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VISUALIZING AND MODELING SPATIAL DATA UNCERTAINTY

Hyeongmo Koo, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Yongwan Chun

This dissertation extends the understanding of spatial data uncertainty, which inevitably exists in
any process of Geographic Information Sciences involving measuring, representing, and modeling
the world. This dissertation consists of three specific sub-topics in visualizing and modeling spatial
data uncertainty. First, a framework for attribute uncertainty visualization is suggested based on
bivariate mapping techniques, and this framework is implemented in a popular GIS environment.
The framework and implementation support many visual variables that have been investigated in
the literature. This research outcome can provide flexibility to enhance communication and

visualization effectiveness for uncertainty visualization. The second sub-topic is a development of
optimal map classification methods by simultaneously considering attribute estimates and their
uncertainty. This study expands the discussion of constructing an optimal map classification result
in which data uncertainty is incorporated in a map classification process. This method utilizes a
shortest path problem in an acyclic network based on dissimilarity measures with various cost and
objective functions. Finally, modeling positional uncertainty acquired through street geocoding is

investigated to understand potential factors of the uncertainty and then to identify impacts of the

uncertainty on spatial analysis results. This study accounts for spatial autocorrelation among
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geocoded points in a modeling process, which has been barely included in this type of modeling.
This research has contributions to increasing explanation and to extending geocoding uncertainty

modeling by suggesting additional covariates and considering spatial autocorrelation.
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CHAPTER 1

INTRODUCTION

The termuncertainty is basically used to describe the potential vianmein values (Slocum et
al. 2009) and is commonly interchangeably usedther terms: error (i.e., bias) and accuracy.
However, error, which refers to a deviation fromnee value, is difficult to quantify because a true
value is generally unknown (Davis and Keller 199h)e term accuracy is a more quantifiable
alternative (Buttenfield and Beard 1994), but$ioedhould be carefully used because of its various
meanings (Slocum et al. 2009). Specifically, bydwing recommendations of the Spatial Data
Transfer Standard (SDTS), the U.S. Federal Geogrdphta Committee (FGDC) lists five
fundamental components to address with regard t@ aecuracy: lineage, positional accuracy,
attribute accuracy, logical consistency, and cotepless (ANSI 1998). Among these components,
this dissertation mainly focuses on positional attdbute accuracy. In addition, this dissertation
utilizes the termuncertainty because it refers to deviation from a true valughaut a precise
magnitude, and has a narrower definition than ¢ taccuracy (Davis and Keller 1997), which
is caused by combining fundamental sources of taiogy.

Uncertainty inevitably exists in spatial data daetdiscrepancy between spatial objects and
reality (Longley et al. 2011). Although this disgamcy is augmented through spatial data
manipulation and analyses in a Geographic Informnatsciences (GIS) environment, it is
generally assumed that spatial data are free adrtainty when they are represented and analyzed
(UCGIS 1996). However, visualization of spatialadest highly influenced by uncertainty (Slocum

et al. 2009) and could mislead map readers inteval unreliable spatial patterns (Sun, Wong,



and Kronenfeld 2014). From a spatial analysis pt$pe, uncertainty also increases standard
errors and reduces the power of an analysis (Zimraerand Li 2010).

The purpose of this dissertation is to contribotextending the understanding of spatial data
uncertainty in visualizing and modeling spatial pivaena. Previous studies have developed
uncertainty visualization approaches that simulbase/ visualize uncertainty along with its
corresponding attribute estimates utilizing addiéibvisual variables (e.g., MacEachren et al.
2005). These approaches help to avoid misleadiagiaspatterns by providing map users with
additional reliability information. Furthermore, eartainty modeling is usually considered as a
prerequisite process to reduce uncertainty in gpdtta manipulation and analysis (Zhang and
Goodchild 2003). Also, the modeling process cap heimprove a comprehension of uncertainty
because it contains processes for exploring passiblariates of this uncertainty (Zimmerman et
al. 2007).

This dissertation investigates three specific et in visualizing and modeling spatial data
uncertainty. First, a framework for attribute uriaarty visualization is suggested based on
bivariate mapping techniques, and is implementea popular Geographic Information Systems
(GIS) environment. A comprehensive framework forcemainty visualization has been
investigated in the literature (e.g., MacEachre85t%5ahegan and Ehlers 2000; Thomson et al.
2005). However, the framework might not be suitdbtean implementation in GIS software due
to a lack of detailed strategies. Focusing solahy attribute uncertainty visualization, this
dissertation proposes a framework for geovisuabnatf attribute uncertainty based on the types
of attribute and suitable visual variables alonghwa proper implementation strategy. This

framework and implementation utilize a wide rangeisual variables that have been investigated



in the literature, and these can provide flexipilid enhance communication and visualization
effectiveness. The proposed uncertainty visuabnatethods are illustrated with census variables
at the block group level for the city of Plano, @&exThis research is published in floernal of
Visual Languages and Computing (Koo, Chun, and Griffith 2018).

Second, optimal map classification methods for @rapleth map are developed to
simultaneously consider attribute estimates and tinecertainty. Although the visualization
methods of attribute uncertainty can provide magrsiseliability information for spatial patterns
in a map, the spatial patterns still might be uabd¢ due to a general map classification that is
performed based only on attribute estimates (SuandyVand Kronenfeld 2016). Thus, this
dissertation proposes optimal classification meshtbt utilize the following two dissimilarity
measures: the class separability measure (Sun, Vaogkronenfeld 2014), and Bhattacharyya
distance (Coleman and Andrews 1979). These mettdide a shortest path solution in an acyclic
network based on dissimilarity measures. This meseaddresses multiple criteria with various
cost and objective functions in order to deternaneoptimal classification result. This research
contributes to expanding the discussion aboutffigdin optimal classification result incorporating
data uncertainty in a map classification. Furtheena graphical diagnostic tool to interactively
evaluate and compare optimal classification redudts been developed. The proposed optimal
classification methods incorporating uncertaintyoimation are demonstrated with census
variables for the counties in the state of Textass published in théAnnals of the American
Association of Geographers (Koo, Chun, and Griffith 2017).

Finally, uncertainty modeling for geocoded locatios investigated in this dissertation. The

modeling of geocoding positional uncertainty calphe implement imputation methods, and can



allow for realistic positional uncertainty simulats (Zimmerman et al. 2007). In addition, an

identification of potential covariates (e.g., praps of street networks) that affect positional

uncertainty of geocoded locations can help to detesir impact on spatial analysis results

(Zimmerman and Li 2010), and to predict positionatertainties at specific locations (Jacquez
2012). However, covariates that can provide a ceimgsive explanation are still seldom

investigated (Zimmerman and Li 2010), and more dat@s need to be explored to increase its
understanding (Jacquez 2012). Furthermore, spaitalcorrelation among geocoded points has
been barely considered in this type of modelinqusTthis research examines multiple covariates
that rarely have been investigated, and consigeBat autocorrelation in regression models. In
this research, 22,239 mailable residential addsess¥olusia County, Florida in 2016 are used

for the modeling of geocoding positional uncertgifbcusing on positional uncertainty in street

geocoding (i.e., address matching). This researd¢brthcoming in thénternational Journal of

Applied Geospatial Research in 2018: volume 9, issue 4.
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ABSTRACT

Geovisualization of attribute uncertainty helpsras® recognize underlying processes of
spatial data. However, it still lacks an availdiilbf uncertainty visualization tools in a standard
GIS environment. This paper proposes a frameworkaftsibute uncertainty visualization by
extending bivariate mapping techniques. Speciffcdhis framework utilizes two cartographic
techniques, choropleth mapping and proportionalslmmapping based on the types of attributes.
This framework is implemented as an extension @lAs in which three types of visualization
tools are available: overlaid symbols on a chorbpiaap, coloring properties to a proportional
symbol map, and composite symbols.

Key Words: Uncertainty, geovisualization, bivariate mapping, GIS



21 I ntroduction

Spatial data inevitably contain uncertainty in eg@ntations of their locations and attributes.
The representation and measuring of the world dgita model should have a discrepancy with
the real world because the processes of abstraatidggeneralizing are inevitable attempts to
express the real world in a discrete and finiteadabdel (Chrisman 1991). The U.S. Federal
Geographic Data Committee (FGDC) lists the follagviive fundamental components of data
quality by adhering to recommendations of the $p&ata Transfer Standard (SDTS): lineage,
positional accuracy, attribute accuracy, logicahsistency, and completeness (ANSI 1998).
Among these components, location uncertainty, whabbrs to inaccurate locations of geographic
features, often results from global positioningtegs (GPS) and geocoding errors. Because
attributes describing non-locational characterssb€ geographic features usually are estimated
with samples, attribute uncertainty is caused byping errors as well as measurement errors.
Furthermore, uncertainty in spatial data can prapaghrough an aggregation of spatial units,
which frequently is necessary due to confidentiadisues, data management issues, computational
issues, and representation concerns. Especiallgnwbcation and attribute uncertainties
simultaneously occur for individual observationsistspatial aggregation process can further
increase the level of uncertainty in spatial dMadEachren 1992). For example, when a sample
point is assigned to an incorrect areal unit dutstimcational error in an aggregation process/(Ha
et al. 2009), the location errors further contrébt the attribute uncertainty for an aggregated
spatial unit.

Understanding data uncertainty is important an@roftecessary in various research and

practical activities (Deitrick and Wentz 2015). Baxchers consider uncertainty that affects data



or a modeling process, such as differences betwessured or predicted values and actual or
true values. Decision makers usually contend witentainty based on how current conditions or
policies affect the future results in their deamsprocesses (Erskine et al. 2006). Visualization ca
provide leverage for a data source to meet socidl stientific needs (Bertin 1983). But, a
comprehensive visualization of uncertainty is difft, because it often requires multiple
representations of data from different perspectivEspecially, uncertainty visualization
commonly requires a simultaneous representatiolaiaf in terms of their corresponding attributes
on a map. Furthermore, uncertainty visualizatiomlmacome more complex and more difficult to
read and interpret for map readers (Leitner ande®tield 2000).

Previous research has investigated visualizationhods to effectively and efficiently
represent spatial data uncertainty (e.g., MacEac¢lBeewer, and Pickle 1998; MacEachren et al.
2005; Sun and Wong 2010). However, uncertaintyalization is still not popular in a geographic
information system (GIS) environment. One reasahdsinavailability of uncertainty information
for attributes (e.g., decennial census), and, hetieedemand for uncertainty visualization in
common GIS software is not high, with several exogs, such as Heuvelink, Brown, and van
Loon (2007) and Pebesma, de Jong, and Briggs (206@)purpose of this paper is to propose a
framework for uncertainty visualization methodsvector data, and to prototype implementation
of these methods in a standard GIS environmefdclises on attribute uncertainty visualization
of interval and ratio data. Specifically, the cahgy properties for proportional symbols (CPPS)
and composite symbol (CS) strategies can reprgg#ygon, point, and line features, while the

overlaid symbols on a choropleth map (OSCM) strategestricted to only polygon features. In



this study, the proposed methods are illustratél @@nsus block group level variables for the city

of Plano, Texas using only polygon features.

2.2 Related wor k

Uncertainty visualization can be considered theesamthe display of any other information
in conventional cartography (McGranaghan 1993). elmv, it often requires further attention
because it needs to be used for a supplementappgeito better understand its corresponding
attribute (MacEachren 1992). For example, unceastainformation commonly is required to be
presented with attribute information in uncertavigualization. Technically, attribute uncertainty
is depicted with visual variables in cartographepresentations. Hence investigations in the
literature address how Bertin’s (Bertin 1983) giapfariables can be logically matched to, and
practically utilized for, different uncertainty tgp. For example, empirical studies (e.g.,
MacEachren, Brewer, and Pickle 1998; Drecki 200®estigate the effectiveness of specific
visual variables, such as color value, saturatonl, opacity. MacEachren (1992) discusses how
size, color value, and grain (texture) are usefubiepicting uncertainty in numerical information,
and how color hue, shape, and orientation can led €@ depicting uncertainty in nominal
information within the context of Bertin’s origin@raphic variables. Table 2-1 summarizes

previous studies with visual variables investigdtadattribute uncertainty visualization.



Table 2-1. Investigations of visual variables ftiribute uncertainty visualization

Studies Visual variables

Color saturation, crispness, transparency,

MacEachren (1992) and resolution

Goodchild et al. (1994) Fog and Texture
Jiang et al. (1995) Lightness, and saturation
Davis and Keller (1997) Hue, color value, and textu
Dreki (2002) Opacity
Hengl (2003) Saturation and Lightness
Xiao et al. (2007) Textures
Sun and Wong (2010), Wong and Sun (2013) Textures
Kubicek and Sasinka (2011) Lightness and saturation
Slingsby et al. (2011) Hue and lightness
Kaye et al. (2012) Saturation
Deitrick and Wentz (2015) Saturation and size

Color components, including hue, color value (ghthess), and saturation, have been widely
used to represent attribute uncertainties amorggthisual variables. Goodchild, Buttenfield, and
Wood (1994) and Davis and Keller (1997) suggesthba, color value, and/or texture can be used
for depicting uncertainty. Also, MacEachren (1992pues that low uncertainty should be
represented by pure hues, while high attribute maicey should use a less saturated color (i.e.,
graying out uncertainty features). Jiang, Ormeliagd Kainz (1995) suggest visualization
techniques for fuzzy spatial analysis, where ligeth and saturation are used to represent
uncertainties. Hengl (2003) uses a similar mettazett on the hue, saturation, and intensity (HSV)
color model to depict uncertainty. These two mesh@dly on both saturation and value to increase

whiteness based on the degree of uncertainty. d¢kband SaSinka (2011) conducted an

10



intuitiveness testing for Hengl’'s method, and thempirical test confirmed high uncertainty
should be visualized with higher whiteness. Moiergly, Deitrick and Wentz (2015) merged a
visual variable color value with saturation to dé¢mttribute and uncertainty using a bivariate
mapping technique.

Transparency and fog also are viable candidata®foesenting uncertainty information. The
metaphor of fog has been proposed by Beard et291(, and an initial application of uncertainty
visualization using transparency by MacEachren 2)98s developed based on the metaphor of
fog. In this perspective, foggy elements, which eaentifying the level of attribute difficult,
indicate high uncertainty (MacEachren et al. 200%ansparency, which also is called opacity,
was proposed for integral symbolization. Drecki Q2D asserts that elements with higher
transparency (i.e., less opaque objects) are Iibgicnsidered as more certain things.
MacEachren et al. (2012) confirm through empirteslks that transparency is one of the feasible
visual variables for uncertainty representation.

Texture has been popularly utilized when attributecertainties are represented with
classifications. Texture is useful for a binaryssification, but also can be used for ordered or
numerical data with spacing between hatching itutexsymbols (MacEachren 1992). Goodchild,
Buttenfield, and Wood (1994) also discuss thatuexts a proper visual variable for uncertainty
visualization, and can introduce visual noise asegaphor for noisy data. MacEachren, Brewer,
and Pickle (1998) found that texture overlay symledfectively represent the reliability of death
rates, and Xiao, Calder, and Armstrong (2007)titte the effect of attribute uncertainty on map

classification using texture. Recently, Sun and W¢2010) and Wong and Sun (2013) also

11



utilized texture overlay symbols to visualize theality of American Community Survey (ACS)
data.

Statistical maps for uncertainty visualization awmnstructed in a form of either adjacent
display or bivariate mapping (MacEachren 1992adracent display, which also is called a map
pair strategy, attribute uncertainty is representgith an additional map accompanying the
corresponding attribute map (e.g., MacEachren 1B&8&ner and Buttenfield 2000; Aerts, Clarke,
and Keuper 2003). The bivariate approach also heen kpopularly used for uncertainty
visualization, because an attribute and its astatiancertainty information may be considered to
be a pair of variables. Previous studies conclbdethe bivariate approach is more effective than
adjacent display in terms of cluster detection (E&chren, Brewer, and Pickle 1998; Kidk and
Sasinka 2011; Francis et al. 2015). A major adwgntd this approach is that readers do not need
to switch their focus back and forth between twgsi@ build connections between the estimates

and their uncertainties (Sun and Wong 2010).

23 A framework for uncertainty visualization based on bivariate mapping

An attribute and its associated uncertainty geheerak visualized using either an adjacent
display or a bivariate mapping method (MacEach@92). Adjacent display refers to uncertainty
being visualized separately from its correspondittigbute, whereas bivariate mapping represents
both data and uncertainty in a single map. McGrhaag1993) argues that the complexity of
symbols in a bivariate mapping is beyond a threshwlicting the amount of information decoded
at one time. However, uncertainty visualizationhwitt interfering with the decoding ability of

users has been investigated (e.g., MacEachren Ha8sards and Nelson 2001). Furthermore,

12



studies (MacEachren, Brewer, and Pickle 1998; Edsvand Nelson 2001) show with empirical
assessments that bivariate mapping also is maretefie than adjacent display. With such support,
bivariate mapping for uncertainty visualizationmpairily has been discussed and implemented as
a visual tool in GIS. Implementation of bivariat@apping for uncertainty visualization can be
supported by a framework for attribute uncertaintgualization. While previous research,
including (Beard et al. 1991; Gahegan and Ehle@®20homson et al. 2005), attempted to provide
a comprehensive framework for uncertainty visudiltra with considerations of location and
attribute uncertainty, research summarized in plaiger focuses solely on attribute uncertainty
visualization, and suggests a framework for gealization of attribute uncertainty based on the
types of attribute and visual variables.

When uncertainty visualization based on bivariagpping is implemented, two issues need
to be cautiously decided. First, an appropriatentitec mapping technique needs to be selected to
visualize a corresponding attribute considerindgnltbé nature of the underlying phenomenon and
the purpose of maps (Slocum et al. 2009). Chorbg@at proportional symbol maps commonly
are used to display data collected for areal usitsh as census tracts and counties. A choropleth
map is appropriate to display numerical values éinatsummarized based on polygon boundaries
(MacEachren and DiBiase 1991), and to focus orcafpialues for each individual unit (Slocum
et al. 2009). Importantly, data standardizatiom.(epopulation density) often is necessary in
choropleth mapping to adjust for varying sizesreaaunits. In contrast to the choropleth map, a
proportional symbol map is used to represent rawntsoor totals (e.g., number of people). A

proportional symbol map also can be complementasydhoropleth map. Hence, when attributes

13



are visualized in a thematic map with uncertaidifferent thematic mapping techniques should
be used, depending on the types of attributes.

Second, uncertainty visualization with a bivariatepping approach can be categorized into
either a visually integral method or a visually @egble method (MacEachren, Brewer, and Pickle
1998). The visually integral method modifies onsual variable to represent both attribute and
uncertainty. For example, color can be modifiechvitie and saturation; hue usually represents
an attribute, and saturation is suitable to repragecertainty. The visually separable method adds
another visual variable to represent uncertainty.ifgstance, usually hue and lightness of color
are used to represent an attribute, and an additasual variable, such as spacing between
hatching in overlaid texture symbols, is combined describe uncertainty. Researchers
(MacEachren, Brewer, and Pickle 1998; Slocum e2@0.3) comment that the visually separable
method is better than the visually integral metlwderms of extracting information. Thus,
uncertainty should be represented by other visaaahkles or symbols when bivariate mapping is
employed for uncertainty visualization.

Table 2-2 presents a framework for uncertainty aligation using a bivariate mapping
technique that is proposed based upon the two giregeconsiderations. In this framework,
standardized attributes are visualized with chatbpiapping, and their uncertainty is represented
with overlaid symbols, such as texture and barsaBse hue and lightness typically are utilized
for portraying an attribute in a choropleth magpestvariables, including spacing, height, and size,
can serve to effectively represent uncertainty. Mvagoroportional symbol map is used for an
unstandardized attribute, visually separable végle.g., color value, saturation, and size) can

be used to display attribute uncertainty.
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Table 2-2. A framework for attribute uncertaintgwalization based upon bivariate mapping
Additional visual variable for

T f Attri ' [ i . .
ype o ribute Thematic mapping techniques uncertainty representation
Standardized data Choropleth mapping Spacing,,iegght
Unstandardized data Proportional symbol maps Sataraolor value, size

24  Animplementation of uncertainty visualization

Attribute uncertainty visualization based on biasgi mapping is implemented in ArcGIS in
accordance with the preceding framework. FirstO&CM method is implemented to visualize
attribute uncertainty. A choropleth map is suitableepresent attributes at the ratio scale, aaed th
colors of the symbols (usually hue and lightness)hie choropleth map are used to represent
uncertainty values. Additional overlaid symbols/isualize attribute uncertainty include textures
(spacing), circles (size), and bars (size). A textymbol is one of the most widely used visual
variables to represent uncertainty in previous lteg.g., Goodchild, Buttenfield, and Wood
1994, Xiao, Calder, and Armstrong 2007; Wong and 301.3). Texture symbols are the best in a
binary classification (MacEachren 1992), but alan be employed for numerical variables using
spacing between hatching (Sun and Wong 2010). Sysibes also can be utilized for depicting
uncertainty (e.g., Deitrick and Wentz 2015), altijothey can be confusing when appearing with
attribute values (Slocum et al. 2009). Table 2hBstrates uncertainty mapping with these three

overlaid symbol maps.
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Table 2-3. Overlaid symbols for uncertainty on aroipleth map

Uncertainty (Low— High)

Attribute - :
Spacing Size

Choropleth
m B ®

Second, CPPS is implemented to represent unceriaiat GIS environment. A proportional

symbol map is more appropriate to represent ramtsoar frequencies (Slocum et al. 2009). The
graphical sizes of symbols can be defined by a emagtical scaling based on the minimum and
maximum values of attributes. Attribute uncertaingn be represented with color saturation or
color value in HSV color model of proportional syoid Table 2-4 graphically illustrates this
approach. The saturation and color value lineaglgrelase from those of an original color to its
minimum value (for which zero or a predefined qitgirdan be used). Thus, in terms of saturation,
an attribute value with a high level of certairgyrépresented with pure hues, whereas those with
low levels of certainty are visualized with lesgusated colors (i.e., graying out uncertainty
features) (MacEachren 1992). With regard to colalu@, highly certain attribute values are
represented with pure hues, and, in contrast, Yigihtertain attribute values are represented with

low color values (e.qg., black) (Jiang, Ormelingd &ainz 1995; Davis and Keller 1997).
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Table 2-4. Coloring properties for uncertainty opraportional symbol map

_ Uncertainty (Low— High)
Attribute

Saturation Color value
Size y N :
(proportional )
symbols) _

Standard errors, which measure a certain typetobate uncertainty, enable visualizing a

range of attribute values with a given degree offidence, based upon a specific probability
model. This confidence interval can be depictedhait individual symbol. Table 2-5 illustrates
composite symbols in which both attribute valuesl aach corresponding uncertainties are
visualized. Conceptually, these composite symbals eonstructed with three different
proportional symbols overlaid for each individuakcation. Two of these three proportional
symbols represent un- certainty by visualizingapeer and lower limits of attribute values at a
given confidence level. Accordingly, this range jethis represented by the thickness of the circle
symbols in Table 2-5, portrays a possible rangamoéttribute value. Corresponding at- tribute
values appear in the range constructed by the wppklower bound lines (e.g., the center line in
the circle symbols in Table 2-5). The sizes of ¢hsgmbols can be proportionally defined with
corresponding values. With bar chart symbols, sl second items on the top of the symbol
represent the lower and up- per confidence linfignoattribute value. The common boundary of
lower and upper confidence areas represents ahudtrvalue. These two approaches using a
composite symbol allow users to directly compareeutainties with corresponding attribute
values and their confidence intervals. Moreovethwhe circle composite symbols, a thicker

bound around the center line indicates a wideridente bound; in other words, a thick symbol

17



indicates that its standard error or attribute uagaty is large. For a bar chart composite symbol,

the level of uncertainty is represented by the dosdheights of the first and second items.

Table 2-5. Composite symbols for uncertainty visazion

Uncertainty (Low— High)
Attribute

Size of circles Height of charts

Size
(proportional symbol O
or chart)

The proposed methods have been developed as arsiextén ArcGIS 10.1 using C# on the

Microsoft .Net Framework 4.This geovisualization extension of attribute utaiety provides
three visualization functions: OSCM, coloring prdps to a proportional symbol map, and
composite symbols. Figure 2-1 portrays the mererfiate of the extension. Each function has its
own graphic user interface (GUI), and the functiali@w users to select fields for an attribute and

its uncertainties with proper visual variables. T3lgls are presented in the Appendix A.

Methods ~ -

Colering Properties

Owverlaid Symbols

Composite Symbaols

Figure 2-1. Menu interface of the attribute undetiageovisualization extension

L https://hdl.handle.net/10735.1/5609
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25 Anapplication

The application presented in this section illustsahe implemented methods in ArcGIS using
the 5-year ACS data (2009-2013). For the interaatirmeasurement scale, by definition the
standard error is the standard deviation based spopling error. This quantifies the attribute
uncertainty due to sampling (Sun and Wong 2010¢s€&hdata include a margin of error (MOE)
that is based upon the standard error of the samgistribution for an attribute variable, as well
as survey estimates. Because MOEs represent ther lamd upper bounds for a 90-percent
confidence level, the standard error of an estimatebe calculated directly from its MOE: that
is, MOE = 1.645 x standard error (U.S. Census Bu09). However, some studies (Li and
Zhao 2005; Sun and Wong 2010) discuss that a vispatsentation of absolute error measures
(e.g., the standard error of an estimate) mayteath inappropriate conclusion and interpretation
because large attribute values tend to have laagelard errors. Furthermore, Francis et al. (2015)
discuss the appropriateness of using relative mmeasti errors, such as the coefficient of variation
(CV), for counts (e.g., the total number of houdéband of occupied houses) and median or mean
values (e.g., median age and mean household incdleegrtheless, an absolute measure of error
is still appropriate for proportional or ratio vahi(e.g., percentage of Asians), which are bounded
by a specific value range: i.e., between 0 and proportional values, and between 0 and 100 for

percentages (Francis et al. 2015) .
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Legend s ‘I
B ity of Plano [
[ DFW ‘

Figure 2-2. Study Area

Two variables with their corresponding MOEs wer&aoted from the 5-year ACS data (2009-
2013) at the census block group level for the otyPlano, Texas, which is located in the
northeastern part of the Dallas-Fort Worth metridi@olarea (Figure 2-2). Median age was chosen
to illustrate a choropleth map with overlaid synghaind ‘the number of housing units’ was chosen
to illustrate proportional symbols with coloringoperties and composite symbols. A relative

measure of errors, the CV, is used to representbatt uncertainty for both variables.

251 Overlaid Symbolson a Choropleth Map (OSCM)

Figure 2-3 portrays visual representations of 2@&8lian age with its CV at the census block
group level for the city of Plano using the OSCMtinoel. Color symbols (specifically, hue and

brightness) of the choropleth map represent thmattd median ages. The estimates are classified
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with four categories and the natural break algaritfttribute uncertainties are visualized with
three different types of overlaid symbols; textukes's, and circles. Spacing between hatching in
the texture overlay, heights of the bar symbolgl aincle sizes furnish a way to represent the
degrees of the CV of median age estimates; thub spa&ing in texture, tall bars, and large circles
describe a high level of uncertainty in estimatestian age values. Because median age estimates
and their uncertainties are integrated into onplaysframe, map readers need to concentrate on
only one frame. Thus, users can easily build coimes between the estimates and their
corresponding CV levels. In the median age estimaps, census block groups in the southern
part of the city have relatively higher median agémates. However, mapping only the estimates
may not provide sufficient information with whichamreaders can easily recognize the credibility
of the differences across census block groups. Useblck groups with relatively higher CV
levels also are observed in the southern part efctty, which indicates that the census block
groups in this region contain a higher level ofemainty in terms of their CV levels.

However, these maps show some potential disadvestaigthis visualization method. First,
determining corresponding classes from texturelayeymbols is difficult, especially when small
areal units have only a small number of lines bseaf large line spacing separations. There is
no general guide to determine the largest spacahgey but each areal unit should be displayed
with at least two lines to utilize spacing for attee symbol. Hence, the largest spacing value
should be judiciously chosen according to sizearefil units and their corresponding attribute
uncertainty levels. Second, the large size of atircles or the tall height of overlaid bars can
partially cover color on a choropleth map, and canse problems in interpreting the distribution

of estimates. The sizes of overlaid symbols maydrteebe restricted so that the underlying
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geographic distribution of estimates can be effetyidisplayed. In most cases, attributes are still

more important than their accompanying uncertasntie
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Figure 2-3. OSCM for 2013 median age and its coefiit of variation by census block group in
Plano, TX

2.5.2 Coloring Propertieson a Proportional Symbol map (CPPS)

Figure 2-4 visualizes the estimated numbers ofingusits and their uncertainty at the census
block group level in the city of Plano. The sizéghe circle symbols represent the numbers of
housing unit estimates, and their uncertaintiespar¢rayed with saturation and color value in
terms of the HSV color model. The census block gsowith low saturation and color values
represent high uncertainty for the number of hagsinit estimates. With a visually separable

bivariate mapping technique adopted for this vigadibn tool, the additional visual variables
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(saturation and color value) are combined into prigpnal symbols. Hence, this map should help
map readers to easily build linkages between esgsnand their corresponding CVs, as

MacEachren, Brewer, and Pickle (1998) claim.
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Figure 2-4. Coloring properties on proportional ginmaps for the 2013 number of housing
units and its coefficient of variation by censusdil group in Plano, TX

This map also has some disadvantages that stem doonmon problems of proportional
mapping. When the difference between the maximutmainimum values is extremely large, the
map pattern can be difficult to read due to massierlaps of symbols (Slocum et al. 2009).
Although the drawing order of the symbols is coleibwith regard to the symbol size range (i.e.,
the largest symbol to the smallest symbol) in otdgarevent small symbols from being concealed
by larger symbols, the minimum symbol size needse®elected carefully in order to achieve
communicative and visual effectiveness of a mapaddition, the legend for such maps may
become complicated. Such a legend has two legenggr Each of them shows, respectively, the
distribution of estimates and uncertainties (CV#&hwheir own minimum and maximum values.
But, because the CVs show only relative uncertdmtgstimates, the legend does not necessarily

clarify actual differences between estimates.

23



2.5.3 Composite Symbols (CS)

Figure 2-5 portrays composite symbol maps for tnalver of housing unit estimates with 99
percent confidence intervals based on a normaildligion assumption. In the top map, the center
lines in the proportional symbols represent theredes, and the bounds around the center lines
portray corresponding confidence intervals. A thlmbund indicates high uncertainty of an
attribute value. For the bar chart symbol maptfeeareas on the top of stacked bars respectively
represent the upper and lower bounds of the at&ibalues. The common boundary between the
first and second items on the top of a symbol endhimbols represents attribute values. That is,
the number of housing unit estimates is represdndide combined height of the second and third
items. The level of uncertainty is representechigydombined heights of the first and second items.
The variable used in the composite symbols methdédgure 2-5 is identical to the one in the map
displayed with CPPS in Figure 2-4. Although a meatomparison is only possible in the map
using CPPS, this composite symbol map allows maders to compare actual differences of
estimates for a given confidence level, based emsites of the symbols. Composite symbol maps
are particularly useful for simultaneously identiiy uncertainty information in specific locations
and general spatial patterns of an attribute. W&hepatial pattern of an attribute is emphasized,
an increase in symbol sizes can enhance the spati@rn. When a user focuses on local data
exploration, symbols can be adjusted accordinghg implemented tool furnishes an easy way to
change symbols as well as exploration functionduging zoom in/out. However, a composite
symbol map has several potential issues that @atgiwith proportional symbol mapping. These
include an excessive number of overlaps and legiloif small size symbols (Slocum et al. 2009).

Distinguishing the border between the estimatecamfidence bounds is difficult especially when
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symbol size is small and/or uncertainty is reldgivamnall for a corresponding estimate. Also the

level of legibility can vary depending on a usddmiliarity with symbols used.
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Figure 2-5. Composite symbol maps for the 2013 raermobhousing units with 99 percent
confidence intervals by census block group in Plano

2.6  Summary and conclusions

Geovisualization of spatial data can be enhanceardyiding a visual representation of their
attribute uncertainty, which in turn can assistrsi$e more easily recognize an underlying pattern
of data. However, it still lacks such tools in aSGdnvironment, and a general framework for
uncertainty visualization. This paper proposesaa&work for attribute uncertainty visualization
based on bivariate mapping techniques, and prowdel tools implemented in the ArcGIS
environment. This framework principally utilizesarbpleth maps and proportional symbol maps
for thematic mapping of attributes based on thesygf variables: count and ratio estimates. This
implementation contains three types of visualizatianctionalities: overlaid symbols on a

choropleth map, coloring properties for a propardilcsymbol map, and composite symbols. Many
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of the visual variables that have been investigatethe literature are available to provide
flexibility to enhance communication and visualiaateffectiveness.

In this paper, the visualization tools were examingh a single dataset comprising 84 areal
units. In addition, these visualization methods megd to be fine-tuned for specific datasets. For
example, when a proportional symbol map is usddrge portion of symbols can overlap with
each other, and, for another example, texture sismaith hatchings in a choropleth map may not
be easily recognized for small areal units. In ¢hescumstances, minimum and/or maximum
symbol sizes need to be carefully set. Similathg, Inaximum spacing between hatch lines also
needs to be wisely set. Although a composite symiib can allow map readers to directly
compare differences between estimates and theartamaties, small differences still are difficult
to identify. Furthermore, a focused group surveydiwted as future research would be useful to
evaluate the effectiveness of the implemented taalh various geographical scales and

resolutions.
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ABSTRACT

A choropleth map frequently is used to portraydpatial pattern of attributes, and its mapping
result heavily relies on map classification. Unaity in an attribute has an influence on map
classification, and, accordingly, can generate rameliable spatial pattern. However, only a few
studies have explored the implications of uncetyammap classification. Recent studies present
methods to incorporate uncertainty in map clas#ifomn and generate a more reliable spatial
pattern. Nevertheless, these methods often proalucasdesirable result, with most observations
assigned to one class, and struggle to find amaptiesult. The purpose of this paper is to expand
the discussion about finding an optimal classifaratesult considering data uncertainty in a map
classification. Specifically, this paper proposptimaal classification methods based on a shortest
path problem in an acyclic network. These methdtizeidissimilarity measures and various cost
and objective functions that simultaneously carsaer attribute estimates and their uncertainty.
Implementation of the proposed methods is in anGAscenvironment with interactive graphic
tools, illustrated with a mapping application oétAmerican Community Survey data in Texas.
The proposed methods successfully produce mapifdaisn results achieving improved
homogeneity within a class.

Key Words: uncertainty, map classification, choropleth map, GIS
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3.1 I ntroduction

Uncertainty is unavoidably included in spatial daize to discrepancies (usually due to
measurement error) between the real world and vagens (Longley et al. 2011). The United
States (U.S.) Federal Geographic Data Committedd(E3lescribes spatial data uncertainty in
terms of five fundamental components of data gualiheage, positional accuracy, attribute
accuracy, logical consistency, and completenessSIAN998). Among these components,
measurement and sampling errors are the main cafisgibute accuracy or uncertainty, and
increasingly uncertainty information is being repdrtogether with estimates from survey data,
such as margins of error (MOE) for the American @amity Survey (ACS) data. Attributes often
are visualized with thematic mapping techniqued, attributes measured with an interval or ratio
scale are visualized with a choropleth map. Mapsifecation, which has a substantial impact on
the spatial pattern of a geographical phenomenamgyed by a choropleth map, also potentially
is influenced by data quality [i.e., uncertaintyo@im et al. 2009, 425)]. Furthermore, uncertainty
can provide map users with insight into the religbof spatial patterns. However, uncertainty is
largely ignored in choropleth mapping; rather, phesumption seems to exist that spatial data and
maps are accurate (Sun, Wong, and Kronenfeld 2017).

Incorporating uncertainty in mapping has been ingated in two major ways. First, many
studies have developed approaches that simultalyaosisalize uncertainty and its corresponding
attribute estimates (i.e., observed values) usiidifianal visual variables (e.g., MacEachren et al.
2005). These visualization methods can providesuseth reliability information for spatial
patterns in a map, which still might be unreliaffain, Wong, and Kronenfeld 2017). That is,

uncertainty is provided in a separate form thanbaftte estimates, but map classification is
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performed based only on estimates. Second, seeeait studies propose methods to incorporate
uncertainty information within the map classificatiprocess. They focus on reliability of map
classification results considering the uncertaaitgttribute estimates. Sun, Wong, and Kronenfeld
(2014, 2016) accomplish this goal by utilizing atistical significance of differences between two
observations based on their estimated values auduhcertainties. These researchers find class
breaks that maximize statistical differences betwelasses, assuming that the distribution for
each observation follows a bell-shaped curve ims$eof its estimate and uncertainty. However,
this method’s map classification is sensitive tdliets because an outlier almost always is
significantly far from other observations. As aukesthis method often produces a class with only
a single outlier, assigning most observations t® @nm two) classes. Sun, Wong, and Kronenfeld
(2016) furnish a heuristic method utilizing multiteria for grouping purposes, which include a
class separation level, within class variation, bathnce in the number of observations across
classes. This approach provides a tool to helpea cisoose a set of threshold values for those
characteristics, but finding an optimal classificatremains difficult.

This study expands the notion of incorporating dataertainty into optimal classification
methods by utilizing the following two similarityeasures that simultaneously consider attribute
estimates and their uncertainty: the class sefdayaiieasure (Sun, Wong, and Kronenfeld 2014)
and Bhattacharyya distance (Coleman and Andrew8)19he research summarized here also
addresses multiple criteria to determine an optichedsification result. Furthermore, a graphic
diagnostic tool to interactively evaluate and compaptimal classification results has been
developed and is presented. The proposed optinmedsifcation methods incorporating

uncertainty information are illustrated with coutéyel variables for the state of Texas.
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3.2 Literature Review

Spatial data uncertainty has been investigatectlation to GIScience and remote sensing
(Goodchild and Gopal 1989; Foody and Atkinson 2at¥2zang and Goodchild 2002; Couclelis
2003; Chiles and Delfiner 2009). A number of stadiave been conducted to: identify sources of
uncertainty (e.g., Chrisman 1991), detect and nreasncertainty in spatial data and analysis
results (e.g., Cayo and Talbot 2003; Bichler anttiggk 2007; Griffith et al. 2007), model or
predict analysis results associated with uncestdmy., Zimmerman et al. 2007; Zandbergen and
Hart 2009), and develop methods or strategiesdoce or eliminate uncertainty in data and their
analysis (e.g., Zimmerman 2008; Goldberg 2011)o Alscertainty visualization now constitutes
a sizeable research domain, and people in cartograjgography, and computer science have
contributed to its development (e.g., MacEachre®2i®ang 2001; Aerts, Clarke, and Keuper
2003; Johnson and Sanderson 2003).

Uncertainty visualization is an essential tool dphmap users understand the reliability of
spatial patterns for various research and pradcictities (Deitrick and Wentz 2015). However,
the visualization of uncertainty has been challeggbecause it often requires displaying more
information than conventional cartographical teglueis can handle effectively in a single map.
That is, a concurrent representation of data amd ttorresponding uncertainty information
becomes complex and difficult to read and interftGranaghan 1983). Thus, studies have
investigated effective and efficient visualizatiomethods for spatial data uncertainty (e.g.,
Goodchild, Buttenfield, and Wood 1994; MacEachi@mewer, and Pickle 1998; MacEachren et
al. 2005). Notably, using empirical subject tedisjtner and Buttenfield (2000) report that

inclusion of uncertainty information provides cfaration rather than an increase in complexity.
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Because uncertainty information should be presemtigl its corresponding attributes, many
previous studies addressed uncertainty visualizdiyo utilizing additional visual variables [see
Bertin, (1983), for a comprehensive discussionisfial variables]. Among these visual variables,
color components, such as color value, lightnes$ saturation, have been widely used to describe
uncertainty (e.g., MacEachren 1992; Jiang, Ormelamgl Kainz 1995; Leitner and Buttenfield
2000; Hengl 2003; Deitrick and Wentz 2015). Alsansparency and fog (e.g., Beard et al. 1991,
Drecki 2002; MacEachren et al. 2005), and textarg.( Goodchild, Buttenfield, and Wood 1994;
MacEachren, Brewer, and Pickle 1998; Xiao, Calded Armstrong 2007; Sun and Wong 2010;
Wong and Sun 2013) are practical candidates focridb@sg uncertainty. These visualization
methods can be used effectively to warn map rea®yat the reliability of spatial patterns, but
the spatial patterns generated only with estimats remain unreliable (Sun, Wong, and
Kronenfeld 2017). For example, although they aggigtcally different, observations can be
allocated to the same class. Recent map classicanethods incorporating uncertainty
information suggest a need to improve the religbdf class breaks.

Optimal map classification has been investigate@resively in thematic mapping. Jenks’s
natural breaks method, which is equivalent to ustramed clustering (Fisher 1958), is popular
and is utilized in extensively GIS packages (D€999). Fundamentally, because Jenks’s method
is a within group variance minimization approach,determines class breaks to maximize
homogeneity within classes (Murray and Shyy 20@@pmley (1996) pursued related work. His
approach considers map classification as a onerdiimieal partitioning problem that also
maximizes within group homogeneity. Cromley's whds been further extended to a bi-criterion

(Murray and Shyy 2000) as well as a multi-critenimization framework (Armstrong, Xiao, and

32



Bennett 2003). However, implications of data uraieties have not been explored in this
optimization framework.

Xiao, Calder, and Armstrong (2007) propose a raiesst measure to explicitly evaluate the
effects of data uncertainty in map classificatibheir robustness measure is formulated with a
probability that an attribute estimate falls ink® tclass where the value is assigned. They also
define a tolerance level for the unreliability ahap classification result, which can be interpiete
as a minimum acceptable level for map users. Tihempercentage of observations within a given
tolerance level is used to quantify overall clasatfon robustness. They utilize this robustness
measure to evaluate classification results basedifterent classification methods (e.g., equal
interval, quantile, and natural breaks). This raobess measure is useful for evaluating the overall
performance of a map classification result, andvidies a warning to map users about the
unreliability of class breaks (Sun, Wong, and Kmfeéd 2017). Sun and Wong (2010) suggest a
modified natural breaks algorithm that extendsrtimistness measure. This algorithm identifies
breaks using the significance of statistical ddfezes between ordered attribute estimates. In
detail, after sorting observations in ascendingpldsed on their estimates, a statistical diflezen
test is conducted between all pairs of consecuatbgervations. If a test result is significant, assl
break is inserted between observations. One limitadf this approach is that a statistical test is
conducted only between pairs of consecutive obensa The minimum probability value for
this test can be for nonconsecutive observationstifer limitation is that the number of classes
depends on a preset significant level, and, acoghgi map classification can result in too few or

too many classes.
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Sun, Wong, and Kronenfeld (2014) propose a claparability classification method by
extending Sun and Wong's modified natural breakecgdure. This class separability
classification method uses the standard two-samypdst to measure separability between two
observations, with their estimates as means amduheertainties as (unequal) variances. In most
empirical cases, these observations are samplachdabmpanied by a sample mean and sample
variance (e.g., ACS data). A class separabilitysueabetween two classes is defined with the
minimum confidence levels of the standard two-sa&uaplest among all pairwise combinations of
observations in the two classes. Then, class braaksletermined with k (a preset number of
classes) greatest class separabilities, or a pggeticant level for the class separability measu
Consequently, class breaks are determined betwaeonrdered estimates, with little overlap in
their probability density functions that represspteads of estimates based on their uncertainties.
Although it is simple and fast, one weakness «f #gproach is that classification results from this
method are sensitive to outliers. Hence, this ntetften produces a classification result in which
most observations are assigned to a small numbaasdes, which is less desirable to display an
underlying spatial pattern and to achieve a vibaédnce. Sun, Wong, and Kronenfeld (2016) put
forward a heuristic classification approach thatsiders not only the class separability measure,
but also other classification criteria, such asuhevenness of observation counts across classes,
and within-class variability. The consideration afiditional criteria can improve a map
classification result in terms of balance amongs#s. For example, the degree of unevenness,

which can be calculated as the standard deviafitmeacnumber of observations by class, can help

2 The standard two-sample z-test compares two mehase sampling distributions conform to a normal
distribution with known standard deviations.
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achieve a balanced result in terms of the numbebsérvations for each class. Also, within-class
variability, one criterion utilized in Jenks’s nedlibreaks method, can ensure that observations
with similar estimates are assigned to the sanss ¢f@locum et al. 2009). This heuristic method
allows map users to find class breaks with readgnailgh class separability measures, while
satisfying other map classification criteria. Howgvuntrained users still might encounter

difficulties finding appropriate values for critarihat yield an optimal map classification.

3.3 Method

This section summarizes the formulation of an opltimap classification that utilizes a
shortest path solution for an acyclic network (Cleynand Campbell 1991). While costs are
defined as distance in a shortest path probleny, the be defined as a form of similarity or
dissimilarity among observations within a classaimap classification problem. Here, a class
separability measure and Bhattacharya distanceiseé to calculate costs taking into account

uncertainty and attribute estimates.

3.3.1 Optimal Classification

An optimal classification problem, whose objectiséo maximize internal homogeneity, can
be formulated as prmedian problem for facility locations, whose objee is to minimize a total
travel weighted distance, when the rank orderetbate values are represented as points on a
simple network (Monmonier 1973). A network struetudor classification problems is much

simpler than a network structure femedian problems, because the network for a cleasdn
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problem is acyclic (Cromley and Campbell 1991).sT$ection summarizes optimal classification
methods that incorporate uncertainty informatiotterding the shortest path problem of Cromley
(1996) to classify observations in an acyclic nekwvéigure 3-1 shows an example of an acyclic
network with five nodes. LaV be the set of nodes in an acyclic network. In @oidito starting
and ending points of a network, the nodes thatespond to class breaks are located between
observations; thus, the number of nodeS isn + 1 for n observations. The lines denote ordered
pairs (i,j), wherei € N, j € N, andi < j, which represent the different groupings thatudel
observations between nodés j. Givenn observations in a dataset, therergpe + 1) /2 possible
lines in an acyclic network. A cost value associatéth a line represents the cost of traversing
that line, and, hence, this cost commonly is mesbwith a type of physical distance between two
nodes in a shortest path problem. In a map claasibn problem, a cost value often is measured
with a level of heterogeneity (or homogeneity) agnobservations in the same class. For example,
in univariate map classification without considgrimcertainty, a cost value can be calculated as
the sum of deviations from a class mean. Then pémal solution can be found with a path that
minimizes a total cost (or maximum cost) subjec fareset number of lines, which corresponds
to the number of classes. In Figure 3-1, thickexdiof (0, 2) and (2, 4) highlight a sample sohutio
with two classes, which respectively represent dass with observations between nodes (0, 2),

and another class with observations between n@jey.(
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[:0 1 3 4

Figure 3-1. An example of an acyclic network witrefnodes: the thicker lines of (0, 2) and (2,
4) represent a sample solution with two classes fdass with observations between nodes (0,
2), and another class with observations betweees(®2] 4)]

3.3.2 Cost Functions

An optimal classification result is strongly affedt by the definition of a cost function
(Cromley 1996). In univariate classification with@onsidering uncertainty, costs commonly are
measured with the sum of deviations from a cenéadlency measure for each class, such as a
class mean (Jenks 1977). However, no obvious déetrdency measure exists when observations
are compared with their uncertainty as well asrtesiimates, and, subsequently, deviations from
a selected central tendency measure are not ekedilyed. This situation suggests a need to use
alternative measures for heterogeneity among oasens in the same class.

In the research supporting this section, a costev@le., heterogeneity within a class) was
computed as a composite value, accounting for teiogy, with all pairwise distances among
observations in the class. The following two measuwwere employed to calculate the distance
(i.e., the difference) between two observationstaas separability measure, and Bhattacharyya
distance. First, a class separability measure (8Yorg, and Kronenfeld 2014) was used to

calculate differences between observations usieig #ttribute estimates with uncertainties. This
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class separability utilizes a statistical differen@ssuming that observations follow a normal
distribution, because a distribution of uncertaiobyverges to a normal distribution based upon

the Central Limit Theorem. This class separabifityasure can be expressed as

. |2 —%)]
Z.(i, ) = ——, 1

where |x; — %;| is the absolute difference between two estimates,SE; and SE; are their
respective standard errors. This equation is deifinem the standard z-test, and z-scores are used
to quantify the distance (or the difference) betwe®o observations.

The second measure is Bhattacharyya distance, whectissimilarity measure that quantifies
the dissimilarity of two discrete or continuous Ipability distributions (Bhalerao and Rajpoot
2003). Dissimilarity measures have been widely usedustering methods (Mennis and Guo
2009), such as K-means, and self-organizing ma@@Vi§ (Kohonen 2001). Bhattacharyya
distance frequently is used in feature selectiath extraction for remotely sensed images (e.g.,
Schmidt and Skidmore 2003; Mas et al. 2004). Asagntihat an observation follows a known
distribution (e.g., normal), Bhattacharyya distanae be utilized to quantify differences between
observations accounting for both their attributéinestes and uncertainties. Bhattacharyya
distance between two normal distributions can bmutated with the following equation (Coleman

and Andrews 1979):
= g (1(5E 5 1 Gixy)”
D5(i, j) = s (4 (SE]? + SE? + 2)) t <SEL-2+SE]? ’ (2)
wherex; andx; are the attribute estimates for observatibasidj, andln denotes the natural

logarithm. The first term quantifies the differenoetween the variances, and the second term

compares both estimates and variances. Thus, Bhattg/a distance can compute a non-zero
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distance between two observations with the sanm@a&tt and different variances. In contrast, the
class separability measure always returns zersuoin distributions.

A cost is calculated, based on distances betwees gfeobservations, in two different ways.
First, the sum of pairwise distances in a clasgilzed. A large sum of pairwise distances can
indicate that some observations in a class tewlffer from other observations in the same class.
Second, the maximum pairwise distance in a clagsed for its cost value. This quantity controls
for the worst case scenario when calculating homeige within a class. Table 3-1 presents
combinations of the two pairwise distance measiard,two ways to compute cost values. In

Table 3-1G; ; represents all pairs of observations within a giog.

Table 3-1. Types of cost functions for map clasation

Measures
Cost determination The class separability Bhattastzadistance
Sum of pairwise distances Cij = Z Zs(k) Ci,j = Z D5 (k)
kEGi’j kEGi,j
Maximum pairwise distance Gj = pax Zs(k) ¢j = max Dg (k)

3.3.3 Objectivefunctions and formulations

A shortest path problem can be solved using eitherDijkstra (1959) or other heuristic
algorithms, such as A* (Hart, Nilsson, and RapH#£88). Also, integer programming (IP) is a
well-known alternative strategy. IP problems whigre objective function and all constraints are
linear can be solved relatively effectively usingpranch-and-bound algorithm (Dean 2011). A

simple IP problem can furnish a way to solve theppsed map classification problem. This paper
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presents an optimal map classification formulatath two different objective functions based on
the cost functions described in the previous seciitie first objective is to minimize a total sum
of costs, focusing on the overall efficiency of aprtlassification. The second is to minimize the
maximum cost among classes, which improves effayielny controlling for the worst case.
Fundamentally, it utilizes the Minimax principlehi@h commonly is applied to a facility location
problem (e.g., Toregas and ReVelle 1972; Erkutpéisa and Tamir 1992). Accordingly, Table 3-
2 shows that eight configurations for optimal ciasstion models relate to the two objective

functions, two cost determination methods, and paowise distance measures.

Table 3-2. Configurations for optimal map classifion with their acronyms

Measures
Objective functions Cost determination The clag_s Ehattacharyya
Separability distance
Minimize Sum of pairwise distances SSS SSB
a total Sum of costs Maximum pairwise distance SMS SMB
Minimize Sum of pairwise distances MSS MSB
a Maximum cost  Maximum pairwise distance MMS MMB

An optimal map classification that minimizes a tetam of costs can be formulated as follows:

Minimize: Zi'jci,jdi,j Vi,j EN,i<j 3)
Subjected to: ¥, ¢, dik = Zjeouty A vk €N 4)
Yjdsj=1 Vj € Out;, (5)
Yidie=1 Vi € In, (6)
Y ;di; =T Vi,j EN,i<j 7)
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d;; €{0,1} Vi,j EN,i<j (8)

whered; ; is a binary decision variable, with one denotimaf & line fromi to; is part of a solution,
and zero denotes otherwigeg; is the cost for a line fromto j; In, is a set of all nodes that start

lines terminating at node; and,Out,, is a set of all nodes that terminate lines stgréannodek.
Nodess ande respectively denote a starting node and an ené mo@ network; these nodes
correspond to the smallest and largest valuesertdimtext of map classification. Equation (3) is
the objective function for the model, which minimesza total sum of costs. Equation (4) is a flow
constraint to ensure that if a line terminates abde, then the next line should begin from that
node. Equation (5) ensures that the first node, the minimum value) participates in only the
first line that begins from the first node (i.ehetfirst class). Similarly, equation (6) ensureat th
the last node (i.e., the maximum value) participdte only the last line (i.e., the last class).
Equation (7) restricts the number of classes, ajuhtion (8) is a binary integer restriction
indicating whether or not each line is a part sbaition.

The second specification with the Minimax objectivaction can be defined as follows:

Minimize: y (9)
Subjected to:  Equations (4) ~ (8)

y = Ci,jdi,j Vi,j EN,i S_] (10)

This objective function is set with an auxiliarycti@on variabley, and equation (10) ensures that

this decision variable achieves its maximum value.
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3.34 An Optimal Map Classification | mplementation

The proposed optimal classification models have liplemented as an extension of ArcGIS
10.1 (ESRI 2011) using C# in the Microsoft .NetrReavork 4. The optimization problems are
solved with Gurobi optimizer 6.5.0, which suppatsranch-and-bound algorithm that is an exact
method for finding an optimal solution. Figure $@rtrays the interface and graphic display of
the map classification tool. In the right-hand safiéhe graphical user interface (GUI), all attitdou
estimates are displayed as blue dots in ascendidgr,otogether with their corresponding
uncertainties that are represented as horizontaldzsed on predefined confidence intervals. The
vertical lines represent class breaks, and thersadd the bottom rectangles match the color
symbols for classes of a choropleth map. This dcagisplay can be used to visually compare
statistical differences of estimates, and evalaatkassification result. Observations in this graph
dynamically link to features in a map so that arusan interactively explore data with their
locations. Using the options in the left-hand 3lehe GUI, configurations of map classifications
can be set; that is, a number of classes, optinagl chassification strategies, and measure types
(see Table 3-2 for configuration details). Als@oafidence level can be specified that determines

the length of the horizontal bars in the graphafyn colors for a choropleth map can be controlled
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Figure 3-2. The GUI of the implemented tool

34 A Comparative Application

This section demonstrates the proposed optimasi@izsion methods using the 5-year ACS
data (2010-2014). This study directly uses ACS ,dathich contain MOE values that are
calculated from the standard errors of the sammisggibutions for survey estimates. A standard
error (used to calculated a MOE) is a typical measised to evaluate attribute uncertainty due to
sampling error (Sun and Wong 2010). The statistidférence measures in this paper (i.e., the
class separability measure and Bhattacharyya disjazan be calculated with standard errors as
well as their estimates. Because ACS MOEs showcthwdidence bounds for a 90-percent
confidence interval (U.S. Census Bureau 2009),staadard error of each estimate is derived
directly from its MOE.

Specifically, the estimates ofiedian household income (in 2014 inflation adjusted dollars)
with their corresponding MOEs for the 254 countre3exas are used in this application. Table
3-3 reports descriptive statistics for the dataBlee largest estimate of median household income

is $86,597, and the largest MOE is $65,629. ThgektrMOE is observed for Loving County, with
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a median household income of $65,625. This MOKtiemely large compared with its estimate.
The small population of Loving County (82 peoplal &89 households, according to the 2010
census) produces this extreme uncertainty. Thisitgokias a considerable influence on a map

classification result, especially ones based uperBhattacharyya distance measure.

Table 3-3. Summary statistics of median househatdme (in $) for the 254 counties in Texas

N Estimate MOE
Mean Min Max Mean Min Max
254 46,352 22,176 86,597 4 576 338 69,245

Source: the 5-year (2010~2014) American Community&u

Table 3-4 reports map classification results f@ pnoposed methods; this table contains the
range of observation coudtsand the total (i.e., class sum) and maximum, (imex) values.
Underlined values are the lowest value in eachmolBecause an optimal classification method
minimizes heterogeneity (or maximizes homogeneiydhin a class, while incorporating
uncertainty, the classification results of the m®gd methods are compared with those of the class
separability (Sun and Wong 2010) and the natursdhs classification methods. First, the class
separability result has 247 for the range of olet@m counts, which indicates the classification
result is highly unbalanced. That is, most of theesvations are assigned to a single class. Figure
3-3 shows that the separability class breaks cdraterat lower values. This outcome is consistent

with that for the separability method, which temalproduce a result in which class breaks tend to

3 The range of observation counts is calculatethasglifference between the largest and smallest ersif
observations in classes.
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be around extreme values (Sun, Wong, and Krone@f¥ld). Thus, this classification method has
difficulty achieving a balance in terms of the nienlof observations assigned to classes. The
outcome based on a maximum pairwise distance tr @ass (i.e., SMS, SMB, MMS, and MMB,;
see Table 3-2 for acronym definitions) also shaiatively unbalanced results based on the range
of observation counts in Table 3-4. In contrasg tptimal classification based on a sum of
pairwise distances has an improved result in t&rismlance. That is, SSS, MSS, SSB, and MSB
in Table 3-4 have a more uniform distribution ofmhers of observations across classes. The
natural breaks classification achieves a relative®yl balanced result in terms of the number of
attribute estimates for each class (Table 3-4 agdr€& 3-3), but considers only variances among
attribute estimates while ignoring their uncertaisiJenks 1977). The natural break classification
result shows that counties forming large metropoliareas in Texas (i.e., Dallas-Fort Worth,
Houston, San Antonio, Austin) have high median kbo&d incomes. Some counties with high
median household incomes also are located in thiegralle and west central regions of the state.
In contrast, counties that are near the Mexicaddraend to have low median household incomes.
More counties with relatively low median househwidomes are located in the eastern region of
the state. The class separability map does nottéhis pattern, with most counties assigned to

Class 6.
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Table 3-4. A comparison of optimal classificatiorthods with the class separability and the natunedks classification methods

Range Class separability measure Bhattacharyya distance

of

observation
counts Class Sum Class Max Class Sum Class Max Class Sulass Mlax Class Sum Class Max

Methods Total Maximum Total Maximum

'\g’;te“;z' 79 6235.04 5809  3051.05  13.26 4192.1 15522  1769.7 43.98
Class
cepapity 247 10973377 6L65 10073367 6155 25614151 947325814136  947.22
Sss 38 45447 45.19 907.65 1476  3586.15  111.06  842.85 54.51
SMS 175  31561.98 3231 3091577  17.33  32437.99 9229  31857.88  75.22
MSS 34 4602.44 5054 78828 2011 417632  157.7  1570.95  101.15
MMS 72 709579 4872  2349.88 1054  4927.31  108.94 151258  27.98
SSB 51 481136  49.34 123958 1476 342329  127.97 71391 54.51
SMB 131 1342161  37.34 1148210 1054 979154 7395 807592  27.98
MSB 47 4667.13  43.47 118455 1476  3439.95  107.68 604.19 54.51
MMB 105 863596  49.92  5991.84 1054  5859.46  109.783789.08  27.97

Note: (1) the best results are highlighted in oid underlined.
(2) see Table 3-2 for the acronym definitions.
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Figure 3-3. Classification results using the ndtbraaks and class separability methods

All optimal classification methods seek to prodhoenogeneous classes based upon different
criteria (see Table 3-2), while often creating elifint spatial patterns of classification results.
Figures 3-4 and 3-5 display the optimal classifaratesults using the class separability measure.
Among these, the SMS result is noticeably diffefeoitn the others. The largest shift in groups
occurs in the first group in the SMS result. InailetL44 counties assigned to either Class 2, 3, or

4 in the SSS and MSS results are shifted into Alasshe SMS result. Only one county is assigned
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to Class 3 in the SMS result, causing a large vldue¢he range of observation counts. With a
similar map classification result, the SSS and M#i®ria have a similar spatial pattern. Figure 3-
6 portrays the changes of the map classificatisnltefrom SSS to MSS, and then to SMS. Figure
3-6a displays the 15 counties that are classifiéerdntly according to the SSS and MSS criteria.
In contrast, 214 counties in the SMS result magufa 3-6b) are classified differently than in the
SSS result map, including the aforementioned 14htes that are assigned to Class 1 according

to the SMS criterion.
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Figure 3-4. Optimal classification results by tieses separability measure
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Figure 3-5. Optimal classification result maps gdime class separability measure with different

optimization criteria
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Figure 3-6. Class assignment differences usingéparability measure: changes from SSS to (a)
MSS, and (b) SMS

Figures 3-7 and 3-8 display the results of optimalp classification using Bhattacharyya
distance. The SSB and MSB results are more sithi&r those of SMB and MMB. This outcome
also may indicate that a choice of cost deternonatias more influence on a classification result
than the objective functions. When Bhattacharyysagice results are compared with the class
separability results, a noticeable difference carobserved with Loving County, which has the
longest error bar in Figure 3-7. Because the Bblattiyya distance measures a dissimilarity
between probability distributions (Reyes-Aldasond 8halerao 2006), the high standard error of
Loving County can increase a distance measureontrast, its class separability measure, which
is inversely proportional to its standard erroisnsaller than Bhattacharyya distance, and has less
impact on map classification. Figure 3-9 portrayecknces in the map classification results

between the SSB to MSB criteria. Figure 3-9a digpkasimilar result for SSB and MSB. Only 13
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counties are classified differently in these twopsialn contrast, 154 counties are classified

differently in the SSB and SMB maps (Figure 3-9b).
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Figure 3-7. Optimal classification results basedBbattacharyya distance
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Figure 3-8. Optimal classification result maps gd8hattacharyya distance
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Figure 3-9. Class assignment differences usingtBtladryya distance: changes from SSB to (a)
MSB, and (b) SMB

35 Conclusions and limitations

This paper summarizes a study that investigated cegsification by combining optimal
classification methods (Cromley 1996) with variogsst and objective functions that
simultaneously consider attribute estimates andr thacertainties. Overall, the proposed
classification methods successfully produce resadtseving homogeneity within a class with a
consideration of uncertainties as well as thenilatte estimates. These methods also achieve a
more balanced allocation of observations acrosssetathan the class separability classification
method. More specifically, the class separabiligasure and Bhattacharyya distance were used
to compare statistical differences between a ganbservations. Also, costs were determined in
two different ways, with objective functions miniemg either a total sum of costs or a maximum

cost. The empirical application to 254 countieJ @xas shows that cost determination has more
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influence on the classification result than theechye function specification, and it can contridsut
to a more balanced number of observation amongsedasin addition, a comparison of
Bhattacharyya distance and separability resultsailsvthat a noticeable difference between them
can emerge for observations with greater uncegtaint

This paper contributes to map classification fentiatic mapping in two ways. First, it extends
map classification by incorporating uncertaintyaim optimal classification. Previous approaches
that incorporate uncertainty in map classificat{§an, Wong, and Kronenfeld 2014, 2017) often
produce a less desirable result, with most obsernsaassigned to a single class, and struggle to
find an optimal result. Second, this paper presemsp classification tool that is implemented in
a popular ArcGIS environment. This implementatiomfshes a way to generate a thematic map
that simultaneously considers attribute estimatestheir uncertainties in its classification. This
tool also can be used for an exploratory spatita daalysis that compares the underlying patterns
of a spatial distribution while incorporating uniz@nty information.

Some limitations to the proposed method merit firinvestigation in future studies. First, a
performance evaluation (e.g., accuracy and robss}rier the devised optimal map classification
with uncertainty needs to be investigated. Somencomapproaches are not necessarily effective
in evaluating map classification while consideringcertainty. Jenks and Caspall (1971) suggest
an overall accuracy index that combines individadices that measure each objective of map
classification. One weakness of this index is thafpriorities of objectives still need to be arsig)
arbitrarily by map designers (Evans 1977). The stthess measure by Xiao, Calder, and
Armstrong (2007) also has been used to evalua@vitrall performance of classification methods

(e.g., Traun and Loidl 2012; Sun, Wong, and Kroe&hf014). However, this measure only
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evaluates the robustness of attribute estimatéelsifaitolerance level for the unreliability of ama
classification is defined subjectively by a useec@hd, the performance of the proposed map
classification can be affected by the number ofeolsions. A branch-and-bound algorithm
solution can be extremely time consuming when tlmlrer of nodes in a branching tree is too
large. Thus, as the number of observations incsgdise time needed to find an optimal solution
increases at an exponential rate. Third, the natynassumption for empirical data also can be
problematic, although many non-normal variables wamic, and hence are indistinguishable
from, a bell-shaped curve in numerous circumstan¢geg., Poisson, binomial, beta,
hypergeometric, gamma, chi-squared, Student gdative binomial, and log-normal; see Griffith
2014). ACS attribute estimates are anticipatedetdeBs sensitive to this normality assumption
because the data provider with authority (i.e.,ulseCensus Bureau) indicates that they follow a
normal distribution (U.S. Census Bureau 2009). §esil based random sampling and the Central
Limit Theorem furnish the justification for theiowtention. But the Central Limit Theorem is not
always applicable for other empirical data, antsfa hold for a Cauchy random variable. A data
transformation (i.e., Box-Cox power or Manly expotial transformation for normality; see
Griffith 2013) may be necessary. Furthermore, aitfioBhattacharyya distance can be used for
other distributions, the separability measure thaizes the standard two-sample z-test may not

be applicable for other distributions.
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ABSTRACT

Modeling positional uncertainty helps to understaoatential factors of uncertainty, and to
identify impacts of uncertainty on spatial analysesults. However, modeling geocoding
positional uncertainty still is limited in providina comprehensive explanation about these
impacts, and requires further investigation of pt& factors to enhance understanding of
uncertainty. Furthermore, spatial autocorrelatiaonoag geocoded points has been barely
considered in this type of modeling, although thespnce of spatial autocorrelation is recognized
in the literature. The purpose of this paper isxtend the discussion about modeling geocoding
positional uncertainty by investigating potentiactors with regression, whose model is
appropriately specified to account for spatial aateelation. The analysis results for residential
addresses in Volusia County, Florida reveal cotesidghat are significantly associated with
uncertainty in geocoded points. In addition, theseilts confirm that spatial autocorrelation needs
to be accounted for when modeling positional uraiety.

Key Words: Positional uncertainty, geocoding, uncertainty modeling, spatial autocorrelation
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4.1 I ntroduction

Uncertainty is inevitably embedded in any proces®lving measuring and representing the
world, and uncertainty in spatial data and spalsh analysis has been extensively investigated
in Geographical Information Sciences (Griffith, Wprand Chun 2015). Positional uncertainty,
which is one of five uncertainty types identified the United States (U.S.) Federal Geographic
Data Committee (FGDC), refers to inaccurate locatiof geographic features (ANSI 1998). A
common source of positional uncertainty is inaccyia the global positioning system (GPS) and
geocoding errors. Horizontal and vertical positlaxeuracy of GPS points at reference stations
have been reported regularly by the Federal Aumattaministration, suggesting that GPS
recordings generally are reliable regardless afiystarea. In contrast, positional uncertainty of
geocoded points can vary more, affected by geogodigorithms and characteristics of study
regions (Jacquez 2012), as well as propertiegeétshetworks (Zimmerman and Li 2010).

Understanding geocoding uncertainty is importamragperly interpret spatial analysis results,
which can be largely affected by the positionalartainty of geocoded points (e.g., Burra et al.
2002; Harada and Shimada 2006; Griffith et al. 200ncertainty can contribute to an increase
in the standard errors of parameter estimates sadequently, a reduction in the statistical power
of a spatial cluster and/or trend detection (Zinmmeen and Li 2010; Lee, Chun, and Griffith 2017).
Previous studies (e.g., Cayo and Talbot 2003; Brclahd Balchak 2007; Zandbergen 2008a; Hart
and Zandbergen 2013; Jones et al. 2014) emphdwszedentifying geocoding errors can help
researchers understand a geocoding error struatuweset up an appropriate model specification
for subsequent data analysis. These studies mé&mlys on the magnitudes of geocoding

uncertainty for various settings and locationsathieve a reduction of uncertainty in a geocoding
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process and spatial analysis results, uncertaimdgeimg often is considered as a prerequisite
process (Zhang and Goodchild 2002), involving aplaation of possible covariates of the
uncertainty. This investigation of possible coveasa(i.e., properties of street networks) that
potentially have an impact on the positional uraiaty of geocoded points can provide an insight
into understanding geocoding positional errors.sEhcovariates can be utilized for identifying
their impact on spatial analysis results (Zimmerraad Li 2010), and for predicting positional
uncertainties at specific locations (Jacquez 20bh®restingly, although Griffith et al. (2007) and
Zimmerman, Li, and Fang (2010) show that the mageitof geocoding positional uncertainty can
be spatially autocorrelated, this data feature feagived only limited attention in modeling
positional errors of geocoded points (Zandbergeal. e2012).

The purpose of this paper is to investigate andehpdsitional uncertainty acquired through
an automated geocoding process (which hereaftalled geocoding positional uncertainty). The
main focus is on positional uncertainty in streeb@pding (i.e., address matching), which is a
predominantly automated geocoding process, at Ieaste United States (Zimmerman and Li
2010). First, this paper investigates the magnguafegeocoding positional uncertainty. Second,
this paper analyzes potential covariates for geimgogdositional uncertainty and their impacts are
examined in a regression context. Importantly, @per theoretical probability distribution for
geocoding positional uncertainty is investigateall shen the best distribution is utilized in a
subsequent regression analysis. Third, this paanmes the structure of spatial autocorrelation
in geocoding positional uncertainty, and propedgaunts for spatial autocorrelation in modeling
geocoding positional uncertainty. In this paper232 mailable residential addresses in Volusia

County, Florida, 2016 are utilized for data anaymnd modeling purposes.
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4.2 Literaturereview

Geocoding positional uncertainty greatly influencesults of a spatial analysis. Harada and
Shimada (2006) examine the effect of geocoding tiposil uncertainty on kernel density
estimation of crime locations, and conclude that pattern of kernel density smoothing can be
misrepresented by geocoding positional uncertai@imilarly, Zinszer et al. (2010) show that
kernel density estimation of disease distributi@mws a discernible effect of geocoding
positional uncertainty. DeLuca and Kanaroglou (208180 demonstrate the impact of different
geocoding methods on kernel density estimatiortjasean statistics, and a bivari&gdunction.
Also, local spatial autocorrelation measures, idiclg local Moran’d, Gi andG* statistics, can
be distorted by only a small amount of geocodingitimal uncertainty (Burra et al. 2002).
Griffith et al. (2007) evaluate the impacts of gediag positional uncertainty on a spatial
regression analysis of pediatric blood lead data, r@port a clear impact on the spatial auto-
binomial regression analysis results from geoco@iogjtional uncertainty. Moreover, geocoding
positional uncertainty has an influence even onialpaeights matrices because spatial weights
are derived from the geocoded points (e.g., disgtamesed weights ankinearest neighbors)
(Jacquez and Rommel 2009). Incorrect spatial weitgdd to a substantially lower statistical
power for spatial analyses (Anselin and Rey 1991).

Much previous research has investigated accuragysl®f geocoding positional uncertainty
and its empirical distribution to understand itaustural features. A comparative analysis for
different places and settings has been populangected in the literature. In detail, many studies
compare geocoding positional uncertainty and thielmates of different geocoding methods that

utilize different geocoding tools and/or algorith(esy., Karimi, Durcik, and Rasdorf 2004; Ward
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et al. 2005; Zhan et al. 2006; Schootman et al728@ickland et al. 2007; Mazumdar et al. 2008;
Jones et al. 2014; Chow, Dede-Bamfo, and Dahal )20h5addition, geocoding positional
uncertainty has been investigated in relation tdresk densities—i.e., urban and non-urban
addresses (e.g., Bonner et al. 2003; Cayo and Tal@sB; Ward et al. 2005; Mazumdar et al.
2008; Zimmerman and Li 2010)—and the impact ofrezfee street network types (e.g., Whitsel
et al. 2006; Zandbergen and Green 2007; Zandb&@@®a, 2011). These comparative analyses
provide insights into geocoding positional uncertgi and help spatial scientists to understand
and control uncertainty associated with geocodeait$.0

Exploring potential factors for geocoding positibnmcertainty has drawn attention in
uncertainty modeling. Generally, geocoding posaioancertainty is strongly related to the
properties of corresponding street networks (Zimmar and Li 2010) and geographical
landscapes (Zandbergen et al., 2012) because tire components of geocoding positional
uncertainty are errors in reference street netwa@mhd violations of a linear interpolation
assumption (Jacquez and Rommel 2009). With regagddgraphical landscapes, one well-known
factor for geocoding positional uncertainty is wietor not an address lies in an urban or non-
urban area (Zimmerman and Li 2010); places likelyhave differences in their street segment
properties. Geocoding positional uncertainty in-oolpan areas generally is much greater than it
tends to be in urban areas, because street segimeats-urban areas usually are longer and have
fewer intersections (Cayo and Talbot 2003; ChowdéBamfo, and Dahal 2015). Geocoding
positional uncertainty also gets larger when a mahber of houses are not evenly distributed
along a long street line, because a linear intatol assumption, which means that house

numbers are uniformly distributed along a stregtreent, does not hold (Levine and Kim 1998).
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For this same reason, the length of a street seigameithe density of street intersections have a
significant influence on geocoding positional utaigty (Zimmerman and Li 2010). However,
these covariates provide only a partial explanatompositional uncertainty (Zimmerman and Li
2010), and more covariates need to be investidatedbetter understanding of it in specific study
areas (Jacquez 2012).

Positing an appropriate theoretical probabilitytrdgition is necessary to model geocoding
positional uncertainty in regression. In early stgderror ellipses for point data based on a nbrma
distribution was widely used to describe and vigagbositional uncertainty (Dutton 1992), which
also provides a basic model for positional uncetyafGoodchild 1991; Wolf and Ghilani 1997).
A comprehensive agreement about the single distoibudescribing geocoding positional
uncertainty still does not exist (e.g., Zandberged Hart 2009), but a log-normal distribution is
suggested to describe the empirical distributiongebcoding positional uncertainty in some
studies, including Cayo and Talbot (2003) and Kamtnal. (2004). In contrast, Zandbergen
(2008b) argues that geocoding positional uncegtaghot log-normally distributed. Zimmerman
et al. (2007) claim that a mixture of bivariatdistributions is appropriate to describe geocoding
positional uncertainty. A chi-square distributiolsais suggested as a candidate theoretical
distribution for geocoding positional uncertain@riffith et al. 2007). Although all of these
previous studies have contributed to discoverisgrapling distribution of geocoding positional
uncertainty, their results still are limited to dhggeographical regions (Jacquez 2012).

Spatial autocorrelation commonly exists in geocgdmesitional uncertainty because of the
aforementioned components of positional uncertaidijmmerman, Li, and Fang 2010). In other

words, geocoded points that share the same reteref@mation (e.g., their reference street
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networks and geographical landscapes) tend todairailar magnitude of positional uncertainty.
Previous studies also report the presence of $patiacorrelation in direction and magnitude of
positional uncertainty in a digitizing process (@i 1989, 2008), and among individual
geocoded points (Cayo and Talbot 2003; Zimmermargnd Fang 2010), and in the numbers of
misallocated geocoded points among census geogedphits (Griffith et al. 2007). However,
positional uncertainty frequently is assumed tongiependent in its modeling (e.g., Zimmerman
and Li 2010). That is, spatial autocorrelation comgnts for geocoded points generally rarely

have been accounted for in the literature.

4.3 Methods

This section describes the modeling procedure otgding positional uncertainty. First, it
presents the process of input data preparatiomgaadoding positional uncertainty quantification
for two different types of reference points. Thigrdiscusses theoretical probability distributions
that have been recognized in the literature forelind geocoding positional uncertainty. Finally,
it presents potential covariates and model spetiGos for both non-spatial and spatial regression

to examine impacts of these covariates on geocqubsgional uncertainty.

4.3.1 Data

This paper uses 22,236 mailable residential adesesshich are a subset of all 238,706
addresses in Volusia County, Florida, in 2016. €mstscet addresses are obtained in the form of

an address point database, in which an addressfpoievery occupied building in this county is
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stored as a point location, typically placed atwdding’s center (Zandbergen, 2011). The input
addresses are classified as urban or non-urbag astandard point-in-polygon operation based
on the 2015 Urban Areas polygons created by the Cefisus Bureau. To control for any effects
of different types of addresses (e.g., residerdial commercial addresses) on positional
uncertainty, only residential addresses are udlibere. Residential addresses are identified
through a standard point-in-polygon operation vdth ancillary zoning dataset available from
Volusia County. Figure 4-1 shows the study area and urban boigsdas well as residential
addresses. A street reference dataset is obtaimedolusia County that has street centerlines at
a scale of 1:4,800; this dataset is constantly igobland considered to be the most accurate source

of street reference data for this county.

Sample Address Points

0 15

Urban Areas mi.

Figure 4-1. The selected addresses in Volusia @otidrida in 2016

4 http://maps.vcgov.org/gis/download/shapes.htm
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4.3.2 A geocoding process and positional uncertainty quantification

Geocoded points are obtained by perfect matchidgeades to the local street centerlines from
Volusia County using the automated geocoding 10@dIrcGIS 10.1 (ESRI 2001). This tool begins
by separating address lists into address compgramnth as house number and street name, and
then standardizes these components (Zimmerman 20@F). Next, this process compares these
components with address-ranged street segmentsl lmse match score that measures the
similarity between addresses and candidate segmidnssmatch score is normalized to numbers
between 0 and 100. Only perfectly matched geocpdets (i.e., the match score: 100) are used
in order to reduce uncertainty arising from incoetpladdresses. Next, the coordinates of the
geocoded points along the street segments areneltaly linear interpolation between starting
and ending points, which are defined by the addm@sges of corresponding street segments. No
offset value is given for both sides and ends fstreet centerlines to eliminate the effect of dffse
values.

Geocoding positional uncertainty is quantified lubse two different types of reference points,
which are building centers and parcel centroidstFihe building centers were obtained from the
address point dataset in which address points difpiare located at the centers of buildings
(Zandbergen, 2011). Furthermore, all locationshefinput addresses were thoroughly examined
using Google Earth, and the locations of the irguldresses were moved to the centers of their
corresponding buildings based upon Google Eartbor8k parcel centroids were obtained from
parcel data from Volusia County. These input adsresvere relinked to their corresponding

parcels by the parcel identification numbers (PlDsthe parcel dataset. Each parcel centroid is
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calculated using a center of the gravity basedralgn (Okabe and Sugihara 2012, p61). Figure

4-2 shows an example of these two types of referpomts.
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Figure 4-2. Reference points to measure positione¢rtainty

4.3.3 Distribution of geocoding positional uncertainty

Identification of a proper probability distributiomodel for an empirical dataset often is
necessary for a modeling exercise (Delignette-muwdied Dutang 2015). Although a proper
distribution for geocoding positional uncertaintyl #eeds further investigation (Zandbergen and
Hart 2009), most study findings agree that the eiogidistribution does not always follow a
normal distribution (Zimmerman et al. 2007). Irstbaper, several probability distribution models
are investigated. First, a log-normal distributigsnconsidered because it has been utilized in
previous research (e.g., Karimi, Durcik, and Ras@®04; Zandbergen 2008b). Second, an
exponential distribution, which is a special caseaogamma distribution (Stacy 1962), is
considered as another candidate, because this lpligbanodel is widely used to represent
geographic distance decay effects (e.qg., Griffitd Wong 2007). Thus, this study examines these

two candidate theoretical probability distributioodels as well as a gamma distribution (i.e., the
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generalization of the exponential distribution).rdfaeters for a candidate distribution are
estimated with maximum likelihood (MLE). This disution fitting procedure is conducted
separately for the two different reference poirts er the urban/non-urban classification. The

robustness of this fitting result is examined vatotstrapping.

4.3.4 Regression model specifications

Several covariates that can potentially be assstiaith geocoding positional uncertainty are
examined with regression and a proper probabilgiridution model. Both non-spatial and spatial
regression models are considered, and their rem@tsompared. In spatial regression, geographic
neighbors are specified with tkenearest neighbors (KNN) criterion. In order to ab® a suitable
k for the KNN weights, an experiment was conduct&tl & series ok values from 1 to 20. A
value is determined based on the level of spatimcrrelation detected and model performance
indices. Specifically, & value was chosen that had the greatest residatihsputocorrelation,
the smallest AIC, and/or the greatest pseudedRi€. In addition, spatial autoregressive (SAR)
models were employed to account for spatial autetation in geocoding positional uncertainty.

Covariates can be classified into two broad categpwhich are the properties of street
networks and geocoding locations (Table 4-1). Tiopg@rties of street networks that are reference
data in a geocoding process have an influence ooogkéng positional uncertainty (Zimmerman

and Li 2010). Studies (Cayo and Talbot 2003; Zimmeer and Li 2010; Chow, Dede-Bamfo, and

5 Pseudo-Rvalues are calculated with the formula given bgélkerke (1991)
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Dahal 2015) found that positional uncertainty iatigely large when street segments are long and
have few intersections. Thus, the lengths of sgeginents are included, and are measured directly
from the reference street networks. The densitiestreet networks at geocoding locations are
considered because these densities can reflectita@ization status of geocoding location. The
literature reports that geocoding positional uraaty is smaller in urban than non-urban areas
(Cayo and Talbot 2003; Ward et al. 2005; Mazumdad.e2008). That is, geocoding positional
uncertainty is expected to decrease along witinenease in street network density. Street network
density and the smoothness of estimated densitxesalre markedly affected by the search radius
employed in density estimation (Silverman 1986)thiis paper, the search radius is set to 3,000
feet, a quantity based upon the average size okfsain the study area. Also, the ratio between
the count of housing units and the number of atet@ddresses is included because a violation
of the linear interpolation assumption might be aexbated when there is a great difference
between these two quantities. If the count of hagasinits is much less than the number of
allocated addresses, geocoding positional uncéyt@nexpected to increase. In a geocoding
process, addresses with even and odd-numbersfalbposite (e.g., the left and right) sides of a
street segment, and the location of a geocoded inearly interpolated based on each side of
a street segment. Thus, the number of allocaterkasiels and the count of housing units also are
prepared separately for each side of a street sggmvbich makes the covariate values differ

depending on the side of an address, even if theegrathe same street segment.
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Table 4-1. Covariates for positional uncertaintg@ocoding, together with their abbreviations
Length of street segmentsr{gth), street network densitgénsity), and
the ratio of the count of housing units and onrtbenber of allocated
addresseshpuse)

Street networks

Places containing geocoding locationsbén), relative geocoding
locations vis-a-vis the corresponding street segsnéocation), and

Geocoding locations
geocoding location parcel sizgm(cel)

In addition to street network properties, the chimastics of geocoding locations on street
segments are considered as covariates. Firstaveegeocoding location on its matching street
segment is considered. That is, this designatetitot represents how close a geocoding location
is to the midpoint of a street segment. A relatogation to a segment midpoint)(is calculated

as:

P~

_(p X2 p <0.5 _t-
r_{(l—p)xz p >05 'Wherep = -

\"-

Here,p denotes the ratio of, in the numerator, an addrassber of the geocoding locatioh) (
subtracted from the last address numhgrof the corresponding street segment to, in the
denominator, a range of allocated addresses tlta¢ iast address number minus the first address
number f). If p is greater than 0.%,is subtracted from 1. Thenjs obtained by multiplying by

2 in order forr to range from 0 to 1. A smatlvalue indicates that a geocoding location is close
to either the start or end point of a street segmehereas a large value indicates a geocoding
location close to the midpoint of the street segmeéhis relative location is calculated for each
side of a street segment because the range ofssa@drean differ by street side. Second, a dummy
variable for urban (0) and non-urban (1) is inclid&s discussed earlier, geocoding positional

uncertainty in urban areas tends to be smallerithaon-urban areas (Zimmerman and Li 2010).
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Statistical interaction terms between this dummyialde and the other covariates also were
explored. Finally, the parcel size of geocodingtams might have an association with geocoding
positional uncertainty. These parcel sizes werainbtl from the Volusia County parcel dataset,
and then linked to matching addresses using thBs.MBBecause residential buildings with a large
size parcel generally are far from a street centerla large parcel size might be positively

associated with geocoding positional uncertainty.

44  Results

This section provides the modeling results of geow positional uncertainty. It reports the
descriptive statistics of geocoding uncertaintytf@ urban and non-urban parts of the study area,
and then the fitting results of the empirical freqay distributions of geocoding positional
uncertainty. Finally, non-spatial and spatial regren results are presented in order to examine

the effects of potential covariates (Table 4-1).

4.4.1 Descriptive statistics

Geocoding positional uncertainty is quantified gdituclidean distance from either of the two
reference point types: building centers, and paceatroids. Table 4-2 presents the descriptive
statistics of positional uncertainty for the samglban and non-urban areas. The total number of
input residential addresses is 22,236, with 19,BB6ihg urban, and 2,479 being non-urban

addresses.
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Table 4-2. Descriptive statistics for positionatartainty of sample geocoded points
Categories Reference Sample Minimum Median  Maximum Mean Standard

points Size deviation
Non-urban Building 2,479 12.86 56.81 665.00 74.28 58.33
Urban Building 19,757 6.30 34.60 350.10 42.45 22.93
All Building 22,236 6.30 36.02 665.00 46.00 30.77
Non-urban  Parcel 2,479 14.71 65.24 664.70 81.60 59.97
Urban Parcel 19,757 12.75 37.54 488.70 45.44 23.38
All Parcel 22,236 12.75 39.12 664.70 49.47 31.88

The positional uncertainty measured using buildiegters ranges from 6.30 to 655.00 meters,
with a median of 36.02 meters, and a mean of 4@@@rs. The substantial difference between
urban and non-urban addresses coincides with fysdin the literature (e.g., Cayo and Talbot
2003; Whitsel et al. 2006). The mean and mediath®mon-urban area are, respectively, 74.28
and 56.81 meters, which are much larger than tiean area counterparts of 42.45 and 34.60
meters, respectively. Overall, positional uncetiaimeasured when using parcel centroids is
slightly larger than when using building centersjah ranges from 12.75 to 664.70 meters, with,

respectively, a mean and median of 49.47 and 38¢i2rs.
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Figure 4-3. Histograms of the geocoding positiamadertainties for the different reference
points
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Figure 4-3 displays histograms of positional uraiety for the urban and non-urban areas. All
histograms show a strong positive skewness; thahéy are skewed to the right side. These
positional uncertainties do not show consideralfferénces in their distributions between the two
sets of reference points; i.e., building centand, @arcel centroids, for the same type of geographi
landscape. Note that zero offset values are ugdubth sides from street centerlines, which means
that all geocoded points are located on streetedamgs. Therefore, the positional uncertainties
from building centers and parcel centroids to teeapded points should contain a small amount
of uncertainty caused by these offset values. d#iia feature can explain a number of observations
close to zero; i.e., the first bin, in these hisawmgs. This data feature is likely to make these
histograms conform more closely to a log-normahtagamma distribution, as found in previous

studies (e.g., Cayo and Talbot 2003; Karimi, Dyreikd Rasdorf 2004; Zandbergen 2008b).

4.4.2 Distribution fitting results

The empirical distributions of geocoding positionatertainty are fitted with three candidate
probability distribution models: the log-normal pexential, and gamma distributions. Figure 4-4
presents the empirical cumulative distributiong@bcoding positional uncertainty superimposed
on their fitted theoretical cumulative distributicounterparts. This figure shows that empirical
geocoding positional uncertainty is closer to amogmal distribution than to the other two, for

both the urban and non-urban areas under study.
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Figure 4-4. The empirical cumulative distributiamfgyeocoding positional uncertainty
superimposed on their theoretical distribution degparts (i.e., log-normal, exponential, and
gamma distributions)
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The closeness of these distribution pairs is furgxamined with a Kolmogorov-Smirnov (K-
S) statistic, and a Bayesian information criteB&Q). The K-S statistic measures the distance
between an empirical and a reference cumulativelligion functions (Stephens 1986), whereas
the BIC consists of measures of badness-of-fitrandel complexity (Zimmerman et al. 2007).
Thus, a distribution with a smaller K-S statistitdea smaller BIC is preferable. Table 3 reports
the calculated K-S and BIC results. According testh statistics, positional uncertainty for both
sets of reference points most closely conforms toganormal distribution. This finding
corroborates that from a visual inspection of tistdgrams in Figure 4-3. Substantial differences
in the fitting results are not found between urbad non-urban addresses for the same reference
type (i.e., building, parcel). This result may sesgfgthat separate regression models are not

necessary for the urban/non-urban areas.

Table 4-3. The Kolmogorov-Smirnov (K-S) and the Bsign information criteria (BIC)
diagnostic statistics

K-S statistic BIC
points 0g- gamma exponenti log- gamma exponenti
normal al normal al
Non-urban Building 0.045 0.092 0.237 30,872 31,277 32,215
Urban Building 0.083 0.110 0.350 | 215,212 217,809 234,586

Reference

Categories

All Building 0.084 0.114 0.328 | 248597 252,754 267,590
Non-urban  Parcel 0.029 0.070 0.238 31,279 31,614 32,681
Urban Parcel 0.083 0.108 0.358 | 216,523 218,999 237,271
All Parcel 0.086 0.112 0.335 | 250,835 254,895 270,821

The robustness of this preceding distributionrfgtis examined with bootstrapping. Based on

the K-S statistics (Figure 4-5), the results of diraulation experiment are consistent with the
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previous result. That is, a log-normal distributifumnishes the best description of geocoding
positional uncertainty for both reference typesdiiho noticeable difference is identified between

urban and non-urban areas for the same referepee ty
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Figure 4-5. Boxplots of the Kolmogorov-Smirnov (K-Satistic values from bootstrapping
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443 Regression results

The effects of the covariates (Table 4-1) on geowpgositional uncertainty are investigated
using linear regression models because a log-nodms#ibution is preferred based upon the
preceding results. For linear regression modelpeni@gent variables are defined as the log-
transformed positional uncertainty measured frontdimg centers (LM-Building) and parcel
centroids (LM-Parcel). Spatial autocorrelation e tregression residuals is measured with the
Moran coefficient (MC), in which spatial neighbarg geocoded points are determined by the
KNN with k=25

Table 4-4 reports the results of the linear regoasanalysis. For LM-Building, all covariates
have a significant association with positional utaiaty measured from building centers. The
positively significant variables at the 0.1% lewagk length (0.758),urban (0.310), andoarcel
(0.175). In contrastgensity (-0.005),location (-0.233), andhouse (-0.247) have a significant
negative relationship at the same level. Theseethagiables have different associations for the
urban/non-urban classification based on the estisnatt the interaction terms withban: that is,
thet values ofdensity:urban, location:urban, andparcel:urban are -8.177, 12.052, and -10.027,
respectively. LM-Parcel has the same significaeselts as LM-Building at the 0.1% level (Table
4-4). One noticeable difference is the increasth@parcel coefficient estimate (0.175 for LM-
Building, increasing to 0.239 for LM-Parcel). Tleason for this increase is rather straightforward.
The geocoded points in this analysis are locatestreet center lines due to zero offset values, but

parcel centroids generally are farther from stoegiterlines as a parcel size increases. LM-Parcel

6 The KNN weight with k = 2 yields the largest MClwa for values ok between 2 and 20.
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has a better model fit with a higher adjusteti VRlue (0.348) than LM-Building (0.263).

Coefficient estimates for the statistical interastierms with the urban/non-urban dummy variable

also are consistent with those for LM-Building. Thenfidence intervals for the coefficient

estimations derived from bootstrapping with bottear regression models coincide with observed

coefficients of the covariates, in terms of thenedtion and magnitudes (See Appendix B1 and

B2).
Table 4-4. Linear regression model results: LM-Biig, and LM-Parcel
Covariates LM-Building LM-Parcel
Coefficient t-value Coefficient t-value
Intercept 3.689 284.932*** 3.719 314.948***
Length 0.758 31.983*** 0.690 31.896***
Urban 0.310 7.896*** 0.328 9.152***
Density -0.005 -7.195%** -0.003 -4.696***
Location -0.233 -23.378*** -0.189 -20.775***
House -0.247 -25.735%*** -0.281 -32.140%***
Parcel 0.175 33.352%** 0.239 50.130***
Length:Urban -0.066 -1.370 0.005 0.114
Density:Urban -0.033 -8.177*** -0.035 -0.494***
Location:Urban 0.360 12.051%** 0.298 10.925***
House:Urban -0.062 -1.453 0.045 1.147
Parcel:Urban -0.074 -10.026*** -0.097 -14.407***
Adj. R? 0.263 0.348
F-stats. 723 1,078
(p-value) (<0.001) (<0.001)
MC of 0.663 0.676
Residuals (<0.001) (<0.001)
(p-value)
Note: Significance codes: ***0.001, **0.01, *0.05

Variance inflation factor (VIF) values for alanables without interaction terms are less

than 10.
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However, these models only explain modest propastiof variances in their corresponding
dependent variables, with adjustethRlues of 0.263 for LM-Building and 0.348 for LMVafreel.
Although most covariates are significantly relai@deocoding positional uncertainty, these levels
of significances may be boosted by the large nurabebservation (i.e., 22,236) input addresses
(Lin, Lucas, and Shmueli 2013). In addition, theideals of both models show a significant level
of positive spatial autocorrelation; the residudl Malues are 0.663 and 0.676, respectively (the
p-values are less than 0.001). These models suffer §patial autocorrelation and need to be

extended to appropriately account for it.

4.4.4 Spatial regression model results

Table 4-5 summarizes the results of the SAR moaittsa spatial weights matrix determined
by the KNN weight K = 2). Again, the SAR result witk= 2 has the highest pseudé+Rlue and
the lowest AIC among values from 2 to 20. Like the previous linear emgion models, two SAR
models are specified with the two different deperndariables: the log-transformed positional
uncertainty measured from building centers (SARKBng), and from parcel centroids (SAR-
Parcel). The SAR analysis furnishes some noticeialppeovements to those obtained with the
linear regression models. First, the estimates haf $patial autocorrelation parameter are
significant. Values greater than 0.6 indicate anHeyel of positive spatial autocorrelation. That
IS, positive spatial autocorrelation that persistshe linear regression residuals is successfully
accounted for in these SAR specifications. Secbath SAR models show better model fits than

the linear regression models. Specifically, the SABdels have much higher pseuddsRlues
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(0.582 for SAR-Building, and 0.641 for SAR-Parc@hat is, this result indicates that the variance
of the positional uncertainty is better explainedhe SAR specifications.

Both SAR models yield the same results as thediregression models in terms of statistical
significance for the covariates. That Isngth, urban, and parcel are positively, andlensity,
location, and house are negatively, associated with the dependentables. However, the
estimated coefficients for each variable are siyothifferent. For the SAR-Building specification,
length andparcel show a significantly positive relationship (0.6281 0.101, respectively), which
indicate greater geocoding positional uncertaietyls to coincide with longer street segments and
larger parcels of address points. Also, a dramaticease in thgarce coefficient estimate (to
0.169) is found in the SAR-Parcel results, when garad to its linear regressions counterpart. In
addition,house has a significant association with its dependamiable (z-value=-21.589) in the
SAR-Parcel. This outcome suggests that geocodiatjiaal uncertainty tends to be larger when
the count of housing units is much less than thebuer of allocated addresses on a street segment.
The negative associations focation (-0.166 for SAR-Building, and -0.128 for SAR-Pdjadso
are significant in both SAR models. The estimateefficients forlocation indicate that larger
positional uncertainties tend to occur more attistgor ending points of a street segment than at
its midpoint. Urban and density are also significantly associated with geocodirgitonal
uncertainty. The same result is reported in previgtudies (e.g., Cayo and Talbot 2003;
Zimmerman and Li 2010), which indicates that uraegas with a higher density of street networks
have smaller positional uncertainty than non-urbi@as with a lower density of street networks.
Appendix B3 and B4 illustrate the confidence intdsvfor the coefficient estimations from

bootstrapping for both SAR models, indicating rdhass of the estimated coefficients.
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Table 4-5. The results of SAR models: SAR-Buildamgl SAR-Parcel

. SAR-Building SAR-Parcel
Covariates — —
Coefficient z-value Coefficient z-value
Intercept 3.763 193.758*** 3.767 212.448***
Length 0.698 21.265*** 0.624 20.939***
Urban 0.289 5.545%** 0.310 6.551***
Density -0.009 -6.846*** -0.006 -4.890***
Location -0.166 -18.783*** -0.128 -16.162***
House -0.268 -19.454*** -0.270 -21.589%**
Parcel 0.101 23.707*** 0.169 44 470%**
Length:Urban -0.085 -1.410 0.014 0.255
Density:Urban -0.022 -4.203*** -0.020 -4.283***
Location:Urban 0.225 8.977*** 0.188 8.402***
House:Urban -0.026 -0.415 -0.027 -0.477
Parcel:Urban -0.020 -3.272%** -0.055 -9.925%**
Pseudo-R 0.582 0.641
Lambda 0.629 0.641
(p-value) (<0.001) (<0.001)

Note: Significance codes: ***0.001, **0.01, *0.05

Variance inflation factor (VIF) values for all vables without interaction terms are less
than 10.

Among the statistical interaction terms witihhban, in both models, the three significant
variables @ensity:urban, location:urban, andparcel:urban) have different effects on geocoding
positional uncertainty in urban and non-urban aré&@hile density:urban (-0.022 for SAR-
Building, and -0.020 for SAR-Parcel) has the saetationship nature afensity (-0.009 for SAR-
Building, and -0.006 for SAR-Parcelpcation:urban (0.225 for SAR-Building, and 0.188 for
SAR-Parcel) angbarcel:urban (-0.020 for SAR-Building, and -0.055 for SAR-Pdjdeave the
opposite relationship nature. That is, the impdatlemsity is stronger in non-urban than urban

areas, whereas the influence levelspafcel andlocation are weaker in the non-urban area.
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Moreover |ocation has an opposite association in the urban and reamareas. In the urban area,
as mentioned earlietpcation is negatively associated with geocoding positiamatertainty,
whereas this variable shows a positive associatidhe non-urban area. This result shows that
positional uncertainty tends to be larger arourantfidpoint of a street segment, rather than near

the starting or ending points of a segment in aurtran area.

45 Conclusions

Positional uncertainty acquired through an autochg®ocoding process (what is referred to
as geocoding positional uncertainty in this papeexamined based upon residential addresses in
Volusia County, Florida. This paper summarizes ifigd for measuring geocoding positional
uncertainty from two types of reference points, apnbuilding centers and parcel centroids.
Although overall geocoding positional uncertaintgasured from parcel centroids is slightly
larger than from building centers, substantial edéhces are not found between the different
reference types in the distribution fitting resulising regression techniques, including linear and
SAR specifications, an extensive set of covari#tas relate to the properties of street networks
and geocoding locations on street segments wemaiegd. Linear regression and SAR model
results show that all of the selected covariates sagnificantly associated with geocoding
positional uncertainty. Although both linear andRSAodel results have the same signs for the
estimated coefficients, the SAR model has impravedel performance because it accounts for
spatial autocorrelation in geocoding positionalartainty. Coefficient estimates for the statistical

interaction terms suggest that impacts of thremlbas differ between urban and non-urban areas.
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These three variables are street network denddysity), relative geocoding locations on the
corresponding street segmentxétion), and parcel sizes of geocoding locatigves ¢el).

This paper contributes to the literature in two ®affirst, this paper identifies multiple
covariates that rarely have been investigated,dhctlocation andhouse, and examine them with
the well-known factors of geocoding positional utamaty, namely)ength, parcel, anddensity.
The regression results show that the newly sugddattors have a significant association with
geocoding positional uncertainty, in addition te tfactors that have been examined in the
literature. Thus, this paper contributes to impnguijeocoding positional uncertainty modeling by
incorporating the additional factors. Also, thigppaconfirms that effects of some covariates (i.e.,
density, location, and parcel) on geocoding positional uncertainty are signiitba different
between urban and non-urban areas, which providgkef explanation of the relationship
between geographical landscapes housing geocodisdigmal uncertainty, and its related
covariates. Second, this study extends positionakainty modeling by considering spatial
autocorrelation. The presence of spatial autocatioel in positional uncertainty has been
recognized (e.g., Griffith 1989, 2008; Cayo andobaR003; Griffith et al. 2007; Zimmerman, Li,
and Fang 2010), but it has not been considereduteling geocoding positional uncertainty. This
paper empirically confirms the presence of spadiatocorrelation in geocoding positional
uncertainty. It further shows that spatial autoelation should be considered when
conceptualizing and analyzing geocoding positiomeaertainty.

This research can be extended in the future. Emstinput addresses obtained from the address
point database are well structured and thorougkned while such well-prepared data are rarely

available for most empirical analyses. The inpudradses are highly standardized and well
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maintained, which results in higher match ratesn@@ergen, 2011). Furthermore, because this
paper uses only perfectly matched locations tayauiéi this effect, the positional uncertainty might
be much smaller than for other empirical datass¢sond, the analysis in this paper is conducted
using a specific, small geographic region. Hentefindings may not be readily applicable to
other geographical regions. The covariates sugdestethis paper might have different
associations with geocoding positional uncertaimtyother study areas. Nevertheless, the
covariates are expected to provide a good stguting for the more general modeling of positional

uncertainty in a geocoding process.
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CHAPTER S

CONCLUDING REMARKS

This dissertation contributes to the literaturespétial data uncertainty in two broad ways.
First, it provides implementations for geovisudii@a and map classification methods
incorporating spatial data uncertainty. Althoughioas aspects of spatial data uncertainty have
been widely investigated (e.g., Shi, Fisher, an@dgbild 2002; Zhang and Goodchild 2002),
dealing with spatial data uncertainty is very liaitn a general GIS environment due to a lack of
implementations. In this respect, this dissertattam enhance the usability of spatial data
uncertainty for general GIS users. Specificallye implementation of attribute uncertainty
geovisualization can help GIS users to utilize meisyal variables that have been investigated
for their uncertainty geovisualization in the la&ire. In addition, the developed tool for an oplim
map classification can assist to incorporate uagdst information in a thematic mapping process,
and furthermore, a map classification result can evaluated and compared with other
classification results by the graphic diagnostm (&igure 3-2).

Second, this dissertation extends the literatuspatial data uncertainty by providing methods
to manage and reduce spatial data uncertaintylif€ngture furnishes a comprehensive discussion
about the sources of spatial data uncertainty, (ANSI 1998), the way of its quantification (e.g.,
Bonner et al. 2003; Zimmerman and Li 2010), andaotp of spatial data uncertainty on analysis
results (e.qg., Griffith et al. 2007; Lee, Chun, &uiffith 2017). But, investigations about methods
to control spatial data uncertainty essentiallylac&ing. In this regard, the modeling of positibna
uncertainty from a geocoding process allows ardiong geocoding positional uncertainty based

on the properties of street networks and geocobtingtions, which might help to reduce and
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predict the impact of geocoding positional uncetiabn spatial analysis results. In addition, the
optimal map classification developed in this ditst@wn can increase reliability of a thematic map
pattern by considering attribute uncertainty in apming process. Therefore, the modeling of
geocoding positional uncertainty and optimal mapssification with attribute uncertainty
contribute to the literature by providing an exaenpt controlling spatial data uncertainty.

The followings provide additional explanations, ascusses limitations and further research
for the individual sub-topics. The first sub-tofac attribute uncertainty visualization is necegsar
to address two limitations. First, although thissdirtation mainly uses probability theory for
uncertainty representation (e.g., coefficient vaces and standard errors), various options,
including Bayesian techniques and the DempstereBhiagory, also can be utilized. Uncertainty
visualization with these representations is wodbrassing. Especially, a fuzzy set approach is
highly applicable to represent uncertainty becaxfsgs ability to display partial memberships.
However, all types of data cannot be representedyubis approach. For example, bell curves
around a statistical estimate (e.g., the margirey@ir in the American Community Survey data)
are not good candidates for this fuzzy set theDgv(s and Keller 1997). Second, a focused group
survey with various samples and target groups nfer @ more objective evaluation of the
effectiveness of the implemented visualization rodth Some studies in the literature (e.g.,
Goodchild, Buttenfield, and Wood 1994; Slocum e&al09) discuss the visual variables utilized
in this implementation, and the effectiveness elbiate mapping for uncertainty visualization.
Specifically, MacEachren et al. (2012) show thabicealue leads to a better intuitive outcome to

represent uncertainty than color saturation inrtbgipirical study. However, still a group survey
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would provide useful insights for evaluating théeefiveness of the developed tools with various
geographical scales and target users.

The second research topic deals with map filesson in the presence of uncertainty
information. Currently, various mapping tools sugipmclassed maps, which have been promoted
because of their accurate reflection of a real-evdi$tribution. However, advances in unclassified
maps does not make a traditional classified mapnaaol classification useless. It is still widely
used because of its own merits and the demerits@éssified maps. The first and the most critical
disadvantage of unclassed maps is a limited akdlithuman eyes to differentiate colors (or
symbols) in a continuous scale (Slocum et al. 2006)ors (i.e., shades) on unclassified maps are
accurate proportionally to the value of each spatid, although this mathematical accuracy might
not coincide with perceptual accuracy. That is,aniaig colors on an unclassified map with its
legend is not easy due to enormous numbers ofréiftecolors in the map and the simultaneous
contrasts on a color from its neighbors. In additiwhen a skewed distribution of data exists, the
ordinal relationship in the data might be concealéulis, a classified map and a map classification
method are still important in cartography. Thesasoas contribute to the development of map
classification incorporating uncertainty informatio

In addition to an unclassified map, a way to deteenan appropriate number of classes in the
proposed optimal map classification methods mightorth investigating. Like other optimal
map classification methods (e.g., Jenks’s natuedls method), the optimal methods proposed
in this dissertation also have objective functiamsl values that represent homogeneity within
classes incorporating uncertainty information. Ehebjective values can be used to assist in

selecting an appropriate number of classes. Géyeaal objective value is expected to decrease
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as the number of classes increases. Thus, an agbeopumber of classes can be chosen by
exploring the contribution of class counts to tligeotive values using a plot and/or sensitivity
analysis.

The third research topic shows geocoding unceptaimddeling with an empirical dataset:
22,236 mailable residential addresses in VolusianBg Florida. All locations of these input
addresses were thoroughly examined and refined @ogle Earth satellite images. Specifically,
3,368 address points obtained from an address gatabase do not have associated with actual
buildings on the satellite images. All of these reddes were excluded in this analysis because
building centers that are used as reference poemgot be quantified. Note that most of the
address points are correctly located at the ceaféhgir corresponding buildings on Google Earth,
although high resolution Google Earth images akseehhorizontal positional uncertainty (e.g.,
Pulighe, Baiocchi, and Lupia 2016). However, 1,88dress points show a huge discrepancy from
their building centers, and these points were mdwgdteir corresponding building centers based
on Google Earth images. Furthermore, parcel dedey fvhich one type of reference points (i.e.,
parcel centroids) and one covariate are deriveck aiso refined. Specifically, 164 address points
are located in multi-part parcels, which generallg divided by streets, might yield inaccurate
parcel centroids and sizes. Thus, individual mugiit parcels also were examined with Google
Earth images, and then converted to single-pastgoois so that appropriate parcel centroids and

their areas are generated.
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APPENDIX A

THE GRAPHIC USER INTERFACE

Al. GUI for overlaid symbolson a choropleth map (OSCM)

The graphical user interface (GUI) has three msgations. The first section is to specify a
target layer, an attribute field, and a correspogdincertainty field in the target layer. This part
is identical in the GUIs for CPPS and CS. The sda@ttion is to configure an output choropleth
map: that is, the number of classes and symbol that the color ramp is automatically created
with a start and an end color. In the third secteonser can choose a type of overlaid symbol with

corresponding tab pages, each of which has itsaptions for uncertainty symbolization.

Creerlaid S)rmi.'_rots on choropleth map o =
Layer: Choropleth Map Uncertainty symbols
BG_Plano2013 i Classification Method [ Texture ‘ P_r_:_gp_or_t_igr!_a_l.é_:_ﬁar l
Value Field: Natural Breaks - Classification Method
MedAge - Matural Breaks -
Uit Pl Mumber of Class: 4 = I -
CV_MedAge - o e
BN B0E Symbel Color:
to % : -
| Create New Layer e - Line wadth: 0.5
Mew Layer Name: ST .. Seperations:
Dutline width: 1.0 From: [12 B To: 2 :
Outine cclor: | Angles: 45 3
Apply | | Cancel

A2. GUI for coloring propertiesto proportional symbols (CPPS)

The first section is same as the one in the GUIOBICM. The second section is to specify
attributes and their uncertainty visualization. $ginsizes are determined with mathematical
scaling based on a minimum symbol size, which a stseuld proivde. Uncertainty is symbolized

with two different visual variables, color satuoatiand color value in the hue-saturation-value
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(HSV) color model, which are listed in a combo b@ke saturation or color value is linearly

calculated from that of a selected color to a chaasmimum level.

Coloring properties to propertional symbals O x

Layer: Proportional Symbol

BG_Plano2013pts ™ MinSymbol Size: [50 [2
Value Field:

Houlnits - oot L ot -
Uncertainty Field: Outline width: 0.1 -
SE_HOU -

Outline Color: -

Uncertai bl
New Layer Name: o

Visual vanable:

Saturation -

| Apoly | l Concal Min Saturation; |0 =

A3. GUI of composite symbols (CS)

The first section is the same as the one for therd&Uls. An uncertainty field needs to contain
standard errors. With the second section, diffecembposite symbols can be chosen with tab
pages; i.e., a circle or a bar. A confidence Isbeluld be specified to determine the symbols size
of the confidence interval.

‘Composite symbols 0o x
Layer Orcles [ar_|

BG_Plano2013 =
Value Field: Min Symbol Size: 6.0

Houbnit &g Symbel Calor:
Uncertainty Field:

SE_Hou -

[
Center line width: 1.0 Z
,_.

[T] Create New Layer Center line calor:
Mew Layer Name:

Confidence Level: (99 154 %

| Apply | | Cancel

91



APPENDIX B

BOOTSTRAPPING RESULTS

B1. Bootstrapping results of LM-Building
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Note: the dashed vertical lines display the comfageintervals of the corresponding coefficients
for a 99 percent confidence level, and the redaadrtines mark the observed coefficients.
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B2. Bootstrapping results of LM-Par cel
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Note: the dashed vertical lines display the comfageintervals of the corresponding coefficients
for a 99 percent confidence level, and the redaadrtines mark the observed coefficients.
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B3. Bootstrapping results of SAR-Building
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