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VISUALIZING AND MODELING SPATIAL DATA UNCERTAINTY 

Hyeongmo Koo, PhD 
The University of Texas at Dallas, 2018 

ABSTRACT 

Supervising Professor:  Yongwan Chun 

This dissertation extends the understanding of spatial data uncertainty, which inevitably exists in 

any process of Geographic Information Sciences involving measuring, representing, and modeling 

the world. This dissertation consists of three specific sub-topics in visualizing and modeling spatial 

data uncertainty. First, a framework for attribute uncertainty visualization is suggested based on 

bivariate mapping techniques, and this framework is implemented in a popular GIS environment. 

The framework and implementation support many visual variables that have been investigated in 

the literature.  This research outcome can provide flexibility to enhance communication and 

visualization effectiveness for uncertainty visualization. The second sub-topic is a development of 

optimal map classification methods by simultaneously considering attribute estimates and their 

uncertainty. This study expands the discussion of constructing an optimal map classification result 

in which data uncertainty is incorporated in a map classification process. This method utilizes a 

shortest path problem in an acyclic network based on dissimilarity measures with various cost and 

objective functions. Finally, modeling positional uncertainty acquired through street geocoding is 

investigated to understand potential factors of the uncertainty and then to identify impacts of the 

uncertainty on spatial analysis results. This study accounts for spatial autocorrelation among 
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geocoded points in a modeling process, which has been barely included in this type of modeling. 

This research has contributions to increasing explanation and to extending geocoding uncertainty 

modeling by suggesting additional covariates and considering spatial autocorrelation.  
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CHAPTER 1 
 

INTRODUCTION 

The term uncertainty is basically used to describe the potential variation in values (Slocum et 

al. 2009) and is commonly interchangeably used for other terms: error (i.e., bias) and accuracy. 

However, error, which refers to a deviation from a true value, is difficult to quantify because a true 

value is generally unknown (Davis and Keller 1997). The term accuracy is a more quantifiable 

alternative (Buttenfield and Beard 1994), but it also should be carefully used because of its various 

meanings (Slocum et al. 2009). Specifically, by following recommendations of the Spatial Data 

Transfer Standard (SDTS), the U.S. Federal Geographic Data Committee (FGDC) lists five 

fundamental components to address with regard to data accuracy: lineage, positional accuracy, 

attribute accuracy, logical consistency, and completeness (ANSI 1998). Among these components, 

this dissertation mainly focuses on positional and attribute accuracy. In addition, this dissertation 

utilizes the term uncertainty because it refers to deviation from a true value without a precise 

magnitude, and has a narrower definition than the term accuracy (Davis and Keller 1997), which 

is caused by combining fundamental sources of uncertainty.   

Uncertainty inevitably exists in spatial data due to a discrepancy between spatial objects and 

reality (Longley et al. 2011). Although this discrepancy is augmented through spatial data 

manipulation and analyses in a Geographic Information Sciences (GIS) environment, it is 

generally assumed that spatial data are free of uncertainty when they are represented and analyzed 

(UCGIS 1996). However, visualization of spatial data is highly influenced by uncertainty (Slocum 

et al. 2009) and could mislead map readers into believing unreliable spatial patterns (Sun, Wong, 
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and Kronenfeld 2014). From a spatial analysis perspective, uncertainty also increases standard 

errors and reduces the power of an analysis (Zimmerman and Li 2010).   

The purpose of this dissertation is to contribute to extending the understanding of spatial data 

uncertainty in visualizing and modeling spatial phenomena. Previous studies have developed 

uncertainty visualization approaches that simultaneously visualize uncertainty along with its 

corresponding attribute estimates utilizing additional visual variables (e.g., MacEachren et al. 

2005). These approaches help to avoid misleading spatial patterns by providing map users with 

additional reliability information. Furthermore, uncertainty modeling is usually considered as a 

prerequisite process to reduce uncertainty in spatial data manipulation and analysis (Zhang and 

Goodchild 2003). Also, the modeling process can help to improve a comprehension of uncertainty 

because it contains processes for exploring possible covariates of this uncertainty (Zimmerman et 

al. 2007).  

This dissertation investigates three specific sub-topics in visualizing and modeling spatial data 

uncertainty. First, a framework for attribute uncertainty visualization is suggested based on 

bivariate mapping techniques, and is implemented in a popular Geographic Information Systems 

(GIS) environment. A comprehensive framework for uncertainty visualization has been 

investigated in the literature (e.g., MacEachren 1985; Gahegan and Ehlers 2000; Thomson et al. 

2005). However, the framework might not be suitable for an implementation in GIS software due 

to a lack of detailed strategies. Focusing solely on attribute uncertainty visualization, this 

dissertation proposes a framework for geovisualization of attribute uncertainty based on the types 

of attribute and suitable visual variables along with a proper implementation strategy. This 

framework and implementation utilize a wide range of visual variables that have been investigated 
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in the literature, and these can provide flexibility to enhance communication and visualization 

effectiveness. The proposed uncertainty visualization methods are illustrated with census variables 

at the block group level for the city of Plano, Texas. This research is published in the Journal of 

Visual Languages and Computing (Koo, Chun, and Griffith 2018). 

Second, optimal map classification methods for a choropleth map are developed to 

simultaneously consider attribute estimates and their uncertainty. Although the visualization 

methods of attribute uncertainty can provide map users reliability information for spatial patterns 

in a map, the spatial patterns still might be unreliable due to a general map classification that is 

performed based only on attribute estimates (Sun, Wong, and Kronenfeld 2016). Thus, this 

dissertation proposes optimal classification methods that utilize the following two dissimilarity 

measures: the class separability measure (Sun, Wong, and Kronenfeld 2014), and Bhattacharyya 

distance (Coleman and Andrews 1979). These methods utilize a shortest path solution in an acyclic 

network based on dissimilarity measures. This research addresses multiple criteria with various 

cost and objective functions in order to determine an optimal classification result. This research 

contributes to expanding the discussion about finding an optimal classification result incorporating 

data uncertainty in a map classification. Furthermore, a graphical diagnostic tool to interactively 

evaluate and compare optimal classification results has been developed. The proposed optimal 

classification methods incorporating uncertainty information are demonstrated with census 

variables for the counties in the state of Texas. It is published in the Annals of the American 

Association of Geographers  (Koo, Chun, and Griffith 2017). 

Finally, uncertainty modeling for geocoded locations is investigated in this dissertation. The 

modeling of geocoding positional uncertainty can help to implement imputation methods, and can 
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allow for realistic positional uncertainty simulations (Zimmerman et al. 2007). In addition, an 

identification of potential covariates (e.g., properties of street networks) that affect positional 

uncertainty of geocoded locations can help to detect their impact on spatial analysis results 

(Zimmerman and Li 2010), and to predict positional uncertainties at specific locations (Jacquez 

2012). However, covariates that can provide a comprehensive explanation are still seldom 

investigated (Zimmerman and Li 2010), and more covariates need to be explored to increase its 

understanding (Jacquez 2012).  Furthermore, spatial autocorrelation among geocoded points has 

been barely considered in this type of modeling. Thus, this research examines multiple covariates 

that rarely have been investigated, and considers spatial autocorrelation in regression models. In 

this research, 22,239 mailable residential addresses in Volusia County, Florida in 2016 are used 

for the modeling of geocoding positional uncertainty, focusing on positional uncertainty in street 

geocoding (i.e., address matching). This research is forthcoming in the International Journal of 

Applied Geospatial Research in 2018: volume 9, issue 4. 

  



 

5 

 

CHAPTER 2 

GEOVISUALIZING ATTRIBUTE UNCERTAINTY OF INTERVAL AND RATIO 

VARIABLES: A FRAMEWORK AND AN IMPLEMENTATION FOR VECTOR DATA* 

 
 
 
 
 
 

Authors - Hyeongmo Koo, Yongwan Chun, and Daniel A. Griffith 
 
 

School of Economic, Political and Policy Sciences 
 
 

The University of Texas at Dallas 
 
 

800 West Campbell Road 
 
 

Richardson, Texas 75080-3021 
 

 

 

 

NOTE: Koo, H., Y. Chun, and D. A. Griffith. 2018. Geovisualizing attribute uncertainty of 

interval and ratio variables: A framework and an implementation for vector data. Journal of 

Visual Languages & Computing 44:89–96. 

Permission granted republish or display content in this dissertation (4321561091509). 



 

6 

ABSTRACT 

Geovisualization of attribute uncertainty helps users to recognize underlying processes of 

spatial data. However, it still lacks an availability of uncertainty visualization tools in a standard 

GIS environment. This paper proposes a framework for attribute uncertainty visualization by 

extending bivariate mapping techniques. Specifically, this framework utilizes two cartographic 

techniques, choropleth mapping and proportional symbol mapping based on the types of attributes. 

This framework is implemented as an extension of ArcGIS in which three types of visualization 

tools are available: overlaid symbols on a choropleth map, coloring properties to a proportional 

symbol map, and composite symbols. 

Key Words: Uncertainty, geovisualization, bivariate mapping, GIS 
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2.1 Introduction 

Spatial data inevitably contain uncertainty in representations of their locations and attributes. 

The representation and measuring of the world by a data model should have a discrepancy with 

the real world because the processes of abstracting and generalizing are inevitable attempts to 

express the real world in a discrete and finite data model (Chrisman 1991). The U.S. Federal 

Geographic Data Committee (FGDC) lists the following five fundamental components of data 

quality by adhering to recommendations of the Spatial Data Transfer Standard (SDTS): lineage, 

positional accuracy, attribute accuracy, logical consistency, and completeness (ANSI 1998). 

Among these components, location uncertainty, which refers to inaccurate locations of geographic 

features, often results from global positioning system (GPS) and geocoding errors. Because 

attributes describing non-locational characteristics of geographic features usually are estimated 

with samples, attribute uncertainty is caused by sampling errors as well as measurement errors. 

Furthermore, uncertainty in spatial data can propagate through an aggregation of spatial units, 

which frequently is necessary due to confidentiality issues, data management issues, computational 

issues, and representation concerns. Especially, when location and attribute uncertainties 

simultaneously occur for individual observations, this spatial aggregation process can further 

increase the level of uncertainty in spatial data (MacEachren 1992). For example, when a sample 

point is assigned to an incorrect areal unit due to its locational error in an aggregation process (Hay 

et al. 2009), the location errors further contribute to the attribute uncertainty for an aggregated 

spatial unit.  

Understanding data uncertainty is important and often necessary in various research and 

practical activities (Deitrick and Wentz 2015). Researchers consider uncertainty that affects data 
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or a modeling process, such as differences between measured or predicted values and actual or 

true values. Decision makers usually contend with uncertainty based on how current conditions or 

policies affect the future results in their decision processes (Erskine et al. 2006). Visualization can 

provide leverage for a data source to meet social and scientific needs (Bertin 1983). But, a 

comprehensive visualization of uncertainty is difficult, because it often requires multiple 

representations of data from different perspectives. Especially, uncertainty visualization 

commonly requires a simultaneous representation of data in terms of their corresponding attributes 

on a map. Furthermore, uncertainty visualization can become more complex and more difficult to 

read and interpret for map readers (Leitner and Buttenfield 2000).  

Previous research has investigated visualization methods to effectively and efficiently 

represent spatial data uncertainty (e.g., MacEachren, Brewer, and Pickle 1998; MacEachren et al. 

2005; Sun and Wong 2010). However, uncertainty visualization is still not popular in a geographic 

information system (GIS) environment. One reason is the unavailability of uncertainty information 

for attributes (e.g., decennial census), and, hence, the demand for uncertainty visualization in 

common GIS software is not high, with several exceptions, such as Heuvelink, Brown, and van 

Loon (2007) and Pebesma, de Jong, and Briggs (2007). The purpose of this paper is to propose a 

framework for uncertainty visualization methods for vector data, and to prototype implementation 

of these methods in a standard GIS environment. It focuses on attribute uncertainty visualization 

of interval and ratio data. Specifically, the coloring properties for proportional symbols (CPPS) 

and composite symbol (CS) strategies can represent polygon, point, and line features, while the 

overlaid symbols on a choropleth map (OSCM) strategy is restricted to only polygon features. In 
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this study, the proposed methods are illustrated with census block group level variables for the city 

of Plano, Texas using only polygon features.  

 

2.2 Related work 

Uncertainty visualization can be considered the same as the display of any other information 

in conventional cartography (McGranaghan 1993). However, it often requires further attention 

because it needs to be used for a supplementary purpose to better understand its corresponding 

attribute (MacEachren 1992). For example, uncertainty information commonly is required to be 

presented with attribute information in uncertainty visualization. Technically, attribute uncertainty 

is depicted with visual variables in cartographic representations. Hence investigations in the 

literature address how Bertin’s (Bertin 1983) graphic variables can be logically matched to, and 

practically utilized for, different uncertainty types. For example, empirical studies (e.g., 

MacEachren, Brewer, and Pickle 1998; Drecki 2002) investigate the effectiveness of specific 

visual variables, such as color value, saturation, and opacity. MacEachren (1992) discusses how 

size, color value, and grain (texture) are useful for depicting uncertainty in numerical information, 

and how color hue, shape, and orientation can be used for depicting uncertainty in nominal 

information within the context of Bertin’s original graphic variables. Table 2-1 summarizes 

previous studies with visual variables investigated for attribute uncertainty visualization. 
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Table 2-1. Investigations of visual variables for attribute uncertainty visualization 

Studies Visual variables 

MacEachren (1992) 
Color saturation, crispness, transparency, 

and resolution 

Goodchild et al. (1994) Fog and Texture 

Jiang et al. (1995) Lightness, and saturation 

Davis and Keller (1997) Hue, color value, and texture 

Dreki (2002) Opacity 

Hengl (2003) Saturation and Lightness 

Xiao et al. (2007) Textures 

Sun and Wong (2010), Wong and Sun (2013) Textures 

Kubíček and Šašinka (2011) Lightness and saturation 

Slingsby et al. (2011) Hue and lightness 

Kaye et al.  (2012) Saturation 

Deitrick and Wentz (2015) Saturation and size 

 

Color components, including hue, color value (or lightness), and saturation, have been widely 

used to represent attribute uncertainties among these visual variables. Goodchild, Buttenfield, and 

Wood (1994) and Davis and Keller (1997) suggest that hue, color value, and/or texture can be used 

for depicting uncertainty. Also, MacEachren (1992) argues that low uncertainty should be 

represented by pure hues, while high attribute uncertainty should use a less saturated color (i.e., 

graying out uncertainty features). Jiang, Ormeling, and Kainz (1995) suggest visualization 

techniques for fuzzy spatial analysis, where lightness and saturation are used to represent 

uncertainties. Hengl (2003) uses a similar method based on the hue, saturation, and intensity (HSV) 

color model to depict uncertainty. These two methods rely on both saturation and value to increase 

whiteness based on the degree of uncertainty. Kubíček and Šašinka (2011) conducted an 
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intuitiveness testing for Hengl’s method, and their empirical test confirmed high uncertainty 

should be visualized with higher whiteness. More recently, Deitrick and Wentz (2015) merged a 

visual variable color value with saturation to depict attribute and uncertainty using a bivariate 

mapping technique. 

Transparency and fog also are viable candidates for representing uncertainty information. The 

metaphor of fog has been proposed by Beard et al. (1991), and an initial application of uncertainty 

visualization using transparency by MacEachren (1992) was developed based on the metaphor of 

fog. In this perspective, foggy elements, which make identifying the level of attribute difficult, 

indicate high uncertainty (MacEachren et al. 2005). Transparency, which also is called opacity, 

was proposed for integral symbolization. Drecki (2002) asserts that elements with higher 

transparency (i.e., less opaque objects) are logically considered as more certain things. 

MacEachren et al. (2012) confirm through empirical tests that transparency is one of the feasible 

visual variables for uncertainty representation.  

Texture has been popularly utilized when attribute uncertainties are represented with 

classifications. Texture is useful for a binary classification, but also can be used for ordered or 

numerical data with spacing between hatching in texture symbols (MacEachren 1992). Goodchild, 

Buttenfield, and Wood (1994) also discuss that texture is a proper visual variable for uncertainty 

visualization, and can introduce visual noise as a metaphor for noisy data. MacEachren, Brewer, 

and Pickle (1998) found that texture overlay symbols effectively represent the reliability of death 

rates, and Xiao, Calder, and Armstrong (2007) illustrate the effect of attribute uncertainty on map 

classification using texture. Recently, Sun and Wong (2010) and Wong and Sun (2013) also 
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utilized texture overlay symbols to visualize the quality of American Community Survey (ACS) 

data.   

Statistical maps for uncertainty visualization are constructed in a form of either adjacent 

display or bivariate mapping (MacEachren 1992). In adjacent display, which also is called a map 

pair strategy, attribute uncertainty is represented with an additional map accompanying the 

corresponding attribute map (e.g., MacEachren 1985; Leitner and Buttenfield 2000; Aerts, Clarke, 

and Keuper 2003). The bivariate approach also has been popularly used for uncertainty 

visualization, because an attribute and its associated uncertainty information may be considered to 

be a pair of variables. Previous studies conclude that the bivariate approach is more effective than 

adjacent display in terms of cluster detection (MacEachren, Brewer, and Pickle 1998; Kubíček and 

Šašinka 2011; Francis et al. 2015). A major advantage of this approach is that readers do not need 

to switch their focus back and forth between two maps to build connections between the estimates 

and their uncertainties (Sun and Wong 2010).  

 

2.3 A framework for uncertainty visualization based on bivariate mapping 

An attribute and its associated uncertainty generally are visualized using either an adjacent 

display or a bivariate mapping method (MacEachren 1992). Adjacent display refers to uncertainty 

being visualized separately from its corresponding attribute, whereas bivariate mapping represents 

both data and uncertainty in a single map. McGranaghan (1993) argues that the complexity of 

symbols in a bivariate mapping is beyond a threshold indicting the amount of information decoded 

at one time. However, uncertainty visualization without interfering with the decoding ability of 

users has been investigated (e.g., MacEachren 1995; Edwards and Nelson 2001). Furthermore, 
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studies (MacEachren, Brewer, and Pickle 1998; Edwards and Nelson 2001) show with empirical 

assessments that bivariate mapping also is more effective than adjacent display. With such support, 

bivariate mapping for uncertainty visualization primarily has been discussed and implemented as 

a visual tool in GIS. Implementation of bivariate mapping for uncertainty visualization can be 

supported by a framework for attribute uncertainty visualization. While previous research, 

including (Beard et al. 1991; Gahegan and Ehlers 2000; Thomson et al. 2005), attempted to provide 

a comprehensive framework for uncertainty visualization with considerations of location and 

attribute uncertainty, research summarized in this paper focuses solely on attribute uncertainty 

visualization, and suggests a framework for geovisualization of attribute uncertainty based on the 

types of attribute and visual variables.     

When uncertainty visualization based on bivariate mapping is implemented, two issues need 

to be cautiously decided. First, an appropriate thematic mapping technique needs to be selected to 

visualize a corresponding attribute considering both the nature of the underlying phenomenon and 

the purpose of maps (Slocum et al. 2009). Choropleth and proportional symbol maps commonly 

are used to display data collected for areal units, such as census tracts and counties. A choropleth 

map is appropriate to display numerical values that are summarized based on polygon boundaries 

(MacEachren and DiBiase 1991), and to focus on typical values for each individual unit (Slocum 

et al. 2009). Importantly, data standardization (e.g., population density) often is necessary in 

choropleth mapping to adjust for varying sizes of areal units. In contrast to the choropleth map, a 

proportional symbol map is used to represent raw counts or totals (e.g., number of people). A 

proportional symbol map also can be complementary to a choropleth map. Hence, when attributes 
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are visualized in a thematic map with uncertainty, different thematic mapping techniques should 

be used, depending on the types of attributes.  

Second, uncertainty visualization with a bivariate mapping approach can be categorized into 

either a visually integral method or a visually separable method (MacEachren, Brewer, and Pickle 

1998). The visually integral method modifies one visual variable to represent both attribute and 

uncertainty. For example, color can be modified with hue and saturation; hue usually represents 

an attribute, and saturation is suitable to represent uncertainty. The visually separable method adds 

another visual variable to represent uncertainty. For instance, usually hue and lightness of color 

are used to represent an attribute, and an additional visual variable, such as spacing between 

hatching in overlaid texture symbols, is combined to describe uncertainty. Researchers 

(MacEachren, Brewer, and Pickle 1998; Slocum et al. 2003) comment that the visually separable 

method is better than the visually integral method in terms of extracting information. Thus, 

uncertainty should be represented by other visual variables or symbols when bivariate mapping is 

employed for uncertainty visualization.  

Table 2-2 presents a framework for uncertainty visualization using a bivariate mapping 

technique that is proposed based upon the two preceding considerations. In this framework, 

standardized attributes are visualized with choropleth mapping, and their uncertainty is represented 

with overlaid symbols, such as texture and bars. Because hue and lightness typically are utilized 

for portraying an attribute in a choropleth map, other variables, including spacing, height, and size, 

can serve to effectively represent uncertainty. When a proportional symbol map is used for an 

unstandardized attribute, visually separable variables (e.g., color value, saturation, and size) can 

be used to display attribute uncertainty.   
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Table 2-2. A framework for attribute uncertainty visualization based upon bivariate mapping 

Type of Attribute Thematic mapping techniques 
Additional visual variable for 

uncertainty representation 

Standardized data Choropleth mapping Spacing, sizes, height 

Unstandardized data Proportional symbol maps Saturation, color value, size 

 

2.4 An implementation of uncertainty visualization  

Attribute uncertainty visualization based on bivariate mapping is implemented in ArcGIS in 

accordance with the preceding framework. First, an OSCM method is implemented to visualize 

attribute uncertainty. A choropleth map is suitable to represent attributes at the ratio scale, and the 

colors of the symbols (usually hue and lightness) in the choropleth map are used to represent 

uncertainty values. Additional overlaid symbols to visualize attribute uncertainty include textures 

(spacing), circles (size), and bars (size). A texture symbol is one of the most widely used visual 

variables to represent uncertainty in previous results (e.g., Goodchild, Buttenfield, and Wood 

1994; Xiao, Calder, and Armstrong 2007; Wong and Sun 2013). Texture symbols are the best in a 

binary classification (MacEachren 1992), but also can be employed for numerical variables using 

spacing between hatching (Sun and Wong 2010). Symbol sizes also can be utilized for depicting 

uncertainty (e.g., Deitrick and Wentz 2015), although they can be confusing when appearing with 

attribute values (Slocum et al. 2009). Table 2-3 illustrates uncertainty mapping with these three 

overlaid symbol maps.  
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Table 2-3. Overlaid symbols for uncertainty on a choropleth map 

Attribute 
Uncertainty (Low ↔ High) 

Spacing Size 

Choropleth 
map 

 
 

 

 

Second, CPPS is implemented to represent uncertainty in a GIS environment. A proportional 

symbol map is more appropriate to represent raw counts or frequencies (Slocum et al. 2009). The 

graphical sizes of symbols can be defined by a mathematical scaling based on the minimum and 

maximum values of attributes. Attribute uncertainty can be represented with color saturation or 

color value in HSV color model of proportional symbols. Table 2-4 graphically illustrates this 

approach. The saturation and color value linearly decrease from those of an original color to its 

minimum value (for which zero or a predefined quantity can be used). Thus, in terms of saturation, 

an attribute value with a high level of certainty is represented with pure hues, whereas those with 

low levels of certainty are visualized with less saturated colors (i.e., graying out uncertainty 

features) (MacEachren 1992). With regard to color value, highly certain attribute values are 

represented with pure hues, and, in contrast, highly uncertain attribute values are represented with 

low color values (e.g., black) (Jiang, Ormeling, and Kainz 1995; Davis and Keller 1997). 
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Table 2-4. Coloring properties for uncertainty on a proportional symbol map 

Attribute 
Uncertainty (Low ↔ High) 

Saturation Color value 

Size  
(proportional 

symbols)   
 

Standard errors, which measure a certain type of attribute uncertainty, enable visualizing a 

range of attribute values with a given degree of confidence, based upon a specific probability 

model. This confidence interval can be depicted with an individual symbol. Table 2-5 illustrates 

composite symbols in which both attribute values and such corresponding uncertainties are 

visualized. Conceptually, these composite symbols are constructed with three different 

proportional symbols overlaid for each individual location. Two of these three proportional 

symbols represent un- certainty by visualizing the upper and lower limits of attribute values at a 

given confidence level. Accordingly, this range, which is represented by the thickness of the circle 

symbols in Table 2-5, portrays a possible range of an attribute value. Corresponding at- tribute 

values appear in the range constructed by the upper and lower bound lines (e.g., the center line in 

the circle symbols in Table 2-5). The sizes of three symbols can be proportionally defined with 

corresponding values. With bar chart symbols, first and second items on the top of the symbol 

represent the lower and up- per confidence limits of an attribute value. The common boundary of 

lower and upper confidence areas represents an attribute value. These two approaches using a 

composite symbol allow users to directly compare uncertainties with corresponding attribute 

values and their confidence intervals. Moreover, with the circle composite symbols, a thicker 

bound around the center line indicates a wider confidence bound; in other words, a thick symbol 
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indicates that its standard error or attribute uncertainty is large. For a bar chart composite symbol, 

the level of uncertainty is represented by the combined heights of the first and second items. 

 

Table 2-5. Composite symbols for uncertainty visualization 

Attribute 
Uncertainty (Low ↔ High) 

Size of circles Height of charts 

Size  
(proportional symbol 

or chart) 
  

 

The proposed methods have been developed as an extension in ArcGIS 10.1 using C# on the 

Microsoft .Net Framework 4.1 This geovisualization extension of attribute uncertainty provides 

three visualization functions: OSCM, coloring properties to a proportional symbol map, and 

composite symbols. Figure 2-1 portrays the menu interface of the extension. Each function has its 

own graphic user interface (GUI), and the functions allow users to select fields for an attribute and 

its uncertainties with proper visual variables. The GUIs are presented in the Appendix A.  

 

 
Figure 2-1. Menu interface of the attribute uncertainty geovisualization extension 

 

                                                 

1 https://hdl.handle.net/10735.1/5609  
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2.5 An application 

The application presented in this section illustrates the implemented methods in ArcGIS using 

the 5-year ACS data (2009-2013). For the interval/ratio measurement scale, by definition the 

standard error is the standard deviation based upon sampling error. This quantifies the attribute 

uncertainty due to sampling (Sun and Wong 2010). These data include a margin of error (MOE) 

that is based upon the standard error of the sampling distribution for an attribute variable, as well 

as survey estimates. Because MOEs represent the lower and upper bounds for a 90-percent 

confidence level, the standard error of an estimate can be calculated directly from its MOE: that 

is, MOE = 1.645 × standard error (U.S. Census Bureau 2009). However, some studies (Li and 

Zhao 2005; Sun and Wong 2010) discuss that a visual representation of absolute error measures 

(e.g., the standard error of an estimate) may lead to an inappropriate conclusion and interpretation 

because large attribute values tend to have large standard errors. Furthermore, Francis et al. (2015) 

discuss the appropriateness of using relative measures of errors, such as the coefficient of variation 

(CV), for counts (e.g., the total number of households and of occupied houses) and median or mean 

values (e.g., median age and mean household income). Nevertheless, an absolute measure of error 

is still appropriate for proportional or ratio values (e.g., percentage of Asians), which are bounded 

by a specific value range: i.e., between 0 and 1 for proportional values, and between 0 and 100 for 

percentages (Francis et al. 2015) .  
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Figure 2-2. Study Area 

 

Two variables with their corresponding MOEs were obtained from the 5-year ACS data (2009-

2013) at the census block group level for the city of Plano, Texas, which is located in the 

northeastern part of the Dallas-Fort Worth metropolitan area (Figure 2-2). Median age was chosen 

to illustrate a choropleth map with overlaid symbols, and ‘the number of housing units’ was chosen 

to illustrate proportional symbols with coloring properties and composite symbols. A relative 

measure of errors, the CV, is used to represent attribute uncertainty for both variables.  

 

2.5.1 Overlaid Symbols on a Choropleth Map (OSCM) 

Figure 2-3 portrays visual representations of 2013 median age with its CV at the census block 

group level for the city of Plano using the OSCM method. Color symbols (specifically, hue and 

brightness) of the choropleth map represent the estimated median ages. The estimates are classified 



 

21 

with four categories and the natural break algorithm. Attribute uncertainties are visualized with 

three different types of overlaid symbols; textures, bars, and circles. Spacing between hatching in 

the texture overlay, heights of the bar symbols, and circle sizes furnish a way to represent the 

degrees of the CV of median age estimates; thus small spacing in texture, tall bars, and large circles 

describe a high level of uncertainty in estimated median age values. Because median age estimates 

and their uncertainties are integrated into one display frame, map readers need to concentrate on 

only one frame. Thus, users can easily build connections between the estimates and their 

corresponding CV levels. In the median age estimate maps, census block groups in the southern 

part of the city have relatively higher median age estimates. However, mapping only the estimates 

may not provide sufficient information with which map readers can easily recognize the credibility 

of the differences across census block groups. Census block groups with relatively higher CV 

levels also are observed in the southern part of the city, which indicates that the census block 

groups in this region contain a higher level of uncertainty in terms of their CV levels.   

However, these maps show some potential disadvantages of this visualization method. First, 

determining corresponding classes from texture overlay symbols is difficult, especially when small 

areal units have only a small number of lines because of large line spacing separations. There is 

no general guide to determine the largest spacing value, but each areal unit should be displayed 

with at least two lines to utilize spacing for a texture symbol. Hence, the largest spacing value 

should be judiciously chosen according to sizes of areal units and their corresponding attribute 

uncertainty levels. Second, the large size of overlaid circles or the tall height of overlaid bars can 

partially cover color on a choropleth map, and can cause problems in interpreting the distribution 

of estimates. The sizes of overlaid symbols may need to be restricted so that the underlying 
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geographic distribution of estimates can be effectively displayed. In most cases, attributes are still 

more important than their accompanying uncertainties.   

 

 
Figure 2-3. OSCM for 2013 median age and its coefficient of variation by census block group in 

Plano, TX 
 

2.5.2 Coloring Properties on a Proportional Symbol map (CPPS) 

Figure 2-4 visualizes the estimated numbers of housing units and their uncertainty at the census 

block group level in the city of Plano. The sizes of the circle symbols represent the numbers of 

housing unit estimates, and their uncertainties are portrayed with saturation and color value in 

terms of the HSV color model. The census block groups with low saturation and color values 

represent high uncertainty for the number of housing unit estimates. With a visually separable 

bivariate mapping technique adopted for this visualization tool, the additional visual variables 
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(saturation and color value) are combined into proportional symbols. Hence, this map should help 

map readers to easily build linkages between estimates and their corresponding CVs, as 

MacEachren, Brewer, and Pickle (1998) claim.  

 

 
Figure 2-4. Coloring properties on proportional symbol maps for the 2013 number of housing 

units and its coefficient of variation by census block group in Plano, TX 
 

This map also has some disadvantages that stem from common problems of proportional 

mapping. When the difference between the maximum and minimum values is extremely large, the 

map pattern can be difficult to read due to massive overlaps of symbols (Slocum et al. 2009). 

Although the drawing order of the symbols is controlled with regard to the symbol size range (i.e., 

the largest symbol to the smallest symbol) in order to prevent small symbols from being concealed 

by larger symbols, the minimum symbol size needs to be selected carefully in order to achieve 

communicative and visual effectiveness of a map. In addition, the legend for such maps may 

become complicated. Such a legend has two legend groups. Each of them shows, respectively, the 

distribution of estimates and uncertainties (CVs) with their own minimum and maximum values. 

But, because the CVs show only relative uncertainty for estimates, the legend does not necessarily 

clarify actual differences between estimates.   
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2.5.3 Composite Symbols (CS) 

Figure 2-5 portrays composite symbol maps for the number of housing unit estimates with 99 

percent confidence intervals based on a normal distribution assumption. In the top map, the center 

lines in the proportional symbols represent the estimates, and the bounds around the center lines 

portray corresponding confidence intervals. A thick bound indicates high uncertainty of an 

attribute value. For the bar chart symbol map, the two areas on the top of stacked bars respectively 

represent the upper and lower bounds of the attribute values. The common boundary between the 

first and second items on the top of a symbol in the symbols represents attribute values. That is, 

the number of housing unit estimates is represented by the combined height of the second and third 

items. The level of uncertainty is represented by the combined heights of the first and second items. 

The variable used in the composite symbols method in Figure 2-5 is identical to the one in the map 

displayed with CPPS in Figure 2-4. Although a relative comparison is only possible in the map 

using CPPS, this composite symbol map allows map readers to compare actual differences of 

estimates for a given confidence level, based on the sizes of the symbols. Composite symbol maps 

are particularly useful for simultaneously identifying uncertainty information in specific locations 

and general spatial patterns of an attribute. When a spatial pattern of an attribute is emphasized, 

an increase in symbol sizes can enhance the spatial pattern. When a user focuses on local data 

exploration, symbols can be adjusted accordingly. The implemented tool furnishes an easy way to 

change symbols as well as exploration functions, including zoom in/out. However, a composite 

symbol map has several potential issues that originate with proportional symbol mapping. These 

include an excessive number of overlaps and legibility of small size symbols (Slocum et al. 2009). 

Distinguishing the border between the estimate and confidence bounds is difficult especially when 
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symbol size is small and/or uncertainty is relatively small for a corresponding estimate. Also the 

level of legibility can vary depending on a user’s familiarity with symbols used. 

 

 
Figure 2-5. Composite symbol maps for the 2013 number of housing units with 99 percent 

confidence intervals by census block group in Plano, TX 
 

2.6 Summary and conclusions 

Geovisualization of spatial data can be enhanced by providing a visual representation of their 

attribute uncertainty, which in turn can assist users to more easily recognize an underlying pattern 

of data. However, it still lacks such tools in a GIS environment, and a general framework for 

uncertainty visualization. This paper proposes a framework for attribute uncertainty visualization 

based on bivariate mapping techniques, and provides such tools implemented in the ArcGIS 

environment. This framework principally utilizes choropleth maps and proportional symbol maps 

for thematic mapping of attributes based on the types of variables: count and ratio estimates. This 

implementation contains three types of visualization functionalities: overlaid symbols on a 

choropleth map, coloring properties for a proportional symbol map, and composite symbols. Many 
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of the visual variables that have been investigated in the literature are available to provide 

flexibility to enhance communication and visualization effectiveness. 

In this paper, the visualization tools were examined with a single dataset comprising 84 areal 

units. In addition, these visualization methods may need to be fine-tuned for specific datasets. For 

example, when a proportional symbol map is used, a large portion of symbols can overlap with 

each other, and, for another example, texture symbols with hatchings in a choropleth map may not 

be easily recognized for small areal units. In these circumstances, minimum and/or maximum 

symbol sizes need to be carefully set. Similarly, the maximum spacing between hatch lines also 

needs to be wisely set. Although a composite symbol map can allow map readers to directly 

compare differences between estimates and their uncertainties, small differences still are difficult 

to identify. Furthermore, a focused group survey conducted as future research would be useful to 

evaluate the effectiveness of the implemented tools with various geographical scales and 

resolutions.    
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ABSTRACT 

A choropleth map frequently is used to portray the spatial pattern of attributes, and its mapping 

result heavily relies on map classification. Uncertainty in an attribute has an influence on map 

classification, and, accordingly, can generate an unreliable spatial pattern. However, only a few 

studies have explored the implications of uncertainty in map classification. Recent studies present 

methods to incorporate uncertainty in map classification and generate a more reliable spatial 

pattern. Nevertheless, these methods often produce an undesirable result, with most observations 

assigned to one class, and struggle to find an optimal result. The purpose of this paper is to expand 

the discussion about finding an optimal classification result considering data uncertainty in a map 

classification. Specifically, this paper proposes optimal classification methods based on a shortest 

path problem in an acyclic network. These methods utilize dissimilarity measures and various cost 

and objective functions that simultaneously can consider attribute estimates and their uncertainty. 

Implementation of the proposed methods is in an ArcGIS environment with interactive graphic 

tools, illustrated with a mapping application of the American Community Survey data in Texas. 

The proposed methods successfully produce map classification results achieving improved 

homogeneity within a class.  

Key Words: uncertainty, map classification, choropleth map, GIS  
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3.1 Introduction 

Uncertainty is unavoidably included in spatial data due to discrepancies (usually due to 

measurement error) between the real world and observations (Longley et al. 2011). The United 

States (U.S.) Federal Geographic Data Committee (FGDC) describes spatial data uncertainty in 

terms of five fundamental components of data quality: lineage, positional accuracy, attribute 

accuracy, logical consistency, and completeness (ANSI, 1998). Among these components, 

measurement and sampling errors are the main causes of attribute accuracy or uncertainty, and 

increasingly uncertainty information is being reported together with estimates from survey data, 

such as margins of error (MOE) for the American Community Survey (ACS) data. Attributes often 

are visualized with thematic mapping techniques, and attributes measured with an interval or ratio 

scale are visualized with a choropleth map. Map classification, which has a substantial impact on 

the spatial pattern of a geographical phenomenon portrayed by a choropleth map, also potentially 

is influenced by data quality [i.e., uncertainty (Slocum et al. 2009, 425)]. Furthermore, uncertainty 

can provide map users with insight into the reliability of spatial patterns. However, uncertainty is 

largely ignored in choropleth mapping; rather, the presumption seems to exist that spatial data and 

maps are accurate (Sun, Wong, and Kronenfeld 2017).    

Incorporating uncertainty in mapping has been investigated in two major ways. First, many 

studies have developed approaches that simultaneously visualize uncertainty and its corresponding 

attribute estimates (i.e., observed values) using additional visual variables (e.g., MacEachren et al. 

2005). These visualization methods can provide users with reliability information for spatial 

patterns in a map, which still might be unreliable (Sun, Wong, and Kronenfeld 2017). That is, 

uncertainty is provided in a separate form than attribute estimates, but map classification is 
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performed based only on estimates. Second, several recent studies propose methods to incorporate 

uncertainty information within the map classification process. They focus on reliability of map 

classification results considering the uncertainty of attribute estimates. Sun, Wong, and Kronenfeld 

(2014, 2016) accomplish this goal by utilizing a statistical significance of differences between two 

observations based on their estimated values and their uncertainties. These researchers find class 

breaks that maximize statistical differences between classes, assuming that the distribution for 

each observation follows a bell-shaped curve in terms of its estimate and uncertainty. However, 

this method’s map classification is sensitive to outliers because an outlier almost always is 

significantly far from other observations. As a result, this method often produces a class with only 

a single outlier, assigning most observations to one (or two) classes. Sun, Wong, and Kronenfeld 

(2016) furnish a heuristic method utilizing multi-criteria for grouping purposes, which include a 

class separation level, within class variation, and balance in the number of observations across 

classes. This approach provides a tool to help a user choose a set of threshold values for those 

characteristics, but finding an optimal classification remains difficult. 

This study expands the notion of incorporating data uncertainty into optimal classification 

methods by utilizing the following two similarity measures that simultaneously consider attribute 

estimates and their uncertainty: the class separability measure (Sun, Wong, and Kronenfeld 2014) 

and Bhattacharyya distance (Coleman and Andrews 1979). The research summarized here also 

addresses multiple criteria to determine an optimal classification result. Furthermore, a graphic 

diagnostic tool to interactively evaluate and compare optimal classification results has been 

developed and is presented. The proposed optimal classification methods incorporating 

uncertainty information are illustrated with county-level variables for the state of Texas.  
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3.2 Literature Review 

Spatial data uncertainty has been investigated in relation to GIScience and remote sensing 

(Goodchild and Gopal 1989; Foody and Atkinson 2002; Zhang and Goodchild 2002; Couclelis 

2003; Chiles and Delfiner 2009). A number of studies have been conducted to: identify sources of 

uncertainty (e.g., Chrisman 1991), detect and measure uncertainty in spatial data and analysis 

results (e.g., Cayo and Talbot 2003; Bichler and Balchak 2007; Griffith et al. 2007), model or 

predict analysis results associated with uncertainty (e.g., Zimmerman et al. 2007; Zandbergen and 

Hart 2009), and develop methods or strategies to reduce or eliminate uncertainty in data and their 

analysis (e.g., Zimmerman 2008; Goldberg 2011). Also, uncertainty visualization now constitutes 

a sizeable research domain, and people in cartography, geography, and computer science have 

contributed to its development (e.g., MacEachren 1992; Pang 2001; Aerts, Clarke, and Keuper 

2003; Johnson and Sanderson 2003). 

Uncertainty visualization is an essential tool to help map users understand the reliability of 

spatial patterns for various research and practical activities (Deitrick and Wentz 2015). However, 

the visualization of uncertainty has been challenging, because it often requires displaying more 

information than conventional cartographical techniques can handle effectively in a single map. 

That is, a concurrent representation of data and their corresponding uncertainty information 

becomes complex and difficult to read and interpret (McGranaghan 1983). Thus, studies have 

investigated effective and efficient visualization methods for spatial data uncertainty (e.g., 

Goodchild, Buttenfield, and Wood 1994; MacEachren, Brewer, and Pickle 1998; MacEachren et 

al. 2005). Notably, using empirical subject tests, Leitner and Buttenfield (2000) report that 

inclusion of uncertainty information provides clarification rather than an increase in complexity. 



 

32 

Because uncertainty information should be presented with its corresponding attributes, many 

previous studies addressed uncertainty visualization by utilizing additional visual variables [see 

Bertin, (1983), for a comprehensive discussion of visual variables]. Among these visual variables, 

color components, such as color value, lightness, and saturation, have been widely used to describe 

uncertainty (e.g., MacEachren 1992; Jiang, Ormeling, and Kainz 1995; Leitner and Buttenfield 

2000; Hengl 2003; Deitrick and Wentz 2015). Also, transparency and fog (e.g., Beard et al. 1991; 

Drecki 2002; MacEachren et al. 2005), and texture (e.g., Goodchild, Buttenfield, and Wood 1994; 

MacEachren, Brewer, and Pickle 1998; Xiao, Calder, and Armstrong 2007; Sun and Wong 2010; 

Wong and Sun 2013) are practical candidates for describing uncertainty. These visualization 

methods can be used effectively to warn map readers about the reliability of spatial patterns, but 

the spatial patterns generated only with estimates can remain unreliable (Sun, Wong, and 

Kronenfeld 2017). For example, although they are statistically different, observations can be 

allocated to the same class. Recent map classification methods incorporating uncertainty 

information suggest a need to improve the reliability of class breaks.   

Optimal map classification has been investigated extensively in thematic mapping. Jenks’s 

natural breaks method, which is equivalent to unconstrained clustering (Fisher 1958), is popular 

and is utilized in extensively GIS packages (Dent 1999). Fundamentally, because Jenks’s method 

is a within group variance minimization approach, it determines class breaks to maximize 

homogeneity within classes (Murray and Shyy 2000). Cromley (1996) pursued related work. His 

approach considers map classification as a one-dimensional partitioning problem that also 

maximizes within group homogeneity. Cromley's work has been further extended to a bi-criterion 

(Murray and Shyy 2000) as well as a multi-criteria optimization framework (Armstrong, Xiao, and 
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Bennett 2003). However, implications of data uncertainties have not been explored in this 

optimization framework.  

Xiao, Calder, and Armstrong (2007) propose a robustness measure to explicitly evaluate the 

effects of data uncertainty in map classification. Their robustness measure is formulated with a 

probability that an attribute estimate falls into the class where the value is assigned. They also 

define a tolerance level for the unreliability of a map classification result, which can be interpreted 

as a minimum acceptable level for map users. Then, the percentage of observations within a given 

tolerance level is used to quantify overall classification robustness. They utilize this robustness 

measure to evaluate classification results based on different classification methods (e.g., equal 

interval, quantile, and natural breaks). This robustness measure is useful for evaluating the overall 

performance of a map classification result, and provides a warning to map users about the 

unreliability of class breaks (Sun, Wong, and Kronenfeld 2017). Sun and Wong (2010) suggest a 

modified natural breaks algorithm that extends the robustness measure. This algorithm identifies 

breaks using the significance of statistical differences between ordered attribute estimates. In 

detail, after sorting observations in ascending order based on their estimates, a statistical difference 

test is conducted between all pairs of consecutive observations. If a test result is significant, a class 

break is inserted between observations. One limitation of this approach is that a statistical test is 

conducted only between pairs of consecutive observations. The minimum probability value for 

this test can be for nonconsecutive observations. Another limitation is that the number of classes 

depends on a preset significant level, and, accordingly, map classification can result in too few or 

too many classes.  
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Sun, Wong, and Kronenfeld (2014) propose a class separability classification method by 

extending Sun and Wong’s modified natural breaks procedure. This class separability 

classification method uses the standard two-sample z-test2 to measure separability between two 

observations, with their estimates as means and their uncertainties as (unequal) variances. In most 

empirical cases, these observations are sampled data accompanied by a sample mean and sample 

variance (e.g., ACS data). A class separability measure between two classes is defined with the 

minimum confidence levels of the standard two-sample z-test among all pairwise combinations of 

observations in the two classes. Then, class breaks are determined with k (a preset number of 

classes) greatest class separabilities, or a preset significant level for the class separability measure. 

Consequently, class breaks are determined between two ordered estimates, with little overlap in 

their probability density functions that represent spreads of estimates based on their uncertainties. 

Although it is simple and fast, one weakness of this approach is that classification results from this 

method are sensitive to outliers. Hence, this method often produces a classification result in which 

most observations are assigned to a small number of classes, which is less desirable to display an 

underlying spatial pattern and to achieve a visual balance. Sun, Wong, and Kronenfeld (2016) put 

forward a heuristic classification approach that considers not only the class separability measure, 

but also other classification criteria, such as the unevenness of observation counts across classes, 

and within-class variability. The consideration of additional criteria can improve a map 

classification result in terms of balance among classes. For example, the degree of unevenness, 

which can be calculated as the standard deviation of the number of observations by class, can help 

                                                 

2 The standard two-sample z-test compares two means whose sampling distributions conform to a normal 
distribution with known standard deviations. 
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achieve a balanced result in terms of the number of observations for each class. Also, within-class 

variability, one criterion utilized in Jenks’s natural breaks method, can ensure that observations 

with similar estimates are assigned to the same class (Slocum et al. 2009). This heuristic method 

allows map users to find class breaks with reasonably high class separability measures, while 

satisfying other map classification criteria. However, untrained users still might encounter 

difficulties finding appropriate values for criteria that yield an optimal map classification.  

 

3.3 Method 

This section summarizes the formulation of an optimal map classification that utilizes a 

shortest path solution for an acyclic network (Cromley and Campbell 1991). While costs are 

defined as distance in a shortest path problem, they can be defined as a form of similarity or 

dissimilarity among observations within a class in a map classification problem. Here, a class 

separability measure and Bhattacharya distance are used to calculate costs taking into account 

uncertainty and attribute estimates.  

 

3.3.1 Optimal Classification 

An optimal classification problem, whose objective is to maximize internal homogeneity, can 

be formulated as a p-median problem for facility locations, whose objective is to minimize a total 

travel weighted distance, when the rank ordered attribute values are represented as points on a 

simple network (Monmonier 1973). A network structure for classification problems is much 

simpler than a network structure for p-median problems, because the network for a classification 
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problem is acyclic (Cromley and Campbell 1991). This section summarizes optimal classification 

methods that incorporate uncertainty information, extending the shortest path problem of Cromley 

(1996) to classify observations in an acyclic network. Figure 3-1 shows an example of an acyclic 

network with five nodes. Let � be the set of nodes in an acyclic network. In addition to starting 

and ending points of a network, the nodes that correspond to class breaks are located between 

observations; thus, the number of nodes in � is � + 1 for � observations. The lines denote ordered 

pairs (�, �), where � ∈ �, � ∈ �, and � < �, which represent the different groupings that include 

observations between nodes � to �. Given � observations in a dataset, there are �(� + 1)/2 possible 

lines in an acyclic network. A cost value associated with a line represents the cost of traversing 

that line, and, hence, this cost commonly is measured with a type of physical distance between two 

nodes in a shortest path problem. In a map classification problem, a cost value often is measured 

with a level of heterogeneity (or homogeneity) among observations in the same class. For example, 

in univariate map classification without considering uncertainty, a cost value can be calculated as 

the sum of deviations from a class mean. Then, an optimal solution can be found with a path that 

minimizes a total cost (or maximum cost) subject to a preset number of lines, which corresponds 

to the number of classes. In Figure 3-1, thicker lines of (0, 2) and (2, 4) highlight a sample solution 

with two classes, which respectively represent one class with observations between nodes (0, 2), 

and another class with observations between nodes (2, 4).         
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Figure 3-1. An example of an acyclic network with five nodes: the thicker lines of (0, 2) and (2, 
4) represent a sample solution with two classes [one class with observations between nodes (0, 

2), and another class with observations between nodes (2, 4)] 
 

3.3.2 Cost Functions 

An optimal classification result is strongly affected by the definition of a cost function 

(Cromley 1996). In univariate classification without considering uncertainty, costs commonly are 

measured with the sum of deviations from a central tendency measure for each class, such as a 

class mean (Jenks 1977). However, no obvious central tendency measure exists when observations 

are compared with their uncertainty as well as their estimates, and, subsequently, deviations from 

a selected central tendency measure are not easily defined. This situation suggests a need to use 

alternative measures for heterogeneity among observations in the same class.  

In the research supporting this section, a cost value (i.e., heterogeneity within a class) was 

computed as a composite value, accounting for uncertainty, with all pairwise distances among 

observations in the class. The following two measures were employed to calculate the distance 

(i.e., the difference) between two observations: a class separability measure, and Bhattacharyya 

distance. First, a class separability measure (Sun, Wong, and Kronenfeld 2014) was used to 

calculate differences between observations using their attribute estimates with uncertainties. This 
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class separability utilizes a statistical difference assuming that observations follow a normal 

distribution, because a distribution of uncertainty converges to a normal distribution based upon 

the Central Limit Theorem. This class separability measure can be expressed as 

��(�,  �) = ��̅���̅��
����������

, (1)     

where ��̅� − �̅ � is the absolute difference between two estimates, and !"� and !"  are their 

respective standard errors. This equation is derived from the standard z-test, and z-scores are used 

to quantify the distance (or the difference) between two observations. 

The second measure is Bhattacharyya distance, which is a dissimilarity measure that quantifies 

the dissimilarity of two discrete or continuous probability distributions (Bhalerao and Rajpoot 

2003). Dissimilarity measures have been widely used in clustering methods (Mennis and Guo 

2009), such as K-means, and self-organizing maps (SOMs) (Kohonen 2001). Bhattacharyya 

distance frequently is used in feature selection and extraction for remotely sensed images (e.g., 

Schmidt and Skidmore 2003; Mas et al. 2004). Assuming that an observation follows a known 

distribution (e.g., normal), Bhattacharyya distance can be utilized to quantify differences between 

observations accounting for both their attribute estimates and uncertainties. Bhattacharyya 

distance between two normal distributions can be calculated with the following equation (Coleman 

and Andrews 1979):  
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+ ����

����
+ 2,- + '

( *%�̅���̅�&�
���������

-  , (2) 
where �̅� and �̅  are the attribute estimates for observations � and �, and ln denotes the natural 

logarithm. The first term quantifies the difference between the variances, and the second term 

compares both estimates and variances. Thus, Bhattacharyya distance can compute a non-zero 
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distance between two observations with the same estimate and different variances. In contrast, the 

class separability measure always returns zero for such distributions.     

A cost is calculated, based on distances between pairs of observations, in two different ways. 

First, the sum of pairwise distances in a class is utilized. A large sum of pairwise distances can 

indicate that some observations in a class tend to differ from other observations in the same class. 

Second, the maximum pairwise distance in a class is used for its cost value. This quantity controls 

for the worst case scenario when calculating homogeneity within a class. Table 3-1 presents 

combinations of the two pairwise distance measures, and two ways to compute cost values. In 

Table 3-1, 0�,  represents all pairs of observations within a grouping.      

   

Table 3-1. Types of cost functions for map classification 

 Measures 
Cost determination The class separability Bhattacharyya distance 

Sum of pairwise distances 1�, =  2 ��(3)
4∈5�,�

 1�,  =  2 #$(3)
4∈5�, �

 

Maximum pairwise distance 1�, =  max4∈5�,�
��(3) 1�, =  max4∈5�,�

#$(3) 

 

3.3.3 Objective functions and formulations 

A shortest path problem can be solved using either the Dijkstra (1959) or other heuristic 

algorithms, such as A* (Hart, Nilsson, and Raphael 1968). Also, integer programming (IP) is a 

well-known alternative strategy. IP problems where the objective function and all constraints are 

linear can be solved relatively effectively using a branch-and-bound algorithm (Dean 2011). A 

simple IP problem can furnish a way to solve the proposed map classification problem. This paper 
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presents an optimal map classification formulation with two different objective functions based on 

the cost functions described in the previous section. The first objective is to minimize a total sum 

of costs, focusing on the overall efficiency of a map classification. The second is to minimize the 

maximum cost among classes, which improves efficiency by controlling for the worst case. 

Fundamentally, it utilizes the Minimax principle, which commonly is applied to a facility location 

problem (e.g., Toregas and ReVelle 1972; Erkut, Francis, and Tamir 1992). Accordingly, Table 3-

2 shows that eight configurations for optimal classification models relate to the two objective 

functions, two cost determination methods, and two pairwise distance measures.  

 

Table 3-2. Configurations for optimal map classification with their acronyms 

  Measures 

Objective functions Cost determination 
The class 

Separability 
Bhattacharyya 

distance 
Minimize  

a total Sum of costs 
Sum of pairwise distances SSS SSB 

Maximum pairwise distance SMS SMB 
Minimize  

a Maximum cost 
Sum of pairwise distances MSS MSB 

Maximum pairwise distance MMS MMB 

 

An optimal map classification that minimizes a total sum of costs can be formulated as follows:  

Minimize:          ∑ 1�, :�, �,                                                  ∀�,  � ∈ �, � < � (3) 

Subjected to:      ∑ :�,4� ∈<=> = ∑ :4,  ∈?@A>                     ∀3 ∈ �  (4) 

 ∑ :�,  = 1                                                ∀� ∈ BCD�  (5) 

 ∑ :�,E� = 1                                                 ∀� ∈ F�E (6) 

 ∑ :�, �,  = G                                              ∀�,  � ∈ �, � < � (7) 
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 :�, ∈ H0,1J                                                ∀�,  � ∈ �, � < �  (8) 

 

where :�,  is a binary decision variable, with one denoting that a line from � to � is part of a solution, 

and zero denotes otherwise; 1�,  is the cost for a line from � to �; F�4 is a set of all nodes that start 

lines terminating at node 3; and, BCD4 is a set of all nodes that terminate lines starting at node 3. 

Nodes K and L respectively denote a starting node and an end node in a network; these nodes 

correspond to the smallest and largest values in the context of map classification. Equation (3) is 

the objective function for the model, which minimizes a total sum of costs. Equation (4) is a flow 

constraint to ensure that if a line terminates at a node, then the next line should begin from that 

node. Equation (5) ensures that the first node (i.e., the minimum value) participates in only the 

first line that begins from the first node (i.e., the first class). Similarly, equation (6) ensures that 

the last node (i.e., the maximum value) participates in only the last line (i.e., the last class). 

Equation (7) restricts the number of classes, and equation (8) is a binary integer restriction 

indicating whether or not each line is a part of a solution.  

The second specification with the Minimax objective function can be defined as follows: 

 

Minimize:  y  (9) 

Subjected to:  Equations (4) ~ (8) 

 M ≥ 1�, :�,                                                 ∀�,  � ∈ �, � ≤ �  (10) 

 

This objective function is set with an auxiliary decision variable M, and equation (10) ensures that 

this decision variable achieves its maximum value.  



 

42 

3.3.4 An Optimal Map Classification Implementation 

The proposed optimal classification models have been implemented as an extension of ArcGIS 

10.1 (ESRI 2011) using C# in the Microsoft .Net Framework 4. The optimization problems are 

solved with Gurobi optimizer 6.5.0, which supports a branch-and-bound algorithm that is an exact 

method for finding an optimal solution. Figure 3-2 portrays the interface and graphic display of 

the map classification tool. In the right-hand side of the graphical user interface (GUI), all attribute 

estimates are displayed as blue dots in ascending order, together with their corresponding 

uncertainties that are represented as horizontal bars based on predefined confidence intervals. The 

vertical lines represent class breaks, and the colors of the bottom rectangles match the color 

symbols for classes of a choropleth map. This graphic display can be used to visually compare 

statistical differences of estimates, and evaluate a classification result. Observations in this graph 

dynamically link to features in a map so that a user can interactively explore data with their 

locations. Using the options in the left-hand side of the GUI, configurations of map classifications 

can be set; that is, a number of classes, optimal map classification strategies, and measure types 

(see Table 3-2 for configuration details). Also, a confidence level can be specified that determines 

the length of the horizontal bars in the graph. Finally, colors for a choropleth map can be controlled.   
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Figure 3-2. The GUI of the implemented tool 

 

3.4 A Comparative Application  

This section demonstrates the proposed optimal classification methods using the 5-year ACS 

data (2010-2014). This study directly uses ACS data, which contain MOE values that are 

calculated from the standard errors of the sampling distributions for survey estimates. A standard 

error (used to calculated a MOE) is a typical measure used to evaluate attribute uncertainty due to 

sampling error (Sun and Wong 2010). The statistical difference measures in this paper (i.e., the 

class separability measure and Bhattacharyya distance) can be calculated with standard errors as 

well as their estimates. Because ACS MOEs show the confidence bounds for a 90-percent 

confidence interval (U.S. Census Bureau 2009), the standard error of each estimate is derived 

directly from its MOE.  

Specifically, the estimates of median household income (in 2014 inflation adjusted dollars) 

with their corresponding MOEs for the 254 counties in Texas are used in this application. Table 

3-3 reports descriptive statistics for the dataset. The largest estimate of median household income 

is $86,597, and the largest MOE is $65,629. The largest MOE is observed for Loving County, with 
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a median household income of $65,625. This MOE is extremely large compared with its estimate. 

The small population of Loving County (82 people and 39 households, according to the 2010 

census) produces this extreme uncertainty. This county has a considerable influence on a map 

classification result, especially ones based upon the Bhattacharyya distance measure.  

 

Table 3-3. Summary statistics of median household income (in $) for the 254 counties in Texas  

N 
Estimate MOE 

Mean Min Max Mean Min Max 

254 46,352 22,176 86,597 4,576 338 69,245 

Source: the 5-year (2010~2014) American Community Survey 
 

Table 3-4 reports map classification results for the proposed methods; this table contains the 

range of observation counts3, and the total (i.e., class sum) and maximum (i.e., max) values. 

Underlined values are the lowest value in each column. Because an optimal classification method 

minimizes heterogeneity (or maximizes homogeneity) within a class, while incorporating 

uncertainty, the classification results of the proposed methods are compared with those of the class 

separability (Sun and Wong 2010) and the natural breaks classification methods. First, the class 

separability result has 247 for the range of observation counts, which indicates the classification 

result is highly unbalanced. That is, most of the observations are assigned to a single class. Figure 

3-3 shows that the separability class breaks concentrate at lower values. This outcome is consistent 

with that for the separability method, which tends to produce a result in which class breaks tend to 

                                                 

3 The range of observation counts is calculated as the difference between the largest and smallest numbers of 
observations in classes. 
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be around extreme values (Sun, Wong, and Kronenfeld 2017). Thus, this classification method has 

difficulty achieving a balance in terms of the number of observations assigned to classes. The 

outcome based on a maximum pairwise distance for each class (i.e., SMS, SMB, MMS, and MMB; 

see Table 3-2 for acronym definitions) also shows relatively unbalanced results based on the range 

of observation counts in Table 3-4. In contrast, the optimal classification based on a sum of 

pairwise distances has an improved result in terms of balance. That is, SSS, MSS, SSB, and MSB 

in Table 3-4 have a more uniform distribution of numbers of observations across classes. The 

natural breaks classification achieves a relatively well balanced result in terms of the number of 

attribute estimates for each class (Table 3-4 and Figure 3-3), but considers only variances among 

attribute estimates while ignoring their uncertainties (Jenks 1977). The natural break classification 

result shows that counties forming large metropolitan areas in Texas (i.e., Dallas-Fort Worth, 

Houston, San Antonio, Austin) have high median household incomes. Some counties with high 

median household incomes also are located in the panhandle and west central regions of the state. 

In contrast, counties that are near the Mexican border tend to have low median household incomes. 

More counties with relatively low median household incomes are located in the eastern region of 

the state. The class separability map does not reveal this pattern, with most counties assigned to 

Class 6.  
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Table 3-4. A comparison of optimal classification methods with the class separability and the natural breaks classification methods 

Methods 

Range 
of 

observation 
counts 

Class separability measure Bhattacharyya distance 

Total Maximum Total Maximum 

Class Sum Class Max Class Sum Class Max Class Sum Class Max Class Sum Class Max 

Natural 
Break 

79 6235.04 58.09 3051.05 13.26 4192.1 155.22 1769.77 43.98 

Class 
separability 

247 109733.77 61.65 109733.67 61.55 258141.51 947.37 258141.36 947.22 

SSS 38 4544.7 45.19 907.65 14.76 3586.15 111.06 842.85 54.51 

SMS 175 31561.98 32.31 30915.77 17.33 32437.99 92.29 31857.88 75.22 

MSS 34 4602.44 50.54 788.28 20.11 4176.32 157.7 1570.95 101.15 

MMS 72 7095.79 48.72 2349.88 10.54 4927.31 108.94 1512.58 27.98 

SSB 51 4811.36 49.34 1239.58 14.76 3423.29 127.97 713.91 54.51 

SMB 131 13421.61 37.34 11482.10 10.54 9791.54 73.95 8075.92 27.98 

MSB 47 4667.13 43.47 1184.55 14.76 3439.95 107.68 604.19 54.51 

MMB 105 8635.96 49.92 5991.84 10.54 5859.46 109.78 3789.08 27.97 

Note:  (1) the best results are highlighted in bold and underlined. 
  (2) see Table 3-2 for the acronym definitions.
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Figure 3-3. Classification results using the natural breaks and class separability methods 

 

All optimal classification methods seek to produce homogeneous classes based upon different 

criteria (see Table 3-2), while often creating different spatial patterns of classification results. 

Figures 3-4 and 3-5 display the optimal classification results using the class separability measure. 

Among these, the SMS result is noticeably different from the others. The largest shift in groups 

occurs in the first group in the SMS result. In detail, 144 counties assigned to either Class 2, 3, or 

4 in the SSS and MSS results are shifted into Class 1 in the SMS result. Only one county is assigned 



 

48 

to Class 3 in the SMS result, causing a large value for the range of observation counts. With a 

similar map classification result, the SSS and MSS criteria have a similar spatial pattern. Figure 3-

6 portrays the changes of the map classification results from SSS to MSS, and then to SMS. Figure 

3-6a displays the 15 counties that are classified differently according to the SSS and MSS criteria. 

In contrast, 214 counties in the SMS result map (Figure 3-6b) are classified differently than in the 

SSS result map, including the aforementioned 144 counties that are assigned to Class 1 according 

to the SMS criterion. 

 

 
Figure 3-4. Optimal classification results by the class separability measure 
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Figure 3-5. Optimal classification result maps using the class separability measure with different 

optimization criteria 
 



 

50 

 
Figure 3-6. Class assignment differences using the separability measure: changes from SSS to (a) 

MSS, and (b) SMS 
 

Figures 3-7 and 3-8 display the results of optimal map classification using Bhattacharyya 

distance. The SSB and MSB results are more similar than those of SMB and MMB. This outcome 

also may indicate that a choice of cost determination has more influence on a classification result 

than the objective functions. When Bhattacharyya distance results are compared with the class 

separability results, a noticeable difference can be observed with Loving County, which has the 

longest error bar in Figure 3-7. Because the Bhattacharyya distance measures a dissimilarity 

between probability distributions (Reyes-Aldasoro and Bhalerao 2006), the high standard error of 

Loving County can increase a distance measure. In contrast, its class separability measure, which 

is inversely proportional to its standard error, is smaller than Bhattacharyya distance, and has less 

impact on map classification. Figure 3-9 portrays differences in the map classification results 

between the SSB to MSB criteria. Figure 3-9a displays a similar result for SSB and MSB. Only 13 
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counties are classified differently in these two maps. In contrast, 154 counties are classified 

differently in the SSB and SMB maps (Figure 3-9b).  

 

 
Figure 3-7. Optimal classification results based on Bhattacharyya distance 
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Figure 3-8. Optimal classification result maps using Bhattacharyya distance 
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Figure 3-9. Class assignment differences using Bhattacharyya distance: changes from SSB to (a) 

MSB, and (b) SMB 
 

3.5 Conclusions and limitations 

This paper summarizes a study that investigated map classification by combining optimal 

classification methods (Cromley 1996) with various cost and objective functions that 

simultaneously consider attribute estimates and their uncertainties. Overall, the proposed 

classification methods successfully produce results achieving homogeneity within a class with a 

consideration of uncertainties as well as their attribute estimates. These methods also achieve a 

more balanced allocation of observations across classes than the class separability classification 

method. More specifically, the class separability measure and Bhattacharyya distance were used 

to compare statistical differences between a pair of observations. Also, costs were determined in 

two different ways, with objective functions minimizing either a total sum of costs or a maximum 

cost. The empirical application to 254 counties in Texas shows that cost determination has more 
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influence on the classification result than the objective function specification, and it can contribute 

to a more balanced number of observation among classes. In addition, a comparison of 

Bhattacharyya distance and separability results reveals that a noticeable difference between them 

can emerge for observations with greater uncertainty. 

This paper contributes to map classification for thematic mapping in two ways. First, it extends 

map classification by incorporating uncertainty in an optimal classification. Previous approaches 

that incorporate uncertainty in map classification (Sun, Wong, and Kronenfeld 2014, 2017) often 

produce a less desirable result, with most observations assigned to a single class, and struggle to 

find an optimal result. Second, this paper presents a map classification tool that is implemented in 

a popular ArcGIS environment. This implementation furnishes a way to generate a thematic map 

that simultaneously considers attribute estimates and their uncertainties in its classification. This 

tool also can be used for an exploratory spatial data analysis that compares the underlying patterns 

of a spatial distribution while incorporating uncertainty information.  

Some limitations to the proposed method merit further investigation in future studies. First, a 

performance evaluation (e.g., accuracy and robustness) for the devised optimal map classification 

with uncertainty needs to be investigated. Some common approaches are not necessarily effective 

in evaluating map classification while considering uncertainty. Jenks and Caspall (1971) suggest 

an overall accuracy index that combines individual indices that measure each objective of map 

classification. One weakness of this index is that the priorities of objectives still need to be assigned 

arbitrarily by map designers (Evans 1977). The robustness measure by Xiao, Calder, and 

Armstrong (2007) also has been used to evaluate the overall performance of classification methods 

(e.g., Traun and Loidl 2012; Sun, Wong, and Kronenfeld 2014). However, this measure only 
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evaluates the robustness of attribute estimates, and its tolerance level for the unreliability of a map 

classification is defined subjectively by a user. Second, the performance of the proposed map 

classification can be affected by the number of observations. A branch-and-bound algorithm 

solution can be extremely time consuming when the number of nodes in a branching tree is too 

large. Thus, as the number of observations increases, the time needed to find an optimal solution 

increases at an exponential rate. Third, the normality assumption for empirical data also can be 

problematic, although many non-normal variables can mimic, and hence are indistinguishable 

from, a bell-shaped curve in numerous circumstances (e.g., Poisson, binomial, beta, 

hypergeometric, gamma, chi-squared, Student t, F, negative binomial, and log-normal; see Griffith 

2014). ACS attribute estimates are anticipated to be less sensitive to this normality assumption 

because the data provider with authority (i.e., the US Census Bureau) indicates that they follow a 

normal distribution (U.S. Census Bureau 2009). Designed based random sampling and the Central 

Limit Theorem furnish the justification for their contention. But the Central Limit Theorem is not 

always applicable for other empirical data, and fails to hold for a Cauchy random variable. A data 

transformation (i.e., Box-Cox power or Manly exponential transformation for normality; see 

Griffith 2013) may be necessary. Furthermore, although Bhattacharyya distance can be used for 

other distributions, the separability measure that utilizes the standard two-sample z-test may not 

be applicable for other distributions. 
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ABSTRACT  

Modeling positional uncertainty helps to understand potential factors of uncertainty, and to 

identify impacts of uncertainty on spatial analysis results. However, modeling geocoding 

positional uncertainty still is limited in providing a comprehensive explanation about these 

impacts, and requires further investigation of potential factors to enhance understanding of 

uncertainty. Furthermore, spatial autocorrelation among geocoded points has been barely 

considered in this type of modeling, although the presence of spatial autocorrelation is recognized 

in the literature. The purpose of this paper is to extend the discussion about modeling geocoding 

positional uncertainty by investigating potential factors with regression, whose model is 

appropriately specified to account for spatial autocorrelation. The analysis results for residential 

addresses in Volusia County, Florida reveal covariates that are significantly associated with 

uncertainty in geocoded points. In addition, these results confirm that spatial autocorrelation needs 

to be accounted for when modeling positional uncertainty. 

Key Words: Positional uncertainty, geocoding, uncertainty modeling, spatial autocorrelation 
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4.1 Introduction 

Uncertainty is inevitably embedded in any process involving measuring and representing the 

world, and uncertainty in spatial data and spatial data analysis has been extensively investigated 

in Geographical Information Sciences (Griffith, Wong, and Chun 2015). Positional uncertainty, 

which is one of five uncertainty types identified by the United States (U.S.) Federal Geographic 

Data Committee (FGDC), refers to inaccurate locations of geographic features (ANSI 1998). A 

common source of positional uncertainty is inaccuracy of the global positioning system (GPS) and 

geocoding errors. Horizontal and vertical positional accuracy of GPS points at reference stations 

have been reported regularly by the Federal Aviation Administration, suggesting that GPS 

recordings generally are reliable regardless of study area. In contrast, positional uncertainty of 

geocoded points can vary more, affected by geocoding algorithms and characteristics of study 

regions (Jacquez 2012), as well as properties of street networks (Zimmerman and Li 2010).   

Understanding geocoding uncertainty is important to properly interpret spatial analysis results, 

which can be largely affected by the positional uncertainty of geocoded points (e.g., Burra et al. 

2002; Harada and Shimada 2006; Griffith et al. 2007). Uncertainty can contribute to an increase 

in the standard errors of parameter estimates, and, subsequently, a reduction in the statistical power 

of a spatial cluster and/or trend detection (Zimmerman and Li 2010; Lee, Chun, and Griffith 2017). 

Previous studies (e.g., Cayo and Talbot 2003; Bichler and Balchak 2007; Zandbergen 2008a; Hart 

and Zandbergen 2013; Jones et al. 2014) emphasize that identifying geocoding errors can help 

researchers understand a geocoding error structure and set up an appropriate model specification 

for subsequent data analysis. These studies mainly focus on the magnitudes of geocoding 

uncertainty for various settings and locations. To achieve a reduction of uncertainty in a geocoding 
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process and spatial analysis results, uncertainty modeling often is considered as a prerequisite 

process (Zhang and Goodchild 2002), involving an exploration of possible covariates of the 

uncertainty. This investigation of possible covariates (i.e., properties of street networks) that 

potentially have an impact on the positional uncertainty of geocoded points can provide an insight 

into understanding geocoding positional errors. Those covariates can be utilized for identifying 

their impact on spatial analysis results (Zimmerman and Li 2010), and for predicting positional 

uncertainties at specific locations (Jacquez 2012). Interestingly, although Griffith et al. (2007) and 

Zimmerman, Li, and Fang (2010) show that the magnitude of geocoding positional uncertainty can 

be spatially autocorrelated, this data feature has received only limited attention in modeling 

positional errors of geocoded points (Zandbergen et al., 2012).   

The purpose of this paper is to investigate and model positional uncertainty acquired through 

an automated geocoding process (which hereafter is called geocoding positional uncertainty). The 

main focus is on positional uncertainty in street geocoding (i.e., address matching), which is a 

predominantly automated geocoding process, at least in the United States (Zimmerman and Li 

2010). First, this paper investigates the magnitudes of geocoding positional uncertainty. Second, 

this paper analyzes potential covariates for geocoding positional uncertainty and their impacts are 

examined in a regression context. Importantly, a proper theoretical probability distribution for 

geocoding positional uncertainty is investigated, and then the best distribution is utilized in a 

subsequent regression analysis. Third, this paper examines the structure of spatial autocorrelation 

in geocoding positional uncertainty, and properly accounts for spatial autocorrelation in modeling 

geocoding positional uncertainty. In this paper, 22,239 mailable residential addresses in Volusia 

County, Florida, 2016 are utilized for data analysis and modeling purposes. 
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4.2 Literature review 

Geocoding positional uncertainty greatly influences results of a spatial analysis. Harada and 

Shimada (2006) examine the effect of geocoding positional uncertainty on kernel density 

estimation of crime locations, and conclude that the pattern of kernel density smoothing can be 

misrepresented by geocoding positional uncertainty. Similarly, Zinszer et al. (2010) show that 

kernel density estimation of disease distributions shows a discernible effect of geocoding 

positional uncertainty. DeLuca and Kanaroglou (2008) also demonstrate the impact of different 

geocoding methods on kernel density estimation, spatial scan statistics, and a bivariate K-function. 

Also, local spatial autocorrelation measures, including local Moran’s I, Gi and Gi* statistics, can 

be distorted by only a small amount of geocoding positional uncertainty (Burra et al. 2002). 

Griffith et al. (2007) evaluate the impacts of geocoding positional uncertainty on a spatial 

regression analysis of pediatric blood lead data, and report a clear impact on the spatial auto-

binomial regression analysis results from geocoding positional uncertainty. Moreover, geocoding 

positional uncertainty has an influence even on spatial weights matrices because spatial weights 

are derived from the geocoded points (e.g., distance based weights and k-nearest neighbors) 

(Jacquez and Rommel 2009). Incorrect spatial weights lead to a substantially lower statistical 

power for spatial analyses (Anselin and Rey 1991).   

Much previous research has investigated accuracy levels of geocoding positional uncertainty 

and its empirical distribution to understand its structural features. A comparative analysis for 

different places and settings has been popularly conducted in the literature. In detail, many studies 

compare geocoding positional uncertainty and the match rates of different geocoding methods that 

utilize different geocoding tools and/or algorithms (e.g., Karimi, Durcik, and Rasdorf 2004; Ward 
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et al. 2005; Zhan et al. 2006; Schootman et al. 2007; Strickland et al. 2007; Mazumdar et al. 2008; 

Jones et al. 2014; Chow, Dede-Bamfo, and Dahal 2015). In addition, geocoding positional 

uncertainty has been investigated in relation to address densities—i.e., urban and non-urban 

addresses (e.g., Bonner et al. 2003; Cayo and Talbot 2003; Ward et al. 2005; Mazumdar et al. 

2008; Zimmerman and Li 2010)—and the impact of reference street network types (e.g., Whitsel 

et al. 2006; Zandbergen and Green 2007; Zandbergen 2008a, 2011). These comparative analyses 

provide insights into geocoding positional uncertainty, and help spatial scientists to understand 

and control uncertainty associated with geocoded points.   

Exploring potential factors for geocoding positional uncertainty has drawn attention in 

uncertainty modeling. Generally, geocoding positional uncertainty is strongly related to the 

properties of corresponding street networks (Zimmerman and Li 2010) and geographical 

landscapes (Zandbergen et al., 2012) because the main components of geocoding positional 

uncertainty are errors in reference street networks and violations of a linear interpolation 

assumption (Jacquez and Rommel 2009). With regard to geographical landscapes, one well-known 

factor for geocoding positional uncertainty is whether or not an address lies in an urban or non-

urban area (Zimmerman and Li 2010); places likely to have differences in their street segment 

properties. Geocoding positional uncertainty in non-urban areas generally is much greater than it 

tends to be in urban areas, because street segments in non-urban areas usually are longer and have 

fewer intersections (Cayo and Talbot 2003; Chow, Dede-Bamfo, and Dahal 2015). Geocoding 

positional uncertainty also gets larger when a small number of houses are not evenly distributed 

along a long street line, because a linear interpolation assumption, which means that house 

numbers are uniformly distributed along a street segment, does not hold (Levine and Kim 1998). 
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For this same reason, the length of a street segment and the density of street intersections have a 

significant influence on geocoding positional uncertainty (Zimmerman and Li 2010). However, 

these covariates provide only a partial explanation for positional uncertainty (Zimmerman and Li 

2010), and more covariates need to be investigated for a better understanding of it in specific study 

areas (Jacquez 2012).   

Positing an appropriate theoretical probability distribution is necessary to model geocoding 

positional uncertainty in regression. In early studies, error ellipses for point data based on a normal 

distribution was widely used to describe and visualize positional uncertainty (Dutton 1992), which 

also provides a basic model for positional uncertainty (Goodchild 1991; Wolf and Ghilani 1997). 

A comprehensive agreement about the single distribution describing geocoding positional 

uncertainty still does not exist (e.g., Zandbergen and Hart 2009), but a log-normal distribution is 

suggested to describe the empirical distribution of geocoding positional uncertainty in some 

studies, including Cayo and Talbot (2003) and Karimi et al. (2004). In contrast, Zandbergen 

(2008b) argues that geocoding positional uncertainty is not log-normally distributed. Zimmerman 

et al. (2007) claim that a mixture of bivariate t distributions is appropriate to describe geocoding 

positional uncertainty. A chi-square distribution also is suggested as a candidate theoretical 

distribution for geocoding positional uncertainty (Griffith et al. 2007). Although all of these 

previous studies have contributed to discovering a sampling distribution of geocoding positional 

uncertainty, their results still are limited to small geographical regions (Jacquez 2012).   

Spatial autocorrelation commonly exists in geocoding positional uncertainty because of the 

aforementioned components of positional uncertainty (Zimmerman, Li, and Fang 2010). In other 

words, geocoded points that share the same reference information (e.g., their reference street 
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networks and geographical landscapes) tend to have a similar magnitude of positional uncertainty. 

Previous studies also report the presence of spatial autocorrelation in direction and magnitude of 

positional uncertainty in a digitizing process (Griffith 1989, 2008), and among individual 

geocoded points (Cayo and Talbot 2003; Zimmerman, Li, and Fang 2010), and in the numbers of 

misallocated geocoded points among census geographical units (Griffith et al. 2007). However, 

positional uncertainty frequently is assumed to be independent in its modeling (e.g., Zimmerman 

and Li 2010). That is, spatial autocorrelation components for geocoded points generally rarely 

have been accounted for in the literature.  

 

4.3 Methods 

This section describes the modeling procedure of geocoding positional uncertainty. First, it 

presents the process of input data preparation and geocoding positional uncertainty quantification 

for two different types of reference points. Then, it discusses theoretical probability distributions 

that have been recognized in the literature for modeling geocoding positional uncertainty. Finally, 

it presents potential covariates and model specifications for both non-spatial and spatial regression 

to examine impacts of these covariates on geocoding positional uncertainty. 

 

4.3.1 Data 

This paper uses 22,236 mailable residential addresses, which are a subset of all 238,706 

addresses in Volusia County, Florida, in 2016. These street addresses are obtained in the form of 

an address point database, in which an address point for every occupied building in this county is 
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stored as a point location, typically placed at a building’s center (Zandbergen, 2011). The input 

addresses are classified as urban or non-urban using a standard point-in-polygon operation based 

on the 2015 Urban Areas polygons created by the U.S. Census Bureau. To control for any effects 

of different types of addresses (e.g., residential and commercial addresses) on positional 

uncertainty, only residential addresses are utilized here. Residential addresses are identified 

through a standard point-in-polygon operation with an ancillary zoning dataset available from 

Volusia County4. Figure 4-1 shows the study area and urban boundaries as well as residential 

addresses. A street reference dataset is obtained from Volusia County that has street centerlines at 

a scale of 1:4,800; this dataset is constantly updated and considered to be the most accurate source 

of street reference data for this county. 

 

 
Figure 4-1. The selected addresses in Volusia County, Florida in 2016 

                                                 

4 http://maps.vcgov.org/gis/download/shapes.htm 
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4.3.2 A geocoding process and positional uncertainty quantification 

Geocoded points are obtained by perfect matching addresses to the local street centerlines from 

Volusia County using the automated geocoding tool in ArcGIS 10.1 (ESRI 2001). This tool begins 

by separating address lists into address components, such as house number and street name, and 

then standardizes these components (Zimmerman et al. 2007). Next, this process compares these 

components with address-ranged street segments based on a match score that measures the 

similarity between addresses and candidate segments. This match score is normalized to numbers 

between 0 and 100. Only perfectly matched geocoded points (i.e., the match score: 100) are used 

in order to reduce uncertainty arising from incomplete addresses. Next, the coordinates of the 

geocoded points along the street segments are obtained by linear interpolation between starting 

and ending points, which are defined by the address ranges of corresponding street segments. No 

offset value is given for both sides and ends from street centerlines to eliminate the effect of offset 

values.   

Geocoding positional uncertainty is quantified based on two different types of reference points, 

which are building centers and parcel centroids. First, the building centers were obtained from the 

address point dataset in which address points typically are located at the centers of buildings 

(Zandbergen, 2011). Furthermore, all locations of the input addresses were thoroughly examined 

using Google Earth, and the locations of the input addresses were moved to the centers of their 

corresponding buildings based upon Google Earth. Second, parcel centroids were obtained from 

parcel data from Volusia County. These input addresses were relinked to their corresponding 

parcels by the parcel identification numbers (PIDs) in the parcel dataset. Each parcel centroid is 
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calculated using a center of the gravity based algorithm (Okabe and Sugihara 2012, p61). Figure 

4-2 shows an example of these two types of reference points.  

 

 
Figure 4-2. Reference points to measure positional uncertainty 

 

4.3.3 Distribution of geocoding positional uncertainty 

Identification of a proper probability distribution model for an empirical dataset often is 

necessary for a modeling exercise (Delignette-muller and Dutang 2015). Although a proper 

distribution for geocoding positional uncertainty still needs further investigation (Zandbergen and 

Hart 2009), most study findings agree that the empirical distribution does not always follow a 

normal distribution (Zimmerman et al. 2007). In this paper, several probability distribution models 

are investigated. First, a log-normal distribution is considered because it has been utilized in 

previous research (e.g., Karimi, Durcik, and Rasdorf 2004; Zandbergen 2008b). Second, an 

exponential distribution, which is a special case of a gamma distribution (Stacy 1962), is 

considered as another candidate, because this probability model is widely used to represent 

geographic distance decay effects (e.g., Griffith and Wong 2007). Thus, this study examines these 

two candidate theoretical probability distribution models as well as a gamma distribution (i.e., the 
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generalization of the exponential distribution). Parameters for a candidate distribution are 

estimated with maximum likelihood (MLE). This distribution fitting procedure is conducted 

separately for the two different reference point sets for the urban/non-urban classification. The 

robustness of this fitting result is examined with bootstrapping. 

 

4.3.4 Regression model specifications 

Several covariates that can potentially be associated with geocoding positional uncertainty are 

examined with regression and a proper probability distribution model. Both non-spatial and spatial 

regression models are considered, and their results are compared. In spatial regression, geographic 

neighbors are specified with the k-nearest neighbors (KNN) criterion. In order to choose a suitable 

k for the KNN weights, an experiment was conducted with a series of k values from 1 to 20. A k 

value is determined based on the level of spatial autocorrelation detected and model performance 

indices. Specifically, a k value was chosen that had the greatest residual spatial autocorrelation, 

the smallest AIC, and/or the greatest pseudo-R2 value5. In addition, spatial autoregressive (SAR) 

models were employed to account for spatial autocorrelation in geocoding positional uncertainty.  

Covariates can be classified into two broad categories, which are the properties of street 

networks and geocoding locations (Table 4-1). The properties of street networks that are reference 

data in a geocoding process have an influence on geocoding positional uncertainty (Zimmerman 

and Li 2010). Studies (Cayo and Talbot 2003; Zimmerman and Li 2010; Chow, Dede-Bamfo, and 

                                                 

5 Pseudo-R2 values are calculated with the formula given by Nagelkerke (1991) 
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Dahal 2015) found that positional uncertainty is relatively large when street segments are long and 

have few intersections. Thus, the lengths of street segments are included, and are measured directly 

from the reference street networks. The densities of street networks at geocoding locations are 

considered because these densities can reflect the urbanization status of geocoding location. The 

literature reports that geocoding positional uncertainty is smaller in urban than non-urban areas 

(Cayo and Talbot 2003; Ward et al. 2005; Mazumdar et al. 2008). That is, geocoding positional 

uncertainty is expected to decrease along with an increase in street network density. Street network 

density and the smoothness of estimated density values are markedly affected by the search radius 

employed in density estimation (Silverman 1986). In this paper, the search radius is set to 3,000 

feet, a quantity based upon the average size of parcels in the study area. Also, the ratio between 

the count of housing units and the number of allocated addresses is included because a violation 

of the linear interpolation assumption might be exacerbated when there is a great difference 

between these two quantities. If the count of housing units is much less than the number of 

allocated addresses, geocoding positional uncertainty is expected to increase. In a geocoding 

process, addresses with even and odd-numbers fall on opposite (e.g., the left and right) sides of a 

street segment, and the location of a geocoded point is linearly interpolated based on each side of 

a street segment. Thus, the number of allocated addresses and the count of housing units also are 

prepared separately for each side of a street segment, which makes the covariate values differ 

depending on the side of an address, even if they are on the same street segment.      
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Table 4-1. Covariates for positional uncertainty in geocoding, together with their abbreviations 

Street networks 

Length of street segments (length), street network density (density), and 
the ratio of the count of housing units and on the number of allocated 
addresses (house) 

Geocoding locations 

Places containing geocoding locations (urban), relative geocoding 
locations vis-à-vis the corresponding street segments (location), and 
geocoding location parcel sizes (parcel) 

 

In addition to street network properties, the characteristics of geocoding locations on street 

segments are considered as covariates. First, a relative geocoding location on its matching street 

segment is considered. That is, this designated location represents how close a geocoding location 

is to the midpoint of a street segment. A relative location to a segment midpoint (P) is calculated 

as: 

P = Q R × 2               R ≤ 0.5(1 − R) × 2    R > 0.5   , where R =  A�[
A�\. 

Here, R denotes the ratio of, in the numerator, an address number of the geocoding location (ℎ) 

subtracted from the last address number (D) of the corresponding street segment to, in the 

denominator, a range of allocated addresses that is the last address number minus the first address 

number (f). If R is greater than 0.5, R is subtracted from 1. Then, P is obtained by multiplying R by 

2 in order for P to range from 0 to 1. A small P value indicates that a geocoding location is close 

to either the start or end point of a street segment, whereas a large value indicates a geocoding 

location close to the midpoint of the street segment. This relative location is calculated for each 

side of a street segment because the range of addresses can differ by street side. Second, a dummy 

variable for urban (0) and non-urban (1) is included. As discussed earlier, geocoding positional 

uncertainty in urban areas tends to be smaller than in non-urban areas (Zimmerman and Li 2010). 
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Statistical interaction terms between this dummy variable and the other covariates also were 

explored. Finally, the parcel size of geocoding locations might have an association with geocoding 

positional uncertainty. These parcel sizes were obtained from the Volusia County parcel dataset, 

and then linked to matching addresses using their PIDs. Because residential buildings with a large 

size parcel generally are far from a street centerline, a large parcel size might be positively 

associated with geocoding positional uncertainty.  

 

4.4 Results 

This section provides the modeling results of geocoding positional uncertainty. It reports the 

descriptive statistics of geocoding uncertainty for the urban and non-urban parts of the study area, 

and then the fitting results of the empirical frequency distributions of geocoding positional 

uncertainty. Finally, non-spatial and spatial regression results are presented in order to examine 

the effects of potential covariates (Table 4-1).  

 

4.4.1 Descriptive statistics 

Geocoding positional uncertainty is quantified using Euclidean distance from either of the two 

reference point types: building centers, and parcel centroids. Table 4-2 presents the descriptive 

statistics of positional uncertainty for the sample urban and non-urban areas. The total number of 

input residential addresses is 22,236, with 19,757 being urban, and 2,479 being non-urban 

addresses.   
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 Table 4-2. Descriptive statistics for positional uncertainty of sample geocoded points  

Categories Reference 
points 

Sample 
Size 

Minimum Median Maximum Mean Standard 
deviation 

Non-urban Building 2,479 12.86 56.81 665.00 74.28 58.33 
Urban Building 19,757 6.30 34.60 350.10 42.45 22.93 

All Building 22,236 6.30 36.02 665.00 46.00 30.77 
Non-urban Parcel 2,479 14.71 65.24 664.70 81.60 59.97 

Urban Parcel 19,757 12.75 37.54 488.70 45.44 23.38 
All Parcel 22,236 12.75 39.12 664.70 49.47 31.88 

 

The positional uncertainty measured using building centers ranges from 6.30 to 655.00 meters, 

with a median of 36.02 meters, and a mean of 46.00 meters. The substantial difference between 

urban and non-urban addresses coincides with findings in the literature (e.g., Cayo and Talbot 

2003; Whitsel et al. 2006). The mean and median for the non-urban area are, respectively, 74.28 

and 56.81 meters, which are much larger than their urban area counterparts of 42.45 and 34.60 

meters, respectively. Overall, positional uncertainty measured when using parcel centroids is 

slightly larger than when using building centers, which ranges from 12.75 to 664.70 meters, with, 

respectively, a mean and median of 49.47 and 39.12 meters.  
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Figure 4-3. Histograms of the geocoding positional uncertainties for the different reference 

points 
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Figure 4-3 displays histograms of positional uncertainty for the urban and non-urban areas. All 

histograms show a strong positive skewness; that is, they are skewed to the right side. These 

positional uncertainties do not show considerable differences in their distributions between the two 

sets of reference points; i.e., building centers, and parcel centroids, for the same type of geographic 

landscape. Note that zero offset values are used for both sides from street centerlines, which means 

that all geocoded points are located on street centerlines. Therefore, the positional uncertainties 

from building centers and parcel centroids to the geocoded points should contain a small amount 

of uncertainty caused by these offset values. This data feature can explain a number of observations 

close to zero; i.e., the first bin, in these histograms. This data feature is likely to make these 

histograms conform more closely to a log-normal than a gamma distribution, as found in previous 

studies (e.g., Cayo and Talbot 2003; Karimi, Durcik, and Rasdorf 2004; Zandbergen 2008b).  

 

4.4.2 Distribution fitting results 

The empirical distributions of geocoding positional uncertainty are fitted with three candidate 

probability distribution models: the log-normal, exponential, and gamma distributions. Figure 4-4 

presents the empirical cumulative distributions of geocoding positional uncertainty superimposed 

on their fitted theoretical cumulative distribution counterparts. This figure shows that empirical 

geocoding positional uncertainty is closer to a log-normal distribution than to the other two, for 

both the urban and non-urban areas under study.  
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Figure 4-4. The empirical cumulative distributions of geocoding positional uncertainty 

superimposed on their theoretical distribution counterparts (i.e., log-normal, exponential, and 
gamma distributions) 
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The closeness of these distribution pairs is further examined with a Kolmogorov-Smirnov (K-

S) statistic, and a Bayesian information criteria (BIC). The K-S statistic measures the distance 

between an empirical and a reference cumulative distribution functions (Stephens 1986), whereas 

the BIC consists of measures of badness-of-fit and model complexity (Zimmerman et al. 2007). 

Thus, a distribution with a smaller K-S statistic and a smaller BIC is preferable. Table 3 reports 

the calculated K-S and BIC results. According to these statistics, positional uncertainty for both 

sets of reference points most closely conforms to a log-normal distribution. This finding 

corroborates that from a visual inspection of the histograms in Figure 4-3. Substantial differences 

in the fitting results are not found between urban and non-urban addresses for the same reference 

type (i.e., building, parcel). This result may suggest that separate regression models are not 

necessary for the urban/non-urban areas.  

 

Table 4-3. The Kolmogorov-Smirnov (K-S) and the Bayesian information criteria (BIC) 
diagnostic statistics 

Categories 
Reference 

points 

K-S statistic BIC 

log-
normal 

gamma 
exponenti

al 
log-

normal 
gamma 

exponenti
al 

Non-urban Building 0.045 0.092 0.237 30,872 31,277 32,215 

Urban Building 0.083 0.110 0.350 215,212 217,809 234,586 

All Building 0.084 0.114 0.328 248,597 252,754 267,590 

Non-urban Parcel 0.029 0.070 0.238 31,279 31,614 32,681 
Urban Parcel 0.083 0.108 0.358 216,523 218,999 237,271 

All Parcel 0.086 0.112 0.335 250,835 254,895 270,821 

 

The robustness of this preceding distribution fitting is examined with bootstrapping. Based on 

the K-S statistics (Figure 4-5), the results of the simulation experiment are consistent with the 
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previous result. That is, a log-normal distribution furnishes the best description of geocoding 

positional uncertainty for both reference types. Also, no noticeable difference is identified between 

urban and non-urban areas for the same reference type. 

 

 
Figure 4-5. Boxplots of the Kolmogorov-Smirnov (K-S) statistic values from bootstrapping 
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4.4.3 Regression results 

The effects of the covariates (Table 4-1) on geocoding positional uncertainty are investigated 

using linear regression models because a log-normal distribution is preferred based upon the 

preceding results. For linear regression models, dependent variables are defined as the log-

transformed positional uncertainty measured from building centers (LM-Building) and parcel 

centroids (LM-Parcel). Spatial autocorrelation in the regression residuals is measured with the 

Moran coefficient (MC), in which spatial neighbors of geocoded points are determined by the 

KNN with k = 2.6 

Table 4-4 reports the results of the linear regression analysis. For LM-Building, all covariates 

have a significant association with positional uncertainty measured from building centers. The 

positively significant variables at the 0.1% level are length (0.758), urban (0.310), and parcel 

(0.175). In contrast, density (-0.005), location (-0.233), and house (-0.247) have a significant 

negative relationship at the same level. These three variables have different associations for the 

urban/non-urban classification based on the estimates of the interaction terms with urban: that is, 

the t values of density:urban, location:urban, and parcel:urban are -8.177, 12.052, and -10.027, 

respectively. LM-Parcel has the same significance results as LM-Building at the 0.1% level (Table 

4-4). One noticeable difference is the increase in the parcel coefficient estimate (0.175 for LM-

Building, increasing to 0.239 for LM-Parcel). The reason for this increase is rather straightforward. 

The geocoded points in this analysis are located on street center lines due to zero offset values, but 

parcel centroids generally are farther from street centerlines as a parcel size increases. LM-Parcel 

                                                 

6 The KNN weight with k = 2 yields the largest MC value for values of k between 2 and 20. 
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has a better model fit with a higher adjusted R2 value (0.348) than LM-Building (0.263). 

Coefficient estimates for the statistical interaction terms with the urban/non-urban dummy variable 

also are consistent with those for LM-Building. The confidence intervals for the coefficient 

estimations derived from bootstrapping with both linear regression models coincide with observed 

coefficients of the covariates, in terms of their direction and magnitudes (See Appendix B1 and 

B2).   

Table 4-4. Linear regression model results: LM-Building, and LM-Parcel 

Covariates 
LM-Building LM-Parcel 

Coefficient t-value Coefficient t-value 
Intercept 3.689 284.932*** 3.719 314.948*** 
Length 0.758 31.983*** 0.690 31.896*** 
Urban 0.310 7.896*** 0.328 9.152*** 

Density -0.005 -7.195*** -0.003 -4.696*** 
Location -0.233 -23.378*** -0.189 -20.775*** 
House -0.247 -25.735*** -0.281 -32.140*** 
Parcel 0.175 33.352*** 0.239 50.130*** 

Length:Urban -0.066 -1.370 0.005 0.114 
Density:Urban -0.033 -8.177*** -0.035 -9.494*** 
Location:Urban 0.360 12.051*** 0.298 10.925*** 
House:Urban -0.062 -1.453 0.045 1.147 
Parcel:Urban -0.074 -10.026*** -0.097 -14.407*** 

Adj. R2 0.263 0.348 
F-stats. 

(p-value) 
723 

( < 0.001) 
1,078 

( < 0.001) 
MC of 

Residuals 
(p-value) 

0.663 
( < 0.001) 

0.676 
( < 0.001) 

 Note:  Significance codes: ***0.001, **0.01, *0.05 
   Variance inflation factor (VIF) values for all variables without interaction terms are less 

than 10. 
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However, these models only explain modest proportions of variances in their corresponding 

dependent variables, with adjusted R2 values of 0.263 for LM-Building and 0.348 for LM-Parcel. 

Although most covariates are significantly related to geocoding positional uncertainty, these levels 

of significances may be boosted by the large number of observation (i.e., 22,236) input addresses 

(Lin, Lucas, and Shmueli 2013). In addition, the residuals of both models show a significant level 

of positive spatial autocorrelation; the residual MC values are 0.663 and 0.676, respectively (the 

p-values are less than 0.001). These models suffer from spatial autocorrelation and need to be 

extended to appropriately account for it.  

 

4.4.4 Spatial regression model results 

Table 4-5 summarizes the results of the SAR models with a spatial weights matrix determined 

by the KNN weight (k = 2). Again, the SAR result with k = 2 has the highest pseudo-R2 value and 

the lowest AIC among k values from 2 to 20. Like the previous linear regression models, two SAR 

models are specified with the two different dependent variables: the log-transformed positional 

uncertainty measured from building centers (SAR-Building), and from parcel centroids (SAR-

Parcel). The SAR analysis furnishes some noticeable improvements to those obtained with the 

linear regression models. First, the estimates of the spatial autocorrelation parameter are 

significant. Values greater than 0.6 indicate a high level of positive spatial autocorrelation. That 

is, positive spatial autocorrelation that persists in the linear regression residuals is successfully 

accounted for in these SAR specifications. Second, both SAR models show better model fits than 

the linear regression models. Specifically, the SAR models have much higher pseudo-R2 values 
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(0.582 for SAR-Building, and 0.641 for SAR-Parcel). That is, this result indicates that the variance 

of the positional uncertainty is better explained in the SAR specifications.   

Both SAR models yield the same results as the linear regression models in terms of statistical 

significance for the covariates. That is, length, urban, and parcel are positively, and density, 

location, and house are negatively, associated with the dependent variables. However, the 

estimated coefficients for each variable are slightly different. For the SAR-Building specification, 

length and parcel show a significantly positive relationship (0.698 and 0.101, respectively), which 

indicate greater geocoding positional uncertainty tends to coincide with longer street segments and 

larger parcels of address points. Also, a dramatic increase in the parcel coefficient estimate (to 

0.169) is found in the SAR-Parcel results, when compared to its linear regressions counterpart. In 

addition, house has a significant association with its dependent variable (z-value=-21.589) in the 

SAR-Parcel. This outcome suggests that geocoding positional uncertainty tends to be larger when 

the count of housing units is much less than the number of allocated addresses on a street segment. 

The negative associations for location (-0.166 for SAR-Building, and -0.128 for SAR-Parcel) also 

are significant in both SAR models. The estimated coefficients for location indicate that larger 

positional uncertainties tend to occur more at starting or ending points of a street segment than at 

its midpoint. Urban and density are also significantly associated with geocoding positional 

uncertainty. The same result is reported in previous studies (e.g., Cayo and Talbot 2003; 

Zimmerman and Li 2010), which indicates that urban areas with a higher density of street networks 

have smaller positional uncertainty than non-urban areas with a lower density of street networks. 

Appendix B3 and B4 illustrate the confidence intervals for the coefficient estimations from 

bootstrapping for both SAR models, indicating robustness of the estimated coefficients.  
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Table 4-5. The results of SAR models: SAR-Building and SAR-Parcel 

Covariates 
SAR-Building SAR-Parcel 

Coefficient z-value Coefficient z-value 
Intercept 3.763 193.758*** 3.767 212.448*** 
Length 0.698 21.265*** 0.624 20.939*** 
Urban 0.289 5.545*** 0.310 6.551*** 

Density -0.009 -6.846*** -0.006 -4.890*** 
Location -0.166 -18.783*** -0.128 -16.162*** 
House -0.268 -19.454*** -0.270 -21.589*** 
Parcel 0.101 23.707*** 0.169 44.470*** 

Length:Urban -0.085 -1.410 0.014 0.255 
Density:Urban -0.022 -4.203*** -0.020 -4.283*** 
Location:Urban 0.225 8.977*** 0.188 8.402*** 
House:Urban -0.026 -0.415 -0.027 -0.477 
Parcel:Urban -0.020 -3.272*** -0.055 -9.925*** 
Pseudo-R2 0.582 0.641 
Lambda 
(p-value) 

0.629 
( < 0.001) 

0.641 
( < 0.001) 

   

 Note:  Significance codes: ***0.001, **0.01, *0.05 
 Variance inflation factor (VIF) values for all variables without interaction terms are less 

than 10. 
 

Among the statistical interaction terms with urban, in both models, the three significant 

variables (density:urban, location:urban, and parcel:urban) have different effects on geocoding 

positional uncertainty in urban and non-urban areas. While density:urban (-0.022 for SAR-

Building, and -0.020 for SAR-Parcel) has the same relationship nature as density (-0.009 for SAR-

Building, and -0.006 for SAR-Parcel), location:urban (0.225 for SAR-Building, and 0.188 for 

SAR-Parcel) and parcel:urban (-0.020 for SAR-Building, and -0.055 for SAR-Parcel) have the 

opposite relationship nature. That is, the impact of density is stronger in non-urban than urban 

areas, whereas the influence levels of parcel and location are weaker in the non-urban area. 
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Moreover, location has an opposite association in the urban and non-urban areas. In the urban area, 

as mentioned earlier, location is negatively associated with geocoding positional uncertainty, 

whereas this variable shows a positive association in the non-urban area. This result shows that 

positional uncertainty tends to be larger around the midpoint of a street segment, rather than near 

the starting or ending points of a segment in a non-urban area.  

 

4.5 Conclusions 

Positional uncertainty acquired through an automated geocoding process (what is referred to 

as geocoding positional uncertainty in this paper) is examined based upon residential addresses in 

Volusia County, Florida. This paper summarizes findings for measuring geocoding positional 

uncertainty from two types of reference points, namely building centers and parcel centroids. 

Although overall geocoding positional uncertainty measured from parcel centroids is slightly 

larger than from building centers, substantial differences are not found between the different 

reference types in the distribution fitting results. Using regression techniques, including linear and 

SAR specifications, an extensive set of covariates that relate to the properties of street networks 

and geocoding locations on street segments were examined. Linear regression and SAR model 

results show that all of the selected covariates are significantly associated with geocoding 

positional uncertainty. Although both linear and SAR model results have the same signs for the 

estimated coefficients, the SAR model has improved model performance because it accounts for 

spatial autocorrelation in geocoding positional uncertainty. Coefficient estimates for the statistical 

interaction terms suggest that impacts of three variables differ between urban and non-urban areas. 
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These three variables are street network density (density), relative geocoding locations on the 

corresponding street segments (location), and parcel sizes of geocoding locations (parcel).  

This paper contributes to the literature in two ways. First, this paper identifies multiple 

covariates that rarely have been investigated, including location and house, and examine them with 

the well-known factors of geocoding positional uncertainty, namely, length, parcel, and density. 

The regression results show that the newly suggested factors have a significant association with 

geocoding positional uncertainty, in addition to the factors that have been examined in the 

literature. Thus, this paper contributes to improving geocoding positional uncertainty modeling by 

incorporating the additional factors. Also, this paper confirms that effects of some covariates (i.e., 

density, location, and parcel) on geocoding positional uncertainty are significantly different 

between urban and non-urban areas, which provides further explanation of the relationship 

between geographical landscapes housing geocoding positional uncertainty, and its related 

covariates. Second, this study extends positional uncertainty modeling by considering spatial 

autocorrelation. The presence of spatial autocorrelation in positional uncertainty has been 

recognized (e.g., Griffith 1989, 2008; Cayo and Talbot 2003; Griffith et al. 2007; Zimmerman, Li, 

and Fang 2010), but it has not been considered in modeling geocoding positional uncertainty. This 

paper empirically confirms the presence of spatial autocorrelation in geocoding positional 

uncertainty. It further shows that spatial autocorrelation should be considered when 

conceptualizing and analyzing geocoding positional uncertainty.  

This research can be extended in the future. First, the input addresses obtained from the address 

point database are well structured and thoroughly cleaned while such well-prepared data are rarely 

available for most empirical analyses. The input addresses are highly standardized and well 
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maintained, which results in higher match rates (Zandbergen, 2011). Furthermore, because this 

paper uses only perfectly matched locations to mitigate this effect, the positional uncertainty might 

be much smaller than for other empirical datasets. Second, the analysis in this paper is conducted 

using a specific, small geographic region. Hence, its findings may not be readily applicable to 

other geographical regions. The covariates suggested in this paper might have different 

associations with geocoding positional uncertainty in other study areas. Nevertheless, the 

covariates are expected to provide a good starting point for the more general modeling of positional 

uncertainty in a geocoding process.  
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CHAPTER 5 
 

CONCLUDING REMARKS  

This dissertation contributes to the literature of spatial data uncertainty in two broad ways. 

First, it provides implementations for geovisualization and map classification methods 

incorporating spatial data uncertainty. Although various aspects of spatial data uncertainty have 

been widely investigated (e.g., Shi, Fisher, and Goodchild 2002; Zhang and Goodchild 2002), 

dealing with spatial data uncertainty is very limited in a general GIS environment due to a lack of 

implementations. In this respect, this dissertation can enhance the usability of spatial data 

uncertainty for general GIS users. Specifically, the implementation of attribute uncertainty 

geovisualization can help GIS users to utilize many visual variables that have been investigated 

for their uncertainty geovisualization in the literature. In addition, the developed tool for an optimal 

map classification can assist to incorporate uncertainty information in a thematic mapping process, 

and furthermore, a map classification result can be evaluated and compared with other 

classification results by the graphic diagnostic tool (Figure 3-2). 

Second, this dissertation extends the literature of spatial data uncertainty by providing methods 

to manage and reduce spatial data uncertainty. The literature furnishes a comprehensive discussion 

about the sources of spatial data uncertainty (e.g., ANSI 1998), the way of its quantification (e.g., 

Bonner et al. 2003; Zimmerman and Li 2010), and impacts of spatial data uncertainty on analysis 

results (e.g., Griffith et al. 2007; Lee, Chun, and Griffith 2017). But, investigations about methods 

to control spatial data uncertainty essentially are lacking. In this regard, the modeling of positional 

uncertainty from a geocoding process allows anticipating geocoding positional uncertainty based 

on the properties of street networks and geocoding locations, which might help to reduce and 
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predict the impact of geocoding positional uncertainty on spatial analysis results. In addition, the 

optimal map classification developed in this dissertation can increase reliability of a thematic map 

pattern by considering attribute uncertainty in a mapping process. Therefore, the modeling of 

geocoding positional uncertainty and optimal map classification with attribute uncertainty 

contribute to the literature by providing an example of controlling spatial data uncertainty.  

The followings provide additional explanations, and discusses limitations and further research 

for the individual sub-topics. The first sub-topic for attribute uncertainty visualization is necessary 

to address two limitations. First, although this dissertation mainly uses probability theory for 

uncertainty representation (e.g., coefficient variances and standard errors), various options, 

including Bayesian techniques and the Dempster-Shafer theory, also can be utilized. Uncertainty 

visualization with these representations is worth addressing. Especially, a fuzzy set approach is 

highly applicable to represent uncertainty because of its ability to display partial memberships. 

However, all types of data cannot be represented using this approach. For example, bell curves 

around a statistical estimate (e.g., the margins of error in the American Community Survey data) 

are not good candidates for this fuzzy set theory (Davis and Keller 1997). Second, a focused group 

survey with various samples and target groups may offer a more objective evaluation of the 

effectiveness of the implemented visualization methods. Some studies in the literature (e.g., 

Goodchild, Buttenfield, and Wood 1994; Slocum et al. 2009) discuss the visual variables utilized 

in this implementation, and the effectiveness of bivariate mapping for uncertainty visualization. 

Specifically, MacEachren et al. (2012) show that color value leads to a better intuitive outcome to 

represent uncertainty than color saturation in their empirical study. However, still a group survey 
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would provide useful insights for evaluating the effectiveness of the developed tools with various 

geographical scales and target users.  

    The second research topic deals with map classification in the presence of uncertainty 

information. Currently, various mapping tools support unclassed maps, which have been promoted 

because of their accurate reflection of a real-world distribution. However, advances in unclassified 

maps does not make a traditional classified map and map classification useless. It is still widely 

used because of its own merits and the demerits of unclassified maps. The first and the most critical 

disadvantage of unclassed maps is a limited ability of human eyes to differentiate colors (or 

symbols) in a continuous scale (Slocum et al. 2009). Colors (i.e., shades) on unclassified maps are 

accurate proportionally to the value of each spatial unit, although this mathematical accuracy might 

not coincide with perceptual accuracy. That is, matching colors on an unclassified map with its 

legend is not easy due to enormous numbers of different colors in the map and the simultaneous 

contrasts on a color from its neighbors. In addition, when a skewed distribution of data exists, the 

ordinal relationship in the data might be concealed. Thus, a classified map and a map classification 

method are still important in cartography. These reasons contribute to the development of map 

classification incorporating uncertainty information. 

In addition to an unclassified map, a way to determine an appropriate number of classes in the 

proposed optimal map classification methods might be worth investigating. Like other optimal 

map classification methods (e.g., Jenks’s natural breaks method), the optimal methods proposed 

in this dissertation also have objective functions and values that represent homogeneity within 

classes incorporating uncertainty information. These objective values can be used to assist in 

selecting an appropriate number of classes. Generally, an objective value is expected to decrease 
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as the number of classes increases. Thus, an appropriate number of classes can be chosen by 

exploring the contribution of class counts to the objective values using a plot and/or sensitivity 

analysis.    

The third research topic shows geocoding uncertainty modeling with an empirical dataset: 

22,236 mailable residential addresses in Volusia County, Florida. All locations of these input 

addresses were thoroughly examined and refined using Google Earth satellite images. Specifically, 

3,368 address points obtained from an address point database do not have associated with actual 

buildings on the satellite images. All of these addresses were excluded in this analysis because 

building centers that are used as reference points cannot be quantified. Note that most of the 

address points are correctly located at the centers of their corresponding buildings on Google Earth, 

although high resolution Google Earth images also have horizontal positional uncertainty (e.g., 

Pulighe, Baiocchi, and Lupia 2016). However, 1,837 address points show a huge discrepancy from 

their building centers, and these points were moved to their corresponding building centers based 

on Google Earth images. Furthermore, parcel data, from which one type of reference points (i.e., 

parcel centroids) and one covariate are derived, were also refined. Specifically, 164 address points 

are located in multi-part parcels, which generally are divided by streets, might yield inaccurate 

parcel centroids and sizes. Thus, individual multi-part parcels also were examined with Google 

Earth images, and then converted to single-part polygons so that appropriate parcel centroids and 

their areas are generated.  
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APPENDIX A  

THE GRAPHIC USER INTERFACE  

A1. GUI for overlaid symbols on a choropleth map (OSCM) 

The graphical user interface (GUI) has three major sections. The first section is to specify a 

target layer, an attribute field, and a corresponding uncertainty field in the target layer. This part 

is identical in the GUIs for CPPS and CS. The second section is to configure an output choropleth 

map: that is, the number of classes and symbols. Note that the color ramp is automatically created 

with a start and an end color. In the third section, a user can choose a type of overlaid symbol with 

corresponding tab pages, each of which has its own options for uncertainty symbolization.  

 
 

 A2. GUI for coloring properties to proportional symbols (CPPS) 

The first section is same as the one in the GUI for OSCM. The second section is to specify 

attributes and their uncertainty visualization. Symbol sizes are determined with mathematical 

scaling based on a minimum symbol size, which a user should proivde. Uncertainty is symbolized 

with two different visual variables, color saturation and color value in the hue-saturation-value 
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(HSV) color model, which are listed in a combo box. The saturation or color value is linearly 

calculated from that of a selected color to a chosen minimum level.    

 
 

A3. GUI of composite symbols (CS) 

The first section is the same as the one for the other GUIs. An uncertainty field needs to contain 

standard errors. With the second section, different composite symbols can be chosen with tab 

pages; i.e., a circle or a bar. A confidence level should be specified to determine the symbols size 

of the confidence interval.  
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APPENDIX B  

BOOTSTRAPPING RESULTS 

B1. Bootstrapping results of LM-Building  

 
Note: the dashed vertical lines display the confidence intervals of the corresponding coefficients 
for a 99 percent confidence level, and the red vertical lines mark the observed coefficients.   
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B2. Bootstrapping results of LM-Parcel  

 
 
Note: the dashed vertical lines display the confidence intervals of the corresponding coefficients 
for a 99 percent confidence level, and the red vertical lines mark the observed coefficients.   
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B3. Bootstrapping results of SAR-Building  

 
Note: the dashed vertical lines display the confidence intervals of the corresponding coefficients 
for a 99 percent confidence level, and the red vertical lines mark the observed coefficients.   
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B4. Bootstrapping results of SAR-Parcel  

 
Note: the dashed vertical lines display the confidence intervals of the corresponding coefficients 
for a 99 percent confidence level, and the red vertical lines mark the observed coefficients.   
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