
PHASE CURRENT RECONSTRUCTION AND PEAK PREDICTION FOR

SWITCHED RELUCTANCE GENERATORS

by

Prashant Carl Buck

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Poras T. Balsara, Chair

Dr. Babak Fahimi, Co-Chair

Dr. Dinesh K. Bhatia

Dr. Bilal Akin



Copyright c© 2019

Prashant Carl Buck

All rights reserved



This dissertation is dedicated

to my mother Dipti, my father Amarjit,

and my wife Priyanka.



PHASE CURRENT RECONSTRUCTION AND PEAK PREDICTION FOR

SWITCHED RELUCTANCE GENERATORS

by

PRASHANT CARL BUCK, B.TECH, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

August 2019



ACKNOWLEDGMENTS

This dissertation is a culmination of many years of hard work and perseverance and the

realization of achieving a childhood dream of becoming an engineer. During the pursuit of

my doctoral degree, I faced many emotional, spiritual, and intellectual challenges. Had it

not been for the support of those around me, this childhood dream would have never come

true.

I am extremely grateful and fortunate to have had the opportunity of working closely with

my advisor, Professor Poras Balsara. He gave me the encouragement I always needed and

as the challenges grew, at times he had more confidence in me than I had in myself. The

relationship I developed was not only limited by the scope of academics but also included

an overall personal growth in becoming a better person, something I will always cherish. I

would like to thank him for all his time, his invaluable feedback, and the promise he saw in

me to fund me through the years of my doctoral studies.

I would also like to thank Professor Babak Fahimi for all the guidance and feedback he

provided me during my research on the switched reluctance machine. He provided me with

vital insight, novel ideas, and motivation which helped me complete my doctoral studies. He

also gave me the opportunity to be part of the Renewable Energy and Vehicular Technology

(REVT) laboratory, something I will always be grateful for. I would also like to thank

the other members of my dissertation committee, Professor Dinesh Bhatia, for his support,

helpful feedback, and invigorating discussions during our meetings, and Professor Bilal Akin,

who provided me with the necessary guidance.

None of this would have transpired if it wasn’t for my parents, they instilled in me a passion

for hard work, dedication, sincerity, and perseverance. I am so grateful for their support

and love and for always being there for me. They have journeyed with me through the highs

and the lows, I am so grateful and fortunate to be blessed by their presence. I would like to

v



especially thank my wife, Priyanka, for her love, care, support and patience, without which

I would not have been able to reach this milestone in life.

I would like to sincerely thank the rest of my family and friends, who have supported and

prayed for me throughout my doctoral studies. Above all, I would like to thank God, for

choosing me and giving me the strength and the capability to be able to contribute to the

noble field of science and most importantly, for a chance to glorify Him.

July 2019

vi



PHASE CURRENT RECONSTRUCTION AND PEAK PREDICTION FOR

SWITCHED RELUCTANCE GENERATORS

Prashant Carl Buck, PhD
The University of Texas at Dallas, 2019

Supervising Professors: Dr. Poras T. Balsara, Chair

Dr. Babak Fahimi, Co-Chair

The threat of rising temperatures and increasing sea levels due to the high carbon emissions

and greenhouse gases, has prompted a worldwide push towards the production of clean energy

through renewable sources. Renewable technologies gained significant traction, especially

after the 2015 United Nation’s Paris Agreement, which united countries to preserve the

planet for a better future.

Electric machines play an important role in the renewable energy sector, as they are widely

used in wind turbines and electric and hybrid electric vehicles. However, the commonly used

machines use a large amount of permanent magnets, whose prices have been increasing due

to the limited supplies of rare earth elements used in their production and also because of

their increasing demand.

A switched reluctance machine (SRM) is a suitable candidate in the renewable energy sector

as it does not use permanent magnets and is extremely versatile and robust. Due to the lack

of permanent magnets in a switched reluctance generator (SRG), the machine suffers from

low power densities compared to its competition. The research presented in this disserta-

tion pushes the envelope of an SRG’s produced charge, making it more competitive in the

renewable energy sector.
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Maximizing the output charge of an SRG involves its operation at high speed in single pulse

mode, wherein the motional back EMF is allowed to build up and reach a substantial value.

This results in an SRG’s phase currents entering into a state of positive feedback, wherein

even switching off the phase does not bring down their value. Operating the machine in this

scenario results in higher output charge; however, it makes the phase currents uncontrollable.

The phase currents peak and begin to fall only after the motional back EMF reduces, which

occurs as the rotor approaches its unaligned position. Protection of the drive circuit is

imperative; however, if the unknown peak values of the phase current exceed the current

ratings of the diodes, the drive circuit will be damaged. As a result, either an SRG is

not operated in the positive feedback mode (thereby losing out on the additional charge

produced) or the drive’s power converter is over engineered for a high current rating, in

order to sustain the unknown current levels.

Since the system is extremely nonlinear, it poses significant modeling and control challenges

in order to safely operate an SRG in single pulse positive feedback. Due to the time delay

associated with numerical methods of integration, an iterative approach to predict the phase

current is impractical. The presented research reconstructs the phase current of an SRG

and predicts its current peak by detecting an optimal turn-off angle, which leads to a more

controllable machine with reduced drive constraints and higher output charge, all while

maintaining the same size. The research also analyzes the effect of a freewheeling phase in

the high speed mode of operation of an SRG.
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CHAPTER 1

INTRODUCTION

Chapter 1 provides an overview of global energy requirements, the importance of adopting

renewable sources into the energy mix, the demand for rare earth elements used for the

production of permanent magnets, and the importance of end of life recycling of renewable

technologies. In addition, the importance of switched reluctance machines (SRMs) and

their role in the renewable energy sector are presented, along with their origin, architecture,

and various topologies. Furthermore, the advantages and limitations of switched reluctance

machines are listed. Lastly, the organization of subsequent chapters of this dissertation is

presented.

1.1 Overview of Global Energy Requirements

This section provides an overview of global energy requirements and the path various re-

gions of the world are on, in achieving their energy goals in a sustainable manner. Useful

energy is produced1 through various sources, which are classified into two categories, namely

nonrenewable sources and renewable sources. The decision to use either source of energy

depends on several factors prevalent in the region; however, the threat of increasing temper-

atures and consequently increasing sea levels around the world has urged nations to unite

and take preventive measures rather than exacerbate the planet’s rising temperatures [13]. A

worldwide effort to reduce greenhouse gases (GHGs), which would eventually keep the global

temperatures in check, has caused a shift in the production of energy from nonrenewable

fossil fuels to cleaner renewable sources of energy.

1According to the law of conservation of energy, energy can neither be created nor destroyed, it can only
be transformed from one form to another. Human ingenuity and skill can only convert energy from one
form to another, it cannot create it. Therefore, it is technically more appropriate to state that, energy is
converted from a source rather than stating that energy is produced by a source. However, it is not uncommon
to encounter the latter and should be overlooked, the implication of both statements remains the same.
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Developing regions around the world, where energy consumption is expected to rise sig-

nificantly are identified and their decision to use renewable sources of energy is explored.

For developing regions, the shift to energy production through renewable sources can be a

daunting task as it involves building extensive renewable power plants, which in turn re-

quire a significant amount of investments. For such regions, the investments could be put

towards addressing more immediate needs rather than moving to a cleaner source of energy

production, resulting in an overall sluggish effort.

On the other hand, developed regions around the world already produce a significant por-

tion of their energy through renewable sources; however, there is still room for improvement

in order to reduce the carbon emissions and GHGs. Developed regions (and a few developing

regions) have also targeted the next biggest source of carbon emissions, i.e., the transporta-

tion sector. The push for the inclusion of clean energy sources in the transportation sector

is also presented in this section.

1.1.1 Identifying Upcoming Energy Demanding Regions of the World

There is an ever increasing demand for electrical energy at a global level, regions around the

world have distinct energy requirements, giving rise to specific energy consumption profiles.

The energy requirements of growing populations, development of infrastructure and manu-

facturing industries, along with the growth of the economy are key factors which dictate a

region’s energy demand. Consequently, there is an increase in focus and investments towards

the production and distribution of electrical energy.

The United States Energy Information Administration (EIA), an agency of the United

States Department of Energy (DOE), in its most recently published energy outlook, i.e., the

International Energy Outlook 2018 (IEO2018), focused on the impact of three developing

regions, i.e., China, India, and Africa and their impact on the global energy markets [14].

The considered regions are highly populated and have high economic growth, leading to an

increase in the demand for energy, which is likely to affect the global energy markets.
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The IEO2018 predicts the growth of the three regions from 2015 to 2040. For China, it is

expected that its economy will grow at an average rate of 5.7% per year, making it the world’s

largest producer of energy intensive goods, also indicating China’s manufacturing authority

at the global level. The next region, India, is expected to achieve an economic growth of

7.1% per year, the fastest among the three regions considered. India is also projected to have

the world’s largest population by 2040, thereby putting a significant demand on its energy

production, albeit still maintaining a lower total and per capita energy consumption level

compared to China and the United States. Lastly, Africa’s economy is expected to grow

at an average rate of 5.0% per year with most of its energy demand made by the region’s

developing infrastructure. By 2040, Africa’s per capita energy consumption is expected to

be even lesser than that of India’s.

1.1.2 International Treaties Promoting Production of Clean Energy

The choice of using a particular source of energy is determined by various factors, the usage

of fossil fuels and nonrenewable sources of energy are globally discouraged, while the usage of

renewable sources of energy is urged and highly encouraged. The United Nations Framework

Convention on Climate Change (UNFCCC), an international environmental treaty, plays a

major role in determining the source of energy used by the identified regions. While the UN-

FCCC does not directly dictate the usage of a particular source of energy, it does encourage

its Parties to reduce their GHG emissions. According to Article 2 of the UNFCCC, the ob-

jective of the convention states the following: “stabilization of greenhouse gas concentrations

in the atmosphere at a level that would prevent dangerous anthropogenic interference with

the climate system” [15].

The Paris Agreement, an agreement within the UNFCCC, placed specific goals on its

participating Parties towards the reduction of GHG emissions. Under Article 2 of the Paris

Agreement, one of its objectives states the following: “Holding the increase in the global
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average temperature to well below 2.0 ◦C above pre-industrial levels and pursuing efforts to

limit the temperature increase to 1.5 ◦C above pre-industrial levels, recognizing that this would

significantly reduce the risks and impacts of climate change” [16]. China, India, and most

countries of Africa ratified to the Paris Agreement and began striving to achieve and exceed

the goals laid out by the agreement. In 2015, according to the UNFCCC, China and India

were responsible for 20.09% and 4.10% of the total global emissions, respectively [17], a

significant amount, which needed to be controlled. Next, plans for clean energy production

in China, India, and Africa are presented.

1.1.3 Clean Energy Production in China

To address the issue of increasing carbon emissions, in 2015, the National Development and

Reform Commission (NDRC) of the People’s Republic of China submitted its Nationally

Determined Contributions (NDC) to the UNFCCC, essentially laying out its plans to reduce

GHG emissions [18]. In the 2015 NDC, China pledged to achieve a set of goals by 2030,

which would put the nation on a greener path, thereby, aligning itself with the objective of

the Paris Agreement. The main goals laid out by China in their 2015 NDC were:

• To reduce the carbon dioxide emissions per unit of gross domestic product (GDP) by

60% to 65% from the 2005 levels.

• To increase the energy produced through non fossil fuels to 20%, i.e., through renewable

and nuclear sources combined, specifically setting a target of 200 GW for installed wind

capacity and 100 GW for installed solar capacity by the end of 2020 itself.

• To increase the volume of forests by 4.5 billion cubic meters compared to 2005 level.

In 2017, the NDRC published its climate report, laying out China’s progress towards

reaching the goals laid out in its earlier 2015 NDC. The report stated that by the end of

2016, China had installed non fossil fuel based power plants capable of generating upto
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587 GW of power, accounting for 36.6% of the total national installed capacity [19]. Out of

the total non fossil fuel installed capacity, wind alone accounted for around 147 GW or 9.1%

of the total installed capacity. Also, the total energy generated through non fossil fuels was

close to 1695 TW h, which accounted for 29.1% of the total energy generated. Figure 1.1

shows China’s total installed capacity and its installed wind capacity upto 2017 [20], along

with its total projected capacity and its projected wind capacity by 2040 [21].

Figure 1.1: China’s installed capacity upto 2017 along with its projected capacity by 2040

In 2017, China’s wind and solar energy markets were the largest in the world [22]. The

13th Renewable Energy Development Five-Year Plan (2016 to 2020) adopted by the Chinese

National Energy Administration (NEA) targeted to increase the installed wind capacity to

210 GW by 2020. However, seeing that the goal could be surpassed, China revised its

installed wind capacity target to an ambitious 260 GW by the end of 2020 [23, 24].
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1.1.4 Clean Energy Production in India

India’s pledge to the Paris Agreement included reducing its GHG emissions by 35% below

its 2005 levels by 2030 [25]. To meet the targeted emission levels, India’s shift in the usage

from nonrenewable to renewable sources of energy has been aggressive. India canceled plans

to build 13.7 GW worth of coal based power plants in 2017 and has also reduced the amount

of coal imported into the country. The Government of India Ministry of Power Central

Electricity Authority (GoI CEA) reported a reduction in the GHG emissions from its existing

coal plants by placing higher standards and newer and advanced filtration techniques within

their coal plants [26].

In order to meet and exceed the goals set by the Paris Agreement, India aimed at achiev-

ing an installed capacity of 175 GW through renewable sources by 2022. In their 2016 annual

report, the Government of India Ministry of New and Renewable Energy (GoI MNRE) re-

ported an increase in energy production through renewable sources. The GoI MNRE in their

annual report also stated that, in 2016, India’s installed capacity through renewable sources

was close to 50 GW, putting it fifth in the list of countries with the highest installed capac-

ity through renewable sources behind China, the United States, Germany, and Japan [27].

Of the targeted installed capacity of 175 GW through renewable sources, the GoI MNRE

projects a total of 60 GW of installed wind capacity alone. Some sources also report that

India may surpass its targeted installed capacity and be able to achieve an installed capacity

of close to 225 GW through renewable sources by 2022 [28].

1.1.5 Clean Energy Production in Africa

The IEO2018 identifies the African continent as a region of high growth in terms of the man-

ufacturing sector, as a result, an increase in Africa’s industrial energy usage is expected. To

keep up with the projected energy demand, Africa is expected to establish several new power

plants by 2040. In terms of clean energy sources, the African continent has an enormous
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potential for generating electricity through wind energy. If the entire wind potential were

harvested, it is estimated that the African continent would be capable of generating sev-

eral times its electricity consumption levels [29]. However, the wind potential is not evenly

distributed across the entire continent. Countries of the African continent which have partic-

ularly excellent wind resources include Cape Verde, Morocco, Tunisia, and Egypt in northern

Africa, Niger in west Africa, Chad in central Africa, Ethiopia, Kenya, Sudan, Somalia, and

Uganda in east Africa, and Tanzania, South Africa, and Zambia in the southern portion of

the African continent [30].

Africa’s installed wind capacity has been on the rise, it was reported to be 2.46 GW in

2014, increasing to 4.52 GW in 2017. Future projections estimate Africa’s installed wind

capacity to reach 14 GW by 2022 and close to 85 GW by 2030 [30, 31].

1.1.6 Future of the Transportation Sector

Due to the significant consumption of fossil fuels by the transportation sector, many countries

have introduced legislation and set goals to increase electric alternatives in order to combat

and reduce carbon emissions. In July of 2017, the French Environment Minister announced

intentions to ban the sale of all new petrol and diesel vehicles by 2040 as part of France’s

renewed commitment to the UNFCCC Paris Agreement. The Netherlands also plans to ban

the sale of all new petrol and diesel vehicles by 2030. Since 2017, the Dutch passenger railway

operator, Nederlandse Spoorwegen, has already been operating all its electric trains using

renewable energy, mainly through harvested wind energy [32]. China, one of the largest auto

makers in the world [33] has also set a goal to ban the sale of new petrol and diesel vehicles

by 2040. The ban on petrol and diesel vehicles is an attractive option for several countries,

as they would be more likely to meet the goals of the UNFCCC Paris Agreement. Some

of the countries which have announced bans over their transportation sector are listed in

Table 1.1.

7



Table 1.1: Countries intending to ban the sale of all new petrol and diesel vehicles

Country Start of Ban

Taiwan 2040 [34]
France 2040 [35]
India 2030 [36]
Netherlands 2030 [36]
Norway 2025 [36]
United Kingdom † 2040 [36]
Austria 2025 [36]
Ireland 2030 [34]
Israel †† 2030 [34]
Sweden 2030 [37]

† Scotland (part of the United Kingdom) announced the start of the ban by 2032 [36].
†† Israel announced the application of the ban to imported vehicles only [34].

1.2 Supply and Demand for Rare Earth Elements and Permanent Magnets

In 2015, the UNFCCC Paris Agreement urged its Parties to adopt clean energy sources in

order to combat the planet’s increasing GHG levels and rising temperatures. In response,

developing regions around the world pledged to reduce their reliance on coal fired power

plants and focus more on the expansion of their wind and solar power plants. Developed

regions (and a few developing regions) have also taken the initiative in reducing the con-

sumption of petroleum in their transportation sector by setting goals to switch to electric

vehicles (EVs) and hybrid electric vehicles (HEVs), eventually banning the use of gasoline

vehicles altogether. However, the proposed clean energy solutions are accompanied by their

own sets of concerns and secondary environmental effects. Harvesting wind energy requires

the use of wind turbines and generators, while electric vehicles require motors and generators

to achieve the desired results, both applications rely heavily on the use of electric machines,

i.e., motors and generators. As a result, there is a high demand for electric machines, con-
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sequently the materials required in their construction are in high demand as well, one such

material is the permanent magnet (PM).

Some examples of commercially available permanent magnets include aluminium nickel

cobalt (AlNiCo) or Alnico, samarium cobalt (SmCo), neodymium iron boron (NdFeB) or

Neo, samarium iron nitride (SmFeN), and ferrite. Elements used in the production of per-

manent magnets such as samarium (Sm), dysprosium (Dy), and neodymium (Nd) belong

to the lanthanide series of the periodic table, also known as rare earth elements (REEs),

while their oxides are known as rare earth oxides (REOs). The REEs are not as rare as the

name suggests, the etymology has more to do with the unsustainable mining practices and

extraction processes of the elements from their ores. For reference, the static depletion index

of REOs (i.e., ratio of the reserves to the present consumption) is approximately 870 years,

to put that in context, copper (an essential element in the construction of electric machines)

has a static depletion index of 34 years, something which should be equally concerning [38].

The mining and extraction process is not only a major economic challenge, but has an ad-

verse environmental impact as well. Contamination of potential sources of drinking water

and ingestion of fine particulate mine waste are the typical issues related with mining, which

in turn have the potential to affect human health and well being. Also, during the extraction

process, carbonates present in the ores are liberated to yield useful REEs, leaving behind a

carbon footprint and GHG emissions.

Though the REEs are not extremely rare, their increasing demand and limited supplies

are a growing concern. For instance, the availability of neodymium for the production of neo

magnets is expected to eventually limit the production of electric vehicles. The geographical

availability of REEs is also a concerning factor. In 2016, China held a monopoly over the

supply of REEs, 85% of the global REE supply originated from China, while Australia was

the second largest contributor of REEs, producing around 10% [39]. In the past, China has

not only been the largest producer of REEs, but also the largest consumer of REEs as well.
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As a result, world markets are highly dependent on China’s REE exports and are extremely

susceptible to their changing export policies. For example, in July of 2010, China’s Ministry

of Commerce announced a reduction in their export of REEs by 40%, creating a large supply

instability and price volatility in the global REE market [40].

Close to 70 weight percent of ferrite and REE based permanent magnets are used in

electric machines [41]. In wind and automotive applications, the use of dysprosium (Dy)

and neodymium (Nd) for the production of rare earth magnets is significantly high. In the

fourth generation wind turbines, the direct drive permanent magnet generators are a popular

machine of choice due to their improved efficiencies over their predecessors.2 However, they

use somewhere between 250 kg to 600 kg of neo magnets per MW of output power or around

400 metric tons of neo magnets per GW of output power [42]. The projected annual use of

rare earth magnets for the purpose of wind turbines is estimated to be around 16 kt from

2018 through 2025, similarly, the use of rare earth magnets in the transportation sector is

expected to be around 17 kt in 2020 [41], while the total use of REOs for clean technologies

is expected to be close to 52 kt by 2030 [39]. Based on the aggressive adoption of clean

energy solutions, dysprosium (Dy) and neodymium (Nd) demand may increase by 700% and

2600%, respectively by 2035 [38].

The concern regarding the production and usage of rare earth magnets does not lie

with the geophysical availability of REEs, but rather lies with whether the supply of REEs

can keep up at the same pace as the projected demand. The projected demand for REEs

and rare earth magnets depend on multiple factors, such as the level of deployed clean

technologies, the market share of rare earth magnets within the clean technologies, and the

chemical composition of REEs used in the production of rare earth magnets. However, even

2Earlier generation wind turbines use an induction generator which operate at around 1800 rpm. However,
the wind energy is only capable of operating the machine at 10 to 12 rpm. To increase the shaft speed from
10 to 12 rpm upto 1800 rpm, a gear box with an approximate gear ratio of 1:170 is used. Since the use of a
gearbox requires regular maintenance and repairs, a direct drive approach is preferred [42].

10



after considering a medium demand growth scenario for REEs, studies still have a common

theme, i.e., the supply is expected to lag the demand for REEs [43], making the evolution

of new designs and alternate solutions to permanent magnet technologies imperative.

1.3 Recycling of Electric Machines

In a world of expanding clean technologies, the aspect of end of life recycling for electric

machines is becoming increasingly apparent due to their high market proliferation. The

recycling of electric machines in the wind and transportation industries, once thought of as

a secondary concern due to their limited usage, is no longer the case. Electric machines using

permanent magnets have the benefit of increased power densities over their non magnetic

alternatives, making them a preferred choice in the wind and transportation industries.

However, due to their enormous projected demands and inadequate REE supplies, their

rapid growth could be hampered.

Electric machines consist of materials like cast iron, steel, aluminum, copper, and neo

magnets. During the recycling of electric machines, due to the valuable nature of copper

and neo magnets, they are extracted by first dismantling the machines rather than using

heat during the smelting process which would damage the permanent magnets, making

them unsalvageable. Based on the design and structure of different electric machines, the

placement of permanent magnets and copper windings vary, as a result, different dismantling

techniques are required. Efficient dismantling of electric machines needs to be performed

effectively and systematically. Current challenges arise due to the lack of a comprehensive

recycling infrastructure, for instance, the recycling of neo magnets is primarily carried out

only in China [44]. However, due to the limited supply of REEs and China’s erratic export

policy, other countries are also forced into exploring efficient recycling options [45] in order

to meet the rising demand of permanent magnets.
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1.4 Future Concerns in a World Dominated by Renewable Technologies

Renewable technology is undoubtedly the path to a cleaner and greener future for the planet;

however, its secondary and tertiary affects should be identified and addressed as well, es-

pecially due to its extremely aggressive incorporation by numerous countries worldwide.

Identification and prioritization of the concerns surrounding renewable technology will even-

tually prompt the solutions, which in the long run results in a more mature and sustainable

technology.

When it comes to the wind energy sector, the most heavily contested issue is its capability

of producing continuous output power, owing to wind being an intermittent source of energy.

The price per unit of electricity produced from the wind energy sector is still higher than coal

power plants albeit not as consistent and reliable in terms of continuity. Other considerations

while expanding the wind energy sector include the energy consumed in the production of the

windmills and all of its components, the on-site transportation and installation difficulties,

maintenance costs, end of life recycling, and waste disposal. Environmentally, the wind

energy sector may cause changes in wind intensities and cause harm to different avian species

[46, 47], long term affects of which are currently unclear, though worth investigating further.

The aesthetics of windmills is also viewed in a negative light by some.

Solar energy is also a great alternative to coal fired power plants; however, concerns

revolving solar energy include the vast amount of real estate required for the installation

of the solar panels, the reliance on a bright and sunny day, the use of highly hazardous

materials in the manufacturing process, and most importantly, the end of life recycling of

solar panels.

While considering the transportation sector, there is a massive global movement aiming to

eventually ban petroleum vehicles and adopt electric and hybrid electric vehicles (Table 1.1).

Electric and hybrid electric vehicles are undisputedly the solution towards creating a cleaner

and greener future; however, there are a few considerations which need to be worked out
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side by side. The most important consideration is the capability of the grid being able to

handle the vast number of vehicles plugged into it while replenishing their batteries. Proper

infrastructure must be setup to prevent over burdening the grid. Another concern is the cost

of electric and hybrid electric vehicles, they need to enter the markets at a more affordable

price point. Lastly, issues like vehicle safety, battery manufacturing and recycling are all

areas to continue working and improving on.

Undoubtedly, renewable technologies are the solution to the problem of rising carbon

emissions and GHGs; however, they are susceptible to the questions of reliability in terms

of continuous output power and sustainability due to ever increasing energy demands of the

world. Scaling renewable technologies poses challenges on the resources and the economy

of nations. The most important change must come at the microscopic level, i.e., it falls

down to the consumer to be more mindful and conservative in their consumption of energy,

a provision taken for granted in this day and age.

1.5 The Switched Reluctance Machine

This section presents the applications, origin, architecture, various topologies, and finally

lists the advantages and limitations of switched reluctance machines. The advantages of a

switched reluctance machine make it a suitable candidate for the use in renewable technolo-

gies, such as the wind energy sector and in electric and hybrid electric vehicles, especially

due to the limited supplies of permanent magnets.

1.5.1 Applications of Switched Reluctance Machines

The Wind Energy Sector

As discussed in the previous sections, the generation of electricity through renewable sources

of energy is one of the main areas of innovation when it comes to combating climate change
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and reducing carbon emissions. With the possibility of onshore and offshore installation

options, the generation of electricity through wind energy is at the forefront of renewable

technologies. A few machines commonly used for wind turbine applications are the induction

machine, the permanent magnet machine, and the synchronous generator.

The limitations of induction machines include the requirement of a gearbox and the use

of copper windings on the rotor. The copper windings on the rotor suffer from undesired

copper losses and also add to the weight of the rotor, resulting in a slow response time.

Permanent magnet machines use large amounts of permanent magnets which drastically

increase the weight and cost of the machine. Due to the use of permanent magnets, the

machine is also affected by an undesired cogging torque. The recovery of permanent magnets

also poses a significant challenge during the end of life recycling of the machine.

Synchronous generators have windings on the rotor as well as the stator, as a result, they

are expensive and more challenging to manufacture. In synchronous generators, the rotor

windings are excited by a DC voltage source using slip rings and brushes, as a result, the

machine requires regular maintenance and servicing.

An ideal wind generator should have a compact size, have minimum losses, be reliable

and fault tolerant, be able to operate at low wind speeds, and be able to respond quickly

to varying wind speeds. A switched reluctance generator (SRG) has many favorable char-

acteristics which make it a suitable candidate for wind generators, especially for the small

to medium power plants [48–50]. Since a switched reluctance generator has a high efficiency

over a wide speed range, even the use of a gearbox can be eliminated and it can be operated

in a direct drive configuration [51]. By eliminating the gearbox, maintenance of the machine

is significantly reduced, a feature especially attractive for offshore wind turbines.

The Transportation Sector

Electric and hybrid electric vehicles rely heavily on the use of the induction machine and the

permanent magnet machine, similar to the wind energy sector. As mentioned above, both the
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induction and the permanent magnet machines have their respective limitations, creating an

opportunity for a more robust, low cost alternative. Electric machines without permanents

magnets are especially drawing significant attention due to the limited supply and high

prices of REEs. Claw pole machines are also used in automobiles; however, in addition to

using permanent magnets, they are sensitive to changes in temperature, something which is

expected in automobiles.

Extended range requirements and large amounts of on board electronics in electric and

hybrid electric vehicles ideally need an efficient and small sized electric machine for starter,

alternator, traction drive, and regenerative braking purposes. Due to its high efficiency, high

reliability, and high starting torque, along with the capability of operating at low and high

DC voltages, over a wide temperature and speed range, and as a motor or a generator, a

switched reluctance machine can be used in electric and hybrid electric vehicles as a starter

and alternator [52–57], as part of the propulsion system [58, 59], or as part of the regenerative

braking system [60, 61].

Apart from road vehicles, switched reluctance machines have also shown promise in the

aerospace sector as aircraft starters and generators [62–65], while the linear topology of

switched reluctance machines is suitable for locomotive drive applications [66–68].

1.5.2 Origin of the Switched Reluctance Machine

The modern day switched reluctance machine is based on the electric machine proposed by

W.H. Taylor in the nineteenth century [69]. The name switched reluctance was first used by

S.A.Nasar in 1969 for a very primitive version of the machine [70]. In the United States, the

term variable reluctance is preferred, but it may be misconstrued for the stepper motor. A

switched reluctance machine differs from the stepper motor, as they have larger steps and

fewer poles. A second difference between the two is that, switched reluctance machines are

operated in a closed loop configuration, while stepper motors are operated in an open loop

configuration.
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It was Professor Lawrenson at the University of Leeds, who is considered as the father of

the switched reluctance drive technology [7, 71]. Along with researchers from the University

of Nottingham, Professor Lawrenson founded SR Drives Limited. At SR Drives Limited in

1980, Professor Lawrenson and some of his colleagues, associated the name switched reluc-

tance machine to its present day architecture. In 1989 and 1990, Hancock and Hendershot

[72] also referred to the motor as the brushless reluctance motor and the electronically com-

mutated reluctance motor to emphasize the absence of slip rings and brushes, which till

date is one of the machine’s attractions. SR Drives Limited was then acquired by Emerson

Electric Company of St. Louis, Missouri in 1994 and is presently part of the Nidec Corpo-

ration since 2017 [73]. In 1990 and 2005, Professor Lawrenson was awarded the prestigious

and coveted Institution of Engineering and Technology (IET) Faraday Medal and the Insti-

tute of Electrical and Electronics Engineers (IEEE) Edison Medal, respectively [71]. The

medals were awarded for his contributions to the field of electric machines, especially in the

development and commercialization of switched reluctance drives.

1.5.3 Architecture of a Switched Reluctance Machine

Before the architecture of a switched reluctance machine is presented, it is worth briefly

reviewing the goals of electric machines and some of its terminologies. Electric machines

are unique in a way that, they can either convert mechanical energy into electrical energy

(i.e., generation) or convert electrical energy into mechanical energy (i.e., motoring). The

main goal of generators is to efficiently convert mechanical energy into electrical energy.

Conversely, the main goal of motors is to efficiently convert electrical energy into mechanical

energy. Motors are capable of producing two types of output motion, i.e., they can produce

either rotary or linear motion. Since the research contained in this dissertation is limited to

the rotary style machine, no analysis on the linear machine is presented.

During motoring, the parameter of most interest is the torque produced by the machine,

i.e., T . Switched reluctance motors produce reluctance torque, which is torque produced as
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the reluctance of the flux path between the stationary and the movable components of the

machine reduces (hence its name). Since the reluctance and the corresponding inductance

for a given flux path are inversely proportional to each other, the reluctance torque can also

be thought of as the torque produced as the inductance of the excited phase changes.

A rotary style machine typically comprises of a rotating part referred to as a rotor and a

stationary part referred to as a stator. The rotor and stator of a switched reluctance machine

are typically made up of stacked laminated soft iron sheets which are designed to facilitate

the largest change in the phase inductance when the rotor changes its position. The rotor

and stator of electric machines may either be slotted or salient. Slotted rotors and stators

can be filled with either permanent magnets or windings. From the standpoint of electric

machines, the word salient implies that the machine’s rotor or stator contain protruding

teeth. In the case of a switched reluctance machine, both the rotor and stator are salient in

nature, due to which the machine is referred to as a doubly salient machine. Figure 1.2 shows

the two dimensional cross sectional view of a switched reluctance machine with its salient

rotor and stator design. The protruding teeth are called poles and Figure 1.2 shows a pair

of rotor poles and a pair of stator poles. The stator pole pair is also referred to as a phase.

Diametrically opposite stator poles (i.e., a phase) have a common winding wrapped around

them called a stator phase winding. When a particular stator phase winding is excited, i.e.,

a voltage is applied across its terminals and a current begins to flow through the winding, it

is also called an excited stator phase and leads to the magnetization of that particular phase.

Due to the placement of the phase windings on the stator pole of the machine, the elec-

trical energy is supplied to, or harvested from stationary windings and does not interact

with the rotor of the machine, which in turn eliminates the need for brushes or slip rings.

Contrary to what the name suggests, the reluctance of the machine is actually not switched,

the switching refers to the switching of phase currents (more accurately known as commu-

tation), while the reluctance in the machine’s name refers to the changing reluctance as the
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Rotor pole

Stator

Stator phase winding

Stator pole

Rotor’s central shaft

Rotor

Figure 1.2: A two dimensional cross sectional view of a single phase SRM

rotor rotates. Because switched reluctance machines can have several combinations of rotor

and stator poles, there is a specific convention used to represent them, which is: Ns/Nr,

where Ns denotes the number of stator poles and Nr denotes the number of rotor poles.

The machine shown in Figure 1.2 has two rotor poles and two stator poles, as a result, it is

represented as a 2/2 machine. Some of the different switched reluctance machine topologies

are presented in the next section.

1.5.4 Tolopologies of Switched Reluctance Machines

Over the years, a plethora of different switched reluctance machine topologies have been

presented, of which, a few of the popular and common topologies are presented in this section.

Switched reluctance machines belong to the doubly salient class of machines and based

on their various topologies, are classified into separate categories as shown in Figure 1.3.

By definition, a switched reluctance machine’s rotor doesn’t use any permanent magnets;

however, there is no definition restricting the use of permanent magnets on the machine’s

stator. Typically, a switched reluctance machine is visualized as a machine completely free of

permanent magnets. Thus, a separate category is assigned to classify doubly salient machines
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Figure 1.3: Classification of different SRM topologies [1]

using permanent magnets, i.e., the permanent magnet assisted machines, though some could

argue that the classification should fall under the broader category of the switched reluctance

machine itself. The work presented in this dissertation addresses only the basic structure,

though it is applicable to the other topologies as well.

At the highest level of the hierarchy, a switched reluctance machine is divided into linear

and rotary type machines. Linear switched reluctance machines (LSRMs) are further divided

into two broad categories, i.e., longitudinal and transverse type machines. A longitudinal

LSRM is shown in Figure 1.4 and is given its name due to its longitudinal flux path through

the stator and translator, i.e., the magnetic circuit is parallel to the direction of motion of

the translator [66].

A transverse LSRM on the other hand, is shown in Figure 1.5 and is given its name

due to its transverse flux path through the stator and translator, i.e., the magnetic circuit

is perpendicular to the direction of motion of the translator [74]. Modified versions of

LSRMs have also been presented in previous studies. Modifications include the addition of

a second stator, i.e., a double stator LSRM [75] or the use of an asymmetric structure for
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(Only one phase shown)
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Figure 1.4: A two dimensional cross sectional view of a longitudinal LSRM

the translator [76], which boasts of reduced magnetic saturation. LSRMs are used in a wide

range of applications, some of them include precise motion control [77], propulsion system of

railway vehicles [78], low-speed and high-speed mass transit applications, and elevators [79].

Translator
Translator pole

Stator
Stator pole

Direction of motion

(a) Side view (b) Front view

Magnetic material

Nonmagnetic material

Copper winding

Winding flux lines

Stator phase winding (excited)
(Only one phase shown)

Figure 1.5: A two dimensional cross sectional view of a transverse LSRM
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As shown in Figure 1.3, rotary type switched reluctance machines are further divided

into axial field and radial field type machines. In axial field switched reluctance machines

(AFSRMs), the flux takes a path along the axis of rotation of the machine, i.e., the flux flows

along the length of the machine as shown in Figure 1.6. An AFSRM can also be viewed as

circular versions of a longitudinal LSRM, as the magnetic circuit and the axis of rotation are

parallel to each other. An AFSRM has much lower torque ripple and higher power densities

and is suitable for hybrid electric vehicle applications [80]. Modified versions of an AFSRM

include the multiple stacked machine, in which there is more than one rotor [81].

Radial field switched reluctance machines are further divided into the basic structure,

the short flux path, and the permanent magnet assisted type machines. The basic switched

reluctance machine structure has been presented in Section 1.5.3 and is the machine topology

considered in the subsequent chapters of this dissertation. A modified version of the basic

structure includes the addition of a second stator, i.e., the double stator switched reluctance

machine (DSSRM) [2, 82], which is shown in Figure 1.7.

A DSSRM has two stators (an inner and outer stator) and a single hollow cylindrical

rotor which lies between them, as a result, the weight of the rotor is reduced, giving it a

lower moment of inertia and consequently, a faster response time. The stator windings are

placed diametrically on the inner and outer stator forming a single phase of the machine,

as shown in Figure 1.7. Due to the diametrically placed windings, the radial forces on the

rotor are minimized while maximizing the tangential forces, thereby reducing the vibrations

and acoustic noise levels of the machine [83].

The next subcategory of radial field switched reluctance machines are short flux path

machines. As the name suggests, the flux path of these machines is shorter when compared

to the basic structure, in which the flux lines pass through the rotor and the stator back

iron. There are multiple techniques of achieving shorter flux paths in the machine. Figure 1.8

shows the first technique, which involves placing the phase windings on adjacent stator poles.
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(a) Rotor top view

(b) Rotor and stator cross sectional side view

(c) Stator top view
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Figure 1.6: A two dimensional view of a single stacked AFSRM
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Figure 1.7: A two dimensional cross sectional view of a DSSRM. Adapted from [2], c© 2010
IEEE
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Figure 1.8: A two dimensional cross sectional view of a short flux path SRM
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The shape of the rotor is also modified accordingly, such that the adjacent poles of the rotor

and stator form the completed magnetic circuit. The advantages of a short flux path machine

include reduced eccentric forces between the rotor and stator poles and reduced core losses

due to shorter flux paths [84].

Another technique to achieve a short flux path in the machine is by physically altering

the design of the stator by adding poles which are shared during commutation cycles, i.e.,

a shared pole or common pole short flux path machine shown in Figure 1.9, also known as

the single body E-core switched reluctance machine [85]. The shared poles do not have any

windings around them and only assist in creating a shorter path for the flux lines to flow

through.

Shared pole

Stator

Stator pole

Rotor

Rotor pole

Copper winding

Magnetic material

Winding flux lines

Stator phase winding (excited)
(Only one phase shown)

Figure 1.9: A two dimensional cross sectional view of a shared pole short flux path SRM.
Adapted from [3], c© 2013 IEEE

Some topologies of shared pole (or common pole) machines are also equipped with perma-

nent magnets to increase the power density and electromechanical efficiency of the machines.

These machines are classified as permanent magnet assisted doubly salient machines. Within
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this classification, there are several options available for the placement of the permanent mag-

nets. Figure 1.10 shows the placement of the permanent magnets inside the shared pole of

the machine. The polarity of the permanent magnets produces a magnetic field which points

into the shared pole [3].

Shared pole

Stator

Stator pole

Rotor

Rotor pole

Permanent magnet

Stator phase winding (excited)
(Only one phase shown)

Copper winding

Magnetic material

Winding flux lines

Permanent magnet flux lines

Figure 1.10: A two dimensional cross sectional view of an inset permanent magnet shared
pole short flux path machine. Adapted from [4], c© 2013 IEEE

Similarly, the permanent magnets can be placed inside the stator pole wound by the

phase windings as well, in that case, the polarity of the permanent magnets is opposite to

the polarity shown in Figure 1.10 [4]. However, by placing the permanent magnets within

the stator of the machine, the structural integrity of the stator is compromised. Figure 1.11

shows the placement of the permanent magnet on the surface of the shared pole, by doing

so, the machine still benefits from the advantages of the added permanent magnets without

compromising the structural integrity of the stator [86].

Another example of a machine assisted by permanent magnets is the doubly salient per-

manent magnet (DSPM) machine, shown in Figure 1.12. The DSPM machine has permanent
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Figure 1.11: A two dimensional cross sectional view of a surface mounted permanent magnet
shared pole short flux path machine. Adapted from [4], c© 2013 IEEE

magnets inserted on opposite ends of the stator back iron, giving the machine a square or

football like shape, also adding extra weight to the machine. The advantages of the DSPM

machine include higher efficiencies and improved power densities [5].

Stator

Stator pole

Rotor

Rotor pole

Stator phase winding (excited)
(Only one phase shown)

Permanent magnet north pole

Permanent magnet south pole

Copper winding

Permanent magnet flux lines

Winding flux lines

Magnetic material

Figure 1.12: A two dimensional cross sectional view of a DSPM. Adapted from [5], c© 1995
IEEE
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Figure 1.13 shows a two dimensional cross sectional view of a flux reversal machine (FRM)

[87, 88]. An FRM combines the benefits of a switched reluctance and permanent magnet

machine. The winding flux linkage in the flux reversal generator switches its direction as

the rotor rotates. The flux reversal takes place because of the staggered placement of the

permanent magnets, i.e., the orientation of the north and south poles of the permanent mag-

nets alternate in adjacent stator poles. While generating, since the flux linkage alternates,

an alternating current is produced in the phase windings. Because of an FRM’s simple and

robust rotor design and fault tolerant capabilities, it is suitable for aerospace and industrial

applications and also for automotive generators. Due to the placement of permanent magnets

in the FRM shown in Figure 1.13, there is noticeable permanent magnet flux leakage, which

is overcome by placing the permanent magnets in the inset of the stator poles, parallel to the

winding flux lines (i.e., similar to the inset placement of permanent magnets in the shared

pole shown in Figure 1.10). Such a configuration also protects the permanent magnets from

getting demagnetized [6].

Stator pole

Rotor pole

Rotor

Stator Permanent magent south pole

Permanent magent north pole

Copper winding

Magnetic material

Permanent magnet flux lines

Winding flux lines

Stator phase winding (excited)
(Only one phase shown)

Figure 1.13: A two dimensional cross sectional view of an FRM with surface permanent
magnets. Adapted from [6], c© 2009 IEEE
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1.5.5 Advantages of Switched Reluctance Machines

Major advantages of switched reluctance machines are listed below. Simplistic design and

lack of permanent magnets make it a strong contender in the renewable energy sector, re-

sulting in a significant amount of resources going into its research.

• The machine’s rotor does not have any windings or permanent magnets, as a result,

it is easy to manufacture, lightweight, and economically advantageous. Due to its low

weight, the rotor has a low moment of inertia, which results in a high acceleration and a

quick response time. The lack of windings and permanent magnets on the rotor makes

it mechanically more robust, allowing for high-speed operation. Simplistic design of

the rotor also ensures that losses associated with it are extremely low when compared

to induction and DC machines.

• The phase windings are placed concentrically around the stator poles only, thus making

the stator easy to manufacture and economically advantageous (unlike for instance, a

machine with the more complicated distributed winding architecture). Since the phase

windings are placed only on the stator, the losses and heat are also associated mainly

with the stator, as a result, cooling is easier as the stator lies on the exterior and is

easy to access.

• Since phase windings are placed only on the stator, electrical energy is not transferred

to or from the rotor, as a result, no brushes or slip rings are used. Therefore, the

robustness of the machine increases and its required maintenance is reduced. The

phase windings are separate from each other, as a result, an electrical fault in one

of the phase windings cannot propagate to the remaining phase windings, thereby

adding another layer of robustness and fault tolerance. For higher reliability, the

switched reluctance machine is designed with a large number of phases; however, that

does not necessarily map in a one to one manner to the number of phases on the
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drive’s power converter. Based on the machine’s configuration, multiple phases can be

operated simultaneously, thereby reducing the number of phases of the drive’s power

converter. Also, the machine’s back emf is a function of the current in the phase

winding (explained more in detail in subsequent chapters). Therefore, if a particular

phase (i.e., winding) were to experience an electrical fault, and the current is cutoff

(i.e., zero current), the resulting back emf induced in that phase would also be zero.

• Unlike the induction machine, the permanent magnet synchronous machine, and the

brushless DC machine, a switched reluctance machine does not produce any undesired

cogging or crawling torque, as a result, no additional control is required to mitigate

their effects.

1.5.6 Limitations of Switched Reluctance Machines

This section lists a few of limitations of switched reluctance machines, the significant one

being the machine’s low power density.

• The salient rotor and stator structures have a tendency of producing higher levels of

acoustic noise, vibrations, and torque ripple. However, acoustic noise and vibration

effects are mitigated by filling the interpolar spaces of the rotor with non magnetic

materials. Depending on the materials used, the weight of the rotor would also in-

crease. Changes made to the machine’s topology also help in reducing acoustic noise

and vibrations, for instance a double stator switched reluctance machine [83] has lower

acoustic noise and vibrations compared to the basic switched reluctance machine struc-

ture. On the other hand, torque ripple can be reduced by increasing the number of

stator phases or by controlling the overlapping phase currents, among other techniques

[89–91].
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• While lack of permanent magnets and REEs reduce the price of a switched reluctance

machine, in terms of power density, the machine is put at a disadvantage when com-

pared to its competitors, i.e., the permanent magnet synchronous machine and the

brushless DC machine. However, while operating at high speeds, a switched reluc-

tance machine not only closes in on the power density gap but may sometimes even

exceed the power densities of its competitors. On the other hand, the power density of

a switched reluctance machine is comparable to an induction machine, i.e., a machine

without permanent magnets.

• A switched reluctance machine always requires a driving power converter and does not

have line start capability unlike an induction machine. Also, most simple switched

reluctance drive circuits require the rotor position to complete the feedback loop. As

a result, a position encoder is required on the rotor shaft. The use of a position

encoder is a limitation as they are not extremely robust and require maintenance. A

faulty position encoder can render a switched reluctance machine inoperable, thereby

acting as the Achilles heel of the drive system. Sensorless drives systems for switched

reluctance machines have also been extensively explored [92–94]; however, they are

accompanied by increased control complexities.

• The effects of fringing fields and magnetic saturation make a switched reluctance ma-

chine highly nonlinear, posing extremely complex modeling and control challenges.

Modeling of a switched reluctance machine involves obtaining curve fitting expressions

through regression analysis, based on the data obtained through system identification.

The curve fitting expressions comprehensively capturing the essence of the machine

with its magnetic saturation are generally extremely complex mathematical expres-

sions. The effects of the complex model are also felt while designing the controller for

a switched reluctance drive system.
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1.6 Organization of the Subsequent Chapters

This dissertation contains six chapters. The five remaining chapters have been organized in

the following manner:

Chapter 2

In this chapter, the operating principles of a switched reluctance machine and drive system

are presented. This includes the machine’s rotational dynamics along with its magnetic

and electrical parameters. Also presented are the equivalent circuit models, the effects of

saturation, and the motoring and generating modes of operation of a switched reluctance

machine. Lastly, the operation of the drive’s power converter, i.e., the asymmetric bridge

converter is presented.

Chapter 3

This chapter presents the mathematical models of a switched reluctance machine. Prior

flux and inductance based modeling schemes along with their limitations are analyzed. An

approach to reconstruct the phase current using numerical methods of integration is explored

and lastly, the proposed modeling scheme with and without the phase resistance is derived.

Chapter 4

A technique to predict the peak value of the phase current for switched reluctance generators

is derived and presented in this chapter. The mathematical model is then validated by

comparing its results to the experimentally gathered data. The effect of the machine’s

winding resistance on the model is also analyzed and documented.
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Chapter 5

This chapter examines the effect of a free wheeling stage in the high-speed operating mode

of switched reluctance generators. The effect of free wheeling on the amount of charge

generated by the machine is analyzed.

Chapter 6

In this chapter, concluding remarks and future research work is presented.
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CHAPTER 2

OPERATING PRINCIPLES OF A SWITCHED RELUCTANCE MACHINE

AND ITS DRIVE SYSTEM

This chapter presents the operating principles of a switched reluctance machine and the drive

system, such as the rotational dynamics of the machine, evolution of magnetic and electrical

parameters, equivalent circuit models, effects of saturation on the machine, motoring and

generating modes of operation, and the functioning of the drive power converter.

2.1 Rotational Dynamics and the Magnetic and Electric Parameters

In this section, the rotational dynamics along with the magnetic and electrical parameters of

the machine are presented. The magnetic parameters considered are the phase inductance

and phase flux linkage, while the electrical parameters considered are the applied phase

voltage and phase current. Evolution of the magnetic and electrical parameters are examined

as the rotor rotates, changing its angular position.

2.1.1 Rotational Dynamics

For the purpose of analysis, the 2/2 machine depicted in Figure 1.2 is considered. Practically,

a machine with two rotor and two stator poles will not produce significant output power.

This machine is selected only to make the understanding and analysis process easier. In

practice, switched reluctance machines have a higher number of rotor and stator poles.

During generation, the machine’s output power is proportional to the number of stator

phases, as a result, a single phase machine will generate less electricity. On the other hand,

during motoring, the machine shown in Figure 1.2 is limited by the number of rotor poles and

will not be able to produce continuous output motion as the rotor poles will get locked with

the excited stator phase and remain in that position even after the excitation of the stator
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phase is removed, unless externally disturbed. For machines with multiple stator phases, the

phases are excited in a specific order to achieve useful output power from the machine.

Figure 2.1(a) shows a two dimensional cross sectional view of a single phase switched

reluctance machine with its rotor at the aligned position, while Figure 2.1(b) shows the rotor

at the unaligned position. The position of the rotor is measured in terms of the angle made by

the reference rotor pole (R or R′), the center O, and the reference stator pole (S or S ′). The

center O acts as the vertex of the rotor and stator axes. Conventionally, angles measured

in the counterclockwise direction are assigned a positive value, while those measured in

the clockwise direction are assigned a negative value. However, while assigning a sign to

the rotor’s angle, a different convention is followed. A negative sign is assigned when the

reference rotor approaches the reference stator pole, while a positive sign is assigned when

the reference rotor pole leaves the reference stator pole, i.e., the sign of the rotor’s angle

depends on the rotor’s direction of rotation.

Stator
axis

Rotor
axis

R R′S S ′ S S ′

R′

R

(a) (b)

O

O

Figure 2.1: A two dimensional cross sectional view of a single phase SRM with its rotor at
the (a) aligned position and (b) unaligned position

For example, at the unaligned position shown in Figure 2.1(b), if R′ and S ′ are considered

as the reference rotor and stator poles, respectively, and if the rotor’s rotation is in the
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counterclockwise direction, the rotor position is represented as −90◦; however, if the rotor’s

rotation is in the clockwise direction, the rotor position is represented as +90◦. If the rotor

is made to rotate by 180◦ in either the clockwise or the counterclockwise direction, the rotor

still appears to be in exactly the same position as shown in Figure 2.1(b) and physically

there would be no difference between the two positions (i.e., the other unaligned position);

however, the rotor position would be represented as +90◦ for counterclockwise rotor rotation

and −90◦ for clockwise rotor rotation. Since both the positions are the same from a physical

standpoint, a repetitive pattern is observed, known as a complete cycle. The unaligned

position is an unstable equilibrium position for the rotor and from a magnetic standpoint,

does not experience any flux saturation between the rotor and stator poles.

On the other hand, Figure 2.1(a) represents the aligned position at which, the reference

rotor pole R′ is perfectly aligned with the reference stator pole S ′ and the rotor’s position is

represented as 0◦. At the aligned position, the rotor pole R and the stator pole S are also

perfectly aligned with each other. Similar to the unaligned position, if the rotor is made to

rotate by 180◦ in either the clockwise or the counterclockwise direction, the rotor still appears

to be in exactly the same position as shown in Figure 2.1(a) and physically there would be

no difference between the two positions. Therefore, the rotor is at its aligned position even

when its position is ±180◦, i.e., rotor pole R′ aligns itself with stator pole S and rotor pole

R aligns itself with stator pole S ′. The aligned position is a stable equilibrium position for

the rotor and from a magnetic standpoint, is prone to severe flux saturation between the

rotor and stator poles.

A complete cycle is defined as the angle traveled by the rotor beginning at any one position

and ending at a second position at which, physically the rotor appears to be at same as

the first position (i.e., the rotor’s appearance repeats itself, though the reference rotor poles

changes its position). As a result, a complete cycle is a function of the number of rotor poles.

Conventionally, a complete cycle begins at the unaligned position while the reference rotor
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pole approaches the reference stator pole and ends at the other unaligned position while

the reference rotor pole leaves the reference stator pole. Consider a switched reluctance

machine with three stator phases (i.e., six stator poles) and four rotor poles as shown in

Figure 2.2. Assume, R′1 and S ′ as the reference rotor and stator poles, respectively and

clockwise direction of rotation of the rotor, then Figure 2.2(a) represents the unaligned rotor

position at −45◦, while Figure 2.2(b) represents the other unaligned rotor position at +45◦.

Physically, the rotor position appears to be the same in Figure 2.2(a) and Figure 2.2(b);

however, the reference pole R′1 has changed its position by 90◦. The angle traveled by the

rotor from −45◦ to +45◦ represents a complete cycle and the periodic behavior of the rotor

for the 6/4 machine shown in Figure 2.2, occurs every 90◦.

S S ′

R1

R′
1R2

R′
2

Stator axis

(a)

S S ′

R′
2

R2R1

R′
1

Rotor axis
(b)

Figure 2.2: A two dimensional cross sectional view of a 6/4 SRM with the rotor at its
unaligned positions at (a) −45◦ and (b) +45◦

The analysis of the 2/2 and 6/4 machine reveal that the periodic behavior of the machine

is a function of the total number of rotor poles (Nr). Assuming that all the rotor poles are

spaced equally, the periodic behavior of the machine is observed every (360/Nr)
◦ or every

(2π/Nr) rad. The angles considered so far are all the mechanical angles that the rotor
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rotates; however, the electrical angles for one complete cycle (i.e., where the rotor repeats

its appearance) is 360◦ or 2π rad and does not depend on the number of rotor poles.

Figure 2.3 graphically represents and maps the relationship between the electrical an-

gle θe and the mechanical angle θm. The extreme left and right positions represent the

two unaligned positions whereas the center position represents the aligned position while

considering R2 as the reference rotor pole and S as the reference stator pole.

R2

R3

θm

θe

0

0π π

2π

Rotor

Rotor pole

Stator

Stator phase winding

S SS

R1

R1

R2

R3

R1

R2R3

Stator pole
θm = Mechanical angle
θe = Electrical angle

Rx = Rotor pole (x = 1, 2, 3)
Nr = Number of rotor poles

π2
Nr

π
Nr

π
Nr

Figure 2.3: Reference rotor pole R2’s position in terms of the mechanical angle (θm) and the
electrical angle (θe)

2.1.2 Magnetic and Electric Parameters

Referring to Figure 2.1, when the rotor is at the aligned position, and the stator windings

are excited, the reluctance of the flux path is at its minimum value while the inductance

of the phase is at its maximum value (since the phase inductance and the flux linkage are

inversely proportional to each other). The reluctance of the flux path is minimum because

the size of the air gap between the rotor and stator poles is at its smallest possible value.

Conversely, when the rotor is at the unaligned position, and the stator windings are excited,
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the reluctance of the flux path is at its maximum value while the inductance of the phase

is at its minimum value. The reluctance of the flux path is maximum because the size of

the air gap between the rotor and stator poles is at its largest possible value. Intermediate

rotor positions (between aligned and unaligned positions) experience corresponding values

of reluctance and inductance based on the size of the air gap between the rotor and stator

poles.

Another important parameter is the torque produced by the machine’s rotor shaft. Con-

sider Figure 1.2 and assume that the rotor is rotating in the counterclockwise direction

(perhaps with the help of an external mechanical source). When the rotor is at the position

shown in Figure 1.2 and the phase windings are excited, it experiences a force which aids in

its counterclockwise rotation. The force experienced by the rotor due to the excitation of

the phase windings is the produced torque (T ) and because it aids the rotor in the direction

of rotation, it is a positive value. Once the rotor reaches its aligned position, if the stator

phase windings are kept excited, the rotor will want to remain at the aligned position (as the

aligned position is a stable equilibrium position, at which the reluctance of the flux path is

minimum) and no longer produce a positive torque which aids in the rotor’s counterclockwise

rotation, in fact it produces no torque, i.e., zero torque. However, because of the rotational

moment of inertia of the rotor, it will continue rotating past the aligned position heading

towards the other unaligned position; however, due to the continued excitation of the phase

windings, the rotor experiences a force opposing its counterclockwise rotation, i.e., the rotor

experiences a negative torque which prevents it from leaving its aligned position (i.e., the

stable equilibrium position, where the reluctance of the flux path is minimum). The evolu-

tion of the machine’s phase inductance and output torque for a rotating rotor are shown in

Figure 2.4. In later sections of this dissertation, it is derived that the torque is a function of

the slope of the phase inductance. As a result, during constant values of phase inductance,

the torque produced is zero.
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Figure 2.4: Phase inductance and torque profiles for a continuously excited stator phase
winding [7]

Based on the intuitive analysis for the generation of torque, a rule of thumb is established

suggesting that, a positive torque is produced in the region where the inductance of the phase

increases (i.e., as the rotor rotates from its unaligned position towards its aligned position)

and a negative torque is produced in the region where the inductance of the phase decreases

(i.e., as the rotor rotates from its aligned position towards its other unaligned position). In

Figure 2.4, at the aligned position, the inductance changes its slope from a positive value to

a negative value. The abrupt change in slope takes place only when the length of the rotor

pole arc βr is equal to the length of the stator pole arc βs. If the arc lengths are unequal, the

inductance profile would have a zero slope region around both sides of the aligned position.

Figure 2.5 shows the rotor and stator pole arcs.

In Figure 2.4, position X represents the aligned position of the rotor pole with respect

to the stator pole, position Y represents the end of the overlap of the rotor pole arc with
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AB = Rotor pole arc (βr)

CD = Stator pole arc (βs)

Figure 2.5: A two dimensional cross sectional view of an SRM highlighting the rotor and
stator pole arcs βr and βs, respectively and their corresponding angles subtended at the
center O of the machine ∠βr and ∠βs, respectively. Adapted from [8], c© 2002 IEEE

respect to the stator pole arc as the rotor leaves its aligned position heading towards its

unaligned position, position Z represents the position, where the rotor pole is completely

unaligned with the stator pole (i.e., the rotor axis is at an angle of ±π/Nr rad with respect

to the stator axis), and position W represents the rotor position, where the rotor pole arc

begins to overlap with the stator pole arc as the rotor rotates from its unaligned position

heading towards its aligned position.

So far, in the analysis of a switched reluctance machine shown in Figure 1.2, positive and

negative torques are produced in one cycle, because the stator phase is excited throughout

the cycle. Averaging the torque over one complete cycle, results in an overall zero torque,

which is not useful as it implies that the rotor endlessly oscillates (in an ideal frictionless

environment) back and forth around the active stator pole. In order to only generate positive

torque and get rid of the negative torque, the stator phase winding must not be excited after

the rotor crosses the aligned position. Therefore, a control scheme which switches off the
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stator phase when the reference rotor pole reaches its aligned position must be used. The

stator phase is switched off when a zero or negative voltage is applied across the terminals of

the stator phase windings. In summary, for the production of only positive torque, a positive

phase voltage must be applied as the rotor rotates from position W towards position X, and

a zero or negative phase voltage must be applied as the rotor rotates from position X towards

position Y.

The switching on and off of the phase voltage is referred to as commutation and a cycle

wherein torque is produced due to one current or voltage pulse is known as a stroke. Also, the

application of a positive voltage across the terminals of the stator phase windings results in

the magnetization of the phase, whereas the application of a zero or a negative voltage across

the terminals of the stator phase windings results in the demagnetization of the phase. The

commutation results in a set of voltage and current pulses, which are continuously switched,

and as mentioned earlier, is what gives a switched reluctance machine its name. Figure 2.6

maps out the torque produced, the phase voltage across the stator phase windings, and the

phase current flowing through the stator phase windings. The flat top of the phase voltage

and phase current waveforms represent an average value, which is achieved using hysteresis

control wherein the phase is switched on and off (i.e., a positive and zero phase voltage)

multiple times between position W and position X. At position X, when the phase is finally

switched off, its voltage is negative. In summary, for the production of positive torque only,

the phase voltage is a set of controlled pulses during the region in which the phase inductance

has a positive slope. For the production of continuous positive torque rather than the pulses

shown in Figure 2.6, additional stator phases are required, which when switched, fill up the

blank spaces between the torque pulses shown in the figure.

An additional magnetic parameter, i.e., the phase flux linkage is also mapped in Fig-

ure 2.6. The flux linkage ψ between the rotor and stator is related to inductance of the
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Figure 2.6: Phase inductance, current, voltage, flux linkage, and torque profiles for a con-
trolled excitation of the stator phase winding [7]

phase L, and the phase current through the stator phase windings i, by the following ex-

pression:

ψ = Li (2.1)

Using the expression for the flux linkage from Equation 2.1, the waveform of the flux linkage

shown in Figure 2.6 is similar to the inductance profile during the region of increasing

inductance, and zero at other instances. As the rotor rotates from its unaligned position Z

to its aligned position X, the air gap between the rotor and stator pole decreases and the

reluctance of the flux path reduces, as a result, the flux linkage also increases.

However, the waveforms of phase current and flux linkage shown in Figure 2.6 are unreal-

istic and impractical, the phase current waveform does not resemble a perfect pulse as shown

in the figure and reconstruction of the phase current is much more challenging. To better
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understand the magnetic and electric profiles, consider the following equations defining the

relationship among the voltage across the phase inductance VL, time t, the phase inductance

(L), and the phase current (i):

VL = L
di

dt
(2.2)

Rearranging Equation 2.2, the following expression for the slope of the phase current is

obtained:

di

dt
=
VL
L

(2.3)

The leading edge of the phase current shown in Figure 2.6 has an infinite positive slope. Such

a slope would only be possible if the value of the phase inductance in Equation 2.3 were zero.

In reality, the value of the phase inductance is small, but not in fact zero. Consequently, the

non zero phase inductance results in a finite positive slope (a fairly steep one at that) for the

leading edge of the phase current and is shown in Figure 2.7. On the other hand, the trailing

edge of the phase current shown in Figure 2.6 has an infinite negative slope. The trailing

edge of the phase current occurs at the aligned position, at which the phase inductance is at

its maximum value and the stator phase is switched off, implying that the phase voltage is

negative, as a result, VL becomes negative. According to Equation 2.3, the trailing edge of

the phase current will have a relatively smaller finite negative slope (when compared to the

leading edge) and the phase current will take longer to go back down to zero, i.e., resulting in

an undesired current tail. The trailing edge tail current at the aligned position is also shown

in Figure 2.7. Since the flux linkage is a product of phase inductance and phase current, a

non zero phase inductance and the tail current profile results in a tail for the flux linkage as

well. The tail current is responsible for the production of negative torque while motoring,

an undesired phenomenon.
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Figure 2.7: Phase inductance profile along with phase current and flux linkage profiles with
finite slopes [7]

2.2 Equivalent Circuit of a Switched Reluctance Machine

This section presents the equivalent circuit of a switched reluctance machine. In order to

develop the equivalent circuit, it is best to begin with the equation describing the machine’s

phase voltage. Using Faraday’s law of electromagnetism, the phase voltage of a switched

reluctance machine is given by the general expression:

V =
dψ

dt
(2.4)

It should be noted that the phase voltage (V ) defined so far represented the voltage across

ideal stator phase windings with zero resistance, as a result, no resistive voltage drops were

considered (due to winding and parasitic resistances). However, in the presence of winding

and parasitic resistances, the phase voltage is not the same as the voltage across the stator
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phase windings. The voltage across the stator phase windings is referred to as the DC link

voltage or the bus voltage, i.e., Vbus. The phase voltage differs from the bus voltage by

accounting for an additional voltage drop due to the resistance of the stator phase windings

R (all other parasitic resistances, such as the drive circuit board resistances are also included

in R). The two voltages are related to each other by the following expression:

V = Vbus − iR (2.5)

For the sake of simplicity, the following analysis considers the phase voltage rather than the

bus voltage. By using the expression for the flux linkage from Equation 2.1 in Faraday’s law,

i.e., Equation 2.4, the following set of equations are obtained:

V =
d(Li)

dt

= L
di

dt
+ i

dL

dt
(2.6)

Since, mutual inductance between phases is less than the self inductance of a phase, it is

neglected in the analysis [95]. The first term on the right hand side of Equation 2.6 represents

the voltage across the phase inductance and is denoted by VL, the second term is attributed

towards the machine’s back EMF and is denoted by e. As a result, Equation 2.6 is expressed

as:

V = VL + e (2.7)

where, the voltage across the phase inductance (VL) is the same as that described by Equa-

tion 2.2 and the back EMF (e) is described by the following expression:

e = i
dL

dt
(2.8)

Analysis of a switched reluctance machine is generally performed as the rotor rotates from

its unaligned position to its aligned position during motoring, and from its aligned position
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to its unaligned position during generation. Therefore, it is more insightful to switch from

the time domain (t) to the rotor’s position domain (θ). This can easily be achieved by

introducing an expression for angular velocity ω in Equation 2.6. The expression for the

angular velocity (ω) is given by:

ω =
dθ

dt
(2.9)

Rearranging Equation 2.9, the following expression is obtained:

1

dt
=

ω

dθ
(2.10)

Replacing time (t) by introducing the angular velocity (ω) from Equation 2.10 in Equa-

tion 2.6, results in the following expression for the phase voltage (V ):

V = ωL
di

dθ
+ ωi

dL

dθ
(2.11)

The voltage across the phase inductance (VL) and the back EMF (e) of the machine, expressed

in terms of angular velocity (ω) are obtained by using Equation 2.10 in Equations 2.2 and

2.8, respectively:

VL = ωL
di

dθ
(2.12)

e = ωi
dL

dθ
(2.13)

Using the expressions for voltage across the machine’s phase (i.e., Equation 2.11), an equiv-

alent circuit model is constructed and shown in Figure 2.8.

L

−

i
+

+ −VL
eV

+
−

V = Phase voltage

i = Phase current
L = Phase inductance

VL = Voltage across L

e = Back EMF

VL = L
di

dt
= ωL

di

dθ
e = i

dL

dt
= ωi

dL

dθ

Figure 2.8: Equivalent circuit of a switched reluctance machine
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Adding the winding resistance (R) and the bus voltage (Vbus) from Equation 2.5 in Equa-

tion 2.11, a more comprehensive voltage equation is obtained:

Vbus − iR = ωL
di

dθ
+ ωi

dL

dθ
(2.14)

The equation above is rearranged to obtain the bus voltage expression for a switched reluc-

tance machine and is expressed as:

Vbus = iR + ωL
di

dθ
+ ωi

dL

dθ
(2.15)

Similarly, an equivalent circuit model of the machine including the winding resistance (R)

and its bus voltage (Vbus) is constructed and shown in Figure 2.9, where the voltage drop

across the winding resistance is denoted by VR.

−

+

Vbus

L

+ −VL

i

+ −VR

R

e+
−

VR = iR

Vbus = Bus voltage

i = Phase current
L = Phase inductance

VL = Voltage across L

e = Back EMF

R = Winding resistance

VR = Voltage across R

VL = L
di

dt
= ωL

di

dθ
e = i

dL

dt
= ωi

dL

dθ

Figure 2.9: Equivalent circuit of a switched reluctance machine (including winding resistance)

2.3 Saturation in Switched Reluctance Machines

This section briefly and intuitively presents the effects of saturation in switched reluctance

machines. It has already been established that the phase inductance (L) varies with rotor

position (θ). However, the rotor position is not the only parameter the phase inductance

depends on, it also depends on the phase current. For high values of phase current, the flux

linkage through the machine core no longer scales according to Equation 2.1 and begins to

saturate, especially as the reference rotor pole aligns itself with the reference stator pole.
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Figure 2.10 shows the two dimensional cross sectional view of an 8/6 switched reluctance

machine. The machine is modeled using ANSYS Maxwell [9], a finite element analysis

tool. Figure 2.10(a) shows the rotor pole at its aligned position (i.e., position X shown

in Figure 2.4), where the rotor poles are perfectly aligned with a pair of excited stator

poles. The simulation is performed by exciting the phase windings with a constant current

of 10 A. The figure clearly shows an excessive amount of flux lines at the rotor and stator

pole boundaries. At the aligned position, since the path for the flux lines has the lowest

reluctance, the flux lines tend to be extremely dense and are limited by the surface areas

of the rotor and stator poles, creating a bottleneck for the flux lines and causing them to

saturate. The limitation is most noticeable when the phase current is high and the reluctance

for the flux path is low, i.e., when the phase inductance is high, and begins to ease off as

the reluctance increases. Such a combination occurs when the rotor pole is close to or at the

aligned position as shown in Figure 2.10(a). At the aligned position, once the flux linkage

reaches a certain value, increasing the phase current does not cause a proportional increase

in the flux linkage. Intuitively, this is because higher phase currents are no longer capable of

squeezing in additional lines of flux through the rotor and stator pole boundaries. As a result,

while considering saturation, Equation 2.1 holds true only in an instantaneous manner.

Figure 2.10(b) shows the rotor at a position without any overlap with the pair of excited

stator poles (i.e., positions W or Y shown in Figure 2.4), as a result the reluctance of the flux

path is significantly higher (because the flux lines must leave the stator’s iron core, travel

through the air gap, enter the rotor’s iron core, leave the rotor’s iron core and travel through

the air gap on the other side, and finally reenter the opposite stator pole). At the unaligned

position, the factor limiting the flux lines is no longer the surfaces of the rotor and stator

poles, but in fact the reluctance of the flux path. Typically, the flux linkage at the unaligned

position does not experience saturation (unless extremely high values of currents develop,

which would cause other parts of the drive to fail before saturation poses a concern).
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(a) (b)

Figure 2.10: Flux linkage in an 8/6 SRM when the rotor is at (a) the aligned position and (b)
a position without any overlap with the excited stator poles. Simulation results are obtained
using ANSYS Maxwell [9]

In summary, there are two factors which limit the flux linkage from increasing linearly

as the current increases, i.e., the reluctance of the flux path (which is directly proportional

to the size of the air gap between the rotor and stator poles) and the physical geometry of

the rotor and stator pole surfaces. At the aligned position, the reluctance of the flux path

is minimum; however, the geometry or size of the rotor and stator pole surfaces act as the

limiting factor for the flux lines. On the other hand, at the unaligned position, the reluctance

of the flux path is much larger and acts as the limiting factor for the flux lines (the size of

the rotor and stator surfaces is unimportant at the unaligned position).

From the intuitive explanation of flux saturation, a rudimentary plot of the flux linkage

versus phase current is shown in Figure 2.11. The two curves plotted in the figure represent

the flux linkages at the aligned and unaligned positions. The aligned position flux curve is

represented by ACD, where the AC portion of the curve (during which the phase current is

still low) has a more or less constant slope representing the aligned position phase inductance

La, i.e., the inductance value at lower current levels. On the other hand, the CD portion

of the curve represents saturation (as the phase current becomes larger) and has a smaller
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ψ = Phase flux linkage
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La = Aligned inductance

L(θ, i) = Instantaneous inductance

i = Phase current

θ = Nr

π

Nr = Number of rotor poles

Figure 2.11: Flux linkage versus phase current plot when the rotor is at the aligned position
(ACD) and the unaligned position (AB)

slope when compared to the AC portion of the curve. The smaller slope of the CD portion

of the curve implies that the instantaneous phase inductance at higher current levels begins

to drop and is smaller than aligned position inductance (La).

At the unaligned position, the flux curve represented by AB has more or less a constant

slope for the entire range of current values. The slope of the unaligned flux curve represents

the unaligned position phase inductance Lu. The constant slope of AB implies that the

unaligned phase inductance is a constant and is independent of the value of the phase

current. This further implies that saturation does not factor in at the unaligned position.

Under extremely high values of current, where AB (after its extrapolation) intersects the line:

ψ = ψsat, the core could then experience saturation even at the unaligned position. However,

this would happen at an extremely high value of current and to keep matters simple, such a

scenario is usually not considered as it does not occur in practice. In summary, for positions

closer to the aligned position, as phase current increases, the flux linkage begins to saturate

and the instantaneous inductance begins to drop. On the other hand, at the unaligned

position, the machine is predominantly immune to saturation.

Since phase inductance (L) varies with rotor position (θ) as well as phase current (i) (i.e.,

phase inductance is a function of rotor position and phase current), it should be more accu-
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rately represented as L(θ, i). Also, the phase current is a function of the phase inductance

L(θ, i) and rotor position (θ), as a result, it should also be more accurately represented as

i(L(θ, i), θ). Rearranging Equation 2.11, and making the slope of the phase current with

respect to the angular position (θ) the subject of the formula, the following expression is

obtained:

di(L(θ, i), θ)

dθ
=
V − ωi(L(θ, i), θ)

dL(θ, i)

dθ
ωL(θ, i)

(2.16)

The phase current and the instantaneous phase inductance have a strong interdependence

on each other and give rise to the classic causality dilemma or, the “chicken and the egg”

problem. For the sake of simplicity, L(θ, i) is replaced by L and i(L(θ, i), θ) is replaced by i,

which leads to a simpler expression (however, the interdependencies are not lost):

di

dθ
=
V − ωidL

dθ
ωL

(2.17)

Equation 2.17 can also be represented in terms of the machine’s back EMF (e) from Equa-

tion 2.13 and is expressed as:

di

dθ
=
V − e
ωL

(2.18)

Equation 2.17 is the current differential equation of a switched reluctance machine and is

a very important equation. A lot of insight about the machine’s behavior is obtained by

analyzing the current differential equation which is presented in later sections and chapters

of this dissertation.

Next, the operating modes of a switched reluctance machine are presented. Since the

machine is capable of operating both, as a motor as well as a generator, there are essentially

two operating modes. The excitation of the phase depending on the rotor position (θ) defines

whether the machine operates as a motor or as a generator.
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2.4 Motoring Mode of Operation

While operating as a motor, a switched reluctance machine produces net positive torque.

The production of positive torque involves exciting the stator phases in a specific order such

that, the rotor rotates in the desired direction. Different switched reluctance machine config-

urations (i.e., different combinations of the number of rotor and stator poles) have different

excitation patterns in order for the rotor to rotate in the clockwise or counterclockwise direc-

tions. Based on the configuration of a switched reluctance machine, the rotor either rotates

in the same or in the opposite direction as the stator’s rotating magnetic field. Figure 2.12

shows the two dimensional cross sectional view of two different switched reluctance machine

configurations.

(a) (b)

Sn−1Sn−1

Sn

Sn

Sn−1Sn−1

Sn

Sn

Sn−1 = Previously excited stator phase

Sn = Currently excited stator phase

R = Reference rotor pole

R

R

R

R

Figure 2.12: Stator’s counterclockwise rotating magnetic field produces (a) counterclockwise
rotor rotation in a 6/8 SRM and (b) clockwise rotor rotation in an 8/6 SRM
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Figure 2.12(a) shows a two dimensional cross sectional view of a 6/8 switched reluctance

machine in which the stator’s counterclockwise rotating magnetic field causes the reference

rotor pole R to rotate in the counterclockwise direction as well. On the other hand, Fig-

ure 2.12(b) shows a two dimensional cross sectional view of an 8/6 switched reluctance

machine in which the stator’s counterclockwise rotating magnetic field causes the reference

rotor pole R to rotate in the clockwise direction.

As stated earlier, in machines with a higher number of stator phases, multiple phases

can be excited at the same time, Figure 2.13 shows a two dimensional cross sectional view

of a 12/8 switched reluctance machine, where stator phases A and B, are both excited

simultaneously. This way the drive power converter need not have the same number of

phases as the number of stator phases of the machine, resulting in a smaller and more

economic motor drive.

AA

B

B

Figure 2.13: A 12/8 SRM in which phases A and B are both excited simultaneously

For the production of positive torque, the stator’s rotating magnetic field must always

lead the reference rotor pole. As already stated, the region where positive torque is produced

is the region between the unaligned and aligned positions, during which the machine’s phase

inductance increases and has a positive slope (i.e., from position W to position X shown
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in Figure 2.4). While considering Equation 2.18 for the identified region, the denominator

on the right hand side of the equation is always positive, as angular velocity (ω) and phase

inductance (L) are both positive quantities. As a result, the sign of the slope of phase current

with respect to rotor position (di/dθ) is determined by the numerator on the right hand side

of Equation 2.18, the numerator has the phase voltage (V ) and the back EMF (e) working in

contention with each other, giving rise to two scenarios. When the phase voltage is greater

than the back EMF of the motor, the slope of phase current with respect to rotor position

is positive and indicates an increasing phase current. On the other hand, when the phase

voltage is lesser than the back EMF of the motor, the slope of phase current with respect to

rotor position is negative and indicates a decreasing phase current.

On analyzing the current differential equation, the following inference is made: a high

positive phase voltage (i.e., greater than the back EMF) results in an increase in the ma-

chine’s phase current, whereas a zero or negative phase voltage results in a decrease in the

machine’s phase current. From a controls perspective, the machine is completely controllable

as the machine’s phase current is increased or decreased by switching the phase on or off,

respectively. Due to complete control over the machine’s phase current, a simple control

technique, such as hysteresis control [7] can be employed with considerable ease.

2.4.1 Nonlinear Torque Expression

Intuitively, torque produced by a machine is proportional to its phase current (i.e., a higher

phase current produces more flux linkage between the rotor and stator, resulting in a higher

torque); however, for an exact expression for the torque produced, it needs to be mathe-

matically derived. To derive an expression for the torque produced by a switched reluctance

machine, the bus voltage (Vbus) from Equation 2.5 is used in Equation 2.4 to get the following

expression:

Vbus = iR +
dψ

dt
(2.19)
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The total instantaneous input electrical power Pe tot is expressed as a product of phase current

(i) and input voltage (i.e., bus voltage) which is obtained by multiplying Equation 2.19 by

phase current and is expressed as:

Pe tot = iVbus

= i2R + i
dψ

dt
(2.20)

The first term on the right hand side of Equation 2.20 represents the ohmic losses or the

resistive power, Pr dissipated across the winding resistance (and any other parasitic resis-

tances), while the second term on the right hand side of Equation 2.20 represents the input

electrical power to a switched reluctance machine Pe. Expressing the total instantaneous

input electrical power in terms of its two components, the following expression is obtained:

Pe tot = Pr + Pe (2.21)

where,

Pr = i2R (2.22)

Pe = i
dψ

dt
(2.23)

The input electrical energy Ee is obtained by integrating the input electrical power (Pe) with

respect to time (t), resulting in the following expression:

Ee =

∫
i
dψ

dt
dt

=

∫
i dψ (2.24)

The input electrical energy is responsible for the flux linkage in the machine, as a result,

is equal to the stored magnetic energy in the machine Emag (excluding losses during the
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conversion of energy from the electrical to the magnetic domain). Therefore, the stored

magnetic energy is expressed as:

Emag =

∫
i dψ (2.25)

Based on Equation 2.25, the stored magnetic energy is graphically highlighted and shown in

Figure 2.14.

i

ψ

A

B C

D

Stored magnetic energy (Emag)

ψ = Phase flux linkage

i = Phase current

Figure 2.14: Stored magnetic energy at a particular rotor position considering a nonlinear
magnetization curve

To obtain an expression for the torque produced by a switched reluctance machine, a

scenario where the rotor rotates from position θ1 (closer to the unaligned position) to position

θ2 (closer to the aligned position) is considered and shown in Figure 2.15. The evolution

of flux linkage and phase current is marked by arrows as the rotor rotates from position

θ1 to position θ2. The AE portion of the curve represents an increasing phase current at a

particular rotor position θ1 (similar to position W in Figure 2.6), similarly the ED portion of

the curve represents a constant phase current as the rotor rotates from position θ1 to position

θ2 (i.e., the flat topped phase current waveform between positions W and X in Figure 2.6),

and lastly, the DA portion of the curve represents a decreasing phase current at a particular

rotor position θ2 (similar to position X in Figure 2.6).
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i

ψ

A

B

C D (θ2)

E (θ1)

F

ψ = Phase flux linkage

i = Phase current
θx = Rotor angular position (x = 1,2)

Figure 2.15: Evolution of flux linkage and phase current as the rotor rotates from position
θ1 to position θ2

At position θ1, the energy extracted from the supply is Emag1 and is shown in Figure 2.16,

represented by area AEBA. The energy extracted from the supply helps build up the flux

linkage and phase current as shown by curve AE in Figure 2.16 (The assumption is that the

phase current builds up to its peak value instantaneously, i.e., at rotor position θ1).

i

ψ

A

B

C D (θ2)

E (θ1)

F

ψ = Phase flux linkage

i = Phase current
θx = Rotor angular position (x = 1,2)

Stored magnetic energy (Emag1)

Figure 2.16: Stored magnetic energy (Emag1) at rotor position θ1 (energy taken from the
supply)

As the rotor rotates from position θ1 to position θ2, more energy is extracted from the

supply to overcome the effects of back EMF and maintain a constant phase current (assuming

57



the phase current is a constant, represented by ED). The additional energy extracted from

the supply EEMF is represented by area BEDCB and is shown in Figure 2.17

i

ψ

A

B

C D (θ2)

E (θ1)

F

ψ = Phase flux linkage

i = Phase current
θx = Rotor angular position (x = 1,2)

Energy absorbed by the back EMF
(EEMF )
Energy absorbed by the back EMF

Figure 2.17: Energy absorbed by the back EMF (EEMF ) as the rotor rotates from position
θ1 to position θ2 (energy taken from the supply)

At rotor position θ2, the phase current is made to go back to zero and flows back into the

supply, as a result, the stored magnetic energy at that position Emag2 is also returned to the

supply. The stored magnetic energy is shown in Figure 2.18, represented by area ADCA,

while the evolution of the flux linkage and the phase current is represented by curve DA

(The assumption is that the phase current goes back down to zero instantaneously, i.e., at

rotor position θ2).

i

ψ

A

B

C D (θ2)

E (θ1)

F

ψ = Phase flux linkage

i = Phase current
θx = Rotor angular position (x = 1,2)

Stored magnetic energy (Emag2)

Figure 2.18: Stored magnetic energy (Emag2) at rotor position θ2 (energy returned to the
supply)
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As the rotor rotates from position θ1 to position θ2, the energy extracted from the supply

is the sum of the stored magnetic energy at position θ1 (Emag1) and the energy absorbed

by the back EMF (EEMF ). At position θ2, the stored magnetic energy is returned back

to the supply (Emag2). The difference between the energies accounts for the energy spent

to produce torque in the machine and is represented as the mechanical energy Em. The

expression for the mechanical energy is as follows:

Em = Emag1 + EEMF − Emag2 (2.26)

Graphically, the mechanical energy spent to produce torque in a switched reluctance machine

is highlighted in Figure 2.19, represented by area AEDA. As stated earlier, the assumption

is that the phase current remains constant (as shown by ED in Figure 2.19) as the rotor

rotates from position θ1 to position θ2.

i

ψ

A

B

C D (θ2)

ψ = Phase flux linkage

i = Phase current

E (θ1)

F

θx = Rotor angular position (x = 1,2)

Mechanical energy spent (Em)

ψ1

ψ2

Figure 2.19: Mechanical energy spent (Em) to produce torque in an SRM

The area highlighted in Figure 2.19 can be represented in terms of Equation 2.25; however,

it is customary to represent the area integrated with respect to phase current rather than flux

linkage. The change of variable (i.e., from flux linkage in Equation 2.25 to phase current)

is achieved using the expression for co-energy Ec which is the compliment of the stored

magnetic energy (shown earlier in Figure 2.14) and is highlighted and shown in Figure 2.20.
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Figure 2.20: Co-energy (compliment of the stored magnetic energy) at a particular rotor
position

The expression for the co-energy is similar to the one for the stored magnetic energy, except

for the change of variable. The co-energy is expressed as:

Ec =

∫
ψ di (2.27)

The mechanical energy (Em) represented by area AEDA in Figure 2.19 is expressed in terms

of the co-energy as:

Em =

∫
ψ2 di−

∫
ψ1 di (2.28)

where, ψ1 and ψ2 represent the flux linkage expressions at positions θ1 and θ2, respectively.

The rate of change of mechanical energy results in mechanical power Pm and is expressed

as:

Pm =
dEm
dt

(2.29)

The mechanical power is also expressed as the product of speed and torque. In the case

of a motor, mechanical power is the product of angular velocity (ω) and torque (T ) and is

expressed as:

Pm = ωT (2.30)
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Using the expression for angular velocity (ω) from Equation 2.9, Equation 2.30 is also ex-

pressed as:

Pm =
dθ

dt
T (2.31)

Equating the mechanical power from Equations 2.29 and 2.31, the following expression is

obtained:

T =
dEm
dθ

(2.32)

For a very small incremental change in rotor position (θ), the mechanical energy (Em) is

the same as co-energy (Ec), and under the assumption that phase current remains constant

(represented by curve ED in Figure 2.19), the expression for the produced torque is:

T =
∂Ec
∂θ

(2.33)

Since it is assumed that phase current is a constant, the use of partial derivatives in Equa-

tion 2.33 is justified.

2.4.2 Linear Torque Expression

To obtain an expression for torque produced by a switched reluctance machine during its

linear region of operation, the linear magnetization curve shown in Figure 2.21 is consid-

ered. The area highlighted in Figure 2.21 represents the stored magnetic energy (Emag)

at a particular rotor position. While considering the linear magnetization curve shown in

Figure 2.21, the stored magnetic energy is represented by the area of triangle ∆ACB. The

base of the triangle, i.e., AD represents phase current (i), while the height of the triangle,

i.e., AB represents flux linkage (ψ), which according to Equation 2.1 is equal to the product

of phase inductance (L) and phase current (i). Therefore, the more familiar expression for
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Figure 2.21: Stored magnetic energy at a particular rotor position for a linear magnetization
curve

stored magnetic energy is obtained:

Emag =
1

2
· AD · AB

=
1

2
Li2 (2.34)

Magnetic power Pmag is obtained by considering the rate of change of the stored magnetic

energy at any instance of time, and using Equation 2.34 is expressed as:

Pmag =
d

dt

(
1

2
Li2
)

=
1

2
i2
dL

dt
+ Li

di

dt
(2.35)

Using Equations 2.1 and 2.23, input electrical power (Pe) for linear magnetization curves is

expressed as:

Pe = Li
di

dt
+ i2

dL

dt
(2.36)
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Using the law of conservation of energy (and power), the mechanical power (Pm) is expressed

by the following set of equations:

Pm = Pe tot − Pr − Pmag

= (Pr + Pe)− Pr − Pmag

= Pe − Pmag

= Li
di

dt
+ i2

dL

dt
−
(

1

2
i2
dL

dt
+ Li

di

dt

)

=
1

2
i2
dL

dt
(2.37)

Using the expression for mechanical power from Equation 2.31 and equating it to Equa-

tion 2.37, an expression for the torque produced by a switched reluctance machine in its

linear region of operation is expressed as:

T =
1

2
i2
dL

dθ
(2.38)

An interesting inference is that the produced torque does not depend on the direction of phase

current, this is because the phase current is raised to the second power in Equation 2.38.

However, the produced torque does depend on the slope of phase inductance with respect

to rotor position (dL/dθ) as indicated by the equation, implying that positive torque is

produced when the phase is excited while the rotor travels from position W to position X,

whereas negative torque is produced when the phase is excited while the rotor travels from

position X to position Y as shown in Figure 2.4.

During the motoring mode of a switched reluctance machine, the production of negative

torque is undesirable. If the phase current is not returned to zero after the aligned position,

negative torque is produced by the machine (as shown in Figure 2.4); however, if the rotor

and stator pole arc lengths (shown in Figure 2.5) are unequal, then a flat inductance profile
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(also known as a dead zone) is observed around the aligned position, during which the slope of

phase inductance with respect to rotor position is zero, as a result, no torque is produced, not

even the undesired negative torque. This phenomenon is shown in Figure 2.22, even though

the tail current persists from the aligned position X to the rotor position θ2, no negative

torque is produced (since dL/dθ = 0). Therefore, based on the derived torque expression of

Equation 2.38, improvements can be made to the machine’s design which mitigate the effects

of the tail current phenomenon. It is also worth nothing that the rise and fall of the phase

current in Figure 2.22 is linear because the phase inductance is constant for those regions

and the phase current follows Equation 2.3.

X Y Z

θ

S = Stator

R = Rotor

X = Aligned position

Z = Unaligned position

Y = End of rotor stator overlap

W = Start of rotor stator overlap

L = Phase inductance
θ = Rotor angular position

L

W

θ

0

0

Z

i = Phase current

i

θ
0

Tail current

T = Torque

T

θ1 θ2

(θ2 − θ1) = Dead zone

S

R

S

R

Figure 2.22: Phase inductance, current, and torque profiles for an SRM with unequal rotor
and stator pole arc lengths
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2.4.3 Power, Torque, and Speed Characteristics

This section presents the characteristics of a switched reluctance machine’s mechanical power

(Pm), its torque (T ) and their dependency on speed or angular velocity (ω). A switched

reluctance machine is capable of operating over a wide speed range which is one of its major

attractions. The torque produced by a switched reluctance machine is directly proportional

to the phase current (indicated by Equation 2.38), while the angular velocity of the machine

is directly proportional to the bus voltage. However, as angular velocity increases, the

machine’s back EMF also increases, limiting the phase current, which results in a drop in

the produced torque.

Power and torque variations with angular velocity are best understood by examining their

waveforms shown in Figure 2.23. For lower values of angular velocity, depicted by region 1

in Figure 2.23, the back EMF of the machine is low, as a result, the machine is operated

at its rated current value, where maximum torque is produced and is a constant, i.e., Tc.

Using Equation 2.30, the mechanical power linearly increases in region 1 with a slope of Tc.

Region 1 is also called the constant torque region.

The constant torque is observed until the angular velocity reaches its base speed ωB,

beyond which the torque produced by a switched reluctance machine begins to drop. This

region is depicted by region 2 in Figure 2.23 and is characterized by constant mechanical

power, i.e., Pmc. At angular velocities beyond the base speed, the back EMF of the machine

reaches a value high enough to prevent any further increase in the phase current value due

to the applied bus voltage, as a result, the torque begins to drop. In accordance with

Equation 2.30, the produced torque is proportional to the inverse of the angular velocity.

Region 2 is also known as the constant power region and is the region where maximum power

is produced.

For speeds beyond the constant power region, depicted by region 3 in Figure 2.23, the back

EMF of the machine is extremely high and causes the phase current to drop significantly, as a
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Figure 2.23: Power, torque, and speed characteristics of a switched reluctance machine [10]

result, the mechanical power is proportional to the inverse of angular velocity and according

to Equation 2.30, the produced torque is proportional to the inverse of the square of angular

velocity [10].

2.5 Generating Mode of Operation

A switched reluctance machine is also capable of operating as a generator. It is harder

to intuitively understand the operation of the machine as a generator. For the machine to

operate as a generator, the machine’s active phase must produce current (or charge). During

generation, the machine’s shaft is connected to an external mechanical source, i.e., a prime

mover. Under this mode of operation, a switched reluctance machine converts the prime

mover’s mechanical energy into electrical energy. Generation takes place as the rotor pole
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travels away from the active stator pole (i.e., from position X to position Y in Figure 2.4).

In that region, the phase inductance of the machine decreases and has a negative slope, i.e.,

dL/dθ < 0. Factoring out the negative sign from dL/dθ and introducing it in Equation 2.17,

the following expression is obtained:

di

dθ
=

V − ωi
(
−
∣∣∣∣dLdθ

∣∣∣∣)
ωL

=

V + ωi

∣∣∣∣dLdθ
∣∣∣∣

ωL
(2.39)

The above equation can also be represented in terms of the machine’s back EMF (e) from

Equation 2.13 and is expressed as:

di

dθ
=
V + |e|
ωL

(2.40)

In Equation 2.39, the following parameters are all positive: angular velocity (ω), phase

current (i), phase inductance (L), and the modulus of the slope of phase inductance |dL/dθ|.

The only parameter that can have a bipolar (i.e., positive or negative) value is the phase

voltage (V ) of the machine, which depends on the switching configuration of the drive’s

power converter and determines the trajectory of the phase current. For the left hand side

of Equation 2.39 (i.e., di/dθ) to be a positive quantity, the numerator on the right hand side

must be a positive quantity. Initially, when the phase current is zero, then it is entirely upto

the phase voltage to ensure that the numerator is a positive quantity, which occurs when

the phase voltage is positive. When the phase voltage is positive, the phase current starts

to increase, which in turn causes the back EMF (e) to increase as well. However, for the

machine to operate as a generator, it must build the phase current without the continued

application of a positive phase voltage. Therefore, to achieve that, one possibility is to switch

off the phase after establishing a sufficient amount of back EMF. It is worth nothing that,
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when the phase is switched off, the phase voltage changes polarity and becomes negative,

i.e., the switching configuration of the drive’s power converter changes, which results in a

negative phase voltage. The detailed functionality of the drive’s power converter circuit is

presented in subsequent section.

Thus, the generating action consists of two steps, the first step involves the magnetization

of the phase (also referred to as the investing phase or the charge build up phase), while

the second step involves the demagnetization of the phase (also referred to as the harvesting

phase). The phase voltage in Equation 2.40 changes its polarity when the phase is switched

off, after which the machine returns the phase current to the supply. Therefore, during the

generating mode, it is of interest to analyze the current differential equation (i.e., Equa-

tion 2.40) after the phase is switched off and the phase voltage is negative. When the phase

is switched off, Equation 2.40 is then modified and expressed as:

di

dθ
=
−V + |e|
ωL

(2.41)

Equation 2.41 implies that the phase (V ) is a positive quantity (since the negative sign is

factored out) and is more accurately expressed as:

di

dθ
=
−|V |+ |e|

ωL
(2.42)

Upon further inspection, it is observed that once the phase is switched off, the numerator

on the right hand side of Equation 2.42 has two terms of opposite polarity which create

contention. The contention gives rise to three possible scenarios, wherein the negative term

(i.e., the phase voltage) is greater than, equal to, or less than the positive term (i.e., the

established back EMF) at the instance the phase is switched off. Each scenario produces a

different phase current trajectory and is presented next.
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2.5.1 Negative Feedback Scenario (V > e)

The first of three possible scenarios occurs when the phase voltage is greater than the estab-

lished back EMF when the phase is switched off. This scenario is shown in Figure 2.24.

L

At θoff :

θon
(θa)

θoff
θY

θend

V > ωidLdθ

θ

V = Phase voltage

ω = Angular velocity

i = Phase current
θ = Rotor angular position

θon = Phase turn on angle

θa = Aligned position

θoff = Phase turn off angle

θY = End of rotor stator overlap

θend = Zero current position

i
L = Phase inductance0

0

θ

Figure 2.24: Generating phase current when the phase voltage (V ) is greater than the back
EMF (e) at the turn-off angle (θoff )

Since the phase voltage is greater than the established back EMF when the phase is

switched off, the numerator on the right hand side of Equation 2.42 is negative, implying

that the left hand side of the equation is also negative, i.e., di/dθ < 0. A negative left hand

side of Equation 2.42 causes an instant change in the slope of the phase current trajectory

(i.e., from a positive value to a negative value) and it begins to fall as shown in Figure 2.24

after the turn-off angle θoff . In this scenario, the current is always controllable at every

instance (i.e., it can be increased or decreased based on the polarity of phase voltage). The

area under the phase current curve from the turn-on angle θon to θoff is proportional1 to the

charge invested into the machine, while the area under the phase current curve from θoff

1Electrical charge is defined as the product of current and time. The area under the phase current curve
with respect to rotor position is proportional to charge, as rotor position is proportional to time (through
angular velocity as expressed in Equation 2.9). The area under the phase current (in A) curve with respect
to rotor position needs to be divided by the angular velocity (in ◦ s−1) in order to represent charge (in C).
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to θend (i.e., the rotor position, where the phase current returns to zero) is proportional to

the charge harvested by the machine. The charge harvested by the machine in this scenario

is not very high; however, the fact that the phase current is controllable (i.e., the system

remains in negative feedback) is a benefit to consider.

2.5.2 Zero Feedback Scenario (V = e)

The second scenario occurs when the phase voltage is equal to the established back EMF

when the phase is switched off. This scenario causes the numerator on the right hand side

of Equation 2.42 to become equal to zero, implying that the left hand side of the equation

is also zero, i.e., di/dθ = 0. Since di/dθ = 0, the current remains at a constant value even

after the phase is switched off and is shown in Figure 2.25.
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Figure 2.25: Generating phase current when the phase voltage (V ) is equal to the back EMF
(e) at the turn-off angle (θoff )

In this scenario, compared to the first one, there is clearly an increase in the amount of

charge harvested by the machine (i.e., proportional to the area under the phase current curve

from θoff to θend). However, it comes at a cost, which is the loss of control over the phase

current. The phase current can no longer be reduced as desired even after the phase voltage
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is negative when the phase is switched off. Once the phase inductance reaches its minimum

constant unaligned value (i.e., Lu at θY ), the back EMF becomes zero (in accordance with

Equation 2.13).Because of a zero back EMF, the sign of the numerator on the right hand

side of Equation 2.42 is dictated only by the phase voltage, which is negative when the phase

is switched off, as a result, at θY , the left hand side of the equation is a negative quantity,

causing the phase current to decrease linearly (as the inductance is constant after θend).

In this scenario, the machine is still stable in some sense as the phase current is not in

positive feedback; however, control over the machine’s phase current is severely compromised.

2.5.3 Positive Feedback Scenario (V < e)

The last scenario occurs when the phase voltage is less than the established back EMF

when the phase is switched off. In this scenario, the numerator on the right hand side of

Equation 2.42 is a positive quantity, implying that the left hand side of the equation is also

a positive quantity, i.e., di/dθ > 0. Since di/dθ > 0, the phase current continues to increases

even after the phase is switched off and is shown in Figure 2.26.
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Figure 2.26: Generating phase current when the phase voltage (V ) is less than the back
EMF (e) at the turn-off angle (θoff )
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Of the three scenarios discussed, this scenario results in the maximum charge harvested

from the machine and is the most advantageous from the standpoint of maximizing output

power. However, this scenario is accompanied by a complete loss of control over the phase

current. When the phase is switched off, the phase current enters into a state of positive

feedback and begins to snowball to uncontrollable levels. The phase current begins to fall

only when the phase inductance reaches its constant minimum unaligned inductance value

(i.e., Lu at θY ) which results in a zero back EMF and is similar to the reason the phase

current falls in the second scenario. Clearly, this scenario is the one with the highest risk but

also the one with the highest reward, as the charge harvested is the maximum of the three

scenarios (i.e., proportional to the area under the phase current curve from θoff to θend).

Being able to reconstruct the phase current would be extremely beneficial from a control

standpoint and would allow a designer to exploit this scenario.

In summary, the generation of charge from a switched reluctance machine is a two step

process, it involves an initial investment phase followed by a secondary harvesting phase.

Both the phases occur when the slope of phase inductance with respect to rotor position is

negative (i.e., when phase inductance decreases). During the investment phase, the machine

is magnetized by a positive phase voltage, allowing the phase current to build up to a certain

level. Once a sufficient amount of charge has been invested into the machine, and the phase

current crosses a certain threshold value, where the back EMF is greater than the negative

phase voltage, the harvesting phase begins. During the harvesting phase, the phase current

flows back into the supply (i.e., a storage element like a battery for instance) and the machine

gets demagnetized. The key factor is determining the amount of charge sufficient during the

investment phase. There is a minimum amount of charge needed to be invested, or else the

returns from the machine during the harvesting phase will be minimal. On the other hand,

a large investment may be good to magnetize the machine, but may cause the machine to

produce unsafe levels of currents which can damage the power electronics circuitry connected

to the machine.
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It is not always necessary to have a continuous DC bus voltage to magnetize the phases

during every cycle (as that would imply that switched reluctance generators are not self-

sufficient), an initial DC bus voltage (for instance, from a battery) can start the generating

process and then be disconnected. In such a scenario, once the phase current in a particular

stator phase is established, some of it is rerouted into the other phases, causing charge to be

invested in the other phases (i.e., magnetizing the other phases) and making the generation

process self-sufficient [96]. In such a scenario, the machine is referred to as a self excited

switched reluctance generator.

In some cases, the phase is switched on before the rotor’s aligned position, this allows

for a non zero positive value of phase current iinitial at the aligned position (θa). Switching

on the phase before the aligned position is referred to as phase advancing, which causes the

required back EMF to be established earlier compared to the case without phase advancing,

resulting in higher amount of charge harvested from the machine (as the phase is switched

on earlier and the phase current is allowed to increase for a longer period). Figure 2.27 shows

the phenomenon of phase advancing.

iinitial

iinitial = Phase current value at θa
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Figure 2.27: Generating phase current with phase advancing when the phase voltage (V ) is
less than the back EMF (e) at the turn-off angle (θoff )
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2.5.4 Comparison of Negative, Zero, and Positive Feedback Scenarios

During a switched reluctance machine’s generating mode of operation, the behavior of its

phase current after the phase is switched off depends on the established back EMF at the

turn-off angle (θoff ). If the magnitude of back EMF is lesser than the magnitude of phase

voltage at the turn-off angle, the phase current enters a state of negative feedback and starts

decreasing after the phase is switched off. On the other hand, if the magnitude of back EMF

is equal to the magnitude of phase voltage at the turn-off angle, the phase current enters a

state of zero feedback and remains the same until the phase inductance reaches its minimum

constant unaligned value (Lu), after which it starts decreasing. Lastly, if the magnitude of

back EMF is greater than the magnitude of phase voltage at the turn-off angle, the phase

current enters a state of positive feedback and starts increasing after the turn-off angle (even

though the phase is switched off). Eventually, the phase current begins to decrease only

after the phase inductance reaches its minimum constant unaligned value. Therefore, the

established back EMF at the turn-off angle dictates whether the phase current decreases,

remains the same or increases after the phase is switched off. The expression for back EMF

is defined by Equation 2.13 and is rewritten as:

e = ωi
dL

dθ
(2.43)

From Equation 2.43, it is observed that back EMF is a function of the machine’s phase

current (i) and angular velocity (ω). The evolution of the generating phase current is first

examined for varying turn-off angles and a constant angular velocity. If the turn-off angle

is varied, while the angular velocity is constant, since the back EMF is a function of phase

current, it is higher at a larger turn-off angle (as a longer magnetization period results in a

higher phase current at the turn-off angle). As a result, for a larger turn-off angle, the phase

current tends to enter a state of positive feedback (the exact behavior of the phase current

depends on the exact operating point of the machine defined by the value of phase voltage,
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instantaneous phase inductance, rotor position, slope of phase inductance with respect to

rotor position, among others). Similarly, the back EMF is lower at a smaller turn-off angle

(as a shorter magnetization period results in a lower phase current at the turn-off angle).

As a result, for a smaller turn-off angle, the phase current tends to enter a state of negative

feedback. Also, for a particular turn-off angle, when the magnitude of back EMF is equal

to the magnitude of phase voltage, the phase current enters a state of zero feedback. The

evolution of generating phase currents for three different turn-off angles (i.e., θoffa, θoffb,

and θoffc, where θoffa < θoffb < θoffc) at a constant angular velocity is shown in Figure 2.28.
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i(θoffb) = Zero feedback phase current

i(θoffc) = Positive feedback phase current

Figure 2.28: Comparison of generating phase currents in negative, zero, and positive feedback
for turn-off angles θoffa, θoffb, and θoffc, respectively

From Figure 2.28, the phase current in positive feedback yields the maximum harvested

charge (i.e., proportional to the area under the phase current curve from θoffx to θend, where

x = a, b, c represents the negative, zero, and positive feedback scenarios, respectively). The

positive feedback scenario also yields the maximum net charge, defined as the difference
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between the harvested and invested charge (i.e., proportional to the area under the phase

current curve from θon to θoffx), also resulting in maximum output power from the machine.

The generating phase currents shown in Figure 2.28 differ from each other due to varying

turn-off angles (i.e., θoffa, θoffb, and θoffc); however, they all have the same angular velocity.

Next, the evolution of the generating phase current is examined for varying angular

velocities. Since back EMF is directly proportional to a machine’s angular velocity, a lower

angular velocity (i.e., lower mechanical energy) establishes a lower back EMF in the machine,

while a higher angular velocity (i.e., higher mechanical energy) establishes a higher back EMF

in the machine. This also holds true through intuition, as a higher amount of mechanical

energy (i.e., angular velocity) yields a higher amount of converted electrical energy (i.e., back

EMF). As a result, for lower angular velocities, the phase current tends to enter a state of

negative feedback, while for higher angular velocities, it tends to enter a state of positive

feedback. So far, the behavior of phase current (i.e., negative, zero, or positive feedback)

after the turn-off angle is examined; however, depending on the angular velocity, the slope

of phase current before the turn-off angle also varies and is examined next. Equation 2.40

describes the generating current differential equation and is rewritten as:

di

dθ
=
V + |e|
ωL

(2.44)

From Equation 2.44, the slope of phase current with respect to rotor position (di/dθ) is

inversely proportional to angular velocity (ω). Based on the analysis presented, the evolution

of generating phase currents for three different angular velocities (i.e., ωa, ωb, and ωc, where

ωa < ωb < ωc) at a constant turn-off angle is shown in Figure 2.29.

From Figure 2.29, it is observed that when the angular velocity is lowest (ωa), the slope

of phase current with respect to rotor position during the magnetization phase is the highest;

however, due to a low angular velocity, the phase current enters a state of negative feedback

after the turn-off angle. Similarly, when the angular velocity is highest (ωc), the slope of
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Figure 2.29: Comparison of generating phase currents in negative, zero, and positive feedback
for angular velocities ωa, ωb, and ωc, respectively

phase current with respect to rotor position during the magnetization phase is the lowest;

however, due to a high angular velocity, the phase current enters a state of positive feedback

after the turn-off angle. From Figure 2.29, it is worth noting that charge harvested from

the phase current in negative feedback, i.e., i(ωa) is the highest, whereas it is lowest from

the phase current in positive feedback, i.e., i(ωc). However, the output power of a switched

reluctance generator is determined based on the net charge and not the harvested charge.

Therefore, while examining the net charge of the three scenarios shown in Figure 2.29, it is

maximum when the phase current is in a state of positive feedback when the phase is switched

off. Experimental results for the two sets of operating points presented in this section are

provided and analyzed in detail in Appendix H. The analysis includes a method to calculate

invested, harvested, and net charge along with output electrical energy and power.
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2.6 The Asymmetric Bridge Converter

This section presents an asymmetric bridge converter which is used as part of a switched

reluctance machine’s drive. There are plenty of converters which are used to drive a switched

reluctance machines [97–100]; however, the most common drive circuit used to control the

machine is an asymmetric bridge converter. A single phase of an asymmetric bridge con-

verter in shown in Figure 2.30, in which metal oxide semiconductor field effect transistors

(MOSFETs) and diodes are used as the switches; however, other transistors may also be

used. For a higher degree of accuracy, the circuit must also include additional parasitic

components, such as the on resistances of the transistors, the diode’s forward voltage drops

and so forth. For simplicity, the circuit shown in Figure 2.30 is considered and include only

the major components which play the most significant role. A switched reluctance machine’s

phase is denoted by M , which represents the machine’s phase inductance and back EMF (the

winding resistance and other parasitic resistances are lumped into R as shown Figure 2.30).
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Vbus

S1

S2

V

D2

D1

i

V = Phase voltage

Vbus = Bus voltage

R = Winding resistance

Sx = Transistors (x = 1,2)

Dx = Diodes (x = 1,2)

M = Machine phase
i = Phase current

M

Figure 2.30: Single phase of an asymmetric bridge converter

The control signals to an asymmetric bridge converter (for a single phase converter) are

the gate signals to the two transistor switches S1 and S2. Since there are two switches,
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there are four possible switching combinations for the converter. The first possible switching

combination occurs when both the transistors S1 and S2 are switched on. Under such

a switching combination, the converter is depicted by Figure 2.31. When S1 and S2 are

both switched on, the diodes do not conduct and the phase voltage (V ) of the machine is

expressed in accordance with Equation 2.5 as: Vbus− iR. During this switching combination,

the phase voltage is positive and the state is referred to as the on state. During this switching

combination, the phase current through the phase inductance (L) increases.

Red path = active current path

V = Vbus − iR

V = Phase voltage

Vbus = Bus voltage

R = Winding resistance

M = Machine phase
i = Phase current

Sx = Transistors (x = 1,2)

Dx = Diodes (x = 1,2)

R

Vbus

S1

S2

V M

D2

D1

i

Figure 2.31: Single phase of an asymmetric bridge converter in its on state, i.e., switches S1

and S2 are on and diodes D1 and D2 are off

The second possible switching combination occurs when both the transistors S1 and S2 are

switched off. Under such a switching combination, the converter is depicted by Figure 2.32.

When S1 and S2 are both switched off, the diodes begin to conduct and using Equation 2.5,

the phase voltage (V ) of the machine is expresses as: −Vbus − iR. During this switching

combination, the phase voltage is negative and the state is referred to as the off state. During

this switching combination, the phase current is likely to decrease (unless it is in a state of

zero or positive feedback).
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Figure 2.32: Single phase of an asymmetric bridge converter in its off state, i.e., switches S1

and S2 are off and diodes D1 and D2 are on

The last two switching combinations occur when either S1 is switched on and S2 is

switched off or when S1 is switched off and S2 is switched on (i.e., only one of the two

transistors are switched on at any instance). The two such switching combinations are

shown in Figure 2.33. When only one of the transistors is switched on, the phase current

freewheels through one of the diodes and flows through the transistor which is switched

on. Figure 2.33(a) shows a switching combination, where transistor S1 is switched off and

transistor S2 is switched on. For the phase current to complete its loop, diode D2 turns

on and begins to conduct (diode D1 does not conduct). Figure 2.33(b) shows a switching

combination, where transistor S1 is switched on and transistor S2 is switched off. For the

phase current to complete its loop, diode D1 turns on and begins to conduct (diode D2

does not conduct). During both these switching combinations, the phase voltage is zero and

ideally the phase current freewheels indefinitely until the switching combination is changed

(in reality, power is lost due to the parasitic resistive elements in the current path), this state

is referred to as the freewheeling state.
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Figure 2.33: Single phase of an asymmetric bridge converter in its freewheeling states, i.e.,
when (a) S2 and D2 are on and S1 and D1 are off and (b) S1 and D1 are on and S2 and D2

are off
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When the switching combination is changed from the on state to the off state (or vice

versa), the switching is known as hard switching. On the other hand when the switch

combination is changed from the on state to the freewheeling state, the switching is known

as soft switching.

In summary, based on the switching combination, three voltage levels are achieved, i.e.,

a positive voltage level, a zero voltage level, and a negative voltage level. Depending on

the maximum operating value of the phase current, the diodes and the transistors with the

correct current ratings must be selected. The switches can be easily selected for appropriate

current levels while the machine operates as a motor because throughout motoring, there

is complete control over the phase current (i.e., as the phase current approaches the rated

current of the switches, it can be decreased by turning off the phase). However, when

the machine operates as a generator, its phase current is not always controllable and can

reach undesirable levels when in positive feedback and cannot be decreased even after the

phase is switched off. To design for such unforeseeable circumstances, diodes with higher

current ratings are selected for the drive’s power converter, i.e., the drive power converter is

overdesigned. Therefore, the design constraints on the diodes during the generating mode

are significantly higher than during the motoring mode.

As stated earlier, the motoring tail current is an undesired phenomenon and produces

negative torque, a technique of reducing its effect is by using a higher demagnetization neg-

ative phase voltage compared to the magnetization positive phase voltage, thereby causing

the phase current to fall to zero quickly without its lingering tail. In this case, the asym-

metric bridge converter is modified in order to provide a positive phase voltage V1 during

the magnetization phase and a separate negative phase voltage V2 during the demagnetizing

phase, where V2 > V1. However, such a drive is accompanied with an overhead of generating

a separate voltage level as well (for instance, through a switching DC to DC converter). A

single phase of such a converter is shown in Figure 2.34.
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Figure 2.34: Single phase of an asymmetric bridge converter with dual voltage supplies
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CHAPTER 3

MODELING OF A SWITCHED RELUCTANCE MACHINE

This chapter presents mathematical models of a switched reluctance machine. First, prior

flux and inductance based modeling schemes which are widely accepted are analyzed and

their limitations are presented. Next, an approach to reconstruct the machine’s phase current

using numerical methods of integration is explored. Lastly, the proposed modeling scheme

with and without the phase resistance1 is derived and simulation results based on the model

are compared with experimental results.

While modeling complex systems, it is not always practical to include all the system

dynamics and characteristics into the model, doing so could take a large amount of com-

putation time and effort and not provide much useful information in return. As a result,

models are always accompanied with inaccuracies and limitations, and it is upto the designer

to create a model which strikes a balance between accuracy and mathematical simplicity. It

was best put by British mathematician George Box, who stated that “all models are wrong”

[101]; however, he did emphasize that some models are more useful than others.

Unlike simple plants and electrical networks, modeling of a switched reluctance machine

poses a few challenges. Due to its highly nonlinear magnetization curves and inter variable

dependencies, it is extremely tedious and impractical to apply Maxwell’s equations (among

others) to obtain the closed form expressions for its electrical and magnetic parameters, such

as phase inductance (L) and flux linkage (ψ). Instead, three dimensional models of the ma-

chine are created in finite element analysis (FEA) tools, which return large amounts of data

based on specific inputs, thereby encapsulating the machine’s dynamics and characteristics.

The FEA tool breaks up the machine into multiple small surfaces or a mesh (i.e., tessella-

tion) and applies the laws of electromagnetism at each surface. Running such a simulation

1Accepted for publication under the title: A Phase Current Peak Prediction Technique to Increase the
Output Power of Switched Reluctance Generators for Wind Turbines, in the: 2019 IEEE Energy Conversion
Congress and Exposition (ECCE), c© 2019 IEEE.
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may take several hours or even days depending on available computing resources, accuracy

of the constructed three dimensional model, accuracy of the data desired (i.e., the number

of small surfaces the machine is broken into), among others. Of course data can always be

recorded experimentally rather than from an FEA tool which utilizes the user constructed

three dimensional model of the machine. The modeling technique wherein the mathematical

model of a machine is constructed based on its measured dynamic response to given inputs

is called system identification [102, 103], and is the basis of modeling a switched reluctance

machine.

However, the entire dynamics of the machine are not modeled using a black box approach

but rather a grey box approach wherein one of the parameters is modeled based on the

obtained data (either from an FEA tool or experimentally gathered from the machine) and

the remaining parameters are constructed through the electrical and magnetic laws governing

them. Therefore, the modeling process typically involves assigning a curve fitting expression

(using regression techniques) to the obtained data. Usually, the parameters that are modeled

using the data are either the machine’s phase inductance (L) or flux linkage (ψ). Examples

of such modeling schemes are presented next.

3.1 Prior Modeling Schemes

Two of the most widely accepted modeling schemes for switched reluctance machines are

presented in this section. In this dissertation, they are referred to as the Flux based model-

ing scheme and the Inductance based modeling scheme. Both modeling schemes use system

identification followed by regression analysis to develop expressions for the magnetic param-

eters. While using system identification, two design flows can be followed, either the data is

obtained through FEA tools (based on the user constructed three dimensional model of the

machine) or the data is gathered experimentally from the machine itself. The two options

are depicted in Figure 3.1.
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Figure 3.1: Possible design flow while modeling an SRM

The first approach involves taking the measurements directly from the machine (i.e.,

experimentally gathered data); however, in the case of a switched reluctance machine such a

task is tedious and requires very precise measurements. Also, to acquire the entire data set,

a lot of readings must be taken in an iterative manner, i.e., measuring magnetic parameters

like phase inductance and flux linkage for various values of phase current at several rotor

positions. The model of the machine is then constructed using curve fitting expressions

through regression techniques. The design flow is prone to errors introduced by curve fitting

and is represented along path (a) in Figure 3.1.

The second approach involves creating the three dimensional model of the machine as

accurately as possible using computer aided design (CAD) tools. Next, the created three

dimensional model is then imported into an FEA tool and the model is subject to electro-

magnetic analysis. Finally, the model of the machine is then constructed using curve fitting

expressions through regression techniques. This design flow is represented along paths (b)

and (c) in Figure 3.1. Generally, as a rule of thumb, upto a 10% error is expected along path

(b) (depending on the accuracy of the three dimensional model). The error along path (c)

is introduced due to curve fitting and is equivalent to the error along path (a) of the first

design flow.
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3.1.1 The Flux Based Model

The first modeling scheme, i.e., the flux based model was initially presented in 1990 by D. A.

Torrey and J. H. Lang [104] and then revisited again in 1995 [11]. According to Figure 2.11,

the magnetization curves (i.e., the plot of flux linkage versus phase current) of the machine

exhibit nonlinearities due to saturation. The machine’s flux linkage (ψ) depends on two

variables, i.e., phase current (i) and rotor position (θ), as a result, it is more accurately

represented as ψ(θ, i). A suitable expression to fit the curves shown in Figure 2.11 has been

presented in [104], and the expression has the following exponential form:

ψ(θ, i) = a1(θ)(1− ea2(θ)i) + a3(θ)i (3.1)

The three magnetizing coefficients a1(θ), a2(θ), and a3(θ) of Equation 3.1 are all functions

of rotor position. Their correlation with the machine’s magnetization curve is shown in

Figure 3.2.

a1(θa)

ψ(θa, i)

Curvature of the curve

L(θa)

a3(θa)

i

ψsat

θa

is controlled by a2(θa)

L(θa) = Aligned position inductance

i = Phase current

ψ(θa, i) = Phase flux linkage at θa

ψsat = Saturated flux linkage

θa = Aligned position

am(θa) = Magnetizing coefficients
at θa (m = 1,2,3)

Figure 3.2: Magnetization curve and magnetizing coefficients at the aligned position [11]

The magnetization curve shown in Figure 3.2 is analyzed at two different values of phase

current, i.e., at lower values, where saturation does not occur, and at higher values, where
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saturation occurs. For the flux linkage function described by Equation 3.1 to fit the mag-

netization curve shown in Figure 3.2, the value of magnetizing coefficient a2(θ) is always

negative. To obtain the other magnetic parameter, i.e., phase inductance, the derivative of

flux linkage with respect to phase current is considered (using Equation 3.1), which repre-

sents the slope of the magnetization curves. The derivative of flux linkage with respect to

phase current represents the instantaneous phase inductance which is expressed as:

L(θ, i) =
dψ(θ, i)

di
= −a1(θ)a2(θ)ea2(θ)i + a3(θ) (3.2)

The expression for instantaneous phase inductance varies depending on the effect of satu-

ration. The expressions for instantaneous phase inductance at lower and higher values of

phase current are presented next.

Instantaneous Phase Inductance for Lower Values of Phase Current

While considering lower values of phase current (i.e., i → 0), where flux linkage does not

saturate, using Equation 3.2, the instantaneous phase inductance is expressed as:

lim
i→0

L(θ, i) = −a1(θ)a2(θ) + a3(θ) (3.3)

From Equation 3.3, it is inferred that at lower values of phase current, the instantaneous

phase inductance is completely independent of phase current. Intuitively, this holds true

because at lower values of phase current, the machine does not experience saturation and

the instantaneous phase inductance at a particular rotor position is constant. Therefore, in

the linear region (i.e., in the absence of saturation), the instantaneous phase inductance is

expressed as a function of only rotor position as follows:

L(θ) = −a1(θ)a2(θ) + a3(θ) (3.4)
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Instantaneous Phase Inductance for Higher Values of Phase Current

While considering higher values of phase current (i.e., i→∞), where flux linkage saturates,

using Equation 3.2, the instantaneous phase inductance is expressed as:

lim
i→∞

L(θ, i) = a3(θ) (3.5)

The result in Equation 3.5 is obtained because magnetizing coefficient a2(θ) is always neg-

ative, if the negative sign of a2(θ) is factored out, the first term on the right hand side of

Equation 3.2 becomes: a1(θ)|a2(θ)|e−|a2(θ)|i, which tends to zero as phase current tends to

infinity.

The magnetizing coefficients a1(θ), a2(θ), and a3(θ) are calculated based on the mag-

netization curve shown in Figure 3.2. The data for the magnetization curve can either be

obtained through an FEA simulation at a particular rotor position or it can be experimen-

tally gathered by locking the rotor at a particular position. Once the data is obtained, the

slope of the curve at lower values of phase current represents the unsaturated phase induc-

tance L(θ), while the slope of the curve at higher values of phase current represents the

saturated phase inductance and is equal to the magnetizing coefficient a3(θ). The magnetiz-

ing coefficient a1(θ) is calculated from the magnetization curve where the flux linkage begins

to saturate, i.e., ψsat, which is obtained by visually inspecting the magnetization curve. Us-

ing Equation 3.4 and substituting the expressions for the unsaturated phase inductance L(θ)

and magnetizing coefficients a1(θ) and a3(θ), the expression for magnetizing coefficient a2(θ)

is given as:

a2(θ) =
a3(θ)− L(θ)

a1(θ)
(3.6)

Now that the method to determine the magnetizing coefficients at a particular rotor position

is established, the data for the next rotor position is obtained and the magnetizing coefficients

for the new rotor position are calculated once again (since the magnetizing coefficients are
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a function of rotor position). The method is executed in an iterative manner until all

rotor positions are considered. Doing so, will result in multiple values of the magnetizing

coefficients (as shown in Figure 3.3), which can then be curve fit using regression analysis.

The authors in [104] suggest using a cosine Fourier series with an appropriate number of

Fourier terms to accurately capture the variation of the magnetizing coefficients with respect

to rotor position. The Fourier cosine series of the following type is suggested:

am(θ) =
∞∑
k=0

Amk cos(kNrθ) (3.7)

where, am represents the mth magnetizing coefficient (and m = 1, 2, 3), Amk represents the

kth Fourier coefficient of the mth magnetizing coefficient, Nr represents the number of rotor

poles of the machine (specifying the periodicity of the Fourier series), and θ represents the

rotor position. The units of the magnetizing coefficients are as follows: a1(θ) represents

the saturated flux value and therefore has a unit of Wb, a3(θ) represents the saturated

inductance and has a unit of H, lastly a2(θ) is obtained from Equation 3.6 and has a unit of

H Wb−1 or A−1.

ψ(θ, i)

i

θa = 0◦

θu =
(
π
Nr

)

a3(θa)

a3(θu)

a1(θa)

Decreasing values of a1(θ)

Decreasing values of a2(θ)

Increasing values of a3(θ)

θa = Aligned position

θu = Unaligned position

ψ(θ, i) = Phase flux linkage

θ = Rotor angular position

i = Phase current

Nr = Number of rotor poles

am(θx) = Magnetizing coefficients
(m = 1, 2, 3) and (x = a, u)

Figure 3.3: Magnetization curves of an SRM at various rotor positions

90



Flux Based Model Curve Fitting

This section presents the construction of the flux based model based on data gathered from

an FEA tool (ANSYS Maxwell [9]) for a switched reluctance machine, specifications of which

are listed in Table A.1 in Appendix A. From the multiple magnetization curves (for different

rotor positions) shown in Figure 3.3, the variation of magnetizing coefficients a1(θ), a2(θ), and

a3(θ) can be examined, as a result, their effect on Equation 3.1 can be better understood. As

the rotor rotates from its aligned position (θa) to its unaligned position (θu), the magnetizing

coefficient a1(θ) (representing ψsat) decreases, since the effect of saturation reduces closer to

the unaligned position. The magnetizing coefficient a2(θ), as stated earlier, is a negative

quantity, which also decreases in magnitude as the rotor rotates from its aligned position to

its unaligned position. The value of the magnetizing coefficient a2(θ) (in accordance with

Equation 3.1), defines the shape of the magnetization curve, especially the prominence of

the knee in the curve. The magnetizing coefficient a2(θ) is analogous to the time constant

τRC of an RC circuit and the effect it has on the charging voltage curve. Lastly, as the rotor

rotates from its aligned position to its unaligned position, magnetizing coefficient a3(θ),

which represents the slope of the magnetization curves at larger values of phase current,

increases. Again, this is because the effects of saturation reduce closer to the unaligned

position and the flux linkage between the rotor and stator poles is not restricted by the

machine’s geometry.

After organizing the data from the FEA tool, the next step involves the application of

regression techniques to obtain expressions for the magnetizing coefficients as functions of

rotor position. Figure 3.4 shows the variation of magnetizing coefficient a1(θ) with respect

to rotor position along with the curve fitted function for a1(θ). The curve fitted function is

obtained using MATLAB’s Curve Fitting Toolbox [105]. The function used to curve fit the

FEA data for magnetizing coefficient a1(θ) is not of the form represented by Equation 3.7,

but rather a higher accuracy expression with better root mean square error bounds. The
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function for a1(θ) shown in Figure 3.4 is a Fourier series containing both sine and cosine

terms, in which the first two harmonics are considered. The function contains a total of six

unknowns and is expressed as:

a1(θ) = f0 + f1 cos(kθ) + f2 sin(kθ) + f3 cos(2kθ) + f4 sin(2kθ) (3.8)

where, fx and k are the Fourier coefficients and x is a whole number ranging from: 0 ≤ x ≤ 4.

Figure 3.4: Variation of magnetizing coefficient a1(θ) with respect to rotor position

Similarly, Figure 3.5 shows the variation of magnetizing coefficient a2(θ) with respect

to rotor position along with the curve fitted function for a2(θ). The curve fitted function

is obtained using MATLAB’s Curve Fitting Toolbox [105]. Again, the function used to

curve fit the FEA data for magnetizing coefficient a2(θ) is not of the form represented by

Equation 3.7, but rather a higher accuracy expression with better root mean square error

bounds. The function for a2(θ) used in Figure 3.5 is a Gaussian function with 24 unknowns

and expressed as:

a2(θ) = g1e
−
(
θ−h1
i1

)2

+ · · ·+ g8e
−
(
θ−h8
i8

)2

(3.9)
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where, gx, hx, and ix are the Gaussian regression coefficients and x is a whole number ranging

from: 1 ≤ x ≤ 8.

Figure 3.5: Variation of magnetizing coefficient a2(θ) with respect to rotor position

Lastly, Figure 3.6 shows the variation of magnetizing coefficient a3(θ) with respect to

rotor position along with the curve fitted function for a3(θ). Once again, the function used

to curve fit the FEA data for magnetizing coefficient a3(θ) is not of the form represented by

Equation 3.7, but rather a higher accuracy expression with better root mean square error

bounds. The function for a3(θ) shown in Figure 3.6 is a Fourier series containing both sine

and cosine terms, in which the first eight harmonics are considered. The function contains

a total of 18 unknowns and is expressed as:

a3(θ) = p0 +
8∑

x=1

qx cos(xuθ) +
8∑

x=1

rx sin(xuθ) (3.10)

where, p0, qx, rx, and u are the Fourier coefficients and x is a whole number ranging from:

1 ≤ x ≤ 8. Functions with a high number of unknowns are assigned to the magnetizing coef-

ficients to minimize the error between the curve fit and original data. The flux based model

93



Figure 3.6: Variation of magnetizing coefficient a3(θ) with respect to rotor position

is eventually be compared to the proposed model presented in this dissertation. Therefore,

to cast away any doubts suggesting that the flux based model is compromised in any way, an

overdesigned flux based model is considered. Based on the data gathered from the FEA tool,

the behavior and variation of the magnetizing coefficients are consistent with the previous

analysis and the description shown in Figure 3.3.

The goal of the flux based model is to reproduce the magnetization curves of a switched

reluctance machine. The reconstructed magnetization curves of the switched reluctance ma-

chine considered (through the flux based model) are placed over the curves generated from

the FEA data and are presented in Figure 3.7. The magnetization curves shown in the

figure represent three different rotor positions, i.e., the aligned position, the midpoint posi-

tion between the aligned and unaligned positions, and lastly the unaligned position. From

Figure 3.7, it is observed that the chosen curve fit candidate represented by Equation 3.1

resembles the shape of the magnetization curves constructed using the FEA data; however,

there is a difference between the two sets of curves.
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Figure 3.7: Comparison of magnetization curves obtained from the flux based model and
the FEA data. The topmost curves are for the aligned position (θ = 0◦), the curves in the
middle are for the midpoint position between the aligned and unaligned positions (θ = 15◦),
and the bottommost curves are for the unaligned position (θ = 30◦)

The results presented in [11] and [104] show a very close match to the measured data;

however, when the same modeling technique is replicated with even higher accuracy functions

for the magnetizing coefficients, the results are not as close as the ones presented by the

authors. The reason for the difference can be explained by two factors. The first one being

the obvious one, a different switched reluctance machine is considered in this dissertation

compared to the one presented in [11] and [104]. The shape of the magnetization curves play

a very important role in calculating the magnetizing coefficients. The magnetization curves

belonging to the machine specified in Table A.1 in Appendix A are more nonlinear (this is

evident by inspecting the middle set of curves in Figure 3.7) compared to the ones belonging

to the machine considered in [11] and [104]. As a result, a certain degree of error is observed

in Figure 3.7. The second factor, which is not apparent at first, is the way the authors

originally suggested calculating the magnetizing coefficients. The magnetizing coefficient
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a2(θ) is what gives the magnetization curve its knee, i.e., the orange points in Figure 3.3.

However, the expression for magnetizing coefficient a2(θ) from Equation 3.6 is derived from

the previous equation, i.e., Equation 3.3, in which phase current tends to zero. As a result,

a2(θ) is unable to effectively capture the behavior of the magnetization curves for higher

values of phase current, where saturation becomes prominent. Equation 3.6 clearly indicates

that magnetizing coefficient a2(θ) is a function of the unsaturated phase inductance L(θ).

Because of the method used to calculate magnetizing coefficient a2(θ), a potential flaw in

the modeling design flow is uncovered.

Better results are obtained by calculating the magnetizing coefficients using a brute force

approach involving regression techniques made easily possible by the availability of significant

computing resources, especially the advanced toolboxes available in MATLAB [105] and are

shown in Figure 3.8. The candidate to model the machine’s flux linkage of course remains

the same, i.e., represented by Equation 3.1.
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Figure 3.8: Comparison of magnetization curves obtained from the modified flux based model
and the FEA data. The topmost curves are for the aligned position (θ = 0◦), the curves
in the middle are for the midpoint position between the aligned and unaligned positions
(θ = 15◦), and the bottommost curves are for the unaligned position (θ = 30◦)
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The coefficients of Equations 3.7, 3.8, 3.9, and 3.10 are listed in Appendix B, and using

their values, the magnetization curves for the flux based model shown in Figures 3.7 and 3.8

were created. This concludes the first modeling scheme, i.e., the flux based model. This

scheme is helpful in cultivating a deeper understanding of a switched reluctance machine’s

operation and its modeling approach. It also helps unearth the effects of mathematical

approximations in terms the system’s accuracy. The data extracted from the FEA tool

served as a sandbox wherein further simulations were performed.

So far, the flux based model has been presented, which uses a grey box approach to model

the machine’s flux linkage. With an expression for phase flux linkage, other parameters such

as the instantaneous phase inductance and torque can be obtained using the electrical,

magnetic and mechanical knowledge of the machine. For instance, the torque is obtained (in

accordance with Equations 2.27 and 2.33) by calculating the rate of change of the co-energy

with respect to rotor position using the following expression:

T =
∂

∂θ

∫
ψdi (3.11)

Many modeling schemes have taken a similar approach and modeled the machine’s non-

linear flux linkage using different candidates and regression techniques, resulting in different

expressions for flux linkage. Some modeling schemes use piece wise linear segments [106–108],

while others use piece wise nonlinear curves [109, 110] to model the machine’s flux linkage.

Another example models flux linkage using gage curves [111]. Neural networks [112] and

artificial intelligence [113] based techniques have also been presented to model the machine’s

nonlinear flux linkage. The next section discusses another possible modeling scheme, i.e.,

the inductance based model.

3.1.2 The Inductance Based Model

The second modeling scheme presented is the inductance based model, which was first pre-

sented in 1998 by Fahimi et al. [114]. This work modeled the nonlinearities in the inductance

97



profile of a switched reluctance machine. For the remainder of this dissertation, this work

will be referred to as the inductance based model. Since the inductance profile of a switched

reluctance machine is periodic in nature, it can be approximated using a Fourier series. A

function f(x) defined over the range: −p ≤ x ≤ p, belonging to the set of real numbers R, is

an even function if: f(−x) = f(x). Such functions can be represented by the cosine Fourier

series expressed as:

f(x) =
∞∑
n=0

fn cos

(
nπx

p

)
(3.12)

where, n is an integer and fn represents the Fourier coefficients which are evaluated using

the following expressions:

fn =



1

2p

∫ p

−p
f(x)dx ; n = 0

1

p

∫ p

−p
f(x) cos

(
nπx

p

)
dx ; n 6= 0

(3.13)

Due to the geometry of a switched reluctance machine, its phase inductance is an even

function, where its periodicity is defined by the rotation of the rotor as it rotates from its

unaligned position on one side to its aligned position and then to its other unaligned position

on the other side, as depicted by rotor pole R2 in Figure 2.3. Therefore, the range of the

function is defined from: [−π/Nr , +π/Nr]. Since the phase inductance satisfies the listed

requirements, better known as Dirichlet conditions, it is possible to use a Fourier cosine series

to represent it. Changing the notation of Equation 3.12 (i.e., using p = π/Nr), the following

Fourier series representation for the machine’s unsaturated phase inductance is obtained:

L(θ) =
∞∑
n=0

Ln cos (nNrθ) (3.14)

where, L(θ) represents unsaturated phase inductance and Ln represents its Fourier coeffi-

cients. However, because of saturation, phase inductance is not only a function of rotor
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position (θ), but also of phase current (i). As a result, the dependency of phase inductance

on phase current is introduced in the Fourier coefficients, making the coefficients functions of

phase current, i.e., Ln(i). Therefore, the updated expression for saturated phase inductance

is expressed as:

L(θ, i) =
∞∑
n=0

Ln(i) cos (nNrθ) (3.15)

For phase inductance to be represented perfectly by the Fourier cosine series, infinite terms

on the right hand side of Equation 3.15 must be considered; however, doing so is futile and

impractical. In [114], three Fourier terms are considered (i.e., the average value along with

the first two harmonics). Though the truncated series does introduce a certain amount of

error into the model, the expressions are more manageable to work with. Figure 3.9 shows

the effect of a truncated series while trying to replicate an ideal triangular phase inductance.
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Figure 3.9: Comparison of an ideal phase inductance and a truncated Fourier series. The
vertical axis represents a normalized value of phase inductance between 0 and 1. The machine
considered has six rotor poles, hence the unaligned positions occur at (±π/6)
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From Figure 3.9, it is observed that, while trying to replicate an ideal triangular phase

inductance (as depicted by Figure 2.4), a three term truncated Fourier cosine series seems to

be adequate without adding unnecessary mathematical overhead. Similarly, the expression

for phase inductance of the inductance based model is given as:

L(θ, i) = L0(i) + L1(i) cos(Nrθ) + L2(i) cos(2Nrθ) (3.16)

As stated earlier, due to saturation, the phase current and phase inductance share an in-

versely proportional relationship (as is evident from Figure 2.11). The interdependence

between the phase current and phase inductance is extremely prominent at the aligned po-

sition and becomes less significant as the rotor rotates towards the unaligned position. The

Fourier cosine series representing the phase inductance, accounts for its dependency on phase

current by means of its Fourier coefficients, i.e., Ln(i).

The Fourier coefficients L0(i), L1(i), and L2(i) are calculated based on three data points

sampled from the inductance profile of the machine. The three points are the aligned po-

sition (at which the inductance is represented by La(i)), an intermediate position between

the aligned position and unaligned positions, preferably the midpoint between the two (at

which the inductance is represented by Lm(i)), and lastly the unaligned position (at which

the inductance ought to be represented by Lu(i)). However, since the unaligned position

does not suffer from magnetic saturation, the phase inductance at the unaligned position is

independent of phase current and is represented by a constant inductance value instead, i.e.,

Lu. The three points considered are shown in Figure 3.10. The expression for the aligned

position phase inductance (La(i)) is obtained by substituting θ = 0 in Equation 3.16. Simi-

larly, the expressions for midpoint position phase inductance (Lm(i)) and unaligned position

phase inductance (Lu) are obtained by substituting values of θ = π/2Nr and θ = π/Nr in

Equation 3.16, respectively.
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θ = Rotor angular position
i = Phase current

L(θ, i) = Phase inductance

La(i) = Aligned position inductance

Lm(i) = Midpoint position inductance

Lu = Unaligned position inductance

Figure 3.10: Variation of the phase inductance with respect to rotor position at a particular
phase current value i

After substituting the values of rotor position (θ) for La(i), Lm(i), and Lu in Equa-

tion 3.16, the following expressions, forming a system of equations are obtained:

La(i) = L0(i) + L1(i) + L2(i) (3.17)

Lm(i) = L0(i)− L2(i) (3.18)

Lu = L0(i)− L1(i) + L2(i) (3.19)

Solving the above system of equations for the Fourier coefficients L0(i), L1(i), and L2(i),

results in the following expressions:

L0(i) =
1

2

[
1

2
(La(i) + Lu) + Lm(i)

]
(3.20)

L1(i) =
1

2
(La(i)− Lu) (3.21)

L2(i) =
1

2

[
1

2
(La(i) + Lu)− Lm(i)

]
(3.22)
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The next step involves defining the functions La(i) and Lm(i) in terms of phase current (i).

This is performed by collecting all the points corresponding to La(i) at different values of

phase current, i.e., the red points shown in Figure 3.11.Polynomial regression is applied to

fit all the collected red points, resulting in an expression for La(i) in terms of phase current

is obtained as:

La(i) =
k∑

n=0

ani
n (3.23)

where, an represents the polynomial regression coefficients of La(i).
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phase currents Nr = Number of rotor poles

θ = Rotor angular position
i = Phase current

L(θ, i) = Phase inductance

La(i) = Aligned position inductance

Lm(i) = Midpoint position inductance

Lu = Unaligned position inductance

Figure 3.11: Variation of phase inductance with respect to rotor position for different values
of phase current

Similarly, by collecting all the points corresponding to Lm(i) at different values of phase

current, i.e., the orange points shown in Figure 3.11 and applying polynomial regression to

fit the collected points, an expression for Lm(i) in terms of phase is obtained as:

Lm(i) =
k∑

n=0

bni
n (3.24)

where, bn represents the polynomial regression coefficients of Lm(i). Observing the collection

of points corresponding to the unaligned phase inductance Lu, i.e., the blue points shown in

Figure 3.11, it appears that all the points (for different values of phase currents) lie at the
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same location, which is indicative of the fact that, phase inductance is independent of phase

current at the unaligned position and is a constant. The idea remains consistent with earlier

analysis and results shown in Figure 2.11.

Figure 3.12 depicts the variation of phase inductance with respect to rotor position. The

figure is similar to Figure 3.11 except that, it is constructed using the actual data extracted

from the FEA tool based on the machine specifications listed in Table A in Appendix A.
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Figure 3.12: Variation of phase inductance with respect to rotor position for different values
of phase current. Obtained using ANSYS Maxwell [9]

The aligned position phase inductance (La(i)) is plotted with respect to phase current

and shown in Figure 3.13. A polynomial regression based curve described by Equation 3.23,

where k is set to five is also plotted in the figure. Similarly, the midpoint position phase

inductance (Lm(i)) is plotted with respect to phase current and shown in Figure 3.14. A

polynomial regression based curve described by Equation 3.24, where k is set to five is also

plotted in the figure. Lastly, the unaligned position phase inductance (Lu) is plotted with

respect to phase current and shown in Figure 3.15. Since the unaligned position phase

inductance variation is negligible, it is considered as a constant.
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Figure 3.13: Variation of aligned position phase inductance with respect to phase current,
i.e., La(i). The red curve shows a certain amount of ripple at high current values. k of
Equation 3.23 is set to 5
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Figure 3.14: Variation of midpoint position phase inductance with respect to phase current,
i.e., Lm(i). The red curve shows a certain amount of ripple at high current values. k of
Equation 3.24 is set to 5
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Figure 3.15: Variation of unaligned position phase inductance with respect to phase current.
The red curve represents a constant value, i.e., Lu = constant

The coefficients an and bn from Equations 3.23 and 3.24, respectively are listed in Ap-

pendix B, and using their values, the machine’s magnetization curves using the inductance

based model along with the magnetization curves obtained from the FEA tool are shown in

Figure 3.16. In Figure 3.16, there is a considerable amount of deviation between the curves

obtained from the inductance based model (depicted in red) and the curves obtained from

the FEA data (depicted in black). The ripple observed in the magnetization curves of the

inductance based model, at the aligned and midpoint rotor positions, is due to ripple in

functions La(i) and Lm(i) as shown in Figures 3.13 and 3.14, respectively. Just as La(i)

and Lm(i) exhibit ripple at high values of phase current, so do the magnetization curves, at

high values of phase current as well (since the error propagates throughout the model). The

ripple in the modeled magnetization curves can be overcome by considering a higher value of

k in Equations 3.23 and 3.24, using k = 10, the results are presented in Figures 3.17, 3.18,

and 3.19.
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Figure 3.16: Comparison of magnetization curves obtained from the inductance based model
(depicted in red) and the FEA data (depicted in black). The topmost curves are for the
aligned position (θ = 0◦), the curves in the middle are for the midpoint position between the
aligned and unaligned positions (θ = 15◦), and the bottommost curves are for the unaligned
position (θ = 30◦). k of Equations 3.23 and 3.24 is set to 5
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Figure 3.17: Variation of aligned position phase inductance with respect to phase current,
i.e., La(i). The red curve closely matches the FEA data. k of Equation 3.23 is set to 10
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Figure 3.18: Variation of midpoint position phase inductance with respect to phase current,
i.e., Lm(i). The red curve closely matches the FEA data. k of Equation 3.24 is set to 10
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Figure 3.19: Comparison of magnetization curves obtained from the inductance based model
(depicted in red) and the FEA data (depicted in black). The topmost curves are for the
aligned position (θ = 0◦), the curves in the middle are for the midpoint position between the
aligned and unaligned positions (θ = 15◦), and the bottommost curves are for the unaligned
position (θ = 30◦). k of Equations 3.23 and 3.24 is set to 10
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It is worth noting that the power rating of the machine designed in ANSYS Maxwell [9]

(specified in Table A.1 in Appendix A) is around 2.3 kW and its rated voltage is around

48 V, implying that the current rating is close to 50 A. However, the figures shown in this

section, model the machine for phase current values of upto 500 A. By doing so, most of the

modeling error (i.e., ripple) occurs at current values greater than 50 A. By adopting such an

approach, it is possible to push the modeling error way beyond the operating region of the

machine, thus maintaining an error free model at the lower phase current values, where the

machine is likely to operate. Based on the 50 A current rating, the inductance based model

shown in Figure 3.16 is acceptable as there is not much deviation between the modeled and

FEA curves upto 50 A.

Clearly, increasing the mathematical complexity results in better curve matching. How-

ever, it is upto the designer to tackle the problem from a practical engineering standpoint

rather than from a mathematical standpoint. There is more leeway when machine dynamics

and operating regions are introduced into the modeling and design process. The inductance

based model is accompanied by its own sets of limitations as it uses two approximations,

the first one being the use of a truncated Fourier cosine series to represent the machine’s

phase inductance and the second one being the use of polynomial regression to introduce

the phase current dependency in the Fourier coefficients (this is similar to a Taylor series

expansion of a function). Once again, when the grey box method of system identification is

complete and the model is constructed, other parameters such as torque can be calculated

in the same way as expressed in earlier sections. The torque of a machine is calculated using

co-energy relations, similar to the one described by Equation 3.11 or by using Equation 2.38.

Another example using the Fourier series approach to model phase inductance of a switched

reluctance machine is also presented in [115]. This concludes the analysis on the inductance

based modeling scheme. The results of both the flux and inductance based modeling schemes

[11, 104, 114] are fairly accurate, as seen in Figures 3.8 and 3.19, respectively and are well

recognized and widely used.
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3.2 Limitations of the Existing Modeling Schemes

The flux based model and the inductance based model provide a high level of insight into the

modeling process of a switched reluctance machine. Using either the flux linkage expression

from Equation 3.1 or the phase inductance expression from Equation 3.16, a designer is free

to proceed in computing other parameters of the machine. The goal of this dissertation is

to effectively obtain a method to reconstruct the phase current in the phase windings of the

machine. Finding a solution to the current differential equation of a switched reluctance

machine is a daunting task, the equation is highly nonlinear and there is a strong interde-

pendency between the instantaneous inductance and the instantaneous phase current. This

interdependency exists due to the effect of saturation of flux linkage in the machine. The

solution to the current differential equation can have various expressions depending on the

way the machine is modeled. An age old trade-off is once again encountered between the

accuracy of the modeling scheme and the mathematical complexities of the expressions used.

Since two modeling schemes with different flavors have been presented so far, it would only

be right to consider them as the starting point in reconstructing the phase current before

presenting the proposed scheme. The next section attempts to reconstruct the phase current

of a switched reluctance machine using the flux based model.

3.2.1 Limitation of the Flux Based Model

While considering the flux based model, the analysis begins with the expression for the

machine’s flux linkage, i.e., Equation 3.1, which is rewritten as:

ψ(θ, i) = a1(θ)(1− ea2(θ)i) + a3(θ)i (3.25)

where, the magnetizing coefficients are expressed by Equation 3.7 and are rewritten as:

am(θ) =
∞∑
k=0

Amk cos(kNrθ) (3.26)
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The authors of [104] suggest using nine Fourier coefficients (i.e., Am0 to Am8). However,

to exhibit the complexity of this approach, even considering just two Fourier terms (i.e.,

Am0 and Am1) is sufficient. The magnetizing coefficients a1(θ), a2(θ) and a3(θ) with two

unknowns are expressed as:

a1(θ) = A10 + A11 cos(Nrθ) (3.27)

a2(θ) = A20 + A21 cos(Nrθ) (3.28)

a3(θ) = A30 + A31 cos(Nrθ) (3.29)

Using the expressions for magnetizing coefficients a1(θ), a2(θ), and a3(θ) in Equation 3.25,

the machine’s flux linkage is expressed as:

ψ(θ, i) = [A10 + A11 cos(Nrθ)][1− e(A20+A21 cos(Nrθ))i] + [A30 + A31 cos(Nrθ)]i (3.30)

To obtain an expression for phase current, a solution to Equation 2.16 or Equation 2.17 must

be obtained. Since Equation 2.17 contains the derivative of phase inductance with respect

to rotor position, the first step involves computing the value of phase inductance (L(θ, i))

and its derivative with respect to rotor position dL(θ, i)/dθ. Using the expression from

Equation 3.30, the machine’s phase inductance is obtained though the nonlinear relationship

(i.e., including saturation) among flux linkage, phase current, and phase inductance, which

is expressed as:

L(θ, i) =
dψ

di

= −a1(θ)a2(θ)ea2(θ)i + a3(θ)

= −[A10 + A11 cos(Nrθ)][A20 + A21 cos(Nrθ)]e
[A20+A21 cos(Nrθ)]i + [A30 + A31 cos(Nrθ)]

(3.31)
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Substituting the expression for phase inductance from Equation 3.31 in Equation 2.17, the

current differential equation is expressed as:

di

dθ
=

V − ωi d
dθ

{
−[A10 + A11 cos(Nrθ)][A20 + A21 cos(Nrθ)]e

[A20+A21 cos(Nrθ)]i+
[A30 + A31 cos(Nrθ)]

}
−ω[A10 + A11 cos(Nrθ)][A20 + A21 cos(Nrθ)]e[A20+A21 cos(Nrθ)]i + [A30 + A31 cos(Nrθ)]

(3.32)

Based on Equation 3.32, it is extremely improbable that a closed form analytical expression

for the phase current exists, as that would require integrating Equation 3.32 with respect

to rotor position, which seems like an extremely daunting task. Unfortunately, the mathe-

matical complexity of Equation 3.32 does not allow for any further analysis in obtaining an

analytical closed form expression for the phase current using the flux based modeling scheme.

As a result, the research is focused in another direction. The next section discusses the in-

ductance based modeling scheme and its limitations in obtaining a closed form analytical

expression for phase current.

3.2.2 Limitation of the Inductance Based Model

Considering the inductance based model (i.e., using the expression for phase inductance

from Equation 3.16 in Equation 2.17), a switched reluctance machine’s current differential

equation is expressed as:

di

dθ
=
V − ωi d

dθ
[L0(i) + L1(i) cos(Nrθ) + L2(i) cos(2Nrθ)]

ω[L0(i) + L1(i) cos(Nrθ) + L2(i) cos(2Nrθ)]
(3.33)

Furthermore, considering the polynomial expressions of degree five, for La(i) and Lm(i) from

Equations 3.23 and 3.24, respectively, the following expressions are obtained:

La(i) =
5∑

n=0

ani
n = a0 + a1i+ a2i

2 + a3i
3 + a4i

4 + a5i
5 (3.34)

Lm(i) =
5∑

n=0

bni
n = b0 + b1i+ b2i

2 + b3i
3 + b4i

4 + b5i
5 (3.35)
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Substituting the values of La(i) and Lm(i), and using the constant value of Lu in Equa-

tion 3.33, yields an extremely unwieldy expression. The set of equations listed above are

an indication of the complexities that present themselves in the phase current differential

equation of a switched reluctance machine. Once again, based on complexities involved in

Equation 3.33, it is extremely improbable that a closed form analytical expression for the

phase current exists. The current differential equations described by Equations 3.32 and 3.33

are quite complex. At this stage, in nonlinear system analysis, the next step would be to

check the stability of the system and obtain some meaningful information. However, due to

the electrical and mechanical knowledge of the machine, this information is already known.

During the motoring mode of operation, the current can always be controlled (i.e., increased

or decreased) by applying a positive, zero or negative voltage across the terminals of the

phase windings. While in the generation mode of operation, under the condition when the

phase voltage is less than the established back emf, the machine’s phase current enters into

a state of positive feedback and it can no longer be controlled. Such a scenario would be

catastrophic from a nonlinear control point of view.

Since the analysis of the flux based and inductance based models do not lead to a closed

form analytical solution for the phase current, the available options are to either consider a

different modeling scheme for the machine or to make some meaningful compromises and ap-

proximations which yield a fruitful result. Before exploring either option, mathematics offers

a solution to tackle extremely complex differential equations through Numerical methods of

integration, which are presented next.

3.3 Numerical Methods of Integration

Nonlinear differential equations, such as Equations 3.32 and 3.33 do not necessarily have to

have solutions in the first place, even if they do, the probability of finding their solutions can

be close to zero. It was best put by Hungarian mathematician George Pólya, who stated
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that “In order to solve this differential equation you look at it until a solution occurs to you”

[116]. As a result, spending significant amounts of time and resources may not be the best

practice. As one begins to delve deeper into the world of nonlinear differential equations, just

finding out whether a solution exists is a challenge in itself. Once the existence of a solution

is known, actually finding the solution requires a lot more effort. Typically, a nonlinear

system is analyzed for stability and as long as the stability of the system is verified, i.e.,

once it is known that the system is free from positive feedback, there is no explicit need to

find the system’s solution (as an appropriate control scheme will be capable of regulating the

system). On the other hand, in systems containing positive feedback, the local stability is

analyzed, i.e., whether the system is stable in and around a certain operating point. In the

case of a switched reluctance generator, there are two scenarios in which the generator does

not exhibit positive feedback; however, there is one scenario in which the machine exhibit

positive feedback and also happens to provide the best returns.

Problems like analyzing nonlinear differential equations for stability, and also finding

their solution have existed for an extremely long time. A brief look into the history [117]

and evolution of differential equations provides a new found respect and appreciation towards

the techniques used to find their solutions. In 1666, a twenty four year old Isaac Newton,

after having pushed the bounds of calculus and discovering the laws of optics and universal

gravitation, decided to explain the planetary orbits. At the time, astronomer Johannes

Kepler had already improved the work of Nicolaus Copernicus and had observed the elliptical

orbits of the planets in the solar system. However, Newton explained the planetary orbits

using calculus, universal gravitation and his three laws of motion. He had, at that stage

solved the two body problem which dealt with a single planet traveling in its orbit due to the

gravitational pull of the sun (ignoring all other surrounding bodies present in the universe).

He then wanted to extend his theory to include another planetary body, giving rise to the

three body problem (Newton called it the problem of the moon) and scale the theory to
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accommodate more variables, i.e., the n body problem. However, the two body problem

left Newton perplexed and for hundreds of years, the problem remained unsolved. Till the

late 1800’s there was no update on the three body problem in spite of efforts from Swiss

mathematician Leonhard Euler and German mathematician Johann Carl Friedrich Gauss.

It was finally explained by French mathematician Jules Henri Poincarè that the three body

problem was in fact, unsolvable. Poincarè geometrically proved that it was not possible to

obtain a closed form analytical expression to the three body problem. Through his work,

where he used geometry and visualization techniques rather than mathematical equations,

Poincarè encountered what is presently referred to as chaos. Chaos is a phenomenon that

occurs in deterministic systems, i.e., systems that are governed by strict rules without any

stochastic phenomenon associated with them. Deterministic systems are systems, where the

present state determines the next state of the system; however, their behavior only seems

to be nonrepetitive and unpredictable, i.e., their behavior is hard to predict. Deterministic

systems also have a sensitive dependence on initial conditions, which means that small errors

get amplified extremely quickly, making long term predictions impossible, though short term

predictions are still possible as long as the errors are within reason. A lot of similarities can

be made to a switched reluctance machine as well. A switched reluctance machine is a

deterministic system in which the next state of the phase current depends on its present

state, as a result, predictions are hard to make. However, the close inter dependencies

between numerous variables, seemingly make the behavior of the machine appear chaotic.

When solutions to complex differential equations cannot be discovered, then one is forced

to adopt numerical methods of integration to predict the behavior of the differential equa-

tion’s solution. Numerous methods of numerical integration have been extensively presented

in the past, of which a few of them are listed below [118] and are briefly explained:
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• Euler’s method (or, the method of tangent lines)

• Taylor’s method

• The Runge-Kutta method

• Adams-Bashforth/Adams-Moulton method

3.3.1 Euler’s Method

The simplest technique to approximate the solution to a differential equation is by using

Euler’s method. The Euler method is briefly explained in this section. Consider the following

differential equation:

dy

dx
= y′ = f(x, y) (3.36)

with the following initial condition:

y(x0) = y0 (3.37)

Consider h to be a defined interval of x, as shown in Figure 3.20, such that (x1, y1) =

(x0+h, y1). If the first point on the actual solution is known, i.e., the initial condition (x0, y0),

then using the slope of the line tangent to the point (x0, y0), the behavior of the solution

y = f(x) can be predicted. The slope of the tangent is easily obtained by substituting the

values of x = x0 and y = y0 in Equation 3.36, resulting in the following expression:

dy

dx

∣∣∣∣
(x0,y0)

= y′0 = f(x0, y0) = slope (3.38)

Next, using the point slope form of the tangent, the value of y1 is computed as:

slope =
y1 − y0
x1 − x0

(3.39)
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Figure 3.20: Curve y = f(x) along with its approximated piece wise linear segments com-
puted using Euler’s method

Using the value of slope from Equation 3.38 in Equation 3.39, the following expression is

obtained:

y′0 =
y1 − y0

(x0 + h)− x0
(3.40)

Rearranging Equation 3.40, the following expression is obtained:

y1 = y0 + hy′0 (3.41)

Therefore, the coordinate y1 is known and is approximately equal to the value of the solution

curve at x1, i.e., y = f(x1) or y(x1). The approximation ∆y|x1 = [y(x1)− y1]→ 0 as h→ 0.

A reasonably small value of h will result in y1 ≈ y(x1). Using the information of (x1, y1), the

next approximate value, i.e., y2 is computed in a similar manner. The iterative process is

carried out till the desired value of xn is reached and its corresponding yn is computed. The

actual deviation between the solution y = f(x) and the approximated values could become

significant if h is too large. From Figure 3.20, it is clear that ∆y|x3 > ∆y|x2 > ∆y|x1 . In
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general, the expression for the next value of the function is defined as:

yn+1 = yn + hf(xn, yn)

= yn + hy′n (3.42)

where, yn+1 is the next value of the function definition and yn is the present value of the

function definition. Using the Euler method, reconstruction of a switched reluctance ma-

chine’s phase current is presented next. With the knowledge of the reconstructed phase

current ahead of time, predictive control over the machine can be applied. Using a varia-

tion of Equation 2.15, the current differential equation of a switched reluctance machine is

expressed as:

Vbus = iR + L
di

dt
+ ωi

dL

dθ
(3.43)

Rearranging Equation 3.43 and changing L to L(θ, i), the following expression is obtained:

di

dt
=

1

L(θ, i)

[
Vbus − iR− ωi

dL(θ, i)

dθ

]
(3.44)

Using i′n to represent the time derivative of the phase current at θ = θn and i = in, the

following expression is obtained:

i′n =
1

L(θn, in)

[
Vbus − inR− ωin

dL(θn, in)

dθ

]
(3.45)

By replacing y by i, and h by Ts in Equation 3.42, the following expression is obtained:

in+1 = in + Tsi
′
n (3.46)

Substituting the value of i′n from Equation 3.45 in Equation 3.46, results in the following

expression:

in+1 = in +
Ts

L(θn, in)

[
Vbus − inR− ωin

dL(θn, in)

dθ

]
(3.47)
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It is worth noting that the rotor position is changed from θ to θn, because rotor position

directly relates to time (t) through the relation for angular velocity, i.e., ω = dθ/dt, and time

is equivalent to x in the Euler method example. Replacing ω/dθ of Equation 3.47 by 1/dt,

the following expression is obtained:

in+1 = in +
Ts

L(θn, in)

[
Vbus − inR− in

dL(θn, in)

dt

]
(3.48)

The time derivative of phase inductance is also represented as:

dL(θn, in)

dt
=
L(θn, in)− L(θn−1, in−1)

Ts
(3.49)

Substituting the expression for the derivative of phase inductance from Equation 3.49 in

Equation 3.48, the following result is obtained:

in+1 = in +
Ts

L(θn, in)

{
Vbus − inR− in

[
L(θn, in)− L(θn−1, in−1)

Ts

]}
(3.50)

The value of phase inductance L(θ, i) in Equation 3.50 can be computed either using Equa-

tion 3.2 or Equation 3.16. Therefore, phase current can be predicted accurately enough,

provided the value of Ts is reasonably small.

Using the Euler method, the first thing that comes to mind is the intense computation

required to map the phase current trajectory when trying to determine its value a few time

steps into the future, i.e., at some instance kTs in the future. This is of significant importance,

especially during the generating mode of operation in positive feedback, during which the

magnitude of phase voltage (V ) is lesser than the magnitude of the established back EMF

(e) at the turn-off angle, due to which the phase current continues to increase after the phase

is switched off. Consider Figure 3.21, in which the phase current is plotted with respect to

time and assume that an observer observes its value at time instance nTs, at which the phase

current value corresponds to the value at point A. Also assume, it is desired to predict the

phase current value four time instances into the future at time instance (n + 4)Ts (i.e., a

general time instance in the future denoted as kTs).
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Figure 3.21: Predicting generating phase current of a switched reluctance machine

In an ideal world with infinite computing resources and no time delays, it can be assumed

that after using the Euler method with initial conditions corresponding to point A, the

predicted phase current four time instances in the future corresponding to the value at point

C (IC) is known at time instance nTs. Assume that IC is also the current limit of the system,

i.e., Ilimit.

However, in reality, such a computation takes a certain amount of time, i.e., a computa-

tional delay. Exaggerating the computational delay for the purpose of analysis, assume that

the computation of the Euler method completes only at time instance (n+ 1)Ts. Due to the

elapsed computational delay, the observer moves to time instance (n+ 1)Ts, still predicting

Ilimit as the phase current value four time instances in the future. However, there is a change

in the initial conditions to the Euler method, i.e., from the values corresponding to point

A to the values corresponding to point B. As a result, instead of predicting the value of

phase current corresponding to point C (Ilimit), its value needs to be updated to the value
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corresponding to point D (ID), as that is the value of phase current four time instances in

the future (from (n + 1)Ts). As a result, due to the computational delay, the actual value

of phase current (ID) can exceed the current limit of the system (Ilimit). Practically, due to

the computational delay, the Euler method is unable to account for the change in the initial

conditions, resulting in an underestimated value for the predicted phase current. The flaw

however, by no means, can be attributed towards the Euler method of numerical integration.

In order to minimize the error while predicting the value of phase current, it is imperative

to perform the calculations as quickly as possible, which can be achieved by selecting fewer

steps in the Euler method, i.e, by increasing the sampling time (Ts). However, by increasing

the sampling time, the error inherent to the Euler method increases. As a result, increasing

or decreasing the sampling time, both lead to an increase in the error while predicting the

phase current (i.e., reducing the sampling time increases the accuracy of the Euler method

but increases the computational delay and prediction error, on the other hand, increasing the

sampling time reduces the accuracy of the Euler method, thereby increasing the prediction

error).

The scenario presented using Figure 3.21, does not address whether or not the phase

current starts decreasing at time instance kTs when the phase is switched off at instance nTs,

as the predicted value reaches the threshold value Ilimit at time instance kTs. It just sheds

light on the effects of computational delays while using numerical methods of integration.

The explanation for other numerical methods of integration is similar to the Euler method

and does not lie within the scope of this dissertation. The idea behind all the methods

remains the same, i.e., to obtain the solution to a differential equation by iterative numerical

steps. The major concern in adopting such a scheme into real time control, lies in the

computational delay and its effects on the result (due to the change in the initial conditions).

Practically, the time steps should be reduced in order to speed up the calculations; however,

theoretically the time steps must be increased for better accuracy. They all suffer from the

same inherent issues, namely:
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• Iterative processes

• Trade-off between the number of steps (smaller h) and the accuracy (smaller ∆y)

• Requirement of high computing resources

• Time consuming

However, for the sake of completeness, the expressions for other numerical methods of inte-

gration are listed below.

3.3.2 Taylor’s method

yn+1 = yn + hy′n + y′′n
h2

2
(3.51)

where, y′′n is the second derivative of yn and is calculated by differentiating y′ = f(x, y).

3.3.3 The Runge-Kutta method

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.52)

where,

k1 = hf(xn, yn) (3.53)

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)
(3.54)

k3 = hf

(
xn +

1

2
h, yn +

1

2
k2

)
(3.55)

k4 = hf(xn + h, yn + k3) (3.56)

This method comes with a high degree of accuracy but suffers from significant computational

overhead as k2 depends on k1, k3 depends on k2 and k4 depends on k3, implying that the

calculations must all be made in a sequential manner rather than simultaneously, because

of which, the computational time of the model adds up.
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3.3.4 Adams-Bashforth/Adams-Moulton method

This method is a two step method in which, first the Adams-Bashforth formula is applied,

which is then followed by the Adams-Moulton formula. The Adams-Bashforth formula is

expressed as:

y∗n+1 = yn +
h

24
(55y′n − 59y′n−1 + 37y′n−2 − 9y′n−3) (3.57)

where,

y′n = f(xn, yn) (3.58)

y′n−1 = f(xn−1, yn−1) (3.59)

y′n−2 = f(xn−2, yn−2) (3.60)

y′n−3 = f(xn−3, yn−3) (3.61)

For values of n ≥ 3, the second formula is applied, i.e., the Adams-Moulton formula, which

is expressed as:

yn+1 = yn +
h

24
(9y′n+1 + 19y′n − 5y′n−1 + y′n−2) (3.62)

where,

y′n+1 = f(xn+1, y
∗
n+1) (3.63)

In summary, it is clear that the modeling schemes (either the flux based or inductance

based modeling) result in extremely complex nonlinear expressions. Directly working with

such expressions (i.e., Equation 3.32 and Equation 3.33) did not prove to be fruitful for the

purpose of reconstructing the phase current in a switched reluctance drive. Therefore, the

focus shifted towards numerical methods of integration [52, 53, 119]. However, while using
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the numerical methods of integration, computational delays factor in, and pose a significant

challenge. This challenge could be overcome by just waiting it out, as it is inevitable that

the control cards and digital signal processors will eventually become fast enough to be able

to handle the computations within a satisfactory amount of time. The theory developed and

presented so far is absolutely sound, but would benefit further if it were supported by an

elegant one step solution in determining the phase current value rather than an iterative one.

In a nutshell, the complexities of a switched reluctance machine are encapsulated by the three

dimensional plot shown in Figure 3.22, which represents the variation of phase inductance

with respect to rotor position and phase current. The individual curves representing the

Figure 3.22: Variation of phase inductance L(θ, i) with respect to rotor position θ and phase
current i
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variation of phase inductance with respect to phase current are projected onto the plane on

the left (curves shown in black). These curves are similar to the ones shown in Figures 3.13,

3.14, and 3.15. Similarly, the individual curves representing the variation of phase inductance

with respect to rotor position are projected onto the plane on the right (curves shown in

red). These curves are similar to the ones shown in Figure 3.12.

3.4 Proposed Modeling Scheme

Obtaining a closed form analytical solution for phase current, using the work presented in

[11, 104, 114] is near impossible. Using the next available option, i.e., numerical methods

of integration, obtaining the phase current trajectory is an iterative process and resource

intensive. However, with a few reasonable approximations and trade-offs, a closed form

analytical solution for phase current can be obtained. To do so, one of the parameters of a

switched reluctance machine must be modeled, after which other parameters can be derived

from the original one, i.e., using the grey box approach of system identification.

3.4.1 Premise for the Proposed Modeling Scheme

The work presented in this section models phase inductance in the absence of saturation using

a simpler describing expression. Even though the effects of saturation are not included,

a nonlinear function representing phase inductance is still considered, encapsulating the

essential dynamics and behavior of the machine. The reasons for excluding saturation in the

modeling of phase inductance are carefully analyzed and are three fold (especially while the

machine is operated in its generating mode, where positive feedback is prevalent):

• The operating region of the machine

• The effect of permeability

• Frequency scaling and phase shifting of the inductance profile
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Next, the three reasons for excluding saturation are presented, beginning with the operating

region of the machine.

The Operating Region of the Machine

This section presents the typical operating region of a switched reluctance machine. As

shown in Figure 3.23, a switched reluctance machine’s flux linkage experiences saturation

when its rotor is at the aligned position (θ = 0) and when phase current is high.

Linear Region

i

ψ(θ, i)

A

B

C

La

Saturated Region

(θ = 0) Nr = Number of rotor poles
La = Aligned position inductance

Lu = Unaligned position inductance

ψ(θ, i) = Phase flux linkage

i = Phase current
θ = Rotor angular position

Lu
(
θ = π

Nr

)π
Nr

Figure 3.23: Plot of phase flux linkage ψ(θ, i) with respect to phase current i of a typical
SRM. The machine operates along loop ACBA during generation and along loop ABCA
during high-speed motoring. The locus remains in the linear region

At the aligned position, saturation occurs because the reluctance of the flux path is

minimum, thereby, causing the flux lines to saturate through the rotor and stator poles.

However, as shown in Figure 3.24, the machine is not operated at high current levels at

the aligned position. During the motoring mode of operation, the phase current must be

reduced to zero at the aligned position or else the tailing phase current produces undesirable

negative torque. Similarly, during the generating mode of operation, the phase current is

made to increase (by applying a positive phase voltage) during the region where the slope of

phase inductance is negative. This implies that the phase current increases after the aligned
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Figure 3.24: Nature of the phase current during motoring and generating. The encircled
region shows low values of current. Adapted from [12], c© 2002 IEEE

position. During generation, techniques such as phase advancing [62] may also be employed,

wherein the phase current is allowed to reach a certain value at the aligned position (this is

achieved by applying a positive phase voltage during the region where the slope of the phase

inductance is positive). Phase advancing is achieved by switching on the machine’s phase

before the rotor pole aligns itself with the stator pole. By employing phase advancing, the

phase current is at a non-zero value at the aligned position, which gives rise to a different

set of initial conditions for the current trajectory. A non-zero value of phase current at the

aligned position is helpful during generation as it allows the phase current to reach a higher

value during the generating cycle, as a result, higher charge and output power is generated.

However, the value of phase current is still relatively small (i.e., within the linear region of

Figure 3.23) when compared to its maximum value during the generating cycle. Due to the
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zero or small values of phase current at the aligned position, a fair assumption is made to

exclude the effects of saturation in the proposed model.

Since the analysis of the machine is carried out from an engineering standpoint rather

than a from a mathematical standpoint (i.e., on the basis of the operating region of the

machine), the effects of saturation are intentionally excluded, thereby easing up the mathe-

matical complexities. Therefore, the phase inductance of a switched reluctance machine is

modeled using a Fourier cosine series which is not a function of phase current as discussed

in [114]. For the sake of simplicity, while deriving the analytical expression for phase current

using the expression of the modeled phase inductance, only one cosine term for the phase

inductance is considered and is shown in Figure 3.25. However, the analytical expression

using an entire Fourier cosine series is also provided.

θ

L(θ)

0

La

Lu

π
Nr

π
Nr

Nr = Number of rotor poles
La = Aligned position inductance
Lu = Unaligned position inductance

θ = Rotor angular position

L(θ) = Phase inductance

Figure 3.25: Phase inductance profile of an SRM using a single cosine term

Considering only one cosine term describing the phase inductance profile (as shown in

Figure 3.25), the equation for phase inductance is expressed as:

L(θ) =

(
La + Lu

2

)
+

(
La − Lu

2

)
cos(Nrθ) (3.64)

where, La represents the phase inductance value at the aligned position, Lu represents the

phase inductance value at the unaligned position, and Nr represents the number of rotor

poles. Intuitively, the term: (La + Lu)/2 of Equation 3.64 represents the vertical offset of
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the cosine function shown in Figure 3.25 and the term: (La − Lu)/2 represents the peak to

peak amplitude of the cosine function shown in Figure 3.25. Equation 3.64 represents the

average value plus the first cosine term (i.e., the first harmonic) of a Fourier cosine series.

The average value is represented by the expression:

L0 =
La + Lu

2
(3.65)

Similarly, the peak to peak amplitude of the phase inductance is represented as:

L1 =
La − Lu

2
(3.66)

The derivation details for coefficients L0 and L1 are provided in Appendix D. The phase

inductance in Equation 3.64 can also be expressed in its Fourier representation, as:

L(θ) = L0 + L1 cos(Nrθ) (3.67)

The phase inductance in Equation 3.67 may also include a frequency scaling and/or a phase

shift term as desired, to closely match the linear region phase inductance of a machine. The

exclusion of saturation in the modeled phase inductance is analyzed from the standpoint of

permeability and presented next.

The Effect of Permeability

This section presents the effect of permeability on the variation of phase inductance with

respect to phase current. Consider the BH curve for an arbitrary inductor shown in Fig-

ure 3.26, in which magnetic flux density B relates to magnetic field intensity H through the

following expression:

B = µH (3.68)

where, µ is the permeability of the material and represents the slope of the curve shown in

Figure 3.26. Three regions with different values of magnetic permeability are highlighted in
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Figure 3.26. As magnetic field intensity (H) increases, the material’s permeability begins

with a medium value µ1, then reaches its maximum value µ2, before finally reaching its

minimum value µ3.

B

Hµ1

µ3

µ2

µ3 < µ1 < µ2

µx = Permeability (x = 1, 2, 3)

B = Magnetic flux density
H = Magnetic field intensity

Figure 3.26: BH curve highlighting different values of material permeability

The reluctance < of an inductor is expressed as:

< =
l

µA
(3.69)

where, l represents the length of an inductor and A represents its cross sectional area. From

Equation 3.69, it is observed that the reluctance of an inductor is inversely proportional to

the permeability of the material. On the other hand, the inductance is inversely proportional

to the reluctance, as a result, the inductance is directly proportional to the permeability of

the material:

L ∝ µ (3.70)

Also, the magnetic field intensity (H) is directly proportional to current (i):

H ∝ i (3.71)
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Since L ∝ µ and H ∝ i, the plot for inductance versus current is generated, and using the

properties presented, the curve starts off at a medium value (corresponding to µ1), then

reach its maximum value (corresponding to µ2), before finally reaching its minimum value

(corresponding to µ3). The effect of this phenomenon using Equation 3.70 is shown in

Figure 3.27.

L

i

L1

L2

L3

Lx = Inductance (x = 1, 2, 3)
i = Current

Figure 3.27: Variation of inductance with current

The same phenomenon is applicable to a switched reluctance machine as well and also

explains the shape of the curves in Figures 3.17 and 3.18 (i.e., the initial bump in the curves).

In the case of a switched reluctance machine, as the rotor rotates from its aligned position

to its unaligned position, different phase inductance variations with the phase current are

observed (for example, Figure 3.17 depicts the phase inductance at the aligned position,

while Figure 3.18 depicts the phase inductance at the midpoint position). Stacking up a few

of the phase inductance curves for positions close to each other around the aligned position

are shown in Figure 3.28. As phase current increases and rotor position changes, the shape of

the inductance profile (described by the red points in the figure) begins to resemble a cosine

function (when the argument of the cosine function is close to zero). It is worth noting that
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the red points represent the variation of phase inductance with rotor position for increasing

values of phase current.

L(θ, i)

i

Increasing values of θ

L(θ, i) = Phase inductance
i = Phase Current

Resemblance to
a cosine function

Figure 3.28: Variation of phase inductance with increasing phase current for different values
of rotor position

Similarly, Figure 3.29 shows a few more of the phase inductance curves for rotor positions

closer to the unaligned position. During generation, when the phase is switched off and the

current begins to drop, the variation of phase inductance with rotor position is shown by

the blue dots in Figure 3.29. The phase inductance resembles a somewhat linear profile.

Collecting all the red and blue dots from Figures 3.28 and 3.29 and plotting them against

rotor position (rather than phase current) results in the plot shown in Figure 3.30, which

resembles a frequency scaled version of a cosine function.

As a result, the effect of permeability (i.e., the initial bump shown in Figure 3.27) rein-

forces the design choice of selecting Equation 3.67 with the inclusion of a frequency scaling

term as the inductance profile of a switched reluctance generator, especially because of its

resemblance to the cosine function when the argument of the cosine function is close to and

around zero.
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L(θ, i)

i

L(θ, i) = Phase inductance
i = Phase Current

Increasing values of θ

Figure 3.29: Variation of phase inductance with decreasing phase current for different values
of rotor position

L(θ, i)

θ

L(θ, i) = Phase inductance
θ = Rotor angular position

Figure 3.30: Variation of phase inductance with rotor position (exaggerated for effect)

Frequency Scaling and Phase Shifting of the Inductance Profile

This section introduces a frequency scaling term κ and a phase shift term φ, which when

included in the inductance profile described by Equation 3.67, provides an added option

of fine tuning the inductance profile to match the selected machine. One way to increase
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the resemblance between the modeled inductance profile and the actual machine data is by

increasing the number of Fourier terms; however, that comes at the expense of increased

mathematical complexity which is an undesirable side effect. On the other hand, fine tuning

the inductance profile using a frequency scaling term and a phase shift term is accompanied

with much less overhead. From Figure 3.30, it is clear that the initial portion of the curve

highlighted in red, resembles the initial portion of a cosine function cos(θ) (i.e., for values

of θ close to 0◦); however, the portion of the curve highlighted in blue falls rather slowly

compared to a cosine function shown in Figure 3.25. To better fit the curve described by

Equation 3.67 to the curve shown in Figure 3.30, a frequency scaling term controlling the

shape of the function can be introduced as desired.

This section provides a method of changing the shape of the inductance profile described

by Equation 3.67. Other methods to compute the frequency scaling and phase shift terms

can be tailor made to best suit the selected machine. The method provided in this section

does not make use of a phase shift term, it only introduces a frequency scaling term. The

method is best explained by considering different cases, based on which, the generalized

expressions is developed. The modified version of Equation 3.67 which includes a frequency

scaling term (κ) is expressed as:

L(θ) = L0 + L1 cos(κNrθ) (3.72)

Before proceeding further, it is worth mentioning the range of the frequency scaling term.

The minimum value of the frequency scaling term must be greater than 0, this is because if

its value were 0, then the phase inductance would be represented as a constant value defined

by: L0 + L1. On the other hand, the maximum value of the frequency scaling term cannot

exceed 1, this is because if it did, then the portion of the cosine function after its minima

would get included in the inductance profile (i.e., the portion of a cosine function cos(θ)

after θ = π), which would indicate that phase inductance begins to increase when the rotor
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is still heading towards the unaligned position, which is physically impractical. Therefore,

the range of the frequency scaling term (κ) is defined as: 0 < κ ≤ 1.

Consider a case wherein the frequency scaling term is equal to 1/Nr (assuming Nr ≥ 1).

Using Equation 3.72, the inductance profile can then be described as:

L(θ) = L0 + L1 cos(θ) (3.73)

The inductance profile described by Equation 3.73 is shown in Figure 3.31, which also shows

the range where the function ought to lie in, i.e., 0 ≤ θ ≤ (π/Nr).

θ

L(θ)

0

La

Lu

π

A

B

Nr

π

Nr = Number of rotor poles

La = Aligned position inductance

Lu = Unaligned position inductance

L(θ) = Phase inductance

θ = Rotor angular position

Figure 3.31: Inductance profile when κ = 1/Nr

To ensure that point A shown in the figure coincides with the unaligned inductance value

(Lu) at the unaligned position (π/Nr), a few changes need to be made to Equation 3.73.

To achieve the desired result, the Fourier coefficients of Equation 3.73 need to be adjusted.

From Equations 3.65 and 3.66, the Fourier coefficients are adjusted by changing either the

value of La or Lu. From Figure 3.31, it is clear that only point A needs to be shifted whereas

point B can remain as is, as a result, changing the value of Lu in Equations 3.65 and 3.66

will help achieve the desired result. Therefore, assume a new Lu value, i.e., L∗u for the
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purpose of modifying Equations 3.65 and 3.66, and eventually Equation 3.73. The scaled

value of the unaligned inductance (L∗u) has no physical bearing or intuitive correlation to

the machine, it is just used to modify the equation describing the inductance profile. The

graphical interpretation of L∗u is presented in Figure 3.32. From Figure 3.32, it is observed

that the inductance profile has the desired shape in the region defined by 0 ≤ θ ≤ π/Nr,

with the curve lining up with La at the aligned position (θ = 0) and with Lu at the unaligned

position (θ = π/Nr).

θ

L(θ)

La

Lu

B
Nr = Number of rotor poles

La = Aligned position inductance

Lu = Unaligned position inductance

L(θ) = Phase inductance

θ = Rotor angular position
L∗
u = Scaled unaligned incductance

π
Nr

π

A

L∗
u

0

Figure 3.32: The effect of the scaled unaligned inductance (L∗u)

The next step involves obtaining an expression for the scaled unaligned inductance (L∗u).

The expression is obtained by forcing the function described by Equation 3.73 to pass through

the point (π/Nr, Lu), as a result, the expression defined by Equation 3.73 becomes:

Lu = L0 + L1 cos

(
π

Nr

)
(3.74)
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Using the expressions for the Fourier coefficients (L0 and L1) from Equations 3.65 and 3.66,

after having replaced the unaligned inductance (Lu) with the scaled unaligned inductance

(L∗u) in Equation 3.74, the following expression is obtained:

Lu =

(
La + L∗u

2

)
+

(
La − L∗u

2

)
cos

(
π

Nr

)

=
La
2

[
1 + cos

(
π

Nr

)]
+
L∗u
2

[
1− cos

(
π

Nr

)]
(3.75)

After rearranging Equation 3.75 and making L∗u the subject of the formula, the following

expression (when κ = π/Nr) is obtained:

L∗u =

2Lu − La
[
1 + cos

(
π

Nr

)]
1− cos

(
π

Nr

) (3.76)

Similarly, consider a case wherein the frequency scaling term is equal to 2/Nr (assuming

Nr ≥ 2). Using Equation 3.72, the inductance profile is described as:

L(θ) = L0 + L1 cos(2θ) (3.77)

The inductance profile described by Equation 3.77 is shown in Figure 3.33, which also shows

the range where the function ought to lie in, i.e., 0 ≤ θ ≤ (π/Nr).

θ

L(θ)

0

La

Lu

A

B

Nr

π

Nr = Number of rotor poles

La = Aligned position inductance

Lu = Unaligned position inductance

L(θ) = Phase inductance
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Figure 3.33: Inductance profile when κ = 2/Nr
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Once again, to obtain the expression for the scaled unaligned inductance (L∗u), the func-

tion described by Equation 3.77 is forced to pass through the point (π/Nr, Lu), as a result,

the expression defined by Equation 3.77 becomes:

Lu = L0 + L1 cos

(
2π

Nr

)
(3.78)

Using the expressions for the Fourier coefficients (L0 and L1) from Equations 3.65 and 3.66,

after having replaced the unaligned inductance (Lu) with the scaled unaligned inductance

(L∗u) in Equation 3.78, the following expression is obtained:

Lu =

(
La + L∗u

2

)
+

(
La − L∗u

2

)
cos

(
2π

Nr

)

=
La
2

[
1 + cos

(
2π

Nr

)]
+
L∗u
2

[
1− cos

(
2π

Nr

)]
(3.79)

After rearranging Equation 3.79 and making L∗u the subject of the formula, the following

expression (when κ = 2π/Nr) is obtained:

L∗u =

2Lu − La
[
1 + cos

(
2π

Nr

)]
1− cos

(
2π

Nr

) (3.80)

Based on Equations 3.76 and 3.80, a generalized expression for the scaled unaligned

inductance is obtained and is expressed as:

L∗u =
2Lu − La [1 + cos(κπ)]

1− cos(κπ)
(3.81)

The frequency scaling technique presented in this section is only one of many possible

techniques to fine tune the inductance profile described by Equation 3.67. Based on the

geometry of the machine, the designer must develop a scaling technique suitable for their

selected machine. In general, also including a phase shift (φ) term in the inductance profile

(for the sake of completeness), a fine tuned version of Equation 3.67 is expressed as:

L(θ) = L0 + L1 cos[κNr(θ + φ)] (3.82)
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3.4.2 Theoretical Derivation of Phase Current

(Excluding Winding Resistance)

This section presents a technique to obtain an analytical closed form expression for phase

current of a switched reluctance machine, based on the expression for the inductance profile

presented in Section 3.4.1. The derivation to follow, starts with the basic equation of the

current differential equation, which is rewritten as:

di

dθ
=
V − ωidL(θ)

dθ
ωL(θ)

(3.83)

Since the derivation in this section does not include the winding and parasitic resistances (R),

the voltage (V ) refers to the machine’s phase voltage. Using Equation 3.82, the expression

for the derivative of phase inductance with respect to rotor position is expressed as:

dL(θ)

dθ
= −L1κNr sin(κNrθ + κNrφ) (3.84)

Substituting the expression for the slope of phase inductance from Equation 3.84 in Equa-

tion 3.83, the following expression is obtained:

di

dθ
=
V + ωiL1κNr sin(κNrθ + κNrφ)

ω[L0 + L1 cos(κNrθ + κNrφ)]
(3.85)

Equation 3.85 is then rewritten as:

di

dθ
+
−L1κNr sin(κNrθ + κNrφ)

L0 + L1 cos(κNrθ + κNrφ)
i− V

ω[L0 + L1 cos(κNrθ + κNrφ)]
= 0 (3.86)

To obtain an analytical expression for phase current, Equation 3.86 must be integrated with

respect to rotor position θ. Equation 3.86 is similar to the general equation which has the

integrating factor form [118] described by:

di

dθ
+ p(θ)i− f(θ) = 0 (3.87)
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where, p(θ) is defined by the following expression:

p(θ) =
−L1κNr sin(κNrθ + κNrφ)

L0 + L1 cos(κNrθ + κNrφ)
(3.88)

and, f(θ) is defined by the following expression:

f(θ) =
V

ω[L0 + L1 cos(κNrθ + κNrφ)]
(3.89)

The integrating factor µ(θ)2 is expressed in terms of p(θ) from Equation 3.88 and is expressed

by the following relation:

µ(θ) = exp

[∫
p(θ) dθ

]
(3.90)

Considering only the exponent of Equation 3.90, the following expression is obtained:∫
p(θ) dθ =

∫ −L1κNr sin(κNrθ + κNrφ)

L0 + L1 cos(κNrθ + κNrφ)
dθ (3.91)

To solve for p(θ), let:

L0 + L1 cos(κNrθ + κNrφ) = x (3.92)

Considering the derivative of Equation 3.92 with respect to θ, the following expression is

obtained:

−L1κNr sin(κNrθ + κNrφ) dθ = dx (3.93)

Using the expressions of Equations 3.92 and 3.93, the variable θ of Equation 3.91 is changed

to x, resulting in the following expression:∫
p(θ) dθ =

∫
1

x
dx

= ln(x) (3.94)

2Integrating factor µ(θ) not to be confused with permeability of a material µ presented in Section 3.4.1.
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Using the result from Equation 3.94 in Equation 3.90, the following expression for the inte-

grating factor is obtained:

µ(θ) = x (3.95)

The solution to Equation 3.87 has the following form [118]:

i =
1

µ(θ)

∫
µ(θ)f(θ) d(θ) +

C1

µ(θ)
(3.96)

where, C1 is an integration constant. Using the expression of the integrating factor form

Equation 3.95 in Equation 3.96, the following expression is obtained:

i =
1

x

∫
xf(θ) dθ +

C1

x
(3.97)

Substituting the values of f(θ) and x (from by Equations 3.89 and 3.92, respectively) in

Equation 3.97, the following expression is obtained:

i =
V θ

ω[L0 + L1 cos(κNrθ + κNrφ)]
+

C1

L0 + L1 cos(κNrθ + κNrφ)
(3.98)

Since angular velocity (ω) is a slow varying parameter, it is considered as a constant in a

commutation cycle, as a result, ωC1 is absorbed into another constant, i.e., C2, resulting in

a more compact equation, which has the following form:

i =
V θ + C2

ω[L0 + L1 cos(κNrθ + κNrφ)]
(3.99)

Equation 3.99 describes the phase current equation of a switched reluctance machine when

a single cosine term along with the average value and fine tuning coefficients κ and φ are

used. However, if instead of the fine tuning approach (i.e., the inductance profile defined by

Equation 3.82), the entire Fourier series is considered, the solution for the phase current can

be obtained using the following set of equations:

L(θ) =
∞∑
n=0

Ln · cos(nNrθ) (3.100)
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where, n represents the number of Fourier terms considered and Ln represents the nth Fourier

coefficient. The solution for the phase current is obtained by repeating the steps performed

earlier for Equation 3.99. Using, Equation 3.100, the derivative of phase inductance is:

dL(θ)

dθ
= −Nr

∞∑
n=1

n · Ln · sin(nNrθ) (3.101)

Performing similar steps as presented earlier, the expression for phase current results in:

i =
V θ

ω

[
∞∑
n=0

Ln · cos(nNrθ)

] +
C1[

∞∑
n=0

Ln · cos(nNrθ)

] (3.102)

Assuming that ωC1 gets absorbed into another constant, i.e., C2, a more compact equation

is obtained and has the following form:

i =
V θ + C2

ω

[
∞∑
n=0

Ln · cos(nNrθ)

] (3.103)

Figures 3.34 and 3.35 present the motoring simulation results of the flux based model, the

inductance based model, the proposed model, along with the FEA data. The figures show

simulation results for two different operating points of the machine, indicating that the phase

current trajectories remain close to each other for a wide range of operating points. The

machine model is based on the specifications listed in Appendix A, which suggest that the

rated current of the machine is close to 50 A, as a result, the simulations are pushed to that

limit. Similarly, Figures 3.36 and 3.37 present the generating simulation results. The current

trajectories for the flux and inductance based models are constructed using a numerical

method of integration (i.e., Euler method) with 1000 steps. The FEA data is plotted using

a look up table approach. On the other hand, the current trajectory for the proposed model

is computed in two steps (one for magnetization and one for demagnetization), making it

computationally efficient. The values of error indicated in the figures represent the maximum

instantaneous error between the model and the FEA data.
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Figure 3.34: Motoring simulation results with angular velocity: ω = 4, 800 rpm, phase
voltage: V = 20 V, and turn-off angle: θoff = −19◦. The error in the models: Flux based
model = 26%, Inductance base model = 27% and Proposed model = 23%
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Figure 3.35: Motoring simulation results with angular velocity: ω = 10, 000 rpm, phase
voltage: V = 40 V, and turn-off angle: θoff = −17◦ The error in the models: Flux based
model = 29%, Inductance base model = 29% and Proposed model = 32%
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Figure 3.36: Generating simulation results with angular velocity: ω = 5, 800 rpm, phase
voltage: V = 24 V, and turn-off angle: θoff = 12.5◦. The error in the models: Flux based
model = 42%, Inductance base model = 25% and Proposed model = 22%
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Figure 3.37: Generating simulation results with angular velocity: ω = 10, 000 rpm, phase
voltage: V = 40 V, and turn-off angle: θoff = 12.5◦. The error in the models: Flux based
model = 38%, Inductance base model = 25% and Proposed model = 22%
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3.4.3 Theoretical Derivation of Phase Current

(Including Winding Resistance)

This section presents an analytical expression for the phase current including winding resis-

tance and any other parasitic resistance, all captured by the term: R. The winding resistance

cannot just be factored into Equations 3.99 or 3.103 at the very end using the expression:

V = (Vbus − iR), from Equation 2.5. This is because (Vbus − iR) is not a constant, but in

fact a function of the phase current. The voltage drop across the winding resistance is due

to the phase current flowing through it, as a result, as phase current begins to increase, the

voltage drop also increases, and thus the term: (Vbus − iR), reduces (assuming that the bus

voltage Vbus is a constant). If the machine’s phase voltage V drops, the slope of the phase

current also drops. To accommodate the winding resistance, it must be included at the very

beginning of the derivation, i.e., in Equation 3.83, resulting in the following expression:

di

dθ
=

(Vbus − iR)− ωidL(θ)

dθ
ωL(θ)

(3.104)

Rewriting the above equation in the integrating factor form, the following expression is

obtained:

di

dθ
+

(
R

ω

1

L(θ)
+

1

L(θ)

dL(θ)

dθ

)
i− Vbus

ω

1

L(θ)
= 0 (3.105)

On comparing the above equation with the integrating factor form of Equation 3.87, the

following expressions for p(θ) and f(θ) are obtained:

p(θ) =
R

ω

1

L(θ)
+

1

L(θ)

dL(θ)

dθ
(3.106)

f(θ) =
Vbus
ω

1

L(θ)
(3.107)
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In Equation 3.106, let R/ω = τ . Since p(θ) contains two separate terms, it is rewritten as:

p(θ) = τp1(θ) + p2(θ), where the terms p1(θ) and p2(θ) are defined as:

p1(θ) =
1

L(θ)
(3.108)

p2(θ) =
1

L(θ)

dL(θ)

dθ
(3.109)

The solution to Equation 3.105 is given by the following expression:

i =
1

µ(θ)

∫
µ(θ)f(θ) dθ +

C3

µ(θ)
(3.110)

where, C3 is an integration constant and µ(θ)3 is the integrating factor, which is expressed

as:

µ(θ) = exp

[∫
p(θ) dθ

]

= exp

[∫
τp1(θ) dθ +

∫
p2(θ) dθ

]
(3.111)

In order to solve Equation 3.110, first the expression for the integrating factor expressed by

Equation 3.111 needs to be solved. Substituting the expressions for p1(θ) and p2(θ) from

Equations 3.108 and 3.109, respectively results in:

µ(θ) = exp

[
τ

∫
1

L(θ)
dθ +

∫
1

L(θ)
dL(θ)

]

= exp

τ
∫

1

L(θ)︸ ︷︷ ︸
p1(θ)

dθ + ln(L(θ))

 (3.112)

Considering only the integral of p1(θ) and using the expression for the inductance profile

from Equation 3.82, the following expressions is obtained:∫
p1(θ) dθ =

∫
1

L0 + L1 cos(κNrθ + κNrφ)
dθ (3.113)

3Integrating factor µ(θ) not to be confused with permeability of a material µ presented in Section 3.4.1.
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Replacing (κNrθ + κNrφ) with u and considering its derivative with respect to θ, results

in: κNrdθ = du. Using these substitutions in Equation 3.113, the following expression is

obtained:

∫
p1(θ) dθ =

1

κNr

∫
1

L0 + L1 cos(u)
du (3.114)

Next, using the trigonometric identity: cos(u) = [1 − tan2(u/2)]/[1 + tan2(u/2)], in Equa-

tion 3.114, the following expression is obtained:

∫
p1(θ) dθ =

1

κNr

∫
1 + tan2(u/2)

L0[1 + tan2(u/2)] + L1[1− tan2(u/2)]
du (3.115)

Using another trigonometric identity: sec2(u/2) = 1 + tan2(u/2), in Equation 3.115, along

with replacing tan(u/2) by v, where its derivative with respect to u is (1/2) sec2(u/2)du = dv,

the following expression is obtained:

∫
p1(θ) dθ =

1

κNr

∫
sec2(u/2)

L0[1 + tan2(u/2)] + L1[1− tan2(u/2)]
du

=
1

κNr

∫
2

L0(1 + v2) + L1(1− v2)
dv

=
2

κNr

∫
1

(L0 − L1)v2 + (L0 + L1)
dv (3.116)

Substituting the values of L0 and L1 from Equations 3.65 and 3.66, respectively in Equa-

tion 3.116 the following expression is obtained:

∫
p1(θ) dθ =

2

κNr

∫
1

[(La + Lu)/2− (La − Lu)/2]v2 + [(La + Lu)/2 + (La − Lu)/2]
dv

(3.117)
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Rearranging Equation 3.117 and solving the integral results in the following expression:∫
p1(θ) dθ =

2

κNr

∫
1

Luv2 + La
dv

=
2

κNrLu

∫
1

v2 + La/Lu
dv

=
2

κNrLu

∫
1

v2 + (
√
La/Lu)2

dv

=
2

κNrLu

tan−1(v/
√
La/Lu)√

La/Lu
+ C4

=
2

κNr

√
LaLu

tan−1

(
v√
La/Lu

)
+ C4 (3.118)

where, C4 is a constant of integration. Replacing the value of v by tan(u/2), the following

expression is obtained:∫
p1(θ) dθ =

2

κNr

√
LaLu

tan−1

(
tan(u/2)√
La/Lu

)
+ C4 (3.119)

Also, replacing u by (κNrθ + κNrφ), the following expression is obtained:∫
p1(θ) dθ =

2

κNr

√
LaLu

tan−1

{
tan[(κNrθ + κNrφ)/2]√

La/Lu

}
+ C4 (3.120)

To obtain an expression for the integrating factor (µ(θ)) from Equation 3.112, the expres-

sion for the integral of p1(θ) obtained in Equation 3.120 must be used. However, if that

substitution is made, it will result in an extremely complex equation, eventually making it

impossible to obtain the solution for phase current. Therefore, a curve fitting expression

for the integral of p1(θ) is used, in order to simplify the process of solving Equation 3.112.

After examining Equation 3.112, it is observed that if the integral of p1(θ) is replaced by

an expression that contains a natural logarithmic function, the solution would be easier to

compute (since the integral of p1(θ) is raised to the power of the exponent). The selection

of the exact candidate which can replace the integral of p1(θ) is presented next.
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The goal here is to replace the expression for the integral of p1(θ) with a logarithmic

curve fitting function; however, a single logarithmic function is unable to fit the integral

of p1(θ) over its entire range, which is defined by: −π/Nr ≤ θ ≤ +π/Nr. Therefore, to

overcome this obstacle, two logarithmic candidates are selected, one for the range defined

by: −π/Nr ≤ θ ≤ 0, and another for the range defined by: 0 ≤ θ ≤ +π/Nr. This implies

that essentially, one logarithmic candidate is used during the motoring operation and one is

used during the generating operation. After extensive tries, the following logarithmic based

candidates were used:

λm(θ) = αm

[
ln(βm + θ) + γm

]
(3.121)

λg(θ) = αg

[
ln

(
1

βg − θ

)
+ γg

]
(3.122)

where, λm(θ) represents the curve fitting expression for the integral of p1(θ) during the

motoring operation and αm, βm, and γm represent its constant coefficients. Similarly, λg(θ)

represents the curve fit expression for the integral of p1(θ) during the generating operation

and αg, βg, and γg represent its constant coefficients. The analysis has been split up for the

motoring and generating operations. The motoring phase current analytical expression is

presented next.

Phase Current Expression During Motoring

Equating the integral of p1(θ) to the curve fitting expression λm(θ), the following expression

(which is valid for −π/Nr ≤ θ ≤ 0) is obtained:∫
p1(θ) dθ = λm(θ) (3.123)

Substituting the value of λm(θ) from Equation 3.121 in Equation 3.112 and using the ex-

pression from Equation 3.123 for the integral of p1(θ), the following sets of equations are
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obtained:

µ(θ) = exp

[
τλm(θ) + ln(L(θ))

]

= exp

[
ταm ln(βm + θ) + ταmγm + ln(L(θ))

]

= exp

[
ln(βm + θ)ταm + ταmγm + ln(L(θ))

]

= (βm + θ)ταm · exp(ταmγm) · L(θ) (3.124)

In Equation 3.124, assigning exp(ταmγm) = ζm, the expression for the integrating factor (µ)

becomes:

µ(θ) = ζmL(θ)(βm + θ)ταm (3.125)

Substituting the value of µ(θ)) from Equation 3.125 and the value of f(θ) from Equation 3.107

in Equation 3.110, the following expression for the solution to the phase current is obtained:

i =
ζ−1m (βm + θ)−ταm

L(θ)

∫ [
ζmL(θ)(βm + θ)ταm · Vbus

ωL(θ)

]
dθ + C3

[
(βm + θ)−ταm

ζmL(θ)

]

=
Vbus(βm + θ)−ταm

ωL(θ)

∫
(βm + θ)ταm dθ + C3

[
(βm + θ)−ταm

ζmL(θ)

]

=
Vbus(βm + θ)−ταm

ωL(θ)

(βm + θ)(ταm+1)

(ταm + 1)
+ C3

[
(βm + θ)−ταm

ζmL(θ)

]

=
Vbus(βm + θ)

ωL(θ)(ταm + 1)
+ C3

[
(βm + θ)−ταm

ζmL(θ)

]
(3.126)

To calculate the value of C3, the initial conditions must be applied, i.e., i = iinitial at

θ = −π/Nr, at which position, the phase inductance value is defined by its unaligned value

Lu. Therefore, using the values of i = iinitial, θ = −π/Nr, and L(−π/Nr) = Lu, the following

expression for C3 is obtained:

C3 =

iinitial − Vbus
ωLu

(
βm − π

Nr

)
(ταm + 1)

(βm − π

Nr

)ταm
ζmLu (3.127)
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Replacing the value of the integration constant C3 in Equation 3.126, the following result

for the phase current during motoring is obtained:

i =
Vbus(βm + θ)

ωL(θ)(ταm + 1)
+

iinitial − Vbus
ωLu

(
βm − π

Nr

)
(ταm + 1)

 Lu
(
βm − π

Nr

)ταm
L(θ)(βm + θ)ταm

(3.128)

As a sanity check, on replacing R by 0, i.e., τ = 0 in Equation 3.128, the solution for phase

current becomes:

i =
Vbus(βm + θ)

ωL(θ)
+

[
iinitial −

Vbus
ωLu

(
βm −

π

Nr

)]
Lu
L(θ)

=
Vbus(βm + θ)

ωL(θ)
+
Luiinitial
L(θ)

− Vbus
ωL(θ)

(
βm −

π

Nr

)

=
Vbusβm
ωL(θ)

+
Vbusθ

ωL(θ)
+
Luiinitial
L(θ)

− Vbusβm
ωL(θ)

+
Vbusβm
ωL(θ)

(
π

Nr

)

=
Vbusθ

ωL(θ)
+
Luiinitialω

ωL(θ)
+
Vbusβm
ωL(θ)

(
π

Nr

)

=

Vbusθ +

(
ωLuiinitial + Vbusβm

π

Nr

)
ωL(θ)

(3.129)

In Equation 3.129, the term: ωLuiinitial + Vbusβm(π/Nr) is assigned as a constant, i.e., C5.

Also, substituting the value of phase inductance from Equation 3.82 and replacing the value

of bus voltage Vbus by phase voltage V (since the winding resistance is assumed to be zero)

in Equation 3.129, the following expression is obtained:

i =
V θ + C5

ω[L0 + L1 cos(κNrθ + κNrφ)]
(3.130)

On comparing the expressions for phase current from Equations 3.130 and 3.99, the expres-

sions are identical barring the notation of integration constants, i.e., C2 and C5.

The phase current expression represented by Equation 3.128 correctly accounts for the

winding resistance of the machine (along with any other parasitic resistances). On compar-

ing the phase current equation for the two cases, where the winding resistance is excluded
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and included, it is evident that higher accuracy is accompanied by mathematical overhead.

Figure 3.38 shows the closeness of the integral of p1(θ) with the logarithmic curve fit expres-

sion used while operating the machine as a motor. The expressions for the coefficients of

λm(θ), i.e., αm, βm, and γm are listed in Appendix E.
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Figure 3.38: Integral of p1(θ) and the logarithmic curve fit expression for motoring λm(θ)
versus rotor position (θ)

Phase Current Expression During Generation

This section presents an analytical expression for phase current during generation when the

winding resistance (along with any other parasitic resistance) is considered. The derivation

is similar to the one obtained during motoring and differs because of the use of a different

logarithmic curve fitting expression, i.e., λg(θ). Equating the integral of p1(θ) to the curve

fitting expression λg(θ), the following expression (which is valid for 0 ≤ θ ≤ +π/Nr) is

obtained: ∫
p1(θ) dθ = λg(θ) (3.131)

Substituting the value of λg(θ) from Equation 3.122 in Equation 3.112 and using the ex-

pression from Equation 3.131 for the integral of p1(θ), the following sets of equations are
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obtained:

µ(θ) = exp

[
τλg(θ) + ln(L(θ))

]

= exp

[
ταg ln

(
1

βg − θ

)
+ ταgγg + ln(L(θ))

]

= exp

[
ln (βg − θ)−ταg + ταgγg + ln(L(θ))

]

= (βg − θ)−ταg · exp(ταgγg) · L(θ) (3.132)

In Equation 3.132, assigning exp(ταgγg) = ζg, the expression for the integrating factor (µ(θ))

becomes:

µ(θ) = ζgL(θ) (βg − θ)−ταg (3.133)

Substituting the value of µ(θ) form Equation 3.133 and the value of f(θ) from Equation 3.107

in Equation 3.110, the following expression for the solution to the phase current is obtained

(integration constant C3 is changed to C6 to avoid any confusion):

i =
ζ−1g (βg − θ)ταg

L(θ)

∫ [
ζgL(θ) (βg − θ)−ταg ·

Vbus
ωL(θ)

]
dθ + C6

[
(βg − θ)ταg
ζgL(θ)

]

=
Vbus (βg − θ)ταg

ωL(θ)

∫
(βg − θ)−ταg dθ + C6

[
(βg − θ)ταg
ζgL(θ)

]

=
Vbus (βg − θ)ταg

ωL(θ)

(βg − θ)1−ταg
(ταg − 1)

+ C6

[
(βg − θ)ταg
ζgL(θ)

]

=
Vbus (βg − θ)

ωL(θ)(ταg − 1)
+ C6

[
(βg − θ)ταg
ζgL(θ)

]
(3.134)

To calculate the value of C6, the initial conditions must be applied, i.e., i = iinitial at θ = 0,

at which position, the phase inductance value is defined by its aligned value La. Therefore,

using the values of i = iinitial, θ = 0, and L(0) = La, the following eexpression for C6 is
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obtained:

C6 =

[
iinitial −

Vbusβg
ωLa(ταg − 1)

]
β−ταgg ζgLa (3.135)

Replacing the value of the integration constant C6 in Equation 3.134, the following result

for the phase current during generating is obtained:

i =
Vbus (βg − θ)

ωL(θ)(ταg − 1)
+

[
iinitial −

Vbusβg
ωLa(ταg − 1)

]
La (βg − θ)ταg
L(θ)βταmg

(3.136)

As a sanity check, on replacing R by 0, i.e., τ = 0 in Equation 3.136, the solution for phase

current becomes:

i = −Vbus (βg − θ)
ωL(θ)

+

[
iinitial +

Vbusβg
ωLa

]
La
L(θ)

= −Vbus (βg − θ)
ωL(θ)

+
Laiinitial
L(θ)

+
Vbusβg
ωL(θ)

= −Vbusβg
ωL(θ)

+
Vbusθ

ωL(θ)
+
Laiinitial
L(θ)

+
Vbusβg
ωL(θ)

=
Vbusθ

ωL(θ)
+
Laiinitialω

ωL(θ)

=
Vbusθ + ωLaiinitial

ωL(θ)
(3.137)

In Equation 3.137, the term ωLaiinitial is assigned as a constant, i.e., C7. Also, substituting

the value of phase inductance from Equation 3.82 and replacing the value of bus voltage Vbus

by phase voltage V (since the winding resistance is assumed to be zero) in Equation 3.137,

the following expression is obtained:

i =
V θ + C7

ω[L0 + L1 cos(κNrθ + κNrφ)]
(3.138)

On comparing the expressions for phase current from Equations 3.138 and 3.99, the expres-

sions are identical barring the notation of integration constants, i.e., C2 and C7.
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The phase current expression represented by Equation 3.136 correctly accounts for the

winding resistance of the machine (along with any other parasitic resistances). On compar-

ing the phase current equation for the two cases, where the winding resistance is excluded

and included, it is evident that higher accuracy is accompanied by mathematical overhead.

Figure 3.39 shows the closeness of the integral of p1(θ) with the logarithmic curve fit expres-

sion used while operating the machine as a generator. The expressions for the coefficients of

λg(θ), i.e., αg, βg, and γg are listed in Appendix F.
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Figure 3.39: Integral of p1(θ) and the logarithmic curve fit expression for generation λg(θ)
versus rotor position (θ)

3.5 Experimental Results

This section presents experimental results recorded from the setup shown in Appendix J using

the machine specified in Table A.2 in Appendix A, which is characterized in Appendix C.

The experimental results are recorded for both, motoring and generating modes of operation

and are compared with simulation results (based on the phase current equations including

winding resistance) to verify the validity and accuracy of the analytical expression for phase

current. In the generating mode, the machine is tested at its rated current value as it would,

during regular operation. The results for the motoring mode of operation are presented next.
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3.5.1 Motoring Results

Since the switched reluctance machine considered has six rotor poles, the unaligned position

occurs at −30◦ (i.e., position Z in Figure 2.4), while the aligned position occurs at 0◦ (i.e.,

position X in Figure 2.4). The first set of readings are recorded for turn-on and turn-off

angles of −30◦ and −20◦, respectively, followed by a second set with turn-on and turn-off

angles of −30◦ and −15◦, respectively, and finally a third set with turn-on and turn-off angles

of −30◦ and −10◦, respectively. Essentially, the turn-off angle is incremented by 5◦ for every

set of readings. The turn-off angle is not increased beyond −10◦, as that produces a current

tail which surpasses the aligned position at 0◦, producing negative torque.

The turn-on angle is not changed and is fixed at −30◦ because during motoring, since

the produced torque is directly proportional to phase current (based on Equation 2.38), it is

essential to make sure that the phase current reaches its rated value as early as possible. For

positions closer to the unaligned position (i.e., θ = −30◦), the phase inductance is low, as a

result, from Equation 2.2, the phase current can reach its rated value sooner when compared

to a later position at which the phase inductance is higher (i.e., a position closer to the aligned

position). Delaying the turn-on angle also reduces the window in which positive torque is

produced as the turn-off angle cannot be too close to the aligned position (in high-speed

single pulse motoring) to avoid the current tail and consequently, negative torque.

Each combination of turn-on and turn-off angles has three readings within it, where the

angular velocity of the machine is varied. The increase in the angular velocity results in

an increase in back EMF, which opposes the effect of the applied voltage, thereby reducing

the peak of the phase current. The experimental iexp and simulated isim motoring phase

currents are presented in Figures 3.40, 3.41, and 3.42. All the motoring results presented

in this section show a very close match between the experimentally captured phase current

and the simulated phase current.
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Motoring: Turn-on Angle: −30◦, Turn-off Angle: −20◦

(a) (b) (c)

Figure 3.40: Motoring experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −30◦ and θoff = −20◦ for (a) ω = 160 rpm, (b) ω = 281
rpm, and (c) ω = 373 rpm

Motoring: Turn-on Angle: −30◦, Turn-off Angle: −15◦

(a) (b) (c)

Figure 3.41: Motoring experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −30◦ and θoff = −15◦ for (a) ω = 180 rpm, (b) ω = 271
rpm, and (c) ω = 370 rpm
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Motoring: Turn-on Angle: −30◦, Turn-off Angle: −10◦

(a) (b) (c)

Figure 3.42: Motoring experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −30◦ and θoff = −10◦ for (a) ω = 140 rpm, (b) ω = 260
rpm, and (c) ω = 373 rpm

3.5.2 Generating Results

Since the switched reluctance machine considered has six rotor poles, the unaligned position

occurs at +30◦ (i.e., position Z in Figure 2.4), while the aligned position occurs at 0◦ (i.e.,

position X in Figure 2.4). The first set of readings are recorded for turn-on and turn-off

angles of −15◦ and +15◦, respectively, followed by a second set with turn-on and turn-off

angles of −15◦ and +20◦, respectively, and finally a third set with turn-on and turn-off angles

of −15◦ and +25◦, respectively. Essentially, the turn-off angle is incremented by 5◦ for every

set of readings.

Each combination of turn-on and turn-off angles has three readings within it, where the

angular velocity of the machine is varied and the switched reluctance generator is operated

in negative feedback, zero feedback, and positive feedback single pulse mode (unless specified

otherwise).
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Similarly three more sets of readings are recorded with a turn-on angle of −10◦ and the

turn-off angle is incremented from +15◦ to +20◦ to +25◦). Similar sets of three readings are

repeated by incrementing the turn-on angle by 5◦, upto the point where the turn-on angle

reaches 0◦ (i.e., no phase advancing is employed) beyond which the net charge and output

power is poor.

At lower angular velocities, the back EMF is not as high and does not oppose the applied

voltage as much, as a result, the phase current has a steep initial slope reaching a high

peak value compared to the other scenarios. The experimental iexp and simulated isim phase

currents are presented beginning at Figure 3.43 and ending at Figure 3.54. The phase current

of the machine is pushed to its rated value to examine the model’s integrity under regular

operation. The difference between the simulated and the experimental phase currents remain

within a 10% error bound and closely match each other.

Generating: Turn-on Angle: −15◦, Turn-off Angle: 15◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.43: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −15◦ and θoff = 15◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback
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Generating: Turn-on Angle: −15◦, Turn-off Angle: 20◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.44: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −15◦ and θoff = 20◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback

Generating: Turn-on Angle: −15◦, Turn-off Angle: 25◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.45: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −15◦ and θoff = 25◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback
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Generating: Turn-on Angle: −10◦, Turn-off Angle: 15◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.46: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −10◦ and θoff = 15◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback

Generating: Turn-on Angle: −10◦, Turn-off Angle: 20◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.47: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −10◦ and θoff = 20◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback
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Generating: Turn-on Angle: −10◦, Turn-off Angle: 25◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.48: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −10◦ and θoff = 25◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback

Generating: Turn-on Angle: −5◦, Turn-off Angle: 15◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.49: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −5◦ and θoff = 15◦ for (a) ω = 209 rpm, (b) ω = 275 rpm,
and (c) ω = 372 rpm
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Generating: Turn-on Angle: −5◦, Turn-off Angle: 20◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.50: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −5◦ and θoff = 20◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback

Generating: Turn-on Angle: −5◦, Turn-off Angle: 25◦ (With Phase Advancing)

(a) (b) (c)

Figure 3.51: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = −5◦ and θoff = 25◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback
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Generating: Turn-on Angle: 0◦, Turn-off Angle: 15◦ (Without Phase Advancing)

(a) (b) (c)

Figure 3.52: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = 0◦ and θoff = 15◦ for (a) ω = 187 rpm, (b) ω = 305 rpm,
and (c) ω = 371 rpm

Generating: Turn-on Angle: 0◦, Turn-off Angle: 20◦ (Without Phase Advancing)

(a) (b) (c)

Figure 3.53: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = 0◦ and θoff = 20◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback
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Generating: Turn-on Angle: 0◦, Turn-off Angle: 25◦ (Without Phase Advancing)

(a) (b) (c)

Figure 3.54: Generating experimental (iexp) and simulated (isim) phase currents versus rotor
angular position (θ) with θon = 0◦ and θoff = 25◦ during (a) Negative feedback, (b) Zero
feedback, and (c) Positive feedback
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CHAPTER 4

PHASE CURRENT PEAK PREDICTION FOR

SWITCHED RELUCTANCE GENERATORS

This chapter presents a technique to predict the peak value of a switched reluctance gener-

ator’s phase current, while operating in positive feedback single pulse mode,1 using which

the machine is safely operated, resulting in a larger amount of harvested charge and higher

output power. Safe operation of the machine ensures that the phase current’s peak value

does not exceed the specified rated current, thereby preserving the integrity and function-

ality of the drive’s power converter. The prediction technique builds on the phase current

expression presented in Chpater 3, specifically Equation 3.134. Two techniques to obtain

the turn-off angle to predict the peak value of the phase current are presented. The first

technique involves a comparative approach involving real time calculations to estimate the

correct turn-off angle, while the second technique involves obtaining the correct value of the

turn-off angle beforehand. The first step in estimating the correct turn-off angle involves

the computation of the rotor angular position, where the phase current peak exists, which

is presented next.

4.1 Estimating the Rotor Position at the Phase Current Peak

Figure 4.1 shows the phase current of a switched reluctance generator during positive feed-

back single pulse mode of operation, where the peak or maximum value of the phase current

imax occurs at θmax. The goal is to have prior knowledge of imax and θmax in order to control

the machine effectively. The value of imax is obtained from the machine’s datasheet and

the drive power converter’s peak current rating (specifically, the peak current rating of the

1Accepted for publication under the title: A Phase Current Peak Prediction Technique to Increase the
Output Power of Switched Reluctance Generators for Wind Turbines, in the: 2019 IEEE Energy Conversion
Congress and Exposition (ECCE), c© 2019 IEEE.
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i

θ0 θoff

iinitial

imax

ioff

θmax

B

C

A(θ, i)

i = Phase current

θ = Rotor angular position

θoff = Turn-off angle

iinitial = Phase current at θ = 0

imax = Phase current at θ = θmax

ioff = Phase current at θ = θoff

θmax = Rotor angular position
where phase current peaks

Figure 4.1: Phase current of a switched reluctance generator during positive feedback single
pulse mode of operation

diodes of the asymmetric bridge converter). Since the peak value of phase current (imax) is

known based on the hardware used, it is used to compute the value of θmax, after which the

turn-off angle (θoff ) is calculated. Once the value of the turn-off angle is obtained, using it

in the control algorithm ensures that the phase current peaks at the desired level (imax), i.e.,

the control algorithm is capable of predicting the peak value of the phase current based on

the turn-off angle. The first step in the estimation of the turn-off angle includes computing

the expression for θmax. The value of θmax is obtained using the properties of a local maxima

(i.e., at θmax, the slope of phase current with respect to rotor position is zero). The phase

current during generation is expressed by Equation 3.134 and is rewritten as:

i =
Vbus(βg − θ)

ωL(θ)(ταg − 1)
+ C6

[
(βg − θ)ταg
ζgL(θ)

]
(4.1)

Therefore, equating the derivative of phase current (using Equation 4.1) with respect to the

rotor position to zero at θ = θmax, the following expression is obtained:

0 =
ωL(θmax)(ταg − 1)(−Vbus)− Vbus(βg − θmax)ωL′(θmax)(ταg − 1)

[ωL(θmax)(ταg − 1)]2
+

C6

{
ζgL(θmax)ταg(βg − θmax)(ταg−1)(−1)− (βg − θmax)ταgζgL′(θmax)

[ζgL(θmax)]2

}
(4.2)
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where, L′(θ) is the derivative of the inductance profile with respect to rotor position. Ob-

taining the expression for θmax from Equation 4.2 is not possible as the equation contains

an unknown integration constant C6, even if it were possible, due to its sheer size and com-

plexity, it would not be very useful. As a result, another alternative ought to be explored in

order to obtain the expression for θmax. Consider the current differential equation given by

Equation 3.104, which is rewritten as:

di

dθ
=

(Vbus − iR)− ωidL(θ)

dθ
ωL(θ)

(4.3)

As stated earlier, during the demagnetization phase, the machine’s phase voltage is negative.

Thus, factoring out the negative sign from Vbus, the following expression is obtained:

di

dθ
=
−|Vbus| − iR− ωi

dL(θ)

dθ
ωL(θ)

(4.4)

Again, in order to obtain an expression for θmax, the properties of a local maxima are applied

to Equation 4.4, i.e., the derivative of phase current with respect to rotor position is equated

to zero at θ = θmax, where i = imax, resulting in the following expression:

0 = −|Vbus| − imaxR− ωimax
dL(θ)

dθ

∣∣∣∣
θ=θmax

(4.5)

From Equation 3.82, the derivative of phase inductance with respect to rotor position eval-

uated at θ = θmax is expressed as:

dL(θ)

dθ

∣∣∣∣
θ=θmax

= −κNrL1 sin(κNrθmax + κNrφ) (4.6)

Substituting the expression from Equation 4.6 in Equation 4.5, the following expression is

obtained:

sin(κNrθmax + κNrφ) =
|Vbus|+ imaxR

ωimaxκNrL1

(4.7)
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Rearranging Equation 4.7, the expression for θmax is obtained as:

θmax =
1

κNr

sin−1
( |Vbus|+ imaxR

ωimaxκNrL1

)
− φ (4.8)

Now that the values of imax and θmax are known, they are used as initial conditions to

solve for the integration constant C6 of Equation 4.1. Since the calculations relate to the

demagnetization phase, the machine’s phase voltage is negative. Factoring out the negative

sign from Vbus of Equation 4.1, the integration constant C6−max is expressed as:

C6−max =

[
imax +

|Vbus|(βg − θmax)
ωL(θmax)(ταg − 1)

] [
ζgL(θmax)

(βg − θmax)ταg
]

(4.9)

where, C6−max is the demagnetizing integration constant calculated based on θmax and imax

and represents the integration constant C6 for the demagnetization phase current trajectory.

The next step involves the calculation of the turn-off angle, which is presented using two

techniques, the first of which uses a comparative approach and is presented next.

4.2 Estimation of the Turn-off Angle Based on a Comparative Approach

This section presents a technique of estimating the turn-off angle in real time using a com-

parative approach. Referring to Figure 4.1 and Equation 4.9, the demagnetizing integration

constant is computed using the coordinates of point C (i.e., θmax and imax); however, the

same value for the demagnetizing integration constant is obtained when the coordinates of

point B are used instead (as the phase current trajectory during the demagnetization phase

passes through both the points, i.e., point B and point C). Making use of this property,

the control algorithm can determine the turn-off angle by performing real time comparisons

during the magnetization phase.

Consider the portion of Figure 4.1, where the phase is magnetized, i.e., for values of rotor

positions ranging from: 0 ≤ θ ≤ θoff . During this portion, i.e., point A in Figure 4.1, the

controller senses the phase current’s value along with the rotor position (using a position
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sensor) and proceeds to compute the demagnetizing integration constant (C6) using the

following expression:

C6 =

[
i+

|Vbus|(βg − θ)
ωL(θ)(ταg − 1)

] [
ζgL(θ)

(βg − θ)ταg
]

(4.10)

The expression for demagnetizing integration constant C6 of Equation 4.10 is obtained using

Equation 4.1 for the demagnetization phase, where the machine’s phase voltage across is

negative, as a result, the negative sign from Vbus is factored out. The value of C6 from

Equation 4.10 represents the expression for the demagnetizing integration constant for rotor

position θ and phase current i (i.e., coordinates of point A). The value of C6 is computed

for all rotor positions (in real time, as the rotor changes its position from 0 to θoff ) ranging

from: 0 ≤ θ ≤ θoff . When point A finally becomes point B, the C6 value computed using

Equation 4.10 matches the earlier computed value of the demagnetizing integration constant

C6−max. The rotor position at which the comparison between C6 and C6−max results in a

match is the turn-off angle in order for the phase current to peak at desired its level, i.e.,

imax.

This technique of computing the turn-off angle is based on a continuous comparative ap-

proach, where the controller computes the demagnetizing integration constant using Equa-

tion 4.10 at every sampled rotor position ranging from: 0 ≤ θ ≤ θoff , and compares it

with the demagnetizing integration constant C6−max precalculated using Equation 4.9. Since

the demagnetizing integration constant C6 is computed continuously at every sampled rotor

positions, this technique is computationally demanding, which led to the development of

a technique of estimating the turn-off angle beforehand rather than using a compute and

compare approach.

4.3 Estimation of the Turn-off Angle Based on a One Step Approach

This section presents a technique of estimating the turn-off angle using a one step approach,

wherein its value is precalculated beforehand. From Figure 4.2, the magnetization phase
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current trajectory (represented by i1) and the demagnetizing phase current trajectory (rep-

resented by i2) intersect at point B, where i1 = i2.

i

θ0 θoff

iinitial

imax

ioff

θmax

i = Phase current

θ = Rotor angular position

θoff = Turn-off angle

iinitial = Phase current at θ = 0

imax = Phase current at θ = θmax

ioff = Phase current at θ = θoffB

C

i2

i1

θmax = Rotor angular position
where phase current peaks

i1 = Phase current trajectory during
the magnetization phase

i2 = Phase current trajectory during
the demagnetization phase

Figure 4.2: Phase current of a switched reluctance generator during positive feedback single
pulse mode of operation, highlighting the magnetization i1 and demagnetization i2 phase
currents

This technique makes use of the property that i1 = i2 at θ = θoff . Using Equation 4.1,

the magnetization phase current trajectory is described by the following expression:

i1 =
Vbus(βg − θ)

ωL(θ)(ταg − 1)
+ C6−1

[
(βg − θ)ταg
ζgL(θ)

]
(4.11)

where, C6−1 represents the magnetizing integration constant, which is calculated based on

the application of the initial conditions (i.e., i = iinitial and θ = 0) in Equation 4.11. The

magnetizing integration constant C6−1 for the magnetization phase current trajectory i1 is

expressed as:

C6−1 =

[
iinitial −

Vbusβg
ωL(0)(ταg − 1)

] [
ζgL(0)

β
ταg
g

]
(4.12)

At θ = 0, the value of phase inductance is equal to the aligned position inductance, i.e.,

L(0) = La. Replacing the value of L(0) with the aligned position inductance in Equation 4.12,
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the following expression is obtained:

C6−1 =

[
iinitial −

Vbusβg
ωLa(ταg − 1)

] [
ζgLa
β
ταg
g

]
(4.13)

Similarly, using Equation 4.1, the demagnetization phase current trajectory is described by

the following expression (after factoring out the negative sign from Vbus, as the machine’s

phase voltage during the demagnetization phase is negative):

i2 =
−|Vbus|(βg − θ)
ωL(θ)(ταg − 1)

+ C6−2

[
(βg − θ)ταg
ζgL(θ)

]
(4.14)

where, C6−2 represents the demagnetizing integration constant, which is calculated based on

the application of the initial conditions (i.e., i = imax and θ = θmax) in Equation 4.14. The

demagnetizing integration constant C6−2 for the demagnetization phase current trajectory

i2 is expressed as:

C6−2 =

[
imax +

|Vbus|(βg − θmax)
ωL(θmax)(ταg − 1)

] [
ζgL(θmax)

(βg − θmax)ταg
]

(4.15)

On comparing Equations 4.9 and 4.15, it turns out that the two demagnetizing integration

constants C6−max and C6−2 are equal (since they make use of the same initial conditions,

i.e., i = imax and θ = θmax).

To compute the value of the turn-off angle, the magnetization phase current from Equa-

tion 4.11 and the demagnetization phase current from Equation 4.14 are equated to each

other at θ = θoff , as a result, the following expression is obtained:

Vbus(βg − θoff )
ωL(θoff )(ταg − 1)

+ C6−1

[
(βg − θoff )ταg
ζgL(θoff )

]
=
−|Vbus|(βg − θoff )
ωL(θoff )(ταg − 1)

+ C6−2

[
(βg − θoff )ταg
ζgL(θoff )

]
(4.16)

Rearranging Equation 4.16, the following expression is obtained:

2|Vbus|(βg − θoff )
ωL(θoff )(ταg − 1)

=

[
(βg − θoff )ταg
ζgL(θoff )

]
(C6−2 − C6−1) (4.17)

171



Again, rearranging Equation 4.17, the following expression is obtained:

2|Vbus|ζg
ω(ταg − 1)(C6−2 − C6−1)

= (βg − θoff )ταg−1 (4.18)

Finally, from Equation 4.18, the expression for the turn-off angle is expressed as:

θoff = βg −
[

2|Vbus|ζg
ω(ταg − 1)(C6−2 − C6−1)

] 1
(ταg−1)

= βg −
[
ω(ταg − 1)(C6−2 − C6−1)

2|Vbus|ζg

] 1
(1−ταg)

(4.19)

So far, two techniques of estimating the turn-off angle have been presented. However,

they both assume that at the turn-off angle, the machine’s phase voltage is less than the

established back EMF, i.e., V < e, implying that the phase current is in a state of positive

feedback. The next section presents a technique of estimating the turn-off angle when the

phase current is in a state of zero or negative feedback during generation.

4.4 Estimation of Turn-off Angle Under Zero and Negative Feedback Operation

As stated earlier in Sections 2.5.1 and 2.5.2, the generating phase current under zero and

negative feedback remains controllable and does not pose a threat to the drive’s power

converter or the machine itself. The negative and zero feedback scenarios occur when the

established back EMF at the turn-off angle is lesser than (or equal to) the machine’s phase

voltage. A lower established value of back EMF does not oppose the applied bus voltage as

much as a higher value does. As a result, the effective voltage across the machine’s phase

is higher, which assists the phase current to build up more rapidly and reach the maximum

allowable peak value quicker.

In this case, a simple comparator compares the value of the phase current with the

maximum allowable peak current and when the two are equal, the phase is switched off.

Figure 4.3 shows the machine operating under negative feedback, where θmax is the same
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as θoff and imax is the same as ioff . From Figure 4.3, after the phase is switched off, no

local maxima is observed in the trajectory of the phase current, as a result, the controller

presented so far is unable to compute the value of θmax (i.e., the rotor position where the

slope of the phase current is zero). Mathematically, this phenomenon manifests itself through

Equation 4.8, where during the negative feedback operation, the inverse of the sine function

is unable to return a valid value, as its argument exceeds the valid range for an argument

x, for the inverse sine function (i.e., the valid range of x is: 0 ≤ x ≤ 1). Intuitively, the

negative feedback scenario occurs when the mechanical energy provided by the prime mover

is low, i.e., the angular velocity (ω) is low. Since the argument of the inverse sine function

in Equation 4.8 is inversely proportion to angular velocity, its value exceeds 1 for low values

of angular velocity, which implies that a maxima (θmax) does not exist.

i

θ0 θoff

iinitial

imax

(ioff )

(θmax)

B
i = Phase current

θ = Rotor angular position

θoff = Turn-off angle

iinitial = Phase current at θ = 0

imax = Phase current at θ = θmax

ioff = Phase current at θ = θoff

θmax = Rotor angular position
where phase current peaks

Figure 4.3: Phase current of a switched reluctance generator during negative feedback single
pulse mode of operation

In the zero feedback scenario, the value of θmax does exist and can be used to switch off

the phase; however, the value of phase current at θoff is equal to the maximum allowable

level, as a result, a comparator can also be used to switch the phase off. Therefore, in the

zero feedback scenario, the phase is switched off either by computing the value of θmax and

then using the control technique described earlier or it is switched off using a comparator
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when the sensed phase current reaches its maximum allowable level. To accommodate the

zero and negative feedback scenarios, a comparator is enabled in the control algorithm and

is shown in the flowchart of Figure 4.4. A complete detailed flowchart of the entire control

algorithm is presented in Appendix I.

Does
θmax

exist?

Yes

NoDetermining
the turn-off
angle (θoff )

Use control
technique

θoff θoff

Use
comparator

Figure 4.4: Flowchart used to estimate the turn-off angle

4.5 Experimental Results

This section presents experimental results recorded from the setup shown in Appendix J using

the machine specified in Table A.2 in Appendix A, which is characterized in Appendix C.

Since a technique to predict the peak value of phase current is provided in Sections 4.2

and 4.3, the experimental results presented in this section are used to verify the accuracy of

the technique in determining the correct turn-off angle, such that the phase current peaks

at the desired level. Two scenarios wherein the machine is operated as a generator in single

pulse mode are executed, and the simulated and experimental data for both scenarios is

compared. The first scenario mimics a situation, in which the angular velocity of a switched

reluctance generator is maintained at a constant value with the help of a prime mover while

the peak value (imax) of the phase current is changed. The simulation (isim) and experimental

(iexp) results of the phase currents are shown in Figure 4.5. In Figure 4.5(a), the value of

imax is assigned as 0.5 A, which is not that high and results in a calculated turn-off angle
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of 7.51◦. As a result, the phase current remains in a state of negative feedback as seen in

Figure 4.5(a). The remaining results shown in Figure 4.5 correspond to increasing values of

imax (i.e., from 1.0 A to 3.5 A), during which the phase current enters into a state of positive

feedback. In all the results provided in Figure 4.5, the phase current always peaks at the

desired level based on the calculated turn-off angle using Equation 4.19.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Simulation (isim) and experimental (iexp) phase current results at a constant
angular velocity: ω = 400 rpm, with (a) imax = 0.5 A, (b) imax = 1.0 A, (c) imax = 1.5 A,
(d) imax = 2.0 A, (e) imax = 2.5 A, and (f) imax = 3.5 A
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The second scenario mimics a situation in which the angular velocity of the switched

reluctance generator is varied through the prime mover and the turn-off angle is computed,

ensuring that the phase current peaks at the desired imax value. This scenario is similar to

one experienced by a wind generator, wherein a changing wind speed causes a change in

the angular velocity of the machine’s shaft. Figure 4.6 presents the results of this scenario

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Simulation (isim) and experimental (iexp) phase current results at changing an-
gular velocities: (a) w = 81 rpm and imax = 2.0 A, (b) w = 108 rpm and imax = 2.0 A, (c)
w = 163 rpm and imax = 2.0 A, (d) w = 301 rpm and imax = 2.0 A, (e) w = 385 rpm and
imax = 2.0 A, and (f) w = 866 rpm and imax = 2.5 A
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wherein the value of imax is assigned as 2.0 A and the angular velocity is varied from 81

rpm in Figure 4.6(a) to 866 rpm Figure 4.6(f). In the results shown in Figure 4.6(f), the

imax value was also simultaneously varied to 2.5 A. Once again, in all the results provided

in Figure 4.6, the phase current always peaks at the desired level based on the calculated

turn-off angle using Equation 4.19.

4.6 Effect of Winding Resistance

A switched reluctance machine exhibits characteristics of a chaotic system. A chaotic system

is defined as one which is deterministic in nature with a sensitive dependence on its initial

conditions [117]. A deterministic system has no randomness to it, the seemingly random

or irregular behavior of the system arises from its nonlinearity rather than random or noisy

inputs. Sensitive dependence on the initial condition implies, trajectories close to each other

separate from each other exponentially quickly.

A switched reluctance machine’s flux linkage and inductance profile are highly nonlinear

in nature, due to which, the machine’s phase current trajectory appears to be irregular or

random. However, the phase current trajectory is in fact not irregular or random, but rather,

it is deterministic in nature, evolving in accordance with the characteristics of the nonlinear

describing system. The phase current trajectory is also extremely sensitive to the initial

conditions, i.e., a small change in the initial conditions results in a significant deviation in

the current trajectory. This phenomenon is especially magnified during the positive feedback

single pulse operating mode of a switched reluctance generator.

Due to the highly chaotic dynamics of a switched reluctance machine, it is imperative

to model the machine’s phase current accurately, capturing the effects of parameters which

control the evolution of phase current and have the potential to alter the initial conditions

of the system. A poor estimation of the machine’s parameters gives rise to an error, which

propagates throughout the model. The ripple effect of the error manifests itself through a
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poor reconstruction of the phase current, leading to an over or under estimated current peak,

which in turn affects the turn-off angle of the phase, resulting in an incorrect estimation of

the output power of the machine.

An important parameter of a switched reluctance machine is its winding resistance. This

section presents the impact of the machine’s winding resistance on the reconstructed phase

current during single pulse mode while generating (which also serves as a comparison between

the model with and without winding resistance). The expression for the phase current from

Equation 3.134 is rewritten as:

i =
Vbus(βg − θ)

ωL(θ)(ταg − 1)
+ C6

[
(βg − θ)ταg
ζgL(θ)

]
(4.20)

where, τ and ζ (defined earlier) are functions of the machine’s winding resistance. The

winding resistance relates to τ as follows:

τ =
R

ω
(4.21)

The winding resistance relates to ζ as follows:

ζg = ταgγg

=
R

ω
αgγg (4.22)

From Equation 4.20, the integration constant C6 is expressed as:

C6 =

[
i− Vbus(βg − θ)

ωL(θ)(ταg − 1)

]
ζgL(θ)

(βg − θ)ταg
(4.23)

Next, the effect of the machine’s winding resistance is examined around a particular oper-

ating point, at which the applied bus voltage is 12 V, the turn on angle is -15◦ (i.e., phase

advancing is employed), the turn off angle is +15◦, and the angular velocity is 380 rpm. The

evolution of the phase current with respect to rotor position is shown in Figure 4.7. For

the switched reluctance machine setup considered and the results shown in Figure 4.7, the
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winding resistance (along with parasitic resistances) is 3.2 Ω (an accurate technique of esti-

mating a machine’s winding resistance is presented in Appendix G). The error between the

reconstructed phase current (simulated) and the experimental phase current at the current

peak lies within the ±2% error bounds, as a result, the simulated phase current is accurate

enough and considered for the subsequent analysis. This is because the effects of the winding

resistance below 3.2 Ω cannot be examined as that is the minimum value measured from the

setup; however, for analysis regarding values of winding resistance greater than 3.2 Ω, ex-

perimental results can be obtained by adding resistance in series to the machine’s terminals,

though that has not been performed.

Figure 4.7: Evolution of the phase current with respect to rotor position during generation

Figure 4.8 shows the simulation result for the phase current during generation, at the

operating point specified earlier, for three different values of winding resistance. From the

figure, it is observed that when R = 0 Ω, the phase current peaks at a much higher value,

intuitively this holds true, as there is no damping in the system. Similarly, for values of
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Figure 4.8: Evolution of the phase current with respect to rotor position during generation
at R = 0.0 Ω, R = 3.2 Ω, and R = 6.4 Ω (Vbus = 12V and ω = 380 rpm)

R = 3.2 Ω (the actual value of the setup’s resistance) and R = 6.4 Ω (twice the actual value

of the setup’s resistance), the peak of the phase current reduces.

From the standpoint of predicting the peak value of the phase current, underestimating

the phase resistance is a safer option compared to overestimating it. When the winding

resistance is underestimated, i.e., the winding resistance considered in the control algorithm

is lesser than its true value, then the reconstructed phase current peaks at a higher value than

its true value, as a result, the control algorithm switches off the phase earlier (expecting the

current peak to exceed the allowable value). The downside of underestimating the winding

resistance is that less charge is harvested during the demagnetization phase (due to an earlier

turn off angle); however, there is no damage to the drive’s power converter due to excessive

current levels.

On the other hand, if the winding resistance is overestimated, it could lead to an unsafe

operation of the drive and the machine. When the winding resistance is overestimated, i.e.,

the winding resistance considered in the control algorithm is greater than its true value,
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then the reconstructed phase current peaks at a lower value than its true value, as a result,

the control algorithm switches off the phase later. The risk of overestimating the winding

resistance is that the phase current peak exceeds the allowable level (due to a later turn off

angle), which can damage the drive’s power converter.

At the operating point stated earlier, a sweep of the winding resistance is performed and

the peak error percentage δ% is calculated using the following expression:

δ(%) =
imax(R)− imax(3.2)

imax(3.2)
× 100 (4.24)

where, imax(R) represents the peak value of phase current for a winding resistance value of

R and imax(3.2) represents the peak value of phase current for a winding resistance value

of 3.2 Ω (i.e., its true value) at the operating point considered. The plot of the peak error

percentage (δ%) versus the winding resistance (R) is shown in Figure 4.9. For a value of

R = 3.2 Ω, the error percentage (δ%) is zero, as expected.

Figure 4.9: Peak error percentage (δ%) versus winding resistance (R) for Vbus = 12V and
ω = 380 rpm
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4.6.1 Impact of Other Parameters on the Effect of Winding Resistance

So far, the effect of winding resistance has been analyzed by itself; however, other parameters

can impact the degree by which the winding resistance affects the reconstruction of the phase

current. The first step involves the identification of the other parameters, which is done by

analyzing the analytical expression for the phase current, descibed by Equation 4.1, which

is rewritten as:

i =
Vbus(βg − θ)

ωL(θ)(ταg − 1)
+ C6

[
(βg − θ)ταg
ζgL(θ)

]
(4.25)

The constants of Equation 4.25 which impact the reconstruction of the phase current include

the bus voltage (Vbus), the angular velocity (ω), the winding resistance (R), and the turn-on

and turn-off angles θon and θoff , respectively. Therefore, the phase current can be expressed

by the following function:

i = f(Vbus, ω, R, θoff , θon) (4.26)

At turn-on and turn-off angles defined by θon = −15◦ and θoff = +15◦ (same values of

turn-on and turn-off angles as the previous operating point), the effect of Vbus, ω, and R

are examined. Consider a switched reluctance generator operated at two separate operating

points, i.e., operating points 1 and 2 with bus voltages Vbus1 and Vbus2 along with angular

velocities ω1 and ω2, respectively. Assume that the peak value of the phase current (imax) is

roughly the same at both operating points (i.e., a parameter defined by the machine and its

drive hardware). If Vbus1 > Vbus2, then to make sure that the peak value of the phase current

at both operating points is the same, the angular velocity at operating point 1 must also be

greater than the angular velocity at operating point 2, i.e., ω1 > ω2. This is because when

the applied bus voltage is high, the phase current in the machine builds up rapidly unless

an equally high back EMF opposes the action of the applied bus voltage, which makes sure

that the peak value of the phase current reaches the desired level and does not surpass it.
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Similarly if the applied bus voltage is low, the phase current does not build up as rapidly,

as a result, the back EMF may also be low to ensure that the peak value of the phase

current reaches the desired level. Of the two operating points, operating point 1, where the

applied bus voltage is higher, is more immune to errors in the estimation of the winding

resistance. This is because at operating point 1, the term V = Vbus1 − iR is greater than

the term at operating point 2, i.e., V = Vbus2− iR, as a result, the impact of the iR term at

operating point 1 is overshadowed by the applied bus voltage, making the operating point

more immune to winding resistance estimation errors. Therefore, at the second operating

point, the applied bus voltage is increased to 50 V and the angular velocity is increased to

1000 rpm (in simulations), the results of the phase current are shown in Figure 4.10. In the

case of a higher applied bus voltage and a higher angular velocity, the phase currents peaks

(for different values of winding resistance) are closer to each other when compared to the

results shown in Figure 4.8, indicating that the error is drowned out at operating points with

higher applied bus voltages and angular velocities. The case when the applied bus voltage

Figure 4.10: Evolution of the phase current with respect to rotor position during generation
at R = 0.0 Ω, R = 3.2 Ω, and R = 6.4 Ω (Vbus = 50V and ω = 1000 rpm)
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and the angular velocity is low, acts as the worst case operating point in terms of estimation

errors related to the winding resistance. For the new operating point considered, the peak

error percentage (δ%) versus the winding resistance (R) plot is shown in Figure 4.11.

Figure 4.11: Peak error percentage (δ%) versus winding resistance (R) for Vbus = 50V and
ω = 1000 rpm

At the operating point where Vbus = 12 V and ω = 380 rpm, the error percentage (δ%)

for R = 0 Ω is close to 100% (from Figure 4.9). On the other hand at the operating point

where Vbus = 50 V and ω = 1000 rpm, the error percentage (δ%) for R = 0 Ω is close to 40%

(from Figure 4.11). This proves that the estimation error related to the machine’s winding

resistance is not as severe for operating points with higher applied bus voltages and angular

velocities. As a result, the simpler mathematical model described in Section 3.4.2 may be

used when the applied bus voltage and angular velocity of the machine are high (depending on

the allowable error), while the accurate model (including the machine’s winding resistance)

described in Section 3.4.3 must be used when the applied bus voltage and angular velocity

of the machine are low (however, the mathematical complexity of the model increases).
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CHAPTER 5

EFFECT OF FREEWHEELING ON HARVESTED CHARGE

In earlier chapters, a switched reluctance generator was analyzed with only two phases,

i.e., a magnetization phase and a demagnetization phase (during the single pulse mode of

operation). Since only two phases were considered, it resulted in only one control variable,

i.e., the turn-off angle θoff . At the turn-off angle, the machine’s phase voltage is negative.

However, there is a possibility of injecting a freewheeling phase between the magnetization

and the demagnetization phases, where the machine’s phase voltage is zero. This chapter

presents an analysis of the effect of a freewheeling phase on the production of charge and

compares it to the case without freewheeling.

During the freewheeling phase, the zero voltage level across the machine’s phase is

achieved when only one of the switches of the asymmetric bridge converter is on, while

the other switch is off. This allows for the corresponding diode to turn on (as shown in

Figure 2.33), allowing the current to freewheel through it, hence the name of the phase.

Figure 5.1 shows a switched reluctance generator’s phase current trajectory with the inclu-

sion of a freewheeling phase. The phase voltage is switched to zero at θoff1 and eventually

to a negative level at θoff2. The slope of phase current during generation is described by

Equation 2.39 and is rewritten with a zero voltage value for the freewheeling phase as:

di

dθ
=

0 + ωi

∣∣∣∣dLdθ
∣∣∣∣

ωL
(5.1)

From Equation 5.1, it is observed that during the freewheeling phase, the slope of phase

current is positive, which indicates that the phase current increases during the freewheeling

phase. As a result, a benefit of adding a freewheeling phase includes an increase in the phase

current without the extraction of charge from the source (as the voltage across the machine’s

phase is zero). During freewheeling, the phase current builds up based on the established
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Figure 5.1: Phase current of a switched reluctance generator during positive feedback in-
cluding a freewheeling phase

back EMF of the machine, i.e., the mechanical energy from the prime mover is converted

into stored electrical energy within a switched reluctance generator.

Another benefit of the freewheeling phase includes a lower root mean square (RMS) value

of the DC link current idc−link, which reduces the design constraint on the DC link capacitor

absorbing the DC link current ripple. Figure 5.2 shows a single phase of an asymmetric bridge

converter, highlighting the DC link current idc−link. During the magnetization phase, the DC

link current is the same as the machine’s phase current; however, during the demagnetization

phase, the DC link current and the machine’s phase current are equal in magnitude but have

opposite polarities. Consider Figure 5.3, where a freewheeling phase is not included, the DC

link current flows into the machine during the magnetization phase (same as i1) and flows

from the machine (i.e., generation) during the demagnetization phase (similar to i2). As a

result, the RMS value of the DC link current is substantial.
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Figure 5.2: Single phase of an asymmetric bridge converter highlighting the DC link current
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Figure 5.3: Phase current and DC link current of a switched reluctance generator during
positive feedback without a freewheeling phase
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On the other hand, consider Figure 5.4, where a freewheeling phase is included. The DC

link current flows into the machine during the magnetization phase (same as i1), then has a

zero level during the freewheeling phase, and eventually flows from the machine during the

demagnetization phase (similar to i2). Comparing the DC link currents of the two scenarios

(i.e., with and without freewheeling), the RMS value of the DC link current for the scenario

with a freewheeling phase is lower, as a result, the size of the DC link capacitor can be

reduced. Due to the lower RMS value of the DC link current when a freewheeling phase is

included, the copper losses are also minimized.
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Figure 5.4: Phase current and DC link current of a switched reluctance generator during
positive feedback with a freewheeling phase

There are definitely benefits to the inclusion of a freewheeling phase. Therefore, the

subsequent sections of this chapter present an approach to analyze and compare the amount

of charge produced with and without a freewheeling phase.
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5.1 Freewheeling Phase Current Equations

In this section, the expressions for phase current during the magnetization phase, the free-

wheeling phase, and the demagnetization phase are presented. For the purpose of mathemat-

ical simplicity, the analytical expression for the phase current without the winding resistance

is selected. The winding resistance has a damping effect on the phase current trajectory in all

three phases, as a result, from a comparative standpoint, not much is lost with the exclusion

of the winding resistance. Again, for mathematical simplicity, the frequency scaling term

(κ) and the phase shift term (φ) are also excluded from the phase inductance expression of

Equation 3.82. The phase current analytical expression is based on Equation 3.99 and is

expressed as:

i =
V θ + Cx

ω [L0 + L1 cos(Nrθ)]
(5.2)

where, Cx represents the integration constant Con during the magnetization phase, Cfw dur-

ing the freewheeling phase, and Coff during the demagnetization phase. From Equation 5.2,

the integration constant Cx is expressed as:

Cx = ωi [L0 + L1 cos(Nrθ)]− V θ (5.3)

Next, analytical expressions for phase currents in each of the phases (i.e., magnetization,

freewheeling, and demagnetization) are analyzed.

5.1.1 Phase current Analysis During the Magnetization Phase

From Figure 5.4, during magnetization, the initial conditions used to compute integration

constant Con are: i = iinitial and θ = 0. Applying the magnetization phase initial conditions

to Equation 5.3, the integration constant Con is obtained as follows:

Con = ωiinitial [L0 + L1] (5.4)
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Therefore, using the integration constant from Equation 5.4, the magnetization phase current

i1 is expressed using Equation 5.2 as:

i1 =
V θ + Con

ω [L0 + L1 cos(Nrθ)]
(5.5)

From Figure 5.4, the phase current value at θ = θoff1 is ioff1, which is a point on the

magnetization phase current trajectory (i1). Therefore, applying the coordinates of the point

in Equation 5.5 and using the magnetization integration constant (Con) from Equation 5.4,

the following expression is obtained:

ioff1 =
V θoff1 + Con

ω [L0 + L1 cos(Nrθoff1)]
(5.6)

Next, the phase current equations related to the freewheeling phase are examined.

5.1.2 Phase current Analysis During the Freewheeling Phase

From Figure 5.4, during freewheeling, the initial conditions used to compute integration

constant Cfw are: i = ioff1 and θ = θoff1, along with a value of zero for V . Applying

the freewheeling phase initial conditions to Equation 5.3, the integration constant Cfw is

obtained as follows:

Cfw = ωioff1 [L0 + L1 cos(Nrθoff1)] (5.7)

Therefore, using the integration constant from Equation 5.7, the freewheeling phase current

ifw is expressed using Equation 5.2 as:

ifw =
Cfw

ω [L0 + L1 cos(Nrθ)]
(5.8)

From Figure 5.4, the phase current value at θ = θoff2 is ioff2, which is a point on the

freewheeling phase current trajectory (ifw). Therefore, applying the coordinates of the point
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in Equation 5.8, substituting ioff1 form Equation 5.6 and freewheeling integration constant

(Cfw) from Equation 5.7, the following expression is obtained:

ioff2 =
V θoff1 + Con

ω [L0 + L1 cos(Nrθoff2)]
(5.9)

Next, the phase current equations related to the demagnetization phase are examined.

5.1.3 Phase current Analysis During the Demagnetization Phase

During the demagnetization phase, the machine’s phase voltage is negative, as a result, the

negative sign from the voltage term is factored out in the subsequent equations. From Fig-

ure 5.4, during demagnetization, the initial conditions used to compute integration constant

Coff are: i = 0 and θ = π/Nr. Applying the demagnetization phase initial conditions to

Equation 5.3, the integration constant Coff is obtained as follows:

Coff = |V | π
Nr

(5.10)

Therefore, using the integration constant from Equation 5.10, the demagnetization phase

current i2 is expressed using Equation 5.2 as:

i2 =
−|V |θ + Coff

ω [L0 + L1 cos(Nrθ)]
(5.11)

From Figure 5.4, the phase current value at θ = θoff2 is ioff2, which is a point on the

demagnetization phase current trajectory (i2). Therefore, applying the coordinates of the

point in Equation 5.11 and using the demagnetization integration constant (Coff ) from

Equation 5.10, the following expression is obtained:

ioff2 =
−|V |θoff2 + |V |(π/Nr)

ω [L0 + L1 cos(Nrθoff2)]
(5.12)

Next, using the equations presented in this section, a relationship between the turn-off angles

(θoff1 and θoff2) is established.
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5.1.4 Relationship Between the Turn-off Angles

This section presents the relationship between the turn-off angles θoff1 and θoff2 shown

in Figure 5.4. The first step involves equating the expressions described by Equations 5.9

and 5.12, resulting in the following expression:

V θoff1 + Con = −|V |θoff2 + |V |(π/Nr) (5.13)

Rearranging Equation 5.13, the following expression is obtained:

θoff1 + θoff2 =
|V |(π/Nr)− Con

|V |

=
π

Nr

− Con
|V | (5.14)

Assigning the terms on the right hand side of Equation 5.14 as a constant x, the following

expression is obtained:

θoff1 + θoff2 = x (5.15)

From Equation 5.15, it is observed that the relationship between θoff1 and θoff2 is linear (as

shown in Figure 5.5). Therefore, if θoff1 is reduced by a small amount ∆x, then θoff2 must

increase by the same amount ∆x to ensure that their sum remains a constant, i.e., x.

θoff2 = −θoff1 + x

x

x

x =

(
π

Nr
− Con

|V |

)

θoff1 = Turn-off angle for the
magnetization phase

θoff2 = Turn-off angle for the
freewheeling phase

θoff10

θoff2

Figure 5.5: Graphical representation between θoff1 and θoff2

192



If θoff1 = θoff2 = θoff , then using Equation 5.15, the following expression is obtained:

θoff =
x

2
(5.16)

The condition: θoff1 = θoff2 = θoff , implies that the freewheeling phase is absent, i.e.,

while referring to Figure 5.4, if the turn-off angles θoff1 and θoff2 are equal to each other,

then the trajectory of the phase current will resemble the one shown in Figure 5.3 with only

one turn-off angle θoff . As a result, the turn-off angles θoff1 and θoff2 either symmetrically

diverge from x/2 (i.e., the freewheeling phase increases) or symmetrically converge to x/2

(i.e., the freewheeling phase decreases, eventually becoming completely absent at x/2). This

phenomenon is graphically expressed in Figure 5.6.
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Figure 5.6: Phase current trajectory with and without a freewheeling phase (highlighting
the linear relationship between θoff1 and θoff2)

Using the linear relationship between θoff1 and θoff2, more specifically, any change in

θoff1 results in an equal and opposite change in θoff2, an analysis related to the amount of

net charge in the two scenarios, i.e., with and without freewheeling is presented next.
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5.2 Electrical Charge Harvested With and Without Freewheeling

Analyzing the amount of charge produced with a freewheeling phase and comparing it to

the amount of charge produced without a freewheeling phase is mathematically extremely

intensive, as a result, a graphical approach is chosen to perform the analysis. In the absence

of a freewheeling phase, the amount of charge invested by the source is higher, consequently

the amount of charge harvested from the machine is also higher. However, in the presence

of freewheeling, the amount of charge invested by the source is lesser, but it is allowed to

accrue before it is harvested from the machine (as shown in Figure 5.6). There seems to be

an unfair advantage towards the scenario in which freewheeling is included, the advantage

being the extra time (which translates to a longer commutation cycle in terms of θ) which

is provided for the charge to accrue. By intuition, it is more advantageous to invest, allow

for growth, and extract over an extended period rather than investing and extracting over a

shorter period. Therefore, in order to perform a fair comparison between the two scenarios,

the period for both the scenarios is kept the same, i.e., for both the scenarios the phase

current must be made zero at the unaligned position (π/Nr).

When the phase current is nonzero (i.e., iinitial) at the aligned position (i.e., θ = 0), then

the integration constant Con described by Equation 5.4 is also a nonzero positive quantity.

As a result, the value of x defined by Equations 5.14 and 5.15, is less than π/Nr, i.e., when

iinitial 6= 0, then x < π/Nr. When iinitial 6= 0 and freewheeling is not included, the value

of θoff described by Equation 5.16 turns out to be less than π/2Nr as shown in Figure 5.7.

The area enclosed by the phase current trajectory and the θ axis is proportional to electrical

charge, as the rotor position (θ) directly relates to time (t) through angular velocity (ω).1

The difference between the charge harvested and the charge invested, i.e., net charge or

charge produced is proportional to: area B - area A.

1Electrical charge is defined as the product of current and time. The area under the phase current (in A)
curve with respect to rotor position needs to be divided by the angular velocity (in ◦ s−1) in order to represent
charge (in C).
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Figure 5.7: Phase current trajectory without a freewheeling phase

In order to analyze the areas related to the invested and harvested charge more effectively,

the magnetization phase current trajectory is folded about the line: θ = θoff , as shown in

Figure 5.8. It is worth noting that since θoff ≤ π/2Nr, the following relationship also holds

true: 2θoff ≤ π/Nr.
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Figure 5.8: Magnetization phase current trajectory (without a freewheeling phase) folded
about the line: θ = θoff
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The net charge (i.e., proportional to area B - area A in Figure 5.7) is represented by

area N in Figure 5.8. The next step involves analyzing the net charge produced when a

freewheeling phase is included during the generation process. Figure 5.9 shows the phase

current trajectory with a freewheeling phase along with the areas proportional to invested,

freewheeling, and harvested charge.

i

θ0

iinitial

π

Nr

θoff

θoff = Turn-off angle without
freewheeling: θoff1 = θoff2

i = Phase current

θ = Rotor angular position

iinitial = Phase current at θ = 0

Nr = Number of rotor poles

θoff <
π

2Nr

π

2Nr

A

∆x ∆x

C

B

Area B ∝ Freewheeling charge

θoff1 θoff2

θoff1 = Turn-off angle for the

θoff2 = Turn-off angle for the

magnetization phase

freewheeling phase

Area A ∝ Charge invested

Area C ∝ Charge harvested

Figure 5.9: Phase current trajectory with a freewheeling phase

Again, in order to analyze the net charge more effectively, the phase current is folded

about the line: θ = θoff and is shown in Figure 5.10. Since the relationship between θoff1

and θoff2 is linear (as described by Equation 5.15), when the phase current trajectory shown

in Figure 5.9 is folded about the line: θ = θoff , the lines: θ = θoff1 and θ = θoff2, perfectly

line up with each other as shown in Figure 5.10. On comparing the net charge without

a freewheeling phase (i.e., as shown in Figure 5.8) to the net charge with a freewheeling

phase (i.e., as shown in Figure 5.10), it is clear that the net charge is greater in the scenario

without a freewheeling phase. This is graphically proven using Figure 5.10, where area abcea
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represents the charge which is taken away from the harvesting current trajectory due to the

inclusion of a freewheeling phase, while area abdea represents the charge which is taken

away from the investing charge trajectory due to the inclusion of a freewheeling phase. Due

to the inclusion of a freewheeling phase, the following must hold true: d ≤ b ≤ c, as a

result, area abcea is always greater than area abdea, implying that the net charge without a

freewheeling phase is always greater than the net charge with a freewheeling phase (by area

bcdb), provided, the phase current is made zero at the unaligned position (π/Nr).
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Figure 5.10: Phase current trajectory (with a freewheeling phase) folded about the line:
θ = θoff

Similar results have been presented based on experimental measurements [120]; however,

no theoretical proof was provided to support the results and behavior of the machine. From

the proof provided in this chapter it is clear that from a net charge standpoint, when a

switched reluctance generator is operated in single pulse positive feedback mode, the inclusion

of a freewheeling phase causes the net charge to drop, provided the phase current is made zero

at the unaligned position. Some previous research [121, 122] suggests that the net charge

is greater with a freewheeling phase when compared to a scenario without freewheeling;
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however, the comparison does not ensure that the phase current is made zero at the same

rotor position in both cases, as a result, the scenario with a freewheeling phase gets an unfair

advantage. The freewheeling phase has its own merit, as it reduces the RMS value of the

DC link current, which in turn reduces the constraints on the DC link capacitor; however,

it reduces the output power generated by the machine as well. This concludes the analysis

of the effect of a freewheeling phase on the net charge or charge produced by the machine.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

This chapter presents concluding remarks on the work presented in earlier chapters of this

dissertation and its contribution towards the study of switched reluctance machines. It also

provides a direction for future research work, related to the modeling of switched reluctance

machines.

6.1 Conclusion

This dissertation presented an approach for modeling and reconstructing the phase current of

a switched reluctance machine. With the availability of an analytical expression for the phase

current, significant improvements in a switched reluctance machine’s control are achieved. Its

benefits are observed during the generating mode, as the phase current can be controlled as

desired. The accuracy of the proposed predictive modeling scheme when compared to finite

element analysis data (i.e., a look up table) is reasonably high and acceptable, considering

the simple inductance function used. Prior modeling schemes ([11, 104, 114], among others)

are analytically extremely complex and require a much higher number of calculation steps

in order to describe the trajectory of the machine’s phase current (as they make use of

numerical methods of integration in order to obtain the solution). The proposed model

requires only two two steps to describe the entire phase current trajectory, one step during

the magnetization phase and the second step during the demagnetization phase, making it

computationally efficient. The proposed method provides the option for a higher accuracy

model by considering a more extensive inductance function; however, that would result in

increased mathematical complexities while describing the phase current trajectory. The

proposed model is not immune to the trade-off of computational speed versus accuracy but

greatly reduces the complexity compared to the existing methods.
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A first of its kind control strategy for switched reluctance generators is also presented.

Conventionally, a switched reluctance generator is not operated in single pulse positive feed-

back due to the phase current’s uncontrollable behavior. The challenge of operating the

machine in single pulse positive feedback lies in the ability to limit the phase current’s peak

value below the maximum allowable value after the phase is switched off. If the current

exceeds the maximum allowable value, the diodes of an asymmetric bridge converter are at

a risk of getting damaged, which can compromise the functionality of the entire drive. The

attraction towards operating the machine in single pulse positive feedback is due to its ability

to produce more charge; however, it is accompanied by control challenges. The predictive

control model presented in this dissertation provides a technique, which allows for a safe

operation of the machine in single pulse positive feedback.

Due to a switched reluctance generator’s sensitive dependence on its initial conditions

and measured parameters, an extensive and comprehensive model including the machine’s

winding resistance was also presented. The presented predictive control model was imple-

mented in hardware and tested (in Chapter 4) at various operating points simulating real

world operating scenarios for a switched reluctance generator. Scenarios including varying

wind speeds and its effects on the peak value of phase currents of a switched reluctance gener-

ator used in wind turbine applications were simulated and experimentally verified. Another

scenario with a varying value for the maximum allowable current level was also simulated

and experimentally verified. In all test cases, the simulation and experimental data closely

matched each other.

The work presented in this dissertation is especially targeted towards the operation of a

switched reluctance generator in single pulse mode with positive feedback. Since a switched

reluctance generator does not operate at high current levels at the aligned position, the effects

of saturation are not as prominent and are excluded in the proposed predictive model. The

next section provides direction for future research work in order to include saturation in the

modeling and reconstruction of phase current for a switched reluctance machine.
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6.2 Future Research

This section provides direction for future research work, to further improve the techniques

presented in this dissertation. The inclusion of the effect of saturation in the analytical

expression for the machine’s phase current is worth looking into.

6.2.1 Linear Saturation Model of a Switched Reluctance Machine

A linear model including saturation is presented in this section, which may be further im-

proved by considering segments forming a piecewise linear theory. It is worth noting that

since two points are sufficient to describe the equation of a line, the linear model only con-

siders two points, i.e., the aligned rotor position (θa) and the unaligned rotor position (θu),

as a result, the phase inductances only at the aligned and unaligned rotor positions are

considered. To begin with, consider the variation of phase inductance with rotor position

curves shown in Figure 3.12, which are approximated by the lines shown in Figure 6.1.

θθuθa

L(θu, i) = Lu

L(θ, i)

Increasing value of iL(θa, i)
n(i)

Lu

θ = Rotor angular position
i = Phase current

L(θ, i) = Phase inductance

θa = Aligned rotor position
θu = Unaligned rotor position

n(i) = Slope of the lines

Lu = Unaligned position phase
inductance

Figure 6.1: Linear approximation of phase inductance with rotor position

From Figure 6.1, since only two points are needed to describe the equation of a line,

the phase inductance at the aligned position, i.e., L(θa, i) is used as the first point, while
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the phase inductance at the unaligned position, i.e., L(θu, i) is used as the second point.

However, even in a model with saturation, due to the geometry of the machine among other

factors, the value of phase inductance at the unaligned position is immune to saturation

(i.e., is not a function of phase current) and is represented as a constant, i.e., Lu. On the

other hand, the aligned position phase inductance (L(θa, i)) is indeed a function of the phase

current, which begins to drop towards the unaligned position phase inductance (Lu), as

phase current increases (as shown in Figure 6.1). As a result, the slope of the lines, defined

by n(i), also change based on the value of phase current, due to which it is also assigned

as a function of the phase current. Using the phase inductance values at the aligned and

unaligned rotor positions, the following expression for the slope of phase inductance with

respect to rotor position is obtained:

n(i) =
L(θa, i)− Lu
θa − θu

(6.1)

Using the expression for the slope from Equation 6.1, the equation for the variation of phase

inductance with respect to rotor position, shown in Figure 6.1 is expressed as:

L(θ, i) = n(i) θ + L(θa, i)

=

[
L(θa, i)− Lu
θa − θu

]
θ + L(θa, i) (6.2)

The next step involves obtaining an expression for the aligned position phase inductance

(L(θa, i)). Consider the variation of the aligned position phase inductance with phase current

as shown in Figure 3.17, which is also linearly approximated as shown in Figure 6.2, where

the slope of the line is defined by m, which is the slope of the line curve fitting the data either

obtained through an FEA tool or through experimental measurements. From Figure 6.2,

the expression for the aligned position phase inductance, i.e., L(θa, i) is expressed as:

L(θa, i) = m i+ La (6.3)
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i0

L(θa, i)

m

L(θa, 0) = La

i = Phase current

L(θa, i) = Phase inductance at θa

θa = Aligned rotor position

m = Slope of the line

La = Aligned position phase inductance

Figure 6.2: Linear approximation of phase inductance with phase current

Substituting the expression of L(θa, i) from Equation 6.3 in Equation 6.2, the following

expression is obtained:

L(θ, i) =

[
(mi+ La)− Lu

θa − θu

]
θ + (mi+ La) (6.4)

Assigning the term: θa − θu, as a constant K1 in Equation 6.4, the following expression is

obtained:

L(θ, i) =

[
(mi+ La)− Lu

K1

]
θ + (mi+ La)

=
1

K1

(
Laθ − Luθ +miθ +miK1 + LaK1

)
(6.5)

Now that the expression for phase inductance is obtained, the current differential equation

of a switched reluctance machine is considered (i.e., the one specified by Equation 2.16) and

rewritten as:

di

dθ
=
V − ωidL(θ, i)

dθ
ωL(θ, i)

(6.6)

Equation 6.6 makes use of the derivative of phase inductance with respect to rotor position,

which is obtained using Equation 6.5 (it is worth noting that the product rule of differential
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calculus is used on terms containing the product of phase current and rotor position) and is

expressed as:

dL(θ, i)

dθ
=

1

K1

[
La − Lu +

(
mi+mθ

di

dθ

)
+

(
mK1

di

dθ

)]
(6.7)

Substituting the expressions from Equations 6.5 and 6.7 in Equation 6.6, the following ex-

pression is obtained:

di

dθ
=

V − ωi 1

K1

[
La − Lu +mi+

(
mθ +mK1

)
di

dθ

]
ω

1

K1

(
Laθ − Luθ +miθ +miK1 + LaK1

) (6.8)

Equation 6.8 represents the linear saturation model of a switched reluctance machine. The

next section presents a technique of obtaining a solution to Equation 6.8.

6.2.2 An Analytical Expression for Phase Current Using a Linear Model

This section presents a technique to obtain an analytical expression for phase current of a

switched reluctance machine, modeled using the linear saturation model presented in Sec-

tion 6.2.1. Rearranging Equation 6.8, the following expression is obtained:

ω

K1

(
Laθ − Luθ +miθ +miK1 + LaK1

)
di

dθ
=

V − ωi 1

K1

[
La − Lu +mi+

(
mθ +mK1

)
di

dθ

]
(6.9)

Separating out some of the terms of Equation 6.9, the following expression is obtained:

ω

K1

(
Laθ − Luθ +miθ +miK1 + LaK1

)
di

dθ
=

V − ωi 1

K1

(
La − Lu +mi

)
− ω

K1

(
miθ +miK1

)
di

dθ
(6.10)

Rearranging Equation 6.10, results in the following:

ω

K1

(
Laθ − Luθ + 2miθ + 2miK1 + LaK1

)
di

dθ
= V − ωi 1

K1

(
La − Lu +mi

)
(6.11)
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Multiplying Equation 6.11 by K1/ω and replacing the term: V K1/ω, by another constant

K2, the following expression is obtained:(
Laθ − Luθ + 2miθ + 2miK1 + LaK1

)
di

dθ
= K2 − Lai+ Lui−mi2 (6.12)

Replacing di/dθ by i′ and rearranging Equation 6.12 results in the following expression:

(Lai− Lui+mi2 −K2) + (Laθ − Luθ + 2miθ + 2miK1 + LaK1) i
′ = 0 (6.13)

The solution to the differential equation expressed by Equation 6.13 is obtained using the

technique of solving exact differential equations [118]. The first step in solving for the phase

current involves rewriting Equation 6.13 using functions: M(θ, i) and N(θ, i), resulting in:

M(θ, i) +N(θ, i) i′ = 0 (6.14)

where,

M(θ, i) = (Lai− Lui+mi2 −K2) (6.15)

and,

N(θ, i) = (Laθ − Luθ + 2miθ + 2miK1 + LaK1) (6.16)

Next, the partial derivatives of M(θ, i) and N(θ, i) with respect to i and θ, respectively are

checked for exactness. Using Equation 6.15, the partial derivative of M(θ, i) with respect to

i is expressed as:

∂M(θ, i)

∂i
= La − Lu + 2mi (6.17)

Similarly, using Equation 6.16, the partial derivative of N(θ, i) with respect to θ is expressed

as:

∂N(θ, i)

∂θ
= La − Lu + 2mi (6.18)
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From Equations 6.17 and 6.18, it is observed that the differential equation described by

Equation 6.13 are indeed exact equations. Since the differential equation is exact, there

exists a function f(θ, i), where:

∂f(θ, i)

∂θ
= M(θ, i) (6.19)

and,

∂f(θ, i)

∂i
= N(θ, i) (6.20)

Integrating Equation 6.19 with respect to rotor position (θ) using the expression for M(θ, i)

from Equation 6.15, the following expression is obtained:

f(θ, i) = Laiθ − Luiθ +mi2θ −K2θ + g(i) (6.21)

where, the function g(i) acts as a constant of integration (since it is only a function of i

and not θ). Next, considering the partial derivative of Equation 6.21 with respect to i and

using the relationship from Equation 6.20, i.e., equating it to the expression for N(θ, i) from

Equation 6.16, the resultant expression is:

Laθ − Luθ + 2miθ + g′(i) = Laθ − Luθ + 2miθ + 2miK1 + LaK1 (6.22)

where, g′(i) represents the derivative of the function g(i) with respect to i. Rearranging

Equation 6.22, the following expression for g′(i) is obtained:

g′(i) = 2miK1 + LaK1 (6.23)

To obtain an expression for the function g(i), Equation 6.23 is integrated with respect to i,

resulting in the following expression:

g(i) = mi2K1 + LaiK1 (6.24)
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Using g(i) from Equation 6.24 in Equation 6.21, the following expression for f(θ, i) is ob-

tained:

f(θ, i) = Laiθ − Luiθ +mi2θ −K2θ +mi2K1 + LaiK1 (6.25)

According to the exact equation technique for solving differential equations, the solution of

Equation 6.25 is: f(θ, i) = K3, where, K3 is a constant solved using a set of initial conditions.

As a result, Equation 6.25 finally becomes:

(mθ +mK1)i
2 + (Laθ − Luθ + LaK1)i− (K2θ +K3) = 0 (6.26)

Applying the formula used to solve quadratic equations1 on Equation 6.26, the expression

for the phase current of a switched reluctance machine using a linear saturation model is

expressed as:

i =
−(Laθ − Luθ + LaK1)±

√
(Laθ − Luθ + LaK1)2 + 4(mθ +mK1)(K2θ +K3)

2(mθ +mK1)
(6.27)

where, K1 = (θa − θu) and K2 = V K1/ω.

Prior work using piecewise linear and nonlinear modeling techniques have been previ-

ously presented; however, this section also provided an analytical closed form expression for

the phase current of a switched reluctance machine using a linear saturation model. The

presented approach can be extended and applied to piecewise (i.e., multiple segments) lin-

ear/nonlinear function of the phase inductance depicted in Figures 6.1 and 6.2 in order to

better match the dynamics of a switched reluctance machine. This concludes this section

regarding future research work relating to the modeling and reconstruction of the phase

current of a switched reluctance machine.

1The solution to a quadratic equation: ax2 + bx+ c = 0, where x is an unknown variable and a, b, and c

are constants is defined by the following roots: x = −b±
√
b2−4ac
2a .
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APPENDIX A

SWITCHED RELUCTANCE MACHINE SPECIFICATIONS

This appendix presents the specifications of the switched reluctance machine used for the

flux based model and the inductance based model and also the specifications of the switched

reluctance machine used to record the experimental data.

Table A.1: SRM specifications for the flux and inductance based models

Parameter Value

Number of rotor poles 6
Number of stator poles 8
Number of windings per pahse 8
Stator outer diameter 130 mm
Stator inner diameter 106 mm
Rotor diameter 69.5 mm
Stack length 70 mm
Stator arc 22.9◦

Rotor arc 23.0◦

Air gap length 0.25 mm
shaft diameter 25 mm

Table A.2: SRM specifications for experimentally tested machine

Parameter Value

Number of rotor poles 6
Number of stator poles 8
Number of windings per phase 120
Stator outer diameter 130 mm
Stator inner diameter 106 mm
Rotor diameter 69.5 mm
Stack length 70 mm
Stator arc 22.9◦

Rotor arc 23.0◦

Air gap length 0.25 mm
shaft diameter 25 mm
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Figure A.1 shows the three dimensional CAD model of the switched reluctance machine

based on the specifications listed in Tables A.1 and A.2. The three dimensional structure on

the right represents the rotor of the machine, while the three dimensional structure on the

left represents the stator of the machine.

Figure A.1: A three Dimensional view of the SRM’s stator (left) and rotor (right) modeled
in ANSYS Maxwell [9]
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APPENDIX B

COEFFICIENTS OF THE FLUX AND INDUCTANCE BASED MODELS

This appendix lists the values of the constants used in Chapter 3 of this dissertation. The

following constant values pertain to the magnetizing coefficients of the flux based model

specified in Section 3.1.1. The coefficients of Equation 3.7 are listed below (for k = 8) and

are used to construct the magnetization curves shown in Figure 3.7:

• A10 = +0.0139

• A11 = +0.01358

• A12 = −7.734× 10−5

• A13 = +4.632× 10−5

• A14 = −0.0001248

• A15 = +8.562× 10−5

• A16 = −4.642× 10−5

• A17 = +1.636× 10−5

• A18 = +1.546× 10−6

• A20 = −0.01873

• A21 = −0.008976

• A22 = +0.003469

• A23 = −0.00127

• A24 = +0.0006183

• A25 = −0.0008737

• A26 = +0.000344

• A27 = −6.282× 10−5

• A28 = −0.0002695

• A30 = +3.442× 10−5

• A31 = −1.985× 10−5

• A32 = −2.134× 10−6

• A33 = +2.473× 10−7

• A34 = +4.186× 10−7

• A35 = −2.107× 10−7

• A36 = +1.253× 10−7

• A37 = −2.89× 10−8

• A38 = −7.156× 10−9
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The following constant values pertain to the coefficients of the flux based model specified in

Section 3.1.1. The coefficients of Equations 3.8, 3.9, and 3.10 are listed below and are used

to construct the magnetization curves shown in Figure 3.8:

• f0 = +0.01425

• f1 = +0.0134

• f2 = +5.349× 10−21

• f3 = −0.0003204

• f4 = −1.148× 10−20

• k = +0.1075

• g1 = −0.005607

• h1 = −28.83

• i1 = +3.555

• g2 = −0.01146

• h2 = −20.54

• i2 = +4.364

• g3 = −0.01269

• h3 = −14.42

• i3 = +6.545

• g4 = −0.01571

• h4 = −4.504

• i4 = +10.85

• g5 = −0.01575

• h5 = +4.499

• i5 = +10.86

• g6 = −0.01268

• h6 = +14.42

• i6 = +6.545

• g7 = −0.01146

• h7 = +20.54

• i7 = +4.363

• g8 = −0.005607

• h8 = +28.83

• i8 = +3.555

• p0 = +3.442× 10−5

• q1 = −1.985× 10−5

• q2 = −2.127× 10−6

• q3 = +9.004× 10−7

• q4 = −4.04× 10−7

• q5 = +4.171× 10−7

• q6 = −2.059× 10−7

• q7 = +1.229× 10−7

• q8 = −2.281× 10−8

• r1 = −3.821× 10−25

• r2 = +2.197× 10−24

• r3 = −3.319× 10−24

• r4 = +4.967× 10−24

• r5 = −6.208× 10−24

• r6 = +7.641× 10−24

• r7 = −1.012× 10−23

• r8 = +1.07× 10−23

• u = 0.1047
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The following constant values pertain to the inductance based model specified in Sec-

tion 3.1.2. The coefficients of Equations 3.23 and 3.24 for k = 5 are listed below and

are used to construct the magnetization curves shown in Figure 3.16:

• a0 = +0.765378078420070× 10−3

• a1 = −0.005412448241577× 10−3

• a2 = +0.000003897192706× 10−3

• a3 = +0.000000079196518× 10−3

• a4 = −0.000000000256260× 10−3

• a5 = +0.000000000000229× 10−3

• b0 = +0.351693238339206× 10−3

• b1 = −0.001885774189798× 10−3

• b2 = −0.000001413682877× 10−3

• b3 = +0.000000044095081× 10−3

• b4 = −0.000000000126439× 10−3

• b5 = +0.000000000000109× 10−3

The following constant values pertain to the inductance based model specified in Sec-

tion 3.1.2. The coefficients of Equations 3.23 and 3.24 for k = 9 are listed below and

are used to construct the magnetization curves shown in Figure 3.19:

• a0 = +0.0006754

• a1 = +1.554× 10−5

• a2 = −7.862× 10−7

• a3 = +1.241× 10−8

• a4 = −1.024× 10−10

• a5 = +4.98× 10−13

• a6 = −1.475× 10−15

• a7 = +2.615× 10−18

• a8 = −2.552× 10−21

• a9 = +1.054× 10−24

• b0 = +0.0003204

• b1 = +4.921× 10−6

• b2 = −2.449× 10−7

• b3 = +3.658× 10−9

• b4 = −2.872× 10−11

• b5 = +1.337× 10−13

• b6 = −3.818× 10−16

• b7 = +6.564× 10−19

• b8 = −6.237× 10−22

• b9 = +2.517× 10−25
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APPENDIX C

SWITCHED RELUCTANCE MACHINE CHARACTERIZATION

This appendix provides an overview on the characterization process for the switched re-

luctance machine specified in Table A.2 in Appendix A. The characterization process of a

switched reluctance machine involves alignment of the rotor with respect to the stator, ap-

plication of an appropriate voltage signal across the terminals of the machine, and sensing

of the induced phase current. This appendix also describes the magnetic saturation of the

phase inductance and provides inferences regarding the characterization of the collected and

processed data. The first step while operating a switched reluctance machine involves its

alignment procedure and is presented next.

C.1 Alignment of the Machine’s Rotor

Alignment is the process of identifying the angular position (in terms of degrees or radians)

of the machine’s reference rotor pole with respect to a reference stator pole and positioning

the rotor in such a way that the reference rotor and stator poles perfectly align with each

other. Any one of the machine’s rotor poles can be selected and assigned as the reference

rotor pole (or primary rotor pole) Rp, similarly any one of the machine’s stator poles can be

selected and assigned as the reference stator pole (or primary stator pole) Sp. The reference

rotor and stator poles of an 8/6 switched reluctance machine are shown in Figure C.1. In

Figure C.1, assuming that the rotor rotates in the clockwise direction and based on the

technique of determining the reference rotor pole’s position described in Section 2.1.1, the

reference rotor pole’s (Rp) position makes an angle of −θ◦ with respect to the reference stator

pole (Sp). The first step before operating the machine involves determining the unknown

rotor position. The rotor position is typically obtained using a shaft encoder, which as the

name suggests, monitors the shaft position of the machine (which is the same as the machine’s
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Sp

Rp
R

R′

S

S′

Stator

Rotor

6 θ◦

Rp = Reference rotor pole

Sp = Reference stator pole

6 θ◦ = Angle between RR′ and SS′
SS′ = Axis of stator pole Sp

RR′ = Axis of rotor pole Rp

Figure C.1: A two dimensional cross sectional view of an 8/6 SRM

rotor position). It is not necessary to use an external shaft encoder to obtain the rotor’s

position, there are switched reluctance drive configurations without shaft encoders known

as sensorless switched reluctance drive configurations [92–94]. However, such sensorless

switched reluctance drives and their operation lie outside the scope of this dissertation and

are not presented. Figure C.2 shows a block diagram of a typical switched reluctance machine

and its controller. The rotor’s position is a measured state of the machine and is required to

effectively control the dynamics of the machine, as a result, having an initial accurate rotor

position is extremely important. At start up, the shaft encoder is unaware of the rotor’s

position, as a result, it appears to have the state shown in Figure C.3. At that point the

alignment procedure is then executed, which when completed, aligns the reference rotor pole

(Rp) with the reference stator pole (Sp). After the alignment procedure is complete, the

value of the shaft encoder is initialized to zero using software and the machine is ready for

operation.
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i = Phase current
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θoff = Turn-off angle

Vbus = Bus voltageθ = Rotor angular position

VDC = DC voltage

PID = Proportional Integral Derivative

Commutation
angle calculator

phase voltages

Figure C.2: Block diagram of a switched reluctance machine with a hyesteretic current
controller, a commutation angle calculator, a speed loop, a shaft encoder, a load/prime
mover, and an asymmetric bridge converter
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Figure C.3: Unknown rotor position before the alignment procedure

The alignment procedure employed is fairly straightforward, it involves the excitation

of the stator phase windings in a particular order for a short duration of time; however,

long enough to overcome the mechanical time constant of the rotor shaft to rotate to its

new position based on the excited phase. The phase excitation order during the alignment

procedure is as follows: phase A→ phase B → phase C → phase D. Phase A represents the

windings associated with stator poles A and A′, Phase B represents the windings associated

with stator poles B and B′, Phase C represents the windings associated with stator poles C

and C′, and Phase D represents the windings associated with stator poles D and D′. As a

result, in Figure C.3, the stator’s rotating magnetic field rotates in the clockwise direction.

To complete the alignment procedure, the excitation order is executed only once, by the end

of which, the position of the rotor is known. During the alignment procedure, the output

values of the shaft encoder are of no importance and are considered as garbage values, only

at the end of the alignment procedure is the value of the shaft encoder initialized and utilized

from there on.
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Consider an 8/6 machine, where the rotor is in an initial unknown position as shown in

Figure C.4(a). The alignment procedure is then executed. The first phase excited is the

phase associated with stator poles A and A′, due to which rotor poles R1 and R′1 experience

a torque and rotate in the clockwise direction, thereby aligning themselves with stator poles

A and A′, respectively. The rotor then takes on the position shown in Figure C.4(b), at

which point the phase associated with stator poles B and B′ is excited, causing rotor poles

R2 and R′2 to experience a torque and rotate in the counterclockwise direction in order

to align themselves with stator poles B and B′, respectively. The rotor then takes on the

position shown in Figure C.4(c). Similarly at that point, the phase associated with stator

poles C and C′ is excited, causing rotor poles R3 and R′3 to experience a torque and rotate

in the counterclockwise direction in order to align themselves with stator poles C and C′,

respectively. The rotor then takes on the position shown in Figure C.4(d). Finally at that

point, the phase associated with stator poles D and D′ is excited, once again causing rotor

poles R1 and R′1 to experience a torque and rotate in the counterclockwise direction in order

to align themselves with stator poles D and D′, respectively.

Similarly if the rotor is in an initial unknown position as shown in Figure C.5(a) and

the alignment procedure is executed, the first phase excited is the phase associated with

stator poles A and A′, due to which rotor poles R1 and R′1 experience a torque and rotate

in the counterclockwise direction, thereby aligning themselves with stator poles A and A′,

respectively. The rotor then takes on the position shown in Figure C.5(b). After this stage

the steps are similar to the to the ones presented for Figure C.4. Therefore, at the end of the

alignment procedure, the rotor always appears to be in the position as shown in Figure C.6,

i.e., Rp is aligned with Sp.

The excitation period (i.e., the duration for which a positive voltage is applied across the

machine’s windings) for each of the phases during the alignment procedure is set to 1 s, which

is a sufficient amount of time for the machine and load considered (specified in Table A.1 in
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Figure C.4: Alignment process when rotor pole R1 initially lies in sector AOD′. Rotor
initially rotates in the clockwise direction and then in the counterclockwise direction
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Figure C.6: Rotor position at the end of the alignment procedure

Appendix A). It is worth noting that the speed loop can be disabled during the alignment

procedure; however, a current controller is required, or else, depending on the applied bus

voltage, the machine’s phase could easily saturate in 1 s. The current controller used during

the alignment procedure is a simple hysteretic controller (as shown in Figure C.2) with a

reference current value of 1 A (i.e., Iref = 1 A). For reference, the 8/6 switched reluctance

machine is controlled using a Texas Instruments C2000 F28035 isolated Piccolo control card

[123]. Based on the alignment procedure described, it is observed that at the end of the

alignment procedure, the reference rotor pole (R′1 in Figure C.6) always aligns itself with

the reference stator pole (D in Figure C.6). All possible initial unknown rotor positions

are encapsulated into either the scenario similar to the one represented by Figure C.4(a) or

the one represented by Figure C.5(a) and need not be explicitly elaborated. The alignment

procedure can also be extended to a switched reluctance machine with a higher number of

rotor and stator poles.
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C.2 Saturation of Phase Flux Linkage

This section of the appendix presents the effect of saturation in an inductor followed by its

correlation to a switched reluctance machine. Figure C.7 shows flux linkage through the

inductor core for different values of inductor current.

Inductor core

Inductor windings

+

−
V2

i2

ψ2

Inductor core

Inductor windings

+

−
V1

i1

ψ1

i1 < ith
ψ1 < ψth

i2 > ith
ψ2 > ψth

L2 =
dψ2

di2

ith

ψth
L1 =

dψ1

di1

i

ψ

(a)

(b) (c)

L2 < L1

ix = Inductor current (x = 1,2)

ψx = Magnetic flux (x = 1,2)

ith = Threshold current level

ψth = Threshold flux level

Vx = Applied voltage (x = 1,2)

L1 = Unsaturated inductance
L2 = Saturated inductance

Figure C.7: Saturation in an inductor from a magnetic standpoint: (a) Flux linkage for lower
values of inductor current (b) Flux linkage for higher values of inductor current (c) Magnetic
flux linkage versus inductor current

Figure C.7(a) shows the magnetic flux linkage ψ1 due to current i1 flowing through

the inductor. The assumption is that the current i1 through the inductor is below a certain

threshold current level ith, i.e., the current level above which the inductor begins to saturate.
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Similarly, it is also assumed that the flux linkage ψ1 is less than the threshold flux level ψth,

i.e., the flux level where the inductor begins to saturate. As a result, the plot of flux linkage

versus the inductor current shown in Figure C.7(c) exhibits linear characteristics upto values

of ith and ψth. The inductance L1 of the inductor is estimated by calculating the slope of

the plot in the linear region. Since the plot is linear, the inductance L1 is a constant. On

the other hand, figure C.7(b) shows the magnetic flux linkage ψ2 due to current i2 flowing

through the inductor. The assumption is that the current i2 through the inductor is above

the threshold current level. Similarly, it is also assumed that the flux linkage ψ2 is greater

than the threshold flux level. Intuitively, this means that the current is proportionally

trying to squeeze in a lot more flux lines through the inductor core. The issue being, the

carrying capacity of the core begins to act as a bottleneck, implying that an increasing

inductor current is no longer capable of causing an increase in the flux linkage, as a result,

the inductor begins to saturate. For higher levels of inductor current and flux linkage, the

inductance L2 of the inductor no longer exhibits a constant value but rather a reduced value,

as shown by the slope of the flux linkage versus inductor current plot of Figure C.7(c). The

point to take away from the above description is that the value of the inductor begins to

drop as the current flowing through it exceeds a certain threshold level.

Since the terminals of a switched reluctance machine act as an inductive load, the ma-

chine also suffers from a similar saturation phenomenon. While trying to characterize a

switched reluctance machine, only the electrical terminals of the machine are accessible.

The description provided for Figure C.7, analyzed saturation from a magnetic standpoint;

however, the phenomenon of saturation can also be viewed from an electrical standpoint,

which is presented next through Figure C.8. Figure C.8 shows the voltage signal VL, mea-

sured across the terminals of an inductor L along with the evolution of its inductor current

iL, whose rate of change with respect to time is defined by the following expression:

diL
dt

=
VL
L

(C.1)
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Figure C.8: Saturation in an inductor from an electrical standpoint: (a) Lower values of
current at which the inductor value is constant (b) Higher values of current at which the
inductor value starts reducing

In Figure C.8(a), when a positive voltage, i.e., +Vdc is applied for a short duration, i.e.,

∆T1 = (t2 − t1), the inductor current does not have sufficient time to cross the threshold

current level. As a result, the inductor does not saturate and has a constant value. Based on

Equation C.1, the rate of change of the inductor current is also a constant value, as shown

in Figure C.8(a), as a result of which, the current rises and falls in a linear manner.
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However, in Figure C.8(b), when a positive voltage, i.e., +Vdc is applied for a longer

duration, i.e., ∆T2 = (t5− t4), the inductor current does in fact have sufficient time to cross

the threshold current level. As a result, the inductor begins to saturate and its inductance

value begins to drop. Based on Equation C.1, the rate of change of inductor current starts

increasing, and as shown in Figure C.8(b), the current starts to rise in a nonlinear manner (for

values greater than the threshold current level). When the applied voltage is negative, i.e.,

−Vdc, the inductor current begins to fall in a nonlinear manner as well (as long as its above

the threshold current level). As long as the current remains below the threshold current

level, it follows a linear trajectory whereas when it is greater than the threshold current

level, it follows a nonlinear trajectory. To characterize a switched reluctance machine, the

plot shown in Figure C.8 is obtained and the data is then processed.

From a pratical standpoint, care should be taken while operating the system in its sat-

uration region, because the currents could reach high damaging levels quite rapidly (from

Equation C.1, when the inductance value begins to drop, the current increases even more

rapidly, i.e., positive feedback). Care should be taken by increasing the time period (from

∆T1 to ∆T2) extremely gradually and also by selecting a low value of Vdc, all while closely

monitoring the current.

C.3 Experimental Setup

This section of the appendix presents the steps in setting up a laboratory testbed for char-

acterizing a switched reluctance machine. Earlier sections of this appendix describe the

alignment procedure and what to expect in terms of phase current through the terminals

of a machine when it saturates. The process of characterizing the machine begins with the

execution of the alignment procedure, at the end of which, the rotor is at a position, where

θ = 0◦. After the alignment procedure is complete, a protractor (printed on a piece of paper)

is attached to the face of the switched reluctance machine (the orientation of the protractor
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is unimportant at this stage; however, it is preferable to have the 0◦ marking on top) and a

key stock (or some form of marking) is attached to the shaft of the machine (on the surface

of the shaft with the help of some tape) such that, the key stock points to the 0◦ marking

on the protractor. Figure C.9 shows the setup of a switched reluctance machine with a pro-

tractor and key stock attached as mentioned, after the execution of the alignment process,

by the end of which the rotor is at its aligned position (i.e., θ = 0◦).

Figure C.9: The SRM with the attached protractor and the shaft key stock. The rotor is at
its aligned position (i.e., θ = 0◦)

The next step in the characterization process involves providing a voltage pulse as shown

in Figure C.8. However, before a voltage is applied across the terminals of the machine, the

machine’s rotor is locked in its place to prevent it from changing its position (θ). Since the

rotor is connected to the shaft of the machine, locking the machine’s shaft ensures that the

rotor remains locked as well. The shaft position of the switched reluctance machine is locked

using a locking pinch off plier which is held in place with a flat drill press vise (which is

screwed down to the testbed). The locking setup is shown in Figure C.10.
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Figure C.10: Locking mechanism for a switched reluctance machine’s shaft (in turn, its rotor)

It is worth noting that, locking the rotor at positions other than the aligned position

is of higher importance and necessary because at positions other than the aligned position

(especially the positions still relatively close to the aligned position), the rotor tends to

realign itself with the stator phase when the voltage pulse is applied (i.e., the stator phase

is excited). This is because the aligned position acts as the rotor’s stable equilibrium point.

Therefore, locking the rotor at the aligned position is theoretically not required, but is

preferred as the shaft vibrations can lead to erroneous readings.
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Since the aligned position experiences the maximum amount of saturation, the phase

current exhibits its maximum nonlinearity at the aligned position (as shown in Figure C.8).

Next, a voltage pulse is applied across the terminals of a switched reluctance machine,

resulting in the evolution of its phase current. The applied voltage pulse and the sensed

phase current waveforms are captured using an oscilloscope and are shown in Figure C.11.

The time period for the positive voltage pulse was gradually increased from a value of 0.5 ms

to a value 1.8 ms. During this test, the current controller is disabled (as the current needs to

be unregulated), as a result, the magnetizing time period must be very small and increased

in small increments. The selected magnetizing time period allows the phase current to reach

a value of 3.5 A, a value below the machine’s rated current level of 4.0 A.

Figure C.11: Captured voltage signal and phase current at the aligned position (θ = 0◦)

After successfully recording the results at the aligned position, the rotor is manually

turned in either the positive or the negative direction by a certain amount ∆θ and the test is

repeated. Figure C.12 shows the rotor position manually set to the θ = −20◦ position (in the

counterclockwise direction). At the new position, the next set of results are then recorded.

For a symmetric switched reluctance machine, theoretically the results for ±θ should be
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identical; however, it is best to verify the results experimentally. The process is iteratively

performed for different values of θ ranging from: −(π/Nr) ≤ θ ≤ +(π/Nr). In this manner,

all the characterization data of a switched reluctance machine is gathered. A smaller value

of ∆θ results is a larger collection of characterization data and a finer resolution.

Figure C.12: The rotor locked at position: θ = −20◦

C.4 Experimental Measurements

This section of the appendix presents the results recorded at different rotor positions based

on the technique specified in Section C.3. For a switched reluctance machine with six rotor

poles (i.e., Nr = 6), the value of the rotor position (θ) ranges from: −(π/Nr) ≤ θ ≤ +(π/Nr),

i.e., −30◦ ≤ θ ≤ +30◦. The experimental data is collected for rotor positions separated by:

∆θ = ±5◦, i.e., for rotor positions corresponding to 0◦, ±5◦, ±10◦, ±15◦, ±20◦, ±25◦, and

±30◦. However, the results reported are in steps of: ∆θ = ±15◦ as shown in Figure C.13,

i.e., for the rotor at its aligned position (0◦), midpoint positions (±15◦), and unaligned

positions ±30◦. From Figure C.13, it is observed that at the aligned position (θ = 0◦) the
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Figure C.13: Oscilloscope results displaying the applied voltage signal and the sensed phase
current. The displayed results are 15◦ apart in both, the positive and the negative directions

phase current experiences the maximum saturation, while at the midpoint (θ = ±15◦) and

unaligned (θ = ±30◦) positions, the effect of saturation is not as prominent (as is evident

from the sensed phase current’s reducing nonlinearity, as the rotor position is changed from

the aligned position to the unaligned position in Figure C.13). The phase current waveform

is more or less linear at the unaligned positions (θ = ±30◦), indicating no saturation and a

constant value for the machine’s phase inductance (based on Equation C.1).

It is worth noting that at each rotor position, the DC value of the applied voltage (±Vdc)

must be reduced if the magnetizing time period (i.e., ∆T2 = t5 − t4 of Figure C.8(b)) is

kept constant. This is because the phase inductance of the machine for positions closer to
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the unaligned position begins to drop, as a result, from Equation C.1, the phase current

rises rapidly and hits the machine’s rated current level quicker. Either the magnetizing time

period or the applied DC voltage (±Vdc) must be reduced in order to keep the phase current

peak below the machine’s rated level. For the results shown in Figure C.13, the magnetizing

time period was kept constant while the applied DC voltage (±Vdc) was changed accordingly.

C.5 MATLAB Post Processing

This section presents the post processing steps applied on the experimentally gathered data,

based on techniques specified in earlier sections of this appendix. The first step of post

processing involves averaging the results shown in Figure C.13, which is performed using

MATLAB [124]. Consider a sequence {aj}Nj=1, where j represents the indices of the elements

belonging to the sequence, aj represents the jth element of the sequence, and N represents

the total number of elements in the sequence. Depending on the signal to be averaged, aj

is replaced either with the phase inductance voltage VL or the sensed phase current i. From

figure C.13, it is observed that the oscilloscope has a sampling rate of 10 M Samples s−1

and the time period captured by the oscilloscope is 10 ms. As a result, the total number of

samples (or elements of the sequence) contained in the VL and i sequence is 100 k samples.

Therefore, the value of N is equal to 100 k. An n sized moving average window is then applied

to the sequence {aj}Nj=1, which results in a new sequence {sj}Nj=1, where sj represents the

new moving averaged sequence, which is computed using the following expression:

sj =
1

n

j+y∑
k=j−x

ak (C.2)

where,

x =


n− 1

2
; n = odd

n

2
; n = even

(C.3)
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and,

y =


n− 1

2
; n = odd

n

2
− 1 ; n = even

(C.4)

Figure C.14 and Figure C.15 show an example of the moving average filter applied to a

sequence {aj}. It is worth noting that the window size is automatically truncated at the

endpoints when there are not enough elements to fill the window. When the window is

truncated, the average is taken only over the elements that do fill the window. This way, the

number of elements in the resultant sequence {sj} remains the same as those in the original

sequence {aj}, i.e., N .

a1 a2 a3 a4 a5

︷ ︸︸ ︷n = 3

a6{aj}6j=1 =

s1 s2 s3 s4 s5 s6{sj}6j=1 =

sj =
1
n

j+y∑
k=j−x

ak ⇒ s3 =
1
3

4∑
k=2

ak ⇒ s3 =
(
a2+a3+a4

3

)

N = 6
n = 3

x, y =
(
n−1
2

)
= 1

j = 3

Figure C.14: An odd sized moving average filter applied to a sequence {aj}

a1 a2 a3 a4 a5

︷ ︸︸ ︷n = 4

a6{aj}6j=1 =

s1 s2 s3 s4 s5 s6{sj}6j=1 =

sj =
1
n

j+y∑
k=j−x

ak ⇒ s3 =
1
4

4∑
k=1

ak ⇒ s3 =
(
a1+a2+a3+a4

4

)

N = 6
n = 4

x = n
2 = 2

y =
(
n
2 − 1

)
= 1

j = 3

Figure C.15: An even sized moving average filter applied to a sequence {aj}
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Figure C.16, shows the normalized phase inductance voltage (VL) and the sensed phase

current (i), along with the post processed averaged values of the normalized phase inductance

voltage VL(avg) and the phase current iavg. The averaged values VL(avg) and iavg are essentially

low pass filtered values of VL and i, respectively.

Figure C.16: Aligned position (i.e., θ = 0◦) normalized phase inductance voltage (VL) and
sensed phase current (i) along with their averaged values VL(avg) and iavg, respectively

The signals VL(avg) and iavg shown in Figure C.16 are computed with a moving average

window size of 50, i.e., n = 50. The characterization process of a switched reluctance

machine involves obtaining the plot of the phase inductance (L) versus the phase current

(i) at different rotor positions (θ). Therefore, at a particular rotor position (i.e., θ = θx

and a particular value of phase current (i.e., i = ix), the instantaneous phase inductance is
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calculated in accordance with Equation C.1 and is expressed as:

L(θx, ix) =
VL

di

dt

∣∣∣∣
i=ix

(C.5)

Figure C.17 provides a graphical representation of calculating the inductance of a switched

reluctance machine at different current levels (i.e., i1 and i2), at a particular rotor position

(θx).

⇒ VL = L(θx, ix)
di

dt

∣∣∣∣∣i = ix

⇒ L(θx, ix) =
VL

di

dt

∣∣∣∣∣
i=ix

VL = Phase inductance voltage

i = Phase current
t = Time

Vdc = DC level of the applied inductor voltage

ith = Threshold current level

ix = A particular phase current value

θx = A particular rotor angular position

t

+Vdc

−Vdc

t

i

VL

ith
i2

i1
di

dt

∣∣∣∣∣
i=i1

di

dt

∣∣∣∣∣
i=i2

L(θx, ix) = Instantaneous phase inductance at
θ = θx and i = ix

Figure C.17: Inductance calculation at different current levels i1 and i2 at a particular rotor
position

Figure C.18(a), shows the averaged normalized phase voltage (VL(avg)) and the averaged

sensed current (iavg) at the aligned rotor position (θ = 0◦). Due to the high saturation

experienced at the aligned rotor position, the phase current exhibits a high degree of non-

linearity, which is clearly visible from the averaged phase current waveform (iavg), especially

for higher values of phase current, as that is where the machine begins to saturate. The

instantaneous phase inductance (L(θx, ix)) is iteratively calculated using Equation C.5 (i.e.,
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shown in Figure C.17) for all the values of phase current, and the resultant values are plotted

in Figure C.18(b). The calculated aligned position phase inductance L(0, i) appears to have

a lot of ripple and noise in it (due to the noise picked up in the sensed phase current), which

is removed in the averaged aligned position phase inductance curve represented by Lavg(0, i).

(a) (b)

Figure C.18: SRM characterization data at the aligned position, i.e., θ = 0◦ (a) Normalized
VL(avg) and iavg versus time t (b) Aligned position saturated inductance L(0, i) and its average
Lavg(0, i) versus phase current i

Figure C.19(a), shows the averaged normalized phase voltage (VL(avg)) and the aver-

aged sensed current (iavg) at the positive midpoint rotor positions (θ = +15◦), while Fig-

ure C.19(b), shows the averaged normalized phase voltage (VL(avg)) and the averaged sensed

current (iavg) at the negative midpoint rotor positions (θ = −15◦). Due to the medium

saturation experienced at the midpoint rotor positions, the phase current exhibits a lower

degree of nonlinearity (compared to the aligned rotor position), which is visible in both the
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(a)

(b) (c)

Figure C.19: SRM characterization data at the midpoint positions, i.e., θ = ±15◦ (a) Normal-
ized VL(avg) and iavg at θ = +15◦ versus time t (b) Normalized VL(avg) and iavg at θ = −15◦

versus time t (c) Mean midpoint position saturated inductance L(±15, i) and its average
Lavg(±15, i) versus phase current i

averaged phase current waveform, especially for higher values of phase current where the

machine begins to saturate. Since two different rotor positions (θ = ±15◦) are considered

as midpoint positions, two different phase inductance data sets are obtained. Theoretically,

the data sets should be identical due to the geometrical symmetry in the switched reluctance

machine under test. However, the measurements show a slight difference in the values of the

inductance at θ = ±15◦. Figure C.19(c) shows only the mean of the two data sets belonging

to θ = ±15◦. The instantaneous phase inductance (L(θx, ix)) is iteratively calculated using

Equation C.5 (i.e., shown in Figure C.17) for all the values of phase current, and the resul-

tant values are plotted in Figure C.19(c). The calculated mean of the two midpoint position

phase inductances L(±15, i) appears to have a lot of ripple and noise in it (due to the noise
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picked up in the sensed phase current), which is removed in the averaged mean midpoint

position phase inductance curve represented by Lavg(±15, i).

Similarly, Figure C.20(a), shows the averaged normalized phase voltage (VL(avg)) and the

averaged sensed current (iavg) at the positive unaligned rotor positions (θ = +30◦), while

Figure C.20(b), shows the averaged normalized phase voltage (VL(avg)) and the averaged

sensed current (iavg) at the negative unaligned rotor positions (θ = −30◦). Since there is no

saturation at the unaligned rotor positions, the phase current exhibits no nonlinearity (as

a result, the phase inductance is a constant), which is visible in both the averaged phase

current waveform, even at higher values of phase current. Since two different rotor positions

(θ = ±30◦) are considered as unaligned positions, two different phase inductance data sets are

(a)

(b) (c)

Figure C.20: SRM characterization data at the unaligned positions, i.e., θ = ±30◦ (a)
Normalized VL(avg) and iavg at θ = +30◦ versus time t (b) Normalized VL(avg) and iavg at
θ = −30◦ versus time t (c) Mean unaligned position saturated inductance L(±30, i) and its
average Lavg(±30, i) versus phase current i
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obtained. Theoretically, the data sets should be identical due to the geometrical symmetry

in the switched reluctance machine under test. However, the measurements show a slight

difference in the values of the inductance at θ = ±30◦. Figure C.20(c) shows only the mean

of the two data sets belonging to θ = ±30◦. The instantaneous phase inductance (L(θx, ix))

is iteratively calculated using Equation C.5 (i.e., shown in Figure C.17) for all the values

of current, and the resultant values are plotted in Figure C.20(c). The calculated mean of

the two unaligned position phase inductances L(±15, i) appears to have a lot of ripple and

noise in it (due to the noise picked up in the sensed phase current), which is removed in the

averaged mean midpoint position phase inductance curve represented by Lavg(±30, i).

Figure C.21 shows the variation of the phase inductance (L) versus the phase current

(i) for different values of the rotor position (θ). The measurements shown in the figure

are for rotor positions separated by 5◦ (i.e., ∆θ = 5◦). The curves in the figure are also

extrapolated to meet the vertical axis of the plot. The values of phase inductance at different

rotor positions (at current values of 0 A) are compared to measurements made using an LCR

meter as well, which are shown in Figure C.22.

Figure C.21: Variation of the phase inductance with phase current at different rotor positions
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Figure C.22: Measured inductance at different rotor positions (θ) using an LCR meter
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It is worth noting that, since the inductance values are relatively high, the parallel mode of

an LCR meter is selected (i.e., Lp) along with a low frequency injected signal (i.e., 100 Hz).

The calculated inductance values and the ones obtained using an LCR meter have been

compared in Table C.1, and they are comparable to each other.

Table C.1: Comparison of the calculated inductance and the measured inductance at different
rotor positions. The values are the mean values of the ±θ positions (except for the case when
θ = 0◦)

Rotor Position Calculated Inductance Measured Inductance
θ(◦) L(θ, 0) (mH) L(θ, 0) (mH)

0 187.7 158.4
±5 165.5 140.6
±10 128.9 115.8
±15 96.28 88.89
±20 66.37 68.06
±25 27.56 25.32
±30 20.73 20.15

This concludes the characterization process of a switched reluctance machine. The ma-

chine’s data was experimentally obtained and then post-processed using MATLAB. The data

is also compared with measurements made using an LCR meter. Overall, both the data sets

lie within an acceptable margin of error; however, there is a slight difference between the

calculated and measured inductance values, especially at the aligned position. From Fig-

ure C.21, the saliency (i.e., the ratio of the aligned position inductance to the unaligned

position inductance) of the machine at lower values of phase current (0.5 A) is ≈ 9, while

for higher values of phase current (3.5 A) its close to ≈ 3 (i.e., indicative of significant

saturation).
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APPENDIX D

FOURIER COEFFICIENTS OF THE PROPOSED MODEL’S

PHASE INDUCTANCE

This appendix presents the derivation for the Fourier coefficients of the proposed model’s

phase inductance specified in Section 3.4 by Equations 3.65 and 3.66. In the proposed model,

only one cosine term (i.e., the average value and the first harmonic) for phase inductance is

considered as shown in Figure D.1.

θ

L(θ)

0

La

Lu

π
Nr

π
Nr

Nr = Number of rotor poles
La = Aligned position inductance
Lu = Unaligned position inductance

θ = Rotor angular position

L(θ) = Phase inductance

X

Z

Figure D.1: Phase inductance profile of an SRM using a single cosine term. X and Z represent
the aligned and unaligned positions, respectively

The cosine function shown in Figure D.1, in its Fourier representation is expressed as:

L(θ) = L0 + L1 cos(Nrθ) (D.1)

To obtain expressions for the Fourier coefficients L0 and L1, two points on the curve shown

in Figure D.1 are selected and their coordinates are substituted in Equation D.1, creating a

system of equations. The first coordinate selected is the aligned position X, at which θ = 0

and L(θ) = La. Substituting the coordinates of the first point in Equation D.1, the following

expression is obtained:

La = L0 + L1 (D.2)
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The second coordinate selected is the unaligned position Z, at which θ = π/Nr and L(θ) = Lu.

Substituting the coordinates of the second point in Equation D.1, the following expression

is obtained:

Lu = L0 − L1 (D.3)

Solving the system of equations (i.e., defined by Equations D.2 and D.3) results in the

following expression for L0:

L0 =
La + Lu

2
(D.4)

and the following expression for L1:

L1 =
La − Lu

2
(D.5)

Similarly, in order to model a phase inductance profile using n Fourier coefficients, n points

are selected from the inductance profile and their respective coordinates are used to build a

system of equations (i.e., n equations), which can then be solved for in order to obtain the

expressions for the n Fourier coefficients.
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APPENDIX E

MOTORING LOGARITHMIC FUNCTION COEFFICIENT ESTIMATION

This appendix presents a method of computing the expressions for the coefficients (αm, βm,

γm) of the logarithmic curve fitting function λm(θ), which is used during motoring. The

logarithmic function is used to curve fit the integral of p1(θ) (expressed by Equation 3.123),

which is rewritten as: ∫
p1(θ) dθ = λm(θ) (E.1)

where, λm(θ) = αm[ln(βm + θ) + γm]. Since there are three unknowns to be solved for

(i.e., αm, βm, γm), three points which lie on the function must be used. The first step

involves obtaining the coordinates of the three points to be used. Since the expression for

the original function (i.e., the integral of p1(θ)) that is being curve fit by λm(θ) is known,

the coordinates are obtained based on the original function, which are then used to solve

for the three unknowns of the logarithmic curve fitting function. To obtain the coordinates

of the three points, consider the expression for the integral of p1(θ) (from Equation 3.120),

which is rewritten as:∫
p1(θ) dθ =

2

κNr

√
LaLu

tan−1

{
tan[(κNrθ + κNrφ)/2]√

La/Lu

}
+ C4 (E.2)

However, the integration constant in Equation E.2, i.e., C4, first needs to be computed for the

motoring scenario. This is done by considering the θ coordinate of the first point as: −π/Nr,

as that represents where the rotor pole begins to align itself with the stator pole during

motoring. From Figure E.1, at θ = −π/Nr, the value of the corresponding vertical axis

coordinate (i.e., the value of the integral of p1(θ)) is zero, using the coordinates of the first

point, i.e., (−π/Nr, 0), the value of the integration constant C4 is computed by substituting

the coordinate values in Equation E.2, which results in the following expression:

0 =
2

κNr

√
LaLu

tan−1

{
tan[(−κπ + κNrφ)/2]√

La/Lu

}
+ C4 (E.3)
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From Equation E.3, the integration constant is expressed as:

C4 = − 2

κNr

√
LaLu

tan−1

{
tan[(−κπ + κNrφ)/2]√

La/Lu

}
(E.4)

With the value of the integration constant (C4) known, the θ coordinate of the second point,

i.e., 0 is considered and its corresponding vertical axis coordinate, i.e., the value of the

integral of p1(0), represented by y2 (shown in Figure E.1),1 is computed by substituting

(0, y2) in Equation E.2 and is expressed as:

y2 =
2

κNr

√
LaLu

tan−1

{
tan[(κNrφ)/2]√

La/Lu

}
+ C4 (E.5)

Finally, a third point with its θ coordinate lying in the range: −π/Nr ≤ θ ≤ 0, is considered

(represented by x1
2 ). The point is selected such that its corresponding vertical axis coordi-

nate (i.e., the value of the integral of p1(θ)), represented as y1 is equal to y2/2 (the reason

for this selection will become apparent later in the derivation). Therefore, the coordinates of

the third point (x1, y1) are substituted in Equation E.2, resulting in the following expression:

y1 =
2

κNr

√
LaLu

tan−1

{
tan[(κNrx1 + κNrφ)/2]√

La/Lu

}
+ C4 (E.6)

After rearranging Equation E.6, using the relation: y1 = y2/2, and making x1 the subject of

the formula, the following expression is obtained:

x1 =
2

κNr

tan−1

{√
La
La

tan

[
κNr

√
LaLu (y2/2− C4)

2

]}
− φ (E.7)

Now that all the coordinates of the three points are known, the coefficients of the logarithmic

curve fitting function (αm, βm, γm) can be computed. This is because ideally, the logarithmic

curve fitting function (λm(θ)) must also pass through the same points that the original

1The vertical axis represents the integral of p1(θ) and not the variable y; however, due to the common
convention of assigning the variable y to the vertical axis, the same is done in this situation, i.e., y2.

2The horizontal axis represents θ and not the variable x; however, due to the common convention of
assigning the variable x to the horizontal axis, the same is done in this situation, i.e., x1.
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curve described by the integral of p1(θ) passes through. To summarize, the three points

considered are: (−π/Nr, 0), (0, y2), and (x1, y1). The expressions for x1 and y2 are defined

by Equation E.7 and Equation E.5, respectively and y1 = y2/2. The coordinates also use an

integration constant C4, which is defined by Equation E.4.

− π

Nr

0 θ

(x1, y1)

(0, y2)

∫
p1(θ)dθ

y2

y1

x1

(
− π

Nr
, 0

)

y1 =
y2
2

θ = Rotor angular position

Nr = Number of rotor poles

p1(θ) =
1

L(θ)
;;

Figure E.1: Integral of p1(θ) versus the rotor position (θ) during motoring

The next step involves using the three points in the expression for the motoring loga-

rithmic curve fitting function λm(θ), which is defined by Equation 3.121 and is rewritten

as:

λm(θ) = αm

[
ln(βm + θ) + γm

]
(E.8)

Applying the coordinates of the first point, i.e., (−π/Nr, 0) to Equation E.8, the following

expression is obtained:

0 = αm

[
ln(βm − π/Nr) + γm

]
(E.9)

From Equation E.9, the expression for the coefficient γm is obtained as:

γm = − ln(βm − π/Nr) (E.10)
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Using the expression of γm from Equation E.10 and substituting it in Equation E.8, the

following expression is obtained:

λm(θ) = αm

[
ln(βm + θ)− ln(βm − π/Nr)

]

= αm

[
ln

(
βm + θ

βm − π/Nr

)]
(E.11)

Applying the coordinates of the second point, i.e., (0, y2) to Equation E.11, the following

expression is obtained:

y2 = αm

[
ln

(
βm

βm − π/Nr

)]
(E.12)

From Equation E.12, the expression for the coefficient αm is obtained as:

αm = y2 ln

(
βm

βm − π/Nr

)−1
(E.13)

Using the expression of αm from Equation E.13 and substituting it in Equation E.11, the

following expression is obtained:

λm(θ) = y2 ln

(
βm

βm − π/Nr

)−1
ln

(
βm + θ

βm − π/Nr

)
(E.14)

Applying the coordinates of the third point, i.e., (x1, y1) in Equation E.14, the following

expression is obtained:

y1 = y2 ln

(
βm

βm − π/Nr

)−1
ln

(
βm + x1
βm − π/Nr

)
(E.15)

Using the earlier defined relation between y1 and y2 (i.e., y1 = y2/2) in Equation E.15, the

following expression is obtained:

1

2
= ln

(
βm

βm − π/Nr

)−1
ln

(
βm + x1
βm − π/Nr

)
(E.16)

Rearranging Equation E.16 results in:

√
βm√

βm − π/Nr

=
βm + x1
βm − π/Nr

(E.17)
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Again, rearranging Equation E.17, the following expression is obtained:

β2
m −

βmπ

Nr

= β2
m + 2βmx1 + x21 (E.18)

In Equation E.18, making βm the subject of the formula, the following expression is obtained:

βm =
−x21

2x1 + π/Nr

(E.19)

Therefore, the coefficients (αm, βm, γm) of the motoring logarithmic function (λm(θ)) are

computed and defined by Equations E.10, E.13, and E.19, respectively. This concludes the

method for computing the coefficients of the logarithmic curve fitting function, the summary

of which is provided next:

• Compute the integration constant C4:

C4 = − 2

κNr

√
LaLu

tan−1

{
tan[(−κπ + κNrφ)/2]√

La/Lu

}

• Compute the expression for the integral of p1(0), i.e., y2:

y2 =
2

κNr

√
LaLu

tan−1

{
tan[(κNrφ)/2]√

La/Lu

}
+ C4

• Compute the expression for x1, such that p1(x1) = y1 and y1 = y2/2:

x1 =
2

κNr

tan−1

{√
La
La

tan

[
κNr

√
LaLu (y2/2− C4)

2

]}
− φ

• Using the point (−π/Nr, 0), compute the coefficient γm:

γm = − ln(βm − π/Nr)

• Using the point (0, y2), compute the coefficient αm:

αm = y2 · ln
(

βm
βm − π/Nr

)−1
• Using the point (x1, y1) and y1 = y2/2, compute the coefficient βm:

βm =
−x21

2x1 + π/Nr
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APPENDIX F

GENERATING LOGARITHMIC FUNCTION COEFFICIENT ESTIMATION

This appendix presents a method of computing the expressions for the coefficients (αg, βg,

γg) of the logarithmic curve fitting function λg(θ), which is used during generating. The

logarithmic function is used to curve fit the integral of p1(θ) (expressed by Equation 3.131),

which is rewritten as: ∫
p1(θ) dθ = λg(θ) (F.1)

where, λg(θ) = αg{ln[1/(βg − θ)] + γg}. Since there are three unknowns to be solved for

(i.e., αg, βg, γg), three points which lie on the function must be used. The first step involves

obtaining the coordinates of the three points to be used. Since the expression for the original

function (i.e., the integral of p1(θ)) that is being curve fit by λg(θ) is known, the coordinates

are obtained based on the original function, which are then used to solve for the three

unknowns of the logarithmic curve fitting function. To obtain the coordinates of the three

points, consider the expression for the integral of p1(θ) (from Equation 3.120), which is

rewritten as: ∫
p1(θ) dθ =

2

κNr

√
LaLu

tan−1

{
tan[(κNrθ + κNrφ)/2]√

La/Lu

}
+ C4 (F.2)

However, the integration constant in Equation F.2, i.e., C4, first needs to be computed for

the generating scenario. This is done by considering the θ coordinate of the first point as:

0, as that represents where the rotor pole is aligned with the stator pole, indicating the

beginning of generation. From Figure F.1, at θ = 0, the value of the corresponding vertical

axis coordinate (i.e., the value of the integral of p1(θ)) is zero, using the coordinates of the

first point, i.e., (0, 0), the value of the integration constant C4 is computed by substituting

the coordinate values in Equation F.2, which results in the following expression:

0 =
2

κNr

√
LaLu

tan−1

[
tan(κNrφ/2)√

La/Lu

]
+ C4 (F.3)
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From Equation F.3, the integration constant is expressed as:

C4 = − 2

κNr

√
LaLu

tan−1

[
tan(κNrφ/2)√

La/Lu

]
(F.4)

With the value of the integration constant (C4) known, the θ coordinate of the second point,

i.e., π/Nr is considered and its corresponding vertical axis coordinate, i.e., the value of the

integral of p1(π/Nr), represented by y2 (shown in Figure F.1),1 is computed by substituting

in (π/Nr, y2) in Equation F.2 and is expressed as:

y2 =
2

κNr

√
LaLu

tan−1

{
tan[(κπ + κNrφ)/2]√

La/Lu

}
+ C4 (F.5)

Finally, a third point with its θ coordinate lying in the range: 0 ≤ θ ≤ π/Nr, is considered

(represented by x1
2 ). The point is selected such that its corresponding vertical axis coordi-

nate (i.e., the value of the integral of p1(θ)), represented as y1 is equal to y2/2 (the reason

for this selection will become apparent later in the derivation). Therefore, the coordinates of

the third point (x1, y1) are substituted in Equation F.2, resulting in the following expression:

y1 =
2

κNr

√
LaLu

tan−1

{
tan[(κNrx1 + κNrφ)/2]√

La/Lu

}
+ C4 (F.6)

After rearranging Equation F.6, using the relation: y1 = y2/2, and making x1 the subject of

the formula, the following expression is obtained:

x1 =
2

κNr

tan−1

{√
La
La

tan

[
κNr

√
LaLu (y2/2− C4)

2

]}
− φ (F.7)

Now that all the coordinates of the three points are known, the coefficients of the logarithmic

curve fitting function (αg, βg, γg) can be computed. This is because ideally, the logarithmic

curve fitting function (λg(θ)) must also pass through the same points that the original curve

1The vertical axis represents the integral of p1(θ) and not the variable y; however, due to the common
convention of assigning the variable y to the vertical axis, the same is done in this situation, i.e., y2.

2The horizontal axis represents θ and not the variable x; however, due to the common convention of
assigning the variable x to the horizontal axis, the same is done in this situation, i.e., x1.
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described by the integral of p1(θ) passes through. To summarize, the three points considered

are: (0, 0), (π/Nr, y2), and (x1, y1). The expressions for x1 and y2 are defined by Equation F.7

and Equation F.5, respectively and y1 = y2/2. The coordinates also use an integration

constant C4, which is defined by Equation F.4.

π

Nr

0 θ

(x1, y1)

(0, 0)

∫
p1(θ)dθ

y2

y1

x1

(
π

Nr
, y2

)

y1 =
y2
2

θ = Rotor angular position

Nr = Number of rotor poles

p1(θ) =
1

L(θ)
;;

(0, 0)

Figure F.1: Integral of p1(θ) versus the rotor position (θ) during generation

The next step involves using the three points in the expression for the generating log-

arithmic curve fitting function λg(θ), which is defined by Equation 3.122 and is rewritten

as:

λg(θ) = αg

[
ln

(
1

βg − θ

)
+ γg

]
(F.8)

Applying the coordinates of the first point, i.e., (0, 0) to Equation F.8, the following expres-

sion is obtained:

0 = αg

[
ln

(
1

βg

)
+ γg

]
(F.9)

From Equation F.9, the expression for the coefficient γg is obtained as:

γg = − ln

(
1

βg

)
(F.10)
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Using the expression of γg from Equation F.10 and substituting it in Equation F.8, the

following expression is obtained:

λg(θ) = αg

[
ln

(
1

βg − θ

)
− ln

(
1

βg

)]

= αg

[
ln

(
βg

βg − θ

)]
(F.11)

Applying the coordinates of the second point, i.e., (π/Nr, y2) to Equation F.11, the following

expression is obtained:

y2 = αg

[
ln

(
βg

βg − π/Nr

)]
(F.12)

From Equation F.12, the expression for the coefficient αg is obtained as:

αg = y2 ln

(
βg

βg − π/Nr

)−1
(F.13)

Using the expression of αg from Equation F.13 and substituting it in Equation F.11, the

following expression is obtained:

λg(θ) = y2 ln

(
βg

βg − π/Nr

)−1
ln

(
βg

βg − θ

)
(F.14)

Applying the coordinates of the third point, i.e., (x1, y1) in Equation F.14, the following

expression is obtained:

y1 = y2 ln

(
βg

βg − π/Nr

)−1
ln

(
βg

βg − x1

)
(F.15)

Using the earlier defined relation between y1 and y2 (i.e., y1 = y2/2) in Equation F.15, the

following expression is obtained:

1

2
= ln

(
βg

βg − π/Nr

)−1
ln

(
βg

βg − x1

)
(F.16)

Rearranging Equation F.16 results in:√
βg√

βg − π/Nr

=
βg

βg − x1
(F.17)
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Again, rearranging Equation F.17, the following expression is obtained:

β2
g − 2βgx1 + x21 = β2

g −
βgπ

Nr

(F.18)

In Equation F.18, making βg the subject of the formula, the following expression is obtained:

βg =
x21

2x1 − π/Nr

(F.19)

Therefore, the coefficients (αg, βg, γg) of the motoring logarithmic function (λg(θ)) are

computed and defined by Equations F.10, F.13, and F.19, respectively. This concludes the

method for computing the coefficients of the logarithmic curve fitting function, the summary

of which is provided next:

• Compute the integration constant C4:

C4 = − 2

κNr

√
LaLu

tan−1

[
tan(κNrφ/2)√

La/Lu

]

• Compute the expression for the integral of p1(0), i.e., y2:

y2 =
2

κNr

√
LaLu

tan−1

{
tan[(κπ + κNrφ)/2]√

La/Lu

}
+ C4

• Compute the expression for x1, such that p1(x1) = y1 and y1 = y2/2:

x1 =
2

κNr

tan−1

{√
La
La

tan

[
κNr

√
LaLu (y2/2− C4)

2

]}
− φ

• Using the point (0, 0), compute the coefficient γg:

γg = − ln

(
1

βg

)
• Using the point (π/Nr, y2), compute the coefficient αg:

αg = y2 · ln
(

βg
βg − π/Nr

)−1
• Using the point (x1, y1) and y1 = y2/2, compute the coefficient βm:

βg =
x21

2x1 − π/Nr
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APPENDIX G

ESTIMATION OF THE MACHINE’S WINDING RESISTANCE

This appendix presents a method to accurately estimate the winding resistance (and other

parasitic resistances) of the machine through a sample calculation. Before presenting the

calculations, a single phase (along with the parasitic elements) of an asymmetric bridge

converter is shown in Figure G.1, which is a modified version of Figure 2.30. The additional

components shown in the figure are the source diode DS, the source voltage VS, the DC link

capacitor C, the drive’s circuit board resistance Rpcb, and the machine’s winding resistance

Rw. In Figure G.1, the voltage across the terminals of the machine phase is denoted by Vsrm.

The machine’s phase is denoted by M , which represents its phase inductance and back EMF

(the winding (Rw) and board (Rpcb) resistances are distributed as shown in Figure G.1).

Rpcb

Vbus C

VS

DS

S1

S2

Vsrm

M

D2

D1

Rw

i

Vsrm = SRM terminal voltage

Vbus = DC link bus voltage

Rpcb = Drive PCB resistance

M = Machine phase

i = Phase current

Sx = Transistors (x = 1,2)

Dx = Diodes (x = S,1,2)

Rw = Winding resistance

VS = Source voltage

C = DC link capacitor

Figure G.1: Single phase asymmetric bridge converter along with parasitic elements

The first step in estimating the total resistance involves measuring the winding resistance

(Rw) of the machine, which is performed by using an ohmmeter and placing it across the

terminals of the machine when the asymmetric bridge converter is disconnected. The con-
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figuration of the setup while measuring the winding resistance is shown in Figure G.5. The

winding resistance (Rw) value measured from the ohmmeter for the setup used is 2.5 Ω.

S1

S2

Rpcb

D2

D1

Rw

Ω

Vbus C

VS

DS

Vsrm

M

Vsrm = SRM terminal voltage

Vbus = DC link bus voltage

Rpcb = Drive PCB resistance

M = Machine phase

Sx = Transistors (x = 1,2)

Dx = Diodes (x = S,1,2)

Rw = Winding resistance

VS = Source voltage

C = DC link capacitor

Figure G.2: Configuration of the setup while measuring the winding resistance (Rw) of the
machine using an ohmmeter

The next step involves recording measurements during the magnetization phase, i.e.,

when the phase is switched on. However, before analyzing the recorded data, the expressions

for the machine’s terminal voltage (Vsrm) during the magnetization phase are presented. The

circuit during the magnetization phase is shown in Figure G.3 (along with the placement of

the voltage and current probes), on which Kirchoff’s voltage law (KVL) is applied along the

highlighted red path in the clockwise direction beginning at the source voltage (VS). The

application of KVL around the loop results in the following expression:

−VS + Vf + iRpcb + iRDS(on) + Vsrm + iRDS(on) = 0 (G.1)

where, Vf is the forward voltage drop of the source diode DS and RDS(on) is the on resistance

of the MOSFETs S1 and S2. Rearranging Equation G.1, the following expression for the

machine’s terminal voltage (Vsrm) is obtained:

Vsrm = (VS − Vf )− i(Rpcb + 2RDS(on)) (G.2)
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i

Rpcb

D2

D1

Red path = active current path

Rw

Vf

RDS(on)

RDS(on)

Vbus C

VS

Vf = Diode forward voltage drop

Vbus = DC link bus voltage

Rpcb = Drive PCB resistance

Dx = Diodes (x = S,1,2)

Rw = Winding resistance

VS = Source voltage

RDS(on) = MOSFET on resistance

M = Machine phase

i = Phase current
C = DC link capacitor

Vsrm

M

Vsrm = SRM terminal voltage

Figure G.3: Machine’s terminal voltage and phase current measurements during the magne-
tization phase

Similarly, the circuit during the demagnetization phase is shown in Figure G.4 (along

with the placement of the voltage and current probes), on which KVL is applied along the

highlighted red path in the counterclockwise direction beginning at the bus voltage (Vbus).

The application of KVL around the loop results in the following expression:

Vbus + Vf + Vsrm + Vf + iRpcb = 0 (G.3)

Rearranging Equation G.3, the following expression for the machine’s terminal voltage (Vsrm)

is obtained:

Vsrm = −Vbus − iRpcb − 2Vf (G.4)

Now that the expressions for the machine’s terminal voltage during the magnetization

and demagnetization phases are obtained, numerical values are substituted in Equations G.2

and G.4 to solve for the value of Rpcb.
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i

Rpcb

Vf

Vf

Rw

Red path = active current path

S1

S2

Vbus C

VS

DS

Vf = Diode forward voltage drop

Vbus = DC link bus voltage

Rpcb = Drive PCB resistance

Sx = Transistors (x = 1,2)

Dx = Diodes (x = S,1,2)

Rw = Winding resistance

VS = Source voltage
M = Machine phase

i = Phase current
C = DC link capacitor

Vsrm

M

Vsrm = SRM terminal voltage

Figure G.4: Machine’s terminal voltage and phase current measurements during the demag-
netization phase

The machine’s experimentally gathered terminal voltage and phase current waveforms

at a particular operating point are captured and shown in Figure G.5 and their numerical

values at different rotor positions are highlighted and are used in the sample calculation for

the estimation of the total phase resistance (Rpcb+Rw). The applied source voltage is 11.2 V,

the forward voltage drop of the diodes is 0.7 V, and the on resistance of the MOSFETs is

11 mΩ. From Figure G.5, at θon = −15◦, the phase current is 0 A. Substituting these values

in Equation G.2, the machine’s terminal voltage is given as:

Vsrm = (11.2− 0.7)− 0
[
Rpcb + (2× 11 m)

]
= 10.5 (G.5)

At θon = −15◦, according to Figure G.5, the machine’s measured terminal voltage is also

10.5 V. From Figure G.5, at θon = +15◦, the measured phase current is 1.1 A. Substituting
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these values of the phase current at θon = +15◦ in Equation G.2, the following expression

for the machine’s terminal voltage is obtained:

Vsrm = (11.2− 0.7)− 1.1
[
Rpcb + (2× 11 m)

]
= 10.5− 1.1Rpcb − 24.2 m (G.6)

Equating the value of the machine’s terminal voltage from Equation G.6 to 9.7 V from

Figure G.5, the value of Rpcb is calculated as 0.7 Ω.

Figure G.5: Experimental waveforms of the machine’s terminal voltage and phase current
versus rotor position
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As a sanity check, the machine’s terminal voltage is calculated at θon = +15◦ when the

phase is switched off. After substituting all the values in Equation G.4, the following value

for the machine’s terminal voltage is obtained:

Vsrm = −10.5− (1.1× 0.7)− (2× 0.7)

= −12.7 (G.7)

From Figure G.5, at θon = +15◦ when the phase is switched off, the machine’s terminal

voltage is -12.7 V, which is also the result of Equation G.7. This concludes the method to

accurately estimate the phase resistance of a switched reluctance machine. For the machine

considered, the phase resistance value is 3.2 Ω (i.e., the sum of the winding resistance:

Rw = 2.5 Ω, the power converter’s circuit board resistance: Rpcb = 0.7 Ω, and the MOSFETs

on resistance: 2RDS(on) = 22 mΩ). It is worth noting that the MOSFETs on resistance only

factors in during the magnetization phase and not during the demagnetization phase.
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APPENDIX H

COMPARISON OF OUTPUT POWER IN NEGATIVE, ZERO, AND

POSITIVE FEEDBACK SCENARIOS

This appendix presents a comparison of the output power generated from a switched reluc-

tance generator when its phase currents enter a state of negative, zero, and positive feedback.

Figure H.1 shows the experimental waveforms of the generating phase currents in negative,

zero, and positive feedback. For the results shown in Figure H.1, phase advancing is em-

ployed with a turn-on angle specified by: θon = −15◦. The measured angular velocity (ω)

of the rotor shaft is: 400 rpm, and the applied bus voltage used is: Vbus = 12 V. For

the negative feedback generating phase current, the phase is switched off the earliest at:

θoffa = 7.8◦, and it eventually returns to zero at: θenda = 25.4◦. For the zero feedback gener-

ating phase current, the phase is switched off at: θoffb = 12.5◦, and it eventually returns to

zero at: θendb = 31.6◦. Lastly, for the positive feedback generating phase current, the phase

Figure H.1: Negative, zero, and positive feedback generating phase currents with respect to
rotor position. Vbus = 12 V and ω = 400 rpm
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is switched off the latest at: θoffc = 15.0◦, and it eventually returns to zero at: θendc = 34.5◦.

Next, the net charge is calculated for all three cases; however, in order to express the cal-

culated net charge in terms of Coulombs, the horizontal axis of Figure H.1 must first be

converted to time. To convert the horizontal axis to time, the θ axis of Figure H.1 is scaled

by a factor of 1/ω, i.e., the expression used is given by:

t =
θ

ω
(H.1)

Using a value of 400 rpm for angular velocity in Equation H.1 (the angular velocity must

also be converted1 from revolutions per minute to degrees per second), the scaling factor is

calculated as:

t = θ ×
(

60

400× 360

)

=
θ

2400
(H.2)

Using the scaling factor defined by Equation H.2, the horizontal axis of Figure H.1 is con-

verted to a time axis and is shown in Figure H.2. The time axis of Figure H.2 has also

been shifted in order to align the turn-on time ton with zero. The operating points for the

generating phase current waveforms shown in Figure H.2 are exactly the same as the ones

for the generating phase current waveforms shown in Figure H.1. The difference between

the two figures is the unit of the horizontal axis.

In terms of time (as shown in Figure H.2), for the negative feedback generating phase

current, the phase is switched off the earliest at: toffa = 9.3 ms, and it eventually returns

to zero at: tenda = 16.6 ms. For the zero feedback generating phase current, the phase is

switched off at: toffb = 11.2 ms, and it eventually returns to zero at: tendb = 19.2 ms. Lastly,

for the positive feedback generating phase current, the phase is switched off the latest at:

toffc = 12.2 ms, and it eventually returns to zero at: tendc = 20.3 ms.

11 revolution per minute is equal to 360/60 degrees per second.
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Figure H.2: Negative, zero, and positive feedback generating phase currents with respect to
time. Vbus = 12 V and ω = 400 rpm

The invested charge is defined by the area under the phase current from the instance the

phase is switched on: ton, to the instance it is switched off: toffx, where x = a, b, c represents

the negative, zero, and positive feedback scenarios, respectively. The expression for invested

charge Qinv is given as:

Qinv =

∫ toffx

ton

i dt (H.3)

Similarly, the harvested charge is defined by the area under the phase current from the in-

stance the phase is switched off: toffx, to the instance the phase current returns to zero: tendx,

where x = a, b, c represents the negative, zero, and positive feedback scenarios, respectively.

The expression for harvested charge Qhar is given as:

Qhar =

∫ tendx

toffx

i dt (H.4)
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The net charge Qnet is defined as the difference between harvested and invested charge and

is expressed as:

Qnet = Qhar −Qinv (H.5)

The output electrical energy of the system Eout is defined as the product of the net charge

(Qnet) and bus voltage (Vbus) and is expressed as:

Eout = VbusQnet (H.6)

Finally, the output electrical power Pout is calculated by considering the average of output

electrical energy (Eout) over a generating cycle, which is expressed as:

Pout =
Eout
Tc

(H.7)

where, Tc represents the time period of a generating cycle and is expressed as:

Tc = tendx − ton (H.8)

The output electrical power (Pout) specified by Equation H.7 may also be represented as:

Pout =
Vbus

(tendx − ton)

(∫ tendx

toffx

i dt−
∫ toffx

ton

i dt

)
(H.9)

Using the equations presented in this appendix, relevant parameters for the calculation of

output power for the generating phase currents shown in Figure H.2 are listed in Table H.1.

The net charge for the positive feedback scenario is the highest, which also results in the

highest output power generated by the machine. From Table H.1, the output power generated

from the positive feedback scenario is 45.6% higher than the zero feedback scenario.

Table H.1: Invested, harvested, and net charge along with output electrical energy and power
for the current waveforms of Figure H.2

Feedback scenario Qinv (mC) Qhar (mC) Qnet (mC) Eout (mJ) Pout (W)

Negative 2.88 2.52 −0.36 −4.32 −0.26
Zero 4.26 6.13 1.87 22.44 1.16
Positive 5.50 8.37 2.87 34.44 1.69
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The generating phase currents can also enter a state of negative, zero, and positive

feedback based on different values of angular velocity. The experimental waveforms shown in

Figure H.3, represent the generating phase currents in negative, zero, and, positive feedback.

In each scenario the turn-on and turn-off angles are the same, specified by: θon = −15degree

(i.e., phase advancing is employed), and θoff = 15degree. However, the angular velocity (ω)

of the rotor shaft is measured as: 130 rpm, 240 rpm, and 370 rpm for the negative, zero, and

positive feedback scenarios, respectively. The applied bus voltage (Vbus) is 12 V.

Figure H.3: Negative, zero, and positive feedback generating phase currents with respect to
rotor position for ω = 130 rpm, 240 rpm, and 370 rpm, respectively with Vbus = 12 V

A modified version of Equation H.9 to account for generating phase currents plotted with

respect to rotor position rather than time (as shown in Figure H.3) is expressed as:

Pout =
Vbus

(θendx − θon)

(∫ θendx

θoff

i dt−
∫ θoff

θon

i dt

)
(H.10)

Again, relevant parameters for the calculation of output power for the generating phase

currents shown in Figure H.3 are listed in Table H.2. Though the harvested charge from the
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negative feedback scenario is the highest, it is also the scenario with the highest invested

charge. On the other hand, the net charge for the positive feedback scenario is the highest,

which also results in the highest output power generated by the machine. From Table H.2,

the output power generated from the positive feedback scenario is 48.4% higher than the

zero feedback scenario.

Table H.2: Invested, harvested, and net charge along with output electrical energy and power
for the current waveforms of Figure H.3

Feedback scenario Qinv (mC) Qhar (mC) Qnet (mC) Eout (mJ) Pout (W)

Negative 39.60 30.68 −8.91 −106.92 −1.88
Zero 13.74 17.31 3.57 42.84 1.32
Positive 6.10 9.74 3.64 43.68 1.96
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APPENDIX I

SINGLE PULSE PEAK PREDICTION CONTROL FLOWCHART

This appendix presents a flowchart (shown in Figure I.1) for a switched reluctance generator

operating in single pulse mode, using the predictive control algorithm presented in Chapter 4.
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Figure I.1: Single pulse peak prediction control algorithm flowchart for SRGs

264



In Figure I.1, angular velocity (ω) is assigned as an input variable (i.e., a sensed variable

or a measured sate, which is typically not a control variable) and its rate of change is deter-

mined by the application the machine is used in. For instance, in wind turbine applications,

angular velocity is a slow changing variable compared to a commutation cycle. As a result,

the controller need not update the turn-off angle (θoff ) every commutation cycle, thereby

relaxing the constraints allowing for an increased computational time. On the other hand,

the maximum allowable phase current (imax) is assigned as a control variable in case the

machine’s output power needs to be modulated. The bus voltage (Vbus) is also assigned as

control variable to accommodate for any changes in the DC bus or when the voltage levels

are changed. The maximum allowable phase current (imax) and bus voltage (Vbus) can be

controlled as desired depending on the application the machine is used in. The remaining

parameters shown in the figure represent constant values specific to the switched reluctance

machine used and are calculated only in the beginning during the setting up and character-

ization of the hardware. In the flowchart provided in Figure I.1, the equation numbers are

also provided for reference.
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APPENDIX J

HARDWARE SETUP AND MACHINE TESTBED

This appendix presents images of the hardware used in order to record the experimental

measurements. Figure J.1 shows the top layer, while Figure J.2 shows the bottom layer of

a four phase asymmetric bridge converter’s printed circuit board. The dimensions of the

manufactured board are 12 inches long by 5 inches wide.

Figure J.1: Top layer of the asymmetric bridge converter’s printed circuit board

Figure J.2: Bottom layer of the asymmetric bridge converter’s printed circuit board
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Figure J.3 shows the top layer, while Figure J.4 shows the bottom layer of the printed

circuit board housing the DC link load resistances and the DC link capacitors. Both the

printed circuit boards are manufactured using 0.062 inch thick FR-4 composite material with

a 1 ounce per square foot copper pour. Figures J.5 through J.8 show the manufactured and

assembled asymmetric bridge converter printed circuit boards from various angles.

Figure J.3: Top layer of the printed circuit board for the DC link components

Figure J.4: Bottom layer of the printed circuit board for the DC link components
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Figure J.5: Front view of the four phase asymmetric bridge converter

Figure J.6: Back view of the four phase asymmetric bridge converter
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Figure J.7: Top view of the four phase asymmetric bridge converter

(a) (b)

Figure J.8: Four phase asymmetric bridge converter (a) left side view (b) right side view
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Figure J.9: Stator (left) and rotor (right) of the 8/6 switched reluctance machine used

Oscilloscope

8/6 SRM

Position encoder Current probe

Voltage probe

Prime mover

Drive PSU

Drive PCB

Microcontroller

DC Bus load resistor

DC Bus capacitor

Figure J.10: Switched reluctance machine testbed
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[116] G. Pólya. [Online]. Available: https://www.goodreads.com/quotes/995300-in-order-
to-solve-this-differential-equation-you-look-at [Accessed Jun. 3, 2019].

280

https://www.goodreads.com/quotes/995300-in-order-to-solve-this-differential-equation-you-look-at
https://www.goodreads.com/quotes/995300-in-order-to-solve-this-differential-equation-you-look-at


[117] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering, 2nd ed. Westview Press, 2015.

[118] D. G. Zill and M. Cullen, Advanced Engineering Mathematics, ser. Prindle, Weber &
Schmidt series in mathematics. PWS-KENT Publishing Company, 1992.

[119] M. Kiani, “Model predictive control of stator currents in switched reluctance genera-
tors,” in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE).
Istanbul, Turkey: Institute of Electrical and Electronics Engineers, Jun. 2014, pp.
842–846.

[120] V. Nasirian, S. Kaboli, and A. Davoudi, “Output power maximization and optimal
symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans-
actions on Industry Applications, vol. 49, no. 3, pp. 1031–1042, May 2013.

[121] S. Dixon and B. Fahimi, “Enhancement of output electric power in switched reluc-
tance generators,” in IEEE International Electric Machines and Drives Conference,
2003. IEMDC’03., vol. 2. Madison, WI, USA: Institute of Electrical and Electronics
Engineers, Jun. 2003, pp. 849–856.

[122] S. Dixon, “Enhancement of output electric power in switched reluctance generators
through a freewheeling switching strategy,” Master’s thesis, Dept. Elect. Eng., Univ.
of Missouri Rolla, Rolla, 2003.

[123] Texas Instruments, Inc. Piccolo TMS320F28035 Isolated controlCARD. [Online].
Available: http://www.ti.com/tool/TMDSCNCD28035ISO [Accessed Jun. 4, 2019].

[124] The MathWorks, Inc. (2018, Sep.) MATLAB R2018b. [Online]. Available: https://
www.mathworks.com/products/matlab/whatsnew.html. [Accessed Jan. 4, 2019].

281

http://www.ti.com/tool/TMDSCNCD28035ISO
https://www.mathworks.com/products/matlab/whatsnew.html
https://www.mathworks.com/products/matlab/whatsnew.html


BIOGRAPHICAL SKETCH

Prashant Carl Buck, son of Dr. Dipti Buck and Mr. Amarjit Buck, was born in 1989 at

the foothills of the Himalayas in Dehradun, India. He spent his early childhood years in

Dehradun, where he completed his initial schooling. He attended middle and senior school

at The Cathedral & John Connon School in Mumbai, India. He received his Bachelor of

Technology (B.Tech) degree in Electronics and Communications Engineering in 2011 from

SRM Institute of Science & Technology, Tamil Nadu, India. He received his Master of Science

(MS) degree in Electrical Engineering, specializing in Circuits and Systems in 2013 from The

University of Texas at Dallas, United States of America. He then began the pursuit of his

doctoral degree wherein his research focused on modeling techniques for switched reluctance

machines, especially on the phase current reconstruction and peak prediction for switched

reluctance generators operated in positive feedback single pulse mode. Prashant worked as

a Teaching and Research Assistant at the Electrical and Computer Engineering Department

of The University of Texas at Dallas during his doctoral studies. He was nominated for the

President’s Teaching Excellence Award for Teaching Assistants in 2017 and was recognized

for instructional excellence as a Teaching Assistant by the Erik Jonsson School of Engineering

and Computer Science in 2018. During his time as a doctoral student, he was also awarded

the Louis Beecherl, Jr. Graduate Fellowship in 2014 and 2016.

282



CURRICULUM VITAE

Prashant Carl Buck
prashantbuck@gmail.com

EDUCATION

University of Texas at Dallas 2019
Doctor of Philosophy (PhD) in Electrical Engineering GPA: 3.909/4
Department of Electrical Engineering

University of Texas at Dallas 2013
Masters of Science (MS) in Electrical Engineering GPA: 3.900/4
Department of Electrical Engineering

SRM University 2011
Bachelor of Technology (B.Tech) GPA: 9.26/10
Electronics and Communication Engineering

TECHNICAL STRENGTHS

IC Design & Testing CAD Tools: HSpice, VHDL, Cadence (350nm, 130nm, 90nm),
Waveview, Cosmoscope, Synopsys, Tetramax

Simulation Software: Ansys Maxwell, Simulink, PLECS, LabVIEW,
LTspice, TINA-TI, FilterPro

Hardware: Altium, Code Composer Studio, Embedded-C
TI C2000 Microcontrollers: F28035, F28335

Programming Languages: C, C++, MATLAB Scripting

FPGA Tools: Xilinx, Modelsim, Verilog

COURSE WORK - University of Texas at Dallas

Testing and Testable Design, Analog Integrated Circuit Design, Digital Signal Processing, VLSI Design,
RF & Microwave Systems Engineering, Advanced Digital Logic, Design Automation of VLSI Systems,
Special Topics in Power Electronics, Power Management Circuits, Control Modeling and Simulation in
Power Electronics, Semiconductor Processing Technology

TEACHING ASSISTANT - University of Texas at Dallas

EE/CE 3120 Digital Circuits Laboratory, EE/CE 3320 Digital Circuits, ENGR 2300 Linear Algebra,
EECT/CE 6325 VLSI Design, EEPE 6354 Power Electronics, CE 6303 Testing and Testable Design

AWARDS/SCHOLARSHIPS

· Erik Jonsson ECS Instructional Excellence, Teaching Assistant Award 2018
· Nominated for President’s Excellence in Teaching Award 2017
· Louis Beecherl, Jr. $4,000 Graduate Fellowship 2016
· Louis Beecherl, Jr. $4,000 Graduate Fellowship 2014
· Jonsson School $1,000 Graduate Study Scholarship 2013

PROFESSIONAL ASSOCIATIONS/MEMBERSHIPS

· Institute of Electrical and Electronics Engineers (IEEE)
· Integrated Design, Engineering, and Algorithmics (IDEA) Laboratory research group
· Renewable Energy and Vehicular Technology (REVT) Laboratory


	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Overview of Global Energy Requirements
	Identifying Upcoming Energy Demanding Regions of the World
	International Treaties Promoting Production of Clean Energy
	Clean Energy Production in China
	Clean Energy Production in India
	Clean Energy Production in Africa
	Future of the Transportation Sector

	Supply and Demand for Rare Earth Elements and Permanent Magnets
	Recycling of Electric Machines
	Future Concerns in a World Dominated by Renewable Technologies
	The Switched Reluctance Machine
	Applications of Switched Reluctance Machines
	Origin of the Switched Reluctance Machine
	Architecture of a Switched Reluctance Machine
	Tolopologies of Switched Reluctance Machines
	Advantages of Switched Reluctance Machines
	Limitations of Switched Reluctance Machines

	Organization of the Subsequent Chapters

	Operating Principles of a Switched Reluctance Machine and its Drive System
	Rotational Dynamics and the Magnetic and Electric Parameters
	Rotational Dynamics
	Magnetic and Electric Parameters

	Equivalent Circuit of a Switched Reluctance Machine
	Saturation in Switched Reluctance Machines
	Motoring Mode of Operation
	Nonlinear Torque Expression
	Linear Torque Expression
	Power, Torque, and Speed Characteristics

	Generating Mode of Operation
	Negative Feedback Scenario (V > e)
	Zero Feedback Scenario (V = e)
	Positive Feedback Scenario (V < e)
	Comparison of Negative, Zero, and Positive Feedback Scenarios

	The Asymmetric Bridge Converter

	Modeling of a Switched Reluctance Machine
	Prior Modeling Schemes
	The Flux Based Model
	The Inductance Based Model

	Limitations of the Existing Modeling Schemes
	Limitation of the Flux Based Model
	Limitation of the Inductance Based Model

	Numerical Methods of Integration
	Euler's Method
	Taylor's method
	The Runge-Kutta method
	Adams-Bashforth/Adams-Moulton method

	Proposed Modeling Scheme
	Premise for the Proposed Modeling Scheme
	Theoretical Derivation of Phase Current  (Excluding Winding Resistance)
	Theoretical Derivation of Phase Current  (Including Winding Resistance)

	Experimental Results
	Motoring Results
	Generating Results


	Phase Current Peak Prediction for  Switched Reluctance Generators
	Estimating the Rotor Position at the Phase Current Peak
	Estimation of the Turn-off Angle Based on a Comparative Approach
	Estimation of the Turn-off Angle Based on a One Step Approach
	Estimation of Turn-off Angle Under Zero and Negative Feedback Operation
	Experimental Results
	Effect of Winding Resistance
	Impact of Other Parameters on the Effect of Winding Resistance


	Effect of Freewheeling on Harvested Charge
	Freewheeling Phase Current Equations
	Phase current Analysis During the Magnetization Phase
	Phase current Analysis During the Freewheeling Phase
	Phase current Analysis During the Demagnetization Phase
	Relationship Between the Turn-off Angles

	Electrical Charge Harvested With and Without Freewheeling

	Conclusion and Future Research
	Conclusion
	Future Research
	Linear Saturation Model of a Switched Reluctance Machine
	An Analytical Expression for Phase Current Using a Linear Model


	Appendix A: Switched Reluctance Machine Specifications
	Appendix B: Coefficients of the Flux and Inductance Based Models
	Appendix C: Switched Reluctance Machine Characterization
	Alignment of the Machine's Rotor
	Saturation of Phase Flux Linkage
	Experimental Setup
	Experimental Measurements
	MATLAB Post Processing

	Appendix D: Fourier Coefficients of the Proposed Model's  Phase Inductance
	Appendix E: Motoring Logarithmic Function Coefficient Estimation
	Appendix F: Generating Logarithmic Function Coefficient Estimation
	Appendix G: Estimation of the Machine's Winding Resistance
	Appendix H: Comparison of Output Power in Negative, Zero, and Positive Feedback Scenarios
	Appendix I: Single Pulse Peak Prediction Control Flowchart
	Appendix J: Hardware Setup and Machine Testbed
	References
	Biographical Sketch
	Curriculum Vitae

