
COMPUTATION OF CYCLE BASES IN

SURFACE EMBEDDED GRAPHS

by

Thomas Stanley

APPROVED BY SUPERVISORY COMMITTEE:

Kyle Fox, Chair

Sergey Bereg

Benjamin Raichel

Copyright c© 2021

Thomas Stanley

All rights reserved

COMPUTATION OF CYCLE BASES IN

SURFACE EMBEDDED GRAPHS

by

THOMAS STANLEY, BS

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2021

ACKNOWLEDGMENTS

I would like to extend my sincere thanks to Kyle Fox for his help with this thesis, chairing

the committee, and guiding my research interests. I would also like to extend my deepest

gratitude to John Cole for providing support and advice throughout my undergraduate and

graduate educations. Many thanks to Hal Sudborough, Linda Morales, and Sergey Bereg for

allowing me to join in their research and beginning my interest in academic computer science.

I very much appreciate Xiaohu Guo and Darin Okuda for giving me many opportunities to

further my research experience. Special thanks to Raquel Bromberg for her support allowing

me to complete this project. And of course, many thanks to my family for always helping

and supporting me.

November 2021

iv

COMPUTATION OF CYCLE BASES IN

SURFACE EMBEDDED GRAPHS

Thomas Stanley, MSCS
The University of Texas at Dallas, 2021

Supervising Professor: Kyle Fox, Chair

Abstract. We study the problem of finding a cycle basis, a minimum weight set of inde-

pendent cycles that form a basis of the cycle space for a given graph. We focus on finding

the minimum cycle basis of directed graphs. This is a more complicated problem com-

pared to the undirected case as the underlying field is Q for directed graphs instead of Z2

for undirected, which causes problems in the speed of calculations. Previously the fastest

known deterministic algorithm to find the minimum cycle basis of a directed graph runs in

O(m3n + m2n2 log n) time [11]. We concentrate on graphs embedded on a surface of genus

g. We modify algorithms for undirected graphs to work on directed graphs. We present an

O(mn2g2 log g + mω+1) time algorithm to find the minimum cycle basis of a directed graph

embedded on a surface of genus g. We also give an improvement on the minimum cycle basis

in the undirected case.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF FIGURES . vii

LIST OF ALGORITHMS . viii

CHAPTER 1 INTRODUCTION . 1

1.1 Preliminaries . 2

CHAPTER 2 ALGORITHM . 6

2.1 Computing Support Vectors . 6

2.2 Finding the Minimum Cycle . 10

2.2.1 Results . 14

REFERENCES . 15

BIOGRAPHICAL SKETCH . 17

CURRICULUM VITAE

vi

LIST OF FIGURES

1.1 A simple directed graph . 2

1.2 A directed graph with its underlying undirected graph [11] 3

2.1 A region tree for a set of edges with non-trivial homology signature [2] 12

2.2 A region tree for a set of edges with null-homologous homology signature [2] . . 13

vii

LIST OF ALGORITHMS

1 An algorithm to compute Ni’s and Ci’s . 7

2 A faster algorithm to compute Ni’s and Ci’s . 8

3 An algorithm select a suitable R . 9

4 An algorithm to create a region tree for a homology class 12

5 An algorithm find the shortest cycle non-orthogonal to a given support vector S
modulo p for a given region tree TC . 13

viii

CHAPTER 1

INTRODUCTION

For a given connected graph G = (V,E) with weights in R, let m = |E| and n = |V | be the

number of edges and vertices. We define a cycle to be a subset of the edges such that each

vertex is incident to an even number of edges in the subset.

For undirected graphs we can form a vector space over cycles in G with addition defined

as symmetric difference of the edges. It is well known that this vector space is isomorphic to

Zm−n+1
2 . For directed graphs we can then form a vector space over cycles in G with a more

complicated definition of addition. Given a cycle we say an edge is traveling the correct

direction if the direction of the edge agrees with the cycle. We say the the edge is traveling

the incorrect direction otherwise. For example in Figure 1.1 for the cycle (e1, e2, e3) all

edges would be traveling in the correct direction, but for the cycle (e3, e2, e1) all edges would

be traveling in the incorrect direction. Edges traversed by a cycle in the correct direction

are defined to be “positive” where cycles traversed in the incorrect direction are said to be

“negative”. Addition of cycles is then defined to be an element wise sum of the edges.

For either case using the vector space we can find a basis of the set, known as a cycle basis

in the context of graphs, which is defined as a maximal set of d = m − n + 1 independent

cycles. It is well known that the cycle basis of G can be generated by the fundamental cycles

of any spanning tree of G. Given a weighted graph one can define the minimum cycle basis

as a cycle basis of minimum weight. We note that for the minimum cycle basis of a directed

graph, cycles are defined using only the underlying undirected graph, the direction of the

edges is used only for determining if cycles are independent from each other. The minimum

cycle basis has applications in many fields for both the directed [5, 9] and undirected [17, 4, 15]

cases.

From the definition of independence in vector spaces, sets of independent cycles form a

matroid. Therefore one can use the standard greedy algorithm of sorting and eliminating

1

1

23

e1

e2

e3

Figure 1.1. A simple directed graph

to find the minimum cycle basis. However the number of cycles in G can be potentially

exponential. Horton reduced the search space for the greedy algorithm to O(nm) cycles

by showing that every cycle in the minimum cycle basis must be a fundamental cycle of a

shortest path tree, giving the first polynomial time algorithm [13]. Several other deterministic

polynomial time algorithms have been given [1, 12, 6, 16], the fastest for the undirected case

being an O(nm2/ log n+n2m) time alrogithm by Mehlhorn and Michail [16] and an O(m3n+

m2n2 log n) time algorithm for the directed case by Hariharan, Kavitha, and Mehlhorn [11].

For graphs embedded on a surface of genus g, Borradaile, Chambers, Fox, and Nayyeri

presented a O(nω+22gn2 +m) time algorithm for computing the minimum cycle basis, where

O(nω) is the time is takes to multiply two n×n matrices using fast matrix multiplication [2].

We give an O(mn2g2 log g+mω+1) time algorithm to find the minimum cycle basis for a

surface embedded directed graph.

1.1 Preliminaries

The problem of finding a minimum cycle basis in a directed graph is very similar to the case

of an undirected graph. The underlying undirected graph of a directed graph is the directed

graph with the edge directions removed leaving just undirected edges. When finding cycles

in the basis, we search for cycles in the underlying undirected graph, the direction of the

edges are only used for determining if the new cycle is independent with existing cycles in

the basis. However it is not possible to run the undirected algorithm to produce a minimum

2

1 2

4 3

e1

e2

e3

e4 e6e5

1 2

4 3

e1

e2

e3

e4 e6e5

Figure 1.2. A directed graph with its underlying undirected graph [11]

cycle basis for the directed graph. A counter example is given in Figure 1.2 by Hariharan,

Kavitha, and Mehlhorn [11]. In this figure we look at three cycles (e1, e2, e3, e4), (e1, e5, e3, e6)

and (e2, e6, e4, e5). In the directed graph these cycles are linearly independent. However in

the underlying undirected graph the sum of two of these cycles is the third implying they

are linearly dependent. We do note that for the case of planar graphs the cycle bases of the

directed graph are exactly that of the undirected graph, hence searching for a minimum cycle

basis in the undirected graph is sufficient to find the minimum cycle basis of the directed

graph.

A surface or a 2-manifold with boundary Σ is defined as a compact Hausdorff space

such that every point lies in an open neighborhood homeomorphic to the Euclidean plane

or the closed half plane. The boundary of the surface is the set of all points whose open

neighborhood is homeomorphic to the closed half plane, and every boundary component is

homeomorphic to the circle. A cycle in the surface is a continuous mapping from the unit

circle to the surface, and the cycle is called simple if the mapping is injective. A path in

the surface is a continuous mapping from [0, 1] to the surface and is also called simple if

the mapping is injective. A loop is a path with the same starting and ending positions

or equivalently a cycle with a designated starting/ending point. A surface is said to be

orientable if it does not contain a subset homeomorphic to the Möbius band, and non-

orientable otherwise. The genus of a surface, g, is the maximum number of disjoint cycles

3

in a surface such that their removal leaves a surface that is still connected. Surfaces are

homeomorphic if their genus, number of boundary components, and whether or not they are

orientable all agree.

For a given graph G = (V,E), we say G is embedded on Σ if there exists a mapping

which maps vertices to distinct points on Σ and edges to internally disjoint paths on Σ with

endpoints that lie on their incident vertices’ points. A face of the embedding is defined to

be a maximally connected subset of Σ such that the subset does not intersect the embedded

graph. If every face on an embedding is homeomorphic to an open disk we say the embedding

is cellular. Only orientable cellular embeddings of graphs will be considered from now on.

Every embedded graph G has a dual graph G∗ which is constructed by creating a vertex

for every boundary component in Σ as well as every face ofG. Edges are then created between

two vertices in G∗ if the corresponding faces and boundary components are separated by an

edge. Finally faces in G∗ now correspond to vertices in G. The original graph is then known

as the primal graph, where primal vertices are dual to dual faces, and dual vertices are dual

to primal faces. Usually no distinction is made between primal and dual edges. We assume

without loss of generality that the surfaces our graphs are embedded on contain only a single

boundary component.

A spanning tree of G is a subset of edges of G that form a tree containing every vertex of

G. A spanning coforest is a subset of dual edges that form b trees in the dual that contain

every dual vertex, such that every tree contains a dual-boundary vertex, where b is the

number of boundary components. A tree-coforest decomposition is a partition of the edges

of G into three sets, T a spanning tree of G, C a spanning coforest of G, and L the leftover

edges [7, 8].

Let (T, L, C) be an arbitrary tree-coforest decomposition of G. Let β = |L|. Define

ci for i ∈ {1, . . . , β} to be the unique simple co-cycle or unique co-path between distinct

dual boundary verticies created by adding the ith edge in L to C, we also assign an ar-

bitrary correct direction to this cycle for the purpose of the directed cycle signature. Let

4

fβ+1, . . . fm−n+1 denote the faces of G. Define ci for i ∈ {β + 1, . . . ,m− n+ 1} to be the

simple co-path from fi to the dual boundary vertex in fi’s component of C. We define the

cycle signature [e] ∈ {−1, 0, 1}m−n+1 of an edge e as a vector with the ith component defined

as follows.

[e]i =



1 if e is traveling in the correct direction for i ∈ {1, . . . , β}

1 if e is traveling towards the root for i ∈ {β + 1, . . . ,m− n+ 1}

−1 if e is traveling in the incorrect direction for i ∈ {1, . . . , β}

−1 if e is traveling away from the root for i ∈ {β + 1, . . . ,m− n+ 1}

The cycle signature of any cycle C is the sum of the cycle signatures of the edges of C.

Borradaile, Chambers, Fox, and Nayyeri show that a similar cycle signature definition for

the undirected case produces an isomorphism to the cycle space [2]. To show the directed

cycle signatures are isomorphic to the directed cycle space one follows the same argument.

The homology of G is an algebraic description of the topology of the surface as well as

G’s embedding. We are only concerned with the one-dimensional cellular homology over the

finite field Z2 and use the underlying undirected graph when referencing the homology of G.

We say a cycle is null-homologous if it is the boundary of a subset of faces. Two cycles are

homologous if their symmetric difference is null-homologous. These definition allows us to

split an orientable G into 22g+max{b−1,0} homology classes. We define the operation G - C as

cutting both G and Σ along some cycle C, creating two copies of C. Cutting G using any

cycle from the null-homology class cuts Σ into two separate surfaces, and cutting G along

any two non-crossing cycles from a single homology class cuts Σ into two separate surfaces.

5

CHAPTER 2

ALGORITHM

Our algorithm computes cycles of the minimum basis one by one. We do this by maintaining

a set of support vectors that form the basis for the subspace orthogonal to the set of cycles

already computed for the basis. To compute a new cycle in the basis we choose a support

vector that we have not used so far and find the cycle of minimum weight that is not

orthogonal the chosen support vector. The unchosen support vectors are then updated so

they remain orthogonal to the current incomplete basis we have computed. This is the

method that many algorithm have used to compute minimum cycle bases [2, 6, 11].

Specifically our algorithm uses the prime field modifications for directed graphs made by

Hariharan, Kavitha, and Mehlhorn for dealing with the potentially large numbers generated

by the coefficients from Q [11]. For choosing the non-orthogonal cycle our algorithm follows

the basic idea of Borradaile, Chambers, Fox, and Nayyeri of constructing region trees based

on homology signatures to improve the cycle selection time [2]. However, modifications must

be made to the cycle selection procedure to account for the large coefficients from Q.

2.1 Computing Support Vectors

The method of computing support vectors that are used to calculate the minimum cy-

cle basis follows from the following theorem given and proved by Hariharan, Kavitha, and

Mehlhorn [11].

Theorem 1. Cycles C1, . . . Cd form a minimum cycle basis if there are vectors N1 . . . Nd in

Qm such that for all i, 1 ≤ j ≤ i:

1. Prefix orthogonality: 〈Ni, Ci〉 = 0 for all j, 1 ≤ j < i.

2. Nonorthogonality: 〈Ni, Ci〉 6= 0.

6

3. Shortness: Ci is a shortest cycle with 〈Ni, Ci〉 6= 0

Algorithm 1 is a simple deterministic algorithm that was given by Kavitha and Mehlhorn

to compute Ni’s and Ci’ [14].

Algorithm 1 An algorithm to compute Ni’s and Ci’s

N1, . . . , Nd ← û1, . . . ûd . (ûd has a 1 in the ith position and 0’s everywhere else)
for i← 1 to d do

Ci ← shortest cycle with non-zero dot product with Ni

for j ← i+ 1 to d do
Nj ← Nj −Ni

〈Ci,Nj〉
〈Ci,Ni〉

Nj ← Nj
〈Ci,Ni〉

〈Ci−1,Ni−1〉
end for

end for

The correctness of this algorithm is based on a lemma given and proved by Kavitha and

Mehlhorn [14].

Lemma 2. For any i, at the end of iteration i− 1, the vectors Ni, . . . , Nd are orthogonal to

C1, . . . , Ci−1 and moreover for any j with i ≤ j ≤ d,

Nj = 〈Ci−1, Ni−1 =〉(xj,1, . . . , xj,i−1, 0, . . . , 0, 1, 0, . . . , 0)

where 1 occurs in the jth coordinate and the vector x = (xj,1, . . . , xj,i−1) is the unique solution

to the set of equations: 
C̃T

1

...

C̃T
i−1

x =


−c1,j

...

−ci−1,j


Where C̃k, 1 ≤ k < i, is the restriction of Ck to its first i− 1 coordinates and ck,j is the jth

coordinate of Ck.

Furthermore the running time of this algorithm was shown by Kavitha and Mehlhorn to

be Õ(m4) +mO(cycle), where O(cycle) is the time taken to find the shortest non-orthogonal

cycle to Ni [14].

7

This simple algorithm was then improved upon by Hariharan, Kavitha, and Mehlhorn.

By using a divide and conquer approach the calculations spent updating the Ni vectors can

be done in bulk [11]. Algorithm 2 gives the recursive step from index l to index h is as

follows.

Algorithm 2 A faster algorithm to compute Ni’s and Ci’s

mid← d(l + h)/2e
Find cycles Cl, . . . , Cmid using Nl, . . . , Nmid recursively
Update the vectors Nmid+1, . . . , Nh

Find cycles Cmid+1, . . . , Ch using Nmid+1, . . . , Nh recursively

To compute the minimum cycle basis, we call this algorithm with N1, . . . , Nd initialized

to the first d unit vectors, l = 1, and h = d. Our goal when updating the vectors is to

make the vectors Nmid+1, . . . , Nh orthogonal to the newly computed cycles Cl, . . . , Cmid. To

update the vectors, we make the following definitions.

• A ∈ Qk×m, A’s ith row is Cl+i−1

• D ∈ Q(h−k)×(h−k), D has the value 〈Nmid, Cmid〉 / 〈Nl−1, Cl−1〉 in every diagonal

• X ∈ Qk×(h−k)

• Nd ∈ Qm×(h−k), Nd’s jth column is Nmid+j

• Nu ∈ Qm×k, Nu’s jth column is Nl+j−1

As shown by Hariharan, Kavitha, and Mehlhorn, we can update the vectors by solving

the following system for X [11].

ANdD = −ANuX

By construction (NNu) is lower triangular with non-zero diagonal entries, and therefore

is invertible. Hence we can write.

8

X = −(ANu)
−1ANdD

Finally our updated vectors Nmid+1, . . . , Nh can be found by computing NuX + NdD.

This process of updating the vectors takes O(mkω−1) arithmetic operations in total, where

ω is the time it takes to multiply two matrices using fast matrix multiplication. However,

because we are in a directed graph, the elements of (ANu)
−1 can be as large as dΘ(d2). This

causes arithmetic operation to take up to Θ̃(d2) time giving a runtime of Θ̃(mω+2) for the

outermost step which is slower than the simpler algorithm for directed graphs [11].

In order to solve the problem of large intermediate elements we run the above algorithm

over a ring ZR where R is a specially chosen prime. Working over this ring allows us to

do arithmetic operations in O(1) time. In order to be able to recover our Nj vectors we

must choose a R such that R is relativity prime to 〈Nl, Cl〉 , 〈Nl+1, Cl+1〉 , . . . , 〈Nmid, Cmid〉

(to ensure ANu is invertible in ZR), and relativity prime to 〈Nl−1, Cl−1〉 (to ensure that

〈Nmid, Cmid〉 / 〈Nl−1, Cl−1〉 is well defined in ZR) [11]. We can select R for each iteration of

the recursive step using Algorithm 3.

Algorithm 3 An algorithm select a suitable R

Require: p1, . . . , pd2 , primes each of which is at least d, the products P1 = p1 . . . pd, P2 =
p1 . . . p2d, . . . , Pd = p1 . . . pd2 precomputed before running algorithm.
L← 〈Nl−1, Cl−1〉 〈Nl, Cl〉 . . . 〈Nmid, Cmid〉
Binary search P1 . . . Pd to find the smallest s ≥ 0 such that Ps+1 - L
Determine a p ∈ {psd+1, . . . , psd+d} such that p - L
return pd

Pre-computing d2 primes takes Õ(d2) and pre-computing the products P1, . . . , Pd takes

Õ(d3). The algorithm to select R runs in Õ(d2) [11]. Finally all together the total time

complexity for the update step with modulo arithmetic is Õ(m2kω−1 + d2k) or Õ(m2kω−1).

9

2.2 Finding the Minimum Cycle

What remains is to find the cycle of minimum weight that is non-orthogonal to the current

support vector. To do this quickly we modify an algorithm given by Borradaile, Chambers,

Fox, and Nayyeri [2]. This algorithm first reduces the candidate cycles to O(22gn) cycles for

a graph of genus g. The cycles are then partitioned into sets and a tree is built using these

sets in O(22gn2) time. This tree can then be searched in O(22gn) time to find the minimum

non-orthogonal cycle [2].

A Horton cycle is defined to be a simple cycle given by a shortest x, u path, a shortest

x, v path, and the edge uv. The set of all Horton cycles on a graph is given by the set of

m− n+ 1 elementary cycles of the n shortest path trees [13]. A simple cycle C is said to be

isometric if for all x, y ∈ C, C contains the shortest x, y path.

Theorem 3. All cycles in the minimum cycle basis of a directed graph G are isometric

Horton cycles.

Proof. For a minimum cycle basis C of G, let c ∈ C and C ′ = C \ {c}. We use the definition

of three path condition as given by Cabello, Colin de Verdière, and Lazarus [3]. For any

three path α, β, γ in G we have that if α − β is dependent on cycles in C ′ and β − γ is

dependent on cycles in C ′, α− γ is dependent on cycles in C ′ by simple algebra on the cycle

signatures. Therefore the set of cycles dependent on C ′ forms a family that follows the three

path condition. Cabello, Colin de Verdière, and Lazarus then show that the shortest cycle

that is not in a family that follows the three path condition can be given by a fundamental

cycle of a shortest path tree, and that this shortest path tree can be rooted anywhere along

the cycle [3]. Hence the shortest cycle that is independent from those in C ′ is isometric.

Building off the work of Hartvigsen and Mardon, Borradaile, Chambers, Fox, and Nayyeri

show that there are O(22g) diffrent homology classes each with O(n) distinct isometric cycles,

10

giving O(22gn) distinct isometric cycles in a graph of orientable genus g with unique shortest

paths [2]. We now assume that our graphs are orientable have unique shortest paths. Because

we have isometric cycles they cross at most once. Greene shows that cycles that cross at

most once live in at most O(g2 log g) homotopy classes [10]. The number of homotopy classes

also bounds the number of homology classes, which would reduce the number of isometric

cycles to O(ng2 log g). This improvement on the bound on the number of homology classes

also improves the runtime given by Borradaile, Chambers, Fox, and Nayyeri.

In order to apply the algorithm given by Borradaile, Chambers, Fox, and Nayyeri, we

must first convert it to use cycle signatures in Qd instead of Zd. However the elements of

the support vector we are given can have elements of up to size dd/2 so naively modifying

the algorithm will lead to problems with the speed of arithmetic. Instead we use a similar

approach to that of Hariharan, Kavitha, and Mehlhorn and first find the shortest cycle that

is non-orthogonal to our chosen support vector modulo some prime p.

We first describe how to construct the trees. We note that this step is done once before

running the main algorithm and does not depend on the prime p. We begin by computing all

Horton cycles of the graph and extracting the isometric cycles as shown by Amaldi et al [1].

Next we compute the homology signatures for these cycles and split them into O(g2 log g)

homology classes. Then for each homology class we compute the region tree. Each vertex of

the region tree will correspond to a set of faces, where each edge will correspond to an edge.

The region trees are then computed in Algorithm 4.

In Algorithm 4 the operation G - γ takes O(n) time, so the entire algorithm takes O(n2)

for each region tree. Therefore we can preprocess G in O(n2g2 log g) time. Examples of

constructed region trees can be seen in Figures 2.1 and 2.2.

We can then use the region trees to find the shortest cycle that is non-orthogonal modulo

p with a given support vector Ni as shown in Algorithm 5. This algorithm is based on that

of Borradaile, Chambers, Fox, and Nayyeri with modifications to account for the prime p

11

Algorithm 4 An algorithm to create a region tree for a homology class

Require: Set of cycles C all belonging to the same homology class and the graph G
if C has non-trivial homology then

TC starts out with one vertex containing all faces
We choose arbitrary γ0 ∈ C
TC has a single edge looping on the single vertex referring to γ0

G′ ← G - γ0

for γ ∈ {C \ γ0} do
G′ ← G′ - γ
Cutting G′ splits some component of G′ into two new components
Split vertex corresponding to cut component into two new vertices with correspond-

ing faces from the newly created components
Assign γ to the new edge

end for
Remove edge corresponding to γ0

Root TC at the vertex containing the boundary component
else

TC starts out with one vertex containing all faces
G′ ← G
for γ ∈ C do

Cutting G′ splits some component of G′ into two new components
Split vertex corresponding to cut component into two new vertices with correspond-

ing faces from the newly created components
Assign γ to the new edge

end for
Root TC at the vertex containing the boundary component

end if

γ0
γ1γ2

γ3 γ4

r

γ3 γ4

γ2
γ1

γ0

Figure 2.1. A region tree for a set of edges with non-trivial homology signature [2]

12

γ0

γ1
γ2

γ3

γ4

γ5

γ6

r

γ0

γ1
γ2

γ3

γ4

γ5

γ6

Figure 2.2. A region tree for a set of edges with null-homologous homology signature [2]

needed for directed cycles [2]. The sign function as used in Algorithm 5 takes the first edge

above the given face in the spanning coforest and returns 1 if the edge is directed towards the

root and −1 otherwise, this can be precomputed and stored while constructing the region

trees. This algorithm considers each face of the graph at most once, so the total runtime to

walk up the tree is O(n). We must run this algorithm once for every homology class, giving

a total runtime to find a non-orthogonal cycle modulo p of O(ng2 log g).

Algorithm 5 An algorithm find the shortest cycle non-orthogonal to a given support vector
S modulo p for a given region tree TC
Require: Set of cycles C all belonging to the same homology class and the graph G
m←∞ . The current minimum weight
c← NULL . The current cycle referring to the minimum weight
for edge e ∈ TC going to a leaf do

z ← 0
for fi ∈ F (bottom(e)) do . Every face referenced by vertex at the lower end of e

z ← z +p Si ∗ sign(fi)
end for
if z 6= 0 and weight(e) < m then update m and c with e

end for
loop Walk up the tree from the leaves, with current edge e

Combine computed z’s from children
for fi ∈ F (bottom(e)) do

z ← z +p Si ∗ sign(fi)
end for
if z 6= 0 and weight(e) < m then update m and c with e

end loop
return c

13

In order to obtain the shortest non-orthogonal cycle from a collection of shortest non-

orthogonal cycles modulo p, we first pre-compute primes p1, . . . , pd/2 each of which is at

least d. The ring Z∏
pi is isomorphic to Zp1 × · · · × Zpd/2 , which implies that any non-zero

element whose magnitude is less than
∏d/2

i=1 pi is mapped to a tuple of values that is not

the zero vector. Therefore if run our algorithm for cycle searching d/2 times, once for each

prime we pre-computed, each cycle that is non-orthogonal will also be non-orthogonal from

some p ∈
{
p1, . . . , pd/2

}
. This gives us a total runtime of O(mng2 log g) to find the shortest

non-orthogonal cycle for some given support vector.

2.2.1 Results

Using the recurrence from calculating the support vectors we have our final runtime to be.

T (k) =

 2T (k/2) + Õ(m2kω−1) if k > 1

mng2 log g if k = 1

This recurrence solves to T (O(n)) = O(mn2g2 log g)+Õ(mω+1). Giving a final runtime of

computing the minimum cycle basis of an embedded directed graph of O(mn2g2 log g+mω+1).

We note that any method to improve the speed of selecting support vectors would improve

the time required to find the minimum cycle basis. We would also like to highlight that

the improvements made by Greene [10] improve the results by Borradaile, Chambers, Fox,

and Nayyeri for finding the minimum cycle basis of an undirected embedded graph from

O(nω + 22gn2 +m) [2] to O(nω + n2g2 log g +m).

14

REFERENCES

[1] Amaldi, E., C. Iuliano, T. Jurkiewicz, K. Mehlhorn, and R. Rizzi (2009). Breaking the
o(m2n) barrier for minimum cycle bases. In A. Fiat and P. Sanders (Eds.), Algorithms
- ESA 2009, Berlin, Heidelberg, pp. 301–312. Springer Berlin Heidelberg.

[2] Borradaile, G., E. W. Chambers, K. Fox, and A. Nayyeri (2017). Minimum cycle and
homology bases of surface-embedded graphs. J. Comput. Geom. 8 (2), 58–79.

[3] Cabello, S., E. Colin de Verdière, and F. Lazarus (2010). Finding shortest non-trivial
cycles in directed graphs on surfaces. In Proceedings of the Twenty-Sixth Annual Sym-
posium on Computational Geometry, SoCG ’10, New York, NY, USA, pp. 156–165.
Association for Computing Machinery.

[4] Cassell, A. C., J. C. D. C. Henderson, K. Ramachandran, and A. W. Skempton (1976).
Cycle bases of minimal measure for the structural analysis of skeletal structures by the
flexibility method. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences 350 (1660), 61–70.

[5] Chua, L. and L.-K. Chen (1973). On optimally sparse cycle and coboundary basis for
a linear graph. IEEE Transactions on Circuit Theory 20 (5), 495–503.

[6] de Pina, J. C. (1995). Applications of shortest path methods. Ph. D. thesis, University
of Amsterdam.

[7] Eppstein, D. (2003). Dynamic generators of topologically embedded graphs. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’03, USA, pp. 599–608. Society for Industrial and Applied Mathematics.

[8] Erickson, J. and A. Nayyeri (2011). Minimum cuts and shortest non-separating cycles
via homology covers. In Proceedings of the Twenty-Second Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’11, USA, pp. 1166–1176. Society for Industrial
and Applied Mathematics.

[9] Gleiss, P., J. Leydold, and P. Stadler (2001, 01). Circuit bases of strongly connected
digraphs. Santa Fe Institute, Working Papers 23.

[10] Greene, J. E. (2019, Dec). On loops intersecting at most once. Geometric and Functional
Analysis 29 (6), 1828–1843.

[11] Hariharan, R., T. Kavitha, and K. Mehlhorn (2008). Faster algorithms for minimum
cycle basis in directed graphs. SIAM Journal on Computing 38 (4), 1430–1447.

[12] Hartvigsen, D. and R. Mardon (1994, August). The all-pairs min cut problem and the
minimum cycle basis problem on planar graphs. SIAM J. Discret. Math. 7 (3), 403–418.

15

[13] Horton, J. (1987, 04). A polynomial-time algorithm to find the shortest cycle basis of a
graph. SIAM J. Comput. 16, 358–366.

[14] Kavitha, T. and K. Mehlhorn (2007, 06). Algorithms to compute minimum cycle basis
in directed graphs. Theory of Computing Systems 40, 485–505.

[15] Knuth, D. E. (1997). The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-
mental Algorithms. USA: Addison Wesley Longman Publishing Co., Inc.

[16] Mehlhorn, K. and D. Michail (2010, December). Minimum cycle bases: Faster and
simpler. ACM Trans. Algorithms 6 (1).

[17] Tewari, G., C. Gotsman, and S. Gortler (2006, 12). Meshing genus-1 point clouds using
discrete one-forms. Computers & Graphics 30, 917–926.

16

BIOGRAPHICAL SKETCH

Thomas Stanley was born in Covington, Louisiana. He attended San Marcos High School

in San Marcos Texas. He received a Bachelor of Science with majors in both Computer

Science and Mathematics from The University of Texas at Dallas in Fall of 2019. He entered

the Computer Science graduate program at The University of Texas at Dallas in the Spring

of 2020. He is currently employed at Ligo Analytics as a Software Engineer developing

structural biology analysis programs. He also does contracting work for The University of

Texas Southwestern Medial Center developing algorithms to assist quantifying brain cancer

progression.

17

CURRICULUM VITAE

Thomas Stanley
December 7, 2021

Contact Information:

tas150430@utdallas.edu

Education:

BS, Computer Science and Mathematics, University of Texas at Dallas, 2019

Employment History:

Research Assistant, The University of Texas at Dallas, January 2018 – December 2020
Software Engineer Contractor, The University of Texas Southwestern, January 2021 – Present
Software Engineer, Ligo Analytics, May 2021 – Present

Publications:

[1] Hansen, M. R., E. Pan, A. Wilson, M. McCreary, Y. Wang, T. Stanley, M. C. Pinho, X. Guo, and
D. T. Okuda (2018, Sep). Post-gadolinium 3-dimensional spatial, surface, and structural characteristics of
glioblastomas differentiate pseudoprogression from true tumor progression. J Neurooncol 139 (3), 731–738.

[2] Bereg, S., B. Malouf, L. Morales, T. Stanley, I. H. Sudborough, and A. Wong (2019). Equivalence
relations for computing permutation polynomials. CoRR abs/1911.12823.

[3] Sivakolundu, D. K., M. R. Hansen, K. L. West, Y. Wang, T. Stanley, A. Wilson, M. McCreary, M. P.
Turner, M. C. Pinho, B. D. Newton, X. Guo, B. Rypma, and D. T. Okuda (2019, 09). Three-Dimensional
Lesion Phenotyping and Physiologic Characterization Inform Remyelination Ability in Multiple Sclerosis.
J Neuroimaging 29 (5), 605–614.

[4] Moog, T. M., M. McCreary, T. Stanley, A. Wilson, J. Santoyo, K. Wright, M. D. Winkler, Y. Wang,
F. Yu, B. D. Newton, B. Zeydan, O. Kantarci, X. Guo, and D. T. Okuda (2020, Oct). African americans
experience disproportionate neurodegenerative changes in the medulla and upper cervical spinal cord in
early multiple sclerosis. Multiple Sclerosis and Related Disorders 45.

[5] Okuda, D. T., T. M. Moog, M. McCreary, J. N. Bachand, A. Wilson, K. Wright, M. D. Winkler, O. G.
Ramos, A. P. Blinn, Y. Wang, T. Stanley, M. C. Pinho, B. D. Newton, and X. Guo (2020, Nov). Utility
of shape evolution and displacement in the classification of chronic multiple sclerosis lesions. Scientific
reports 10 (1), 19560–19560.

[6] Sivakolundu, D. K., K. L. West, M. D. Zuppichini, A. Wilson, T. M. Moog, A. P. Blinn, B. D. New-
ton, Y. Wang, T. Stanley, X. Guo, B. Rypma, and D. T. Okuda (2020, Oct). Bold signal within and
around white matter lesions distinguishes multiple sclerosis and non-specific white matter disease: a
three-dimensional approach. Journal of Neurology 267 (10), 2888–2896.

[7] Bereg, S., B. Malouf, L. Morales, T. Stanley, and I. H. Sudborough (2021). Improved lower bounds
for permutation arrays using permutation rational functions. In J. C. Bajard and A. Topuzoğlu (Eds.),
Arithmetic of Finite Fields, Cham, pp. 234–252. Springer International Publishing.

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Algorithms
	Introduction
	Preliminaries

	Algorithm
	Computing Support Vectors
	Finding the Minimum Cycle
	Results

	References
	Biographical Sketch
	Curriculum Vitae

