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Abstract

Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control

systems is ill-defined. Currently, systems are typically evaluated through task-specific per-

formance measures and post-experiment user surveys; however, these methods do not

capture the real-time experience of human users. In this study, we propose to analyze and

predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-

centric measurement data in terms of cognition, physical effort, and motion kinematics. Non-

invasive sensors were used to record the multimodal response of human user for 14 sub-

jects performing the task. A data-driven approach for predicting task difficulty was

implemented based on several task-independent metrics. We compare four possible mod-

els for predicting task difficulty to evaluated the roles of the various types of metrics, includ-

ing: (I) a movement time model, (II) a fusion model using both physiological and kinematic

metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological

metrics. The results show significant correlation between task difficulty and the user sensori-

motor response. The fusion model, integrating user physiology and motion kinematics, pro-

vided the best estimate of task difficulty (R2 = 0.927), followed by a model using only

kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the

movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for

human psychomotor control.

Introduction

Human-in-the-loop robot-assisted systems have substantial freedom in design that enable

operators to interact with complex physical systems in a variety of ways. In the case of teleoper-

ated robotic systems, users can control robot end-effectors through position-based teleopera-

tion [1], or use asymmetric teleoperation methods, where the master and slave systems have

different degrees of mobility (i.e. user inputs, system inputs, and system outputs have different

degrees of freedom) [2]. A classic example of an asymmetric teleoperation control scheme is

the control of multiple agents (e.g., unmanned aerial vehicles) [3, 4], with a single user input.

Another example is controlling nonhonolonomic systems such as wheelchairs [5] or steerable
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needles [6] through desired end-effector positions in Cartesian space, rather than through

joint space control of system inputs (i.e. velocity and steering angle). Finally, techniques are

also now available to allow both human and robot some level of autonomy while sharing con-

trol of the overall task [7, 8].

With all this flexibility in the design of human-in-the-loop control systems, an important

research question arises: how should one design these interfaces to be intuitive and easy to use,

and how can the assessment of this control effort be quantified for complex tasks?

Substantial efforts have been made to quantify, or model, difficulty in general human-

machine interaction. The most well-known theory among these is Fitts’ law [9], a predictive

model of human motor systems. Fitts’ law is a widely accepted theory which can describe

human psychomotor behavior in a simple bi-variate pointing task. In a Fitts’ task, participants

are required to move as fast as possible between two targets of a certain width, W, separated by

a distance, D. The task index of difficulty, ID, can be mathematically quantified by a log-linear

relationship between the distance, D, and the target width, W. The units of this index of diffi-

culty are called “bits”. This phenomenon is formalized as MT = a + b × ID, where MT is the

movement time, and difficulty levels are quantified as the index of difficulty (ID), which can be

mathematically determined by: ID = log2(2D/W).

Fitts’ difficulty model has been primarily used in the evaluation of human-computer inter-

faces and for ergonomic applications [10–12]. The Fitts’ law model has also been shown to

apply to complex tool manipulation tasks, such as those required in surgery. A work by Lin,

et al. explored the validity of Fitts’ law in addressing laparoscopic instrument manipulation

while performing laparoscopic surgery [13]. Chien, et al. investigated the relationship of speed

and accuracy in robot-assisted surgery, and suggested its roles in association with surgical

skills [14].

However, conventional Fitts’ law may not be sufficient to evaluate the difficulty of more

complex human-in-the-loop control tasks, particularly in teleoperated or shared-control sce-

narios where the user’s task objectives are not known to the robotic system. Fitts’ law simply

quantifies the relationship between the difficulty of the task and the movement time required

to finish it. Recently, a few studies have begun to reveal correlations between the difficulty

index of a task and changes in human user motion dynamics, in both discrete and cyclical

movements [15, 16]. Still, there is an opportunity to further explore how changes in task diffi-

culty affect the user response, globally, including cognitive, physiological, and kinematic

changes. These insights could lead to the improved design of human-in-the-loop control algo-

rithms for complex tasks, such as the teleoperation of robotic systems.

As a step towards this goal, this paper presents an data-driven approach to assess the diffi-

culty of typical reaching task, based on objective, task-independent measures of human cogni-

tion, physical effort, and motion characteristics. We hypothesize that Fitts’ law will be

preserved in robot-assisted control interfaces, meaning that we expect an increase of move-

ment time using a haptic device with increasing difficulty levels. Furthermore, we propose that

the difficulty of a reaching task can be objectively quantified from multiple measures of user

sensorimotor response, including user physiology and motion kinematic metrics found in

both the user (limb motions) and task (tool motions) workspaces.

This paper is organized as follows: First, we provide a review on current difficulty assess-

ment tools and existing techniques for human response recognition. Second, we describe our

experimental protocol, including the experimental task design, signal acquisition and sensor

benchmarking. Next, we introduces methods used to extract important modeling features and

technique used for modeling. Further, we present statistical analysis results of proposed fea-

tures, and the performance of our models to predict task difficulty. Last, detailed explantation
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of results and discussions on the limitations, potential use, and future work are presented.

Finally, we conclude our study.

Background and related work

Current methods to assess task difficulty

In general, the difficulty of a human-in-the-loop control task, such as teleoperation, is difficult

to define. It is a common practice to evaluate teleoperation difficulty and performance via

quantitative tool-based metrics and performance measures, such as completion time and

manipulation accuracy [17, 18]. Also, these metrics are often coupled with checklists or user-

response surveys, such as NASA Task Load Index (NASA-TLX) [19], where operators report

the ease-of-use and acceptance of the system by rating it on predefined scales. These ratings

have been widely used to assess task workload and perceived performance in a variety of

domains, including robotic surgery [20–23], and teleoperation [24].

However, these evaluations are limited because: (1) task-specific performance measures do

not always correspond to perceived user acceptance and performance [6, 25–28]; (2) user rat-

ings can only be measured in a post-hoc manner, and do not capture the real-time response of

the human user.

Objective human response recognition

Over the years, several techniques have been proposed for objectively measuring a human

users physiological response in terms of affective state, motivation, environment awareness,

and mental and physical workload, to name a few [29–34]. These studies typically leverage the

use of sensors such as electroencephalography (EEG), surface electromyography (EMG), gal-

vanic skin response (GSR), and heart response (HR). Electroencephalography (EEG) is an

objective measure of neurophysiological changes related to electrical activity of brain neocor-

tex. This technique enables researchers to quantitatively study human emotion, perception,

cognition and technical skills [22, 35–37]. Surface electromyography (EMG) measures signals

of electrical activity that are generated by active muscles. Analysis of EMG response is substan-

tially helpful in revealing underlying motor patterns, physical effort, and user motion intent

prediction [38, 39]. Galvanic skin response (GSR), also known as skin conductance response,

is a quantitative measure of electrical conductance fluctuations on the skin surface during a

period of time. It is regarded as a reliable indicator of the individual’s cognition load, attention,

and emotional states [40]. Skin conductance increases due to an increase of moisture on the

skin when the individual is under stress, and vice versa. Measurements of heart rate and its

variability (HRV) include the electrocardiograms (EKG) or photoplethysmography (PPG).

Heart activity has been shown to capture the dynamic workload, emotion, and cumulative

stress [41].

In addition to physiological response, metrics derived from human movement sensors have

also shown to be able to capture important information regarding the ability of the human

user to perform a motor task [42, 43]. Orientation-based motion metrics were able to discrimi-

nate expert from novice surgeons in robotic and open needle driving [44]. Estrada, et al. devel-

oped smoothness assessment on tool motion data, and reported that motion kinematics in

endovascular tasks showed significant correlations with participants’ surgical skills [45]. Kine-

matic profiles of user movement also demonstrated as an objective tool to assess technical skills

and performance in surgical tasks [46, 47]. Nisky, et al. explored the effects of teleoperation

and expertise on the kinematics of user joint movement [48–50].
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Experimental methods

An IRB approval (UTD IRB #14-57) was obtained through the University of Texas at Dallas

IRB office. In this paper, we aim to develop predictive models of task difficulty that do not

depend on task-based metrics, such as movement time and targeting error. Rather, metrics

derived from the user physiological response and kinematic movements could prove to be bet-

ter predictors of how difficult the task is.

Experiment protocol

A bivariate target-reaching task was developed in a simulated virtual environment. Partici-

pants were instructed to perform the reaching task by using their dominant hand to manipu-

late a virtual tool to reach predefined target locations. To control the position and orientation

of the tool in the virtual reality, a 6 degree-of-freedom haptic device, the Phantom Omni (Geo-

magic Touch, 3D Systems, SC, USA), was used. This device provides 3-degree-of-freedom

force feedback and 6 degree-of-freedom sensing. A custom C++ code was developed to ran-

domly generate targets within the virtual experiment, rendered by the CHAI3D haptic library.

To constrain movement in 2D task workspace, a virtual haptic wall was created, where the

haptic gain (k) was set as k = 150.

In order to create different difficulty conditions in the experiment, the distances between

the starting and final target were changed, according to Fitts’ law (Fig 1). The target width, W,

was set to 5mm, and the target distances varied, including: 10mm, 20mm, 40mm, 80mm,

180mm, and 320mm. The combination of the target width and different distances resulted in

Fig 1. Simulated target-reaching in virtual reality with user control input. Tasks with known indices of difficulty (IDs) were associated with varied distances (D), as

defined by Fitts’ law.

https://doi.org/10.1371/journal.pone.0195053.g001
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reaching tasks of 6 different difficulty conditions, with the index of difficulty (ID) ranging

from 2.0 to 7.0 bits.

The experiment consisted of a training session with 6 unrecorded exercises and a formal

testing session. In the training session, subjects practiced the reaching task in our simulation

and learned how to move the stylus and advance the experiment. To initialize each task, partic-

ipants were asked to hold the stylus in the center of the workspace, resulting in a neutral posi-

tion for the shoulder: a 90˚ elbow flexion, 90˚ forearm pronation, and a neutral wrist. Then,

they moved to the starting target. Data started recording when users hit the initial starting

point. After training exercises, participants performed the reaching tasks in five randomized,

blocked repetitions for six different conditions of difficulty, resulting in a total of 30 trials for

each subject. In order to avoid biasing due to the potential learning effects, all task conditions

and target locations were randomly chosen. In each block, participants were asked to reach

each of the six targets in 5 repeated cycles. This was done to ensure sufficient data collection

time for the targets with the lowest index of difficulty. The subjects were explicitly asked to

manipulate the haptic device freely and in a natural way, and informed that the experiment

had no time or performance requirements.

Participants

A total of fourteen subjects (11 males and 3 female: mean age = 21 years, SD = ±6 years) partic-

ipated in this study (recruitment date: January 10, 2017). All subjects provided informed writ-

ten consent in accordance with The University of Texas at Dallas Institutional Review Board

(UTD IRB #14-57). The individual in this manuscript has given written informed consent (as

outlined in PLOS consent form) to publish these case details. Participants had no previously

reported muscular-skeletal injuries or diseases, or neurological disorders.

Sensor data acquisition

To capture human response during the manipulation task, a custom multi-channel sensor

data acquisition system was developed. Fig 2 shows a subject interacted with the acquisition

system via controlling a robotic interface. Real-time physiological response and user motor

kinematics were recorded using the Robot Operating System (ROS) framework. Additionally,

to minimize external distractions, noise-canceling headphones playing white noise were used.

The sensor configuration and placement is shown in Fig 3.

To monitor muscle activity, surface EMG signals were collected using Shimmer Sensing

toolkit at the sampling rate of 1024 Hz, and streamed wirelessly via Bluetooth. Two muscles,

Pectoralis Major (PectM) and Deltoid Posterior (PostD), were selected for EMG data collec-

tion. These muscles are primarily active during internal and external rotations of the shoulder

(internal rotation rounds the shoulder in, while external rotation rounds the shoulder back),

and were found to be most active during the bivariate pointing task. Two Al/AgCl electrodes

(2 cm apart) were placed on the chest wall, 2 cm below the collarbone to capture PectM mus-

cular activity; another one pair of electrodes are placed 2 cm below the lateral border of the

scapular spine and parallel to muscular fibers to obtain PostD muscular signals [51]. As EMG

signals can vary across individuals, we acquired the maximum voluntary isometric contraction

(MVIC) level for each muscle. Each subject was asked to contract muscle as strongly as possi-

ble and to hold the contraction for 30 seconds. To test the pectoralis major, subjects stood

straight facing the wall with elbow bent at 90-degree angle and pressed their hand against the

wall. Next, subjects were asked to rotate their arm and pressed the back of hand against the

wall to get the deltoid posterior MVIC. This procedure was repeated three times, with two-
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minute intervals between MVIC trials to relax the muscle. The highest peak value of the three

iterations was chosen as a reference MVIC EMG value for each muscle.

EEG signals were collected using the BIOPAC1 B-Alert X10 wireless EEG system with

AcqKnowledge1 software. The sensor headset includes 10 Al/AgCl scalp electrodes, and data

was sampled at 1000 Hz. The 10 sensors were placed in locations on the mid-line and lateral

EEG sites, F3, Fz, F4, C3, Cz, C4, P3, POz, P4, as recommended by the sensor manufacturer

[52]. Furthermore, the EEG signals were benchmarked to obtain the baseline data of BIOPAC

EEG bio-metrics for the individual subject. The EEG benchmark test consisted of three ses-

sions (15 minutes in duration): a three-choice psychomotor vigilance task (3C-VT), a visual

Fig 2. Instrumentation for experiments. Subjects interacted with the virtual task by controlling a robotic interface (i.e., haptic device). Physiological response (e.g., EEG,

GSR, EMG) and user kinematic movements were recorded from wireless inertial measurement units (IMUs) on the upper and forearm, as well as encoder readings from

the haptic device.

https://doi.org/10.1371/journal.pone.0195053.g002
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psychomotor vigilance task (VPVT), and an auditory psychomotor vigilance task (APVT)

[53, 54].

The heart rate of each subject was acquired using fingertip photoplethysmography (PPG)

[55, 56] (a.k.a., optical pulse measurement), included with one of the Simmer Sensing units.

The optical pulse sensor was attached to the ring finger tip of the dominant hand. For monitor-

ing user GSR signals, the Shimmer sensor was also used to measure the skin conductance

between the index and middle fingers. Both the GSR and PPG signals were sampled at a fre-

quency of 512 Hz, and transmitted by a Shimmer Sensing sensor to the data acquisition com-

puter. To normalize the GSR and heart response among each subject, a benchmarking session

was performed wherein subjects were asked to close their eyes and stay relaxed while listening

to white noise for 3-minute duration. The baseline heart-rate and variance in skin conductance

was recorded from this session.

Methodology

Feature processing and extraction

A variety of metrics were generated to describe motor difficulty with respect to the human

physiological response and movement during each trial. These metrics are independent of the

type of task, and are inspired from literature, as described in the following subsections.

Physiological response metrics. Physiological response metrics were generated to

describe the user experience in terms of cognition, attention, and physical effort. These metrics

Fig 3. Sensor placement. (A) a sensor attached on the user forearm measuring forearm (FA) IMU, GSR and fingertip PPG signals; (B) a sensor attached on the upper arm

measuring upper-arm (UA) IMU and 2-channel EMG signals.

https://doi.org/10.1371/journal.pone.0195053.g003
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include those derived from EMG muscle activity, EEG cognitive state, skin conductance and

heart response signals.

The raw EMG signals were digitally filtered (4th-order FIR filter) with a bandpass frequency

from 20 Hz to 450 Hz to attenuate motion artifacts. A 60 Hz notch filter was also applied to

remove unwanted power line interference. In addition, the DC component of EMG signal was

removed by subtracting the average of the signal. Two time-domain features of the EMG sig-

nals were extracted: the mean absolute value (MAV) and the root-mean-square, both were

normalized using the MVIC reference value for each subject.

Mean absolute value of EMG is suggested to be an optimal detector of EMG amplitude,

commonly used in EMG pattern-recognition and myoelectic control [57, 58]. As an extension

of the regular mean-absolute value calculation, the second-type MAV has a smoother weighted

function, allowing for improved accuracy. This type of MAV is defined as an average of

weighted rectified EMG signal amplitude. The mathematical calculation of MAV is expressed

as:

MAV ¼
1

N

XN

i¼1

wijxij

wi ¼

1; if 0:25N � i � 0:75N
4i
N
; elseif i < 0:25N

4ði � NÞ
N

; otherwise

ð1Þ

8
>>>><

>>>>:

where |xi| is i-th sample of the rectified EMG signal segment, N is the signal length, and wi is

the piecewise weighted function.

Root-mean-square (RMS) is another commonly used feature in EMG signal analysis, useful

to reveal force patterns and muscle contraction activation [57, 59]. The RMS of EMG was cal-

culated using a 2ms moving averaging window based on the rectified envelope of EMG signals.

The mathematical definition of RMS is expressed as:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

jxij
2

s

ð2Þ

where |xi| is i-th segment of rectified EMG signals with length of N.

For the EEG measurements, five cognitive parameters were obtained from BIOPAC Cogni-

tive State Analysis software. During each reaching trial, the average probabilities of cognition

states are computed through continuous wireless EEG recording at 1 Hz. The cognitive states

include: Engagement, Workload, Distraction, SleepOnset, Head Movement Level (HeadMvL).

These metrics are classified from EEG raw signals, and normalized as probability measures

compared to the EEG benchmarking assessment of each individual subject. Potential contami-

nation from movement artifacts and eye blinking are identified and avoided via filtering meth-

ods [60]. Details regarding this EEG signal processing technique and validation of the

cognitive state metrics can be found in the literature [53].

The sampled GSR signal was filtered using a 2nd-order lowpass filter with the cut-off fre-

quency at 5 Hz to reduce unwanted muscle artifacts (high frequency noise). To avoid potential

phase distortion, the GSR signal was preprocessed with a FIR filter. The variance of the gal-

vanic skin conductance, SCvr, defined as the difference between the global maxima and min-

ima of GSR signals during each task trial, was computed and normalized using the baseline

variance measurement for each subject. [61].
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Heart rate response was acquired using photoplethysmography (PPG) of user’s fingertip.

The raw PPG signals were filtered by a FIR filter to remove noise and obtain a linear envelope

of PPG signal. The heart rate was calculated based on the peak-to-peak intervals (PPI) of PPG

linear envelopes. The calculated heart rate was normalized for each subject by the average

heart rate measured in the baseline task.

Kinematic motion analysis. In order to assess the ease of the haptic device manipulation

task, kinematic motion metrics were derived in both the task (i.e., haptic device) and user (i.e.,

limb) workspaces.

In the simulated task space, we extracted two task-independent metrics from position mea-

surements of the end-effector. These metrics include path straight deviation, PathStrDev, and

path efficiency, PathEff, as shown in Fig 4. Path straight deviation (PathStrDev) is defined as

the average magnitude of the orthogonal projection of the current position, pi, onto the vector

~a between the initial user position, p0, and the end user position, pn. The mathematical calcula-

tion of PathStrDev is expressed as:

PathStrDev ¼
1

n

Xn

i¼1

dðPi;~aÞ ¼
1

n

Xn

i¼1

k ~P0Pi �~a k
k~a k

ð3Þ

The path straight deviation quantifies the trajectory straightness compared to the purely

straight path between the starting and final positions. This metric is task-independent since it

is computed based on the user-defined end-point, not the target end-point. The path efficiency

Fig 4. Path straight deviation (PathStrDev) and path efficiency (PathEff) metrics. These measures are obtained from end-effector trajectories in the task space.

https://doi.org/10.1371/journal.pone.0195053.g004
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(PathEff) is calculated via dividing the total path-length of the tool by the straight line distance

between the initial and end position of the user. PathEff has been reported as a measure of the

user’s ability to continuously control the end-effector [62, 63].

To characterize limb motion in the user space, we generated three types of motion metric

using the data from inertial measurement units (IMUs) on both forearm (FA) and upper arm

(UA). These metric including: the average magnitude of the angular velocity (AngVel), linear

acceleration (LinAcc), and the root-mean-square magnitude of jerk (Jerk). The resultant jerk, J,
as a function of the time derivative of acceleration, is defined by:

J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d3xðtÞ
dt3

� �2

þ
d3yðtÞ
dt3

� �2

þ
d3zðtÞ
dt3

� �2
s

ð4Þ

where x, y, z are the three-dimensional components of the trajectory in Cartesian space. The

effects of gravity on the linear acceleration measurements obtained from the IMUs were elimi-

nated by calculating the acceleration magnitudes for each time-sampled x, y, z components. In

this study, the root-mean-squared magnitudes of jerk were computed in order to reduce the

variability and noise of measurements, by averaging over the entire waveforms. Based on the

literature, the jerk metric is a valid candidate for assessing movement smoothness, which can

be interpreted as a general measure of overall control ability [64, 65].

Data analysis and statistics

A Pearson product-moment correlation analysis was performed to assess the correlation

between the index of difficulty and extracted explanatory features. Correlation coefficients

were calculated using the data across all subjects and repetitions. A value of correlation coeffi-

cient r above 0.60 was considered to be a strong correlation, a value between 0.30 and 0.59 was

considered a moderate correlation, and an r value between 0.20 and 0.29 was considered a

weak correlation. In addition, a one-way analysis of variance (ANOVA) was conducted to test

for correlation between task difficulty and the proposed dependent variables. A significant cor-

relation was determined by a p-value less than 0.05.

Modeling task difficulty

Metrics extracted in the previous section were used to quantify reaching tasks with different

indices of difficulty. Four candidate models were generated, using a regression technique, to

evaluate the ability of kinematic and physiological response metrics to predict task difficulty,

when compared to movement time. This type of modeling is important as movement time in

teleoperated and shared control systems is ill-defined (i.e., the robotic system has no knowl-

edge of when the user ends a given task).

Feature selection and metric sets for modeling. To determine the best subsets of metrics,

a feature selection process was carried out using the Pearson correlation criteria. Candidate

metrics with no correlation or very weak correlation to task difficulty were excluded to reduce

dataset uncertainty. Metrics with correlation coefficients below 0.20 were removed from fur-

ther modeling.

Four sets of metrics were chosen for each of the four models generated. Specifically, we

were interested in evaluating the ability of both physiological and kinematic metrics to predict

task difficulty when compared to movement time, which is the only metric used in the Fitts’

law model. For each model, a different set of metrics was used including only movement time

(Set I), all metrics with weak correlations to task difficulty or greater (Set II), only kinematic

metrics (Set III), and only physiological response metrics (Set IV).
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Metric normalization. Due to the differences in dynamic ranges and various units of

input metrics, the raw data was pre-processed by a normalization process using a z-score

transformation. For a sampled variable xi with mean μ and standard deviation σ over n
instances, the z-score for each data point is calculated as:

zi ¼
xi � m

s
ð5Þ

where xi is the i-th data point of n sample instances.

Partial least square regression. A multivariate data-based approach, Partial Least Square

Regression (PLS-R), was chosen to generate each of the four models. The general aim of partial

least square regression model is to explain the information of the task difficulty index

(responses) by using the multiple characteristics of human response (predictor variables) as

input. The underlying calculation of PLS-R is formulated as:

X ¼ TPT þ E

Y ¼ UQT þ F
ð6Þ

where Y is the matrix of responses, X is the matrix of input predictor variables; T and U are the

scores, or latent matrices by decomposing or projecting X and Y, respectively; P and Q are

orthogonal factor matrices; E and F are the error residuals matrices, which are assumed to be

random normally distributed. Mathematically, the regression of partial least square was

achieved by maximizing the covariance structures between the two scores matrices, T and U,

so as to maximize the covariance between responses (Y-matrix, ID) and all possible linear

combination of predictor variables (X-matrix).

In general, PLS regression can produce more reliable models compared to other standard

regression methods, such as multiple linear regression. PLS methods are particularly suitable

dealing with high-dimensional and noisy data, handling a larger number of predictor variables

with a small set of observations. Additionally, PLS regression allows a multivariate modeling,

while dealing with the potential problem of multicollinearity, which is often the case in multi-

variate datasets.

Training, testing and evaluation. For the purpose of a valid prediction and non-biased

assessment without overfitting, a k-fold (k = 10) cross-validation (CV) technique was

employed. In the k-fold cross validation, normalized data samples were randomly partitioned

into k non-overlapping subsets with equal sample sizes. The holdout process of cross-valida-

tion was repeated k-times. Of the k−th partitions, one single subset of observations were used

for testing, while the union of remaining k – 1 subsets would form a set for training. The CV

estimates of overall accuracy were acquired by averaging of all the k-fold individual measures

to obtain a reliable assessment.

To assess the predictive performance, models in both training and testing steps were evalu-

ated based on the following deterministic criteria: the Coefficient of Determination (R2), Mean

Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), Mean Absolute Error

(MAV). In addition to these scale-dependent accuracy measures, non-unit accuracy metrics,

Normalized Root Mean Squared Error (NRMSE), Normalized Mean Absolute Error (NMAV),

were obtained for accessing non-unit magnitudes of residual errors, which gave a idea of the

relative differences between the modeled and observed value. Mathematical definition and

descriptions of deterministic criteria are given in Table 1.
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Results

Statistical analysis

Example user trajectories, obtained from the position data of haptic device end-effector, are

shown in Fig 5. Fig 6 shows all of the measured outcome variables, extracted from EMG, EEG,

GSR, IMU sensors and the haptic device, in the predefined tasks associated with different indi-

ces of difficulty (IDs). Error bars illustrate the data variances in a 95% confidence interval. It

should be noted that the ranges of the raw data from multiple channels are largely different.

Therefore, all measures are linearly transformed by min-max normalization for the ease of

visualization and comparison, without the distortion of raw data. The entire range of values

from minimum to maximum for each feature are mapped to the range from 0 to 1. The physi-

ological response metrics, including EMG muscle activity, EEG cognitive states, galvanic skin

conductance, and heart response, are shown in Fig 6A–6C, respectively; movement features in

task space, path straight deviation and trajectory efficiency, are shown in Fig 6D; user limb

motion kinematics of both forearm and upper arm, including angular velocity, linear accelera-

tion, and RMS magnitude of jerk, are shown in Fig 6E and 6F, respectively. In addition, Pear-

son’s correlation coefficients, r, were reported to indicate the relationship between the features

with respects to the predefined task difficulty index. Significance levels of correlation effects

were determined via the p-value 0.05. Results of the correlation analysis for predictor variables

with the significance values are reported in Table 2.

Measured movement time (MT) using the haptic device was most significantly associated

with the tasks difficulty indices, p< 0.001, with the highest correlation coefficient, r = 0.93,

among all other metrics computed. More importantly, high correlation coefficients were

found between the difficulty index and user motion kinematics, in both of end-effector task

space and user space, ranging from 0.66 to 0.90, with significance value p< 0.001. Specifically,

for movement measures in task space, in terms of the path straight deviation and path effi-

ciency, significantly high correlations have been achieved between the task difficulty and the

two, r = 0.67 and r = −0.83, respectively, p< 0.001. Furthermore, user physiological response

demonstrates the similar trends with tasks in different difficulty levels, but slightly lower

Table 1. The deterministic criteria used to assess model predictive performance.

Criteria Mathematics Description

R2 Pn

i¼1
ðyi � �y iÞ

2 �
Pn

i¼1
ðyi � ŷiÞ

2

Pn

i¼1
ðyi � �y iÞ

2

Coefficient of determination, R2, quantifies the goodness-of-fit. The value of R2

ranges from to 1, higher value indicates a better model fit.

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðyi � ŷi Þ
2

r
Scale-dependent prediction accuracy measure. Root mean squared error between
predicted and observed response values, in the same unit of ID.

MAE 1

n

Pn

i¼1

jyi � ŷi j
Scale-dependent prediction accuracy measure. MAEmeasures average absolute
errors between predicted and observed response values, in the same unit of ID.

NRMSE
1

ymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn

i¼1

ðyi � ŷi Þ
2

r
Normalized non-unit root mean squared error between the predicted and observed
response values. The value of NRMSE closing to zero suggests higher prediction
accuracy.

NMAE 1

n

Pn

i¼1

jyi � ŷi j
ymax

Normalized non-unit average of absolute error, measure of prediction accuracy
independent of scale.

MAPE 1

n

Pn

i¼1

jyi � ŷ̂i j
yi
� 100%

Mean absolute percentage error, MAPE, measure of prediction accuracy as
percentage.

The yi, ŷi are observed and estimated response values, �yi, ymax are the mean and maximum of the observed response,

and n is the size of sample instances.

https://doi.org/10.1371/journal.pone.0195053.t001
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correlations, when compared to the motion characteristics. For EMG muscle activity, average

correlation coefficients of RMS and MAV on both active muscles, posterior deltoid and pec-

toralis major, are 0.58 and 0.52, respectively, p< 0.001. Heart rate response was correlated

with task difficulty in the moderate levels, r = 0.35, followed by the variance of skin conduc-

tance (SCvr), r = 0.31, p< 0.001. All EEG-based cognitive metrics derived from the BIOPAC

software are significantly correlated with task difficulty levels, p< 0.05. Among these mea-

sures, the metrics Engagement and Workload show the moderate correlation with difficulty,

with the correlation coefficients r = 0.22, and r = 0.23, respectively. Three cognitive features,

Distraction, SleepOnset, and HeadMvL, however, reveal correlations less than 0.20, and thus

excluded from the following regression modeling.

Model evaluation

In this section, the overall accuracy of each of the four difficulty models is investigated. After

data acquisition and pre-processing, a total of 420 observation sample instances were obtained

in our database. According to the correlation-based feature selection and feature-level fusion,

Table 3 shows the excluded and included predictor variables for regression modeling, as a

result of the feature selection procedure. Aggregated accuracy results calculated from the

10-fold cross-validation were reported in Table 4, regarding the aforementioned deterministic

criteria. Regression results of the individual modality (Model III: kinm and Model IV: physio)

and their fusion (Model II: fusion) were reported, in comparison with the conventional Fitts’

law (Model I: MT).

Overall, the fusion model, combining both physiological response and kinematic motion

metrics, exhibited the highest accuracy in predicting the task difficulty. The coefficient of

determination (R2) of fusion model is 0.927, with the best accuracy with respect to RMSE,

MAE, and MAPE. In addition, fusion model, and kinm model, do not show significant differ-

ences on the ID prediction accuracy. This indicates the reduced subsets of predictors are able

to predict task difficulty with the goodness-of-fit, though less explanatory predictors are

included. The kinm model, compared with the other individual modalities, was able to show

significantly increased accuracy, followed by MT and physio. In contrast, significant differ-

ences on detection accuracy between the movement time and other modalities (except for

Fig 5. All end-effector trajectories in task space controlled by a typical subject. Different colors denote target-reaching tasks

with different indices of difficulty.

https://doi.org/10.1371/journal.pone.0195053.g005
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physio) have been found, where the improvement of higher accuracy was achieved with up to

30.63% and 27.78% in terms of RMSE. The comparisons of normalized accuracy measures,

NRMSE and NMAE, in Table 4 could also confirm the above analysis of prediction accuracy.

Discussion

As an important step in our analysis, we examined the relationship between the movement

time and the difficulty index. It was found that the increase of movement time using the haptic

device is essentially in proportion with the predefined difficulty index. This result shows that

Fitts’ Law would be preserved in the control of the haptic device, consistent with prior studies

showing the speed-accuracy trade-off in various robotic interfaces. Indeed, decreases of

Fig 6. Overall results of human response for all reaching tasks with different difficulty indices (IDs). (A) EMG muscle activity, (B) EEG-based cognition, (C) galvanic

skin conductance variance and heart rate response, (D) movement of end-effector in task space, (E) and (F) user limb motion on both forearm (FA) and upper arm (UA).

Black lines are connecting mean values of corresponding measures, error bars illustrate the variances in a 95% confidence interval.

https://doi.org/10.1371/journal.pone.0195053.g006
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movement time have been reported to be associated with improved technical skills, control

effectiveness [66] and subjectively perceived difficulty [67]. However, it should be emphasized

that measure of movement time is insufficient to explain various aspects of motor difficulty, as

shown in Table 4.

Consistent with our hypothesis, confirmation of the task difficulty differences was observed

in the sensorimotor response of human users, from the aspects of physiological response and

motion kinematics. Notably, the kinematic motion profiles, obtained from the movement in

the user and task workspaces, provide the best predicitors of task difficulty. Specifically, for

user limb motion, the produced movement amplitudes and smoothness show the direct one-

to-one mappings onto the difficulty index. Tasks with higher difficulty are associated with

increased angular velocity and linear acceleration. This increase in task difficulty is also

reflected in the increase in the magnitudes of movement jerk. This observation indicates a sig-

nificant challenge in maintaining smoothness of limb motion with higher task difficulty. For

the motor performance measures in the task space, the correlation analysis shows a significant

reduction of the trajectory effectiveness and decrease of the straightness of the entire end-effec-

tor paths, for the increased task difficulty. Gradually changing difficulty index would likely

evoke adjustments of user movement patterns, and affect the overall user manipulability to

control the device.

Table 2. Pearson correlation coefficient with p-value of candidate features extracted from multichannel measures.

Category Var. of Interest Corr. Coeff. with p
r p

Muscle Activity PostDrms 0.56 <0.001†

PectMrms 0.61 <0.001†

PostDMAV 0.50 <0.001†

PectMMAV 0.54 <0.001†

EEG-based Cognition Engagement 0.22 <0.001†

Workload 0.23 <0.001†

Distraction 0.17 <0.001†

SleepOnset 0.15 0.002�

HeadMvL 0.11 0.024��

Skin Conductance SCvr 0.34 <0.001†

Heart Rate HR 0.35 <0.001†

Motion Kinematics AngVelFA 0.88 <0.001†

AngVelUA 0.90 <0.001†

LinAccFA 0.70 <0.001†

LinAccUA 0.80 <0.001†

JerkFA 0.74 <0.001†

JerkUA 0.65 <0.001†

PathStrDev 0.67 <0.001†

PathEff -0.83 <0.001†

Task-specific Measure MT 0.93 <0.001†

Statistical significance of correlation is determined when p< 0.05.

��� p< 0.10

�� p< 0.05

� p< 0.01
† p< 0.001

https://doi.org/10.1371/journal.pone.0195053.t002
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Similarly, user physiological response also demonstrates observable associations with task

difficulty indices. It is clear that higher task difficulty levels significantly correlate with

increased underlying muscular activity, user engagement, cognitive workload and their respec-

tive variances. One explanation for the results is that in order to reach far-away targets, partici-

pants have to engage more mentally in path planning, and allocate greater cognitive efforts

and attention while maintaining performance accuracy. Here it should be noted, however, the

measures of physiological response were generally less correlated with the difficulty index, in

comparison with motion kinematics. An explantation for this is that varying the target dis-

tances has a direct and distinct impact on the kinematic motion behavior and motor

Table 3. Overview of excluded and included predictor variables in the feature-level fusion for regression modeling.

Var. of Interest Excluded Included

Set I Set II Set III Set IV
Distraction •

SleepOnset •

HeadMvL •

PostDrms • •

PectMrms • •

PostDMAV • •

PectMMAV • •

Engagement • •

Workload • •

SCvr • •

HR • •

AngVelFA • •

AngVelUA • •

LinAccFA • •

LinAccUA • •

JerkFA • •

JerkUA • •

PathStrDev • •

PathEff • •

MT •

Four sets of metrics were chosen for each of the four models generated.

https://doi.org/10.1371/journal.pone.0195053.t003

Table 4. Summary table showing the aggregated 10-fold cross-validation results based on PLS-R regression.

MODEL R2 Testing

RMSE MAE NRMSE NMAE MAPE%

I: MT 0.847 0.666 0.541 0.095 0.077 14.43

II: fusion 0.927 0.462 0.361 0.067 0.052 9.49

III: kinm 0.921 0.481 0.380 0.069 0.054 9.97

IV: physio 0.516 1.184 0.963 0.169 0.138 27.47

Models were extracted using input predictor variables with different feature sets, which are defined in Table 3. Bold denotes the highest average accuracy regarding each

statistic measure.

https://doi.org/10.1371/journal.pone.0195053.t004
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performance; on the contrary, user physiological response may not be sensitive to the changes

of difficulty index. This might be due to the nature of participant’s physiological activity, and

relatively low signal resolution. Nevertheless, concerning the effects of IDs on the human cog-

nition and the significant associations, it was confirmed that task difficulty index could serve

as an objective indictor in revealing the user workload and dynamic fluctuations in cognition.

In addition to the above statistical analysis, models are constructed by PLS-R regression to

explore the usefulness of using predictor variables in optimizing the identification of task diffi-

culty. However, by comparing the results in Table 4, it is clear that multimodal fusion, combin-

ing user physiological response and motion characteristics, has the synergetic effect in

improving the accuracy of prediction, and ultimately enhancing the value of information for

various levels of task difficulty. User physiological response, in conjunction with kinematic

motion analysis, was able to explain the motor difficulty of tasks and its variances more accu-

rately. Of course, these improvements involve the increased cost of multiple sensors and higher

computational load. The trade-off between predictive accuracy and model complexity is an

important consideration for the designers of human-in-the-loop control systems.

A potential limitation of this study is the accuracy and robustness using partial least square

regression in modeling the highly complex, and nonlinear relationships between the response

and input predictor variables. Since several parameters demonstrated nonlinear or exponential

relationships with the difficulty index, an improvement in predictive performance is expected

by the adoption of advanced machine learning methods, such as neural networks. Moreover,

further improvement could be made by improving the user motor capture system and process-

ing methods. Various data processing techniques in both time and frequency domain, such as

Power Spectral Density analysis (PSD), could be considered for better detection of user physio-

logical feedback, and how the subjects coordinate their movements during human-robot inter-

actions [16, 57, 68]. A larger group of participants would also better define these results.

Finally, it must be emphasized that the basic target-reaching tasks in this study could likely

be largely different from the context of realistic complex tasks, in which human typically inter-

act with robots to perform an unstructured manipulation. However, segments of user behav-

iors demonstrated similarity to the representative target-reaching motions [69, 70].

Additionally, the size of target, as one of control parameters, may affect user motion and physi-

ological response in a real, physical system. Therefore, additional consideration is necessary

when applying our model in broader robot-assisted cases with various kinds of manipulation.

The target size will also be an important consideration for our future work. Regardless, results

indicate a distinct advantage of using the multivariate data-driven approach to assess difficulty.

Also, the features that have been used in this study are independent of task types, and thus

have the potential to be applied more globally.

Conclusion

Difficulty during human-in-the-loop control interactions is hard to define and measure objec-

tively. In this paper, we present and evaluate a model to estimate task difficulty by leveraging

Fitts’ Law. Findings of statistical results during typical reaching tasks confirm the correlations

between user sensorimotor response metrics and task difficulty, p< 0.001. Motion kinematic

metrics had the best predication of task difficulty, R2 = 0.921; a fusion of physiological metrics

and motion kinematics are believed to provide richer source of information for identification

of difficulty, R2 = 0.927, with 30.63% improvement of predictive accuracy in comparison with

the movement time model.

Overall, the task difficulty models presented in this paper, and the method used to develop

them, provide useful insights into human response during human-in-the-loop control tasks.
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As our proposed models are independent of the task, they could be useful for the evaluation of

more complex control tasks, such as teleoperated or shared control of robotic systems.
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