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he explosive growth in the variety and size of social networks has focused attention on searching these

networks for useful structures. Like the Internet or the telephone network, the ability to efficiently search
large social networks will play an important role in the extent of their use by individuals and organizations
alike. However, unlike these domains, search on social networks is likely to involve measures that require a
set of individuals to collectively satisfy some skill requirement or be tightly related to each other via some
underlying social property of interest.

The aim of this paper is to highlight—and demonstrate via specific examples—the need for algorithmic results
for some fundamental set-based notions on which search in social networks is expected to be prevalent. To this
end, we argue that the concepts of an influential set and a central set that highlight, respectively, the specific role
and the specific location of a set are likely to be useful in practice. We formulate two specific search problems: the
elite group problem (EGP) and the portal problem (PP), that represent these two concepts and provide a variety
of algorithmic results. We first demonstrate the relevance of EGP and PP across a variety of social networks
reported in the literature. For simple networks (e.g., structured trees and bipartite graphs, cycles, paths), we
show that an optimal solution to both EGP and PP is easy to obtain. Next, we show that EGP is polynomially
solvable on a general graph, whereas PP is strongly NP-hard. Motivated by practical considerations, we also
discuss (i) a size-constrained variant of EGP together with its penalty-based relaxation and (ii) the solution of

PP on balanced and full d-trees and general trees.
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1. Introduction

A social network represents a social structure as a
set of definite relationships between the members—
entities or groups—of a social system. In its most
commonly used representation, a social network can
be viewed as a network of nodes (individuals, orga-
nizations, Web pages, etc.) related to one another
using edges (friendship, commercial transactions,
URL links, etc.). Over the years, social networks have
been used to analyze social phenomena in a wide
variety of domains, including sociology, epidemiol-
ogy, social psychology, economics, anthropology, his-
tory, and human geography (Scott 2000, Wasserman
and Faust 1994, Brandes and Erlebach 2005). Often in
social network analysis, the researcher’s interest is in
explaining individual or group behavior in the con-
text of the larger social structure in which the indi-
vidual or group is situated.

More recently, social networking sites such as
Facebook (http://www.facebook.com) and MySpace
(http://www.myspace.com) have proliferated on the
Internet and help users connect based on a wide
range of interests and practices. Although some sites
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support the maintenance of preexisting social net-
works, others help strangers connect based on their
shared interests and/or activities. Some sites cater
to diverse audiences, whereas others attract people
based on some shared identity (Boyd and Ellison
2007). Typically, the participants (players) of the net-
work derive some utility from the network, for exam-
ple, to find others for idea exchange, problem solving,
companionship, and so on.

It should be clear that, like any other network-based
phenomenon such as the telephone or the Internet,
the ability of the individual or group to derive value
depends on the ability to search the network for con-
tacts. For example, searching the telephone network
is facilitated by a phone directory, browsing the Inter-
net requires a browser and a search engine, and so on.
Many researchers believe that the advent of the Web
browser and search engine was most influential to the
explosive growth of the Internet. By analogy, it can be
proposed that the utility of social networks to individ-
uals and organizations will also depend on the ability
to search the networks of interest for useful structures.
For example, a participant in Facebook may want to
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discuss a topic of interest and may need to call on a
selected subset of friends to join the discussion. In the
open source community, individual developers form
a social network by virtue of having worked on com-
mon projects. In such a community, a developer or a
firm may want to create a project team of members
with certain specialized skills and access to resources.

Searching a social network often creates search
problems that are different from those encountered
in other network phenomena such as the Web or the
telephone network. In the Web, the typical nature of
search is to provide the user with a set of websites
that match based on a list of search terms. There is
usually no requirement that the websites returned by
the search engine satisfy some complex relationship
to one another other than, of course, the trivial rela-
tionship that they must all match (to varying degrees)
with the list of search terms. On the other hand,
search problems in a social network can be more com-
plex. In particular, the search results may often need
to satisfy a set measure. For example, in extracting a
project team from a larger network, it may be impor-
tant that the set of developers that are returned collec-
tively satisfy some skill requirements but, in addition,
are tightly related to one another by virtue of hav-
ing worked on common projects. With the improve-
ment in computing technology, the data and the tools
needed to identify the network of interest are read-
ily available. From a technical perspective, when the
results of a search need to meet (or exceed) a specified
set measure (specifically, a nonadditive measure), the
search often becomes combinatorial in nature. Search
problems in social networks therefore provide a chal-
lenging ground for researchers interested in applying
graph-theoretic, algorithmic methods to the area. Our
interest in this study stems from the new problems
and opportunities that are likely to arise for the use
of graph-theoretic methods to solve interesting search
problems in social networks.

The remainder of this paper is organized as fol-
lows. In §2, we argue that two set-based notions—
influential sets and central sets—are likely to pro-
vide a fundamental structural basis for important
search problems arising in a variety of practical
social networks, and we introduce two optimiza-
tion problems—the elite group problem (EGP) and
the portal problem (PP)—corresponding to these two
notions. Section 3 investigates the complexities of
these problems on several special graphs as well as
on general graphs. Section 4 concludes our paper and
provides directions for future research.

2. The Notions of Influential Sets and
Central Sets

Given the significance of search in social networks
and, consequently, the need for efficient algorithms,

an important question naturally arises: What are some
fundamental set-based notions on which search in
social networks is expected to be prevalent? Tradi-
tionally, in social network analysis, two fundamental
properties of individual members—their location and
their role in the network—have proven to be funda-
mental. This is natural because these two properties
provide insights into the groupings and interactions
in the network. Accordingly, for individual mem-
bers of a social network, network centrality mea-
sures, including degree centrality, closeness centrality,
and betweenness centrality, have been heavily investi-
gated and used (see, e.g., Freeman 1979; Brandes and
Erlebach 2005, Chapters 3-5). For set-based search as
well, structures and measures that highlight the spe-
cific role or specific location of a set are likely to be
the most useful in practice. The need and use of such
set-based measures has already been documented in
other studies. For example, the notions of group (or
other set) betweeness and group degree centralities
are discussed in Chapter 4 of Carrington et al. (2005)
and in Everett and Borgatti (1999).

The motivation to study the role played by mem-
bers in a network has to do with understanding
the influence a member can potentially cast over
other members in the network. Such notions of influ-
ence exerted by a single member can intuitively be
extended to the influence a set of members can poten-
tially exert over the rest of the group. A set of
influential members may be useful to identify for a
variety of reasons, often having to do with wanting to
promote an idea, product, or message to other mem-
bers of the network. For example, a firm may wish to
advertise a new product or service and use an influen-
tial group of members to help in this cause (Hill et al.
2006). Similarly, a welfare organization may want to
disseminate ideas of social importance within a com-
munity of interacting members and use an influen-
tial set of members for spreading the message in an
effective and timely manner. Another reason to study
influential groups is often to identify a set of mem-
bers who possess specialized knowledge or informa-
tion pertaining to a specific domain—namely, the key
experts in the group. For example, it may be important
to identify a set of expert oncologists for devising an
informed yet balanced plan of action to treat a dif-
ficult case. Here, a set of experts may be especially
relevant to consult to eliminate or reduce bias as well
as to surface fresh perspectives that can aid in prob-
lem solving.

The motivation to study the location of a mem-
ber (or a set of members) is subtly different from
that of examining member roles. Location is essen-
tially a topological characteristic that has to do with
a member or a set of members acting to facili-
tate contact between other interacting members of
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the network. A centrally located member is well
connected, or, in other words, has better access to
other members by virtue of acting as a conduit that
allows exchanges and flows of information or ideas
in the network. A central location does not neces-
sarily imply influence, and neither does an influen-
tial member necessarily need to be centrally located.
Indeed, recent research in reality mining (Pentland
2004, Greene 2008, Hesseldahl 2008) and interaction
within social networks reveals significant distinctions
between these two concepts. For example, managers
who may be influential within a business organiza-
tion usually do not play a central role in the routing
of communications between teams (Gloor et al. 2007,
Thompson 2008). The players central for communica-
tion could, instead, be less influential employees. The
question arises: What property does location convey
that is useful to a problem solver? One benefit of iden-
tifying centrally located members is that it provides
one with an understanding of the paths that are heav-
ily used in the network so that sufficient resources
can be made available at these locations to avoid com-
munication bottlenecks from occurring. An interest-
ing variant is one where the problem solver may want
to thwart communication: the activities of a terror-
ist group may be significantly impaired by striking at
locations or members that are central to the flow of
communication within the network (Erickson 1981).
The twin notions of influence and centrality admit a
variety of interpretations, depending on the context of
the social network under consideration. Accordingly,
there can be several meaningful measures to evaluate
“good” influential and central sets. For example, to
measure the centrality of a set of vertices, the classi-
cal measure of betweenness centrality of a single ver-
tex has been extended to group betweenness centrality
(Everett and Borgatti 1999) and co-betweenness central-
ity (Kolaczyk et al. 2009). Along this theme, we pro-
pose two specific measures: one for an influential set
and the other for a central set. We now describe two
optimization problems that correspond to these two
measures, discuss their origins, and provide examples
of social networks where these problems are relevant.

2.1. The Elite Group Problem and the
Size-Constrained Elite Group Problem

2.1.1. Technical Definition

Instance: n players; an “influence” social network
represented by a directed graph G(V, A), |V|=mn, in
which the nodes represent the players and the set
of arcs represent pairwise influences pertaining to a
social property: a directed arc (i, j) indicates that i is
influenced by j. For the size-constrained elite group
problem (SCEGP), a positive integer k < n is also
given.

An elite
group

Figure 1

An “Influence” Network and an Elite Group

Solution of EGP: A set W C V such that there does
not exist a directed arc (i,j) e A withieW, j& W;
see Figure 1.

Solution of SCEGP: Same as EGP, with the additional
requirement that |W| <k.

Objective Function: Maximize the total number of
directed arcs, 7y, incident on any node in W from
nodes in V\W. More precisely, the score vy, is defined
as follows: vy = icw jew a5, where a; =1if (i, j) € A,
and 0 otherwise.

Note that in a graph G(V, A), there is at least one
feasible solution for EGP—namely, the complete set of
nodes V, with score vy, = 0. Also, observe that adding
more nodes to an elite group does not necessarily
increase the number of directed arcs into the group.
If a node, say, j, is added to an elite group W, then
to obtain yy;;, we (i) add to 7y, the number of arcs
from V\{W U {j}} to j and (ii) subtract the number of
arcs from node j to the nodes in W. Thus, depending
on this trade-off, yyy; can be larger or smaller or the
same as yy.

2.1.2. Origin and Applications. The notion of an
“elite” group originated from efforts to examine and
understand social behavior within a close-knit com-
munity. In the 1980s, sociologist Li Fan analyzed the
giving (and receiving) of gifts between the residents
of a Mongolian town (Wellman et al. 2001) and found
that one (elite) block of residents received gifts from
the others but only exchanged gifts among each other.
Thus, as a set, this group of residents only received
gifts from the other members of the town. Another
example of the notion of an elite group occurs in the
analysis of the advice-seeking behavior of the mem-
bers of a school, reported in Hawe and Ghali (2008).
Here, the social network revealed that, together, the
principal, the vice principal, and some key technical
staff form a group with properties such that (i) most
of the other staff members seek advice from one or
more members of this group, and (ii) the members
of the group typically seek advice only from (one or
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more) members within the group. Thus, to influence
opinion within the community in general, it may be
beneficial to first convince this group of individuals.

In the context of social network analysis, the mem-
bers of an elite group can be regarded as key players
or opinion leaders. For instance, if a specific mem-
ber of a community is often consulted by other mem-
bers on (say) health issues, then she can be regarded
as a key player (an elite member) in the opinion-
seeking network of that community (Borgatti 2006).
Another example is the cosponsorship network in
the United States Senate (Fowler 2006). In this net-
work, the prominent senators typically receive a sig-
nificant amount of cosponsorship. Thus, the set of
these prominent senators constitute an (approximate)
elite group.

2.2. The Portal Problem and The Exact-Size
Portal Problem

2.2.1. Technical Definition

Instance: n players; a connected, undirected graph
G=(V,E), |V|=n, in which the nodes represent the
players and edges represent the pairwise connections
between the players; a positive integer k < n.

Solution: For PP, a set Q € V such that |Q| < k. For
the exact-size portal problem (ESPP), a set Q € V such
that |Q| =k; see Figure 2.

Objective  Function: Maximize r(Q), defined as
follows:

Q=2

( n—1Q )
2
where o, is the total number of shortest paths from
node s to node t, where s,t € V\Q, s#t, and o,(Q)
is the number of shortest paths from node s to node ¢

that have at least one node in set Q as an inter-
nal node.

Usf(Q)

(Y

and BC(Q)= )

s¢Q, t¢Q, s#t

2.2.2. Previous Work and Applications. PP is a
natural extension of the popular betweenness central-
ity (BC) measure (Freeman 1979, Scott 2000) for indi-
vidual nodes (members) of a social network; for k =1,

A portal
T of size 1

A portal
of size 2

Figure 2 Optimal Portals in Two Simple Networks

an optimal solution to PP is a node with the high-
est BC. Everett and Borgatti (1999) extend the notion
of BC to groups and illustrate the measure on a few
examples. For a given set of nodes Q, Puzis et al.
(2007) provide a polynomial-time algorithm to com-
pute the nonnormalized measure BC(Q) (referred to
as “group betweenness centrality”). They prove that
the problem of obtaining a set with the highest group
betweenness centrality (i.e., maxgcy BC(Q)) is NP-
hard and also propose a simple heuristic. Note that
the behavior of our normalized measure r(Q) can be
fundamentally different from that of BC(Q). In gen-
eral, the set that maximizes the group betweenness
centrality may not necessarily be an optimal solution
of our model, and vice versa. Puzis et al. (2007) dis-
cuss an interesting application of a network of com-
puters in which a limited number of virus-cleaning
devices need to be placed at a subset of nodes (com-
puters) to prevent the spread of viruses. To maxi-
mize the utility of the devices, it is beneficial to place
them at the nodes of a portal of an appropriate size.
Another interesting application where a portal may
need to be identified is in a disease-outbreak net-
work. For example, Klovdahl et al. (2001) describe a
tuberculosis outbreak network and motivate the need
to identify the critical members in this network to
control the spread of the disease. Everett and Bor-
gatti (1999) discuss the interaction network of animals
(monkeys) and use the notion of a portal to determine
a socially central set of animals.

3. Algorithmic Analysis

We now analyze EGP and PP. For a search problem,
a basic question is that of its computational com-
plexity. For simple networks, an optimal solution to
both problems is easy to obtain. For EGP, we first
illustrate this and then identify a structural prop-
erty of an elite group that can help in reducing the
size of the underlying graph. Then we show that
EGP is polynomially solvable for a general network.
Next, motivated by practical considerations, we intro-
duce a size-constrained version of EGP together with
its penalty-based relaxation and show that both are
strongly NP-hard. For PP, we first show that PP is
strongly NP-hard on a general graph. We then con-
sider several special graphs on which PP is poly-
nomially solvable. Finally, we discuss a heuristic for
general trees.

3.1. The Elite Group Problem

Given a directed graph G(V, A), recall that an elite
group is a set W € V such that there does not
exist any directed arc (i,j) € A with ie W, j ¢ W.
The objective of EGP is to maximize the total num-
ber (or score) 7y,, of directed arcs incident on the
nodes in W. For some simple networks, it may be
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All the leaf
nodes of a
rooted
down-tree
represent
an optimal

elite group
\

Figure 3

straightforward to prove the optimality of a specific
elite group. Rooted up- and down-trees are especially
useful networks to study because they represent hier-
archically organized structures, e.g., reporting rela-
tionships in a department, natural taxonomies (Cross
and Parker 2004). The proof of the following observa-
tion is included in the Online Supplement (available
at http://dx.doi.org/10.1287 /ijoc.1110.0473).

OBsERvATION 1. If the graph G is a rooted down-
tree (i.e., each node in G, except the root, has a unique
predecessor, and all arcs in G are directed downwards
from the root to the leaf nodes; see Figure 3), then the
elite group W* consisting of all the leaf nodes of G is
an optimal elite group. If the graph G is a rooted up-
tree (i.e., each node in G, except the root, has a unique
successor, and all arcs in G are directed upward from
the leaf nodes toward the root; see Figure 3), then the
elite group W* consisting of all nonleaf nodes of G is
an optimal elite group.

Our next result helps us “shrink” the strongly con-
nected components (e.g., directed cycles) in G to sin-
gle nodes in our search for an elite group. We will use
this result later in the proof of Theorem 2. The proof
of the following observation is included in the Online
Supplement.

OBSERVATION 2. If G contains a strongly connected
component, and at least one node on this component
belongs to an elite group W (respectively, the com-
plement W = V\W), then all the other nodes on the
component must belong to W (respectively, W).

Note that there are many polynomial algorithms to
find a strongly connected component (if one exists) in
a graph. If G contains a strongly connected compo-
nent C, then, by using Observation 2, we can shrink C
into a single node. An arc in the original graph
between a node v € V\C and a node of C is rep-
resented in the shrunk graph as between v and the
(shrunk) node representing the component. Thus, in

All the non-
leaf nodes
N of a rooted
up-tree
represent
an optimal
elite group

Optimal Elite Group for a Rooted Down-Tree and a Rooted Up-Tree

the shrunk graph, we use a separate new arc to repre-
sent each arc between a node in V\C and a node of C
in the original graph. Therefore, in general, the shrunk
graph becomes a multigraph because there may be
parallel arcs between two nodes. We can continue this
type of shrinking until there is no nontrivial strongly
connected component in the modified shrunk graph.
Consequently, we can assume, without loss of gen-
erality, that the network is a directed acyclic graph
(DAG). Therefore, EGP translates into finding a sink
set of maximum indegree in a DAG. The following
result follows immediately from Observation 2.

LemMA 1. There is a one-to-one correspondence be-
tween elite groups in G and elite groups in the shrunk
graph: for every elite group W in G, we can get one in
the shrunk graph with the same score by taking the nodes
of the shrunk graph corresponding to all the strongly con-
nected components in W. Conversely, for every elite group
W' in the shrunk graph, we can get one in G with the
same score by taking the nodes in all the strongly connected
components corresponding to the nodes in W'.

Next, we show that EGP is polynomially solvable.
THEOREM 1. The EGP is polynomially solvable.
Proor. For jeV, define m; € {0, 1} as follows:

m. =

{1, node j belongs to the elite group W;
j

0, otherwise.

Then, an integer programming (IP) formulation for
EGP is as follows:

max Y (m;—m)
(i, j)eA

st.m—m <0 V(i j)eA,
7 el0,1) VieV.

For a directed arc (i, j), if node i is in W (i.e., m; =1),
then node j must also be in W (i.e., m; = 1). Other-
wise, if 7; =0, then T € {0, 1}. This is enforced by the
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first constraint. In the objective function, (m; — ;) rep-
resents the contribution of arc (i, j) to y: if nodes i
and j are both in W or both in VAW (i.e., m; — m;=0),
then the contribution is 0. If node i is in V\W and
node j is in W (i.e, m; =0, m; = 1), then the con-
tribution is 1. The constraints of the IP can be writ-
ten as A7 <0, where A is the node-arc incidence
matrix of G and 7 € {0, 1}/V]. It is well known that
the node-arc incidence matrix of a directed graph is
totally unimodular (see, e.g., Hoffman and Kruskal
1956, Nemhauser and Wolsey 1988). Thus, the linear
programming relaxation of the above IP results in an
integer optimum. The result follows. O

Note that the shrinking of strongly connected com-
ponents (Lemma 1) maintains the total unimodularity
of the constraint matrix of the IP above. Thus, the size
of a network containing strongly connected compo-
nents can be reduced before formulating the EGP. The
objective function of the IP above is to maximize the
number of arcs directed into the elite group; instead,
if we change the objective function to maximize a
weighted linear combination of arcs directed into the
elite group, the modified problem remains polynomi-
ally solvable.

REMARK 1 (PENALIZING THE SIZE OF THE ELITE
Groupr). Note that EGP does not impose any con-
straint on the cardinality (i.e., the number of nodes)
of the elite group. In §§3.1.1 and 3.1.2, we con-
sider a hard constraint on the cardinality. An alter-
native is to impose a “soft” constraint by impos-
ing a penalty p >0 on the cardinality. In this case,
the objective function in the IP above changes to
max  jea (T — ;) — p ey ;. Because this modi-
fied objective is linear and the constraint matrix is
totally unimodular, the modified problem remains
polynomially solvable.

3.1.1. The Size-Constrained Elite Group Prob-
lem. Typically, the purpose of identifying an elite

A balanced
biclique of

Figure 4

group is to use the members of this group to effec-
tively influence the other members of the social
network. Thus, for practicability in managing this
subsequent task, the size of an elite group may need
to be restricted. Motivated by this requirement, Theo-
rem 2 discusses the complexity of the size-constrained
elite group problem (SCEGP), defined as follows: Given
a positive integer k <, find an optimal elite group
W cV with [W| <k.

THEOREM 2. The decision problem corresponding to
SCEGP is strongly NP-complete.

Proor. The strongly NP-complete problem that we
use in our reduction is the balanced biclique problem
(Garey and Johnson 1979), defined as follows.

Balanced Biclique Problem (BBP)

Instance: An undirected bipartite graph G = (U U
V,E), with |U| = |V|=mn; a positive integer k <n.

Solution: An induced subgraph G; € G such that
G=UUV,E) L clU VeV, U=V =k
E,CE, and u, € U,, v; € V; implies that {u,;, v;} € E;.
The size of the biclique is 2k.

Given an arbitrary instance of BBP specified by
G, we construct an instance of SCEGP on a related
graph G'. The construction of G’ is done in two steps.
First, we obtain G, the bipartite complement graph
of G. Then, we add two additional node sets O and
S, extend each node in U into a directed cycle, and
give directions to all edges to get G'. We now explain
our construction and illustrate with an example of G
in Figure 4:

Step 1. Get G¢, the bipartite complement graph of G
(see Figure 4).

Step 2. We add two node sets O and S consist-
ing, respectively, of n® and n? nodes. The nodes of
O (respectively, S) form a directed cycle. There is a
directed arc from each node o, € O to each node in U.
There is a directed arc from each node in V to each
node s; € S. Let m = n+n% Next, we extend each node
u; € U into a length m directed cycle C; by adding

A Bipartite Graph G with a Balanced Biclique, and lts Bipartite Complement Graph G°, Which Is Used in the Proof of Theorem 2
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Ui

For any node u;in U,
we extend itto a
directed cycle of
length m.

Ui 2 Ui 3

The Widget, a Directed Cycle with Length m, Used in the
Proof of Theorem 2

Figure 5

m —1 additional nodes (u; 1, #; 5, ..., u; ,,_1) (see Fig-
ure 5). Let U' = {u;, u; 1, U5, Uy | €U, i=
1,2,...,n}. The edges between O and U’ are di-
rected from O to U/, those between U’ and V are di-
rected from U’ to V, and those between V and S are
directed from V to S. The construction of G’ is now
complete (see Figure 6). Let N=0UU'UVUS.On G,
consider the following decision question for SCEGP:

Decision Question: Letting t =km + (n — k) + n* and
D =kn®+kn?, does there exist an elite group W in G’
such that |[W|<t, and vy, > D?

Note that the construction of the decision problem
from the given instance of the BBP is polynomially
bounded. That is, the total number of nodes in G’ is
bounded by a polynomial in 1, as is the time nec-
essary to construct a description of the input of the
decision problem. The decision problem is clearly in
class NP. We now show that the decision question has
an affirmative answer if and only if the original graph
G contains a balanced biclique of size 2k (i.e., |U;| =
Vil =)

= Suppose U; UV] is a balanced biclique of size
2k in G. Let U, = U\U,, V, = V\V;. In G, let U] =
{Cluely), ={C |u;el,}, W=UUV,US, and

A directed
cycle of
n® nodes

Figure 6 The Constructed Graph G’ for SCEGP

Figure 7

Graph G’ with Elite Group Set I/

W=0UlUV, (see Figure 7). We now show that the
set W is an elite group that provides an affirmative
answer to the decision question.

First, we need to prove the set W is a valid elite
group in G’; i.e., there is no arc from W to W. Since
U, UV, is a biclique of G, then there is no arc from
Uj to V; in G'. Since G is bipartite, there is no arc
between U and U,. Also, by construction, there is no
arc from U] to O. Thus, there is no arc from U] to W.
Similarly, there is no arc from V, to W and from S to
W. Thus, W is a valid elite group.

Next, observe that |W| = |Uj| + |V,| + |S| = km +
(n — k) + n* = t. Finally, note that y,, is the number
of arcs from W to W. The number of arcs from O
to U] (respectively, V; to S) is kn® (respectively, kn?).
Also, the number of arcs from U to V, is nonnegative.
Thus, vy > kn® + kn? = D. The result follows.

A directed
cycle of
n? nodes
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<= Suppose W is an elite group in G’ with [W| <
t and vy, > D. Let W = N\W. The following claims
characterize the set W.

Cramv 1. In G', the nodes in C; either all belong to W
or all belong to W. Similarly, the nodes in S (respectively,
O) either all belong to W or all belong to W.

Proor oF Cramm 1. The nodes in C; (respectively,
S, O) form a directed cycle. The result follows from
Observation 2. O

Cramm 2. Each node in O must belong to W. Similarly,
each node in S must belong to W.

Proor or Cramm 2. Suppose a node in O belongs
to W. Then, from Claim 1, each node in O belongs
to W. Also, from the definition of elite group, each
node in U must belong to W. Consequently, |W| >
|O| + |U’'| = n® 4+ nm. Since n>2 and n >k, we have
m>n’+n>n>+n—k and nm > km. So n®+ nm >
(n* 4+ n — k) + km, which implies |W| > t. This contra-
dicts the assumption that |W| < t. Thus, each node in
O must belong to W.

Suppose a node in S belongs to W. Then, from
Claim 1, each node in S belongs to W. Also, each node
in V must belong to W. As shown above, each node
in O is in W. Thus, only a subset Q' € U’ can belong
to W. Let Q=UNW. Note that |W| =|Q’'| = m|Q|.
Since m=n+n?and |W|<t=n?>+km+n—k=km+
m—k=(k+1)ym—k, we have |W|=m|Q| < (k+1)m—
k, so |Q| < k. Thus vy, =n®|Q| < n’k < kn® +kn?>=D,
which contradicts the assumption that y,, > D. Thus,
each node in S belongs to W. O

As a consequence of Claim 2, we have W = Uj U
V,USand W=0UU;UV;. Let U; ={u; | C; e Uj}.

Cram 3. U] =k.

Proor or Cram 3. We first show that |U; | < k. Sup-
pose |U;| > k+1; then |W| > |U]| = |U;|m > (k+1)m =
km+m. Since m = n+n*> (n—k)+n?, we have |[W| >
km+m>km+n —k + n*>=1t, which contradicts the
assumption that |W| < t. Thus, |U;| <k.

Next, we show that |U;| > k. Suppose |U;| <k —1.
Let |V;| = h. Then, |V,| =|V|—|V;| = n — h. Recall that
Yw is the number of arcs from W to W.

The number of arcs from O to U] (respectively,
from V; to S and from Uj to V,) is n®|U;| < n’(k — 1)
(respectively, hn* and < n|V,| =n(n — h)). Thus vy, <
n3(k — 1) + hn® + n(n — h) = kn® — n® + n? + h(n® — n).
Since n> —n >0 and 0 < h <n, (n*> — n)h reaches its
maximum when h = n. Thus kn® —n®*+n?>+h(n*—n) <
kn® —nd +n? +nn? —n) = kn® < kn® + kn* = D. Thus,
Yw < D, contradicting the assumption that y,, > D.
Thus, |U;| > k. The result follows. O

Cram 4. |V;| = k.

Proor ofF Cramv 4. Note that |[W| = |U]| + |V,| +
|S| = km+|V,| +n* <t=km+ (n—k)+n> Thus, |V,| <
n—k. Since |V;|=n—1|V,|, we have |V,|>k. O

Note that LU € W, V; C W. Then, from the definition
of an elite group, there is no arc from Uj to V; in G'.
Since G’ is the bipartite complement graph of G, there
is an edge between each node in U; and each node
in V; in G. Since |U;| =k, |V;] = k, there exists at least
one balanced biclique of size 2k in G. This concludes
the proof of Theorem 2. O

3.1.2. Relaxing the Structure of the Elite Group.
Because of the combined requirements of cardinality
and structure, the SCEGP of §3.1.1 is not guaranteed
to always have a nontrivial feasible solution. How-
ever, in practice, we may sometimes prefer to iden-
tify a nonempty group of players who can influence
a large number of players outside the group but are
also influenced by a few outsiders. To enable such
solutions, we relax the constraint that forbids directed
arcs from nodes of an elite group W to V\W. Instead,
for each arc, we impose a penalty p > 0 that is spec-
ified as part of the input. The objective function is
the number of incoming arcs into W minus p times
the number of arcs coming out of W. We refer to this
problem as the size-constrained elite group problem with
penalties (SCEGPP).

Technical Definition

Instance: n players; an “influence” social network
represented by a directed graph G(V, A), |V|=mn, in
which the nodes represent the players and the set
of arcs represent pairwise influences pertaining to a
social property: a directed arc (i, j) indicates that i is
influenced by j. A positive integer k < n. A positive
number p.

Solution: A set W C V such that |[W|<k.

Objective Function: Maximize vy, the number of
arcs from V\W to W minus p times the number of
arcs from W to VAW. That is, yw = Xigw, jew 4 —
P>iew,jgw 4, where a; =1 if (i,j) € A, and 0
otherwise.

IP Formulation. For j € V, we define m; € {0, 1} as
follows:

1,
7T]: 0’

For (i,) € A, we define x; € {0, 1} and y; € {0, 1} as
follows:

node j belongs to the elite group W;
otherwise.

arc (i, j) is from V\W to W;
otherwise;

arc (7, j) is from W to V\W;
otherwise.
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An IP formulation for SCEGPP is as follows:

max Yy = ) (x;j —pY;j)

(i, ))eA

st m—mi=y;—x; V(i jeA,

]/1]+XZ]§1 V(l,])GA,

Zwifkr

ieV
xi, y; €{0,1} V(i )) €A,
m;€{0,1} VieV.

If node i € W and node j € VAW (ie, m; =1, m; =
0), then the first constraint enforces that y; =1, x;; =
0. Similarly, if node i € VAW and node j e W (ie,
m; =0, m;=1), then y;; =0, x; =1. For m;=m;=0 or
m; =m; =1, we have y; —x;; = m; — m; =0, and hence,
¥;=0,x;=0, because of the second constraint. Thus,
in the objective function, (x; —py;;) represents the con-
tribution of arc (7, j) to yy: (i) if arc (i, j) is from V\W
to W, then the contribution is 1; (ii) if arc (i, j) is from
W to VAW, then the contribution is —p; and (iii) if arc
(i,j) is from W to W (or from V\W to V\W), then
the contribution is 0. The following theorem discusses
the computational complexity of SCEGPP.

THEOREM 3. The decision problem corresponding to
SCEGPP is strongly NP-complete.

Proor. We again use BBP in our reduction. The
notation is as defined in §3.1.1. The construction of the
graph G’ is exactly the same as in the proof of Theo-
rem 2. The decision question, however, is different.

Decision Question: Letting t =km + (n —k) +n?, p=
n* +3n® +3n2, and D = kn® + kn?, does there exist an
elite group W in G’ such that |W| <t, and vy, > D?

The decision problem is clearly in class NP. It is
easy to see that the decision question has an affir-
mative answer if and only if the original graph
G contains a balanced biclique of size 2k (i.e.,
U] = [Vi| = k).

= This part is exactly the same as in the proof of
Theorem 2.

<= Suppose W is an elite group in G’ with |W| <t
and vy = D.

Cramm 5. In G/, there does not exist any arc from W
to W.

Proor oF Cramm 5. If there exists at least one
arc from W to W, then 1y, < >, jjeaXij — p- Since
>, peaXij < |G'| < p, we have vy, <0, which contra-
dicts yy =D. O

With Claim 5, the remainder of the argument is the
same as in the proof of Theorem 2. [

3.2. The Portal Problem

Given a connected, undirected graph G(V,E) and a
positive integer k, recall from §2 that an optimal por-
talisaset Q €V, |Q| <k such that 7(Q) is maximized.

As mentioned earlier, a portal is a natural exten-
sion to a set-based measure of the notion of BC for a
single node. For k =1, PP reduces to the well-known
betweenness centrality problem, which is polynomi-
ally solvable (Everett and Borgatti 1999). Thus, PP
is polynomially solvable when k = 1. However, for
higher values of k, finding an optimal solution is often
a challenging task. The primary difficulty is that the
measure r(Q) is nonadditive. In other words, BCs of
two distinct nodes in Q cannot, in general, be simply
added when computing 7(Q). This is obvious because
a specific path between nodes i and j, i, j € V\Q with
two or more internal nodes in Q is counted only once
in the computation of r(Q).

We first show that PP and ESPP are strongly NP-
hard in §3.2.1. An efficient polynomial-time algo-
rithm for obtaining an optimal solution on general
graphs is, therefore, unlikely. Then, we address spe-
cial graphs (bicliques and balanced and full d-trees)
in §3.2.2. Finally, in §3.2.3, we analyze a heuristic for
general trees.

3.2.1. Proof of Hardness of PP and ESPP. Puzis
et al. (2007) use the vertex cover problem (Garey
and Johnson 1979) to show the hardness of the non-
normalized measure BC(Q) (see §2.2), which is the
numerator of our measure r(Q). Furthermore, given
G and k, the variant considered in Puzis et al. (2007)
requires that the solution have exactly k nodes. The
strongly NP-complete problem that we use in our
reduction is the independent set problem (Garey and
Johnson 1979).

Independent Set Problem (ISP)

Instance: A connected, undirected graph G = (V, E);
a positive integer k <|V|.

Solution: A set of nodes, I CV, |I| > k, such that no
two nodes in I are connected by an edge in E.

THEOREM 4. The decision problem corresponding to PP
is strongly NP-complete.

Proor. Given an arbitrary instance of ISP, speci-
fied by G(V, E), we consider the following decision
problem:

Decision Question: Does there exist a portal Q € V
in G(V, E) such that |Q| <|V|—k and r(Q) >1?

Note that the decision problem is clearly in class
NP. We now show that ISP has an affirmative answer
if and only if the above decision question has an affir-
mative answer.

Suppose I* is an independent set in G with at least
k* nodes. Let Q* = V\I*. Then, |Q*| < |V| —k*. From
the definition of an independent set, it follows that all
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A portal of size 4
/ - -~ in a balanced
and full binary
~ tree of height 4
A portal of
size2ina
biclique
Figure 9 Optimal Portal in a Balanced and Full Binary (d =2) Tree
Figure 8 Optimal Portal in a Biclique

paths in G between any two nodes in I* have at least
one node in Q* as an internal node. Thus, r(Q*) =1,
and the decision question has an affirmative answer.
Conversely, if there exists Q € V with |Q| <|V| —k
and 7(Q) > 1, then the set V\Q is an independent set
of at least k nodes. O

CoRrOLLARY 1. The decision problem corresponding to
ESPP is strongly NP-complete.

3.2.2. Results on Specific Families of Graphs. We
now discuss two specific families of graphs: bicliques
and balanced and full d-trees.

Bicliques. Let G = (U U V,E) be a biclique: n; =
|U| <|V|=n,,and u € U, v € V implies that {u, v} € E.
The size of the biclique is n; +n,. Let Q;, Q, CUUV.
If 1Q,nUl=1Q,NnU| and |Q; NV|=|Q, N V]|, then
BC(Q,) = BC(Q,). Thus, for Q € U UV, the objec-
tive function r(Q) depends only on two numbers:
k, =1QnNnU| and k, = |Q N V|. Theorem 5 (respec-
tively, Corollary 2) provides an optimal solution to PP
(respectively, ESPP); see Figure 8. The proof of Theo-
rem 5 is included in the Online Supplement.

THEOREM 5. Let G = (U UV, E) be a bicliqgue with
n=|Ul<|V|=mn, Let QCUUV. Let k; =|QnNnU]|,
k,=1QNV]|. Then,

(@) For 1 <k <mny —1, any set Q that satisfies k; =k
and k, =0 is an optimal solution of PP.

(b) For k> n,, then Q = U is an optimal solution of PP.

We also summarize the solution of ESPP.

CoroLLARY 2. Let G=(UUV,E) be a bicliqgue with
n=U|<|V|=n, Let QCUUV. Let k, =|Qn U],
ky=1QNV].

1. For 1 <k <n; —1, any set Q that satisfies k; =k
and k, =0 is also an optimal solution of ESPP.

2. For n; <k <n;+n, —1, then any set Q that sat-
isfies k; =n; and k, =k — n, is an optimal solution of
ESPP.

Balanced and Full d-Trees. Given a tree G(V,E)
and Q €V, let G'(Q) denote the induced subgraph

obtained by removing all the nodes in Q from G. In
general, G'(Q) is a forest with disjoint trees as its con-
nected components. Since G is a tree, there is a unique
path in G connecting any two distinct nodes s and ¢
in V\Q; thus, o, =1 (see §2.2). We first define some
notation for a general tree G(V, E):

n: the number of nodes in G (i.e,, n=1|V]|).
k: the number of nodes in Q (i.e., k =|Q|).
I: the number of connected components in G'(Q).
A;: the ith connected component in G'(Q), i =
1,2,...,L
: the size (i.e., the number of nodes) of component
A;,i=1,2,...,L

Consider a connected component, say, A;, of G'(Q).
In G, there is a unique path from any node in A;
to each node in every other connected component in
G'(Q). Thus,

Z Ust(Q) _

Oyt

BC(Q) = > a;a;. 1

s€Q, t€Q, s#t 1=<i<j<l
Since Y!_, a;=|V|—|Q| =n —k, we have

(n—k)? -y a?
_ .

BC(Q) = )
Thus, for fixed n and k, maximizing BC(Q) is equiva-
lent to minimizing Y"!_, a%. We next illustrate the solu-
tion of this problem for balanced and full d-trees; see
Figure 9.

On a rooted balanced and full d-tree, each node
(except the leaf nodes) has d distinct successors, and
each node (except root) has a unique predecessor. All
leaf nodes have the same distance (height) to the root
node. For a d-tree, if we remove any node other than
the root node and leaf nodes, we will add d more
connected components into the remaining graph. So
if we remove k nodes from a d-tree, we will have at
most [ =dk 41 connected components left. The proof
of Theorem 6 is included in the Online Supplement.

THEOREM 6. Let G be a balanced and full d-tree with
height h > 2. For an instance of PP defined by G and a
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positive integer k, let t = min{[h/2], [log, k]}, and let
Q denote the set of nodes on the tth level of G. Then, Q
provides an asymptotically maximal solution to PP, with

r(Q) = (1—1/d"*).

Since t = min{[h/2], |log,k]}, the ratio r(Q) — 1
with an increase in the size of G and k. Thus, the
resulting family of solutions Q can be referred to as
an asymptotically maximal family. Note that the solu-
tion Q is not necessarily optimal. Thus, in cases where
Q is not optimal, there can exist a solution that is
superior to Q.

RemMARK 2. The solutions of PP and ESPP on paths,
cycles, and cliques are straightforward to obtain.
Therefore, these results are listed without proofs in
the Online Supplement.

3.2.3. General Trees. An important question that
arises naturally is that of the solution of PP on a gen-
eral tree. The tree structure occurs frequently in real-
world social networks. Wein (2009) describes the milk
supply chain as a tree. The author argues that for a
potential terrorist attack, it is enough to introduce a
small amount of toxin (botulinum) at a few key nodes
of the tree. We believe that such nodes can be iden-
tified by finding an optimal or near-optimal portal in
the tree. In Perer and Wilson (2007), the authors dis-
cuss the underground distribution network of steroids
among players of Major League Baseball. Investiga-
tors have used this network to determine the role of
each individual in the distribution of steroids. Again,
knowledge of a good portal in this network should
help identify key members. Interfirm collaboration
networks, studied in Schilling and Phelps (2007), are
approximately trees. In their search for firms with
a higher innovative output, the authors find a set
of nodes that is a near-optimal portal. In Hanaki
et al. (2007), the authors argue that locally, a large
and sparse random network often resembles a pure
branching tree.

The computational complexity of PP for a tree is
an open problem. We now present a simple heuris-
tic (Theorem 7) to find a portal in a tree and obtain
a lower bound on its performance. To describe the
heuristic, we need the following labeling procedure.

Labeling Procedure

Input: A tree G(V, E).

Initialization: Let i =0.

Step 1: Select all the leaf nodes of G, label them as
being on level 7, and include them in set S(i). Let G =
G\S(i).

Step 2: If G =@, terminate; otherwise, let i=i+1 and
go to Step 1.

We record the highest level we get in this labeling
procedure as h, and refer to it as the height of the tree.
Let n[j] = |5(j)|, the number of nodes in level j. It

is easy to see that n[0] > n[1] > n[2] >
n[h] € {1, 2}.

THEOREM 7. Let G be a tree with height h > 2. For an
instance of PP defined by G(V, E) and a positive integer
k>2,

1. If n[1] <k, then set t =1.

2. Ifn[1] > k, then set t such that n[t—1] > k, n[t] <k.
Let t =max{[h/2], t}. Let Q denote the set of nodes on the
level t of G. Then, Q provides a solution to PP with r(Q) >
(b(b—1)2+2bt(h—1))/((n—b)(n—b—1)), where b =
n[t] and n=|V|. Moreover, this bound is tight.

-->n[h] and

PRrOOEF. Since Q includes all the nodes on level
of G, we have |Q| = n(t). Since t = max{[h/2], t} > t,
we have n(t) < n[t] <k. Thus, |Q| < k. Note that G'(Q)
has I > b+1 connected components. Of these, we have
(i) at least b components, say, A;, i=1,2,...,b, each
with at least ¢ nodes: from level 0 to level t —1, A,
has at least one node from each level, and thus, a; =
|A;| >t,i=1,2,...,b; and (ii) one component, say,
A,, with at least i —t nodes: from level t+1 to level h,
A; has at least one node from each level, and thus,
a,=|A;| = h—t. From (1) defined above, we have

1<i<j<l
a+ Y a4

2. a

1<i<j<b 1<i<b

bt2 bt(h—t
(2)+<_>

b(b 1)

v

v

——— P+ bt(h—t).

Also, ("19) = ((n—b)(n—b—1))/2. Thus, we have

_ BC(Q) _ b(b—1)P+2bt(h—t)
“Q)‘(n—um)z =B —b-1)
2

To show the tightness of the bound, let G be a
path of length 4. Thus, n =5, h =2, n[0]=n[1]=2,
and n[2] =1. For k =2, if we apply the heuristic, we
have Q as all the nodes on level 1 of G. Then, t=1,
b=mn[1] =2, and (b(b — 1)#* + 2bt(h — t))/((n — b) -
(n —b—1)) =1, which implies that Q is an optimal
solution to PP on G. O

When G is a balanced and full d-tree, the procedure
in Theorem 7 is the same as the one in Theorem 6,
which was shown to provide an asymptotically max-
imal solution to PP.

4. Conclusions and Future Research

Directions
The ability to find useful structures in social net-
works will undoubtedly benefit their users as well
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as other stakeholders—the businesses that use these
networks and the sites that host them. Unlike the
Internet, structural search on social networks is set-
based and offers a rich variety of interesting com-
binatorial optimization problems. In this paper, our
effort is to identify and analyze specific instances
of such problems. We consider two problems—
EGP (the elite group problem) and PP (the por-
tal problem)—derived, respectively, from the notions
of influence and centrality. We demonstrate the rel-
evance of these problems on a variety of social
networks and show the following results: (i) The
basic EGP is polynomially solvable, whereas its size-
constrained variant is strongly NP-hard. We also
show the hardness of a penalty-based relaxation of
the size-constrained version. (ii) PP is strongly NP-
hard. We discuss the solution of PP on several spe-
cial networks—bicliques, balanced and full d-trees,
paths, cycles, and cliques—and propose a heuristic for
general trees.

In the industry, the focus thus far has been on devel-
oping “social search engines” to search social media
and user-generated content, e.g., Social Mention
(http://www.socialmention.com), Twitter (http://
search.twitter.com), and Delver (http://www.delver
.com). Some networks do facilitate simple search;
e.g., MySpace allows a user to find other users with
similar interests. However, to our knowledge, there is
little or no sophisticated structural search available to
ordinary users of social networks. Because this type of
search is typically combinatorial in nature, the result-
ing problems are expected to be challenging. One
idea is to provide an easy-to-use modeling language
to enable members to specify complex, constrained
search and then use sophisticated solvers (e.g.,
CPLEX) or heuristics to solve the resulting problems.
Another possibility is to develop a repository—that
could evolve over time—of efficient algorithms for
the typical combinatorial searches that users specify.
The notions of an elite group and a portal studied in
this paper are extensions to set-based measures of,
respectively, indegree and betweenness centralities
for individual members of a social network. Similarly,
useful structures based on extensions of other popular
centralities, e.g., the more general degree centrality or
closeness centrality (Carrington et al. 2005), could also
be investigated. Applications of such set-based mea-
sures have been discussed for several social networks
(see, e.g., Cattani and Ferriani 2008, Owen-Smith et al.
2002, Morselli and Giguere 2006).

The ideas of search developed in this paper natu-
rally flow into other operational problems of interest.
One such problem is targeted online advertising.
For example, in the Twitter network, it is possible
for one member to “follow” another, suggesting a
directed link in the network. The identification of an

elite group within Twitter could, therefore, be used
to target promotional material to members of this
group. For instance, an advertisement could be tar-
geted using keywords exchanged by two members
during a conversation on Twitter.

Electronic Companion

An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
ijoc.1110.0473.
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