , where N denotes the number of experts and T is the number of trails. In our

case, each expert corresponds to a particular metric model in the ensemble and each trial

corresponds to a particular input triplet. Therefore, N = L+1 is the number of metric models

in OAHU and T is the number of input triplets. The average worst-case convergence rate

of OAHU is hence O(
√
ln(N)/T ). Apparently, as long as sufficient triplets are provided
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Algorithm 1 OAHU: Online Metric Learning with Adaptive Hedge Update

Require: Discount Factor β ∈ (0, 1); Smooth Factor s; Control Parameter τ ∈ (0, 2
3
);

Learning rate η; A randomly initialized ANN with L hidden layers that is parameterized
by Θ(l),W (l) and α(l).

Ensure: α(l), Θ(l) and W (l)

1: Initialize α(l) = 1
L+1

,∀l = 0, 1, . . . , L
2: for t = 1, 2, . . . , T do
3: Receive a triplet constraint (xt,x

+
t ,x

−
t )

4: Transform and retrieve the metric embedding f (l)(xt), f
(l)(x+

t ) and f (l)(x−
t ) from each

model El.
5: Evaluate L(l)

attr(xt,x
+
t ) and L(l)

rep(xt,x
−
t ) (Eq. 3.12), ∀l = 0, 1, . . . , L.

6: Compute L(l)(xt,x
+
t ,x

−
t ),∀l = 0, 1, . . . , L as per Eq. 3.13.

7: Update Θ
(l)
t+1,∀l = 0, 1, 2, . . . , L as per Eq. 3.21.

8: Update W
(l)
t+1,∀l = 0, 1, 2, . . . , L as per Eq. 3.22.

9: Update α
(l)
t+1,∀l = 0, 1, 2, . . . , L as per Eq. 3.20.

10: α
(l)
t+1 = max(α

(l)
t+1,

s
L+1

),∀l = 0, 1, 2, . . . , L.

11: Normalize α
(l)
t+1, i.e., α

(l)
t+1 =

α
(l)
t+1

L∑
j=0

α
(j)
t+1

,∀l = 0, 1, 2, . . . , L.

12: end for

(i.e., T is sufficiently large), the proposed algorithm OAHU is guaranteed to converge after

learning from these triplets.

3.1.6 Application of OAHU

Since OAHU is indeed an ensemble of metric models, different aggregation methods have to

be employed to apply it for various practical applications. In this section, we discuss these

aggregation methods in detail. We mainly focus on three common tasks, i.e., classification,

similarity comparison, and analog retrieval. Our discussion provides only one possible way

to deploy OAHU for these tasks, and other aggregation methods may still exist.
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Classification

Let D = {(xi, yi)}ni=1 represents the training dataset, where xi ∈ Rd and yi ∈ {1, 2, . . . , c}

denote a training instance and its associated label respectively. For a test instance x ∈ Rd,

we determine its label y ∈ {1, 2, . . . , c} as follows:

Step 1: We first find k nearest neighbors of x in every metric model El of OAHU,

where the distance is measured by Eq. 3.6. Hence, k(L+ 1) instances in total are found and

are candidates similar to x. For convenience, suppose N = {{(x(l)
j , y

(l)
j )}kj=1}Ll=0 = {Nl}Ll=0

represent these candidates, where x
(l)
j is the jth neighbor of x found in the metric model El

and y
(l)
j is its associated label. The similarity score between x and x

(l)
j is:

S(x,x
(l)
j ) = e

−
D(l)(x

(l)
j

,x)−dmin

dmax−dmin · α(l) (3.23)

Here dmin = min
Nl

D(l)(x
(l)
j ,x) and dmax = max

Nl

D(l)(x
(l)
j ,x).

Step 2: Based on S(x,x
(l)
j ), we can compute the association score of each class ci as

follows:

S(ci) =
∑
y
(l)
j =ci

S(x,x
(l)
j ) (3.24)

Step 3: The predicted label y of x is simply the class that maximizes the class association

score:

y = arg max
ci

S(ci) (3.25)

Similarity Comparison

In the similarity comparison task, we need to determine whether a given pair (x1,x2) is

similar or not. To do it, we first compute a similarity score between x1 and x2, and then

examine if this score is above a user-specified threshold T ∈ (0, 1). Specifically,

Step 1: For each metric model El, we first compute the distance D(l)(x1,x2) ∈ [0, 2],

and use 1
2
·D(l)(x1,x2) to measure the similarity between x1 and x2.
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Step 2: Hence, the overall similarity score or similarity probability between x1 and x2

is:

P (x1,x2) =
∑

l=0,...,L

α(l) · pl (3.26)

where

pl =


1 D(l)(x1,x2)/2 < T

0 Otherwise

(3.27)

Step 3: The pair (x1,x2) is similar if P (x1,x2) ≥ 0.5 and is dissimilar otherwise.

Analogue Retrieval

In the analog retrieval task, we’d like to find k items in a database D that is most similar

to a given query item x. Indeed, the only difference between the classification task and

the analog retrieval task is that we find similar items in both cases but ignore the labeling

problem in the latter case.

Step 1: Similar to the classification task, we first find k(L+1) candidates that are similar

to x and denote them as N = {{x(l)
j }kj=1}Ll=0 = {Nl}Ll=0. The similarity score between x

(l)
j

and x is computed by:

Sim(x
(l)
j ,x) = e

−
D(l)(x

(l)
j

,x)−dmin

dmax−dmin · α(l) (3.28)

where dmin = min
Nl

D(l)(x
(l)
j ,x) and dmax = max

Nl

D(l)(x
(l)
j ,x).

Step 2: These candidates are then sorted in descending order of their similarity scores

and only the top k distinct candidates are returned as the retrieval result.

3.1.7 Time and Space Complexity

In general, the computation of OAHU mainly concentrates on the gradient calculation in

the ANN-based metric models. Assume that the maximum time to compute the gradient of

each layer in the ANN is a constant C. The time complexity of OAHU is hence O(nL2C),
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where L denotes the number of hidden layers in the ANN and n is the number of input

triplets. Apparently, OAHU runs in linear time with respect to the input and is indeed an

efficient metric learning framework. On the other hand, the space complexity of OAHU is

O
(
d ·Semb +L ·Shidden(d+Semb) + L(L−1)

2
S2
hidden

)
. Here d is the dimensionality of input data,

Shidden is the maximum number of neurons of the hidden layers, and Semb denotes the metric

embedding size.

3.2 Evaluation

We evaluate the proposed framework OAHU on three typical tasks, including image classifi-

cation (i.e., classification), face verification (i.e., similarity comparison) and image retrieval

(i.e., analogue retrieval).

3.2.1 Baselines

To verify the effectiveness of our method, we compare OAHU with several state-of-the-art

online metric learning algorithms.

• LEGO (Jain et al., 2008b) (pairwise): an online metric learning algorithm that learns

a Mahalanobis metric based on LogDet regularization and gradient descent.

• RDML (Jin et al., 2009b) (pairwise): an online algorithm for regularized distance

metric learning that learns a Mahalanobis metric with a regret bound.

• OASIS (Chechik et al., 2010b) (triplet): an online algorithm for scalable image simi-

larity learning that learns a bilinear similarity measure over sparse representations.

• OPML (Li et al., 2018b) (triplet): a one-pass closed-form solution for online metric

learning that learns a Mahalanobis metric with a low computational cost.
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3.2.2 Implementation

The proposed OAHU framework is implemented via Python 3.6.2 and PyTorch 0.4.0. For

most baseline methods except LEGO and RDML, we adopt the official code released by cor-

responding authors. Since the fully functional codes of LEGO and RDML are unavailable,

we implement these two approaches based on the authors’ description in the published pa-

per (Jain et al., 2008b; Jin et al., 2009b). We vary the hyper-parameter setting of competing

methods including OAHU with different tasks and will discuss it later for each task.

3.2.3 Image Classification

Dataset and Classifier

In the image classification task, we adopt three public available real-world benchmark image

datasets for evaluation, including

• FASHION-MNIST3 (Xiao et al., 2017a): FASHION-MNIST is a dataset of Zalando’s

article images. It consists of a training set of 60, 000 examples and a test set of 10, 000

examples, where each example is a 28 × 28 grayscale image associated with a label

from 10 classes.

• EMNIST4 (Cohen et al., 2017a): The EMNIST dataset is a collection of handwritten

character digits, each of which is converted into a 28× 28 grayscale image.

• CIFAR-105 (Krizhevsky, 2009): The CIFAR-10 dataset consists of 60000 32 × 32

colour images in 10 classes, with 6000 images per class. To be consistent with Fashion-

MNIST and EMNIST datasets, we convert images in CIFAR-10 into gray-scale images

via the OpenCV API (Bradski, 2000).

3https://github.com/zalandoresearch/fashion-mnist

4https://www.nist.gov/itl/iad/image-group/emnist-dataset

5https://www.cs.toronto.edu/∼kriz/cifar.html
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Table 3.1: Description of Datasets

Dataset Task # instances # classes # features
FASHION-MNIST Image Classification 70,000 10 784

EMNIST Image Classification 131,600 47 784
CIFAR-10 Image Classification 60,000 10 1,024

LFW Face Verification 13,233 5,749 73
CARS-196 Image Retrieval 16,185 196 4,096
CIFAR-100 Image Retrieval 60,000 100 4,096

Table 3.2: Classification performance of competing methods on benchmark image datasets. ◦/•
indicates that OAHU performs statistically worse or better (0.05 significance level) than the cor-
responding methods. Both mean and standard deviation of error rates, constraint utilization U
and macro F1 scores are reported. 0.00 denotes a value less than 0.005.

Dataset LEGO RDML OASIS OPML OAHU

FASHION-MNIST
Error Rate 0.35±0.01 • 0.22±0.01 • 0.21±0.02 • 0.23±0.00 • 0.18±0.00

F1 0.64±0.00 0.78±0.00 0.79±0.01 0.78±0.00 0.81±0.00
U 0.58±0.00 0.47±0.01 0.14±0.00 0.30±0.01 1.00±0.00

EMNIST
Error Rate 0.84±0.00 • 0.64±0.03 • 0.41±0.01 • 0.43±0.01 • 0.35±0.01

F1 0.14±0.02 0.32±0.05 0.59±0.00 0.51±0.02 0.64±0.01
U 0.66±0.01 0.50±0.00 0.24±0.00 0.45±0.00 1.00±0.00

CIFAR-10
Error Rate 0.88±0.00 • 0.76±0.01 • 0.79±0.02 • 0.83±0.01 • 0.68±0.00

F1 0.05±0.02 0.24±0.01 0.20±0.03 0.16±0.00 0.31±0.00
U 0.59±0.00 0.50±0.01 0.47±0.00 0.48±0.04 1.00±0.00

win/tie/loss 3/0/0 3/0/0 3/0/0 3/0/0 -

A K nearest-neighbor classifier is employed in this task, which is consistent with the ag-

gregation methods discussed in Section 3.1.6. The details of these datasets are listed in

Table 3.1.

Experiment Setup and Constraint Generation

In our experiments, we first uniformly shuffle the data instances in each dataset and then

divide them into a development set and a test set, where the split ratio is 1 : 1. On the

other hand, to find proper values of hyper-parameters for the baselines, we first initialize

these hyper-parameters to the values reported by the authors and then fine-tune them via

10-fold cross-validation on the development set. Since OPML has introduced a one-pass

triplet construction process to generate input constraints, we simply provide those data in
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(a) (b)

(c)

Figure 3.4: (a) / (b) Error rates of competing methods with increasing number of constraints on
the FASHION-MNIST / CIFAR-10 dataset. (c) The evolvement of metric weight distribution in
OAHU with an increasing number of constraints on FASHION-MNIST dataset.

the development set as input to it. All the other approaches including OAHU adopt the

same procedure to generate input constraints. Specifically, 5, 000 pairwise or triplet seed

constraints are first randomly sampled from the training data in the development set, and

then 5, 000 more constraints are constructed by taking transitive closure over these seeds.

Thus, 10, 000 constraints in total are generated, which is consistent with LEGO (Jain et al.,

2008b) and OPML (Li et al., 2018b). We set β = 0.99, L = 5, Shidden = 100, s = 0.1,
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η = 0.3 and Semb = 50 as default in OAHU, and find the proper value of τ via 10-fold

cross-validation on the development set. In addition, the experiments are repeated 10 times

with independent random shuffle processes and the average results are reported to reduce

any potential bias due to random partitions.

Evaluation Metric

We accept three evaluation metrics that are widely accepted in previous studies such as

LEGO (Jain et al., 2008b) and OPML (Li et al., 2018b):

• error rate: the fraction of test examples that are incorrectly classified.

• macro F1
6: the unweighted mean of F1 scores across all classes. It does not take class

imbalance into account.

• U : constraint utilization rate, i.e., the fraction of input constraints that actually con-

tribute to the learning.

We also perform a statistical significance test (student’s t-test) by computing the p-values

and report the win/tie/loss statistics based on them.

Analysis

We compare the classification performance of competing methods including OAHU on the

three benchmark datasets, and the results are shown in Table 3.2. Because LEGO and RDML

attempt to learn a linear Mahalanobis metric from pairwise constraints, they only consider

either the similarity or dissimilarity relation at each iteration during the learning process

and hence perform poorly on complex image datasets such as EMNIST (47 classes). On the

other hand, OASIS outperforms OPML since its bilinear similarity metric does not require

6http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html
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the covariance matrix, i.e., A in d(x1,x2) = xT1Ax2, to be positive and symmetric, leading

to a bigger hypothesis space (Chechik et al., 2010b). In general, the overall classification

performance of OAHU is best among all competing methods, because it provides not only

much lower error rates but also significantly higher F1 scores compared to baselines.

We also vary the input constraint numbers to study the effect of training set size on the

learning of a metric for all competing methods except OPML. It is done by uniformly sam-

pling the desired number of constraints from the 10, 000 generated constraints discussed in

Section 3.2.3. Note that manually varying the input triplet number for OPML is impossible,

since it relies on a one-pass triplet construction process to internally determine the number

of triplets needed for training. Figure 3.4a and Figure 3.4b show the comparison results on

FASHION-MNIST and CIFAR-10 dataset respectively. The large error rate variance of both

OASIS and RDML indicates that their performance is highly correlated with the quality

of input constraints. In addition, all baselines perform unstably and sometimes even worse

as more constraints are observed in the sequence. It is because that these methods rely on

those “hard” constraints for model updating and incorrectly ignore many failure cases (see

Figure 3.2) in the learning process. In contrast, the proposed framework OAHU outper-

forms all baselines by providing the best classification performance. It also performs most

stably among the competing methods with minimal performance variance, which indicates

its robustness to the quality of input constraints.

OAHU is better mainly because it not only significantly improves the constraint utiliza-

tion rate U by learning from every input constraint, but also automatically adapts its model

complexity based on input constraints when necessary (see Figure 3.4c).
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3.2.4 Face Verification

Dataset and Experiment Setup

In the face verification task, we choose the Labeled Faces in the Wild Database (LFW) (Learned-

Miller, 2014) as the evaluation dataset. This dataset supports two views. View 1 contains

a training and a test set and is used for development purposes. The partitions in View 1

is generated randomly and independently for 10-fold cross-validation. View 2 is taken as a

benchmark for comparison, which is 10-fold cross-validation set containing pairwise images.

Given a pair of face images, our goal is to determine whether these two images represent the

same person. Because OASIS, OPML, and OAHU are triplet-based methods, we cannot

directly evaluate their performance on the LFW dataset. Therefore, following OPML (Li

et al., 2018b), we adopt the image unrestricted configuration in our experiment for a fair

comparison. In this configuration, we directly use the label information, i.e., the actual

names of the people in the training data, and formulate as many pairs or triplets as one

desires. We use View 1 for hyper-parameter tuning and evaluate the performance of all com-

peting models on each fold of View 2, which contains 300 intra-person and 300 inter-person

pairs. The LFW attribute features7 (73 dimension) provided by Kumar et al. (Kumar et al.,

2009) are adopted to represent face images so that the experiment can be easily reproduced.

They are “high-level” features describing nameable attributes such as race, age, etc., of a

face image. The details of the LFW dataset are described in Table 3.1.

Constraint Generation and Evaluation Metric

For constraint generation, we follow the process described in Section 3.2.3 but add an addi-

tional step: if any pair in the generated constraint appears in View 1 or View 2 of the LFW

dataset, we simply discard it and re-formulate a new one. This procedure is repeated until

7http://www.cs.columbia.edu/CAVE/databases/pubfig/download/lfw attributes.txt
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(a) (b)

Figure 3.5: (a) ROC curves of competing methods on the LFW dataset. The number in the bracket
denotes the AUC score of the corresponding method. (b) The metric weight distribution in OAHU.

the sampled constraint does not contain any pair that overlaps with these two sets. In total,

10, 000 pairs or triplets are generated for training in our experiment.

When it comes to inference, given a test image pair, we first compute the similarity

between the two images using the learned metric and then compare it with a user-specified

threshold. By varying this threshold, we plot the Receiver Operating Characteristic (ROC)

curve and calculate the Area under Curve (AUC) score as the evaluation metric.

Analysis

Figure 3.5a shows the ROC curves and the corresponding AUC scores of all competing

methods. Our proposed framework OAHU provides the best AUC score and performs

significantly better than the baselines. The superiority of OAHU mainly comes from its

capability of automatically adapting its complexity to improve the model expressiveness,

which is demonstrated in Figure 3.5b where the metric weights of non-linear components in

OAHU are increased. It helps to separate instances that are difficult to distinguish with

simple linear models. Figure 3.6 presents some successful and failure example comparisons
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(a) Failure Cases (b) Successful Cases

Figure 3.6: The successful and failure face verification test examples with T = 0.55. P (x1,x2) is
expected to be close to 1 if two images belong the same person and 0 otherwise.

in the test set. In this figure, the comparison probability P (x1,x2) is computed based on

Eq. 3.26, and is expected to approach 1 if both images represent the same person and 0

otherwise. Unfortunately, similar to existing solutions, although OAHU performs better

than the baselines, it may still fail in cases where sever concept drift, e.g., aging exists.

3.2.5 Image Retrieval

Dataset and Experiment Setup

For image retrieval, we conduct experiments on two real-world benchmark datasets, i.e.,

CARS-196 and CIFAR-100.

• CARS-1968 (Krause et al., 2013): This dataset contains 16, 185 images of 196

classes of cars. The data is divided into 8, 144 training images and 8, 041 testing

images, where each class has been split roughly in a 50-50 split. Classes are typically

at the level of Make, Model, Year, e.g. 2012 Tesla Model S or 2012 BMW M3 coupe.

8https://ai.stanford.edu/∼jkrause/cars/car dataset.html
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• CIFAR-1009 (Krizhevsky, 2009): This dataset consists of 60, 000 32 × 32 colour

images in 100 classes with 600 images per class. Similar to CARS-196, we randomly

split CIFAR-100 into 30, 000 training images and 30, 000 test images by equally dividing

images of each class.

A VGG-19 model pre-trained on the ImageNet (Russakovsky et al., 2015) is adopted as the

image feature extractor. Specifically, for each image, we feed it into a VGG-19 model and

take the output of the last convolutional layer as the input embedding to the competing

frameworks. The details of these 2 datasets are described in Table 3.1. The development set

of each dataset is formed by including all its training examples. The hyper-parameters of

baselines are set based on values suggested by the authors and fine-tuned via 10-fold cross-

validation on the development set. All the hyper-parameters except τ in OAHU are set same

as Section 3.2.3. The value of τ is found via 10-fold cross-validation on the development set.

Constraint Generation and Evaluation Metric

We follow the same procedure as described in Section 3.2.3 to generate the training con-

straints. However, in this experiment, we sample more constraints to better cover the mas-

sive amount of classes included in these datasets. Specifically, we generate 50, 000 constraints

by taking transitive closure over 25, 000 sampled seeds. The Recall@K metric (Jégou et al.,

2011) is adopted to evaluate the model performance. To compute Recall@K, we first retrieve

K images in the test set that are most similar to a query image and receive a score of 1

if an image of the same class is among these K images and 0 otherwise. Recall@K simply

averages this score over all images.
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(a) (b)

Figure 3.7: (a) The Recall@K scores of competing methods on the test set of CARS-196. (b) The
corresponding metric weight distribution in OAHU.

(a) (b)

Figure 3.8: (a) The Recall@K scores of competing methods on the test set of CIFAR-100. (b) The
corresponding metric weight distribution in OAHU.

Analysis

Figure 3.7a and Figure 3.8a present the Recall@K scores on the test set of CARS-196 and

CIFAR-100 datasets. The proposed framework OAHU provides the highest Recall@K scores

9https://www.cs.toronto.edu/∼kriz/cifar.html
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(a) CARS-196 (b) CIFAR-100

Figure 3.9: The successful and failure query examples on the CARS-196 and CIFAR-100 datasets
using the learned embedding. Images in the first column are query images and the rest are the
three most similar images. Best viewed on a monitor zoomed-in.

among all the competing methods and significantly outperforms the baselines. Moreover, the

performance gap between OAHU and most baselines increase rapidly as more neighbors are

considered. In contrast to the baselines that are pure linear models, OAHU improves the

model expressiveness by incorporating metrics of various degree of nonlinearity, which is

demonstrated by the metric weight distribution of OAHU shown in Figure 3.7b (CARS-

196) and Figure 3.8b (CIAR-100). In these figures, E1, E2, E3, E4 and E5 are non-linear

models with increasing complexities while E0 is a simple linear model. Some examples of

successful and failure queries in both datasets are presented in Figure 3.9. Despite the

huge change in the viewpoint, configuration, and illumination, our model can successfully

retrieve examples from the same class while most retrieval failures come from the subtle

visual difference among images of different classes.

50



Figure 3.10: Parameter sensitivity of OAHU on FASHION-MNIST dataset as an example.

3.2.6 Sensitivity of Parameters

The three main parameters in OAHU are the control parameter τ , the metric embedding

size Semb, and the smooth factor s. We vary these parameters to study their effect on

classification performance. Figure 4.8 shows the result of FASHION-MNIST dataset as an

example. It is observed that both classification accuracy and F1 score significantly drop if

τ > 0.6 and remains almost same when τ ≤ 0.6, which verifies Theorem 1. On the other

hand, OAHU gives the best classification performance when Semb = 50. Noisy information

will be included if we increase the embedding size, which degrades the model performance.

Similarly, with a high smooth factor s, the hedge model weight adaptation mechanism is
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weakened leading to poor classification performance. Therefore, τ = 0.1, Semb = 50 and

s = 0.1 are suggested as default values in OAHU.

3.3 Discussion

This chapter introduces OAHU that is designed to address the “Online Adaptive Metric

Learning” open challenge. It improves the model expressiveness by automatically adapting

the model complexity based on input constraints and achieves a full constraint utilization

rate. Due to the Adaptive Bound Triplet Loss (ABTL) adopted in OAHU, our framework

is more robust to the quality of input constraints compared to baselines. However, similar

to existing solutions, OAHU may still fail in cases where severe concept drift exists. We

leave the extension of OAHU to such scenarios for future work.
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CHAPTER 4

SETCONV: A NEW APPROACH FOR LEARNING FROM IMBALANCED

DATA 1

4.1 Approach

In this chapter, we present the details of our SetConv framework introduced in Chapter 1

and explain how we utilize similarity relations among data to enhance the classification

performance on imbalanced data distributions.

4.1.1 Overview

Our goal is to design a classification model that is able to overcome the bias towards the

majority classes when learning from imbalanced class distributions. We first consider a

binary classification problem for simplicity and then extend the model to the multi-class

scenarios. The architecture of our model is illustrated in Fig. 4.1a, which consists of a

SetConv layer and a classification layer. During the training process, at each iteration,

an episode is sampled from the training data, which is comprised of a support set and a

query set. The support set is formed by a group of examples where the class imbalance

ratio of training data is preserved, and the query set contains only a single example from

each class. The SetConv layer customizes the feature extraction process for each example

in the episode by estimating a set of weights based on the relation of this example to the

minority class and using learned weights to extract its features. A representative is hence

produced by SetConv for each class in the support set. We then compare each example

in the query set with these class representatives in the classification layer to determine its

1This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Yu Lin, Latifur Khan.
“SetConv: A New Approach for Learning from Imbalanced Data”, In proceedings of The Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1284-1294. 2020. Lead author, Yang Gao,
conducted the majority of the research, including the full writing, the full design, the full implementation,
and most of the evaluation.
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label and evaluate the classification loss. This training procedure is referred to as episodic

training.

The proposed episodic training has several benefits:

• First, with episodic training, the SetConv layer is encouraged to extract discrimina-

tive features from data even when the class distribution is highly imbalanced.

• The randomly sampled episodes have a significantly different configuration of support

and query sets from iteration to iteration. Therefore, the SetConv layer is required

to ignore noisy information in the examples and capture the underlying class concepts

that are common among different episodes.

• The episodic training has no dependency on unknown prior knowledge. The only

prior knowledge required is the class imbalance ratio that can be easily obtained from

training data.

As shown in Fig. 4.1b, a post-training step has to be performed before applying our

model for inference. In this step, we randomly sample a large subset Spost from the training

data and feed it into the SetConv layer to extract a representative for each class. Note that

we only forward the data instances through the network in this process and do not update

the model. This operation is executable because our model has learned to capture the class

concepts that are insensitive to the episode configuration. The inference procedure of our

model is presented in Fig. 4.1c. For each query example, we feed it into the SetConv layer to

compute the features and compare the resulting embedding with those class representatives

obtained in the post-training step. We take the label of the representative that is most

similar to the query as the predicted label.
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(a)

(b) (c)

Figure 4.1: Overview of the proposed approach. (a) The training procedure of SetConv. At each
iteration, SetConv is fed with an episode to evaluate the classification loss for a model update.
Each episode consists of a support set and a query set. The support set is formed by a group
of samples where the imbalance ratio is preserved. The query set contains only one sample from
each class. (b) The post-training step of SetConv is performed only once after the main training
procedure. In this step, we extract a representative for each class from the training data and will
later use them for inference. Here we only perform inference using the trained model and do not
update it. (c) The inference procedure of SetConv. Each query data is compared with every class
representative to determine its label.

4.1.2 SetConv Layer

The minority class instances often require intensive attention of machine learning models,

since their rareness may carry important and useful knowledge (He and Garcia, 2009; Sun

et al., 2007; Chen and Shyu, 2011). A typical example is incident detection on social media,

where we are more interested in tweets related to violence such as shooting than those tweets

about entertainment.
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Figure 4.2: Relations between the input samples and a pre-selected minority class anchor are used
by SetConv to estimate both intra-class correlations and inter-class correlations.

Figure 4.3: The computation graph of the SetConv layer. Here Y is a minority class anchor.
W ∈ Rd×do is a weight matrix to learn that records the correlation between the input and output
variables. Specifically, the ith column of g2(W ) gives the weight distribution over input features
for the ith output feature. It is indeed a feature-level attention matrix. In addition, we estimate
another data-sensitive weight matrix g1(Y −X) from the input data. The final convolution weight
tensor is simply the Khatri-Rao product of g1(Y −X) and g2(W ).

This prior knowledge encourages us to design the SetConv layer in a way such that

the feature extraction process focuses on the minority class. Specifically, the SetConv layer

estimates its convolution kernel weights based on the relation between a pre-selected minority
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class anchor that is freely determined by the user and the input examples. Apparently, as

shown in Figure 4.2, if the input examples come from the minority class, the SetConv

layer is considering the intra-class correlation. On the other hand, if the input examples

belong to the majority class, the SetConv layer is considering the inter-class correlation.

In this paper, we choose the average-pooling of the minority class examples as the anchor for

simplicity, which is also executable due to the limited amount of minority class examples in

real-world applications.

Let Et = {St,Qt} denote the episode sampled at iteration t, where St =
(
Xmaj ∈

RN1×d, Xmin ∈ RN2×d
)

is the support set and Qt =
(
qmaj ∈ R1×d, qmin ∈ R1×d) is the

query set. To simplify the illustration, we abstract Xmaj, Xmin, qmaj and qmin as a sample

set of size N1, N2, 1 and 1 respectively. Mathematically, we represent this sample set as

X ∈ RN×d, N ∈ {N1, N2, 1}.

Recall that the standard discrete convolution is:

h[n] = (f ? g)[n] =
m=M∑
m=−M

f [m]g[n−m] (4.1)

where f denotes the feature map and g represents the convolution kernel weights.

In our case, the SetConv operation is defined as:

h[Y ] =
1

N

N∑
i=1

Xi · g(Y −Xi)

=
1

N

(
X ◦ g(Y −X)

) (4.2)

Here Y ∈ R1×d, g(Y −X) ∈ RN×d×do and h[Y ] ∈ R1×do denote the d-dimensional minority

class anchor, the convolution kernel weights with do channels and the do-dimensional output

embedding respectively. ◦ represents the channel-wise dot product of tensors, i.e., for every

channel i ∈ {1, 2, . . . , do}, h[Y ][i] = 1
N

∑
j

∑
kX[j, k] · g(Y −X)[j, k, i]
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Since the size of g(Y −X) is proportional to Nd, i.e., the product of the input example

size N and the input dimension d, learning g(Y −X) directly for large-scale high-dimensional

data is impractical. Therefore, we propose to approximate g(Y −X) via an efficient method

to reduce the memory and computational cost. Specifically, we stack samples in X to form

a giant dummy example X ′ = Concat(X) ∈ R1×Nd. Eq. 4.2 becomes

h[Y ] =
1

N

(
X ′ · g′(Y −X)

)
(4.3)

where g′(Y − X) ∈ RNd×do is the transformed convolution kernel weights. Then, we ap-

proximate g′(Y −X) as the Khatri-Rao product2 (Rabanser et al., 2017) of two individual

components:

g′(Y −X) = g1(Y −X) ~ g2(W )

= MLP(Y −X; θ) ~ SoftMax(W, 0)

(4.4)

Here W ∈ Rd×do is a weight matrix encoding the correlation between input and output

variables. g2(W ) is hence a feature-level attention matrix and its ith column gives the weight

distribution over input features for the ith output feature. On the other hand, g1(Y − X)

estimates weights from input data via a multi-layer perceptron and is hence data-sensitive.

It takes the relation between input data and the minority class anchor into account and helps

the model customize the feature extraction process for each input example. The detailed

computation graph of the SetConv layer is illustrated in Figure 4.3.

4.1.3 Permutation Invariant Property

An important property of the SetConv layer is permutation-invariant, i.e., it is insen-

sitive to the order of input samples. As long as the input samples are the same, no matter

in which order they are sent to the model, the SetConv layer always produces the same

2https://en.wikipedia.org/wiki/Kronecker product
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feature representation. Mathematically, let π denote an arbitrary permutation matrix, we

have SetConv(πX) = SetConv(X).

SetConv(πX)

=
1

N

(
Concat(πX) ·

[
g1(Y − πX) ~ g2(W )

])
=

1

N
·
(
Concat(X)E(π) ·

[
(π · g1(Y −X)) ~ g2(W )

])
=

1

N

(
X ′E(π) · E[π]T

[
g1(Y −X) ~ g2(W )

])
=

1

N

(
X ′ · I ·

[
g1(Y −X) ~ g2(W )

])
= SetConv(X)

(4.5)

Here Concat is the concatenation operation which transforms a N -by-d matrix into a Nd-

dimensional row vector. E(π) is the expansion operator for the permutation matrix π. For

example, considering a 2-by-2 permutation matrix,

π =

0 1

1 0


E(π) is given by:

E(π) =



0 0 1 1

0 0 0 0

0 0 0 0

1 1 0 0


For a toy example, Concat(πX) is computed as below:

0 1

1 0


a a

b b

 =

b b

a a

→ [
b b a a

]
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On the other hand, Concat(X)E(π) is given by

Concat(X)E(π)

=

[
a a b b

]


0 0 1 1

0 0 0 0

0 0 0 0

1 1 0 0


=

[
b b a a

]
= Concat(πX)

4.1.4 Classification

Assume vsmaj, v
s
min, vqmaj and vqmin denote the feature embedding produced by the SetConv

layer for Xmaj, Xmin, qmaj and qmin in an episode respectively. The probability that vqmaj or

vqmin is predicted as the majority class is:

P (c = 0|x) =
exp(x� vsmaj)

exp(x� vsmaj) + exp(x� vsmin)
(4.6)

where x ∈ {vqmaj, v
q
min} and � is the dot product operation.

Similarly, the probability that vqmaj or vqmin is predicted as the minority class is:

P (c = 1|x) =
exp(x� vsmin)

exp(x� vsmaj) + exp(x� vsmin)
(4.7)

where x ∈ {vqmaj, v
q
min}.

The widely-accepted cross-entropy loss is used to estimate the classification loss and the

Adam optimizer is adopted for a model update.

4.1.5 Extension to Multi-Class Scenario

Extending SetConv to the imbalanced multi-class classification scenario is straightforward.

We simply convert a multi-class classification problem into multiple binary classification
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problems. In other words, a binary one-vs-rest classifier is created for each of the N classes,

and the smaller one of the two classes is picked as the anchor class. Given a test instance x,

the posterior probability of predicting it as class c is given by

P (y = c|x) =
exp(x� vsy=c)

exp(x� vsy 6=c) + exp(x� vsy=c)
(4.8)

we choose the class that maximizes the posterior probability as the predicted label of x, i.e.,

ŷ = argmaxcP (y = c|x).

4.2 Evaluation

To verify the effectiveness of our method, we evaluate the proposed SetConv framework on

two common tasks, including incident detection on social media and sentiment classification.

4.2.1 Benchmark Dataset

Incident Detection on Social Media

In this task, a real-world benchmark dataset Incident-Related Tweet3 (Schulz et al., 2017)

(IRT) is adopted for evaluation. This dataset contains 22, 170 tweets collected from 10

different cities, which allows us to evaluate the competing methods against geographical

variations. Another reason to choose this dataset is that it supports both binary and multi-

class classifications. In binary classification, each tweet is tagged as either “incident-related”

or “not incident-related”. On the other hand, in multi-class classification, each tweet is

labeled as one of the four categories including “crash”, “fire”, “shooting”, and “not incident-

related”. Table 4.1 provides the details of this dataset.

3http://www.doc.gold.ac.uk/%7Ecguck001/IncidentTweets/
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Table 4.1: Class distribution in the IRT dataset.

Two Classes Four Classes
Yes No Crash Fire Shooting No

Boston (USA) 604 2216 347 188 28 2257
Sydney (AUS) 852 1991 587 189 39 2208

Brisbane (AUS) 689 1898 497 164 12 1915
Chicago (USA) 214 1270 129 81 4 1270
Dublin (IRE) 199 2616 131 33 21 2630
London (UK) 552 2444 283 95 29 2475

Memphis (USA) 361 721 23 30 27 721
NYC (USA) 413 1446 129 239 45 1446
SF (USA) 304 1176 161 82 61 1176

Seattle (USA) 800 1404 204 153 139 390

Table 4.2: Class distribution in Amazon Review and SemiEval Datasets.

Dataset Negative Positive IR
Amazon-Books 72039 7389 9.75

Amazon-Electronics 13560 1908 7.11
Amazon-Movies 12896 2066 6.24

SemiEval 39123 7273 5.38

Sentiment Classification

For sentiment classification, we evaluate our approach on two widely-accepted real-world

benchmark datasets, i.e., Amazon Review 4 (He and McAuley, 2016) and SemiEval5 (Rosen-

thal et al., 2017). Similar to the settings in MSDA (Li et al., 2019) and SCL-MI (Blitzer

et al., 2007), in our experiment, those amazon reviews with rating > 3 is tagged as positive

while those with rating < 3 is labeled as negative. The rest reviews are discarded due to

their ambiguous polarities. In addition, we choose the 3 biggest categories (i.e., “Books”,

“Electronics”, and “Movies and TV”) of the Amazon Review dataset, and uniformly sample

reviews from these categories to form a subset with 109, 858 reviews, which is sufficiently

large to evaluate the effectiveness of our method. Note that the imbalance ratio of each

4http://jmcauley.ucsd.edu/data/amazon/

5http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
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category in this subset is kept the same as that in the original dataset. Table 4.2 shows the

details of both Amazon Review and SemiEval datasets.

4.2.2 Baseline

We compare SetConv with several state-of-the-art imbalanced learning methods.

• IHT (Smith et al., 2014) (under-sampling) performs under-sampling based on instance

hardness to overcome the model bias.

• WEOB2 (Wang et al., 2015) (ensemble) is an under-sampling based ensemble method

that maintains both OOB and UOB with adaptive weights for final predictions. It only

supports binary classification.

• KMeans-SMOTE (Last et al., 2017) (over-sampling) combines the k-means cluster-

ing algorithm with SMOTE to eliminate both inter-class and intra-class imbalances

while at the same time avoiding the generation of noisy samples.

• IML (Wang et al., 2018) (metric learning) utilizes metric learning to explore the corre-

lations among imbalance data and constructs an effective data space for classification.

• CS-DMLP (Dı́az-Vico et al., 2018) (cost-sensitive) utilizes a cost-sensitive deep MLP

to regularize the posterior probability distribution predicted for a given sample.

4.2.3 Evaluation Metric

Five widely-accepted metrics (Wang et al., 2018; Dı́az-Vico et al., 2018; Last et al., 2017),

i.e., Specificity (Spec), Sensitivity (Sens), F1-measure (F1), Geometric-Mean (G-Mean), and

the Area Under the receiver operating characteristic Curve (AUC ), are adopted to evaluate

the model performance in our experiments. Table 4.3 presents the confusion matrix used in

the multi-class classification scenario, where the model performance on each minority class

is reported. It is because
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Table 4.3: Confusion matrix for multi-class classification problem, where c denotes the class to
evaluate.

Predict Label = c Predict Label 6= c
True Label = c True Positive (TP) False Negative (FN)
True Label 6= c False Positive (FP) True Negative (TN)

• In most imbalance learning problems, the minority classes are usually more important

than the majority classes (He and Garcia, 2009; Chen and Shyu, 2011).

• Simply averaging model performance on different classes may cover model defects when

class distribution is unbalanced.

Class-specific performance measure:

• Spec = TN
TN+FP

. Spec measures the model’s capability to avoid false positive and finds

all negative samples. It provides the accuracy of the majority class.

• Sens = TP
TP+FN

. Sens measures the model’s capability to avoid false-negative and finds

all positive samples. It provides the accuracy of the minority class.

Overall performance measure:

• F1 = 2· precision · recall
precision + recall

is the harmonic mean of precision = TP
TP+FP

and recall = TP
TP+FN

.

• G-Mean =
√
Spec · Sens. G-Mean receives a higher value only when both Spec and

Sens stay at a higher level. Thus, G-Mean can be considered as a trade-off between

Spec and Sens.

• AUC computes the area under the ROC curve. It measures the model’s capability to

distinguish positive and negative classes.

Higher values on these metrics indicate a model with better performance.
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Figure 4.4: Implementation code used to extract sentence embedding via Bert.

4.2.4 Experiment Setup

For each text data, we pre-process it by extracting a 1024-dimensional feature vector using

a pre-trained Bert model6 (Devlin et al., 2019), and utilize these embeddings in our exper-

iments. There is no ground-truth information leakage in this step since Bert is trained on

Wikipedia corpus with no supervision signals. Specifically, The BERT-Large, Cased (Whole

Word Masking)7 model released by the Google Research team is selected and the final hidden

state of the special classification token [CLS] is used to represent an input text sequence.

The code in Figure 4.4 illustrates this process in detail.

6https://github.com/huggingface/transformers

7https://github.com/google-research/bert
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Figure 4.5: Binary classification (incident detection) performance of competing methods on the
IRT dataset. The value in the bracket indicates the imbalance ratio (IR).

After data pre-processing, each dataset is uniformly shuffled and is divided into a de-

velopment set and a test set, where the split ratio is 7:3. Thus, the class distribution of

the original dataset is maintained in both development and test sets. The experiments are

repeated 10 times and the average classification results are reported to reduce the statistical

fluctuation resulting from random divisions.

Our algorithm is implemented via Python 3.7.3 and PyTorch 1.2.0. For all the baselines,

we adopt the official code released by corresponding authors and set their default hyper-

parameters based on values suggested in the corresponding papers. These hyper-parameters

are then fine-tuned via 10-fold cross-validation on the development set. In SetConv, we set

the output dimension of the SetConv layer do = 128, the size of support set ||Ssupport|| =

N1 + N2 = 64, the size of post-training subset ||Spost|| = 1000, learning rate r = 0.01,

β1 = 0.9, and β2 = 0.999.
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Figure 4.6: The performance diagnosis of competing methods for binary classification. The value
in the bracket indicates the imbalance ratio (IR). In contrast to baselines that are biased towards
either the majority or minority class, SetConv performs almost equally well on both classes.

4.2.5 Result

Binary Classification

Figure 4.5 and Figure 4.7 present the binary classification results of the incident detection

and sentiment classification tasks. Our proposed framework SetConv achieves the best

overall classification performance among the competing methods by providing the highest

F1, G-Mean, and AUC scores. In addition, as shown in Figure 4.6, all the baselines are biased

towards either the majority class or the minority class. In contrast, our algorithm provides

high specificity and sensitivity simultaneously and predicts accurately on both classes. It is

also insensitive to geographical variations.

Multi-Class Classification

To verify the effectiveness of the SetConv framework for multi-class classification, we com-

pare it with the baselines in the incident detection task. The classification performance of

competing methods on the three minority classes, i.e., “Fire”, “Shooting”, and “Crash”, are

reported in Table 4.4. Here we only show the results in New York City (NYC) due to space
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Figure 4.7: Binary sentiment classification performance of competing methods on the Amazon
Review and SemiEval datasets. The value in the bracket indicates the imbalance ratio (IR).

limitation. Similar results are observed in other cities. The overall classification performance

of our method is best among the competing methods since SetConv provides better F1,

G-Mean, and AUC scores than the baselines in most cases. Moreover, it performs almost

equally well on all the three minority classes, which is desired in real-world applications.

4.2.6 Sensitivity Analysis

Our algorithm mainly depends on a single hyper-parameter, i.e., the size of post training

subset ||Spost||. Therefore, we perform a sensitivity analysis of SetConv on ||Spost|| and the

result is shown in Figure 4.8. Our method performs stably with respect to various values of

||Spost||, which demonstrates that it learns to capture the class concept common to different

samples of a class. Thus, as long as ||Spost|| is large enough, varying ||Spost|| has little effect

on the model performance of SetConv.
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Table 4.4: Multi-class classification performance of competing methods on the IRT-NYC dataset.
0.000 indicates a value of less than 0.0005.

Fire
F1 G-Mean AUC Spec Sens

IHT 0.601±0.000 0.866±0.002 0.947±0.001 0.841±0.002 0.891±0.005
KMeans-SMOTE 0.831±0.005 0.894±0.003 0.967±0.001 0.978±0.001 0.818±0.005

IML 0.889±0.001 0.947±0.002 0.987±0.002 0.978±0.001 0.917±0.002
CS-DMLP 0.931±0.004 0.951±0.006 0.998±0.001 0.993±0.004 0.911±0.016

SetConv (ours) 0.972±0.002 0.996±0.000 0.999±0.000 0.992±0.001 0.999±0.001
Shooting

F1 G-Mean AUC Spec Sens
IHT 0.333±0.001 0.471±0.002 0.984±0.001 0.997±0.001 0.222±0.002

KMeans-SMOTE 0.895±0.002 0.969±0.003 0.962±0.001 0.996±0.002 0.944±0.003
IML 0.688±0.001 0.780±0.002 0.986±0.001 0.996±0.001 0.611±0.002

CS-DMLP 0.822±0.002 0.910±0.029 0.994±0.002 0.995±0.002 0.883±0.006
SetConv (ours) 0.912±0.012 0.998±0.003 0.999±0.001 0.995±0.001 0.999±0.001

Crash
F1 G-Mean AUC Spec Sens

IHT 0.306±0.023 0.762±0.019 0.865±0.011 0.755±0.020 0.769±0.019
KMeans-SMOTE 0.633±0.009 0.802±0.016 0.920±0.014 0.955±0.011 0.673±0.019

IML 0.662±0.002 0.937±0.003 0.959±0.001 0.932±0.001 0.942±0.003
CS-DMLP 0.702±0.054 0.917±0.002 0.969±0.013 0.951±0.017 0.885±0.019

SetConv (ours) 0.931±0.013 0.977±0.001 0.997±0.001 0.992±0.002 0.962±0.001

4.3 Discussion

In this chapter, we describe the proposed permutation-invariant SetConv operation and

episodic training strategy in details. By jointly utilizing SetConv and episodic training,

our approach is able to extract discriminative features from data and automatically balance

the class distribution for the subsequent classifier. Our model performs better than existing

solutions because (1) compared to resampling based approaches, e.g., IHT and WEOB2, our

method makes full utilization of data and avoids losing important information by removing

samples from the majority classes. (2) Compared to cost-sensitive approaches, e.g., CS-

DMLP, our method assigns equal weights to both the majority and minority classes via

episodic training and eliminates the overhead of finding suitable cost values for different
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Figure 4.8: Effect of post-training subset size (||Spost||) on classification performance.

applications. The model is forced to address the class imbalance by learning to extract

discriminative features.

Although SetConv is superior to existing solutions in many applications, it may not

be suitable for classifying high-dimensional sparse data. These data produce close-to-zero

convolution kernel weights, which may limit the model’s expressiveness. Incorporating sparse

deep learning techniques into SetConv is a potential solution to this problem. We will study

it for future work.
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CHAPTER 5

SIM: OPEN-WORLD MULTI-TASK STREAM CLASSIFIER WITH

INTEGRAL SIMILARITY METRICS 1

5.1 Approach

In this chapter, we discuss our proposed stream classifier SIM in details and explain how to

employ similarity learning to assist classification on open-ended data distributions.

5.1.1 Problem Setting

In stream classification, a small labeled dataset, D = {(xi ∈ Rd, yi ∈ Y)}mi=1 with label set

Y = {1, 2, . . . , c}, is usually given to initialize a stream classifier. Let S = {(xt, yt)}∞t=1,

where xt ∈ Rd and yt ∈ Y ′ = {1, 2, . . . , c, c + 1, . . . , c′} (c′ > c), denote a non-stationary

data stream. Our goal is to learn a model f initially with D that maps each incoming

instance xt from S to a specific label in Y ′, i.e., f(xt) → Y ′. Particularly, f determines

whether the input instance belongs an existing class or an unknown class (also referred as a

novel class), and is later automatically adapted to incorporate those instances from unknown

classes. Note that the intrinsic cohesion and separation property of data may be invalid in

the observed feature space. That is, for any two arbitrary classes cm, cn ∈ Y ′ (cm 6= cn), if

{xi,xj} ∈ cm and {xk} ∈ cn, it is possible that ||xi − xk||2 < ||xi − xj||2. As a result, f

should actively look for a latent feature space where the cohesion and separation constraint

for novel class detection is satisfied. For example, as shown in Figure 5.1, in the observed

feature space, instances of a novel class C are close to those of class A or B but are relatively

far away from each other. After transforming all instances into another latent feature space,

1This chapter contains material previously published as: ©2019 IEEE. Reprinted, with permission, from
Yang Gao, Yi-Fan Li, Bo Dong, Yu Lin, and Latifur Khan. ”SIM: Open-World Multi-Task Stream Classifier
with Integral Similarity Metrics.” In IEEE International Conference on Big Data (Big Data), pp. 751-760.
December, 2019. Lead author, Yang Gao, conducted the majority of the research, including the full writing,
the full design, the full implementation, and most of the evaluation.
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Class C

Class A
Class B

Figure 5.1: Novel class detection without (left) and with (right) metric learning. Here, classes A
and B denote two known classes while class C represents a novel class.

Table 5.1: Summary of the notations.

Notation Description
S Stream data
Y Label set of initial training data
Y ′ Open set of possible labels in S
f Mult-Task Open-World classifier (MT-OWC)
x ∈ Rd A d-dimensional instance arriving in S
y ∈ Y ′ The associated ground truth class label of x
D Initial training data in warm-up phase
ŷ Estimated label of x given by the multi-task open-world classifier f
ỹ Final predicted label of x given by SIM
B Novel class candidate buffer
SB The maximum size of B
SD The maximum storage capacity of each class in D
TD Confidence threshold for updating D
P(x) Prediction confidence for x using f
D Data storage - A buffer that stores at most SD instances for each class
D′ Subset of the data storage D for training f
φ The metric embedding function that maps x ∈ Rd to φ(x) ∈ Rd′

γ Significance level of Ltriplet
Smini Mini-batch size for triplet generation and training of f
Supdate Minimum number of instances of each class in D for classifier update
Nmini Number of triplets to generate in each mini-batch.
nepoch number of epochs to train MT-OWC

instances of classes A, B, and C form their own clusters respectively. Those in the cluster

of class C are well separated from instances of class A and B so that they can be detected

easily. On the other hand, due to the non-stationary nature of a data stream and the limited
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Figure 5.2: Overview of the SIM framework.

computational resources, e.g., storage, f has to effectively detect the emergence of novel

classes while requiring a small number of truth-values at a time for a model update and

should predict well over long periods of time afterward.

5.1.2 Overview

A typical technique requires sufficient novel class candidates to determine whether these

instances belong to a novel class or not. A threshold function over instance density in

feature space is utilized to determine the existence of a novel class. If one or more novel

classes are detected, the model is updated by training a new classifier based on data including

instances from these new classes. In our work, we adopt this mechanism and apply it along

with a unique metric learning schema that aids in the identification of potential novel class

candidates.

To do it, we introduce a semi-supervised framework SIM with its core components and

workflow illustrated in Figure 5.2. An essential component of SIM is a multi-task open-

world classifier, which is trained only on data of known classes but is capable of dealing with

73



many instances belonging to unseen classes during evaluation. A metric learning mechanism

is internally employed in this classifier to actively search for a latent feature space where

the strong cohesion among instances from the same class and large separation among in-

stances from different classes holds. Thus, a multi-task open-world classifier performs metric

learning, novel class detection, and classification tasks simultaneously.

In the beginning, a small set of training data denoted as D is used to initialize a multi-

task open-world classifier. For any incoming instance x from the data stream S, the classifier

predicts its estimated label ŷ as the one that maximizes the likelihood. If x is not a potential

novel class candidate, i.e., ŷ 6= −1, then its final predicted label ỹ is same as its estimated

label ŷ , i.e., ỹ = ŷ. Otherwise, we temporarily store x in a candidate buffer B, and process

it later via the Novel Class Purification (NCP) module.

Once the buffer B is full, the NCP module is utilized to separate those instances of

unknown classes from others that are incorrectly introduced into the buffer due to noise in

the stream. These novel class instances are then used to update the data storage D, which is

a buffer storing at most SD instances for each class. Once the update condition is satisfied, a

new classifier is trained on the updated D to incorporate information from new classes. The

details of the classification and novel class detection processes are described in Algorithm 2.

5.1.3 Multi-Task Open-World Classifier (MT-OWC)

Since the intrinsic cohesion and separation assumption is often invalid in real-world high-

dimensional data streams, to perform novel class detection in this case, we leverage metric

learning mechanism to actively search for a latent space where similar instances are close to

each other (i.e., the Euclidean distance between them is small) and dissimilar instances are

far away from each other (i.e., the Euclidean distance between them is large). Moreover,

we fuse metric learning and novel class detection into classification, because a high-quality

metric obtained by metric learning is critical to both classification and novel class detection
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Algorithm 2 SIM: Stream Classification

Require: S - Stream data; SB - The maximum size of the candidate buffer B; TD - Confi-
dence threshold for updating the data storage D; D - Initial training data;

Ensure: Label ỹ predicted on S data.
1: Learn an initial model f from D by solving the optimization problem. (Eq. 5.6)
2: repeat
3: Receive a new instance x.
4: Predict estimated label ŷ for x using f according to Eq. 5.8
5: if ŷ = −1 then
6: Store x in the candidate buffer B.
7: else
8: Final predicted label ỹ ← ŷ
9: Prediction confidence P(x)← P(y̆ = ŷ|x) (Section 5.1.4: Classification)

10: end if
11: if size(B)≥ SB then
12: Check for occurrence of any novel class in data using PurifyNovel (Algorithm 3)
13: if PurifyNovel returns True then
14: if Update-Condition (Section 5.1.6: DSCU) Satisfied then
15: Retrain f with D′ (a subset of D) (Section 5.1.6: DSCU).
16: end if
17: end if
18: end if
19: if ŷ 6= −1 and P(x) > TD then
20: Update D using (x, ỹ) (Section 5.1.6: DSCU).
21: end if
22: until S exits

tasks. Hence, we propose a novel classifier to perform all these tasks jointly, which is referred

to as Multi-Task Open-World Classifier (MT-OWC). The architecture of MT-OWC is illus-

trated in Figure 5.3. In this classifier, the Input Layer, Hidden Layer and Embedding Layer

minimize our proposed loss function to learn a metric function φ that projects instances from

the observed feature space to the desired latent feature space where the cohesion and separa-

tion among instances are supported. Following (Shu et al., 2017a), instead of using softmax

as the final output layer, we create a Classification/Novel Class Detection Layer that assigns

a sigmoid function to each of the K classes, which is able to handle the common cases where

the number of novel classes is unknown. For the ith sigmoid function corresponding to class
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Figure 5.3: The network architecture of the proposed Multi-Task Open-World Classifier.

ci, MT-OWC takes all examples with label y = ci as positive examples and the rest with

y 6= ci as negative examples, forming a one-vs-rest binary classification scenario.

We rely on the triplets defined in Definition 1 to train the proposed MT-OWC. A triplet

allows evaluating both similar and dissimilar relations simultaneously, which could poten-

tially improve the quality of learned metrics and the resulting model performance. For

simplicity, we denote a training set containing M triplets as D, the triplet loss introduced

by the metric function φ as Ltriplet, and the classification loss introduced by the final layer

of MT-OWC as Lclass, respectively.

Definition 1 (Triplet). A triplet (xa,xp,xn) is a group of three instances where xa (anchor)

is similar to xp (positive) but is dissimilar to xn (negative).

The Triplet Loss (Ltriplet)

Suppose (xa
i ,x

p
i ,x

n
i ) is the ith triplet in D. Any instance x ∈ Rd can be embedded into

a d′-dimensional Euclidean latent space by the metric function φ, i.e., φ(x) ∈ Rd′ . The

Euclidean distance between xa
i and xn

i in this space is expected to be at least eγ (γ ≥ 1)

times the distance between xa
i and xp

i . That is,
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||φ(xa
i )− φ(xn

i )||2
||φ(xa

i )− φ(xp
i )||2

≥ eγ (5.1)

After smoothing, it becomes

||φ(xa
i )− φ(xn

i )||2 + 1

||φ(xa
i )− φ(xp

i )||2 + 1
≥ eγ (5.2)

The triplet loss Ltriplet is hence:

Ltriplet =
1

M

M∑
i=1

[
log(||φ(xa

i )− φ(xp
i )||2 + 1) + γ

− log(||φ(xa
i )− φ(xn

i )||2 + 1)

]
+

(5.3)

where γ is a user-specified hyper-parameter (referred as the significance level of Ltriplet), and is

used to adjust the margin: ||φ(xa
i )−φ(xn

i )||2−||φ(xa
i )−φ(xp

i )||2 ≈ (eγ−1)||φ(xa
i )−φ(xp

i )||2.

This margin gives the minimum separation between xp
i and xn

i for each triplet, and is

monotonically increasing with γ. To reduce the potential model search space and accelerate

the training, the learned embedding is also constrained to reside on a d′-dimensional unit

sphere. The metric function φ in Ltriplet can be any non-linear function. In SIM, we represent

φ as the single-hidden layer neural network shown in Figure 5.3 for simplicity.

The Classification Loss (Lclass)

Similar to (Shu et al., 2017b), we use the average Binary Classification Error (BCE) of the

K classes to measure the classification loss. Formally, it is:

Lclass =
1

3KM

M∑
j=1

K∑
i=1

∑
∗∈{a,p,n}

[−I(yx∗
j

= ci) logP(yx∗
j

= ci)

− I(yx∗
j
6= ci) log(1− P(yx∗

j
= ci))]

(5.4)

where P(yx∗
j

= ci) = σ(Wiφ(x∗
j ) + b) and Wi is the weight associated with ith class in the

Classification/Novel Class Detection layer.
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Training of MT-OWC

In contrast to (Shu et al., 2017b), we do not optimize Lclass on its own. Instead, MT-OWC

jointly learns the tasks of metric learning, classification, and novel class detection by simul-

taneously optimizing both the classification loss Lclass and the triplet loss Ltriplet. Hence,

the knowledge gained in metric learning helps to improve the generalization performance of

the classifier in presence of novel classes, and vice versa. This information transfer is critical

to stream applications where a limited amount of labeled training data is accessible. The

overall multi-task objective function Loverall is:

Loverall = Lclass + βLtriplet (5.5)

where β ∈ [0, 1] controls the importance of Ltriplet in Loverall. The final optimization problem

is:

minimize
φ,W1,W2,...,WK

Loverall

subject to ||φ(x∗
i )||2 = 1, ∀x∗

i ∈ D.
(5.6)

Here x∗
i denotes any anchor, positive or negative instance according to the triplet definition.

Triplet Generation and Selection

Another important question that remains to be answered is how do we generate and select

triplets from a given data buffer D′ to form a triplet set D for training? Iterating all possible

combinations is not only computationally intractable but also unnecessary because many of

the resulting triplets produce a zero triplet loss value and hence make little contribution to

model update. Therefore, selecting hard triplets is critical to continuously improving the

model performance. Here, we use the term “hard” to indicate a positive triplet loss.

Suppose D′ = {(x1, y1), . . . , (xn, yn)} ∈ Rd×C , where C = {c1, . . . , ck} denotes k different

classes. A triplet can be generated by:

Step 1: Select an “anchor” class ca and a “negative” class cn (ca 6= cn) from D′;
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Step 2: Randomly sample an anchor instance xa
i from the class ca.

Step 3: Given xa
i , we’d like to select a positive instance xp

i from class ca such that

||φ(xa
i )−φ(xp

i )||2 is maximized, and a negative instance xn
i from class cn such that ||φ(xa

i )−

φ(xn
i )||2 is minimized.

Note that the triplets should be generated in an online fashion due to the nature of data

streams. To substantially accelerate the search, at each step, we uniformly sample a subset

of instances from D′ to form a mini-batch. We then transform the instances within that

mini-batch to the embedding space and compute the arg max and arg min among them to

generate desired triplets. The expected search space becomes O(
S3mini

k3
), where Smini represents

the mini-batch size. A total of Nmini triplets are generated for each mini-batch.

5.1.4 Classification

Let f and y̆ denote the multi-task open-world classifier and the preliminary label predicted

by f respectively. For every incoming instance x from stream S, the preliminary prediction

probability P(y̆ = ci|x) of class ci is computed by P(y̆ = ci|x) = σ(Wiφ(x) + b). To

decide the final predicted label of x, a threshold Tnovel for novel class detection has to be

determined first. However, manually setting a fixed threshold is improper in our case due to

the non-stationary nature of data streams. Therefore, we leverage the concept of one-sided

confidence bound in statistics to automatically obtain a suitable Tnovel.

Since Gaussian distributions introduce the minimum prior constraints to the underlying

distribution of P(y̆ = ci|x), we assume P(y̆ = ci|x) follow a Gaussian distribution with

unknown mean and unknown variance. A good statistic for the confidence threshold is the

average prediction probability of training data, i.e., P̄(ci) = 1
||D′i||

∑
D′i

P(y̆ = ci|x ∈ D′i), where

D′i = {(xj , yj = ci),∀xj ∈ D′}. Note that P̄(ci) follows a t distribution with ||D′i|| − 1

degrees of freedom. Therefore, the desired Tnovel for class ci is the 100(1 − α)% confidence

lower bound of P̄(ci):

Tnovel(ci) = P̄(ci)− tα,||D′i||−1Sci/
√
||D′i|| (5.7)
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Here, Sci is the sample standard deviation of {P(y̆ = ci|x), ∀x ∈ D′i}.

Once the threshold Tnovel is determined, the classification process is as usual. Given

an instance x, for the ith class ci, we examine if the preliminary prediction probability

P(y̆ = ci|x) is less than the corresponding novel class detection threshold Tnovel(ci). If this

condition holds for all classes, x is regarded as a candidate from a novel class. As a result,

SIM simply rejects x, i.e., predicts its estimated label as -1, and temporarily stores x in B.

On the other hand, if this condition holds for one or more classes, the estimated label of x

is the class that gives the highest preliminary prediction probability. Mathematically, it is:

ŷ =



−1 if P(y̆ = ci|x) < Tnovel(ci),

∀ci ∈ YD′

arg max
ci∈YD′

P(y̆ = ci|x) otherwise

(5.8)

where ŷ and YD′ represent the the estimated label for an instance x and the label set of D′

respectively. If ŷ 6= −1, the final predicted label ỹ is the same as ŷ, i.e., ỹ = ŷ; Otherwise,

the prediction of ỹ is left to the novel class purification module.

5.1.5 Novel Class Purification (NCP)

In some cases, a few noisy known class instances in data streams may be incorrectly reported

as from novel classes. To reduce the false alarm rate, once the novel class candidate buffer

B is full, we invoke the novel class purification module to separate novel class instances from

other candidates in B. The procedure is described below:

Step 1: We project every candidate instance in B to the latent feature space learned via

metric learning and obtain its corresponding embedding φ(x).

Step 2: An unsupervised clustering algorithm, DBSCAN (Ester et al., 1996), is applied

over the transformed instances to form clusters {C1, . . . , Cm}. DBSCAN is selected because

it does not require the number of clusters being specified in advance.

80



Algorithm 3 PurifyNovel

Require: Candidate Buffer B
Ensure: True/False

1: C = {C1, . . . , Cm} ← DBSCAN (B)
2: Novel ← False
3: for Ci ∈ C do
4: Uniformly sample a instance xci ∈ Ci.
5: Request truth label yci of xci .
6: if yci is unknown before then
7: Novel ← True
8: end if
9: for x ∈ Ci do

10: Update the data storage D using (x, yci) (Section 5.1.6: DSCU).
11: ỹ ← yci
12: end for
13: end for
14: return Novel

Step 3: For each cluster Ci, we uniformly sample one instance out from Ci and request

its true label. This true label would be the prediction label for all instances within Ci. It is

executable because we assume an external source, e.g., image captions, context information,

or human experts, can provide the true label for a particular instance, following (Masud

et al., 2011a; Al-Khateeb et al., 2012b; Haque et al., 2016a; Mu et al., 2017b; Zhang et al.,

2018b). However, we greatly reduce the number of label requests by grouping similar in-

stances together and propagating the label of a group representative to other members within

the same group. Algorithm 3 formally describes the workflow of NCP module.

5.1.6 Data Storage and Classifier Update (DSCU)

The data storage D contains a unique buffer for each of known classes, which stores at most

SD instances of that class. Whenever an unseen class is discovered, a corresponding new

buffer is added to D. Suppose Di represents the buffer of class ci. For every x of class ci sent

to update D, if Di is not full, x is simply appended to Di; Otherwise, the ”oldest” instance
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in Di is replaced by x. We update the classifier f if and only if both of the following update

conditions are satisfied:

• Algorithm 3 returns True, i.e., some novel class instances are discovered.

• If m different novel classes are found by Algorithm 3 since last update of f , at least

one of the m classes have more than Supdate instances in D.

Once these conditions are satisfied, a new training dataset D′ is formed by including all

classes with more than Supdate instances in D, and is used to train a new classifier f .

5.1.7 Time and Space Complexity

The computational burden of SIM mainly comes from the training of the multi-task open-

world classifier. Assume the time cost of gradient computation for one example is a constant

C, then the time complexity of processing a mini-batch is O(S3
miniC). The overall time

complexity of SIM is O(nepochS
2
miniCSD||Y ′||), where ||Y ′|| represents the number of classes

in Y ′. On the other hand, the overall space complexity of SIM is O(SB + SD||Y ′||+Bspace),

where Bspace is the space complexity of the model representing φ.

5.1.8 Extendibility to Handle Concept Drift

Another common challenge in stream classification is the so-called concept drift. It occurs

in a stream when the underlying concept of data changes over time (Haque et al., 2016a).

Extending SIM to address both concept evolution and concept drift is easy. As discussed

in Section 5.1.5, in the novel class purification module of SIM, the novel class candidates

are grouped into a number of clusters and one instance is uniformly sampled out from each

cluster to determine the label of instances within that cluster. Many of these clusters are

formed by instances from known classes if concept drift exists in data streams. Therefore,

if the representative instance of a cluster belongs to one of the known classes, all instances
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Table 5.2: Description of Datasets

Type Dataset # features # classes # instances

Image

FASHION-MNIST 784 10 70,000
MNIST 784 10 70,000
EMNIST 784 47 131,600
CIFAR-10 1024 10 70,000

Text
New York Times 300 21 70,000
Guardian 300 10 66,112

within that cluster are marked as potentially appearing due to concept drift. We will evaluate

this approach in our future work.

5.2 Evaluation

5.2.1 Datasets

We use four publicly available benchmark real-world image datasets including FASHION-

MNIST2 (Xiao et al., 2017b), MNIST3 (LeCun et al., 2010), EMNIST4 (Cohen et al.,

2017b) and CIFAR-105 (Krizhevsky and Hinton, 2009) for evaluation. In particular, the

images in CIFAR-10 are converted into gray-scale via OpenCV API, leading to 1024 features

per image. Table 5.2 lists the details of these datasets.

For every stream, we build an initial stream classifier based on a small training set with

bn · rc classes, where n is the total number of classes in the dataset and r ∈ [0, 1] is a

user-specified constant indicating the fraction of classes that are known in the beginning.

Hence, the novel class collection contains instances from the n − bn · rc remaining classes.

For each benchmark dataset, a data stream is simulated by including instances from both

2https://github.com/zalandoresearch/fashion-mnist

3http://yann.lecun.com/exdb/mnist/

4https://www.nist.gov/itl/iad/image-group/emnist-dataset

5https://www.cs.toronto.edu/ kriz/cifar.html
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the known classes and new classes in the novel class collection. Those instances of un-

known classes appear in different periods of the stream uniformly and classes may disappear

and/or reappear along the stream. For example, suppose {c1 : {x1,x2}, c2 : {x3,x4}}

and {c3 : {x5,x6}, c4 : {x7,x8}} are collections of existing class (c1, c2) and novel class

(c3, c4) candidates respectively at time t. An incoming instance x arriving at time t + 1

(y is its associated label) is equally likely to be from the existing or novel class set, i.e.,

P (y ∈ {c1, c2}) = P (y ∈ {c3, c4}). If y is selected as existing class, then x is uniformly sam-

pled from existing class set {x1,x2,x3,x4}; otherwise it is uniformly sampled from novel

class set {x5,x6,x7,x8}.

We also conduct additional experiments on two real-world text streams. One of them is

the New York Times news stream crawled via the New York Times API6, which contains

news articles in 21 categories published from Jan.1, 2005, to Jan.1, 2018. The biggest three

classes, i.e., “Arts”, “Business Day”, and “Sports”, are uniformly sampled to obtain 3000

articles as the initial training dataset. Another stream is the news story stream crawled

via the Guardian API7. It contains news stories in 10 categories published between Jan.1,

2016, and Jan.1, 2018. Similarly, 3000 stories are uniformly sampled from the classes “Film”,

“Politics”, and “Technology” to form the initial training dataset. Note that news articles or

stories are crawled in chronological order in both cases, and each news item is fed into a pre-

trained Word2Vec model8 to obtain a 300-dimensional feature vector. These text streams are

also adopted by our baselines such as SENC-MaS (Mu et al., 2017b) so that the comparison

between existing solutions and our model is fair.

6http://developer.nytimes.com/

7https://open-platform.theguardian.com/explore/

8https://radimrehurek.com/gensim/index.html
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Table 5.3: Classification performance of competing stream classifiers over different image streams.
◦/• indicates that SIM performs statistically worse/better (0.05 significance level) than the corre-
sponding methods. The number of initial known classes is b47 · rc for EMNIST and is b10 · rc for
other datasets.

Dataset r=0.3 ECSMiner SENC-MaS ECHO-D SIM (Ours)

CIFAR-10
Accuracy (%) 28.30±0.38 • 44.67±0.01 • 27.68±0.40 • 55.47±0.66

label ratio 2.50±0.05 0.86±0.02 1.13±0.05 1.00±0.00
effectiveness 11.32 51.94 24.50 55.47

MNIST
Accuracy (%) 90.27±0.26 • 47.70±0.01 • 86.03±0.41 • 96.94±0.12

label ratio 4.38±0.14 1.67±0.05 2.01±0.03 1.00±0.00
effectiveness 20.61 28.56 42.80 96.94

FASHION-MNIST
Accuracy (%) 76.50±0.61 • 44.10±0.01 • 66.57±0.47 • 88.97±0.46

label ratio 3.66±0.09 1.36±0.03 1.63±0.08 1.00±0.00
effectiveness 20.90 32.43 40.84 88.97

EMNIST
Accuracy (%) 61.44±0.51 • 53.77±0.01 • 48.33±0.97 • 81.05±1.26

label ratio 2.43±0.04 1.09±0.02 1.11±0.04 1.00±0.00
effectiveness 25.28 49.33 43.54 81.05

win/tie/loss 4/0/0 4/0/0 4/0/0 N/A

Dataset r=0.4 ECSMiner SENC-MaS ECHO-D SIM (Ours)

CIFAR-10
Accuracy (%) 28.13±0.15 • 49.52±0.01 • 27.40±0.18 • 54.92±0.30

label ratio 2.34±0.01 1.02±0.01 1.09±0.01 1.00±0.00
effectiveness 12.02 48.55 25.14 54.92

MNIST
Accuracy (%) 88.93±0.18 • 48.62±0.01 • 85.71±0.03 • 96.32±0.09

label ratio 4.13±0.12 1.38±0.04 1.96±0.06 1.00±0.00
effectiveness 21.53 35.23 43.73 96.32

FASHION-MNIST
Accuracy (%) 75.94±0.44 • 41.06±0.01 • 63.40±0.52 • 90.62±0.15

label ratio 3.52±0.04 1.01±0.01 1.58±0.01 1.00±0.00
effectiveness 21.57 40.65 40.13 90.62

EMNIST
Accuracy (%) 57.48±0.28 • 46.18±1.28 • 46.12±0.48 • 85.26±0.78

label ratio 1.79±0.02 0.69±0.01 0.77±0.02 1.00±0.00
effectiveness 32.11 66.93 59.90 85.26

win/tie/loss 4/0/0 4/0/0 4/0/0 N/A

5.2.2 Baselines

To examine the effectiveness of our proposed SIM, we compare it with several state-of-the-art

stream classifiers:

• ECSMiner (Masud et al., 2011a): a fully-supervised framework that maintains an

ensemble of K-Means clusters to detect novel classes and make predictions via a k-

nearest neighbors classifier.
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Table 5.4: Novel class detection performance over image and text streams. - indicates a failure of
novel class detection, i.e., Fnew = 0 and Mnew = 100. We adopt b47 · rc initial known classes for
the EMNIST stream and b10 · rc intial known classes for other streams.

Image Data Stream r=0.3 ECSMiner SENC-MaS ECHO-D SIM (Ours)

MNIST
Mnew 77.90±2.23 95.10±0.01 67.58±2.12 28.38±0.68
Fnew 1.08±0.23 11.81±0.01 1.21±0.01 0.04±0.02

FASHION-MNIST
Mnew 88.10±0.87 64.93±0.01 - 61.02±1.71
Fnew 1.60±0.13 48.37±0.01 - 0.27±0.06

EMNIST
Mnew - 87.90±0.01 - 21.67±2.38
Fnew - 18.81±0.01 - 0.47±0.04

CIFAR-10
Mnew - 96.36±0.01 - 61.03±1.71
Fnew - 1.47±0.01 - 0.28±0.06

Image Data Stream r=0.4 ECSMiner SENC-MaS ECHO-D SIM (Ours)

MNIST
Mnew 90.27±0.56 85.47±0.01 87.13±0.50 18.94±0.74
Fnew 0.25±0.17 17.01±0.01 0.36±0.01 0.19±0.04

FASHION-MNIST
Mnew 87.63±1.37 - - 56.89±1.08
Fnew 0.03±0.01 - - 0.34±0.01

EMNIST
Mnew - 90.88±0.43 - 14.89±1.54
Fnew - 15.65±0.27 - 0.08±0.01

CIFAR-10
Mnew - 98.49±0.01 - 41.88±0.21
Fnew - 1.47±0.01 - 1.36±0.21

Text Data Stream ECSMiner SENC-MaS ECHO-D SIM (Ours)

New York Times
Mnew 94.59 94.91 97.88 50.79
Fnew 2.94 4.18 0.46 1.10

Guardian
Mnew 95.33 96.72 - 62.14
Fnew 0.59 2.95 - 0.89

• ECHO-D (Haque et al., 2016a): a semi-supervised framework that improves EC-

SMiner by maintaining a cluster ensemble for classification.

• SENC-MaS (Mu et al., 2017b): a semi-supervised framework that dynamically main-

tains two low-dimensional matrix sketches to detect novel classes and classify instances

of known classes.

• SIM-NM: a semi-supervised variant of our SIM framework with no integral similarity

metric. In other words, we optimize Lclass rather than Loverall.

86



Table 5.5: Classification and novel class detection performance of SIM-NM and SIM over image
streams with r = 0.3. ◦/• indicates that SIM performs statistically worse/better than SIM-NM
(0.05 significance level).

Method MNIST FASHION-MNIST EMNIST CIFAR-10

Accuracy (%)
SIM-NM 87.72±0.02 • 80.92±0.01 • 76.96±0.01 • 45.53±0.14 •

SIM 96.94±0.12 88.97±0.46 81.05±1.26 55.47±0.66

label ratio
SIM-NM 1.35±0.01 1.41±0.03 1.03±0.02 0.95±0.02

SIM 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

effectiveness
SIM-NM 64.98 57.39 74.72 47.93

SIM 96.94 88.97 81.05 55.47

Mnew
SIM-NM 62.36±1.94 • 80.58±1.26 • 53.50±1.26 • 67.62±0.70 •

SIM 28.38±0.68 61.02±1.71 21.67±2.38 61.03±1.71

Fnew
SIM-NM 0.01±0.01 0.02±0.01 ◦ 0.01±0.01 ◦ 2.80±0.03 •

SIM 0.04±0.02 0.27±0.06 0.47±0.04 0.28±0.06

Table 5.6: Classification performance of competing methods over text streams.

Methods
New York Times Guardian

Accuracy (%) label ratio effectiveness Accuracy (%) label ratio effectiveness
ECSMiner 29.56 2.21 13.38 30.17 2.62 11.52
SENC-MaS 39.79 0.79 50.37 45.15 1.02 44.26
ECHO-D 43.34 0.80 54.18 49.02 0.96 51.06

SIM (Ours) 57.95 1.00 57.95 53.74 1.00 53.74

5.2.3 Experiment Setup

The proposed framework SIM is implemented via Python 3.6.2 and Pytorch 0.4.0 library.

The network parameters are randomly initialized based on Pytorch’s internal random pro-

cess. For all baselines except SENC-MaS, we adopt the official implementation provided by

corresponding authors. Since there is no fully functional implementation of SENC-MaS pro-

vided by the author, we implement it by ourselves based on the description in the published

paper (Mu et al., 2017b). The hyper-parameters of these baselines are initially set based

on values reported by the authors and then fine-tuned via cross-validation on the initializa-

tion dataset. In our method SIM, we set n = 200, SB = 1000, SD = 200, Supdate = 100,

TD = 0.99, γ = 1.0, Smini = 64, Nmini = 2000 and nepoch = 5 as default. The initial training

dataset size is 1000 per class.
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Figure 5.4: Classification accuracy of competing methods over the EMNIST image stream (r = 0.3).

Figure 5.5: Classification accuracy of competing methods over the New York Times text stream.

5.2.4 Evaluation Metrics

Suppose FN = the number of instances belonging to novel classes that are misclassified

as existing classes, FP = the number of instances belonging to existing classes that are

misclassified as novel classes, Fe = the total number of misclassified existing class instances
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Figure 5.6: Classification accuracy of SIM-NM and SIM over the EMNIST image stream (r = 0.3).

(other than FP ), Nc = the total number of novel class instances, and N = the total number

of instances in the stream. The following widely-accepted metrics (Masud et al., 2010, 2009b;

Al-Khateeb et al., 2012b; Masud et al., 2011b) are used for evaluation.

• Accuracy(%) = 100− (FP+FN+Fe)×100
N

• label ratio = % of true labels requested by M
% of true labels requested by SIM

, where M denotes a method in {ECSMiner,

SENC-MaS, ECHO, SIM-NM, SIM}.

• Mnew = FN∗100
Nc

: fraction of novel class instances misclassified as belonging to existing

classes.

• Fnew = FP∗100
N−Nc

: fraction of existing class instances misclassified as belonging to novel

classes.

• effectiveness = Accuracy(%)
label ratio

: normalized accuracy, which measures the model perfor-

mance if the model uses the same amount of ground truth labels as SIM.
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In the experiments, we evaluate these metrics in a prequential manner. A model with a

lower Mnew, Fnew or label ratio has a better performance. On the other hand, the higher the

Accuracy(%) or effectiveness, the better the model.

5.2.5 Results

Stream Classification

For both r = 0.3 and r = 0.4, we simulate different streams and conduct 10 independent

experiments on each benchmark image dataset. In addition, we conduct another experiment

in the New York Times and Guardian text streams. The classification results on image and

text streams are listed in Table 5.3 and Table 5.6 respectively. Note that we do not report

variance information for the results in Table 5.6, since articles or stories in text streams have

a fixed chronological order. As shown in the results, SENC-MaS underperforms its competi-

tors in most streams due to its linear classifier. ECSMiner provides better performance than

ECHO-D because it is optimized for supervised learning and observes far more information

than the latter. Most importantly, SIM performs best among the competing methods by

providing the highest accuracy and effectiveness in most streams. It indicates that SIM uti-

lizes the training data from streams in a more efficient way compared to baselines. Figure 5.4

and Figure 5.5 illustrates how the classification performance of competing methods evolve

along the EMNIST image stream (r = 0.3) and the New York Times text stream respectively.

In contrast to existing solutions, SIM detects the occurrence of novel classes quickly and

performs stably along the streams. Similar results are also observed in other simulated and

real-world streams. The good performance of SIM mainly comes from its integral similarity

metric learned via multi-task learning, which actively finds a latent feature space suitable

for both classification and novel class detection (demonstrated in Section 5.2.5).
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Novel Class Detection

The comparison of novel class detection performance between SIM and the baseline methods

on each stream is listed in Table 5.4. Apparently, ECSMiner and ECHO-D fail to detect

any novel class instance in most image streams. On the other hand, although SENC-MaS

detects some novel class instances, it misses most of such instances and produces lots of

false alarms. These methods perform poorly because they rely on the intrinsic cohesion and

separation assumption that is invalid in complex high-dimensional streams to detect novel

class instances. In these streams, instances from known classes are further away than those

from novel classes in the observed feature space, making detection difficult or sometimes

even impossible. SIM overcomes this issue by actively searching for a latent feature space

suitable for both classification and novel class detection, leading to the lowest Mnew and Fnew

among competing methods.

Metric Impact

An important question that remains to be answered is how the metrics learned in SIM affects

its performance? To study it, we introduce a new baseline SIM-NM, which is a variant of

SIM with no integral similarity metric. The classification performance of SIM and SIM-NM

on the simulated image streams with r = 0.3 are reported in Table 5.5. In addition, how

the performance of SIM and SIM-NM evolve along the EMNIST image stream (r = 0.3)

is shown in Figure 5.6. Compared to SIM-NM, SIM provides much higher classification

accuracy, significantly lower Mnew, and lower or same level of Fnew. Moreover, it detects

the occurrence of novel classes much faster than SIM-NM, indicating its better capability of

capturing inter-class dissimilarity. Similar results are observed in other streams of different

datasets and with different r values. Remind that the only difference between SIM-NM

and SIM is the integral similarity metric. Therefore, we are confident to conclude that this
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Figure 5.7: Sensitivity analysis of SIM. n, γ, and r are the number of hidden units in the network,
the significance level of triplet loss, and the ratio of initially known classes respectively.

similarity metric is critical for improving both the novel class detection and classification

performance over data streams.

Sensitivity of Parameters

A hyper-parameter sensitivity analysis is also conducted for SIM and the results are shown

in Figure 5.7. The three main hyper-parameters in SIM are n (the number of hidden units

in the network), γ (the significance level of the adaptive-bound triplet loss Ltriplet), and r

(the ratio of initially known classes). According to the results, if the network is simple, i.e., n

is relatively small, the performance of SIM significantly degrades with much lower accuracy

and significantly higher Mnew as well as Fnew. On the other hand, a large n produces a

complex network that is easily overfitted and declines the model performance. Similarly,

with a high γ, SIM tends to excessively push different classes far away from each other and

hence overfits on the training data. As a result, we choose to set n = 200 and γ = 1.0 that

are neither too big nor too small. Note that SIM is robust to the number of initially known
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classes by providing almost equal performance with respect to different r values (r ≥ 0.3),

which is desired for stream classifiers.

5.3 Discussion

In this chapter, we describe the proposed semi-supervised stream classifier SIM in details,

which is able to perform classification on open-ended data distribution. Compared to existing

solutions, SIM improves both the classification and novel class detection performance by

actively searching for a latent feature space via metric learning where the intrinsic cohesion

and separation data property holds. Thus, it is more suitable for classifying complex high-

dimensional real-world data streams. Note that SIM focuses on addressing the concept

evolution problem and ignores the concept drift issue in data streams. Fortunately, extending

SIM to handle both concept evolution and concept drift is easy. We leave it for future work.
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CHAPTER 6

CONCLUSION AND FUTURE WORK 1 2 3

In this chapter, we will draw a conclusion and discuss our future work. We will start with

our online metric learning framework OAHU that addresses the “Online Adaptive Metric

Learning” open challenge, and later focus on the SetConv and SIM frameworks that

enhance classification performance under the class imbalance and open-world assumptions.

6.1 Online Adaptive Metric Learning

We developed an online metric learning method that learns a ANN-based metric from a

stream of triplet constraints. It achieves full constraint utilization, and more importantly,

is able to automatically adjust the model complexity to accomodate the input constraints

when necessary. Specifically, we first attach an independent metric embedding layer (MEL)

to every hidden layer of an Artificial Neural Network (ANN). The output of a hidden layer

is hence the input to its corresponding MEL. Each MEL characterizes a latent feature space

where similar instances are close to each other while dissimilar instances are far away from

each other, and is associated with a metric weight which measures its importance in the

1This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Yu Lin, Latifur Khan.
“SetConv: A New Approach for Learning from Imbalanced Data”, In proceedings of The Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1284-1294. 2020. Lead author, Yang Gao,
conducted the majority of the research, including the full writing, the full design, the full implementation,
and most of the evaluation.

2This chapter contains material previously published as: Yang Gao, Yi-Fan Li, Swarup Chandra, Lati-
fur Khan, and Bhavani Thuraisingham. ”Towards self-adaptive metric learning on the fly.” In The World
Wide Web Conference (WWW), pp. 503-513. 2019, https://doi.org/10.1145/3308558.3313503. Lead au-
thor, Yang Gao, conducted the majority of the research, including the full writing, the full design, the full
implementation, and most of the evaluation.

3This chapter contains material previously published as: ©2019 IEEE. Reprinted, with permission, from
Yang Gao, Yi-Fan Li, Bo Dong, Yu Lin, and Latifur Khan. ”SIM: Open-World Multi-Task Stream Classifier
with Integral Similarity Metrics.” In IEEE International Conference on Big Data (Big Data), pp. 751-760.
December, 2019. Lead author, Yang Gao, conducted the majority of the research, including the full writing,
the full design, the full implementation, and most of the evaluation.
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entire metric model. In other words, our method is indeed an ensemble of metric models with

various complexities sharing the low-level knowledge. Then, a novel Adaptive-Bound Triplet

Loss (ABTL) is proposed to eliminate the dependency of existing methods on those “hard”

constraints, which improves the constraint utilization. Finally, we introduce a Adaptive

Hedge Update (AHU) method to optimize the metric models in the ensemble as well as

their associated metric weights. The experiments on various applications such as real-world

image classification, facial verification and image retrieval demonstrates the effectiveness and

efficacy of our proposed method.

Our key contribution in this work is redesigning the common ANN architecture to allow

the model adapt its complexity when necessary, and introducing ABTL to improve the

constraint utilization rate. The flexibility of model capacity helps to avoid the common

under-fitting and over-fitting issues in online metric learning and significantly improves the

model performance, which is demonstrated by the superiority of our method compared to

the state-of-the-art solutions.

Similar to existing solutions, our method may still fail in cases where severe concept

drift exists. For example, in facial verification applications, our method can successfully

identify that two images belong to the same person at the beginning, but may fail to do that

when this person gets older. Therefore, an important direction of our future research is to

extend our work to handle concept drift. Lifelong machine learning requires the model to

accumulate the knowledge learned in the past and use the knowledge to help future learning

and problem solving with possible adaptations. Combining life-long machine learning with

our work is a promising solution to this issue.

6.2 Imbalanced Classification

In this study, we propose a novel set convolution operation SetConv and a new training

strategy, episodic training, to assist learning from imbalanced class distributions. To cap-
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ture the semantic similarity and dissimilarity relation among data, the SetConv operation

directly estimates the convolution kernel weights based on the intra-class and inter-class cor-

relations, and applies the learned kernels to extract discriminative features from data. These

features are then compressed into a single class representative used for classification. In this

way, SetConv helps the model focus on the latent concept not only common to different

samples of the same class but also discriminative to other classes. In episodic training, we

assign equal weights to different classes in spite of their relative sizes and do not perform re-

sampling on data. At each iteration during training, the model is fed with an episode formed

by a set of samples where the class imbalance ratio is preserved. It is hence encouraged to

extract discriminative features even when class distribution is unbalanced. Our proposed

method has several advantages including data-sensitive convolution, automatic class balanc-

ing and no dependence on unknown prior knowledge. Experiments on incident detection

and sentiment classification tasks demonstrate the superiority of our method compared to

state-of-the-art baselines.

Unfortunately, our proposed method is not suitable for processing high-dimensional

sparse data, as the massive 0s in these data may lead to close-to-zero convolution kernel

and limits the expressiveness of our model. Combining sparse deep learning techniques with

SetConv is a potential solution to this problem.

6.3 Open-World Classification

In this work, we propose a new stream classifier SIM that is able to make predictions under

concept evolution. In particular, we propose a Multi-Task Open-World Classifier (MT-

OWC) that consists of a feature transformation block and an open-world classifier. The

feature transformation block performs metric learning to actively search for a latent feature

space in which instances from the same class are closer than those of different classes. The

open-world classifier contains a one-vs-rest binary classifier for each of the known classes. It
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takes those instances projected to the learned latent feature space as input, and is trained to

minimize classification error of the known classes. By incorporating a novel class detection

mechanism, the MT-OWC can easily detect those instances from unknown classes. Thus,

the metric learning task actually serves as an auxiliary task to both the classification and

novel class detection tasks.

Currently, our proposed method focuses on addressing the concept evolution problem in

stream classification. Besides concept evolution, another significant challenge in open-world

classification is concept drift, which means that the underlying concept of data changes over

time. For future work, we will extend SIM to handle both concept evolution and concept

drift issues. Fortunately, only a minor modification to the novel class detection mechanism

has to be performed to combine existing concept drift solutions with our method.

6.4 Other Future Work

6.4.1 Multi-Label Image Retrieval

In many real-world image search or recommendation applications, a significant amount of

images contain different objects and are hence labeled as belonging to multiple categories.

For example, as shown in Figure 6.1a and Figure 6.1b, those images of dining rooms usually

contain multiple objects including ceiling lamp, dining table, and several dining chairs. A

user searching for “dining table” may also be interested in those dining chairs with consistent

style to a particular dining table. Hence, these images should be also included in the search

results returned to the user. Another example is the outfit recommendation system in e-

commerce. If a user has bought a handbag, it is very likely that she will be interested in other

outfit components that match the handbag style, e.g., jackets, jeans, and shoes. Figure 6.1c

and Figure 6.1d provide two typical examples. Apparently, recommending outfit images to

users can significantly improve user experience in this case.
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(a) (b)

(c) (d)

Figure 6.1: Examples of multi-label image retrieval.

However, how to define and precisely measure the similarity between these images is

still unclear. A typical solution is to measure the similarity between every pair of objects
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Figure 6.2: Example of 3D object retrieval.

and obtain the overall similarity score by computing the weighted average of these pairwise

similarities. A self-attention module may be incorporated to automatically learn to compute

the importance score for each pair of objects. We leave this project for future work.

6.4.2 3D Object Retrieval

The rising prosperity of VR/AR applications has placed more demands on models that are

capable of understanding 3D objects. A typical example is the 3D object retrieval, which

is widely applicable in modern advertisement and search techniques. Given 2D images with

various viewpoints and illumination configurations, we’d like to retrieve its corresponding

3D object from a large-scale object database. Furthermore, it is also possible to retrieve a

3D object that has characteristics of all query images. For example, as shown in Figure 6.2,
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given an office chair with a back, a bar chair with a circular base, and a sofa with a seat,

we’d like to retrieve 3D chair objects with part or all of the characteristics in query images

and rank the results in the order so that the best-matched object appears in front of the

ranking list. In other words, the 2D images propose the retrieval requirements to the query.

To realize it, the model has to learn a similarity function that matches 2D images with its

3D counterparts. We will work on this project in the future.
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