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This dissertation presents several multiscale methods for material failure and implemen-

tations on high-performance computing (HPC) platforms. The work is motivated by the

challenges in fully capturing the mechanics of failure using a single scale method. As such,

multiscale approaches that incorporate multiple temporal and spatial scales have been es-

tablished. To address the high computational costs, efficient algorithms and their implemen-

tations on the HPC platform featuring many-core architectures have been developed.

Based on the topics being addressed, the dissertation is divided into two parts. First, a mul-

tiscale computational framework for high cycle fatigue (HCF) life prediction is established

by integrating the Extended Space-Time Finite Element Method (XTFEM) with multiscale

fatigue damage models. XTFEM is derived based on the time-discontinuous Galerkin ap-

proach, which is shown to be A-stable and high-order accurate. While the robustness of

XTFEM has been extensively demonstrated, the associated high computational cost re-

mains a critical barrier for its practical applications. A novel hybrid iterative/direct solver

is proposed with a unique preconditioner based on Kronecker product decomposition of the

space-time stiffness matrix. XTFEM is further accelerated by utilizing HPC platforms fea-

turing a hierarchy of distributed- and shared-memory parallelisms. A two-scale damage

model is coupled with XTFEM to capture nonlinear material behaviors under HCF loading

vi



and accelerated by parallel computing using both CPUs and GPUs. Furthermore, an efficient

data-driven microstructure-based multiscale fatigue damage model is established by employ-

ing the Self-consistent Clustering Analysis, which is a reduced-order method derived from

Machine Learning. Robustness and efficiency of the framework are demonstrated through

benchmark problems. HCF simulations are conducted to quantify key effects due to mean

stress, multiaxial load conditions, and material microstructures.

In the second part, a concurrent multiscale method to dynamic fracture is established by

coupling Peridynamics (PD) with the classical Continuum Mechanics (CCM). PD is a novel

nonlocal generalization of CCM. It is governed by an integro-differential equation of motion,

which is free of spatial derivatives. This salient feature makes it attractive for problems

with spatial discontinuities such as cracks. However, it generally leads to a much higher

computational cost due to its nonlocality. There is a continuing interest to couple PD

with CCM to improve efficiency while preserving accuracy in critical regions. In this work,

Finite Element (FE) simulation is performed over the entire domain and coexists with a

local PD region where crack pre-exists or is expected to initiate. The coupling scheme

is accomplished by a bridging-scale projection between the two scales and a class of two-

way nonlocal matching boundary conditions that eliminates spurious wave reflections at the

numerical interface and transmits waves from the FE domain to the PD region. An adaptive

scheme is established so that the PD region is dynamically relocated to track propagating

crack. Accuracy and efficiency of the proposed method are illustrated by wave propagation

examples. Its effectiveness and robustness in material failure simulation are demonstrated

by benchmark problems featuring brittle fracture.

Finally, conclusions are drawn from the research work presented and prospective future

developments of the established multiscale methods are provided.
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CHAPTER 1

INTRODUCTION

1.1 Background

Material failures such as fatigue or fracture usually involve multiple scales in both space and

time (Fish et al., 2012). The development of computational approaches for accurate predic-

tion of mechanical responses with a wide range of spatial and temporal scales is of critical

interest to many industrial applications, especially for those employing advanced heteroge-

neous materials such as composites (Matouš et al., 2017). It should be noted that even for

materials that are conventionally considered homogeneous in the macroscopic mechanical

analysis, accounting for detailed micro-structural features such as defects can substantially

improve the accuracy of material failure prediction. However, direct numerical simulation of

most engineering parts with existing computational approaches over a wide range of scales

in both time and space is still prohibitively expensive. This grand challenge drives the de-

velopment of multiscale approaches from various aspects over the past few decades (Hashin,

1960; Hill, 1965; Mori and Tanaka, 1973; Babuška, 1976; Papanicolau et al., 1978; Sánchez-

Palencia, 1980; Dvorak, 1992; Hughes, 1995; Hughes and Stewart, 1996; Hughes et al., 1998;

Feyel, 1999; Feyel and Chaboche, 2000; Garikipati and Hughes, 2000; Kouznetsova et al.,

2001, 2002; Feyel, 2003; Kouznetsova et al., 2004; Oden et al., 2006; Oskay and Fish, 2007;

The following articles were reused in this chapter with permissions from the publishers:

1. Zhang, R., S. Naboulsi, T. Eason, and D. Qian (2019). A high-performance multiscale space-time
approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elements in
Analysis and Design 166, 103320. Reuse with permission from Elsevier.
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Committee on Integrated Computational Materials Engineering, 2008; Kalamkarov et al.,

2009; Kanouté et al., 2009; Yuan and Fish, 2009; National Science Technology Council, 2011;

Fish, 2011; Coenen et al., 2012; Fish et al., 2012; Liu et al., 2016; Zhang and Oskay, 2016;

Oliver et al., 2017; Yu et al., 2019), which grows into an active and fruitful interdisciplinary

research field with collaborative efforts by researchers coming from different backgrounds in

science and engineering.

1.2 High cycle fatigue life prediction

1.2.1 Empirical models

Fatigue is a failure mechanism that dominates the design of many engineering structures

and components (Schütz, 1996; Schijve, 2003). Most of the fatigue design approaches em-

ployed by the industry today belong to the category of either safe-life or damage-tolerance

approach (Basquin, 1910; Irwin, 1957; Coffin, 1960; Manson, 1965; Paris and Erdogan, 1963;

Cui, 2002; Oller et al., 2005). However, those approaches are not without any shortcomings.

In particular, both approaches rely on certain empirical relations that are derived from either

experiment and/or curve-fitting. As such, extensions of the empirical models to complex fa-

tigue loading conditions, such as extrapolations or corrections for mean stress effect, variable

amplitude, multiaxial loading, and random loading spectrum remain questionable (Wheeler,

1972; Takagaki and Nakamura, 2007; Molent et al., 2008).

1.2.2 Numerical simulation approaches

With the rapid advances in high-performance computing (HPC) platform in recent decades,

there is an increasing interest in establishing simulation-based tools for fatigue life predic-

tion. In the case of low cycle fatigue (LCF) failure, several simulation-based approaches

have been developed by coupling Finite Element Method (FEM) with Continuum Damage
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Mechanics (CDM) (Cedergren et al., 2004; Oller et al., 2005; Pirondi et al., 2006; Takagaki

and Nakamura, 2007; Bednarek and Sosnowski, 2010). In these methods, finite element anal-

ysis provides the stress/strain histories under complex fatigue loading, while the progressive

damage evolution is characterized by internal variables in the CDM framework (Lemaitre,

1985; Mear and Hutchinson, 1985; Becker and Needleman, 1986; Bonora and Newaz, 1998).

Numerical tools for LCF are readily available in commercial finite element software (Simulia,

2014b). However, for high cycle fatigue (HCF) problems, direct finite element simulation

has not been possible due to the large number of load cycles (typically ranges from 105 to

107). To circumvent this limitation, the so-called jump-in-cycles approach has been devel-

oped and adopted in (Roe and Siegmund, 2003; Siegmund, 2004; Lestriez et al., 2007; Jiang

et al., 2009; Raje et al., 2009; Barbu et al., 2015). It assumes a constant amplitude of the

applied cyclic load then extrapolates internal and damage variables from several simulated

cycles to large blocks of jumped cycles. Accordingly, the damage variable is cycle-dependent

rather than stress/strain-dependent. Although this method greatly extends the predictive

capabilities, the assumption of constant load amplitude does not always hold for practical

applications. In addition, mathematical consistency of the jump-in-cycles approaches is still

questionable and needs further study.

1.2.3 Space-Time Finite Element Method

Material/structural responses under fatigue loading are inherently dynamic. In the field

of computational mechanics, it is a common practice to employ the so-called semi-discrete

scheme to solve the time-dependent dynamic problems. In this implementation, the spatial

domain of the partial differential equations (PDEs) is first discretized by finite element mesh

or meshfree particles, producing a system of ordinary differential equations (ODEs) with

time as the independent variable. Subsequently, the temporal domain is resolved using the

finite difference approach. For problems featuring strong temporal nonlinearities such as
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sharp gradient or jump, however, traditional FEM based on semi-discrete schemes is not

well suited for these types of analysis as it lacks the flexibility in establishing multiscale

approximations in the temporal domains. Specific time integration schemes such as the

popular central difference or Newmark-β methods are known to suffer from either the time-

step constraints or poor convergence. As such, there is an immense difficulty associated

with the semi-discrete scheme to handle the above issues that are frequently encountered in

practical engineering problems.

In contrast to the traditional semi-discrete schemes, Space-Time Finite Element Method

(STFEM) is emerging as an interesting method as it provides an entirely different way of

treating temporal scales. The idea of discretizing both the spatial and temporal domains by

finite elements was first proposed in (Argyris and Scharpf, 1969; Fried, 1969; Oden, 1969)

and derived based on Hamilton’s principle for dynamics during the late 1960s — shortly

after the establishment of regular FEM. In the initial developments of STFEM, the entire

temporal domain was discretized and continuous approximations for the unknowns were in-

troduced. This led to the Time-Continuous Galerkin (TCG) formulation (Hughes et al.,

1987). TCG generally yields very large system of equations due to the simultaneous dis-

cretizations of the spatial and temporal domains, which severely limits its application. As

an alternative, a divide-and-conquer approach was proposed in which the entire spatial-

temporal domain is first partitioned into smaller space-time slabs. A Galerkin formulation

is then established within each space-time slab. The resulting formulation is called a Time-

Discontinuous Galerkin (TDG) formulation (Reed and Hill, 1973; Lesaint and Raviart, 1974)

as the neighboring space-time slabs are coupled through the jump conditions in the weak

form. TDG method was originally developed for solving first-order hyperbolic equations

(Reed and Hill, 1973; Lesaint and Raviart, 1974). It was further extended to second-order hy-

perbolic systems such as elastodynamics in (Hughes and Hulbert, 1988; Hulbert and Hughes,

1990; Hulbert, 1992; Hughes and Stewart, 1996; Li and Wiberg, 1996, 1998). Based on the

4



choice of unknown fields, two different formulations, i.e., single-field and two-field formula-

tions have been developed (Hughes and Hulbert, 1988; Hulbert, 1992). It was shown that

TDG method significantly reduces artificial oscillations that are commonly associated with

semi-discrete time integration schemes in capturing sharp gradients or discontinuities (Hul-

bert and Hughes, 1990). Also, the TDG formulation has been proved to be A-stable and

high-order accurate (Lesaint and Raviart, 1974; Delfour et al., 1981; Hughes and Hulbert,

1988; Johnson, 1988; Hulbert and Hughes, 1990; Hulbert, 1992; Hughes and Stewart, 1996;

Li and Wiberg, 1996, 1998; Wiberg and Li, 1999; Chien and Wu, 2000; Chien et al., 2003).

1.2.4 Extended Space-Time FEM

Based on the key concepts introduced in Generalized FEM (GFEM) (Strouboulis et al.,

2000), Extended FEM (XFEM) (Moës et al., 1999) and Partition of Unity Method (PUM)

(Melenk and Babuška, 1996; Babuška and Melenk, 1997), the widely adopted polynomial-

based shape function in STFEM can be further enhanced using enrichment functions that

represent the problem physics (Chessa and Belytschko, 2004; Réthoré et al., 2005; Chirputkar

and Qian, 2008; Yang et al., 2012; Qian and Chirputkar, 2014). This enriched formulation

is referred to as the Extended Space-Time FEM (XTFEM). For example, an enriched space-

time formulation was proposed by Chessa and Belytschko (Chessa and Belytschko, 2004) to

model arbitrary discontinuities in the temporal domain. An enriched formulation for coupled

atomistic-continuum simulation of lattice fractures was developed by Chirputkar and Qian

(Chirputkar and Qian, 2008; Qian and Chirputkar, 2014). Furthermore, Yang et al. (Yang

et al., 2012) demonstrated the advantages of XTFEM for effectively handling the dynamic

problems at both the continuum and atomistic levels. XTFEM formulation was shown to

have better convergence properties over the regular space-time method for a proper choice

of enrichment function.

To address the challenges associated with HCF simulations, Bhamare et al. (Bhamare

et al., 2014) developed a computational framework based on XTFEM and CDM. In most
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HCF applications, the load conditions typically consist of static (mean) and dynamic (al-

ternating) loads, or dynamic loads with both low and high frequencies. The magnitude of

the load is moderate so that the mesoscopic material response can be considered elastic.

Correspondingly, the structural response also features a mixture of two components: one

slow varying in time (coarse scale) and the other fast oscillating (fine scale). The basic

idea of the enrichment is to capture the fine scale using enrichment functions, as opposed

to employing very fine grids in the temporal dimension. It was shown that the enriched

approximation effectively captured the dynamic response and enabled the use of very large

time step size under various practical fatigue loading histories (Bhamare et al., 2014). To

capture the multiscale material behavior in HCF, XTFEM was coupled with a two-scale

CDM model proposed by Lemaitre et al. (Lemaitre and Doghri, 1994; Lemaitre et al., 1999)

and Desmorat et al. (Desmorat et al., 2007). The damage model approximates mesoscale

material behavior as elastic, while plasticity and damage are modeled at the microscale

that represents the scale of defects such as microcracks and microvoids. Those two scales

are bridged through the modified Eshelby-Kröner localization law (Eshelby, 1957; Kröner,

1961). With this integration, direct numerical simulations of HCF in 304L stainless steel

specimen up to 1 million cycles have been successfully completed and verified in (Bhamare

et al., 2014).

More recently, Wada et al. (Wada et al., 2018) further extended this framework to

predict the cyclic failure of rubber by considering both geometric and material nonlinearities

at mesoscale. A CDM-based model developed by Lemaitre et al. (Lemaitre and Desmorat,

2005) and Cantournet et al. (Cantournet et al., 2009) was incorporated to account for

the damage evolution of rubber. HCF simulations of the notched synthetic rubber sheet

specimen up to 1 million cycles were performed. The simulation results demonstrated good

agreement with experimental results.
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1.2.5 Motivation and objective of this study

While many advantages of the TDG-based space-time methods have been extensively demon-

strated in previous studies, the associated high computational expense remains a critical

barrier for practical applications due to the additional time dimension that is introduced

(Hulbert, 1992). As such, the extended predictive capability of the method is paid at the

price of converting an n-dimensional spatial problem to an (n+1)-dimensional space-time

problem. This issue is further convoluted with the enrichment of the approximations. Com-

pared with the standard FEM, TDG-based FEM typically leads to larger system of coupled

equations that are expressed in the matrix form of Kd = F in which K is space-time stiffness

matrix of size N ×N . Assuming a quadratic interpolation in time and the number of spatial

degrees of freedom (DOFs), then N = 3ns, 4ns, and 6ns respectively for single-field, two-

field STFEM and XTFEM. Obtaining solutions to the space-time stiffness equation requires

O(N3) operations andO(N2) storage if the direct solver is employed, which are several orders

of magnitude higher comparing to solving the corresponding stiffness equation in standard

FEM. In addition, the space-time stiffness matrix is non-symmetric, less sparse compared

to that of regular FEM and generally not well conditioned (Zhang et al., 2016). Another

significant contribution to the computational cost comes from the constitutive updates, es-

pecially for nonlinear materials. Although a similar issue also exists in the standard FEM,

implementation of the CDM-based multiscale fatigue damage models in XTFEM is more

expensive due to the need to resolve stress-strain histories at spatial-temporal interpolation

points.

One approach to accelerate the solution of space-time stiffness equation is introducing

a multiplicative form of the space-time shape function. With this decomposition, it can be

shown that the space-time stiffness matrix K is generally expressed as

K = Φ⊗K + Ψ⊗M (1.1)
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in which Φ and Ψ are temporal submatrices, K and M are spatial stiffness and mass

submatrices respectively, and symbol ⊗ denotes the Kronecker product. It should be noted

that K and M matrices have exactly the same form as their counterparts in the standard

FEM.

In the case of two-field TDG formulation, K matrix is weakly coupled, i.e., there is

no single block in K matrix coupled to both K and M matrices. A family of iterative

predictor/multi-corrector algorithms have been developed based on this distinctive feature

(Li and Wiberg, 1996; Chien and Wu, 2000; Kunthong and Thompson, 2005). In these

algorithms, the original equations are first recast into a partially decoupled form. Subse-

quently stationary iterative method, such as Gauss-Jacobi method (Li and Wiberg, 1996;

Kunthong and Thompson, 2005) or Gauss-Seidel method (Chien and Wu, 2000), is applied

to the multi-corrector phase. However, these algorithms are not directly applicable to the

single-field TDG formulation or the enriched formulation as the corresponding space-time

stiffness matrix is fully coupled.

Alternatively, a general preconditioned iterative solution algorithm was developed in

(Zhang et al., 2016). It first constructs the preconditioner by incomplete factorization of

space-time stiffness matrix K, in which the computational cost is minimized using matrix

reordering algorithms based on Graph theory. The preconditioned space-time system of

linear equations is then solved by nonstationary iterative method based on Krylov-subspace

approach. It was shown that this algorithm worked efficiently for both the single-field TDG

formulation and XTFEM on two-spatial-dimensional (2D) problems. However, the approach

does not take into account of the unique block structure of K matrix as indicated by Eq. (1.1).

Further benchmark tests yielded degraded performance for three-spatial-dimensional (3D)

problems with this algorithm, which is due to the fact that the condition number of K matrix

in 3D has significantly deteriorated when compared with the 2D cases.

Motivated by the challenges associated with the computational cost as outlined above,

the main objective of this study is to establish an efficient solution algorithm to significantly
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scale down the computational cost of both the regular and extended STFEM based on TDG

formulation and enhance the efficiency of the XTFEM/CDM computational framework and

extend it to large-scale 3D HCF simulations. This goal is realized by further exploiting the

unique block structure of coupled space-time matrix equations (Zhang et al., 2019). The

proposed algorithm has two key components. First, a novel and efficient Kronecker pre-

conditioner is proposed by utilizing the special block structure of space-time matrix and

properties of temporal and spatial submatrices. Second, matrix-vector multiplications and

preconditioning operations, which are the most computing-intensive operations associated

with iterative solvers, are optimized and accelerated employing the inverse property of Kro-

necker product. Computational cost of the resulting algorithm is first analyzed theoretically

and then demonstrated in both 2D and 3D numerical examples using various TDG formu-

lations. It is shown that performance of the proposed algorithm is at least 1 ∼ 2 orders of

magnitude better than that of either direct sparse solver or the previously developed iterative

approach (Zhang et al., 2016) for problems with relatively large number of unknowns (e.g.,

N > 104). Through this novel implementation, the computational cost of solving space-

time stiffness equations is reduced to the same order as solving the corresponding stiffness

equations in standard FEM, thereby enabling practical applications of STFEM.

To further accelerate the XTFEM/CDM computational framework, a novel hybrid lin-

ear system solver is established and the corresponding implementation on HPC platform

is developed (Zhang et al., 2019). The hybrid iterative/direct linear system solver is pro-

posed based on the previous Kronecker preconditioning algorithm. HPC implementation is

aimed at accelerating both the hybrid linear system solver and nonlinear CDM constitutive

solver. It features a hierarchy of parallelisms that first partitioning the space-time compu-

tational domain and then redistributing the computing-intensive tasks associated with each

subdomain while minimizing communication. The framework is implemented using a hy-

brid parallel programming model, which combines the Message Passing Interface (MPI) for
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distributed-memory parallelisms, the Open Multi-Processing (OpenMP) for shared-memory

parallelisms, and the Compute Unified Device Architecture (CUDA) for the heterogeneous

CPUs and Graphic Processing Units (GPUs) hardware platforms. Computational perfor-

mance of the established framework is demonstrated through several benchmark examples.

It is shown that the serial computational performance of the proposed hybrid solver is at

least 1 ∼ 2 orders of magnitude better than conventional sparse direct and iterative linear

system solvers in terms of both computing time and memory consumption. The parallel

hybrid solver handles XTFEM stiffness matrix equations with over 100 million unknowns

using 64 CPU cores and shows excellent parallel efficiency. Parallel implementations of

the CDM-based nonlinear constitutive model show optimal speedup using either CPUs or

GPUs. Capabilities of the proposed framework in handling complex fatigue load conditions

are demonstrated by benchmark problems on HCF application.

Finally, as a significant extension to the two-scale fatigue damage model that was de-

veloped earlier, a data-driven microstructure-based concurrent multiscale fatigue damage

model has been established by integrating the Self-consistent Clustering Analysis (SCA) de-

veloped by (Liu et al., 2016). It is a novel reduced-order multiscale material model derived

from Machine Learning techniques. The method greatly reduces the computational cost

of direct modeling of complex material microstructures. For HCF applications, an efficient

solution algorithm is developed to accelerate its numerical implementation. Examples are

presented to demonstrate the unique capability of the proposed method. Although this study

is still at the preliminary stage, it shows great promises in high-fidelity HCF simulations and

microstructure-based high performance material design in the future.

1.3 Dynamic fracture simulation

Fracture is one of the most common and catastrophic material failure mechanisms (Ander-

son, 2017). Fracture problems are intrinsically multiscale and dynamic (Rafii-Tabar, 1998).
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Cracks usually initiate and propagate at the nanoscale, then carry over various length scales,

and eventually lead to macroscale fracture failure observed in engineering structures. In the

event of brittle fracture, the entire above-mentioned multiscale crack growth could happen

rapidly in a very short time period. Developing accurate, robust and efficient computational

approaches to dynamic fracture problems over a wide spectrum of length scales poses a great

challenge to the computational solid mechanics community (Aduloju and Truster, 2019; Patil

and Heider, 2019).

1.3.1 Atomistic scale approaches and AtC coupling

As an atomistic simulation approach, Molecular Dynamics (MD) has been extensively em-

ployed to simulate fracture problems in various applications, such as carbon nanotubes

(CNT), graphene, silicon carbide and other nanostructured solids (Ashurst and Hoover,

1976; Swadener et al., 2002; Kikuchi et al., 2005; Karimi et al., 2006; Kang and Cai, 2007;

Cheng and Sun, 2014; Dewapriya et al., 2014; Zhang et al., 2014; Bitzek et al., 2015). Cracks

in MD simulation are simply represented by atoms being pulled apart from each other. The

unique advantage of MD fracture simulation over the continuum scale approaches is that

it considers atomistic scale features that cannot be directly modeled by the latter, e.g., di-

rect interactions between atoms/molecules, crystal structure, grain size, lattice spacing, etc.

Hence, it provides comprehensive understanding of the physics in dynamic fracture at the

nanoscale. It is interesting to note that many nanoscale defect interactions such as dis-

location patterning are often driven by long-range fields that do not require an atomistic

description (Curtin and Miller, 2003). However, MD simulation of such phenomenon at

larger scales is still out of reach even with the fastest supercomputers. Therefore, the spatial

and temporal scales that can be handled by MD are very limited. This restriction can be

partially relaxed to a certain extent by the so-called coarse-grained MD (CGMD) simulation

(Rudd and Broughton, 1998; Aoyagi et al., 2002; Rudd and Broughton, 2005; Bond et al.,

2007; Wallace and Sansom, 2007; Qian et al., 2015).
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To further circumvent the limitation of MD simulation in larger scales, one alternative

approach is to employ multiscale descriptions by coupling MD with continuum scale ap-

proaches (Curtin and Miller, 2003). In multiscale approaches, MD simulation is typically

limited to a small local region while the continuum model is employed elsewhere. A large

amount of work has been devoted to this so-called atomistic-to-continuum (AtC) coupling

approach during the past two decades. Cai et al. (Cai et al., 2000) introduced the Langevin

approach to minimize wave reflections at boundaries for linear systems. Wagner and Liu

(Wagner and Liu, 2003) proposed a bridging-scale method based on a projection operator

and a time-history kernel approach. Qian et al. (Qian et al., 2004) further extended this

approach and proposed a virtual atom cluster (VAC) model in coarse-scale meshfree approx-

imation for post-buckling analysis of CNT structures. E and Huang (E and Huang, 2001,

2002) developed nonreflecting interfaces by eliminating the high frequency components. Be-

lytschko and Xiao (Belytschko and Xiao, 2003) proposed a bridging domain method for

coupling molecular and continuum mechanics and further extended the method to dynamics

in (Xiao and Belytschko, 2004; Xu and Belytschko, 2008). To and Li (To and Li, 2005)

and Li et al. (Li et al., 2006) developed a multiscale method by combining the bridging

scale method and the perfectly matched layer (PML). Spurious reflections are eliminated

by matching the impedance at the interface between MD and PML. Tang and co-workers

(Tang, 2008; Wang and Tang, 2010, 2013) proposed matching boundary conditions (MBCs)

to suppress wave reflections. In MBCs, velocities of boundary atoms are directly correlated

to displacements/velocities at a local neighborhood of atoms. The coefficients in MBCs are

solved by minimizing a residual and its derivatives that are proportional to wave dispersion

relation mismatch. The quasi-continuum (QC) method is another major class of coupling

method between MD and FEM (Tadmor et al., 1996; Shenoy et al., 1999), which is mainly

applied in static or quasi-static problems. Space-time FEM introduced in the previous sec-

tion is coupled with MD for dynamic fracture simulation in (Chirputkar and Qian, 2008;
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Yang et al., 2012; Qian and Chirputkar, 2014). More recently, Tong and Li (Tong and Li,

2016) and Gur et al. (Gur et al., 2019) proposed multiscale coupling methods between MD

and Peridynamics, which is a nonlocal continuum theory to be introduced later.

1.3.2 Classical continuum scale approaches

Crack surfaces in the classical continuum mechanics (CCM) theory can be represented by

boundaries of the model geometry. However, in the simulation of dynamic fracture problems

using FEM, this means continuous remeshing has to be performed to match the moving

discontinuities and mapping of solution between meshes, which is not only cumbersome but

also problematic. In the context of FEM, there are three major methods to model dynamic

crack propagation, which are discussed as follows.

The simplest and probably the most widely employed crack modeling approach is the

so-called element deletion or erosion method (Belytschko and Lin, 1987; Johnson and Stryk,

1987). In this approach, an element is removed from the model by setting its stress to

zero once a certain failure criterion is satisfied, e.g., the stress at an associated quadrature

point exceeds the material strength. Although the element deletion method is simple and

straightforward in terms of implementation, it is known to suffer from mesh dependency and

it does not satisfy the conservation laws of mass and energy in the system since both of them

are lost with the deleted elements.

The second major class of crack modeling method is the cohesive zone model (CZM)

(Dugdale, 1960; Barenblatt, 1962; Needleman, 1987; Xu and Needleman, 1994; Yang et al.,

2001; Elices et al., 2002; Roe and Siegmund, 2003; Song et al., 2006; Park and Paulino, 2013;

Needleman, 2014; Nordmann et al., 2020), which is popular for problems with cracks along

known paths. CZM is an interelement crack method in the sense that crack is modeled by

either the separation of regular elements at their interfaces or the failure of special surface

elements that are placed between regular elements. CZM constitutive behavior is governed
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by phenomenological traction separation laws. As one can expect, this method also leads

to mesh dependence since cracks can only grow along element boundaries and remeshing is

necessary in many situations.

To resolve the mesh dependency and avoid the cumbersome remeshing in the above

methods, Belytschko and Black (Belytschko and Black, 1999) and Moës et al. (Moës et al.,

1999) develpoed the XFEM to model crack and its growth by introducing discontinuous and

near-tip asymptotic enrichment functions to the standard FE shape function through the

PUM concept (Melenk and Babuška, 1996; Babuška and Melenk, 1997). In XFEM, cracks

can grow within elements. Therefore, it is more suitable for dynamic fracture simulation

since arbitrary crack path can be modeled without remeshing. Song et al. (Song et al.,

2008) conducted a comparative study among the above FE-based methods for dynamic

fracture. They concluded that none of these methods can accurately predict the speed of

crack propagation or its path even for relatively simple problems in 2D, not to mention more

complex scenarios such as fragmentation.

1.3.3 Peridynamics and its coupling with CCM

The main difficulty of fracture modeling in CCM lies in its mathematical foundation, which

is based on PDEs that are not well defined over spatial discontinuities such as crack. CCM is

also a local theory in the sense that material points only interact with immediate neighbors.

However, accounting for nonlocality is critical in material damage modeling (Bažant et al.,

1984; Pijaudier-Cabot and Bažant, 1987; Bažant and Lin, 1988; Bažant and Pijaudier-Cabot,

1988; Bažant, 1994; Pijaudier-Cabot et al., 2004).

Motivated by these limitations in CCM for fracture modeling, Silling (Silling, 2000) and

co-workers (Silling et al., 2007) proposed the Peridynamics (PD) in the early 2000s, which

is a novel nonlocal generalization of CCM to deal with discontinuities and long-range forces

without any special treatment. PD is governed by a spatial-integral temporal-differential
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equation of motion, which is well defined mathematically at discontinuities. In PD, material

points interact with each other directly through bonds over a finite distance termed as horizon

radius, which is an internal length scale. Crack initiates and propagates spontaneously in

PD as a result of bond breaking between material points. Discretization of the governing

equations of PD typically leads to a meshfree formulation (Silling and Askari, 2005) that

shows some similarities to other meshfree methods (Bessa et al., 2014). Compared to CCM

and other nonlocal methods, PD is still a relatively new theory with an active, increasing

research community. In terms of applications to dynamic fracture, PD has been employed by

Bobaru and co-workers to study crack branching in brittle materials (Ha and Bobaru, 2010;

Bobaru and Zhang, 2015) as well as impact and fragmentation of multi-layer glass systems

(Bobaru et al., 2016). PD applications on damage modeling of fiber-reinforced composites

are reported in (Kilic et al., 2009; Hu et al., 2012; Oterkus and Madenci, 2012; Diyaroglu

et al., 2019). Many other applications and theoretical aspects of PD are extensively studied,

please refer to (Askari et al., 2008; Silling and Lehoucq, 2010; Madenci and Oterkus, 2014;

Bobaru et al., 2016; Javili et al., 2019) for reviews on this method.

A major drawback of PD also comes from its nonlocality. Its computational cost is usually

much higher compared to the classical FEM due to the nonlocal interactions between material

points, which makes modeling of large-scale applications very expensive. Similar to AtC

coupling approaches, the coupling between PD and CCM has been actively studied in the past

decade. To transmit the forces between PD and FEM subdomains in the coupled simulation,

a class of coupling approach termed as the splice method is developed and employed in

both static and dynamic fracture simulations (Silling et al., 2015; Galvanetto et al., 2016;

Zaccariotto et al., 2018; Bie et al., 2018; Kulkarni and Tabarraei, 2018; Ni et al., 2019). Kilic

and Madenci (Kilic and Madenci, 2010) introduced an overlap region to couple PD and FEM.

Oterkus et al. (Oterkus et al., 2012) presented a sub-modeling approach to couple PD and

FEM for the failure prediction of curved composite panel with stiffeners. In (Liu and Hong,
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2012), the authors developed a coupling approach based on interface elements for quasi-static

problems, which is also employed by Lee et al. (Lee et al., 2017) and Yaghoobi and Chorzepa

(Yaghoobi and Chorzepa, 2018). Energy-based blending method such as the Arlequin method

(Han and Lubineau, 2012) is introduced to couple local and nonlocal continuum models.

Seleson et al. (Seleson et al., 2013) proposed a force-based blending scheme. In these

blending methods, the computational domain is decomposed into subdomains modeled by

PD or FEM and an overlap region to blend these models. More recently, Yu et al. (Yu

et al., 2018) proposed an optimization-based coupling scheme by finding optimal coefficient

for Robin boundary conditions. For static and quasi-static problems, Sun and Fish (Sun

and Fish, 2019) proposed a superposition-based coupling scheme between PD and FEM. For

elastodynamic problems, Wang et al. (Wang et al., 2019) proposed a concurrent coupling

scheme based on the Arlequin method and showed that the spurious wave reflections can

be effectively suppressed. Giannakeas et al. (Giannakeas et al., 2019) compared different

coupling schemes between PD and FEM on wave reflections at the numerical interfaces. They

also developed a coupling scheme between PD and XFEM for brittle fracture simulation

(Giannakeas et al., 2020a,b). Brief reviews on these coupling approaches can be found in

(Yu et al., 2018; Sun and Fish, 2019).

1.3.4 Motivation and objective of this study

This study is motivated by the AtC coupling approaches as well as the coupling schemes

between PD and FEM for the purpose of multiscale dynamic fracture simulation. Since this

work mainly focuses on modeling dynamic fracture for larger-scale problems, we employ PD

and FEM to develop a coupled simulation approach to address dynamic fracture at the con-

tinuum scale. The numerical interfaces between PD and FEM has not been systematically

investigated. Improper treatments can lead to spurious wave reflections at the PD/FEM in-

terface. As such, a critical development is to establish a class of effective boundary condition
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called matching boundary condition (MBC) to realize non-reflective condition. The existing

literature also lacks studies on developing concurrent multiscale scheme for dynamic fracture

applications. Therefore, main objective of this study is to integrate MBC with a concurrent

multiscale framework based on PD and FEM for dynamic fracture problems to achieve both

high accuracy and efficiency.

In the proposed concurrent multiscale framework, we first establish a coarse-fine scale

decomposition of the system based on which multiscale Lagrangian of the system and equa-

tions of motion are derived. The coarse-scale equations are further solved with FEM for

the entire domain of interest. The coarse-scale solution coexists with a localized fine-scale

PD subdomain where material fracture pre-exists or is expected to initiate. A bridging-scale

projection of the fine-scale PD solution onto the overlap coarse-scale FE basis functions is

introduced based on the work by Wagner and Liu (Wagner and Liu, 2003). High frequency

waves are originated from fine-scale PD simulation due to bond breaking during crack ini-

tiation and propagation. Artificial reflections of these short waves at the PD/FE interfaces

are detrimental to accuracy of the fine-scale PD simulation. To eliminate artificial wave

reflections at the numerical interface as well as transmit long waves from coarse-scale FE

model to fine-scale PD model, a class of two-way nonlocal matching boundary conditions

(NMBC) is developed based on the previous work described in (Wang and Tang, 2010,

2013; Wang et al., 2017; Nicely et al., 2018). To further accommodate the evolving nature

of dynamic fracture, an adaptive scheme is established so that PD region is dynamically

prescribed to track propagating crack (Wada, 2017). The accuracy and efficiency of the pro-

posed concurrent multiscale framework are first illustrated by wave propagation examples.

The effectiveness and robustness in material failure simulation are further demonstrated by

benchmark examples that involve brittle fracture.
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1.4 Outline of the dissertation

The rest of the dissertation is organized in two parts as follows.

In Part I, we start by introducing the theory of space-time FEM in Chapter 2. Then sev-

eral efficient solution algorithms for implementing the space-time FEM are proposed and the

corresponding HPC implementations are developed in Chapter 3. In Chapter 4, we establish

the multiscale damage model and develop highly efficient numerical algorithms based on

hybrid CPUs/GPUs platform. In Chapter 5, a data-driven microstructure-based concurrent

multiscale material modeling method is proposed using SCA for HCF applications. Finally,

applications of the proposed computational framework for HCF applications are presented

in Chapter 6.

In Part II, we first introduce various PD formulations accompanied by several numerical

examples in Chapter 7. Chapter 8 presents a closed-form wave dispersion analysis on dis-

cretized PD in both 1D and 2D cases, which is critical to the coupling scheme. In Chapter 9,

the concurrent multiscale coupling scheme between PD and CCM is established. Numerical

examples on elastodynamics wave propagation and dynamic fracture problems are presented

in Chapter 10 to demonstrate the performances of the proposed concurrent multiscale sim-

ulation approach.

Finally, conclusion and future work are presented in Chapter 11.
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PART I

A HIGH PERFORMANCE MULTISCALE SPACE-TIME METHOD TO

HIGH CYCLE FATIGUE LIFE PREDICTION
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CHAPTER 2

SPACE-TIME FINITE ELEMENT METHOD

2.1 Introduction

In this chapter, we first briefly review the formulations of TDG-based STFEM and its en-

riched version. Then the corresponding numerical implementations are established. Finally,

several numerical examples are provided to demonstrate the advantages of STFEM/XTFEM

over the traditional semi-discrete FEM.

2.2 Time-Discontinuous Galerkin Method

We start by briefly reviewing the TDG formulations for elastodynamics developed by Hughes

and Hulbert (Hughes and Hulbert, 1988; Hulbert and Hughes, 1990; Hulbert, 1992). More

details can be found in (Hulbert and Hughes, 1990; Hulbert, 1992; Yang et al., 2012; Bhamare

et al., 2014)

2.2.1 Strong form of the governing equations

Let us consider the initial/boundary value problem (IBVP) defined over a spatial region Ω

and the corresponding temporal domain I = ]0, T [. The spatial region Ω is bounded by

Γ = Γt ∪ Γu, where Γt and Γu are the non-overlapping traction (Neumann) and essential

The following articles were reused in this chapter with permissions from the publishers:

1. Zhang, R., S. Naboulsi, T. Eason, and D. Qian (2019). A high-performance multiscale space-time
approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elements in
Analysis and Design 166, 103320. Reuse with permission from Elsevier.

2. Zhang, R., L. Wen, J. Xiao, and D. Qian (2019). An efficient solution algorithm for space-time finite
element method. Computational Mechanics 63 (3), 455–470. Reuse with permission from Springer
Nature.

3. Zhang, R., L.Wen, S. Naboulsi, T. Eason, V. K. Vasudevan, and D. Qian (2016). Accelerated multi-
scale space-time finite element simulation and application to high cycle fatigue life prediction. Com-
putational Mechanics 58 (2), 329–349. Reuse with permission from Springer Nature.
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(Dirichlet) boundaries, respectively. The strong form of governing equations is given as,

ρü = ∇ · σ(∇u) + f on Q ≡ Ω× ]0, T [ (2.1)

u = ū on Υu ≡ Γu × ]0, T [ (2.2)

n · σ(∇u) = t on Υt ≡ Γt × ]0, T [ (2.3)

u(x, 0) = u0(x) for x ∈ Ω (2.4)

u̇(x, 0) = v0(x) for x ∈ Ω (2.5)

where ρ = ρ(x) is the volumetric mass density, u represents the displacement vector, f is

the body force per unit volume, n is the unit outward normal vector to traction surface

Γt, σ(∇u) = C : ε under the assumption of linear elasticity and C is the constitutive

matrix, ū and t are the prescribed boundary displacement and traction, u0 and v0 denote

the initial displacement and velocity. A superposed dot indicates the partial differentiation

with respect to time.

2.2.2 Space-Time discretization

In the TDG approach, the space-time domain Q = Ω × I is first divided into multiple

segments called space-time slabs and the n-th space-time slab is given as Qn = Ω× In where

In = ]tn−1, tn[. Displacement and traction boundary conditions are respectively defined on

(Υu)n = Γu × In and (Υt)n = Γt × In. Space-time slab Qn is further discretized into (nel)n

space-time elements. The approximations established will be denoted with a superscript h.

The domain (interior) of the e-th element defined as Qe
n ⊂ Qn and its boundary as Υe

n .

The domain and boundary of the interior of the slab are defined as QΣ
n =

⋃(nel)n
e=1 Qe

n and

ΥΣ
n =

⋃(nel)n
e=1 Υe

n − Υn respectively. Figure 2.1 shows an example of the TDG space-time

discretization described above.
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Figure 2.1. An illustration of TDG space-time discretization for 2D case

The following inner product notations are defined for deriving the TDG formulation,

(
wh,uh

)
Ω

=

∫
Ω

wh · uhdΩ (2.6)

a
(
wh,uh

)
Ω

=

∫
Ω

∇wh · σ(∇uh)dΩ (2.7)

(
wh,uh

)
Qn

=

∫
Qn

wh · uhdQ (2.8)

a
(
wh,uh

)
Qn

=

∫
Qn

∇wh · σ(∇uh)dQ (2.9)

(
wh,uh

)
QΣ

n
=

∫
QΣ

n

wh · uhdQ (2.10)

(
wh,uh

)
ΥΣ

n
=

∫
ΥΣ

n

wh · uhdΥ (2.11)

(
wh,uh

)
(Υt)n

=

∫
(Υt)n

wh · uhdΥ (2.12)

where
∫
Qn

(·)dQ =
∫
In

∫
Ω

(·)dΩdt and
∫

Υn
(·)dΥ =

∫
In

∫
Γ
(·)dΓdt. We further introduce the

jump operators

[[u(tn)]] = u(t+n )− u(t−n ) (2.13)

[[u(x)]] = u(x+)− u(x−) (2.14)
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in which

u(t±n ) = lim
ε→0±

u(tn + ε) (2.15)

u(x±) = lim
ε→0±

u(x+ εn) (2.16)

n = n+ = −n− (2.17)

2.3 Space-Time FEM

2.3.1 Single-field formulation

Displacements are chosen as the basic unknowns in the single-field formulation. The weak

form is derived by introducing the displacement trial functions uh(x, t) and test functions

δuh(x, t) to be C0 continuous within each space-time slab. Trial and test functions can have

discontinuities across the space-time slabs. The spaces of the trial function and test function

are given as

uh(x, t) ∈ U U = {uh(x, t) | uh ∈ C0(
N⋃
n=1

Qn), uh = ū on Γu} (2.18)

δuh(x, t) ∈ U0 U0 = {δuh(x, t) | δuh ∈ C0(
N⋃
n=1

Qn), δuh = 0 on Γu} (2.19)

With these definitions, the weak form of single-field formulation is expressed in a bilinear

form. For the n-th space-time slab, it is given as

BDG

(
δuh,uh

)
n

= LDG
(
δuh

)
n
, n = 1, 2, ... (2.20)

where

BDG

(
δuh,uh

)
n

=
(
δu̇h, ρüh

)
Qn

+ a
(
δu̇h,uh

)
Qn

+
(
δu̇h(t+n−1), ρu̇h(t+n−1)

)
Ω

+ a
(
δuh(t+n−1),uh(t+n−1)

)
Ω

(2.21)

LDG
(
δuh

)
n

=
(
δu̇h,f

)
Qn

+
(
δu̇h, t

)
(Υt)n

+
(
δu̇h(t+n−1), ρu̇h(t−n−1)

)
Ω

+ a
(
δuh(t+n−1),uh(t−n−1)

)
Ω

(2.22)
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2.3.2 Two-field formulation

Both displacement and velocity are taken as unknown fields in the two-field formulation.

The weak form is derived by introducing the trial functions Uh(x, t) =
{
uh,vh

}
and test

functions δUh(x, t) =
{
δuh, δvh

}
to be C0 continuous within each space-time slab. Similarly,

trial and test functions can have discontinuities across the space-time slabs. The spaces of

the trial functions are given as

uh(x, t) ∈ U U = {uh(x, t) | uh ∈ C0(
N⋃
n=1

Qn), uh = ū on Γu} (2.23)

vh(x, t) ∈ V V = {vh(x, t) | vh ∈ C0(
N⋃
n=1

Qn), vh = ˙̄u on Γu} (2.24)

and the spaces of the test functions are

δuh(x, t) ∈ U0 U0 = {δuh(x, t) | δuh ∈ C0(
N⋃
n=1

Qn), δuh = 0 on Γu} (2.25)

δvh(x, t) ∈ V0 V0 = {δvh(x, t) | δvh ∈ C0(
N⋃
n=1

Qn), δvh = 0 on Γu} (2.26)

With these definitions, the weak form of two-field formulation for the n-th space-time

slab can be expressed as

BDG

(
δUh,Uh

)
n

= LDG
(
δUh

)
n
, n = 1, 2, ... (2.27)

where

BDG

(
δUh,Uh

)
n

=
(
δvh, ρv̇h

)
Qn

+ a
(
δvh,uh

)
Qn

+ a
(
δuh,

(
u̇h − vh

))
Qn

+
(
δvh(t+n−1), ρvh(t+n−1)

)
Ω

+ a
(
δuh(t+n−1),uh(t+n−1)

)
Ω

(2.28)

LDG
(
δUh

)
=
(
δvh,f

)
Qn

+
(
δvh, t

)
(Υt)n

+
(
δvh(t+n−1), ρvh(t−n−1)

)
Ω

+ a
(
δuh(t+n−1),uh(t−n−1)

)
Ω

(2.29)
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2.3.3 Space-time shape function and stiffness matrix

Space-time shape function N (x, t) is constructed in a multiplicative form so that the tem-

poral and spatial domains are approximated independently, i.e.,

N (x, t) = Nt ⊗Nx =

[
Nt1Nx · · · NtiNx · · · NtkNx

]
(2.30)

where Nx and Nt are the spatial and temporal shape functions respectively, symbol ⊗ de-

notes the Kronecker product, subscript i represents the i-th temporal node. Shape functions

from standard FEM can be employed for the spatial shape function Nx.

2.3.3.1 Single-field formulation

For the single-field formulation, a 3-node quadratic shape function is employed for Nt in this

work and is given by

Nt =

[
2(tn−t)(tn−1/2−t)

∆t2
−4(tn−t)(tn−1−t)

∆t2
2(tn−1−t)(tn−1/2−t)

∆t2

]
(2.31)

in which ∆t is the size of the temporal mesh (time step size). The three nodes at tn−1, tn−1/2

and tn are equally spaced along the time axis for each space-time slab.

For elastodynamic problems with linear elastic material and small deformation, the weak

form Eq. (2.20) eventually leads to a discretized stiffness matrix equation for each space-time

slab

Kd = F (2.32)

where K is space-time stiffness matrix, d and F are unknown nodal displacement and

prescribed external force vectors respectively. It can be shown that

K =

∫
Qn

ṄTρN̈dQ+

∫
Qn

ṄT
,xCN,xdQ

+

∫
Ω

ṄT
(
t+n−1

)
ρṄ

(
t+n−1

)
dΩ +

∫
Ω

NT
,x

(
t+n−1

)
CN,x

(
t+n−1

)
dΩ

(2.33)
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and

F =

∫
(Υt)n

ṄT tdΥ +

∫
Qn

ṄTfdQ

+

[∫
Ω

ṄT
(
t+n−1

)
ρṄ

(
t−n−1

)
dΩ +

∫
Ω

NT
,x

(
t+n−1

)
CN,x

(
t−n−1

)
dΩ

]
dn−1

(2.34)

Note that terms on the second lines of Eqs. (2.33) and (2.34) are contributed by the weak

enforcement of temporal discontinuities across the adjacent space-time slabs, or the so-called

jump terms.

Based on the space-time shape function defined in Eq. (2.30), integrations over the spatial

domain can be done independently from the ones over the temporal domain. Therefore, the

1st and 2nd terms on right-hand side of Eq. (2.21)) are given as

(
δu̇h, ρüh

)
Qn

= δdT
(∫

Qn

ṄTρN̈dQ

)
d = δdT

[(∫
In

ṄT
t N̈tdt

)
⊗M

]
d (2.35)

a
(
δu̇h,uh

)
Qn

= δdT
(∫

Qn

ṄT
,xCN,xdQ

)
d = δdT

[(∫
In

ṄT
t Ntdt

)
⊗K

]
d (2.36)

in which δd is arbitrary virtual displacement that can be dropped from both sides of

Eq. (2.20), d is nodal displacement vector, K and M are spatial stiffness and mass ma-

trices in standard FEM, respectively. Thus, the space-time stiffness matrix K in Eq. (2.32)

can be express as

K = Φ⊗K + Ψ⊗M (2.37)

where the temporal matrices are

Φ =

∫
In

ṄT
t Ntdt+NT

t (t+n−1)Nt(t
+
n−1) (2.38)

Ψ =

∫
In

ṄT
t N̈tdt+ ṄT

t (t+n−1)Ṅt(t
+
n−1) (2.39)

Given the quadratic temporal shape functions for the single-field formulation (Eq. (2.31)),

integrations in temporal domain in Eqs. (2.38) and (2.39) can be evaluated analytically.
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Therefore, the stiffness matrix K in Eq. (2.32) can be expressed as

K =


5M
∆t2

+ K
2

−4M
∆t2
− 2K

3
− M

∆t2
+ K

6

−12M
∆t2

+ 2K
3

16M
∆t2

−4M
∆t2
− 2K

3

7M
∆t2
− K

6
−12M

∆t2
+ 2K

3
5M
∆t2

+ K
2

 (2.40)

Eq. (2.40) clearly shows that the space-time stiffness matrix of single-field formulation

is fully coupled, i.e., all the terms are featured by the combinations of K and M with the

exception of K22 . It can also be expressed in the form of Kronecker products as shown

below

K =
1

6


3 −4 1

4 0 −4

−1 4 3

⊗K +
1

∆t2


5 −4 −1

−12 16 −4

7 −12 5

⊗M (2.41)

2.3.3.2 Two-field formulation

The same decomposition of space-time shape function (Eq. (2.30)) is employed in the two-

field formulation. Linear temporal shape functions are defined for both the displacement and

the velocity fields, i.e. the P1-P1 element in (Hulbert and Hughes, 1990; Hulbert, 1992) is

adopted. Similarly, by employing analytical temporal integration, the corresponding space-

time stiffness matrix is obtained as

K =



1
2
K 1

2
K −∆t

3
K −∆t

6
K

−1
2
K 1

2
K −∆t

6
K −∆t

3
K

∆t
3
K ∆t

6
K 1

2
M 1

2
M

∆t
6
K ∆t

3
K −1

2
M 1

2
M


(2.42)

Eq. (2.42) can also be rewritten as

K =
1

6



3 3 −2∆t −∆t

−3 3 −∆t −2∆t

2∆t ∆t 0 0

∆t 2∆t 0 0


⊗K +

1

2



0 0 0 0

0 0 0 0

0 0 1 1

0 0 −1 1


⊗M (2.43)
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As shown in Eq. (2.43), the space-time stiffness matrix of the two-field formulation is

weakly coupled, i.e., each term involves either K or M but not both. Hence, the corre-

sponding matrix equation can be recast into a partially decoupled form, which can be solved

by a family of iterative predictor/multi-corrector solution algorithms (Li and Wiberg, 1996;

Chien and Wu, 2000; Kunthong and Thompson, 2005).

2.4 Extended Space-Time FEM

For certain class of problems, the polynomials-based shape function employed by STFEM

may not provide the ideal basis for interpolation. In such cases, the predictive capability of

STFEM can be further improved by introducing an enrichment function that represents the

problem physics (Chirputkar and Qian, 2008; Yang et al., 2012; Qian and Chirputkar, 2014;

Bhamare et al., 2014). The resulting formulation is termed as XTFEM, and referred to as

either the GFEM (Strouboulis et al., 2000) or XFEM (Moës et al., 1999) if discretization

is applied only to the spatial domain. Both GFEM and XFEM are based on the partition-

of-unity concept (PUM) (Melenk and Babuška, 1996). In this work, the XTFEM is derived

based on the single-field STFEM.

In XTFEM, the unknown displacement field is approximated by

u(x, t) =
∑
I

N̄I(x, t)d̄I +
∑
J

ÑJ(x, t)d̃J (2.44)

in which N̄ and Ñ are standard and enriched space-time shape functions, d̄ and d̃ represent

the standard and enriched DOFs respectively.

For the J-th node, the enriched space-time shape function is given by

ÑJ(x, t) = NJ(x, t)ΦJ(x, t) (2.45)

where the enrichment function Φ(x, t) that represents the problem physics is defined as

ΦJ(x, t) = Φ(x, t)− Φ(xJ , tJ) (2.46)
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Figure 2.2. Comparison between regular and harmonic enriched temporal shape functions

Proper enrichment function can be selected by considering prior knowledge of problem

physics. For HCF problems considered in this study, a harmonic enrichment function is

employed to capture the oscillating components in structural response, for example,

ΦJ(t) = Φ(t)− Φ(tJ) = sin(ωt)− sin(ωtJ) (2.47)

where ω is the circular frequency of the imposed cyclic loading.

Examples of the regular and the harmonic enriched temporal shape functions are shown

in Figure 2.2. In this example, a quadratic function is chosen as the regular temporal shape

function with three evenly spaced nodes on the time axis from 0 to 1. The enrichment

function for the harmonic enriched temporal shape function is the same as Eq. (2.47) with a

frequency of 20 Hz. It can be seen that this combination effectively captures both the slow

and fast time scale components. This type of multiscale approximation enables rapid HCF

simulations by using large time steps without compromising accuracy, which is critical for

practical HCF applications. Previous studies by Yang et al. (Yang et al., 2012) and Bhamare

et al. (Bhamare et al., 2014) have extensively demonstrated the capability of XTFEM

in handling the multiple temporal scales for problems involving linear elastodynamics and

concurrent multiscale simulations.
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For convenience, we defineN =

[
N̄ Ñ

]
and d =

[
d̄ d̃

]
so that the approximation

of unknown displacement field can be simply expressed as

u(x, t) =
∑
I

NI(x, t)dI (2.48)

which has the same form as the single-field formulation.

With the introduction of enrichment function, the XTFEM stiffness matrix can be gen-

erally expressed as

Ke =

 K Kea

Keb Kee

 (2.49)

where K is the same space-time matrix as in Eq. (2.40) of the single-field formulation, Kea

and Keb reflect the coupling between enriched and regular DOFs, Kee reflects the coupling

between enriched DOFs. Eq. (2.49) can also be written in the form of Kronecker product

as shown in Eq. (2.41). However, the temporal submatrices are more complex due to the

enrichment functions. In the current implementation, these temporal submatrices are also

derived analytically.

2.5 Numerical implementation

Numerical implementation of STFEM or XTFEM generally follows the steps shown below:

1. Discretize the spatial domain the same way as in the standard FEM

2. Calculate the spatial stiffness and mass matrices using Gauss quadrature rules

3. Start the loop over space-time slabs (time stepping)

(a) Calculate the temporal matrices based on either closed-form integration or nu-

merical quadrature

(b) Construct the space-time stiffness matrix

(c) Calculate external force vector due to body force, traction, and the jump terms
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(d) Apply essential boundary conditions

(e) Solve the stiffness matrix equation

(f) Evaluate strain, stress, damage, etc.

4. Post-processing

2.6 Numerical examples

2.6.1 Wave propagation in 1D bar

In the first example, we study a simple 1D bar with one end fixed while the other end

subjected to constant stress. Closed-form solution to this problem can be found by using

the d’Alembert’s solution to the 1D wave equation under the given boundary conditions:

u(x, t) =
σ0

E

∞∑
k=1

(−1)k−1 [〈ct− x− 2 (k − 1)L〉 − 〈ct+ x− 2kL〉] (2.50)

v(x, t) =
σ0c

E

∞∑
k=1

(−1)k−1 [H (ct− x− 2 (k − 1)L)−H (ct+ x− 2kL)] (2.51)

where σ0 is the applied stress, E is the Young’s modulus, c =
√
E/ρ is the wave speed, L is

the length of the bar, 〈·〉 denotes the Macaulay bracket and H (·) is the Heaviside function.

Note that x = L is the fixed boundary while x = 0 is the boundary subjected to load.

Here we employ the traditional semi-discrete schemes, i.e. explicit central difference

and implicit Newmark-β (γ = 0.5, β = 0.25) (Newmark, 1959) methods, as well as the

TDG approaches (both single-field and two-field formulations) to simulate this problem. For

simplicity, the parameters are chosen as L = 1, E = 100, ρ = 1, and σ0 = 1 . The spatial

domain is uniformly discretized by 100 two-node linear bar element. The critical time step

for central difference method is

∆tc = Le/c (2.52)
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(a) (b)

Central difference

Figure 2.3. Displacement at x = L/2 from (a) semi-discrete schemes and (b) TDG ap-
proaches

(a) (b)

Central difference

Figure 2.4. Velocity at x = L/2 from (a) semi-discrete schemes and (b) TDG approaches

where Le is the element length. By substituting the parameters, the time step for central

difference method is obtained as 8.5 × 10−4. For the other methods we choose a time step

size of 1.0× 10−3 and the total simulation time is 0.2.

Displacement histories at x = L/2 obtained by the above methods are plotted in Fig-

ure 2.3. It can be seen that the displacement solutions from all the numerical methods agree

well with the closed-form solution. However, as illustrated in Figure 2.4, significant artificial
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Figure 2.5. Dimensions and boundary conditions of the straight beam problem

oscillations near the temporal discontinuities in velocity history are observed in solutions

obtained from the traditional semi-discrete schemes. On the contrary, TDG approaches

significantly reduced such oscillations and the numerical solutions rapidly converged to the

closed-form solution despite the large time step employed, which demonstrated exceptional

accuracy and stability of the methods.

2.6.2 Transverse vibration in 2D beam

To demonstrate STFEM on 2D applications, we study the vibration of a straight beam under

dynamic transverse loading. The material of the beam is assumed to be isotropic linear

elastic and the material properties are given as density ρ = 7860 kg/m3, Young’s modulus

E = 200 GPa and Poisson’s ratio ν = 0.3. Figure 2.5 shows the geometrical dimensions and

boundary conditions of this example. The beam is clamped at both ends and subjected to

a uniformly distributed cyclic load P (t) = 7500 sin(2πt/0.011)H(t) N/m on the top surface.

This problem is analyzed using the single-field STFEM. The spatial domain is modeled by

plane stress formulation and discretized by 195 quadratic quadrilateral (Q9) elements. The

temporal domain is divided into 460 space-time slabs with a time step of 5.0× 10−4 s. The

number of DOFs for this problem is 5,502.

For the purpose of verification, a closed-form solution (Clough and Penzien, 1993; Paz

and Leigh, 2004) is obtained by utilizing the mode-superposition method, given as

y(x, t) =
∞∑
n=1

Φn(x)In
P0

M
(
ω2
n − ω2

f

) (−ωf
ωn

sin(ωnt) + sin(ωf t)

)
(2.53)
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Figure 2.6. Space-time FEM results for straight beam problem: (a) transverse
displacement at mid-surface vs. time; (b) transverse displacement at mid-point vs. time

where M is the mass per unit length, ωf is the angular loading frequency and P0 is the

amplitude, and

In =

∫ L

0

Φn(x)dx

/∫ L

0

Φ2
n(x)dx (2.54)

in which L is the span of beam.

The mode shape is

Φn(x) = cosh(anx)− cos(anx)− σn (sinh(anx)− sin(anx)) (2.55)

where σn = (cos (anL)− cosh (anL)) / (sin (anL)− sinh (anL)) , the corresponding natural

frequency is given by

ωn = a2
n

√
EI/M (2.56)

in which I represents the second moment of area of the beam’s cross-section, and finally an

is the solution of

cos(anL) cosh(anL) = 1 (2.57)

The analytical solution (Eq. 2.53) is approximated by using the first nine modes. Fig-

ure 2.6 shows the displacement responses at the neutral axis and at the centroid of the
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Figure 2.7. Dimensions and boundary conditions of the thin plate problem

beam. A good agreement between results obtained by the accelerated space-time FEM and

the analytical solution is clearly demonstrated in Figure 2.6 (b).

2.6.3 Dynamic response of a 3D plate subjected to surface traction

In the last example, we study the problem of a rectangular thin plate with one end fixed and

the other end subjected to a uniformly distributed surface traction p(t). Detailed geometric

dimensions and boundary conditions of the problem are illustrated in Figure 2.7. The ma-

terial of the plate is assumed to be isotropic elastic with Young’s modulus E = 200 GPa,

Poisson’s ratio ν = 0.3, and mass density ρ = 7860 kg/m3.

The spatial domain of the plate is discretized by 8-node linear brick element with uniform

element size of 0.5 mm, which leads to 2,880 elements and 3,965 nodes. To demonstrate the

accuracy and robustness of the TDG methods, we compare the displacement and velocity

solutions at the right end of the plate with that obtained from the semi-discrete schemes

such as the explicit central difference method and the implicit Newmark-β. The TDG

formulations, i.e. the single-field, two-field and enriched formulations are denoted as TDG-

1, TDG-2, and TDG-e, respectively.

First, we consider the loading condition of a constant pressure, i.e. p(t) = 100H(t) MPa.

The time steps for central difference, Newmark-β, TDG-1 and TDG-2 are 1.2 × 10−9 s,

6.0× 10−8 s, 1.2× 10−6 s and 1.2× 10−6 s, respectively.
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Figure 2.8. Comparison of the displacement solutions at the right end of the plate
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Figure 2.9. Comparison of the velocity solutions at the right end of the plate

Figure 2.8 shows the displacement solutions at the right end of the plate. Despite the

large time steps that are used by the TDG methods, their displacement solutions show good

agreement with that of the semi-discrete methods. The velocity solutions at the right end

of the plate are shown in Figure 2.9. It can be seen that TDG methods significantly reduce

the artificial oscillations near the discontinuities. Also, the TDG solutions are more stable

than that of the semi-discrete schemes as the stress wave propagates in the plate.
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Figure 2.10. Comparison of the displacement solutions under cyclic load

Next, a fully-reversed cyclic load is considered, i.e. p(t) = 100 sin (40πt)H(t) MPa. The

time steps for central difference, Newmark-β, TDG-1, TDG-2, and TDG-e methods are

7.2 × 10−8 s, 5.0 × 10−5 s, 6.3 × 10−3 s, 6.3 × 10−3 s, and 5.0 × 10−2 s, respectively. For

the TDG-e method, a shifted sinusoidal function is employed to enrich the space-time shape

function, i.e.,

ΦJ(t) = sin (ωt)− sin (ωtJ) (2.58)

in which the frequency ω = 40π is the same as the loading frequency. The displacement

solutions are shown in Figure 2.10. Although TDG methods use very large time steps

compared with semi-discrete methods, they accurately captured the oscillating structural

response.

Finally, a cyclic load with dual modes is applied to further demonstrate the robustness of

XTFEM. It contains a high frequency component at 20 Hz and a low frequency component

at 1 Hz. The corresponding amplitudes are respectively 20 MPa and 100 MPa, i.e. p(t) =

20 sin (40πt) + 100 sin (2πt) MPa. The displacement solutions are shown in Figure 2.11. It

shows that XTFEM accurately captures both the low and high frequency components in the

oscillating structural response without significantly reducing the time step.
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Figure 2.11. Comparison of semi-discrete and XTFEM solutions under complex cyclic load

2.7 Summary

In this chapter, we briefly reviewed the theory of TDG-based space-time FEM and its en-

riched version. Space-time stiffness matrices are derived for various TDG formulations under

the assumptions of linear elastic material and small deformation. Those matrices exhibit

a unique decomposition based on Kronecker product of temporal and spatial components,

which can be further exploited to improve the efficiency in solving space-time stiffness matrix

equations. Numerical examples range from 1D to 3D problems are provided to demonstrate

the exceptional stability and accuracy of STFEM. The capability of XTFEM in capturing

problem physics, e.g. oscillations in mechanical responses under fatigue loading, is also val-

idated. More extensive demonstrations of the robustness of space-time FEM can be found

in (Alpert, 2009; Bhamare, 2012; Alpert, 2013; Bhamare et al., 2014). Note that STFEM

and XTFEM are also applicable for general cases involving nonlinear material behaviors and

geometric nonlinearity, e.g. large deformation problems. Applications on rubber materials

considering hyperelasticity, viscoelasticity and damage can be found in (Wada, 2017; Wada

et al., 2018).
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CHAPTER 3

EFFICIENT SOLUTION METHODS TO SPACE-TIME FEM

3.1 Introduction

Although space-time FEM shows excellent stability and accuracy over traditional semi-

discrete FEM, as demonstrated in the previous chapter, the size of the space-time stiffness

matrix equations are much larger due to the added dimension of time. Directly solving such

a system of matrix equations leads to much higher computational cost than the standard

FEM, especially for 3D and large problems in practical applications. Therefore, an efficient

solution method to space-time FEM is critical and highly desired.

This chapter focuses on addressing the above issue and developing efficient solution meth-

ods. First, we conduct a detailed computational cost analysis of space-time FEM to identify

the efficiency bottlenecks. Next, sparse matrix storage and operation algorithms are intro-

duced. After that, we introduce the iterative solver for system of linear equations and discuss

several conventional preconditioning techniques (Zhang et al., 2016). With these prepara-

tions ready, we first propose a novel Kronecker preconditioner based on the unique feature

of space-time stiffness matrix that can significantly improve the computational performance

of the iterative solver (Zhang et al., 2019). Furthermore, we propose an advanced hybrid it-

erative/direct sparse solver for space-time stiffness matrix equations based on the Kronecker

The following articles were reused in this chapter with permissions from the publishers:

1. Zhang, R., S. Naboulsi, T. Eason, and D. Qian (2019). A high-performance multiscale space-time
approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elements in
Analysis and Design 166, 103320. Reuse with permission from Elsevier.

2. Zhang, R., L. Wen, J. Xiao, and D. Qian (2019). An efficient solution algorithm for space-time finite
element method. Computational Mechanics 63 (3), 455–470. Reuse with permission from Springer
Nature.

3. Zhang, R., L.Wen, S. Naboulsi, T. Eason, V. K. Vasudevan, and D. Qian (2016). Accelerated multi-
scale space-time finite element simulation and application to high cycle fatigue life prediction. Com-
putational Mechanics 58 (2), 329–349. Reuse with permission from Springer Nature.
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preconditioning technique (Zhang et al., 2019). Finally, numerical examples are provided

to demonstrate both the computational efficiency and performance of the proposed solution

methods.

3.2 Computational cost analysis

Numerical implementations of space-time FEM are given in Section 2.5 and summarized

by the pseudocode shown in Table 3.1. At first, spatial stiffness and mass matrices are

formed outside the loop over the space-time slabs, which cost O(ns) in time and O(n2
s) in

memory respectively, where ns is the number of spatial DOFs. Let N denote the number

of space-time DOFs, then N = 3ns, 4ns, and 6ns respectively for single-field, two-field and

enriched space-time FEM. Within each space-time slab, assembly of the space-time matrix

requires both O(N2) in operations and storage if full matrix storage format is employed.

Matrix-vector multiplication involved with the jump terms in right-hand-side vector costs

O(N2) in time while applying boundary conditions requires O(N) operations. Solution of

the resulting space-time stiffness equations with direct solver, e.g. a Gaussian elimination

type solver, requires O(N3) in time. Finally, stress/strain calculation and postprocessing

generally cost O(N) in time. Note that the cost of calculating the temporal matrices, even

by numerical quadrature instead of analytical integration, is negligible due to its small size.

The above cost analysis clearly shows that, for space-time FEM implementation, the

largest memory cost is of O(N2) for the storage of space-time matrices. The most time-

consuming part is the direct solution of the space-time stiffness equation, which requires

O(N3) in time. In space-time formulation, N accounts for both spatial and temporal dis-

cretizations, leading to the prohibitive computational expense.

To further illustrate this significant increase in matrix size, we consider here the example

of a thin plate discussed in Section 2.6.3. For spatial discretization, a 3D structured mesh

(2,880 8-node brick elements, 3,965 nodes) is generated and leads to the banded pattern of
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Table 3.1. Pseudocode for space-time FEM

Line number Operation
1 Discretize the spatial domain
2 Integrate and assemble spatial matrices K and M
3 Loop over space-time slabs
4 Discretize the temporal domain
5 Integrate the temporal matrices Φ and Ψ
6 Assemble the space-time stiffness matrix K
7 Evaluate external force and jump term F
8 Apply essential boundary conditions
9 Solve Kd = F
10 Evaluate strain, stress, etc.
11 End loop
12 Postprocessing

stiffness matrix for standard FEM as shown Figure 3.1 (a). The number of spatial DOFs in

standard FEM is ns = 11, 895. The numbers of space-time DOFs are N = 3ns = 35, 685,

N = 4ns = 47, 680 andN = 6ns = 71, 370 for single-field and two-field STFEM and XTFEM,

respectively. Figure 3.1 (b) ∼ (d) illustrate the sparsity patterns from the stiffness matrices

that are obtained from single-field and two-field STFEM and XTFEM for the same number

of spatial nodes. Note that, in Figure 3.1, dashed boxes indicate the size of the standard FE

stiffness matrix and nz represents the number of non-zero elements in the sparse matrix. As

can be seen, direct solution of space-time stiffness matrix equation leads to computational

cost that is several orders of magnitude higher comparing to that of solving the corresponding

stiffness matrix equation in standard FEM, which becomes a critical barrier for its extensive

and practical applications. Therefore, this computational analysis highlights the key role of

efficient approaches for space-time FEM.
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Figure 3.1. Comparison among the sparse pattern of the stiffness matrices formed by (a)
standard FEM, (b) single-field STFEM, (c) two-field STFEM and (d) XTFEM

3.3 Sparse matrix storage and operations

Since the approximations are spatially localized and temporally nonlocal, the system matrices

formulated by space-time FEM and its enriched version contain blocks of sparse matrices that

are distributed non-sparsely as shown in Figure 3.1. By utilizing this particular property, the

space-time matrices can be compressed to reduce storage, which is also commonly practiced

in standard FEM. In this study, two of the most widely used sparse matrix storage formats

are adopted, i.e., the Coordinate (COO) format and the Compressed Sparse Row (CSR)

format, which are illustrated by an example shown in Figure 3.2. COO contains three one-
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Figure 3.2. Illustrations of the COO and CSR format for storing a sparse matrix

dimensional arrays to store row indices, column indices and values of the nonzero entries

respectively. The length of these arrays is the number of nonzero entries (NNZ ). COO

is well suited for incremental matrix construction and easy to access. Its storage can be

further compressed to save more memory. In CSR format, the array of row indices in COO

are compressed by array of row pointers, which is a list of indices where each row starts.

Then the length of this array is reduced to the number of DOFs plus one, i.e., (N + 1). CSR

is adopted by many sparse linear system solvers for its efficiency in arithmetic operations

and matrix-vector multiplications.

Compared with COO, the CSR format is more expensive and complicated for operations

that change the sparsity structure, such as matrix assembly. Thus, the spatial element

matrices are first assembled into a global matrix in COO without summing up duplicate

entries. Subsequently this triplet format is transformed into CSR by the following steps: (1)

compressing the row indices; (2) sorting row and column indices; (3) summing up duplicate

entries and (4) removing zero entries. The detailed sparse matrix manipulation algorithms

involved in the above steps can be found in (Davis, 2006). Once spatial assembly finished,

the number of nonzero entries in the space-time matrix can be easily estimated, which

facilitates memory allocation. The spatial stiffness and mass matrices are further combined

with the coefficients to form the space-time stiffness matrix in a COO format. Finally, the

COO-formatted space-time stiffness matrix is transformed into a CSR format by the same
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four steps mentioned above. By employing those sparse formats, not only the memory is

saved, the time cost of matrix related operations, e.g. assembly and matrix-vector product,

is also reduced to O(NNZ), where NNZ is ∼ O(N) for large sparse matrices formulated

by space-time FEM.

3.4 Iterative solver and preconditioning techniques

As we already shown in Chapter 2, for each space-time slab, the system of linear equations

derived from TDG space-time FEM is given as

Kd = F (3.1)

where K ∈ RN×N is a non-symmetric sparse matrix, d ∈ RN and F ∈ RN are unknowns

and force vectors respectively.

In standard FEM, two types of linear systems solvers are generally employed to solve the

stiffness matrix equations. The first type is the frontal direct sparse solver (Davis, 2006),

which is robust and efficient particularly for equations with multiple right-hand-side vectors.

The second type is iterative solver (Barrett et al., 1994; Saad, 2003), such as the Conjugate

Gradient (CG) method and its preconditioned version (PCG). Iterative solvers are generally

less robust for systems of linear equations that are not well conditioned but more flexible.

They can achieve much higher efficiency than the direct sparse solver for particular problems.

In space-time FEM, stationary iterative solvers such as Gauss-Jacobi and Gauss-Seidel

methods have been adopted to reduce the computational cost for the two-field formulation

(Li and Wiberg, 1996; Chien and Wu, 2000; Kunthong and Thompson, 2005; Zhang et al.,

2016), see (Zhang et al., 2019) for a brief review. Although the stationary iterative methods

are simple to derive and easy to implement, their convergence may not good compared to

the more general Krylov subspace methods. Examples of Krylov subspace methods including

the above-mentioned CG and PCG iterative solvers. However, they are only applicable to
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system of linear equations with symmetric coefficient matrix, which is the case in standard

FEM but not true for space-time FEM. The generalization of CG to non-symmetric matrices

leads to the Biconjugate Gradient (BiCG) method and eventually a more popular variant

called Biconjugate Gradient Stabilized (BiCGSTAB) method (Vorst, 1992).

In this study, we also employ the Krylov subspace iterative approach to solve Eq. (3.1).

It is well known that the efficiency and robustness of iterative methods largely depend on

the quality of preconditioner (Barrett et al., 1994; Saad, 2003). Therefore, a preconditioner

is constructed and the original system is modified as

P−1Kd = P−1F (3.2)

in which matrix P is the preconditioner and Eq. (3.2) is called left-preconditioned system.

3.4.1 Preconditioned iterative solver

Due to the asymmetry of space-time stiffness matrix, we employ the Generalized Minimum

Residual (GMRES) method as the linear system solver, which was proposed by Saad and

Schultz (Saad and Schultz, 1986) and widely used for system of linear equations with a non-

symmetric coefficient matrix. The preconditioned GMRES algorithm we implemented here

is summarized in Table 3.2.

The GMRES algorithm starts with an initial guess of the solution, i.e. d0, and the initial

residual is calculated by r0 = P−1 (F −Kd0). The exact solution is then approximated by

d(i) = d(0) + y1v
(1) + · · ·+ yiv

(i) (3.3)

in which v(i) are orthonormal bases of the left-preconditioned Krylov subspace of order m,

Km(P−1K, r0) = span
{
r0,P−1Kr0,

(
P−1K

)2
r0, ...,

(
P−1K

)m−1
r0

}
(3.4)

and yi is solved from a linear least-squares problem which minimizes the residual. The

bases are generated by modified Gram-Schmidt orthogonalization procedure in the Arnoldi
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Table 3.2. Pseudocode for left-preconditioned GMRES algorithm

Line number Operation
1 Given P , K, F and d0

2 DO k = 1, 2, ...
3 Solve r0 from Pr0 = F −Kd0

4 Calculate β = ‖r0‖2 and v(1) = r0/β
5 DO j = 1, 2, ...,m
6 Solve w from Pw = F −Kv(j)

7 DO i = 1, 2, ..., j
8 Calculate hi,j =

(
w,v(i)

)
and w = w − hi,jv(i)

9 END DO
10 Calculate hj+1,j = ‖w‖2 and v(j+1) = w/hj+1,j

11 END DO
12 Define Vm =

[
v(1),v(2), . . . ,v(m)

]
, H̄m = {hi,j}16i6j+1;16j6m

13 Solve ym from arg miny

∥∥βe1 − H̄my
∥∥

2

14 Calculate dm = d0 + Vmym
15 IF dm is satisfied THEN
16 STOP
17 ELSE
18 Set d0 = dm
19 END IF
20 END DO

iteration. The iterative procedure is stopped once the residual satisfies the convergence

criteria.

To save storage and computing resources, the GMRES is restarted every m iterations.

Compared to direct solver, GMRES reduces the computational complexity to O(N2) for

solving general dense matrix systems while matrix-vector multiplication in every iteration

is the most time-consuming part for large system of linear equations. Furthermore, for the

sparse systems in our case, the computational complexity can be further reduced toO(NNZ)

as discussed in Section 3.3.

Overall computational cost of GMRES solver depends on two factors. The first is the

number of iterations that is required to satisfy the convergence criterion. The second is the
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cost of each iteration. The total cost is the product of these two factors. Therefore, good

preconditioners need to be constructed to minimize both the number of iterations and the

most computing-intensive operations, i.e. the matrix operations as outlined in lines 3 and 6

in Table 3.2.

3.4.2 Conventional preconditioners

In general, preconditioners are built by approximating the space-time stiffness matrix or

its inverse. For example, the simplest Jacobi preconditioner consists only the diagonal of

the matrix. A good preconditioner makes the modified system of linear equations easier to

solve and the computational saving gained far outweighs the extra cost of preconditioning

itself. There are many preconditioners readily available, such as Block Jacobi, Successive

Over-Relaxation (SOR), Sparse Approximate Inverse (SPAI), Incomplete Factorization, etc.

As an illustration of preconditioning techniques, here we employ a preconditioner based

on the incomplete factorization of the space-time stiffness matrix. Note that incomplete

factorization itself is a broad class of preconditioners. For example, incomplete Cholesky

factorization (ICHOL) of symmetric positive definite (SPD) matrix is widely employed as a

preconditioner for PCG solver. Since the space-time stiffness matrix is non-symmetric, we

employ the more general incomplete LU factorization (ILU) method as the preconditioner

for GMRES solver.

The ILU factorization of space-time stiffness matrix K is given as

K = LU −R (3.5)

where L is the lower unitriangular matrix, U is the upper triangular matrix and R is the

residual matrix. During factorization, some entries in the original matrix will change from

zero to nonzero values. This is generally referred to as “fill-in” and the preconditioning

matrix is thus less sparse. Based on the fill-in control strategies, two variants of the ILU

preconditioner are adopted:
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1. ILUTP preconditioner, where “T” stands for threshold strategy and “P” stands for

column pivoting. It is one of the most robust and efficient ILU preconditioners. In

ILUTP, a non-negative scalar parameter droptol sets the threshold for dropping small

terms in the L, U factors and another tolerance ratio parameter permtol is used to

determine whether or not to permute two columns. The columns are permuted to

avoid failure of the factorization when encountering a zero pivot, and furthermore, to

improve the stability of resulting preconditioner.

2. ILU(0) preconditioner, where “0” means fill-in is not allowed. It is the simplest and

cheapest ILU preconditioner. However, it is not accurate and generally not recommend

for practical problems. We employ it here only for the purpose of comparison.

3.4.3 Stiffness matrix reordering/permutation

While ILUTP preconditioner can efficiently reduce the number of iterations to a converge

threshold required by GMRES, however, it often leads to much less sparse L and U matrices,

which makes the overall cost too expensive. Thus, we utilize matrix reordering algorithms

based on the Graph theory to minimize the fill-in during factorization, which is commonly

practiced in direct sparse solution methods. Computational complexity of finding the opti-

mal reordering is NP-complete, thus heuristic algorithms are used instead. Two reordering

algorithms with an O(NNZ) cost, namely, the Approximate Minimum Degree (AMD) algo-

rithm (Amestoy et al., 1996) and the Reversed Cuthill-McKee (RCM) algorithm (Chan and

George, 1980; George et al., 1994) are adopted here.

Here we illustrate the effects of these two reordering algorithms by an example shown

in Figure 3.3, and their numerical performances will be demonstrated later. The space-time

matrix formulated by XTFEM for the 2D problem described in Section 2.6.2 is employed as

an input. Its sparsity pattern with original ordering is shown in Figure 3.3 (a). The results

of matrix permutation by AMD and RCM algorithms are respectively shown in Figure 3.3
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(a) (b) (c)

Figure 3.3. Illustrations of matrix reordering: (a) the original matrix and the permuted
matrices by (b) AMD and (c) RCM reordering algorithms

(b) and (c). It is worth noting that the entries in the matrix are clustered around the main

diagonal for RCM ordering since it is designed to reduce the bandwidth. A study of the effects

of reordering algorithms used in implicit FEM for structural mechanics problems indicates

that AMD ordering is more suitable to ill-posed problems such as thin shell elements or poor

quality mesh, while RCM ordering shows better performance for the hexahedral topology

problem (Kilic, 2012). Since the output of these reordering algorithms depends solely on the

sparsity pattern (graph) of the system matrix, which is determined by the connectivity of

FE mesh, the calculation of permutation vector is only required at the first time increment

or after the deletion of damaged elements in HCF applications.

In summary, the conventional iterative solution approach introduced here solves modified

space-time stiffness equation (3.2) by the following steps:

1. Permute the original system matrix by either AMD or RCM algorithm;

2. Factorize the reordered matrix by ILU method;

3. Solve the system of linear equations by GMRES and

4. Permute the solution vector back to the original ordering.
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3.5 A novel Kronecker preconditioner

3.5.1 The Kronecker preconditioner

Since the choice and quality of the preconditioner greatly depend on specific system of linear

equations, further improvements can be made by taking advantage of the special features of

the space-time stiffness matrix. Considering the unique block structure of space-time matrix,

Eq. (3.1) can be rewritten as

(Φ⊗K + Ψ⊗M )d =F (3.6)

Several observations can be made from the space-time stiffness matrix shown above and

those derived in Sections 2.3 and 2.4:

1. The determinant of the matrix Ψ, i.e., the temporal matrix corresponding to spatial

mass matrix M , is always zero. Since the determinant of Kronecker product of two

matrices of A and B is given as |An×n ⊗Bm×m| = |A|m|B|n , the contribution from

M to the space-time stiffness matrix K, i.e. the matrix Ψ⊗M , is always singular;

2. The spatial stiffness matrix K is also singular. However, this singularity is eliminated

by introducing the essential boundary conditions. Thus, the component derived from

K matrix, i.e. the matrix Φ⊗K, is non-singular;

3. The matrix Φ ⊗K is the dominant component in the space-time stiffness matrix for

most computational mechanics applications since the elements in K are usually several

orders of magnitude larger than those of M .

According to these observations, a block-structured preconditioner is constructed by ap-

proximating the dominant component in space-time matrix K, i.e. the matrix Φ⊗K. It is

defined as

P = Φ⊗ P (3.7)
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in which matrix P is derived by incomplete factorization of matrix K. Since the spatial

stiffness matrix K is SPD, both ICHOL and ILU methods mentioned in Section 3.4.2 can

be used. Matrix P can be then expressed as

P = LU = K −R for ILU (3.8)

P = LLT = K −R for ICHOL (3.9)

where R is the residual matrix.

The advantages of using the preconditioner as proposed by Eq. (3.7) are twofold. First,

the preconditioner is obtained by incomplete factorization of spatial stiffness matrix K

which is SPD and better conditioned. Therefore, the computational cost is far less than the

conventional approach, as shown in Section 3.4, of obtaining the preconditioner by incomplete

factorization of the larger, coupled space-time matrix K that is also non-symmetric. Second,

the preconditioning operation, i.e., P−1v with v an arbitrary vector involved in iterations,

can be greatly simplified and accelerated by using properties of Kronecker product as shown

later.

As mentioned in Section 3.4.1, the most computationally-intensive part of GMRES iter-

ations is the following matrix operation

w = P−1 (Kv) (3.10)

which can be further decomposed into two matrix operations. The first is the matrix-vector

multiplication of Kv. The second is the preconditioning operation P−1u, in which u = Kv.

Direct evaluations of these matrix operations are not efficient. They can be optimized and

accelerated by using the block structure of the space-time stiffness matrix and the inverse

property of Kronecker product as follows.
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3.5.2 Optimization of matrix-vector multiplication

The general form of matrix-vector multiplication is

y = Kx (3.11)

in which x and y are vectors of size N = nt × ns, where nt and ns are the dimensions of

temporal and spatial matrices respectively. Note that nt is usually much smaller than ns.

For example, nt = 3, 4, and 6 for single-field, two-field STFEM and XTFEM, respectively.

By using the block structure of space-time matrix, Eq. (3.11) is recast as

y = (Φ⊗K + Ψ⊗M )x (3.12)

The first step to simplify Eq. (3.12) is dividing vectors x and y into smaller segments,

x =



x(1)

x(2)

...

x(nt)


and y =



y(1)

y(2)

...

y(nt)


(3.13)

Second, we introduce two intermediate vectors

u(i) = Kx(i) and v(i) = Mx(i), i = 1, 2, ..., nt (3.14)

Finally, the desired vector y is computed as

y(i) =
nt∑
j=1

φiju
(j) +

nt∑
j=1

ψijv
(j), i = 1, 2, ..., nt (3.15)

It can be shown that direct evaluation of the matrix-vector product in Eq. (3.11) requires

approximately 2N2 arithmetic operations, including N(N − 1) additions and N2 multipli-

cations, and O(N2) memory assuming a full matrix storage scheme, where N = ntns is

the size of space-time matrix. In the optimized implementation, the matrix-vector prod-

ucts in Eq. (3.14) require 4ntn
2
s arithmetic operations and Eq. (3.15) requires only O(ns)
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operations. The space and time matrices in Eqs. (3.14) and (3.15) require a storage cost of

O(2n2
s). Therefore, both operations and storage cost of the optimized implementation are

reduced to only 2/nt and 2/n2
t of the direct evaluation method, respectively.

3.5.3 Optimization of preconditioning operation

The preconditioning operation is generally expressed as

y = P−1x (3.16)

in which x and y are vectors of size N = nt × ns.

By using the preconditioner defined in Eq. (3.7), we have

y = (Φ⊗ P )−1x (3.17)

The inverse of a Kronecker product is given by (A⊗B)−1 = A−1 ⊗B−1 if and only if

both A and B are invertible. By using this property, Eq. (3.17) is further simplified as

y =
(
Φ−1 ⊗ P−1

)
x (3.18)

It can be seen that the inverse of the larger matrix P is now replaced by the inverses of two

smaller matrices Φ and P . The cost of inverting temporal matrix Φ is negligible since its

size is very small (nt × nt). However, inverting matrix P explicitly can be very expensive

for practical applications. To avoid that, we further decompose the evaluation of Eq. (3.18)

into the following two steps:

First, we introduce an intermediate vector z that can be solved from

z(i) = P−1x(i), i = 1, 2, ..., nt (3.19)

in which the size of z(i) or x(i) is ns.

Then, the desired vector y is obtained by

y(i) =
nt∑
j=1

ϕijz
(j), i = 1, 2, ..., nt (3.20)
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in which ϕij is the corresponding element of matrix Φ−1.

In those two steps, Eq. (3.19) is the most computationally-intensive one. Cost of im-

plicitly generating inverse of the preconditioner matrix P−1 mostly comes from incomplete

factorization of the K matrix. It depends not only on the choice of incomplete factoriza-

tion algorithm but also on property of the coefficient matrix to be factorized. However,

this operation is the same as its counterpart in solving the corresponding static problem

with standard FEM assuming that the same type of preconditioned iterative solver is used.

Therefore, computational cost of preconditioner is reduced to the same order as the standard

FEM.

As a brief summary of this section, we have demonstrated theoretically that the proposed

Kronecker preconditioning algorithm reduces the computational cost of solving space-time

linear system of equations to the same order of solving the corresponding static problems in

standard FEM with iterative method. Furthermore, numerous matrix operations involved

in this method are well-suited for parallel computing.

3.6 A hybrid iterative/direct sparse solver

3.6.1 Direct sparse solver for preconditioning

To further improve the numerical efficiency of the proposed Kronecker preconditioning ap-

proach and develop parallel implementation, the dominant component of space-time stiffness

matrix, i.e. Φ⊗K, is employed in this section directly as the preconditioner instead of Φ⊗P

since the former already provides a good approximation of the space-time stiffness matrix.

Therefore, we propose that

P = Φ⊗K (3.21)

With this new preconditioner, the process of evaluating matrix P in Eq. (3.7) is com-

pletely avoided and computational effort is thus saved. Another key feature of the new
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preconditioner is that the direct sparse solver can now be introduced into the precondi-

tioning operation, which improves its robustness and efficiency. The new solution approach

essentially forms an advanced hybrid iterative/direct sparse solver that takes advantage of

both the efficiency of iterative method and the robustness of direct method.

The main difference of the hybrid method compared to the iterative method presented

in Section 3.5 is that Eq. (3.19) can now be replaced by

z(i) = K−1x(i), i = 1, 2, ..., nt (3.22)

which is equivalent to solving the corresponding standard FE static stiffness matrix equa-

tions. Hence, by using the proposed method, the computational cost of preconditioning is

further reduced to the same as solving the spatial stiffness matrix equations in linear static

FEM analysis with a direct sparse solver. Therefore, Eq. (3.22) can be handled efficiently by

many well-established direct sparse solvers employed by standard FEM. It is also possible

to use commercial FE packages to solve Eq. (3.22) and implement space-time FEM.

In this work, a parallel multi-frontal direct sparse solver named MUMPS (Amestoy et al.,

2001, 2006) is employed to solve Eq. (3.22). In general, the direct sparse method solves a

system of linear equations by three main steps: (1) symbolic analysis, (2) numerical fac-

torization, and (3) the final solution steps. Computational cost of the direct method is

dominated by the first two steps. Once these two steps are completed, the final solution

step can be performed separately and repeatedly for the case of multiple right-hand-side

vectors. Therefore, for linear elastodynamics the analysis and factorization steps of direct

sparse solver is performed only once during the first time-increment. For nonlinear HCF

simulations, the same solution strategy is employed unless the preconditioner Φ ⊗ K no

longer provides a good approximation of the XTFEM stiffness matrix K due to the progres-

sive evolution of spatial matrix K due to fatigue damage. In that case, the convergence rate

of the main iterative solver slows down and triggers the re-evaluation of the preconditioner.
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Thus, computational cost can be saved since the first two steps of the direct sparse solver

are minimized.

3.6.2 HPC parallel implementation

To extend the capability of XTFEM on handling large-scale problems using HPC plat-

forms, we incorporate high-performance parallel computing techniques to accelerate the pro-

posed hybrid iterative/direct sparse linear system solver. A hybrid of parallelisms, i.e. the

distributed-memory and the shared-memory parallelisms, is exploited in this work. It forms

a hierarchy of those two types of parallelism as shown in Figure 3.4. In this way, parallel

computing hardware can be used more efficiently.

3.6.2.1 Distributed-memory parallelism

The distributed-memory parallelism arises from partitioning the computational domain of

XTFEM. The space-time finite element mesh is first partitioned into smaller subdomains

along the element boundaries based on its spatial discretization. Computing tasks on each
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Figure 3.5. Distributed-memory parallelism of XTFEM

subdomain are then handled by a specific process as shown in Figure 3.5. Data on the inter-

facial nodes between subdomains are transferred through communication among processes

using the Message Passing Interface (MPI) protocol (Gropp et al., 1999).

To achieve an optimal parallel efficiency, partitioning of the computational domain should

satisfy the following three objectives: First, computing load should be balanced by assigning

different number of elements to each subdomain based on the amount of computing resources

available to the corresponding process. Second, the number of interface nodes among the

subdomains should be minimized to reduce the amount of data communication between

processes. Third, the algorithm for domain partitioning itself should be fast and efficient.

Among those objectives, the second is particularly important for the proposed hybrid itera-

tive/direct linear system solver. A good partitioning strategy not only significantly reduces

the amount of data communications of parallel matrix-vector multiplication, which leads

to higher efficiency of the GMRES iteration, but also produces a high-quality fill-reducing

ordering that leads to a higher degree of concurrency for the factorization phase of the di-
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Figure 3.6. Domain partitioning by METIS

rect solver (Kumar et al., 1994). As such, domain partitioning is critical to the parallel

implementation of the proposed hybrid solver.

Finite element mesh can be mathematically represented as graph based on connectivity.

Partitioning such a graph is a NP-complete problem (Andreev and Räcke, 2004). Algorithms

such as the spectral partitioning methods (Pothen et al., 1990, 1992; Hendrickson and Leland,

1995) and the multilevel spectral bisection (MSB) method (Barnard and Simon, 1994) are

quite expensive though they produce a reasonably good partition. In this work, we employ a

multilevel graph partitioning scheme developed by Karypis and Kumar (Karypis and Kumar,

1998a,b), also known as the METIS package. It partitions a graph using either the multilevel

recursive bisection algorithm or the multilevel k -way algorithm. METIS is usually two orders

of magnitude faster than the MSB algorithm and produces higher quality ordering that leads

to substantially smaller fill-in than other frequently used algorithms (Karypis and Kumar,

1998a,b). Figure 3.6 shows an example of domain partitioning by using the METIS package.

The finite element mesh of a thin plate is divided into 48 subdomains, which are represented

by different colors.

3.6.2.2 Shared-memory parallelism

As illustrated in Figure 3.7, the shared-memory parallelism of XTFEM is exploited from three

computing-intensive tasks that are assigned to individual MPI process: (1) the formulation of

local spatial stiffness and mass matrices, (2) the sparse matrix-vector multiplication (SpMV)
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Figure 3.7. Shared-memory parallelism of XTFEM

subroutine in the iterative part of the hybrid solver, and (3) the double precision general

matrix multiplication (DGEMM) subroutine in the direct part of the hybrid solver.

The spatial matrices are formed in two steps. First, the element matrices are calculated

and assembled into a COO sparse matrix. Then, the COO matrix is compressed to CSR

matrix, which is the input format used for the hybrid solver. Among the above two steps,

formulating element matrices is the most time-consuming and well-suited for the single in-

struction, multiple data (SIMD) multithreading parallelization. Thus, the OpenMP (Dagum

and Menon, 1998) multithreading technique is employed to accelerate this step based on its

intrinsic element-wise parallelism.

In terms of computational cost, the iterative and direct parts of the hybrid solver are

respectively dominated by the SpMV and the DGEMM subroutines (Tian, 2014). Those

subroutines are well-suited for SIMD-type parallelization based on either row-wise or column-

wise parallelism. However, parallel efficiency of those two subroutines also depends on hard-

ware architecture. To analyze the efficiency of SpMV and DGEMM subroutines, we introduce

the arithmetic to memory ratio (AMR), which is defined by the number of arithmetic oper-

ations to the amount of memory accesses required by an algorithm. The theoretical upper
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Table 3.3. Performance evolution of supercomputers (2009-2018)

Name Year
Peak performance Memory bandwidth Network bandwidth

(Tflops) (GB/s) (GB/s)
Summita 2018 200,795 135.0 23
Titanb 2012 27,113 52.0 8

Kc 2011 11,280 64.0 10
Jaguard 2009 2,311 25.6 4
Sources: a(ORNL, 2018a), b(Tian, 2014; ORNL, 2018b), c(RIKEN, 2018)

d(Bland et al., 2010)

bound of the AMR of SpMV is 2:1 (flops/bytes) (Tian, 2014). Hence, SpMV subroutine is

memory-intensive in the sense that its computing time is bounded by memory bandwidth of

hardware rather than CPU speed. In contrast, DGEMM is a computing-intensive subroutine

with an AMR of n:1, where n is the size of the dense frontal matrix (Tian, 2014).

Currently, newer HPC platforms typically have large AMR values and the trend of ar-

chitecture evolves towards a higher AMR since improvement on processors (CPUs/GPUs)

are usually much faster than that of memory/network bandwidth. For example, the peak

performance of top supercomputer in the past decade (see Table 3.3) has increased 86 times

while the memory and network bandwidth improved only 5.3 and 5.8 times, respectively.

Similarly, the flops to bytes ratio, i.e. AMR, of NVIDIA’s TESLA general-purpose GPUs

(GPGPU) increased 11 times since 2008 (see Table 3.4). Therefore, the SpMV subroutine is

less efficient on most HPC platforms compared to the DGEMM subroutine. From this per-

spective, the proposed hybrid iterative/direct solver utilizes HPC platforms more efficiently

than the conventional iterative solvers.
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Table 3.4. Performance evolution of NVIDIA TESLA GPU (2009-2018)

Model Year
DP performance Memory bandwidth

flops/bytes
(Tflops) (GB/s)

V100 2018 7,834 897 8.7
P100 2016 4,763 732 6.5
K40 2013 1,430 288 5.0

C2090 2011 656 177 3.7
S1070 2008 78 102 0.8

Source: (TechPowerUp, 2018)

3.7 Numerical examples

3.7.1 Performance of the conventional iterative solver

The problem statement of this example is given in Section 2.6.2 and here we mainly focus on

evaluating the computational performance of stiffness matrix equation solvers. The spatial

domain of this problem is discretized by 195 Q9 elements with plane stress formulation and

the temporal domain is divided into 460 slabs. The total number of DOFs is 5,502.

The conventional iterative solver introduced in Section 3.4 is employed for this example

and configured as follows: (1) AMD algorithm is used for reordering, (2) ILUTP parameters

droptol and permtol are respectively set to 1.0e-5 and 0.01 as suggested in (Saad, 2003) and

(3) GMRES convergence tolerance and the maximum number of iterations are set to 1.0e-8

and 1,000, respectively. The problem is solved with Intel Xeon E5-2667 CPU using single

core. The total computing time used is about 8.0 seconds for 460 space-time slabs.

Next, we investigate the computational performance of different preconditioning and

reordering techniques. Numerical accuracy, computational time and memory cost are the

three metrics that are used to evaluate the performance. In terms of accuracy, the numerical

error is calculated by L2-norm with a reference solution obtained by the direct solver. The

direct solver was implemented using the DGESV subroutine in Linear Algebra Package
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library (LAPACK 1), which has a computational complexity of O(N3). Since the problem is

linear elastic, reordering and preconditioning are only required for the first time-step, thus

the total CPU time for the first step is chosen as the time cost metric. Due to its major

contribution to storage cost, the ratio of the number of nonzero entries of LU factors to the

number of nonzero entries of system matrix is defined as fill-in ratio to measure the memory

usage.

For different preconditioners and reordering algorithms, the above performance metrics

together with the number of iterations to converge are summarized in Table 3.5. Without

any preconditioners, the GMRES solver fails to converge after it reaches the maximum

number of iterations that allowed. Due to the large L2-norm error finally obtained, it is

unlikely to converge even with multiple restarts of iteration, which is typically not cost-

effective. This also indicates that condition number of space-time stiffness matrix is high.

By employing the simple ILU(0) preconditioner, solution converged after 342 iterations with

a satisfied accuracy. Since fill-in is not allowed by ILU(0), the fill-in ratio equals one. The

number of iterations is further reduced to 25 by utilizing ILUTP preconditioner. However,

the time and memory cost are respectively increased almost 6 and 9 times compared with

those from ILU(0). The increasing in computational cost can be effectively reduced by either

AMD or RCM reordering algorithms in this example, which is clearly demonstrated by the

performance metrics shown in Table 3.5.

Now we further study the influences of ILUTP parameters with AMD reordering algo-

rithm. The droptol and permtol are chosen as [1.0e-3, 1.0e-4, 1.0e-5] and [0.0, 0.01, 0.5]

respectively, thus totally nine sets of results are given in Table 3.6. Since the smaller droptol

leads to a more accurate ILU factorization, the iteration number is significantly reduced as

well as the CPU time, and memory cost is increased due to more fill-in’s that are allowed.

However, there is no obvious correlation between the accuracy of GMRES solution and ILU

1See http://www.netlib.org/lapack for details
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Table 3.5. Performance comparison between preconditioners and reordering algorithms

Preconditioner Reordering Iterations
L2-norm Time Fill-in

error (s) ratio
None None 1000 6.52e-01 5.25 n/a

ILU(0) None 342 1.98e-07 1.46 1.0
ILUTP None 25 3.06e-06 9.85 8.8
ILUTP AMD 17 2.17e-07 0.15 1.2
ILUTP RCM 21 2.02e-07 0.20 1.5

Table 3.6. Parameter study of the ILUTP preconditioner

droptol permtol Iterations L2-norm error Time (s) Fill-in ratio

1.0e-03
0.00 277 3.98e-05 1.25 1.08
0.01 149 2.20e-06 0.55 1.04
0.50 166 7.92e-06 0.63 1.06

1.0e-04
0.00 107 1.24e-04 0.47 1.20
0.01 51 1.33e-06 0.24 1.16
0.50 58 4.94e-07 0.25 1.16

1.0e-05
0.00 43 4.11e-05 0.22 1.22
0.01 17 2.17e-07 0.15 1.18
0.50 22 2.71e-07 0.16 1.18

factorization. Pivoting of columns clearly shows an improvement on both efficiency of the

ILU preconditioner and accuracy of the GMRES solver. Values of permtol between 0.01 and

0.5 lead to similar results.

Finally, we study the performance of the conventional preconditioned iterative solution

method in terms of its scaling with the number of DOFs, which is denoted by N . By refining

the spatial discretization with a constant element aspect ratio, the maximum number of

DOFs is obtained as almost 1 million. The results are shown in Figure 3.8. Performance

of direct solver (LAPACK/DGESV) is also provided for the purpose of comparison. Time

costs shown in Figure 3.8 (a) are the total CPU time for the first space-time slab. Since

the computational cost of ILUTP preconditioner depends on system matrices, the overall
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Figure 3.8. Performance of iterative and direct solvers: (a) time and (b) memory costs

time cost of the proposed method is problem-dependent. For this particular example, the

iterative method achieves a time cost of O(N1.6), which is much smaller than the O(N3)

cost by the direct solver. By utilizing the sparse matrix format and reordering algorithms,

the memory cost, which is mainly contributed by system matrix and preconditioner, is

linearly proportional to the number of DOFs as shown in Figure 3.8 (b). The memory

cost is less than 10 Gigabytes for the largest problem with almost 1 million unknowns.

This computational performance is comparable to the case of standard FEM. Therefore, the

conventional preconditioned iterative solution method enables solutions of relatively large

2D problems on a single PC using space-time FEM.

3.7.2 Performance of the Kronecker solver

The problem statement of the second example is given in Section 2.6.3 with the exception

that both 2D and 3D cases are studied here with a focus on evaluating the computational

performance of the proposed Kronecker iterative solution algorithm with the following con-

figurations.
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First of all, both 2D and 3D discretizations are established for the spatial domain of

the thin plate for comparison purposes. For 2D discretizations, bilinear quadrilateral (Q4)

elements with plane stress formulation are employed. Eight-node hexahedral elements with

full integration are used for 3D cases. Two sets of structured mesh grids are created by

refining the element size. All the TDG formulations, i.e., TDG-1, TDG-2 and TDG-e, are

employed to discretize the temporal domain.

In addition the proposed Kronecker iterative algorithm, a direct sparse solver (UMF-

PACK1, also a multi-frontal method (Davis, 2004)) and the conventional preconditioned

iterative solver introduced in Section 3.4 are also employed for the purpose of comparison.

For convenience, we denote the proposed method as the Kronecker solver, while the other

two are denoted simply as the Direct and Iterative solvers. Note that reversed Cuthill-

Mckee (RCM) reordering algorithm (Chan and George, 1980) and ILUTP preconditioning

algorithm are used in both the Kronecker and Iterative solvers. Same parameters associated

with these two iterative solvers are used, see the previous Section 3.7.1 or (Zhang et al.,

2016) for details.

For comparison purposes, the same problem is also simulated in semi-discrete FEM with

the Newmark-β method. Since Newmark-β method is an implicit time integration method, it

formulates linear systems of equations with the spatial-only effective stiffness matrix, which

is given by

Keff = K +
1

β∆t2
M (3.23)

The conventional preconditioned iterative solver is employed to solve the systems of linear

equations with the stiffness matrix as shown in Eq. (3.23). Therefore, the result of theoretical

1UMFPACK is part of the SuiteSparse package developed by Professor Tim Davis at Texas A&M Uni-
versity (http://faculty.cse.tamu.edu/davis/suitesparse.html). As shown later, we did the tests in
this section in MATLAB, which integrates the UMFPACK as a default solver for sparse linear systems in
the form of a built-in routine for the backslash (\) and forward-slash (/) operators. To obtain and con-
trol the detailed parameters for direct sparse solver in MATLAB, the function spparms can be called (see
https://www.mathworks.com/help/matlab/ref/spparms.html for details).
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cost analysis in Section 3.5 can be validated by comparing the computational performance

of TDG methods with that of the implicit Newmark-β method.

Both time and storage costs and complexities are presented as follows. The total CPU

time of obtaining solutions to the first space-time slab (or equivalently the first time-step

for Newmark-β method) is reported as the performance metric for time usage since precon-

ditioner is generated at this stage only. The memories used by system matrix factorization,

i.e. the symbolic and numerical factorizations in the Direct solver and the incomplete fac-

torizations in the Iterative and Kronecker solvers, are reported as the performance metric

for storage cost.

The hardware platform for performance testing is a desktop workstation featured with the

Intel Xeon E5-2623v3 CPU and 32 GB RAM. The testing was done using MATLAB of version

R2015b. Note that it was discovered in numerical experiments that with default options

MATLAB automatically accelerates some operations, e.g. those associated with the direct

sparse solver, by using multiple CPU threads. To avoid the automatic parallelization and

ensure the same computing environment, the single thread mode was activated by launching

MATLAB with the following command line option: −singleCompThread.

3.7.2.1 2D spatial discretization

We first evaluate the computational performance for the 2D cases. A summary of the 2D

mesh and the corresponding numbers of DOFs are presented in Table 3.7.

Computational performances of different solvers for the single-field formulation STFEM

are plotted in Figure 3.9. It shows that the conventional preconditioned Iterative solver

achieves a similar efficiency as the multi-frontal Direct solver. The time complexities of

these two solvers are both O(N1.6). The Kronecker solver demonstrates significantly better

performance. The time complexity is reduced to O(N1.3). For larger cases, e.g. N > 104,

the Kronecker solver is at least one order of magnitude faster and requires at least one order

of magnitude less memory than the other solvers.
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Table 3.7. 2D meshes of the thin plate

No.
Element size

(mm)
# Elements # Nodes

# Spatial DOFs
(Newmark-β)

# Space-time DOFs
TDG-1 TDG-2 TDG-e

1 3.0 20 33 66 198 264 396
2 1.5 80 105 210 630 840 1,260
3 0.75 320 369 738 2,214 2,952 4,428
4 0.375 1,280 1,377 2,754 8,262 11,016 16,524
5 0.1875 5,120 5,313 10,626 31,878 42,504 63,756
6 0.09375 20,480 20,865 41,730 125,190 166,920 250,380
7 0.046875 81,920 82,689 165,378 496,134 661,512 992,268
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Figure 3.9. Comparison of computational performance between different solvers for TDG-1
method: (a) CPU time and (b) memory usages

Figure 3.10 demonstrates the computational performances of different solvers for the

two-field formulation STFEM. It also shows that the Kronecker solver works more efficiently

when compared to the other solvers. The time complexity is further reduced from O(N1.7)

to O(N1.2). Although storage complexities of the Iterative and Kronecker solvers are the

same, the actual memory cost of the former is almost an order of magnitude higher than the

latter, which indicates high memory usage efficiency. Therefore, it enables solution of much

larger problems using the same hardware.

For the enriched formulation of XTFEM, the computational performances of different

solvers are illustrated in Figure 3.11. The Direct solver shows time complexity of O(N1.6),
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Figure 3.10. Comparison of computational performance between different solvers for
TDG-2 method: (a) CPU time and (b) memory usages
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Figure 3.11. Comparison of computational performance between different solvers for
TDG-e method: (a) CPU time and (b) memory usages

which is slightly better than O(N1.7) of the Iterative solver. The Kronecker solver further

reduces the time complexity to O(N1.2). The memory cost of the Kronecker solver is close

to two orders of magnitude lower than the others.
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Figure 3.12. Comparison of computational performances between Newmark-β method and
TDG-based methods: (a) CPU time and (b) memory usages

To further demonstrate efficiency of the Kronecker solver, we compare its computational

cost with the Newmark-β method. Note that the Iterative solver is used for Newmark-β

method. The results are shown in Figure 3.12. When accelerated by the Kronecker solver,

all TDG formulations achieve the same computational complexity with Newmark-β method.

The time costs of TDG methods are only slightly higher while the memory costs are almost

the same.

3.7.2.2 3D spatial discretization

Next, we evaluate the computational performance of the proposed solution algorithm for 3D

cases. A summary of the 3D meshes and corresponding numbers of DOFs are presented in

Table 3.8.

Computational performances of different solvers for the single-field formulations are

shown in Figure 3.13. The time efficiencies of the Direct solver and the Iterative solver

are O(N2.5) and O(N1.9) respectively. Although the performance of the Iterative solver is

better than the Direct solver, the numerical efficiencies of these two solvers both deterio-
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Table 3.8. 3D meshes of the thin plate

No.
Element size

(mm)
# Elements # Nodes

# Spatial DOFs
(Newmark-β)

# Space-time DOFs
TDG-1 TDG-2 TDG-e

1 2.0 45 128 384 1,152 1,536 2,304
2 1.5 80 210 630 1,890 2,520 3,780
3 1.0 360 651 1,953 5,859 7,812 11,718
4 0.75 960 1,476 4,428 13,284 17,712 26,568
5 0.5 2,880 3,965 11,895 35,685 47,580 71,370
6 0.4 5,625 7,296 21,888 65,664 87,552 131,328
7 0.3 14,000 16,968 50,904 152,712 203,616 305,424
8 0.25 23,040 27,225 81,675 245,025 326,700 490,050
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Figure 3.13. Comparison of computational performance between different solvers for
TDG-1 method: (a) CPU time and (b) memory usages

rated greatly when comparing with the 2D cases. However, the Kronecker solver remains

a high efficiency with a time complexity of O(N1.7) and a storage complexity of O(N1.6).

For N > 104, the performance of the Kronecker solver is an order of magnitude better than

the Iterative solver and two orders of magnitude better than the Direct solver as shown in

Figure 3.13.

For the two-field formulation in 3D cases, the Kronecker solver works significantly bet-

ter than the other solvers as shown in Figure 3.14. It reduces the time complexity from

70



103 104 105 106

N

10-2

10-1

100

101

102

103

104

Direct, O(N2.5)
Iterative, O(N2.5)
Kronecker, O(N 1.7)

103 104 105 106

N

10-1

101

102

103

104

105

106

Direct, O(N2.0)
Iterative, O(N1.6)
Kronecker, O(N 1.6)

(b)(a)

Figure 3.14. Comparison of computational performance between different solvers for
TDG-2 method: (a) CPU time and (b) memory usages

O(N2.5) to O(N1.7). The computational cost of the Kronecker solver is at least two orders

of magnitude lower than the others for larger N .

Figure 3.15 demonstrates the computational performances of different solvers for the en-

riched formulation in 3D cases. The time complexity of the Direct solver is further increased

to O(N2.7). The Iterative solver performs slightly better than the Direct solver. The Kro-

necker solver remains the same high efficiency of O(N1.7) and its cost is almost 1 ∼ 2 orders

of magnitude lower than the other two for N > 104 cases.

The results presented so far showed that the Kronecker solver achieved significantly bet-

ter performance for all TDG formulations in 3D cases. To further demonstrate its efficiency,

we compare its performance with Newmark-β method. Figure 3.16 shows that the com-

putational efficiency of all TDG formulations accelerated by the Kronecker solver are on

the same level of Newmark-β method. While memory costs are very close, time costs of

the TDG methods are constant times higher than Newmark-β method, which agrees well

with the theoretical analysis in Section 3.5. As we already shown in Section 2.6 that the

TDG methods generally employ a much larger time step than the semi-discrete schemes due
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Figure 3.15. Comparison of computational performance between different solvers for
TDG-e method: (a) CPU time and (b) memory usages

102 103 104 105

Number of nodes

10-4

10-2

100

102

104

Newmark-
TDG-1
TDG-2
TDG-e

102 103 104 105

Number of nodes

10-2

100

102

104

Newmark-
TDG-1
TDG-2
TDG-e

(b)(a)

Figure 3.16. Comparison of computational performances between Newmark-β method and
TDG-based methods: (a) CPU time and (b) memory usages

to the higher-order accuracy and unconditional stability. Thus, with the acceleration of the

proposed Kronecker solver, the overall computational performance of TDG methods is much

better than that of the traditional semi-discrete schemes such as the Newmark-β or central

difference method.
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With all the results shown above, it is concluded that the proposed Kronecker solver is

highly efficient for numerous TDG formulations in both 2D and 3D cases.

3.7.3 Performance of the hybrid iterative/direct solver

To demonstrate the performance of the proposed hybrid iterative/direct solver, we study

again the previous plate example with 3D discretization and evaluate the CPU time and

memory usages for solving a single space-time slab. For simplicity, only XTFEM is considered

here. The performance is assessed in two steps. First, we check the single-thread performance

without using the parallel computing capability. Next, the computational complexity of the

accelerated XTFEM is compared with standard FEM.

3.7.3.1 Serial version

To study the single-thread performance of the hybrid solver, we gradually refine the spatial

discretization of the plate until it reaches about a half million DOFs. During the refinement

process, the aspect ratio of the element remains the same to ensure consistent mesh quality.

For comparison purposes, we also employ the sparse direct and iterative solvers to solve

the XTFEM stiffness matrix equations. The direct solver is the same as the direct part

of the hybrid solver, i.e. the serial-version of MUMPS solver. The iterative solver is the

conventional preconditioned iterative solver introduced in Section 3.4, which employs the

ILU preconditioner with AMD reordering method and the GMRES iteration algorithm. A

desktop workstation equipped with the Intel Xeon E5-2623v3 CPU and 32 GB RAM is used

for the single-thread performance testing.

Figure 3.17 provides a comparison on the performances of those linear system solvers.

According to Figure 3.17 (a), the hybrid solver achieves a time complexity of O(N1.4) while

the time complexities of the direct and iterative solvers are respectivelyO(N2.6) andO(N1.8).

For the cases of N > 104, the hybrid solver is at least 1 ∼ 2 orders of magnitude faster than
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Figure 3.17. Comparison of computational performance among the direct, iterative and
hybrid solvers, (a) CPU time usage and (b) memory cost

the others. The memory costs are shown in Figure 3.17 (b). In terms of storage complexity,

the iterative solver achieves the best performance of O(N1.4). The direct solver shows the

worst performance of O(N2.2). The hybrid solver demonstrates a complexity of O(N1.6),

which is slightly higher than that of the iterative solver. However, in terms of the actual

memory usage, the hybrid solver is 1 ∼ 2 orders of magnitude lower than the other solvers

since explicit formulation of the space-time matrices is avoided.

Next, we compare the performance of the accelerated XTFEM with the standard FEM

that employs the implicit Newmark-β time integration method. To solve the Newmark-β

linear systems of equations, the direct sparse solver, i.e. the serial-version of MUMPS solver,

is employed. Performance of the Newmark-β method is quantified by both the CPU time

and memory usage at the initial time increment.

Performance comparison between the XTFEM and Newmark-β method is shown in Fig-

ure 3.18. As a reminder, the system matrix of XTFEM is 6 times larger than that of the

Newmark-β method for the same spatial discretization. Thus, the performance metrics are

plotted with respect to the number of spatial nodes instead of the number of DOFs. It shows
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Figure 3.18. Comparison of performance between the implicit Newmark-β method and the
XTFEM, (a) CPU time usage and (b) memory cost

that the time usages are on the same level while the memory costs are almost identical. Al-

though Newmark-β method is slightly faster, its time complexity of O(N1.64) is higher than

XTFEM, which is only O(N1.37). In other words, XTFEM will eventually outperform the

Newmark-β method for a single time increment when the number of nodes is large enough.

In addition, XTFEM typically employs a time increment size that is several orders of mag-

nitude larger than that of standard implicit/explicit FEM, which is already demonstrated

in Section 2.6.

3.7.3.2 Parallel version

Similar to the single-thread test, a set of spatial meshes, which is summarized in Table 3.9, is

created by refining the element size to test the parallel performance. The largest case leads

to over 100 million DOFs. It is noted that all the parallel performance tests presented in

this example are conducted on the Lonestar-5, a supercomputer from the Texas Advanced
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Table 3.9. 3D plate meshes for the parallel solver testing

No. Element size (mm) # Elements # Nodes # DOFs
1 0.5 2,880 3,965 71,370
2 0.25 23,040 27,225 490,050
3 0.125 184,320 200,753 3,613,554
4 0.0625 1,474,560 1,539,681 27,714,258
5 0.05 2,880,000 2,981,561 53,668,098
6 0.04 5,625,000 5,783,451 104,102,118

(a) (b)

Figure 3.19. Performance of preconditioner evaluation by direct solver: (a) Wall-clock time
usage vs. number of unknowns and (b) Speedup vs. number of CPU cores

Computing Center (TACC)1. Instead of using CPU time, the elapsed time or the wall-clock

time usage is employed to measure the parallel performance of XTFEM.

As discussed in Section 3.6.1, for linear elastodynamics, analysis and factorization phases

of the direct solver are performed only once to save computational cost. Therefore, we further

decompose the wall-clock time usage into two parts. The first part is the time usage by the

preconditioner, which is mainly contributed by the analysis and factorization phases of the

MUMPS solver. The second part is the time usage by the GMRES solver for each space-time

1See detailed hardware specifications at https://portal.tacc.utexas.edu/user-guides/lonestar5
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(a) (b)

Figure 3.20. Performance of the GMRES solver: (a) Wall-clock time usage vs. number of
unknowns and (b) Speedup vs. number of CPUs

slab, which is mainly contributed by the matrix-vector multiplication and the solution phase

of the MUMPS solver.

Performance of the preconditioner evaluation is shown in Figure 3.19. It can be seen from

Figure 3.19 (a) that the overall time complexity for different number of CPU cores is around

O(N1.4). The speedup ratios are shown in Figure 3.19 (b) with a dashed line representing the

ideal speedup. For all the cases, the speedup ratio increases efficiently with the increasing

number of CPU cores. The speedup curves deviate from the ideal case when the number of

CPUs gets large since the cost of communication becomes more significant and overwhelms

that of computation.

Figure 3.20 shows the performance of the second part – the GMRES solver in terms of

the computational cost of each time step. It can be seen from Figure 3.20 (a) that the time

complexity of the GMRES solver is only O(N1.2). The corresponding speedup ratio is shown

in Figure 3.20 (b), where a similar trend to that of the preconditioning part can be observed.

However, the parallel efficiency of the GMRES part is lower than that of the preconditioning

part.
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Figure 3.21. A breakdown of the time usage of the hybrid solver

A comparison of the time usages between those two parts for different number of un-

knowns is shown in Figure 3.21. We find that the GMRES part contributes to less than 20%

of the total time for N = 71,370, which corresponds to the coarsest mesh. For the finest

mesh, the preconditioner contributes to more than 97% of the total time of the hybrid solver.

Therefore, a significant amount of computational cost can be saved by using the solution

strategy proposed in Section 3.6.1, which minimizes the preconditioner evaluation.

The above performances are obtained by using the first-level parallelism (MPI) only.

To demonstrate the full capability of the hybrid parallel computing using both MPI and

OpenMP, we test the case with 54 million unknowns with 16 MPI processes that are dis-

tributed to 16 compute nodes. Note that on Lonestar-5, each compute node has 24 CPU

cores. In other words, the maximum number of OpenMP threads for each MPI process is 24.

The performance under such a testing configuration is summarized in Table 3.10. It shows

that with the second-level parallelism additional speedup can be achieved for both parts of

the hybrid solver. For this specific case, a total of 4 ∼ 8 OpenMP threads per MPI process

yields the optimal efficiency.
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Table 3.10. Hybrid MPI/OpenMP parallel performance of the hybrid solver

# DOFs
# MPI

processesa
# OpenMP threads

per process

Preconditioner
(direct part)

GMRES
(iterative part)

Time (s) Speedup Time (s) Speedup

53,668,098 16

1 1467.7 1.0 42.0 1.0
2 860.2 1.7 31.6 1.3
4 559.5 2.6 25.6 1.6
8 443.1 3.3 25.7 1.6
16 390.5 3.8 25.4 1.7
24 407.5 3.6 24.0 1.8

Note: a One MPI process per compute node

As a brief summary, we showed in this example that the serial version of the proposed

hybrid solver is at least 1 ∼ 2 orders of magnitude better than conventional solvers in terms

of both CPU time and storage. The parallel version performs well and efficiently handles

problems with over 100 million DOFs using 64 CPU cores. Therefore, the cost of solving

XTFEM stiffness matrix equations is significantly reduced.

3.8 Summary

In this chapter, we studied several efficient solution algorithms to space-time FEM. We first

introduced a conventional iterative solver features with sparse matrix storage/operation,

ILU preconditioners, AMD/RCM reordering and GMRES iteration algorithms. Numerical

examples show that its computational efficiency substantially outperforms the direct solver

with a full matrix format and it effectively handles 2D problems with nearly half million

unknowns on a single PC. However, further testing shows that efficiency of both the conven-

tional iterative solver and the multi-frontal direct sparse solver significantly deteriorated in

3D cases.

By exploiting the unique block structure of space-time stiffness matrix, we proposed

the Kronecker preconditioning technique to accelerate the conventional iterative solver. Ex-

tensive numerical examples demonstrate that significantly accelerates the solution to the
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space-time linear systems of equations. Its numerical efficiency is at least 1 ∼ 2 orders

of magnitude better than the direct sparse solver and the conventional iterative solver for

relatively large numbers of DOFs (e.g., N > 104). It has been shown that the proposed Kro-

necker solver work well for single-field, two-field and enriched TDG formulations in both 2D

and 3D cases. Unlike the iterative predictor/multi-corrector algorithms developed in (Li and

Wiberg, 1996; Chien and Wu, 2000; Kunthong and Thompson, 2005), this algorithm does

not require partially decoupling of the space-time stiffness matrix. Therefore, the proposed

algorithm is generally applicable to all the TDG formulations introduced in Chapter 2.

Based on this novel Kronecker solver, we further proposed a hybrid iterative/direct solver

by replacing the spatial component of Kronecker preconditioner based on incomplete factor-

ization with the spatial stiffness matrix. The hybrid solver enables an HPC implementation

that exploits both distributed- and shared-memory parallelisms in space-time FEM. Bench-

mark examples show that serial version of the hybrid solver is also at least 1 ∼ 2 orders

of magnitude faster in computing time and cheaper in memory consumption than the con-

ventional solvers. The parallel version efficiently handles XTFEM stiffness matrix equations

with over 100 million unknowns using only 64 CPU cores.

With the advanced solution techniques presented so far, the computational cost of TDG

methods for a single time-step is reduced to the same as the implicit algorithm implemen-

tation in the semi-discrete FEM, however, TDG method performs better since it is capable

of using larger time step size than the implicit algorithm for accomplishing comparable ac-

curacy. With such a substantial improvement in computational efficiency, space-time FEM

is ideal and efficient for simulating 3D and large-scale problems that are featured by multi-

temporal scales, sharp gradients and discontinuities in time. This implementation also paves

the way for solving nonlinear problems as most of them can be treated by Newton’s method

that leads to linear system of equations, similar to the ones being treated here.
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CHAPTER 4

GPU-ACCELERATED TWO-SCALE DAMAGE MODEL

4.1 Introduction

In Chapter 2 we have shown that, even with very large time steps, XTFEM remains highly

accurate and stable in capturing high frequency oscillations in mechanical responses due

to various fatigue loading conditions, which successfully addressed the multi-temporal scale

challenge in direct numerical simulation of HCF problems. With the efficient acceleration

techniques proposed in Chapter 3, the capability of XTFEM in handling practical HCF

applications is substantially extended. However, the computational framework still lacks

a nonlinear constitutive model to account for material degradation due to fatigue damage

under cyclic loading.

Fatigue damage can be modeled using fracture mechanics, such as the famous Paris law

(Paris and Erdogan, 1963). The porous metal plasticity approach, such as the Gurson,

Tvergaard and Needleman (GTN) model (Gurson, 1977; Tvergaard and Needleman, 1984)

can also be employed for modeling void growth under cyclic loading. Another broad class

of fatigue damage models is based on the Continuum Damage Mechanics (Lemaitre, 1996;

Lemaitre and Desmorat, 2005). Reviews on CDM-based fatigue damage models can be found

in (Bhamare, 2012; Bhamare et al., 2014; Schlinkman, 2019).

In this chapter, we couple the XTFEM with a CDM-based two-scale fatigue damage

model proposed by (Lemaitre and Doghri, 1994; Lemaitre et al., 1999) and (Desmorat et al.,

The following articles were reused in this chapter with permissions from the publishers:

1. Zhang, R., S. Naboulsi, T. Eason, and D. Qian (2019). A high-performance multiscale space-time
approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elements in
Analysis and Design 166, 103320. Reuse with permission from Elsevier.

2. Zhang, R., L.Wen, S. Naboulsi, T. Eason, V. K. Vasudevan, and D. Qian (2016). Accelerated multi-
scale space-time finite element simulation and application to high cycle fatigue life prediction. Com-
putational Mechanics 58 (2), 329–349. Reuse with permission from Springer Nature.
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2007) for HCF applications on metals. A unique feature of the two-scale CDM model is that

its kinetic law of damage evolution is constructed as a function of the incremental constitutive

variables, such as stress, strain or effective plastic strain, rather than the number of loading

cycles, which is critical for multiaxial and other complex loading conditions. Under complex

loading conditions, the definition of cycle may become ambiguous and the cycle-dependent

damage models require more or less arbitrary equivalent cycle count methods, such as rain-

flow count. The two-scale damage model has already been successfully applied to HCF

problems under uniaxial, biaxial, random and thermal cyclic loading histories (Lautrou et al.,

2009; Zhang et al., 2016). However, it should be noted that many other microstructure-based

material damage models (Liu et al., 2010; Tian et al., 2010; Anahid et al., 2011; Ghosh and

Chakraborty, 2013) can also be integrated with XTFEM. For example, a CDM-based fatigue

damage model was integrated with XTFEM for damage evolution in synthetic rubber under

cyclic loading (Wada, 2017; Wada et al., 2018).

4.2 Two-scale high cycle fatigue damage model

In most HCF applications, magnitudes of fatigue loading are moderate such that the stress

level is below the engineering yield stress. In other words, the mesoscale material behavior

under HCF loading is essentially elastic. However, due to the existence of defects at mi-

croscale, such as voids/cracks, inclusions, etc., the mesoscale stress induces a micro-internal

stress level greater than the local yield stress. The plastic strain accumulates under cyclic

loading and leads to permanent deformation at microscale such as slip bands and decohesion,

which further leads to microcracks and eventually mesoscale fracture.

To account for the micro-plasticity and micro-damage at the defects scale, Lemaitre and

Doghri (Lemaitre and Doghri, 1994) and Lemaitre et al. (Lemaitre et al., 1999) developed a

two-scale damage model that describes the micro-plasticity with classical plasticity equations

and the micro-damage with an evolution law governed by the accumulated plastic strain
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Figure 4.1. A sketch of the two-scale HCF damage model

rate. In this phenomenological model, the various microdefects are conceptually aggregated

as a spherical weak inclusion embedded in the elastic material at mesoscale (Desmorat et al.,

2007). The weakness of the inclusion is accounted for by a microscale yield stress that equals

to the mesoscale endurance fatigue limit. To bridge these two length scales, the Eshelby-

Kröner localization law (Eshelby, 1957; Kröner, 1961) is introduced. The above analysis

provides a general picture of this two-scale damage model, which is further illustrated in

Figure 4.1.

We briefly introduce formulations of the two-scale damage model proposed by Desmorat

and coworkers (Desmorat et al., 2007) here. Note that the original model established in

(Desmorat et al., 2007) accounts for mechanical loadings as well as temperature variations.

It was integrated with XTFEM for thermo-mechanical HCF applications in a recent work

(Schlinkman, 2019). However, in the current implementation, the thermally-induced stresses

are not considered and the material behavior is assumed temperature-independent. There-

fore, the related equations such as thermal expansion in the original formulation are excluded

in this section.

4.2.1 Mesoscale modeling

As we already explained, the mesoscale material behavior under HCF loading conditions is

elastic. Assuming an isotropic linear elastic material, we have the mesoscale constitutive law

written as

ε =
1 + ν

E
σ − ν

E
trσ · I (4.1)
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where E and ν are the Young’s modulus and the Poisson’s ratio, respectively. I is the

second-order identity tensor.

4.2.2 Microscale modeling

A coupled elasto-plasticity/damage model is established to describe nonlinear microscale

material behavior that accounts for micro-plasticity and micro-damage induced by mesoscale

stresses. The total strain at the microscale is

εµ = εµe + εµp (4.2)

where the superscript µ denotes a microscale variable, εµe and εµp are elastic and plastic

strains, respectively.

The microscale elastic strain is governed by

εµe =
1 + ν

E

σµ

1−D
− ν

E

trσµ

1−D
· I (4.3)

where D is the scalar damage variable ranges between 0 (no damage) and 1 (completely

damaged). A conceptual physical definition of damage is the ratio between damaged (unable

to resist loading) and total cross-sectional areas of the Representative Volume Element (RVE)

under consideration. The damage variable is a tensor for general cases. However, for isotropic

damage, it is a scalar.

According to Lemaitre’s damage law, we introduce the concept of effective stress, which

is the stress acting on the undamaged resisting area and given by the force equilibrium

σ̃µ =
σµ

1−D
(4.4)

Substituting Eq. (4.4) into Eq.(4.3) yields a simplified microscale elasticity law that has the

same form as in Eq. (4.1).
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For isotropic material behavior, we employ the classical von Mises yield criterion given

by

f = (σ̃µ −Xµ)eq − σ
∞
f = 0 (4.5)

where Xµ is the backstress, σ∞f is the endurance (asymptotic) fatigue limit, which is a

material property, and (·)eq denotes the von Mises norm, which is given by

(·)eq =

√
3

2
(·dev) : (·dev) (4.6)

where superscript dev indicates the deviatoric part of a tensor. For example, the stress

tensor can be decomposed by

σ = σdev + σhyd (4.7)

in which the hydrostatic part is

σhyd = σhyd · I =
1

3
trσ · I (4.8)

and the deviatoric part is

σdev = σ − 1

3
trσ · I (4.9)

The microscale plastic strain rate is governed by the standard associated flow rule

ε̇µp =
3

2

σ̃µdev −Xµ

(σ̃µ −Xµ)eq

ṗµ (4.10)

in which ṗµ is the accumulated plastic strain rate, which is defined by

ṗµ =

√
3

2
ε̇µp : ε̇µp (4.11)

Evolution of the backstress is described by the linear kinematic hardening rule

Ẋµ =
2

3
Cy (1−D) ε̇µp (4.12)

where Cy is the plastic modulus, which is also a material parameter.
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The Lamaitre damage evolution law is given by

Ḋ =

(
Y µ

S

)s
ṗµ if ws > wD (4.13)

which correlates the damage rate with the accumulated plastic strain rate. In Eq. (4.13),

material parameters S and s are damage strength and damage exponent, respectively. Y µ is

the effective elastic energy density or the strain energy release rate. The criterion to update

the damage rate is by comparing the stored energy density ws with the energetic damage

threshold wD, which is another material parameter. The definitions of the above variables

are given as follows.

The strain energy release rate is given by

Y µ =
1 + ν

2E

[
〈σ̃µ〉+ : 〈σ̃µ〉+ + h

(
1−D

1− hD

)2

〈σ̃µ〉− : 〈σ̃µ〉−
]

− ν

2E

[
〈trσ̃µ〉2 + h

(
1−D

1− hD

)2

〈−trσ̃µ〉2
] (4.14)

where h is the micro-defects closure parameter that accounts for the smaller damage evolution

in compression than in tension and typically h ≈ 0.2 for metals (Lemaitre, 1996; Lemaitre

and Desmorat, 2005), 〈σ̃µ〉+ and 〈σ̃µ〉− are the positive and negative parts of the effective

stress tensor in terms of principal values, respectively. Note that 〈·〉 denotes the Macaulay

bracket.

In the plasticity framework, the stored energy density is contributed by both isotropic

and kinematic hardening. However, the kinematic hardening contribution is periodic under

cyclic loading while the isotropic hardening contribution is monotonic. Since we are dealing

with HCF applications, the periodic contribution is lost and the stored energy density is

given by

ws =

∫
t

(
σµeq − σ∞y

)
ṗµdt (4.15)

where the yield stress σ∞y ≈ σ∞f .
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The energetic damage threshold can be approximated from the monotonic loading test

wD ≈
(
σu − σ∞f

)
εpD (4.16)

in which σu and εpD are respectively the nominal ultimate tensile strength and the corre-

sponding plastic strain, respectively.

Finally, crack initiates when the damage variable reaches a critical value Dc.

4.2.3 Scale bridging

Localization from mesoscale to microscale in the two-scale damage model is governed by the

modified Eshelby-Kröner law (Eshelby, 1957; Kröner, 1961).

First, we have the deviatoric and hydrostatic parts of the microscale strain given by

εµdev =
1

1− bD
[
εdev + b (1−D) εµp

]
(4.17)

εµhyd =
εhyd

1− aD
(4.18)

By combining Eqs. (4.17) and (4.18) we have the localization rule written as

εµ = εµdev + εµhyd · I =
1

1− bD

[
ε+

(a− b)D
3 (1− aD)

trε · I + b (1−D) εµp
]

(4.19)

Since the micro-defects are conceptually collected as a spherical inclusion in this model,

the corresponding Eshelby parameters are given by

a =
1

3
· 1 + ν

1− ν
(4.20)

b =
2

15
· 4− 5ν

1− ν
(4.21)

in which ν is the Poisson’s ratio.

Closed-form solution to the above set of ordinary differential equations under simple

loading conditions is given by (Desmorat et al., 2007) and summarized in Appendix A.
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4.3 Numerical implementation

For general loading conditions, given the mesoscale stress/strain history as an input, the two-

scale damage model needs to be solved numerically. Desmorat et al. (Desmorat et al., 2007)

proposed an efficient implicit Backward Euler solution algorithm to avoid the cumbersome

Newton-Raphson iterations. The Backward Euler scheme solves the two-scale damage model

in three steps shown in this section.

4.3.1 Step 1: elastic prediction

Assuming elastic strain increment at microscale, the total microscopic strain at time tn+1 is

given by

εµn+1 =
1

1− bDn

[
εn+1 +

(a− b)Dn

3 (1− aDn)
trεn+1 · I + b (1−Dn) εµpn

]
(4.22)

where subscript n denotes the time increment.

The stress at microscale is

σ̃µn+1 = C : εµen+1 = C :
(
εµn+1 − εµpn

)
(4.23)

in which C is the fourth-order elasticity tensor.

Yield function is evaluated as

fn+1 =
(
σ̃µn+1 −Xµ

n

)
eq
− σ∞f (4.24)

4.3.2 Step 2: plastic correction

For HCF applications, the number of cycles to crack initiation is very large (105 ∼ 107).

Hence, it is reasonable to assume a constant damage over a time increment. If the yield

function fn+1 > 0, then plasticity corrections are made by solving the following set of coupled

plasticity-damage equations with the Backward Euler scheme

εµn+1 = εµen+1 + εµpn+1 (4.25)
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εµen+1 =
1 + ν

E
σ̃µn+1 −

ν

E
trσ̃µn+1 · I (4.26)

∆εµp =
3

2

σ̃µdev
n+1 −X

µ
n+1(

σ̃µn+1 −X
µ
n+1

)
eq

∆pµ (4.27)

Xµ
n+1 −Xµ

n =
2

3
Cy (1−Dn) ∆εµp (4.28)

First, the incremental form of the localization law is given by

∆εµ =
1

1− bDn

[
∆ε+

(a− b)Dn

3 (1− aDn)
tr (∆ε) · I + b (1−Dn) ∆εµp

]
(4.29)

which can be rewritten by using Eq. (4.25) and given by

∆εµe +
1− b

1− bDn

∆εµp − 1

1− bDn

∆ε− (a− b)Dn

3 (1− aDn) (1− bDn)
tr (∆ε) · I = 0 (4.30)

Substituting the linear elasticity constitutive law, we obtain

∆σ̃µ +
1− b

1− bDn

2G∆εµp − 1

1− bDn

C : ∆ε− K (a− b)Dn

(1− aDn) (1− bDn)
tr (∆ε) · I = 0 (4.31)

where K is the bulk modulus.

Now we introduce a new variable defined by

Sµn+1 = σ̃µn+1 −X
µ
n+1 (4.32)

and substitute it together with Eqs. (4.27) and (4.28) back into Eq. (4.32),

Sµn+1 − σ̃µn +Xµ
n +

[
Cy (1−Dn) + 3G

1− b
1− bDn

]
Sµdev
n+1(

Sµn+1

)
eq

∆pµ

− 1

1− bDn

C : ∆ε− K (a− b)Dn

(1− aDn) (1− bDn)
tr (∆ε) · I = 0

(4.33)

which can be further simplified as

Sµn+1 + Γ′
Sµdev
n+1(

Sµn+1

)
eq

∆pµ +Qs = 0 (4.34)

where

Γ′ = Cy (1−Dn) + 3G
1− b

1− bDn

(4.35)
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and

Qs = Xµ
n − σ̃µn −

1

1− bDn

C : ∆ε− K (a− b)Dn

(1− aDn) (1− bDn)
tr (∆ε) · I (4.36)

are known from the states in the previous time increment.

Substituting Eq. (4.32) into the yield function Eq. (4.24) yields

(
Sµn+1

)
eq
− σ∞f = 0 (4.37)

Note that Sµn+1 and ∆pµ are the only unknowns at time increment n + 1 in Eqs. (4.34)

and (4.37). Therefore, the exact solution for the plastic corrections is obtained as

Sµn+1 =
−Qdev

s(
1 + Γ′∆pµ

/
σ∞f
) −QH

s · I (4.38)

where

∆pµ =
(Qs)eq − σ∞f

Γ′
(4.39)

4.3.3 Step 3: states update and damage evolution

With the solutions from the previous step, now we update the internal state variables and

evaluate the damage.

The normal to the yield surface is

mµ =
SµDn+1

σ∞f
(4.40)

and the internal states at tn+1 are

εµpn+1 = εµpn +
3

2
mµ∆pµ (4.41)

Xµ
n+1 = Xµ

n + Cy (1−Dn)mµ∆pµ (4.42)

σ̃µn+1 = Sµn+1 +Xµ
n+1 (4.43)

εµen+1 = C−1 : σ̃µn+1 (4.44)
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When the energetic damage threshold satisfied, i.e. ws > wD in which ws can be inte-

grated by the trapezoidal rule, the damage at tn+1 is updated by

Dn+1 = Dn +
(
Y µ
n+1

/
S
)s

∆pµ (4.45)

where

Y µ
n+1 =

1 + ν

2E

[〈
σ̃µn+1

〉+
:
〈
σ̃µn+1

〉+
+ h

(
1−Dn

1− hDn

)2〈
σ̃µn+1

〉−
:
〈
σ̃µn+1

〉−]

− ν

2E

[〈
σ̃µn+1 : I

〉2
+ h

(
1−Dn

1− hDn

)2〈
−σ̃µn+1 : I

〉2

] (4.46)

Finally, the stress tensor at tn+1 is updated by

σµn+1 = (1−Dn+1) σ̃µn+1 (4.47)

Material parameters involved with the two-scale damage model are calibrated with exper-

iment data using the closed-form solution (Appendix A) and the above numerical procedure.

See Appendix B for details.

4.4 Coupling with XTFEM

The numerical solution algorithm to the two-scale damage model was implemented first as

a standalone program for the purpose of material parameter calibration as demonstrated

in Appendix B. It was implemented as a post-processor for damage and fatigue for FEM

packages (Desmorat et al., 2007). Similarly, it was also integrated with finite element code

ABAQUS as a user’s material subroutine (UMAT) to be evaluated on Gauss quadrature

points (Schlinkman, 2019). In the current work, we integrate the two-scale damage model

with the XTFEM as a nonlinear material constitutive solver. The element deletion/erosion

technique is employed to remove failed elements with which the associated damage value

reaches the critical damage Dc at crack initiation.
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Figure 4.2. Implementation of the two-scale damage model and its coupling with XTFEM

Figure 4.2 shows the flowchart for the implementation of the two-scale damage model

and its coupling with XTFEM. As it can be seen, we first interpolate XTFEM mesoscale

solutions at the refined time increments by using the enriched space-time shape function.

Then the mesoscale stress/strain histories are evaluated for each spatial Gauss point, which

are provided as inputs for the two-scale damage model. Once the damage value at a Gauss

point reaches the critical value Dc, the corresponding element will be deleted by removing its

contribution to the stiffness matrix and fatigue crack initiates or propagates. In Figure 4.2,

ni is the number of temporal interpolation points and ng is the number of spatial Gauss

quadrature points. Therefore, the evaluation of two-scale damage model is embedded in a

nested space-time loop and solved ning times.

Additional temporal interpolation points per load cycle are required to ensure the ac-

curacy of the single-step implicit Backward Euler scheme of the two-scale damage model.
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Figure 4.3. Convergence study of two-scale damage model under various stress amplitudes:
cycles to failure vs. number of interpolation points per cycle

Thus, nipc, the number of temporal interpolation points per cycle, is first determined by a

convergence study. This is implemented in the standalone code that solves the two-scale

damage constitutive model using the same single-step implicit scheme. In the standalone

code, the stress state is uniaxial and fully-reversed sinusoidal loading with constant ampli-

tude is prescribed. The material parameters employed for this study are listed in Section 4.7.

For various stress amplitudes, Figure 4.3 shows that the number of cycles to failure converged

after nipc > 200. Based on this study, we choose the nipc to be 256. The number of interpo-

lation points per XTFEM step ni equals 25,600 if we employ a space-time slab size of 100

loading cycles.

In terms of computational cost, solving the nonlinear constitutive model is a major com-

ponent in standard FEM implementation due to the complex constitutive update algorithms

and repeated evaluations on all the material points. In the current computational frame-

work, this implementation is more expensive since both spatial and temporal resolutions are

needed for capturing HCF events. In terms of the spatial resolution, refined mesh and more
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material points are placed at high stress/strain gradient regions. On the other hand, as

shown in Figure 4.3, a good temporal resolution typically requires more than 200 increments

per loading cycle to ensure convergence of solution to the two-scale damage model. To sat-

isfy those requirements, the two-scale damage model is embedded in the nested temporal

and spatial loops as illustrated in Figure 4.2 with a computational cost of O(ning), which

could be very large for practical HCF problems. Consequently, solving the two-scale damage

model adds to significant computational cost and becomes a bottleneck, which motivates the

development of high-performance parallel computing algorithm.

4.5 GPGPU parallel computing acceleration

As illustrated in Figure 4.2, implementation of the two-scale damage model is involved in

nested loops. Although the loop over temporal interpolation points is sequential by nature,

the loop over the spatial Gauss points is not since the constitutive updates at different

spatial quadrature points are independent of each other. As such, calculations on the spatial

quadrature points can be carried out simultaneously and the computing task is well-suited

for the single instruction, multiple data (SIMD) parallelization-based platform. With this

intrinsic instruction-level parallelism, parallel computing techniques can be employed to

accelerate the two-scale damage model. The many-core structured Graphic Processing Unit

(GPU) is an ideal candidate for data-parallel computation tasks such as the constitutive

updates outlined above.

4.5.1 Hardware and software architectures

GPUs are specialized processors that were originally designed for high-volume graphics data

processing. Although the operating frequencies of the GPUs are generally lower than the

CPUs, they devote many times more transistors to arithmetic operations (see Figure 4.4).

A single GPU nowadays has up to several thousands of computing cores and this number is
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Figure 4.4. Hardware architectures of the CPU and GPU

still increasing rapidly. Based on this key feature, the GPUs are more suitable for computing

tasks that are arithmetic-intensive and highly parallel. For this work, we employed the GPUs

(TESLA K20c and later K-series models) by NVIDIA for parallel computing purpose. These

GPUs are based on the Kepler architecture, which is schematically illustrated in Figure 4.4.

A full Kepler GPU is implemented with 15 streaming multiprocessors, which are com-

monly termed as SM or SMX. Furthermore, each of these SMs contains 192 single-precision

cores (SP), 64 double-precision units (DP), 32 special function units (SFU) and 32 load/store

units (LD/ST). These lead to a total of 2880 single-precision cores and 960 double-precision

cores in a full Kepler GPU. In terms of memory hierarchy, the off-chip DRAM (Dynamic

Random-Access Memory) is the largest memory for GPU (up to several Gigabytes), which

also has a high theoretical bandwidth up to several hundred Gigabytes per second (see Ta-

ble 3.4). All the parallel threads can access the data stored in DRAM through the on-chip

level-2 (L2) high-speed cache. Within each SMs, there are on-chip shared memory/L1 cache

and read-only data cache that can be accessed by threads running on the same SM, and

registers are dedicated to each thread.

The idea of general-purpose computing on GPUs (GPGPU) has been introduced with

a goal to streamline the programming on GPUs for high performance scientific computing
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purpose. In GPGPU, one first picks out the part of the computing tasks that are suitable

for GPU and originally handled by CPU. By reprogramming the associated part, these

computing tasks are then assigned to GPU, which works as co-processor attached to CPU.

The above procedure can be realized by a specific implementation of GPGPU computing

platform, such as OpenCL, CUDA, Stream, etc.

CUDA, which stands for Compute Unified Device Architecture, is a widely used GPGPU

computing platform and programming model developed by NVIDIA since 2006. In the

current work, the two-scale damage model is implemented in CUDA programming language,

which is an extension to many popular languages, such as C/C++. In terms of CUDA

programming model, CPU and memory are called host while GPU and graphics memory are

referred to as device. Two sets of codes are developed for host and device respectively. The

host codes running on CPU are responsible for transferring data between host and device as

well as launching device codes termed as kernels. The kernels are executed by GPU while the

parallel threads are managed hierarchically by a thread-block-grid structure, i.e., a certain

number of threads form a block and so forth, which is illustrated in Figure 4.5. A unique

index to each thread can be calculated by the built-in blockID and threadID variables.

Figure 4.5 also shows the memory hierarchy in CUDA, which is similar to its underlying

hardware implementation illustrated in Figure 4.4.
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4.5.2 CUDA implementation of the two-scale model

Table 4.1 summarized the pseudocode for the host program that running on CPU. It first

allocates memory on device to store the displacement solution and the internal state vari-

ables that will be copied from the host memory. Since GPU has a quite high memory

bandwidth and the size of data is only of O(ng), time cost due to data transferring could

be neglected. The host code then invokes the GPU kernel with two launching parameters

blocksPerGrid and threadsPerBlock respectively. Once the GPU kernel is completed, the

host code copies the updated state variables from the device memory and then cleans up.

Line 3 in Table 4.1 launches the GPU kernel. Since both the blocks and threads are or-

ganized in a one-dimensional fashion in the current work, multiplication of blocksPerGrid

and threadsPerBlock gives the total number of threads that are launched in GPU. This

number will be slightly larger than number of threads that is needed if the number of Gauss

points is not a multiple of threadsPerBlock. There are many factors affecting the choice

of threadsPerBlock. Presently this choice is made based on the following considerations:

(1) It should be a multiple of 64 from the viewpoint of performance; (2) Small values will

result in an insufficient GPU occupancy; (3) Resources available within a block is limited,

such as registers and other on-chip memory; (4) The maximum value is either 512 or 1024

based on different architectures of GPU and (5) Values between 128 and 256 are suggested

by CUDA’s official optimization manual and have no significant impact on the performance

(Takahashi and Hamada, 2009). In the current work, we chose threadsPerBlock = 128 by

considering the above factors.

The pseudocode for the device program that running on GPU is summarized in Table 4.2.

This pseudocode is a prototype implementation of the two-scale damage model, which is

referred to as the prototype GPU kernel. Here are some explanations on the pseudocode for

prototype GPU kernel:
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Table 4.1. Pseudocode for the host program

Line number Operation
1 Allocate memory on device
2 Copy mesoscale solution and internal state variables from host to device
3 Launch kernel<<<blocksPerGrid, threadsPerBlock>>>
4 Copy updated internal state variables from device to host
5 Release allocated device memory

Table 4.2. Pseudocode for the device program (prototype kernel)

Line number Operation
1 Calculate index by blockID and threadID

2 If index (0-based) < number of Gauss points
3 Loop over temporal interpolation points
4 Interpolate displacement solution
5 Calculate strain and stress at mesoscale
6 Elastic prediction at microscale
7 If yield function is satisfied
8 Plastic correction at microscale
9 Update internal state variables at microscale
10 If energetic damage threshold satisfied
11 Update damage at microscale
12 End If
13 End If
14 End Loop
15 End If

• Line 1 determines the unique index of each thread by the built-in block and threadID

variables;

• Line 2 prevents the execution of kernel for excessively issued threads by comparing the

thread index with the number of Gauss points;

• Lines 4 and 5 perform the temporal interpolation on mesoscale displacement solution

and calculation of stress/strain, and

• Lines 6 ∼ 13 evaluate the two-scale damage model.

98



4.5.3 Optimizations

Two optimization techniques are introduced in current work to improve the computational

performance of the GPU-accelerated two scale damage model. The first one is data caching

technique for improving the efficiency of prototype GPU kernel. The second optimization is

adapting the GPU code to computing platforms equipped with multiple GPUs.

4.5.3.1 Data caching

The data transferred to the device by the host program is stored on graphics memory, which

also known as off-chip global memory. It takes about 400 ∼ 600 clock cycles when the threads

access data from the global memory. Although memory latency can be hidden by higher

occupancy of GPU to some extent and the GPUs nowadays have some built-in implicit data

caching techniques, the frequent global memory access within a loop body slows down the

computation. In the present case, the prototype GPU kernel requires a total of O(ni) times

access to the global memory for each thread. To resolve this issue, we proposed an explicit

data caching technique to minimize performance degradation due to memory latency.

Figure 4.6 presents a comparison between the prototype and the optimized GPU kernels,

while the pseudocode of the optimized GPU kernel is given in Table 4.3. At the beginning

of each GPU thread, as shown in line 3, data corresponding to the current Gauss point is

copied from global memory to on-chip registers. Then the variables stored in registers can

be accessed rapidly from the loop body (line 4) for evaluating the two-scale damage model.

Finally, the results are copied from registers to global memory (line 5) and transferred back to

host memory. With this data caching technique, the time spent on accessing global memory

by each thread is reduced from O(ni) to O(1), and the impact of memory access latency is

minimized.
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Table 4.3. Pseudocode for the device program (optimized kernel)

Line number Operation
1 Calculate index by blockID and threadID

2 If index (0-based) < number of Gauss points
3 Copy data from global memory to registers
4 Same with lines 3 ∼ 14 in the prototype kernel
5 Copy data from registers to global memory
6 End If

4.5.3.2 Multiple GPUs

CUDA provides several features to facilitate multi-GPUs programming, thus we can fur-

ther extend the GPU-accelerated two scale model to adapt multi-GPUs platforms. In

practice, this extension is implemented by modifying the host program in a multi-CPU-

processes/multi-GPUs fashion.

Table 4.4 shows the pseudocode for the extended host program. Since the size of total

computing task is related to the number of Gauss points, we first divide the Gauss points
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Table 4.4. Pseudocode for the host program on a multi-GPUs platform

Line number Operation
1 Divide Gauss points into NGPU groups
2 Parallel loop over the groups using MPI or OpenMP
3 cudaSetDevice(groupID)
4 Allocate memory on Device(groupID)
5 Copy data[groupID] from host to Device(groupID)
6 Launch kernel<<<blocksPerGrid, threadsPerBlock>>>
7 Copy results from Device(groupID) to host
8 Release allocated memory on Device(groupID)
9 End Parallel

into NGPU groups (line 1), where NGPU is the number of available GPUs. In terms of load

balancing, the number of Gauss points in each group is determined by the computational

capability of the corresponding GPU. Then, as shown in line 2, NGPU CPU processes are

invoked in parallel by using either MPI or OpenMP to distribute the computing tasks to

each GPU. For each CPU threads, we assign a dedicated GPU by using the CUDA function

cudaSetDevice (line 3), which is an API function provided by CUDA. The rest of the

extended host program shown in lines 4 ∼ 8 are the same as the original code, except that

only the computing task related to the assigned group of Gauss points will be performed by

each CPU thread and the dedicated GPU.

4.6 Hybrid CPUs/GPUs parallel acceleration

Following the previously developed parallel computing framework for XTFEM (see Sec-

tion 3.6.2), a hierarchy of parallelisms is also established for the two-scale damage model.

Similarly, the first-level of parallelism arises from domain partitioning. However, communi-

cations among MPI processes are not required since it is a SIMD-type computing task. At

the second-level of parallelism, an element-wise multithreading is employed. In addition to

the CUDA (GPU) version in the previous section, we also developed an OpenMP (CPUs)
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Table 4.5. Pseudocode for the OpenMP version program

Line number Operation
1 !$OMP PARALLEL DO

2 Loop over local spatial Gauss points
3 Loop over temporal interpolation points
4 Interpolate displacement solution
5 Calculate strain and stress at mesoscale
6 Elastic prediction at microscale
7 If yield function is satisfied
8 Plastic correction at microscale
9 Update internal state variables at microscale
10 If energetic damage threshold satisfied
11 Update damage at microscale
12 End If
13 End If
14 End Loop
15 End Loop
16 !$OMP END PARALLEL DO

version of the parallel implementation of the two-scale damage model, which is summarized

in Table 4.5. The first and last lines are the OpenMP directives (in FORTRAN format).

Without those directives, it reduces to a serial code. Note that only the outer loop over the

Gauss points on subdomain is expanded by OpenMP directive.

Theoretically, OpenMP and CUDA versions of the two-scale damage model can be used

simultaneously. In practice, however, it makes the load balancing between CPUs and GPUs

too complicated. In addition, it will be shown later that a single GPU is typically orders of

magnitude faster than a single core of CPU. Therefore, only the CUDA version is employed

when GPUs are available, otherwise the OpenMP version is used.

4.7 Numerical example

Now we consider an HCF life prediction problem of a single edge notched plate made of

304L stainless steel. Material parameters are given as density ρ = 7860 kg/m3, Young’s
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Table 4.6. Two-scale damage model parameters

Cy (MPa) σu (MPa) εpD σ∞f (MPa) h Dc S s

1,740 577 0.08 180 0.2 0.3 0.5 0.5

1
0

 m
m

5 mm

R = 0.5 mm

2 mm

P = Asin(2pft)H(t) MPa(a) (b)

Figure 4.7. HCF of single edge notched plate: (a) geometric model and boundary
conditions; (b) 2D spatial mesh

modulus E = 197 GPa and Poisson’s ratio ν = 0.3. Table 4.6 shows the parameters of the

two-scale damage model given by (Desmorat et al., 2007; Bhamare et al., 2014), which have

been verified with experimental results (Vincent et al., 2012).

Figure 4.7 (a) shows the geometric model and boundary conditions of the single edge

notched specimen. A constant amplitude, fully-reversed cyclic fatigue load is uniformly

applied on top side of the specimen, which is P = A sin(2πft)H(t) MPa with f = 20 Hz.

The bottom side of the plate is fixed. As shown in Figure 4.7 (b), 1,208 bilinear quadrilateral

(Q4) 2D elements with plane stress formulation are used for spatial domain discretization.

The element size at the notch root is 0.05 mm, which was determined by a mesh convergence

study (Bhamare, 2012). The number of DOFs for this problem is 15,240. Before crack

initiates, the XTFEM time step, or equivalently the size of the space-time slab, is 100T,
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Figure 4.8. Comparison of explicit FEM and XTFEM solutions for single edge notched
plate (A = 70 MPa): (a) von-Mises stress; (b) displacement history

where T is the period of the applied loading cycle. Once fatigue crack initiated, the time

step is reduced to 10T to capture the propagating crack.

For the purpose of comparison, we employed ABAQUS/Explicit solver for the first few

cycles without the damage model. Figure 4.8 (a) shows the contour plot of maximum

mesoscale von-Mises stress under load amplitude A = 70 MPa. Displacement history on

the loading edge is shown in Figure 4.8 (b). It is clearly illustrated that the results obtained

by XTFEM agree well with the explicit FEM results.

Figure 4.9 shows the results of XTFEM simulations on HCF of the single edge notched

sample. Fatigue crack propagation is shown in Figure 4.9 (a). The crack initiated at the

notch root and propagated to the critical crack length, which is half width of the specimen.

Exponential crack growth shown in Figure 4.9 (b) is consistent with the trends that are

observed in the experiments on fatigue crack growth. The typical HCF behavior that most

of the fatigue life is consumed by crack initiation is also effectively captured and clearly

demonstrated in Figure 4.9 (c).

For parallel acceleration, both dual CPUs (Intel Xeon E5-2667, 3.5 GHz, 6 cores per CPU)

and dual GPUs (NVIDIA TESLA K20c, 2496 CUDA cores per GPU, peak double-precision
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Figure 4.9. Results of XTFEM simulations on HCF of the single edge notched plate: (a)
fatigue crack path; (b) crack length vs. cycles; (c) S-N curve

performance of 1.17 TFLOPS) are employed in this numerical example. The computational

time by the OpenMP code that runs on a single CPU core is taken as a reference to calculate

the speedup ratio. Figure 4.10 (a) shows that the speedup of the OpenMP code scales linearly

with the number of CPU cores. By using 12 CPU cores, a speedup ratio of 11 is obtained.

The speedup ratio of the prototype GPU code is 57, while the optimized code achieved

a much higher speedup ratio of 126. By using two GPUs, the speedup ratio is further

increased to 214. In addition, by varying the number of Gauss points, the performance of

the optimized GPU code is illustrated in Figure 4.10 (b). It shows that the speedup ratio is

low for small number of Gauss points. The poor performance is due to the insufficient GPU

occupancy. However, the performance improves rapidly with the increasing of the number

of Gauss points and finally reaches a plateau. Thus, we conclude that the proposed HPC
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Figure 4.10. Speedup ratio of the two-scale damage model by parallel computing

implementation has a good parallel scalability and efficiently accelerates the evaluation of

the two-scale damage model.

4.8 Summary

In this chapter, we introduced the formulation and numerical implementation of a CDM-

based two-scale HCF damage model proposed by Desmorat et al. (Desmorat et al., 2007).

This model is integrated with the XTFEM as a nonlinear constitutive solver to account for

material degradation under cyclic loading conditions, which leads to a complete multiscale

computational framework for HCF life prediction applications. Computational cost analysis

shows that the evaluation of the damage model is a bottleneck in the framework due to

the high-resolution requirement in terms of spatial-temporal quadrature points. HPC paral-

lel implementations based on CPUs (MPI/OpenMP) and GPUs (CUDA) are developed to

accelerate the two-scale model. Finally, a 2D example shows that the accelerated computa-

tional framework effectively captures the physics of HCF material behavior and efficiently

handles the direct numerical simulation with a good accuracy.
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CHAPTER 5

DATA-DRIVEN MICROSTRUCTURE-BASED CONCURRENT

MULTISCALE MATERIAL MODELING

5.1 Introduction

In Chapter 4, a two-scale damage model developed by (Desmorat et al., 2007) is integrated

with XTFEM for HCF life prediction applications. In this model, an RVE is established by

conceptually aggregating micro-defects such as cracks and voids as a spherical weak inclusion

embedded in the elastic material at mesoscale. Plasticity and damage are accounted for on

the weak inclusion where the microscale stress is derived from the mesoscale stress using the

localization law. The two-scale damage model is a phenomenological constitutive model and

it does not directly account for the material microstructure, which plays a key role in HCF

applications (McDowell, 2007; Chan, 2010; Przybyla et al., 2010).

In this chapter, we introduce microstructure-based RVEs into HCF damage modeling.

Multiscale models such as the FE2 method (Feyel, 1999; Feyel and Chaboche, 2000; Feyel,

2003) are computationally expensive and makes HCF simulation infeasible with the current

computing technology. In addition to the challenge associated with computational costs,

reasonably accurate microstructure models are necessary to capture HCF failure mechanisms.

In this context, it is desirable to establish a reduced-order multiscale material model without

compromising the accuracy. Herein, a data-driven reduced-order multiscale model, i.e. the

Self-consistent Clustering Analysis (SCA) proposed in (Liu et al., 2016), is employed in this

work to for microstructure-based HCF material constitutive modeling.1

1We gratefully acknowledge Professor Wing Kam Liu and his group at Northwestern University for
providing us access to the SCA software package.
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5.2 Self-consistent Clustering Analysis

In this section, mathematical formulations of the SCA under the small deformation assump-

tion is briefly reviewed. For more details please refer to (Liu et al., 2016).

5.2.1 RVE: the Lippmann-Schwinger equation

Considering a material microstructural RVE in domain Ω subjected to far-field macroscopic

loading, the equilibrium condition in the absence of body force can be equivalently repre-

sented by the integral Lippmann-Schwinger equation in terms of local strain under the as-

sumption of periodical boundary conditions. For any point x ∈ Ω, the Lippmann-Schwinger

equation is given by

ε(x) +

∫
Ω

Φ0(x,x′) :
[
σ(x′)−C0 : ε(x′)

]
dx′ − ε0 = 0 (5.1)

where Φ0(x,x′) is the Green’s function, C0 is the isotropic linear elastic stiffness tensor of

the homogenized reference material, and ε0 is the far-field macroscopic strain.

In order to solve for local strain ε(x), macroscopic constraint is added to Eq. (5.1),

1

|Ω|

∫
Ω

ε(x)dx = ε̄ or
1

|Ω|

∫
Ω

σ(x)dx = σ̄ (5.2)

where |Ω| is the volume of the RVE, and the superimposed bar indicates the effective

macroscale variable.

For convenience, Eq. (5.1) is rewritten in an incremental form:

∆ε(x) +

∫
Ω

Φ0(x,x′) :
[
∆σ(x′)−C0 : ∆ε(x′)

]
dx′ −∆ε0 = 0 (5.3)

To numerically solve Eq. (5.3), the RVE is first discretized with a very fine voxel mesh,

which is called the high-fidelity RVE. An example of the high-fidelity RVE is illustrated in

Figure 5.1, where several spherical inclusions are embedded in the matrix material. This

cubical RVE is discretized by a total of 1 million voxels (100 × 100 × 100), where each
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Figure 5.1. An example of high-fidelity RVE with 1 million voxels

Figure 5.2. An example of reduced-order RVE with 128 clusters
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voxel represents a material point in the RVE. The computational cost would be very high to

directly solve Eq. (5.3) for every voxel in the high-fidelity RVE.

In order to reduce the computational cost, SCA partitions the large number of voxels

in the high-fidelity RVE into a small number of voxel groups termed as material clusters.

The partitioned RVE is called the reduced-order RVE. Figure 5.2 shows an example of the

reduced-order RVE generated from Figure 5.1. The inclusion and matrix phases are both

decomposed into 64 material clusters as indicated by different colors. SCA further assumes

that all local variables such as ε(x) are uniform in a cluster. With that in mind, the

Lippmann-Schwinger equation (5.3) is averaged for each cluster. For the I -th cluster, the

reduced-order cluster-based Lippmann-Schwinger equation is given by

∆εI +
k∑

J=1

DIJ :
[
∆σJ −C0 : ∆εJ

]
−∆ε0 = 0 (5.4)

where k is the number of clusters, DIJ is a well-defined quantity in micromechanics termed

as the interaction tensor between the I -th and J -th cluster and is given by

DIJ =
1

cI |Ω|

∫
Ω

∫
Ω

χI(x)χJ(x′)Φ0(x,x′)dx′dx (5.5)

in which cI is the volume fraction of the I -th cluster, χI(x) is called the characteristic

function and defined by

χI(x) =

1 x ∈ ΩI

0 x /∈ ΩI
(5.6)

Similarly, the constraints are rewritten as

k∑
I=1

cI∆εI = ∆ε̄ and
k∑
I=1

cI∆σI = ∆σ̄ (5.7)

The discretized Lippmann-Schwinger equation (5.4) and the macroscopic constraints (5.7)

constitute the governing equation of the reduced-order RVE to be solved for macroscopic

material points. In SCA, the solution to these equations is determined in two stages. The
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first one is an a priori analysis called the offline stage, which is relatively slow but only needs

to be performed once. The second stage is called the online stage and rapidly solves the

equations on the reduced-order RVE under given macroscopic loading conditions.

5.2.2 Offline stage: a data-driven clustering analysis

The offline stage of SCA comprises three steps. In the first step, the high-fidelity RVE is

subjected to a series of orthogonal loading conditions and linear elastic direct numerical

simulations (DNS) are performed, which is similar to the RVE analysis in micromechanics.

From each of these DNS, we obtain a database of mechanical response at every material

point in the high-fidelity RVE. The mechanical response is characterized by the following

strain concentration tensor,

A(x) =
∂εmicro(x)

∂εmacro
(5.8)

After the database generation step, a domain decomposition step is carried out. In

this step, material points in the high-fidelity RVE are clustered based on similarity in their

mechanical responses. SCA further assumes that material points in the same cluster share

exactly the same constitutive behavior within the elastic regime and always response the same

way under inelastic loading conditions. It is worth noting that the cluster analysis is widely

used in other fields such as data mining, data compression, and machine learning. There

are many clustering algorithms readily available. In SCA, the k -means clustering algorithm

is often employed (MacQueen, 1967). In this algorithm, material points are clustered solely

based on their mechanical responses instead of the spatial adjacency. Hence, material points

in the same cluster might be in disconnected parts of the RVE (see Figure 5.2). Also the

clusters usually do not have an equivalent number of material points, which is substantially

different with the conventional location-based domain decomposition techniques. A key

benefit from this algorithm is that even with a relatively small number of material clusters the

extreme microscopic mechanical responses in the high-fidelity RVE, which is critical in many
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applications, as well as the overall macroscopic material behavior can be well captured by the

reduced-order RVE. It has been extensively shown that SCA usually achieves a high accuracy

with a small number of clusters (usually at most 256 clusters are sufficient) compared to DNS

(Liu et al., 2016, 2018; Yu et al., 2019; Han et al., 2020). Therefore, SCA significantly reduces

the total number of unknowns in RVE to achieve a satisfactory accuracy.

The last step in the offline stage is to compute the interaction tensor DIJ in the cluster-

based Lippmann-Schwinger equation (5.4). With periodic RVE and isotropic linear elastic

reference material, Green’s function in Eq. (5.5) can be expressed in a simple form in the

Fourier space,

Φ̂0(ξ) =
1

2µ0
Φ̂1(ξ)− λ0

2µ0(λ0 + 2µ0)
Φ̂2(ξ) (5.9)

where ξ is the Fourier coordinate corresponding to x, λ0 and µ0 are Lamé constants of the

reference material, and

Φ̂1
ijkl(ξ) =

δikξjξl

|ξ|2
and Φ̂2

ijkl(ξ) =
ξiξjξkξl

|ξ|4
(5.10)

where |ξ| =
√
ξiξi.

Based on Eq. (5.9), the interaction tensor can be expressed as

DIJ = c1D
IJ
1 + c2D

IJ
2 (5.11)

where

c1 =
1

2µ0
and c2 = − λ0

2µ0(λ0 + 2µ0)
(5.12)

and

DIJ
α =

1

cI |Ω|

∫
Ω

∫
Ω

χI(x)χJ(x′)Φα(x,x′)dx′dx α = 1, 2 (5.13)

In the offline stage, only the material independent parts of the interaction tensor, i.e.

Eq. (5.13), are evaluated by using the Fast Fourier Transform (FFT) algorithm. The full

interaction tensor is calculated using Eq. (5.11) in the online stage with the updated reference

material constants.
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The above offline stage of SCA is analogous to the model training or learning stage in the

data-driven Machine Learning method. In that sense, DNS of the high-fidelity RVE provides

the training data set. The cluster analysis performs the model learning from the training

data set. The cluster-based interaction tensor DIJ
α represents the trained reduced-order

model to be employed in the rapid prediction stage.

5.2.3 Online stage: a self-consistent scheme

The online stage of SCA is integrated into macroscopic analysis and serves as a material

model, e.g. UMAT or VUMAT user subroutine in ABAQUS, to be evaluated at macroscopic

material points for every load increment.

The online stage solves the discrete Lippmann-Schwinger equation in an iterative self-

consistent scheme. The algorithm is summarized as follows:

1. Compute the interaction tensor DIJ using Eq. (5.11) with updated λ0 and µ0;

2. Solve the cluster-based Lippmann-Schwinger equation (5.4) using Newton’s method,

see Appendix C for details;

3. Compute the effective tangent stiffness tensor (usually anisotropic) of the reduced-order

RVE by

C̄ =
k∑
I=1

cICI
alg : AI (5.14)

where

CI
alg =

∂∆σI

∂∆εI
and AI =

∂∆εI

∂∆ε0
(5.15)

are tangent stiffness tensor and strain concentration tensor of the I -th cluster, respec-

tively. Both of them can be computed from the converged Newton iteration in Step 2,

see Appendix C for details;

4. Compute the approximate isotropic linear elastic Lamé constants of the reference ma-

terial by

λ0 =
1

3

(
C̄ :: J − 1

8
C̄ :: K

)
and µ0 =

1

16
C̄ :: K (5.16)
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where J = 1
3
I2 ⊗ I2 and K = I4 − J , in which I2 and I4 are the identity tensors of

rank 2 and 4, respectively;

5. Repeat the previous steps until the reference material constants are converged;

6. Update the output variables (such as the stress tensor and tangent stiffness matrix)

and continue to the next load increment.

In the above algorithm, the second step is the most critical and computationally expensive

one. In this step, material constitutive laws are evaluated for each cluster to obtain the

incremental stress tensor ∆σ, the local tangent stiffness tensor Calg, and other material-

dependent state variables. Detailed algorithm for this step can be found in Appendix C.

5.3 Data-driven fatigue damage modeling

For HCF or ultra HCF (UHCF) applications, material microstructures play a critical role

and multiscale modeling is often a necessity to study fatigue failure mechanisms (McDow-

ell, 2007; Chan, 2010; Przybyla et al., 2010; Przybyla and McDowell, 2010, 2011; Gill-

ner and Münstermann, 2017). However, concurrent multiscale modeling with detailed mi-

crostructural features is usually computationally too expensive for HCF simulations. The

reduced-order SCA introduced in the previous section provides an ideal tool for efficient

concurrent multiscale fatigue damage modeling. In this section, we establish a data-driven

microstructure-based fatigue damage modeling procedure based on SCA. Figure 5.3 illus-

trates a conceptual sketch of the proposed multiscale HCF damage model with SCA. Similar

to the two-scale damage model, macroscale or mesoscale analysis is assumed to be elastic

due to the relatively low load magnitude in HCF applications. The microscale analysis is

performed by the reduced-order RVE based on SCA. To model the microscale plastic defor-

mation and damage under cyclic fatigue loading, material clusters in the RVE are governed

by coupled plasticity-damage constitutive laws.
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Figure 5.3. A sketch of the HCF material model using SCA

5.3.1 From microstructure to RVE

The first step in the multiscale fatigue damage modeling is to establish RVEs based on

material microstructures, which has been extensively studied in the past (Drugan and Willis,

1996; Kanit et al., 2003; Ostoja-Starzewski, 2006; Gitman et al., 2007; Amirmaleki et al.,

2016).

There are several ways to numerically generate the RVEs. They can be directly recon-

structed from 2D or 3D scanned images of material microstructures, which is straightforward

and accurate but could be expensive due to the sheer volume of data to be generated and

processed. They can also be generated numerically based on the statistics from experiment

characterizations to mimic the microscale morphology. For composite materials, RVEs can

be established based on designed microstructures. In some cases, RVEs are simply created

with assumed microstructures. See (Bargmann et al., 2018) for a recent review on RVE

generation techniques.

For HCF applications, typical microstructure features to be considered are defects such

as voids and cracks, inclusions, grain boundaries, etc. See (Moore et al., 2016; Kafka et al.,

2018) for some microstrcutrue-based RVE examples in HCF life prediction. For a particular

material type, the RVE needs to be established based on the observed material microstruc-

tures and the identified microstructural features critical to HCF life. For example, when

microdefects present in a material microstructure, they lead to high stress concentration and

tend to be the weakest spots from where fatigue cracks initiate.
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In this work, we focus on establishing a generic concurrent multiscale HCF modeling

method. Hence, simplified RVEs are employed for convenience, see Figure 5.1 for an example.

Once the RVE is generated, the offline stage of SCA is conducted to train the reduced-order

database for the online prediction stage.

5.3.2 Material laws for clusters

In the online prediction stage of SCA, the cluster-based Lippmann-Schwinger equation is

solved at the microscale, which captures interactions between microstructural features as

well as local mechanical responses in every material clusters. Note that arbitrary local

material constitutive models can be employed for each cluster. For HCF applications, it

is important to capture the permanent plastic deformation and the resulting damage in

material accumulated under large numbers of loading cycles. As an illustration, here we

employ a simple plasticity model with linear kinematic hardening and coupled with a damage

model based on the equivalent plastic strain. Note that other material models can also be

incorporated when appropriate, such as the crystal plasticity model (Anahid et al., 2011;

Ghosh and Chakraborty, 2013; Moore et al., 2016; Liu et al., 2018).

A simple coupled plasticity-damage model Here we consider a simple linear kinematic

hardening plasticity model for local clusters. First the isotropic linear elastic equation is given

by

σ = 2µεe + λtr(εe)I (5.17)

where λ and µ are Lamé parameters, εe is the elastic strain tensor.

For the plasticity part, the von Mises yield function, the equivalent plastic strain rate,

the associated plastic flow law, and the linear (Prager-Ziegler) kinematic hardening rule are

respectively given by √
3

2
(s−α) : (s−α)− σy = 0 (5.18)
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˙̄εp =

√
2

3
ε̇p : ε̇p, ε̇p =

3

2

˙̄εp

σy
(s−α), α̇ =

2

3
Cyε̇

p (5.19)

where s := σdev is the stress deviator tensor, α is the backstress tensor, σy is the yield stress,

εp is the plastic strain tensor, and Cy is the plastic modulus.

For the damage part, we employ the Lamaitre damage evolution law in the previous

two-scale damage model. See Eq. (4.13) in Section 4.2.

Numerical integration The above equations are integrated numerically in an implicit

Backward Euler scheme. First, the elastic predictor is computed by

σ̄pr =

√
3

2
(spr −αo) : (spr −αo), spr = so + 2µ∆εe (5.20)

where superscript “pr” indicates the elastic prediction and superscript “o” indicates the

initial state or the previous load increment.

When the elastic predictor is greater than the yield stress, plastic flow occurs and the

incremental plastic strain tensor is obtained by

∆εp =
3

2
∆ε̄pη (5.21)

where η = (spr − αo)/σ̄pr is the plastic flow direction and the equivalent plastic strain

increment is

∆ε̄p =
σ̄pr − σy
Cy + 3µ

(5.22)

Subsequently the state variables are updated by

α = αo + Cy∆ε̄
pη, σ = α+ σyη + (σpr)hyd (5.23)

and the consistent tangent stiffness tensor can be extracted from

∆σ̇ = 2µ′∆ε̇+ λ′tr(∆ε̇)I +

(
Cy

1 + Cy/3µ
− 3µ′

)
(η : ∆ε̇)η (5.24)

where µ′ = µ (σy + Cy∆ε̄
p) /σ̄pr and λ′ = K − 2

3
µ′, in which K is the bulk modulus.

Finally, the damage variable is updated as a function of the equivalent plastic strain

increment ∆ε̄p, see Section 4.3.3 for details.
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5.3.3 An efficient solution scheme for HCF

Computational performance is always a critical consideration in HCF simulations. Although

SCA greatly reduces the computational expense of RVE simulations, it could be expensive or

even infeasible for direct numerical HCF simulations given the current computer technology.

In fact, the interaction tensor in SCA is typically a dense matrix and the computational

complexity of SCA online stage is at O(k3), where k is the number of clusters (Yu et al.,

2019). In comparison to the previous two-scale damage model, in which only one coupled

plasticity-damage constitutive law is resolved for each macroscopic material point, SCA

needs to evaluate k local material laws, formulate the Jacobian matrix (which is also dense)

and solve the matrix equation for every Newton iteration, and this whole Newton process

is embedded in an outer loop of the self-consistent iteration scheme. Direct implementation

of SCA would be orders of magnitude more expensive than the two-scale damage model. In

this section we present an efficient solution scheme to accelerate the SCA online stage for

HCF applications.

First, as we already explained before, load magnitudes in HCF are usually moderate such

that the material is loaded at a stress level below the yield stress. In other words, macroscopic

material mechanical responses are within the elastic regime while the plasticity and damage

occur at smaller scales. In addition, HCF life is typically dominated by the crack initiation

stage. Hence, we assume that the macroscale material parameters remain constant during the

HCF simulation and the macroscopic material point is eroded once the corresponding RVE

fails due to damage. Subsequently, we no longer need to update the reference material in the

SCA online stage. Only the second step in SCA online stage (see Section 5.2.3), i.e. solving

the cluster-based Lippmann-Schwinger equation, is performed to evolve the micro-plasticity

and micro-damage for each load increment at macroscale. Therefore, computational expense

is saved by avoiding the iterations for updating the reference material constants.
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To further accelerate the SCA online stage, we propose a quasi-Newton method featured

with a Jacobian recycling scheme to replace the full Newton method for solving the cluster-

based Lippmann-Schwinger equation (Appendix C). Such an acceleration technique is rooted

in the cyclic nature in material mechanical responses under fatigue loading and the similarity

in responses shared by adjacent loading cycles. It has been employed in our previous work

on HCF life prediction of rubber materials (Wada, 2017; Wada et al., 2018). This Jacobian-

recycling quasi-Newton algorithm is summarized as follows:

1. Assume there are n time increments per each loading cycle;

2. For a given loading cycle, solve the corresponding n cluster-based Lippmann-Schwinger

equations with the full Newton method and save all the Jacobian matrices M =

{M1,M2, ...,Mn};

3. For subsequent loading cycles, solving the i -th Lippmann-Schwinger equation by quasi-

Newton method using the corresponding recycled Jacobian matrix Mi;

4. If the quasi-Newton method in Step 3 failed to converge, then switch back to the full

Newton method and update & recycle the corresponding Jacobian matrix.

In Step 3 of the above algorithm, the quasi-Newton method saves the computational

costs associated with computing the local tangent stiffness tensors, assembling the Jacobian

matrix, and solving the matrix equation (assuming that M−1
i is also recycled). This algo-

rithm would be much faster compared to the full Newton method in the expense of more

memory usage and degraded convergence rate.

5.4 Microstructure-based HCF material modeling: an example

In this example, we model a high-carbon chromium bearing steel using the proposed concur-

rent multiscale method and study its inclusion induced HCF life. The material microstruc-

ture and elastic properties are extracted from (Gu et al., 2019).
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Figure 5.4. High-fidelity RVE of the steel matrix with spherical Calcium aluminate
inclusions

5.4.1 RVE generation

In (Gu et al., 2019), the microstructural RVE is generated in two steps. First, the grain

structure of the steel matrix is created based on the electron backscatter diffraction (EBSD)

data and a statistical approach. Then, Calcium aluminate inclusions based on scanning elec-

tron microscope (SEM) images are inserted into the matrix. They found that the diameters

of inclusions, which are observed in fatigue crack initiation sites, are ranged from 12.5 µm

to 33.2 µm.

In this work, we generate a simplified RVE with the size of 100 × 100 × 100 µm3. The

steel matrix is assumed to be homogeneous. Spherical Calcium aluminate inclusions with

a diameter of 16 µm are randomly inserted into the RVE in a periodic fashion. The total

volume fraction of the inclusions is assumed to be 2%. The high-fidelity RVE is discretized

by 1 million voxels, which is illustrated in Figure 5.4.
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Table 5.1. Elastic properties of the steel matrix and the Calcium aluminate inclusion

Material Young’s modulus (GPa) Poisson’s ratio
Steel 206 0.30

Calcium aluminate 113 0.23

Table 5.2. Macroscopic strain constraints in RVE mechanical analysis

Loading case # Direction Strain tensor
1 11 {0.001, 0, 0, 0, 0, 0}
2 22 {0, 0.001, 0, 0, 0, 0}
3 33 {0, 0, 0.001, 0, 0, 0}
4 23 {0, 0, 0, 0.001, 0, 0}
5 13 {0, 0, 0, 0, 0.001, 0}
6 12 {0, 0, 0, 0, 0, 0.001}

5.4.2 Offline training stage

First, linear elastic mechanical analysis is conducted based on the high-fidelity RVE. The ma-

terial parameters are given in Table 5.1. The RVE is subjected to 6 orthogonal macroscopic

strain loading conditions summarized in Table 5.2 with periodical boundary conditions. The

RVE analysis is performed by using FFT-based micromechanics. The resulting strain concen-

tration tensors are illustrated in Figure 5.5. For each loading case, the component of strain

concentration tensor corresponding to the loading direction is presented. In Figure 5.5, the

blue to red rainbow colormap is employed.

Next, reduced-order RVEs are generated by using k -means clustering algorithm and the

database of strain concentration tensors. Here, we created 3 reduced-order RVEs with dif-

ferent number of material clusters. In the coarsest case, there are 4 clusters in each material

phase of the RVE and a total of 8 clusters. Similarly, there are in total 32 and 128 material

clusters in the medium and the finest cases. These reduced-order RVEs are illustrated in

Figure 5.6 and colored by cluster indices. Figure 5.7 illustrates the histograms of the mate-
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(a) A11 in loading case # 1 (b) A22 in loading case # 2 (c) A33 in loading case # 3

(d) A23 in loading case # 4 (e) A13 in loading case # 5 (f) A12 in loading case # 6

Figure 5.5. Strain concentration tensors under different loading conditions

rial volume fractions in each reduced-order RVE. A bi-modal distribution is observed for all

three cases, which clearly shows that SCA employs a response-based domain decomposition

strategy instead of a location-based one.

Finally, the material-independent interaction tensors (see Eq (5.13) in Section 5.2.2) are

computed using FFT for the above reduced-order RVEs.

5.4.3 Online prediction stage

First, we apply a strain-controlled uniaxial tensile loading condition in the x direction to the

reduced-order RVEs. We assume the inclusions are elastic. The linear kinematic hardening

plasticity law is employed for the matrix clusters. The yield strength and hardening modulus

are assumed to be 2.4 GPa and 14.7 GPa, respectively. The resulting effective macroscopic
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(a) k = 8 (b) k = 32 (c) k = 128

Figure 5.6. Reduced-order RVEs with different number of material clusters

(a) k = 8 (b) k = 32 (c) k = 128

Figure 5.7. Histograms of cluster volume fractions in the reduced-order RVEs

stress-strains curves are plotted in Figure 5.8 (a). It can be seen that all three reduced-order

RVEs lead to the same elasto-plastic macroscopic material response under uniaxial tensile

loading condition.

Similarly, a strain-controlled, constant amplitude (ε = 0.02), and fully reversed (R = −1)

cyclic loading condition in the x direction is applied to the RVEs for low cycle fatigue

simulation. Here, the first 10 loading cycles are simulated with 64 increments per cycle. The

cyclic stress-strain curves are shown in Figure 5.8 (b). Again, all three cases lead to the

same inelastic material behavior under cyclic loading.

Next, we move on to HCF simulations. The cyclic loading condition is similar to the

LCF case with an exception of the strain amplitude, which is reduced to 0.01 such that the
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Figure 5.8. Stress strain curves under different loading conditions

macroscopic stress level is lower than the yield strength. For damage evolution in the matrix

material, the following parameters are assumed: σu = 2.6 GPa, εpD = 0.03, S = 28, and

s = 9. These parameters are explained in Table B.1.

Unlike the previous cases, the coarsest reduced-order RVE with 8 clusters failed in predict-

ing any plasticity and damage under the HCF loading condition. The mechanical responses

at both scales are within the elastic regime. On the other hand, fatigue crack initiation

cycles predicted by RVEs with 32 and 128 clusters are 16,619 and 8,420, respectively. The

microscopic damage evolution in all reduced-order RVEs under HCF loading condition are

plotted in Figure 5.9. It can be seen that exponential damage growth is captured by both

RVEs with k = 32 and 128.

Figure 5.10 shows contour plots of field variables at the final configuration obtained

by the HCF simulation with k = 32 RVE. The von Mises stress distribution is illustrated

by Figure 5.10 (a), where stress concentrations near the inclusions are clearly observed.

Figure 5.10 (b) and (c) present the equivalent plastic strain and damage distributions, re-

spectively. The fatigue crack initiation sites are closely matched with the high plastic strain

spots, which are all located surrounding the inclusions.
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Figure 5.9. Damage evolution in the reduced-order RVEs under HCF loading condition

(a) von Mises stress (b) Equivalent plastic strain (c) Damage

Figure 5.10. HCF simulation results obtained by RVE k = 32

Results from the finest RVE are demonstrated in Figure 5.11. Since there are more

material clusters in this RVE, higher resolution in contour plots and more detailed features

can be observed in Figure 5.11 (a) ∼ (c).

Finally, we demonstrate the computational performance by measuring the time usage

for the first 100 loading cycles. The SCA online prediction stage is written in C++ as a

standalone program. The code is compiled by the Intel C++ compiler and linked to the

Math Kernel Library (MKL) for solving matrix equations. The testing is done with a single

core of Intel Xeon CPU E5-2698 v4. Simulations are performed using the reduced-order

RVE with 32 clusters. The original solution algorithm took about 17.1 s to complete the
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(a) von Mises stress (b) Equivalent plastic strain (c) Damage

Figure 5.11. HCF simulation results obtained by RVE k = 128

simulation of 100 loading cycles. By employing the efficient solution algorithm proposed in

this work, the computing time is reduced to only 0.9 s, which is 19 times faster.

5.5 Summary

In this chapter, we briefly reviewed the Self-consistent Clustering Analysis first introduced

by (Liu et al., 2016), which is a data-driven reduced-order concurrent multiscale material

modeling method. Based on SCA, we established a microstructure-based material modeling

method for fatigue applications and developed an efficient solution scheme. Numerical ex-

ample demonstrated the key features and the unique capability of the proposed method in

capturing material microstructural effects, which is critical for HCF applications.
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CHAPTER 6

APPLICATIONS ON HIGH CYCLE FATIGUE LIFE PREDICTION

6.1 Introduction

In the previous chapters, we established an efficient multiscale computational framework

based on XTFEM and CDM for HCF applications. The numerical implementation features

with a hybrid parallel CPUs/GPUs computing on HPC platforms. In this chapter, we will

demonstrate 3D HCF applications by using the developed computer program. The program

is mainly written in FORTRAN and C/C++. Third partly libraries such as MUMPS,

METIS, Intel MKL, CUDA, etc. are integrated with the program. We also developed

Python codes for pre- and post-processing by using ABAQUS’s user scripting interface.

For the examples to be presented in this chapter, the program was compiled by the Intel

compilers for FORTRAN and C++ with Intel MPI and the NVIDIA NVCC compiler. The

computing platform is TACC’s Lonestar 5 supercomputer, which features with 1252 Cray

XC40 computing nodes, each with dual 12-core Intel Xeon E5-2690v3 CPUs and 64 GB

RAM. It also has 16 computing nodes equipped with NVIDIA K40 GPU and 4 of these

GPU nodes can be accessed at a time.

6.2 Single edge notched plate

6.2.1 Problem statement

The geometric dimensions and boundary conditions of the notched plate are illustrated in

Figure 6.1. The geometry is designed according to the widely employed single edge notched

The following article was reused in this chapter with permission from the publisher:

1. Zhang, R., S. Naboulsi, T. Eason, and D. Qian (2019). A high-performance multiscale space-time
approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elements in
Analysis and Design 166, 103320. Reuse with permission from Elsevier.
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Figure 6.1. Geometric dimensions and boundary conditions of the single edge notched plate

tension (SENT) experiment for fatigue studies of metals and alloys (Anderson, 2017). The

specimen is fixed at its left end. A cyclic load P (t) is applied to the right end. The material

properties are given as Young’s modulus E = 197 GPa, Poisson’s ratio ν = 0.3 and mass

density ρ = 7860 kg/m3. Other parameters associated with the two-scale damage model are

given in Table 4.6.

6.2.2 Results of HCF simulations

A mesh convergence study is first conducted to determine the spatial discretization. The

notched plate is discretized by C3D8 elements using ABAQUS. To reduce the computational

cost, an unstructured, gradient spatial mesh is created. A sample spatial mesh with element

size 0.1 mm at notch root is illustrated in Figure 6.2 (a). Six mesh densities of element

size 0.2, 0.1, 0.05, 0.025, 0.0125 and 0.01 mm are employed near the notch root and along

the estimated path of crack propagation. A fully-reversed cyclic load P (t) = 100 sin(40πt)

MPa is applied. Figure 6.2 (b) shows that the maximum von-Mises stress converges to 330

MPa in the case of element size is 0.0125 mm. The corresponding mesh is employed for the

subsequent HCF simulations, which leads to a discretization of 108,080 elements, 113,160

nodes, and 2,036,880 DOFs. The time step size or equivalently the temporal size of space-

time slab is initially set to 100T , in which T is the period of the loading cycle. After crack

initiation, the time step size is reduced to 10T to capture crack propagation.
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(a) (b)

Figure 6.2. Mesh convergence study: (a) a sample spatial mesh with element size = 1 mm
and (b) maximum stress versus element size at the notch root

Results of HCF simulation under cyclic load P (t) = 62.5 sin(40πt) MPa are shown in

Figure 6.3. Fatigue crack initiates at the notch root and propagates to the half width of

the specimen. Figure 6.3 (b) shows the microscale nonlinear damage accumulation at the

notch root. An exponential crack growth is captured and shown in Figure 6.3 (c), which is

consistent with the trends that are observed in the HCF experiments. The number of cycles

for crack initiation and fatigue failure are 146,219 and 155,320, respectively. Most of the

fatigue life is consumed by crack initiation, which is a typical HCF behavior.

Series of such HCF simulations are performed by varying the loading amplitude. Results

of those simulations are presented in Figure 6.4 in the form of the S-N curve. It is shown

that more than 1 million cycles are simulated by the proposed framework. To our best

knowledge, such 3D direct HCF simulations have not been reported elsewhere. Furthermore,

both tensile and compressive mean stress effects are simulated to demonstrate the capability

of the proposed framework in terms of handling complex fatigue loading conditions. For

the simulations on mean stress effects, a constant load is also imposed on the traction

surface of the notched specimen. The total loading history is then expressed as P (t) =

P0 sin(40πt) + P1H(t) MPa, in which H(t) is the Heaviside function, P0 and P1 are the
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Figure 6.3. Results of HCF simulation: (a) the processes of crack initiation and
propagation (colored by von-Mises stress in logarithmic scale), (b) damage accumulation at

the notch root, and (c) crack length vs. number of cycles

amplitudes of cyclic and constant loads, respectively. Here we consider two scenarios with

constant loading amplitudes P1 = ±10 MPa, which represent tensile and compressive mean

stresses respectively. The S-N curves obtained from both scenarios are plotted in Figure 6.4

and compared with the fully-reversed case. The mean stress effects on fatigue life is effectively

captured by the two-scale damage model with a microdefects closure parameter h = 0.2. It

can be clearly observed that tensile mean stresses reduce fatigue life while compressive mean

stresses extend fatigue life. Hence, a potential application of the proposed framework along

this line is to study the effects of mean stress on fatigue life, which can be induced by surface

treatments (Bhamare et al., 2013; Karim et al., 2018).
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Figure 6.4. S-N curves obtained from series of HCF simulations on the notched specimen

6.2.3 Parallel performance of the two-scale damage model

Figure 6.5 (a) shows the wall-clock time usage by the damage model for 100 loading cycles

versus the number of Gauss points for different number of CPU cores. The CPUs used are

Intel Xeon E5-2690 v3 (2.6 GHz). The computational complexity of the damage algorithm is

O(N), where N is the number of Gauss quadrature points. Parallel efficiency of the OpenMP

version damage code is illustrated in Figure 6.5 (b) and shows an optimal speedup.

Similarly, performance of the CUDA version damage code is illustrated in Figure 6.6.

The model of GPUs employed is NVIDIA TESLA K40. The maximum number of GPUs

employed for testing is 4. In Figure 6.6 (b), the speedup of the CUDA version damage code

shows a low performance for the coarse mesh (N = 14,592) when the number of GPUs > 2,

which is caused by insufficient GPU occupancy. Performance of the CUDA version improves

with the increasing number of Gauss points and reaches an optimal efficiency for the fine

mesh.

Based on the performance demonstrated so far, we conclude that the developed framework

is efficient and has a good parallel scalability, thereby enabling the large-scale applications.
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(a) (b)

Figure 6.5. Parallel performance of the two-scale damage model on CPUs: (a) wall-clock
time vs. number of Gauss points for different number of CPU cores (shown in the inset

box), (b) speedup vs. number of CPU cores for different number of Gauss points (shown in
the inset box)

(a) (b)

Figure 6.6. Parallel performance of the two-scale damage model on GPUs: (a) wall-clock
time vs. number of Gauss points for different number of CPUs (shown in the inset box), (b)
speedup vs. number of GPUs for different number of Gauss points (shown in the inset box)
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Figure 6.7. Geometry and dimensions of the cross-shaped biaxial HCF specimen

6.3 Biaxially loaded cruciform specimen

6.3.1 Problem statement

Based on the series of biaxial HCF experiments conducted by Poncelet et al. (Poncelet et al.,

2010) and Cláudio et al. (Cláudio et al., 2014), biaxial HCF simulations are performed to

further demonstrate the capability of the developed framework on handling complex multi-

axial loading conditions. The biaxial specimen considered here is adopted from (Poncelet

et al., 2010). Geometry and dimensions of the specimen are provided in Figure 6.7. The cru-

ciform specimen has a thinned circular region located at its center, which serves as a stress

concentration zone for fatigue damage accumulation and crack initiation. Fatigue loadings

are imposed along both the x and the y directions. The edges opposite to the traction

surfaces are fixed in both the out-of-plane and the corresponding loading directions. The

material parameters are chosen to be the same as in the previous example.

A mesh convergence study is conducted under an equibiaxial cyclic load with an ampli-

tude of 45 MPa and a frequency of 10 Hz. In this benchmark example, the second-order,
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Figure 6.8. Spatial discretization of the biaxial specimen, dashed box indicates the gauge
zone

20-node hexahedral element with reduced integration (C3D20R) is employed for spatial dis-

cretization. To further improve accuracy and efficiency, a gradient, structured mesh pattern

is created, which is shown in Figure 6.8. The finest discretization is located at the center of

the thinned circular region, which is called the gauge zone and has a uniform element size.

The size of this squared gauge zone is 10 mm by 10 mm.

Figure 6.9 shows that the maximum von-Mises stress converges when the element size is

less than 0.5 mm in the gauge zone. The relative error of stresses between the coarsest and

the finest discretizations is only 0.3% due to the higher-order element formulation.

Furthermore, a comparison between the stress distributions obtained from ABAQUS and

XTFEM is shown in Figure 6.10. Those two solutions are almost identical. The relative error

of maximum von-Mises stress is less than 1.0× 10−5. Therefore, the element size of 0.5 mm

at the gauge zone is employed for the subsequent HCF simulations. It leads to a mesh size

of 19,200 elements, 89,133 nodes, and 1,604,394 DOFs. The same time stepping strategy as

in the previous example is used for tracking the initiation and propagation of crack.

134



Figure 6.9. Mesh convergence for the biaxial HCF specimen

(a) (b)

Figure 6.10. Comparison of stress distributions obtained from (a) ABAQUS and (b)
XTFEM
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Figure 6.11. Crack initiation and propagation of the biaxial HCF specimen (colored by
von-Mises stress in logarithmic scale)

6.3.2 Results of biaxial HCF simulations

The first biaxial HCF simulation is performed under the same loading condition as in the

equibiaxial case for the convergence study. The cracks initiate at 82,910 cycles and are

located at the center of the gauge zone, the thinnest section of the specimen. After this, two

orthogonal cracks propagate along both the x and the y directions to the critical crack length

(the size of the gauge zone) at 98,420 cycles. The process of crack initiation and propagation

is illustrated in Figure 6.11. Crack growth data obtained from the simulation is plotted

in Figure 6.12 against the number of cycles. Like the previous benchmark example, most

fatigue life of the biaxial specimen is consumed by crack initiation. Due to the symmetry of

geometry and loading, the crack growth along both directions are identical. The symmetry

of simulation results can be clearly observed from Figure 6.11.

To further study the interactions between loadings that are applied in different directions,

two groups of biaxial HCF simulations are carried out.

In the first group, fully-reversed biaxial cyclic loadings with constant amplitude are ap-

plied in both the x and the y directions. Load amplitudes in each direction, i.e. Px and Py,

are varied from 35 to 55 MPa with an interval of 5 MPa. Thus, a total 25 combinations of

load amplitudes are generated. The number of simulations is reduced to 15 combinations due
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Figure 6.12. Cracks growth of the biaxial specimen

to symmetry in x -y plane. Results of this group of biaxial HCF simulations are presented

in Figure 6.13, in which the discrete dots denote the simulation data and the trend surface

is obtained from a curve fitting. Note that the case of Px = Py = 35 MPa is a runout, i.e.

no damage initiation occurred during the entire simulation. From Figure 6.13 (a) it can be

clearly observed that the fatigue life is monotonically increasing along the diagonal direc-

tion, where the biaxiality ratio is 1, i.e.Px = Py. However, as shown in Figure 6.13 (b), for

a fixed value of Py the fatigue life is not always monotonically increasing with the decrease

of Px. A 2D contour plot of the fatigue life shown in Figure 6.13 (c) clearly demonstrates

such complex interactions between Px and Py. A similar result is reported in Fig.6.12 in

(Lemaitre and Desmorat, 2005).

In the second group of biaxial HCF simulations, the constant amplitude, fully-reversed

cyclic loading is imposed only along the x direction. Amplitude of the cyclic loading is fixed

at 30 MPa. A constant tensile load is applied in the y direction with amplitude varying from

0 MPa to 30 MPa with an interval of 5 MPa. Figure 6.14 presents the results of the second

group of biaxial HCF simulations. It shows that fatigue life decreases with the increasing

amplitude of the constant load.
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Figure 6.13. Biaxial fatigue life as function of stress amplitudes in both the x and the y
directions: (a) the 3D plot, (b) the projected 2D view of the 3D plot, and (c) the 2D

contour plot (dots are simulation results; the trend surface is obtained from a curve fitting)

Figure 6.14. Results of biaxial HCF simulations conducted under cyclic loading along the x
direction and constant loading along the y direction

6.3.3 Computational performance

For different number of unknowns, the wall-clock time usages for three of the most com-

putationally intensive parts are summarized in Table 6.1. Note that the time usage of the

damage model is based on the OpenMP version with 24 CPU cores per compute node. Table

5.1 shows that in HCF simulations the computing time is dictated by the solution of the

nonlinear fatigue damage model. For each space-time slab, time usage of the damage model

is about 7 ∼ 35 times of the hybrid solver depending on problem size.
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Table 6.1. Computational performance of the proposed framework

Number of DOFs Number of compute nodesa
Wall-clock time usage (s)

Preconditioner Solver (each step) Damage (100 cycles)
1,604,394 1 10.0 2.1 70.2
3,034,890 2 18.4 2.7 69.6
10,025,820 6 54.3 8.2 77.3
15,557,778 10 93.9 10.0 73.3

Note: a With 4 MPI processes per node and 6 OpenMP threads per process

6.4 Self-piercing riveted joint

6.4.1 Problem statement

Self-piercing riveting (SPR) has been widely employed in the automotive industry as a cold

mechanical joining process to reduce the weight of vehicle structures and achieve a higher fuel

efficiency (Li et al., 2017). Unlike traditional sheet metal joining processes, SPR does not

require pre-drilled/punched holes and is environmentally friendly, i.e. no spark, no fume, and

low noise. The SPR process is fast (typically 1 ∼ 4 s) and easy for automation. In addition to

the many advantages of SPR, it is also capable of producing joints with high fatigue strength

(Iyer et al., 2005; Sun et al., 2007; Chung and Kim, 2016). Robust numerical simulations are

helpful for automotive designers to better understand the mechanical behaviors of SPR joints,

especially with a multiscale approach (Gao, 2020). In this example, we present a preliminary

study on HCF life prediction for a SPR joint based on the proposed multiscale method1. The

long-term goal is to establish a systematic mechanistically meaningful concurrent multiscale

numerical framework to provide a comprehensive understanding of the fatigue mechanism

and the role of microstructure in fatigue life of SPR joints as well as other engineering

structures and components.

1This work is based on a collaborative project with Professor Wing Kam Liu’s group at Northwestern
University. The SPR process simulation is done by Jiaying Gao, Derick Suarez, and Sourav Saha (North-
western). Yingjian Liu (UT Dallas) calibrated material parameters and prepared finite element meshes for
HCF simulation. Their contributions are gratefully acknowledged.
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(b) Final configuration

Figure 6.15. SPR process simulation

In this example, the riveted joint is obtained by a SPR process simulation using the

concurrent multiscale self-consistent clustering analysis (Gao, 2020). Figure 6.15 (a) illus-

trates the initial configuration of the SPR process simulation. In this model, two aluminum

(AA6060-T4) sheets are held together by a rigid holder on the top and a rigid die in the

bottom. The steel rivet and the rigid punch are initially placed at the positions shown in

Figure 6.15 (a). The SPR process is simulated in three steps, i.e. punching, holding, and

relaxing. The final configuration is shown in Figure 6.15 (b), which serves as the starting

point of the multiscale HCF simulation. More details of the SPR process simulation can be

found in (Gao, 2020).
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(a) Geometry (b) Mesh

Figure 6.16. Reconstructed SPR joint model for HCF simulation

6.4.2 HCF simulation model

The geometry model employed in HCF simulation is reconstructed based on the final config-

uration of the SPR process simulation. The main reason for not directly using the deformed

mesh from the SPR process simulation is that many elements are distorted in the final con-

figuration and the mesh quality is not good enough for HCF simulation. The reconstructed

geometry model is shown in Figure 6.16 (a). Note that a half model is shown here to vi-

sualize the cross section. The HCF model has three parts: two pierced aluminum sheets

and a flared steel rivet, which in together formed an interlock in the mechanical joint. Since

the current XTFEM code lacks the capability of handling contacts, the aluminum plates

and the steel rivet are merged together before meshing. In other words, perfect bonding

is assumed between these parts to approximate the small sliding contact formulation under

HCF loading conditions (Simulia, 2014a). Similar to previous HCF simulations, we created

a high-quality gradient mesh with the quadratic 20-node brick elements with reduced inte-

gration (C3D20R), which is illustrated in Figure 6.16 (b). In this mesh, there are 36,864

elements and 156,485 nodes, which lead to 294,912 material points and 2,816,730 space-time

DOFs, respectively.
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Figure 6.17. SPR joint HCF simulation: boundary conditions

In the HCF simulation, the steel rivet is modeled by the isotropic linear elastic material

model without fatigue damage. The volumetic mass density, Young’s modulus and Poisson’s

ratio of the steel are 7860 kg/m3, 210 GPa and 0.3, respectively. The aluminum plates are

modeled by the two-scale damage model with the following parameters: ρ = 2700 kg/m3,

E = 65.5 GPa, ν = 0.33, Cy = 1090 MPa, σu = 175 MPa, εpD = 0.13, σ∞f = 60 MPa,

S = 0.05, and s = 29.4. These material parameters are calibrated by using experimental

data in (Timmermann et al., 2014; Wagener and Melz, 2018).

HCF boundary conditions of the riveted joint are illustrated in Figure 6.17. Both plates

are fixed at the surfaces where X = Xmin, while the opposite surfaces at X = Xmax are

subjected to a fully-reversed cyclic traction in the x direction with a constant amplitude of

40 MPa and a loading frequency of 20 Hz. Similar to the previous examples, initial temporal

size of space-time slab is 100T , where T = 0.05 s is the period of the loading cycle. The

time step size is reduced to 10T after crack initiation. XTFEM solution for each space-time

slab is further interpolated into 200 temporal increments per cycle for solving the two-scale

damage model on material points.
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(a) Displacement magnitude (b) Maximum principal strain

Figure 6.18. SPR joint HCF simulation: displacement and strain at macroscale

6.4.3 HCF simulation results

The macroscopic displacement magnitude and the maximum principal strain distributions

in the mechanical joint obtained from the HCF simulation are illustrated in Figure 6.18 (a)

and (b), respectively. Note that due to the cyclic nature of fatigue loading, these results

are obtained by interpolating the XTFEM solution such that dynamic mechanical responses

under the maximum surface traction are captured. Figure 6.18 (b) shows that a high elastic

strain gradient is observed at the top aluminum sheet near the hole punched by the steel

rivet.

Next, the macroscopic von Mises equivalent stress distribution under the HCF loading

condition is shown in Figure 6.19. The stress distribution is captured in the same manner

as the displacement/strain distributions. Figure 6.19 (b), i.e. the half model without the

rivet, also shows that the maximum stress occurs at the top plate surrounding the rivet.

The stress concentration due to the riveting process creates potential fatigue crack initiation

sites under HCF loading condition.

At the microscale, Figure 6.20 shows the stored energy density (defined in Eq. (4.15))

and damage distributions after 45,000 loading cycles. Similarly, only a half model without

the rivet is shown here for a better illustration. Recall that in the two scale damage model,
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(a) Full model (b) Half model without the rivet

Figure 6.19. SPR joint HCF simulation: macroscopic stress distribution

(a) Stored energy density

A, B: damage initiation sites

A

B

(b) Damage

Figure 6.20. SPR joint HCF simulation: stored energy density and damage distributions at
microscale after 45,000 loading cycles

damage initiates when the stored energy density is greater than the energetic damage thresh-

old value (defined in Eq. (4.16)). In Figure 6.20 (b), two damage initiation sites are observed

and marked by points A and B, respectively. It shows that the damage is highly localized

due to the stress concentration around the punched hole in the top plate. Note that the

fatigue crack initiates when the damage reaches the critical value Dc = 0.3.

Finally, the fatigue crack initiation and propagation are illustrated in Figure 6.21 (a)∼ (d).

As shown in Figure 6.21 (a), the crack initiates at 104,310 loading cycles at the previously
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observed damage initiation site A. Figure 6.21 (b) and (c) show that the crack propagates

along two directions. The first one is approximately along the z direction, which is per-

pendicular to the loading direction (x ). The crack also propagates toward the thickness

direction of the plates, i.e. the −y direction. As illustrated in Figure 6.21 (d), the final

fatigue crack path is closer to the fully fixed side of the model, which shows the influence

of boundary conditions. It is worth noting that the lap-shear loading condition, which is

widely employed in experiments (Iyer et al., 2005; Sun et al., 2007; Chung and Kim, 2016),

can be simply simulated by extending the top and bottom plates at opposite directions in

the modeling stage and applying proper boundary conditions. For this HCF simulation, the

fatigue fracture happens at 124,120 cycles when the crack propagates through the thickness

direction of the top aluminum plate, which is shown in Figure 6.21 (d). It shows that most

fatigue life is consumed by the crack initiation stage under HCF loading condition. Although

a quantitative comparison with experiment results is not available for this particular model,

the same failure mode is reported in experiment observations for similar sample geometries

and testing configurations (Iyer et al., 2005; Sun et al., 2007).

As a brief summary of this example, we have further demonstrated the capability of

the proposed multiscale framework in direct simulating HCF failures in real engineering

structures/components. We would like to note that this example presents only preliminary

results for the purpose of demonstration. For future work, there are many aspects to explore.

For example, we can incorporate the residual stress and/or plastic strain fields from the SPR

process simulation to the HCF simulations. Also, SCA fatigue damage model proposed in

Chapter 5 can be integrated with XTFEM to account for microstructural effects on fatigue

life. Additionally, contact models would be helpful to further improve the accuracy in SPR

HCF simulation. Finally, more complex loading conditions and histories can be directly

simulated by the proposed method.
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(a) Crack initiation at 104,310 cycles (b) Crack growth at 109,930 cycles

(c) Crack growth at 115,150 cycles (d) Fatigue fracture at 124,120 cycles

Figure 6.21. Fatigue crack initiation and propagation in SPR joint under HCF loading (red
color indicates intact elements while blue color represents failed elements)

6.5 Summary

In this chapter, we have carried out series of HCF simulations on the single edge notched

specimen, the cruciform biaxial specimen, and the self-piercing riveted mechanical joint.

Mean stress effects, multiaxial loading interactions, and complex geometries with multiple

mateirals are directly simulated by using the proposed multiscale space-time approach. These

examples clearly demonstrated the capabilities of the proposed framework on handling large

3D problems and complex fatigue loading conditions. To our best knowledge, this is the first

146



time that such direct numerical HCF simulations are performed for large 3D applications

with complex geometries and loading conditions in literature as opposed to the traditional

fatigue modeling approaches and the jump-in-cycle simulation approach.
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PART II

A CONCURRENT MULTISCALE METHOD TO DYNAMIC FRACTURE
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CHAPTER 7

PERIDYNAMICS

7.1 Introduction

Peridynamics (PD) is first introduced by Silling (Silling, 2000) to model spatial disconti-

nuities, e.g. cracks, in a consistent continuum solid mechanics framework without special

treatments. It is a nonlocal generalization of classical continuum mechanics (CCM) in which

material points interact directly with each other by long-range forces over finite distances.

In this chapter, we start by introducing both the bond-based and state-based PD formu-

lations. PD numerical implementation is developed with parallel computing acceleration

and algorithm optimizations. Finally, numerical examples are presented to demonstrate the

unique capability of PD in terms of handling discontinuities, especially for spontaneous crack

initiations and propagations.

7.2 Theory of Peridynamics

In PD, the force of a material point x′ in a body B exerted on another material point x is

characterized by a force density function f(x′,x, t), of which the unit is force/volume2. To

ensure conservation of linear momentum, the force density f must satisfy

f(x′,x, t) = −f(x,x′, t) (7.1)

The relative position vector between these points in the reference configuration, ξ, is

termed as a bond and given by

ξ = x′ − x (7.2)

and the relative displacement η is given by

η = u(x′, t)− u(x, t) (7.3)
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so that ξ + η gives the relative position in the current configuration.

Conservation of angular momentum requires that

f(x′,x, t)× (ξ + η) = 0 (7.4)

Based on the above definitions, the PD equation of motion at a material point x in the

reference configuration at time t is given by

ρ(x)ü(x, t) =

∫
B
f(x′,x, t)dVx′ + b(x, t) (7.5)

where ρ(x) is the volumetric mass density, u(x, t) is the displacement, b(x, t) is the pre-

scribed body force density, superimposed dot indicates partial derivative with respect to

time.

It is further assumed in PD that material points interact with each other over a finite

distance δ such that

f(x′,x, t) = 0 ∀ |ξ| > δ (7.6)

The distance δ is termed as horizon radius or simply horizon, which is considered as a

material parameter, i.e. an intrinsic length of the particular material, in PD. A discussion

on PD horizon can be found in (Bobaru and Hu, 2012). The family of a material point x is

the collection of all other material points within its horizon, which is denoted by Hx. The

PD equation of motion can be rewritten as follows:

ρ(x)ü(x, t) =

∫
Hx

f(x′,x, t)dVx′ + b(x, t) (7.7)

A substantial distinction between PD and CCM can be clearly seen from Eq. (7.7). The

PD internal force term is evaluated by integration of the force density over a finite subdomain,

i.e.

f int
PD =

∫
H
fdV (7.8)
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which is free of spatial derivatives thus valid regardless of the presence of spatial discontinu-

ities.

In contrast, in CCM, the internal force term is given by

f int
CCM = ∇ · σ (∇u) (7.9)

in which partial derivatives on displacement field with respect to spatial coordinates are not

well defined mathematically on spatial discontinuities.

The force density function f characterizes the interactions between material points and

contains all material behavior information. Based on choice of the force density function, PD

formulations can be classified into two main categories: (1) bond-based and (2) state-based,

which will be introduced as follows.

7.2.1 Bond-based materials

In bond-based materials, the force density function f(x′,x, t) only directly depends on the

bond between these two material points, i.e.

f = f(ξ,η, t) (7.10)

Conservation laws of linear and angular momentums are rewritten as

f(ξ,η) = −f(−ξ,−η) (7.11)

and

f(ξ,η)× (ξ + η) = 0 (7.12)

Note that we omitted the dependency on time for simplicity.

Followed by these conservation laws, the force density function can be expressed as

f(ξ,η) = f(ξ,η)M (ξ,η) (7.13)
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where M (ξ,η) is a unit vector given by

M =
ξ + η

|ξ + η|
(7.14)

and f(ξ,η) is a scalar-valued function which satisfies

f(ξ,η) = −f(−ξ,−η) (7.15)

The interactions between bond-based material can be conceptually understood as springs

that connect the material points. Mechanical behaviors of these springs, i.e. f(ξ,η), can

be either linear or nonlinear, and material failure can be simply represented by irreversible

breakage of these springs. One of the simplest bond-based materials is called Prototype

Micro-elastic (PM) material. The spring function in PM is given by

f(ξ,η) = c
e

|ξ|
(7.16)

where c is called spring constant and e is the bond extension defined by

e = |ξ + η|+ |ξ| (7.17)

We further define bond strain by

s =
e

|ξ|
(7.18)

such that the spring function is simplified as

f(ξ,η) = cs (7.19)

For isotropic linear elastic materials, the spring constant c can be calibrated by matching

the spring potential energy with the CCM strain energy at an arbitrary interior material

point x ∈ B that is far from any boundaries. For the detailed calibration procedures please

refer to (Madenci and Oterkus, 2014; Bobaru et al., 2016). After the calibration, the spring
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constant c is expressed in terms of the bulk elastic properties of a material, which is given

by

c =


2E
Aδ2 for 1D

12K′

πhδ3 for 2D

18K
πδ4 for 3D

(7.20)

where E and K are Young’s modulus and bulk modulus, respectively. K ′ is the 2D bulk

modulus given by

K ′ =


E

2(1−ν)
plane stress

E
2(1−2ν)(1+ν)

plane strain
(7.21)

in which ν is Poisson’s ratio.

In Eq. (7.20), the geometric shapes of bulk material for calibration are line segment,

circle, and sphere for 1D, 2D, and 3D cases, respectively. A is the cross-sectional area in 1D,

h is the thickness in 2D. Detailed derivations of those constants can be found in (Madenci

and Oterkus, 2014).

PM material can be extended to account for brittle facture, which leads to the Prototype

Micro-elastic Brittle (PMB) material. The corresponding spring function is given by

f (ξ,η) =

 cs s 6 sc

0 s > sc

(7.22)

where sc is the critical strain. Note that the bond breakage is irreversible.

The critical strain can also be calibrated using a similar method (Bobaru et al., 2016)

and is given by

sc =



√
3G0

Eδ
for 1D√

πG0

3K′δ
for 2D√

5G0

9Kδ
for 3D

(7.23)

where G0 is the fracture energy per unit area.
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There are several drawbacks of the bond-based material preventing its practical applica-

tions (Silling et al., 2007). For isotropic linear elastic materials, the bond-based model leads

to a fixed Poisson’s ratio of 1/4 (for 3D), which is due to an oversimplification to assume

that each bond connected to a material point responds independently of all the other bonds.

In fact, there is only one independent elastic constant in isotropic linear elastic PM material

as shown in Eq. (7.20). Other difficulties associated with bond-based material are incom-

patibility with material constitutive laws in CCM and issues on modeling metal plasticity,

etc.

7.2.2 State-based materials

The above shortcomings of the bond-based PD motivate the development of the state-based

PD, which is first introduced by Silling et al. in (Silling et al., 2007). The PD states and

related mathematical operations are introduced in Appendix D. In the state-based PD, the

force density between material points x and x′ is represented by

f(x′,x, t) = t(x′,x, t)− t(x,x′, t) (7.24)

where t is the bond force density vector given by

t(x′,x, t) = T [x, t] 〈ξ〉 (7.25)

in which T [x, t] is the force density vector state at material point x and associates with each

bond ξ in the family of x.

The state-based force density between material points x and x′ depends not only on the

particular bond ξ but also other bonds connected to these material points collectively. It

can also be shown that Eq. (7.24) satisfies the conservation law of linear momentum:

f(x′,x, t) = t(x′,x, t)− t(x,x′, t) = −f(x,x′, t) (7.26)
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7.2.2.1 Ordinary state-based PD

In the ordinary state-based PD, the force density vector state is parallel to the deformed

bond. Therefore,

T = tM (7.27)

in which t is the scalar force density state, M is a unit vector defined in Eq. (7.14). It can

be shown that Eq. (7.27) automatically satisfies the conservation law of angular momentum.

An example of simple ordinary state-based material is called Linear Peridynamic Solid

(LPS) material model. The scalar force density state of LPS is given by

t =
3kθ

m
ωx+ αωedev (7.28)

where k and α are positive constants. Other variables in the above equation are given as

follows.

The reference position vector state is defined by

X 〈ξ〉 = ξ (7.29)

and the corresponding scalar state is obtained by

x = |X| (7.30)

Similarly, the deformation vector state is defined by

Y 〈ξ〉 = ξ + η (7.31)

and the corresponding scalar state is obtained by

y = |Y | (7.32)

Now, we can define the extension scalar state by

e = y − x (7.33)
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and the weighted volume is given by

m = ωx · x (7.34)

Further, we define the scalar-valued dilatation function

θ (e) =
3

m
ωx · e (7.35)

The extension scalar state can be decomposed into isotropic (hydrostatic) and deviatoric

parts respectively by

ehyd =
θ

3
x (7.36)

and

edev = e− ehyd (7.37)

For isotropic linear elastic material, constants in Eq. (7.28) can be calibrated by an

approach similar to bond-based PM material, which leads to

k = K (7.38)

and

α =
15µ

m
(7.39)

where K and µ are the bulk and shear moduli, respectively.

Therefore, we have

t =
3kθ

m

(
Kθωx+ 5µωedev

)
(7.40)

In comparison, the isotropic linear elastic constitutive law in CCM is given by

σ = 3Kεhyd + 2µεdev (7.41)

where σ and ε are the stress and strain tensors, respectively. It can be seen that Eqs. (7.40)

and (7.41) are similar in their mathematical structures.
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7.2.2.2 Non-ordinary state-based PD

In contrast to the ordinary state-based PD, the force density vector state is not necessarily

parallel to the deformed bond in the non-ordinary state-based PD and the conservation of

angular momentum must be considered in the material model. One class of non-ordinary

material model is called the correspondence material, which enables direct application of

constitutive models in CCM and greatly expands the material library in PD.

The process of constructing PD with correspondence material model is illustrated as

follows: first, the shape tensor is defined by

K = X ⊗X (7.42)

which is symmetric positive definite.

Then we introduce the deformed shape tensor as

k = Y ⊗X (7.43)

Based on the above definitions, the nonlocal approximate deformation gradient tensor in

correspondence material is given by

F = k ·K−1 (7.44)

The force density vector state is then given by

T 〈ξ〉 = ω 〈ξ〉P (F ) ·K−1 · ξ (7.45)

in which P (F ) is the nominal stress tensor that can be described by constitutive laws in

CCM literature.

For linear elastic material under small deformation, we have

P = σ = C : ε (7.46)

where C is the elasticity tensor and the strain tensor can be obtained by

ε =
1

2

(
F + F T

)
− I (7.47)

where I is the identity tensor.
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7.2.2.3 Stabilized non-ordinary state-based PD

Although the non-ordinary state-based correspondence model greatly extends the material

library available to PD, it is known to suffer from instability caused by the so called zero

energy modes. It was initially considered as an issue in numerical implementation and sev-

eral strategies were proposed to alleviate the adverse effects caused by these spurious modes

(Bessa et al., 2014; Breitenfeld et al., 2014; Tupek and Radovitzky, 2014; Ganzenmüller

et al., 2015; Silling et al., 2015). However, it was later discovered by Silling (Silling, 2017)

that the instability roots in the correspondence material instead of the meshless numerical

implementation. Based on this finding, a number of new approaches were developed to sta-

bilize the correspondence materials (Silling, 2017; Breitzman and Dayal, 2018; Li et al., 2018;

Luo and Sundararaghavan, 2018; Chowdhury et al., 2019). A recent article by Chowdhury

et al. (Chowdhury et al., 2019) provides a brief review on these stabilization techniques.

In this work, we adopt the stabilized formulation proposed by Silling (Silling, 2017).

First, we define the nonuniform part of the deformation state by

Z = Y − F · ξ (7.48)

and its contribution to the approximate deformation gradient tensor vanishes:

Z ⊗X ·K−1 = (Y − F · ξ)⊗X ·K−1 = F − F ·K ·K−1 = 0 (7.49)

which indicates that the deformation state Y is nonunique for the same approximate defor-

mation gradient.

To suppress the material instability, the force density vector state is modified by adding

a stabilization term:

T 〈ξ〉 = ω 〈ξ〉
(
P (F ) ·K−1 · ξ +

GC

ω0

Z 〈ξ〉
)

(7.50)
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where G is a positive constant of order 1, C = c/δ is the nominal micro-modulus in bond-

based material and

ω0 =

∫
H
ω 〈ξ〉 dV (7.51)

Note that Eq. (7.50) reduces to Eq. (7.45) for G = 0.

7.3 Numerical implementation

7.3.1 Discretization

In most cases, the numerical implementation of PD leads to a meshfree formulation (Silling

and Askari, 2005). In such a formulation, material points are represented by discrete nodes

with associated volumes. In practice, spatial discretizations are first created by using avail-

able tools such as FEA packages or dedicated mesh generation packages. The FE mesh

is then converted to PD nodes using two approaches. In the first approach, the element

centroids or Gauss quadrature points are taken as PD nodes with the associated elemental

volumes (or integration weights). However, this method naturally leads to an inaccurate

representation of the geometrical boundaries. In the other approach, the FE nodes are kept

as PD nodes so the geometry is accurate. Nodal volume is obtained by summation of volume

fractions of elements associated to the particular node.

In this work, we adopt the second approach to generate PD nodes. Note that for simple

cases, such as 1D cases or lattice/crystal structures in 2D and 3D, we can directly create

PD nodes without using any mesh generation tools. In addition, for simplicity, we employ

uniform nodal spacing for structured distribution of nodes and quasi-uniform nodal spacing

for unstructured cases in this implementation.

7.3.2 Construction of family

Once the spatial discretization is established, the next step is to create bonds between nodes

based on their relative position and the horizon radius, which is given as an input. Note
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that in this work we employ constant horizon radius, which is typically around three times

the average nodal spacing (Bobaru et al., 2016).

Construction of family generally involves two steps. The first step is searching for neigh-

bor nodes within the horizon, which is a classical task in computer science. The exhaustive

searching algorithm, i.e. computing distance between all node-pairs and then comparing it

with the horizon radius, is simple and straightforward in terms of implementation. However,

it leads to the worst computational time complexity of O(N2) in which N is the number

of nodes. In fact, searching algorithms with much better computational complexities, usu-

ally around O(N logN), are readily available in the computer science community. In this

work, we employ the k -d tree searching algorithm (Bentley, 1975) for general cases and the

brute-force searching algorithm is also used only for small cases.

The second step of family construction is to establish the bonds between neighboring

nodes and store all the family information. In general, a specific bond can be identified

by using two indices, one for the particular node it is associated with and the other for

the local bond index. This naturally leads to a matrix-like 2D data structure. However,

this direct implementation is not efficient in terms of both storage space and access speed.

Here, we propose a simple and efficient data structure for storage and access of the family

information. The data structure is similar to the compressed sparse row (CSR) for sparse

matrix storage introduced in Chapter 3. In this format, we have multiple 1D arrays with

the size of total number of bonds to store all the bond-associated data and states, such as

node-pair indices, bond deformation, bond status, etc. To access these bond data associated

with a node, an 1D array of pointers with size of N + 1 is constructed to give the start

and end positions of bonds associated with the particular node in the previous state arrays.

This data format allows a very efficient numerical implementation of PD family in terms of

both computational time and storage cost. All bond-related operations and calculations are

vectorized in this way and can be accelerated by parallel computing as well. In addition,
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all the bond-associated states are stored continuously in memory, which allows fast access

during computation and further improves numerical efficiency.

7.3.3 Time integration

The discretized PD equation of motion is given by

ρ(x)ü(x, t) =
∑
Hx

f(x′,x, t)∆Vx′ + b(x, t) (7.52)

which is a system of second-order ordinary differential equations that can be solved using

conventional time integration algorithms developed for other numerical approaches. In the

PD community, Velocity Verlet has been widely used for explicit time integration. Other al-

gorithms can also be used for PD. For example, Wada (Wada et al., 2018) recently developed

a PD solver based on the time-discontinuous Galerkin approach introduced in Section 2.2

and demonstrated good accuracy and stability with a 1D wave propagation example.

In this work, we mainly focus on wave propagation and dynamic fracture problems.

Hence, we employ an explicit scheme based on the central difference algorithm to solve

Eq. (7.52), which is summarized in Table 7.1. The PD material models, either bond-based

or state-based, are solved in Line 3: internal force density calculation. All PD bond-related

calculations as well as state updates are also performed in this step. The external body force

densities in Line 4 include both the applied loading and the forces due to contact. In the

velocity update step (Line 6), we introduce an artificial damping coefficient α 6 2. There

is no damping when α = 2. In general, the value α should be smaller than but close to

2. The central difference algorithm is conditionally stable. Therefore, the employed time

step size must be smaller than a critical value, which can be determined using the classical

Courant–Friedrichs–Lewy (CFL) condition or the approach for PD described in (Bobaru

et al., 2016).
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Table 7.1. Pseudocode for explicit time integration of Peridynamics

Line number Operation
1 Initialization
2 DO n = 1 to total number of time increments
3 Get internal force densities f int

n

4 Get external body force densities f ext
n

5 Compute accelerations an =
(
f int
n + f ext

n

)
/ρ (x)

6 Update velocities vn+1/2 =

{
vn + 1/2∆tan if n = 1

(α− 1)vn−1/2 + 1/2α∆tan if n > 1
7 Enforce velocity boundary conditions
8 Update displacements un+1 = un + ∆tvn+1/2

9 Enforce displacement boundary conditions
10 Write output
11 END DO

7.3.4 Internal force density calculation

The internal force density calculation shown in Line 3 of Table 7.1 differs PD with other nu-

merical methods in CCM. In PD, it is based on an integration over family nodes and involves

zero spatial partial differentiation. The first step of PD internal force density calculation

is updating the bond-associated states, which is presented in Table 7.2. At this step, the

deformed relative position and direction vectors are updated based on current configuration.

Bond breakage criteria are also implemented at this stage. Note that the simple brittle

fracture criterion based on bond critical strain is shown here.

The second step is to calculate the internal force densities, which is discussed separately

for bond-based and non-ordinary state-based materials. For bond-based materials, we con-

sider the simple prototype micro-elastic brittle model as an example. The algorithm is shown

in Table 7.3. It is worth noting that in Line 3 we obtain the start and end bond pointers in

state arrays of a particular node using the efficient data structure proposed in Section 7.3.2.

It allows a simple and fast access to the related states as shown in Lines 5 ∼ 6. In Line 10,

we calculate the nodal damage value, which is defined by the ratio of the number of broken
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Table 7.2. Pseudocode for updating bond states in Peridynamics

Line number Operation
1 DO n = 1 to total number of bonds
2 Get bond associated nodal indices In and Jn
3 Get displacement vectors uIn and uJn
4 Update deformed relative position vector yn = uJn − uIn + ξn
5 Update deformed bond direction vector Mn = yn/ |yn|
6 Update bond strain sn = |yn| / |ξn| − 1
7 Break bond by setting influence function ωn = 0 if sn > sc
8 END DO

Table 7.3. Pseudocode for bond-based force density calculation

Line number Operation
1 DO m = 1 to total number of nodes
2 Set f int

m = 0,Wm = 0
3 Get start and end positions of associated bonds in state arrays
4 DO n = start to end positions in state arrays
5 Get the neighbor node volume ∆Vn
6 Get bond states ωn, sn,Mn

7 Compute internal force density f int
m += csnωn∆VnMn

8 Compute deformed bond Wm += ωn
9 END DO
10 Update node damage Dm = 1−Wm/N

bonds
m

11 END DO

bonds to the number of all bonds associated with the particular node. Zero value means

no damage and value of 1 means that all bonds associated with the node are broken and

the node is fully disconnected from the rest of the model. Our implementation of the above

bond counting is based on the influence function, which has a value of 0 for broken bonds

and 1 otherwise.

For non-ordinary state-based PD with correspondence materials, the internal force den-

sity calculation is slightly more complicated compared to the bond-based material. It is done

in two steps. First, the force density state is calculated by the algorithm shown in Table 7.4.
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Table 7.4. Pseudocode for force density state calculation

Line number Operation
1 DO m = 1 to total number of nodes
2 Set deformed shape tensor km = 0
3 Get start and end positions of associated bonds in state arrays
4 DO n = start to end positions in state arrays
5 Get the neighbor node volume ∆Vn
6 Get bond states ξn,yn
7 Compute deformed shape tensor km += ωn∆Vnyn ⊗ ξn
8 END DO
9 Compute nonlocal deformation gradient tensor Fm = km ·K−1

m

10 Compute nominal stress tensor using CCM models Pm = Pm (Fm)
11 DO n = start to end positions in state arrays

12
Compute force density state

Tn = ωn (PmK
−1
m ξn +GC/ω0 (yn − Fmξn))

13 END DO
14 END DO

Lines 4 ∼ 8 compute the deformed shape tensor. The nonlocal deformation gradient tensor

is then calculated in Line 9. The nominal stress tensor, which is the transpose of the 1st

Piola-Kirchhoff stress tensor (note that we adopt the notation in (Belytschko et al., 2014)),

is calculated using constitutive models available in CCM. After that, another loop over the

associated bonds is performed to compute the force density state. Here, we also included the

stabilization force state in Line 12. The constant family volume ω0 is defined in Eq. (7.51)

and computed in the pre-processing stage.

Once the force density state is computed, we can move on to the calculation of state-based

force density. The algorithm is summarized in Table 7.5. A special note is that, in Line 6,

the second force density state is given by T ′n 〈−ξn〉 = T [xJn ] 〈ξn〉, which is the force density

state on the neighbor node with the corresponding bond that is reverse of the current bond.

Such a bond is termed as pairing bond in this work. The indices to these pairing bonds are

found and stored during the construction of the family stage in pre-processing.
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Table 7.5. Pseudocode for state-based force density calculation

Line number Operation
1 DO m = 1 to total number of nodes
2 Set f int

m = 0
3 Get start and end positions of associated bonds in state arrays
4 DO n = start to end positions in state arrays
5 Get the neighbor node volume ∆Vn
6 Get bond states Tn 〈ξn〉 ,T ′n 〈−ξn〉
7 Compute internal force density f int

m += (Tn + T ′n) ∆Vn
8 END DO
9 END DO

Force density calculation subroutine is typically the most time-consuming part of the

PD implementation. Its counterpart in FEM is solving the material constitutive models on

Gauss quadrature points, which is usually expensive as well. It is easy to show that the

above algorithms presented in Table 7.2 to Table 7.5 are essentially SIMD-type computing

tasks, i.e. there is no data racing when parallel expanding the loop or the outer one if there

are multiple loops. Therefore, the numerical implementation of PD developed in this work

is well-suited for parallel computing with CPUs/GPUs. In the current work, we employ the

OpenMP multithreading technique to accelerate the computing process.

7.4 Numerical examples

In this section, we provide several numerical examples to demonstrate the advantages of

PD. The examples considered here include elastic wave propagation problems and dynamic

brittle fracture problems.

7.4.1 Longitudinal vibration of a bar

In the first example, we consider a 1D bar of the length L = 0.2 m subjected to an initial

strain ε0 = 0.001. The bar has a uniform cross-sectional area A = 1 × 10−6 m2 and is
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made of a material with Young’s modulus E = 70 GPa and density ρ = 2700 kg/m3. It is

fixed at one end and free at the other end. At time t = 0, the initial stretch is released.

To simulate this problem, we employ four different versions of PD, namely bond-based

(BBPD), ordinary state-based (OPD), non-ordinary state-based (NOPD) and the stabilized

(SNOPD) formulations. The bar is discretized by evenly distributed nodes with a nodal

spacing ∆X = 0.001 m. The total simulation time is 4 × 10−4 s. For all the cases, the

horizon radius is given by δ = n∆X and n = 1, 2, 3, 4. For SNOPD, the stabilization

parameter is given by G = 0.5.

A closed-form solution to this problem can be found in (Rao, 2011) and is given by

u (x, t) =
8ε0L

π2

∞∑
n=0

(−1)n

(2n+ 1)2 sin

(
(2n+ 1) π

2
x

)
cos

(√
E

ρ

(2n+ 1) π

2
t

)
(7.53)

which is employed here for the purpose of comparison.

Figure 7.1 shows the displacement histories at x = 0.1 m obtained by the BBPD. It can be

seen that the results agree well with the closed-form solution for different horizons. One may

also notice that with the increasing horizon radius, numerical solutions are slightly deviated

from the exact solution, which is caused by the dispersive wave propagation behavior due to

nonlocality in PD.

The results obtained by OPD simulations are shown in Figure 7.2, which also demon-

strated a good agreement with the closed-form solution.

Figure 7.3 illustrates the displacement histories obtained by NOPD. In Section 7.2.2.3,

we have shown that NOPD is unstable due to material instability, which leads to spurious

zero-energy modes. This adverse effect can be clearly observed in Figure 7.3 (b) ∼ (d).

With a larger horizon, the instability becomes more evident, which is expected due to the

increasing nonlocality.

Finally, the numerical solutions obtained from SNOPD are shown in Figure 7.4. With the

stabilization force densities introduced into the equation of motion, the zero-energy modes
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Figure 7.1. Displacement history at middle of the 1D bar obtained by bond-based PD
(BBPD) with various neighborhood size: (a) n = 1, (b) n = 2, (c) n = 3, and (4) n = 4
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Figure 7.2. Displacement history at middle of the 1D bar obtained by ordinary state-based
PD (OPD) with various neighborhood size: (a) n = 1, (b) n = 2, (c) n = 3, and (4) n = 4
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Figure 7.3. Displacement history at middle of the 1D bar obtained by non-ordinary
state-based PD (NOPD) with various neighborhood size: (a) n = 1, (b) n = 2, (c) n = 3,

and (4) n = 4
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Figure 7.4. Displacement history at middle of the 1D bar obtained by stabilized
non-ordinary state-based PD (SNOPD) with G = 0.5 and various neighborhood size: (a)

n = 1, (b) n = 2, (c) n = 3, and (4) n = 4

are effectively eliminated, which is clear by comparing the solutions shown in Figure 7.4 (b)

∼ (d) with the counterparts shown in Figure 7.3. The accuracy of the numerical solutions

is greatly improved. The SNOPD solution is as good as the BBPD or OPD, which does not

suffer from the material instability issue.
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7.4.2 Harmonic wave propagation of a bar

To further demonstrate the instability in NOPD, we consider another wave propagation

problem in a 1D bar. The parameters are given as follows: bar length L = 500, cross-

sectional area A = 1, Young’s modulus E = 57.1464, density ρ = 1, nodal spacing ∆X = 1,

horizon radius δ = 3 and G = 0.5 for SNOPD.

The bar is free at the both ends. A harmonic wave profile is imposed in the following

form:

u(x, t) = u0(1− cos t) for x ∈ [L/2− 2δ, L/2− 2δ], t ∈ [0, 2π] (7.54)

where u0 = 0.0025.

Figure 7.5 provides a comparison of displacement fields captured at different time steps

for NOPD and SNOPD. The instability caused by zero-energy modes is clearly observed in

the NOPD solutions. In contrast, the wave propagation solutions obtained by SNOPD are

smooth and no longer suffer from the material instability.

7.4.3 Kalthoff-Winkler experiment

In this example, we employ the bond-based PD with the PMB material to simulate the

Kalthoff-Winkler experiment (Kalthoff and Winkler, 1988), which is a classical benchmark

problem for dynamic fracture simulation. In this experiment, a steel plate with two notches

is impacted by a cylindrical projectile. Detailed problem statement can be found in both

(Madenci and Oterkus, 2014) and (Belytschko et al., 2014). The geometric dimensions are

shown in Figure 7.6 and thickness of the plate is 9 mm. The plate is initially at rest and

free of constraints. The initial velocity of the projectile is v0 = 16.5 m/s and it is modeled

as a discretized rigid body with a total mass of 1.57 kg. Contact between the plate and

the projectile is modeled by a frictionless, normal-force only behavior with the simple node-

to-surface contact penetration detection algorithm. Material properties of the plate are
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(a) (b)

Figure 7.5. Timeframes of wave propagation in the 1D bar obtained by (a) non-ordinary
state-based Peridynamics (NOPD) with correspondence materials and n = 3 and (b) the

stabilized version (SNOPD) with n = 3 and G = 0.5
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Figure 7.6. Kalthoff-Winkler experiment dimensions

given as follows: density ρ = 8000 kg/m3, Young’s modulus E = 191 GPa and critical

strain sc = 0.01. The plate is discretized in 2D with uniformly distributed nodes with the

nodal spacing ∆X = 1 mm, which leads to 20,301 nodes. We employ the horizon radius of

δ = 3.015∆X. The time increment size is ∆t = 8.7 × 10−8 s and the total number of time

steps is 1,350. The two initial notches are modeled by breaking the bonds that intercept

with the notch line segments at the family construction stage.

Simulation results are shown in Figure 7.7. Nodal velocity magnitude fields at different

timeframes are captured and plotted in Figure 7.7 (a). The impact-induced waves propagate

in the notched plate and reflect at the plate boundaries as well as the growing crack surfaces,

which gradually lead to very complicated dynamic wave interactions. To better observe the

propagation of the cracks, contour plots of nodal damage field at a series of time steps are

provided in Figure 7.7 (b). The crack paths and their propagations can be clearly identified

by the color of damage variables. It is worth noting that the damage in PD is nothing but

a counting of broken bonds and there is no explicit damage evolution law. There is also

no criterion as to when the crack propagates or in which direction it propagates. All the
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(a) (b)

Figure 7.7. Kalthoff-Winkler simulation results: (a) velocity magnitude and (b) damage
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complex behaviors of cracks are governed only by a simple brittle fracture rule which breaks

bonds when its strain exceeds the critical value. Despite the very simple PMB material

model employed here, the simulated crack angle is around 68◦ to 69◦, which is very close to

experiment observed angle of 70◦ and much better compared to the result of 58◦ reported in

(Song et al., 2008) using XFEM.

7.4.4 Dynamic fracture of particle reinforced composite

In this example, we study the dynamic fracture of particle reinforced composite material

using SNOPD in 2D with plane stress formulation. The representative volume element

(RVE) of the composite material has a dimension of 50 × 50 mm2 with a unit thickness.

The matrix material is rubber and modeled by the modified Mooney-Rivlin Hyperelastic

model with the parameter as follows: density ρ = 930 kg/m3, Mooney-Rivlin constants

c10 = 1.0 MPa and c01 = 0.5 MPa. The material behavior for particles is isotropic linear

elastic with density ρ = 9300 kg/m3, Young’s modulus E = 88 MPa and Poisson’s ratio

ν = 0.49. Damage in rubber matrix and matrix/particle interface are modeled by the brittle

fracture behavior. For bonds connecting rubber material points, the critical strain is 0.25.

For bonds between matrix and particle material points, the critical strain is 0.05, which is

weaker than that of the matrix.

Particles are generated with a random distribution as shown in Figure 7.8 (a). A total

of 20 circular particles with a radius of 3 mm are created. The particle volume fraction is

around 22%. The geometry is discretized by uniformly distributed nodes with a distance of

1 mm, which is shown in Figure 7.8 (b). The horizon radius is chosen to be 3 mm and we

employ the SNOPD stabilization parameter G = 1. Bottom edge of the RVE is fixed while

the top edge is subjected to a constant velocity at 50 mm/s.

The simulation result is shown in Figure 7.9. It can be seen that bonds start to break

at the weaker particle/matrix interfaces, which lead to autonomous initiation of multiple
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Figure 7.8. Particle reinforced composite material: (a) RVE and (b) PD discretization

Figure 7.9. Autonomous cracks initiation and growth in SNOPD simulation on the particle
reinforced composite, broken bonds are indicated by red dots
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Figure 7.10. Load-displacement curve obtained by SNOPD simulation on the particle
reinforced composite

cracks. With the increased load, cracks propagate along the interface and interact with each

other. Bonds in the matrix material start to break as well. Finally, several major cracks

form and propagate through the entire width of the RVE, which leads to fracture failure.

Figure 7.10 shows the load-displacement curve obtained from the SNOPD simulation.

Since we impose velocity boundary condition on the top edge, the load is obtained from

the total reaction force. The load-displacement curve characterizes homogenized mechanical

behavior of the composite RVE. It shows a linear relationship until reach the maximum load.

A short yielding range can be observed and follows by a brittle fracture. With SNOPD, we

can further study the effects of particle shape, volume fraction, material properties, etc. on

the macroscale behavior of composite materials, which is very helpful in material design.

7.5 Summary

In this chapter, we reviewed the mathematical formulations of both the bond-based and

state-based PD. Efficient algorithms are developed for the numerical implementation of PD.

The numerous numerical examples presented in this chapter clearly demonstrated the advan-
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tages of PD over Classical Continuum Mechanics in terms of simulating dynamic fracture

problems. However, PD leads to a high computational cost also due to its intrinsic nonlocal-

ity. The advantages as well as the limitations of PD motivates us to develop an accurate and

efficient concurrent multiscale framework by coupling PD with CCM numerical methods.
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CHAPTER 8

WAVE DISPERSION ANALYSIS FOR PERIDYNAMICS

8.1 Introduction

Wave dispersion relation, ω(κ), relates the wavenumber κ of a wave to its frequency ω.

It is of fundamental importance to numerical methods, especially the nonlocal ones such as

Peridynamics (PD), for studying dynamic problems (Bažant et al., 2016; Gu et al., 2016; Butt

et al., 2017; Dayal, 2017; Nicely et al., 2018; Nicely, 2018). In nonlocal theories, the dispersion

relationship is nonlinear and the resulting wave propagation behavior is dispersive. In this

chapter, wave dispersion analysis for PD is performed with simplified wave propagation

examples for discretized PD in both 1D and 2D cases. In this work, we focus on two

specific PD formulations introduced in Chapter 7: bond-based PD (BBPD) and stabilized

non-ordinary state-based PD with correspondence materials (SNOPD). The discretized wave

dispersion relations for these two formulations are derived and studied in this chapter.

8.2 Dispersion relations in 1D

For 1D case, we consider an infinitely long bar with a unit cross-sectional area and zero body

force. The material behavior is isotropic linear elastic. The bar is discretized by uniformly

distributed nodes with a spacing of ∆X. We set the horizon radius to be δ = n∆X, in

which n = 1, 2, 3, · · · . Dispersion relations under the assumption of small deformation, i.e.

|ξ| � |η|, will be derived for PD formulations introduced in the previous section.

8.2.1 Bond-based PD

The discretized bond-based PD equation of motion for I -th node is given by

ρüI (xI , t) =
2E

(n∆X)2

n∑
p=−n
p6=0

Wp
uI+p − uI
|p|

(8.1)
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where Wp is the volume correction factor defined by

Wp =


1
2
|p| = n

1 otherwise
(8.2)

It can be shown that for local case, i.e. n = 1, Eq. (8.1) reduces to the central difference

scheme for approximating second order derivative:

ρüI (xI , t) =
E (uI−1 − 2uI + uI+1)

(∆X)2 (8.3)

To derive dispersion relation, we first introduce the following harmonic wave solution

u (x, t) = ūei(ωt+κx) (8.4)

where ū is the wave amplitude, i =
√
−1, ω is the angular frequency, κ is the wavenumber

(also known as the spatial frequency).

Suppose xI = I∆X and substituting Eq. (8.4) into Eq. (8.1) yield

− ρω2 =
2E

(n∆X)2

n∑
p=−n
p 6=0

Wp

(
eiκp∆X − 1

)
|p|

(8.5)

which is evaluated at I = 0.

By using Euler’s formula, we have

− ρω2 =
2E

(n∆X)2

n∑
p=−n
p6=0

Wp

|p|
(cos (κp∆X)− 1 + i sin (κp∆X)) (8.6)

Noticing that the summation in Eq. (8.6) is over a symmetric domain and the sine

function is odd, its contribution vanishes and we obtain

− ρω2 =
2E

(n∆X)2

n∑
p=−n
p 6=0

Wp

|p|
(cos (κp∆X)− 1) (8.7)

which leads to the final dispersion relation given by

ω (κ) =
2
√

2c

n∆X

√√√√ n∑
p=1

Wp

p
sin2

(
κp∆X

2

)
(8.8)
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Figure 8.1. Wave dispersion relation for BBPD in 1D

where c =
√
E/ρ is the speed of sound of the corresponding medium.

Let c = 1 and ∆X = 1, the bond-based PD dispersion relation derived above is plotted in

Figure 8.1 for cases of n = 1 ∼ 4. For the purpose of comparison, the local case from CCM

where the wave behavior is nondispersive, i.e. ω = cκ, is also plotted. As it can be seen,

in the limit of long wave (κ → 0) all PD cases converged to the local theory. In addition,

larger n leads to more dispersive wave behavior due to the nonlocality of PD.

8.2.2 State-based PD

Now we derive wave dispersion relation for stabilized non-ordinary state-based PD with

correspondence materials. The continuous state-based equation of motion is given by

ρ (x) ü (x, t) =

∫
Hx

(T [x, t] 〈ξ〉 − T [x′, t] 〈−ξ〉)dVx′ (8.9)

Correspondingly, the discretized equation of motion is given by

ρüI (xI , t) =
n∑

p=−n
p 6=0

(T [xI ] 〈xI+p − xI〉 − T [xI+p] 〈xI − xI+p〉) ∆X (8.10)
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In order to derive the force density state, we first evaluate the shape tensor as

K (xI) = an (∆X)3 (8.11)

where

an =
n(n+ 1)(2n+ 1)

3
(8.12)

Similarly, the deformed shape tensor is

k (xI) =
n∑

q=−n
q 6=0

(q∆X + uI+q − uI) (q∆X) ∆X (8.13)

which can be further simplified by using symmetry as

k (xI) = K (xI) + (∆X)2

n∑
q=−n
q 6=0

quI+q (8.14)

Then we find the approximate deformation gradient as

F (xI) =
k (xI)

K (xI)
= 1 +

1

an∆X

n∑
q=−n
q 6=0

quI+q (8.15)

which leads to strain

ε (xI) =
1

an∆X

n∑
q=−n
q 6=0

quI+q (8.16)

and stress

σ (xI) =
E

an∆X

n∑
q=−n
q 6=0

quI+q (8.17)

For a node at xI = I∆X, its force density state regarding node xJ = J∆X is obtained

by

T [xI ] 〈xJ − xI〉 =
(J − I)E

a2
n(∆X)3

n∑
q=−n
q 6=0

quI+q (8.18)

where we assumed that xJ is a neighbor of xI , i.e. |J − I| 6 n.

182



Substituting Eq. (8.18) into Eq. (8.10) yields

ρüI (xI , t) =
E

(an∆X)2

n∑
p=−n
p 6=0

p
n∑

q=−n
q 6=0

quI+q +
E

(an∆X)2

n∑
p=−n
p 6=0

p
n∑

q=−n
q 6=0

quI+p+q (8.19)

Note that the first term in the right-hand-side of the above equation vanishes after summation

over p. Therefore, we obtain the final form of the discretized equation of motion as

ρüI (xI , t) =
E

(an∆X)2

n∑
p=−n
p 6=0

n∑
q=−n
q 6=0

pquI+p+q (8.20)

For the case of local neighborhood, i.e. n = 1, the equation of motion is reduced to

ρüI (xI , t) =
E (uI−2 − 2uI + uI+2)

(2∆X)2
(8.21)

where a notable difference comparing to Eq. (8.3) (BBPD) is the node-skipping pattern that

neglects nearest neighbor interactions, which leads to the non-physical zero-energy modes.

Substituting the wave solution Eq. (8.4) into Eq. (8.20) and evaluating at I = 0 yield

ρω2 =
4E

(an∆X)2

(
n∑
p=1

p sin (κp∆X)

)2

(8.22)

from which we take the positive root as the dispersion relation:

ω(κ) =
6c
∣∣∣∑n

p=1 p sin (κp∆X)
∣∣∣

n(n+ 1)(2n+ 1)∆X
(8.23)

Let c = 1, ∆X = 1, and n = 1 ∼ 4, we plot the dispersion relation Eq. (8.23) as shown in

Figure 8.2. It can be seen that angular frequency curves of all cases intercept the horizontal

axis (ω = 0) at particular nonzero spatial frequencies. At these interception points, the

phase velocity (vp = ω
κ
) of wave is zero and the group velocity (vg = dω

dκ
) is undefined. This

behavior is a manifestation of the zero-energy modes and leads to instability (Belytschko

et al., 2000; Silling, 2017).
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Figure 8.2. Wave dispersion relation for NOPD in 1D

For the stabilized force density state as shown in Eq. (7.50), the nonuniform part of the

deformation state is given by

Z [xI ] 〈xJ − xI〉 = (uJ − uI)−
J − I
an

n∑
q=−n
q 6=0

quI+q (8.24)

and its contribution to the internal force density is

GC
ω0

n∑
p=−n
p 6=0

(Z [xI ]− Z [xI+p]) ∆X = EG
n4(∆X)3

n∑
p=−n
p 6=0

2 (uI+p − uI)− p
an

n∑
q=−n
q 6=0

quI+p+q

 (8.25)

where C = 2E
Aδ3 .

Therefore, the discretized equation of motion with stabilization is given by

ρüI (xI , t) =
E

(an∆X)2

(
1− anG

n4∆X

) n∑
p=−n
p 6=0

n∑
q=−n
q 6=0

pquI+p+q

+
2EG

n4 (∆X)3

n∑
p=−n
p 6=0

(uI+p − uI)
(8.26)
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Let n = 1 we obtain the local equation of motion as

ρüI (xI , t) =
E

(2∆X)2

(
1− 2G

∆X

)
(uI−2 − 2uI + uI+2)

+
2EG

(∆X)3 (uI−1 − 2uI + uI+1)

(8.27)

in which the last term shows that nearest neighbor interactions are accounted for.

To derive the stabilized dispersion relation, we substitute the wave solution Eq. (8.4) into

equation of motion Eq. (8.26) and obtain

ρω2 =
4E

(an∆X)2

(
1− anG

n4∆X

)( n∑
p=1

p sin (κp∆X)

)2

− 4EG

n4 (∆X)3

n∑
p=1

(cos (κp∆X)− 1)

(8.28)

which leads to the following dispersion relation

ω = 2c

√
1

(an∆X)2

(
1− anG

n4∆X

)( n∑
p=1

p sin (κp∆X)

)2

− G
n4(∆X)3

n∑
p=1

(cos (κp∆X)− 1) (8.29)

Figure 8.3 shows the stabilized dispersion relation in Eq. (8.29) by setting c = 1,∆X =

1, G = 0 ∼ 0.5, and n = 1 ∼ 4. Note that by setting G = 0 it recovers the original, instable

dispersion relation. For all cases with G > 0 the zero-energy modes are eliminated and larger

G leads to a higher nonzero angular frequency at the zero-energy wavenumbers. However,

value of G should not be too large otherwise the artificial stabilizing force overwhelms the

original material response and affects the solution adversely.

8.3 Dispersion relations in 2D

The above derivation of 1D wave dispersion relations can be further extended to 2D. Here

we consider a 2D uniform square lattice grid with a unit thickness and free of body force.

The material behavior is isotropic linear elastic. The nodal spacings in both the x and the

y directions are ∆X and the horizon radius is assumed to be δ = ∆X, i.e. the nearest
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Figure 8.3. Wave dispersion relation for SNOPD in 1D: (a) n = 1, (b) n = 2, (c) n = 3
and (d) n = 4

neighborhood case. In addition, we assume small deformation for this analysis and focus

mainly on non-ordinary state-based PD and its stabilized version. The 2D dispersion analysis

presented in this section is an extension from the previous work by Nicely et al. (Nicely et al.,

2018).

First, the shape tensor is given by

K = 2(∆X)2

1 0

0 1

 (8.30)
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Similarly, the deformed shape tensor at node xI,J =

IJ
∆X is given by

k = ∆X

2∆X − uI−1,J + uI+1,J −uI,J−1 + uI,J+1

−vI−1,J + vI+1,J 2∆X − vI,J−1 + vI,J+1

 (8.31)

where u and v are displacement components in the x and the y directions, respectively.

Then the deformation gradient is

F = k ·K−1 =
1

2∆X

2∆X − uI−1,J + uI+1,J −uI,J−1 + uI,J+1

−vI−1,J + vI+1,J 2∆X − vI,J−1 + vI,J+1

 (8.32)

and the strain under small deformation assumption is

ε =

 −uI−1,J+uI+1,J

2∆X

−uI,J−1+uI,J+1−vI−1,J+vI+1,J

4∆X

−uI,J−1+uI,J+1−vI−1,J+vI+1,J

4∆X

−vI,J−1+vI,J+1

2∆X

 (8.33)

Assuming a plane stress condition and the matrix form constitutive law is given by

σ =
E

1− ν2
((1− ν) ε+ ν · tr (ε) I) (8.34)

Substituting Eq. (8.33) into Eq. (8.34) yields

σ =

E(uI−1,J−uI+1,J+ν(vI,J−1−vI,J+1))
2∆X(ν2−1)

−E(uI,J−1−uI,J+1+vI−1,J−vI+1,J)
4∆X(1+ν)

−E(uI,J−1−uI,J+1+vI−1,J−vI+1,J)
4∆X(1+ν)

E(ν(uI−1,J−uI+1,J)+vI,J−1−vI,J+1)
2∆X(ν2−1)

 (8.35)

8.3.1 Non-ordinary state-based PD

For G = 0 (NOPD), the discretized equation of motion can be obtained as

ρü (xI,J) =
E

8(∆X)2 (ν2 − 1)

FxFy
 (8.36)
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where

Fx =− 2 (uI−2,J + uI+2,J) + (ν − 1) (uI,J−2 + uI,J+2)− 2 (ν − 3)uI,J

+ (1 + ν) (−vI−1,J−1 + vI−1,J+1 + vI+1,J−1 − vI+1,J+1)

(8.37)

and

Fy = (1 + ν) (−uI−1,J−1 + uI−1,J+1 + uI+1,J−1 − uI+1,J+1)

+ (ν − 1) (vI−2,J + vI+2,J)− 2 (vI,J−2 + vI,J+2)− 2 (ν − 3) vI,J

(8.38)

The 2D harmonic wave solution is given byuI,JvI,J

 =

ūv̄
 ei(ωt+κxI∆X+κyJ∆X) (8.39)

Substituting Eq. (8.39) into Eq. (8.36) leads toC11 C12

C21 C22


ūv̄
 =

0

0

 (8.40)

where the coefficients are

C11 =
−c2 ((ν − 3) + 2 cos (2κx∆X)− (ν − 1) cos (2κy∆X))

4(∆X)2 (ν2 − 1)
+ ω2 (8.41)

C12 = C21 =
c2 sin (κx∆X) sin (κy∆X)

2(∆X)2 (ν − 1)
(8.42)

C22 =
−c2 ((ν − 3) + 2 cos (2κy∆X)− (ν − 1) cos (2κx∆X))

4(∆X)2 (ν2 − 1)
+ ω2 (8.43)

Further we introduce the incidence angle of the 2D wave, α, such thatκxκy
 =

κ cosα

κ sinα

 (8.44)

The dispersion relation is derived by setting the determinant of the coefficient matrix in

Eq. (8.40) equals zero, i.e.

C11C22 − C2
12 = 0 (8.45)
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from which we solve for ω and the solutions are given by

ω =
c
√

sin2 (∆Xκ cosα) + sin2 (∆Xκ sinα)

∆X


1√

1−ν2

1√
2(1+ν)

 (8.46)

Note that Eq. (8.45) has 4 distinct roots and only the two positive solutions are shown above.

By letting ∆X = 1, ν = 1/4, and α = 0 (unidirectional wave) the wave dispersion relation

in Eq. (8.46) is simplified as

ω = c

√
sin2κ

15

 4
√

6

 (8.47)

8.3.2 Stabilized non-ordinary state-based PD

For G > 0 (SNOPD), the extra stabilizing force term is added to the right-hand-side of

Eq. (8.36) and the stabilized equation of motion is given by

ρü (xI,J) =
E

8(∆X)2 (ν2 − 1)

FxFy
+

3EG

4π(∆X)4 (ν − 1)

SxSy
 (8.48)

where

Sx =uI−2,J − 4uI−1,J + uI,J−2 − 4uI,J−1 + 12uI,J

− 4uI,J+1 + uI,J+2 − 4uI+1,J + uI+2,J

(8.49)

and

Sy =vI−2,J − 4vI−1,J + vI,J−2 − 4vI,J−1 + 12vI,J

− 4vI,J+1 + vI,J+2 − 4vI+1,J + vI+2,J

(8.50)

Similarly, the dispersion relation for SNOPD is obtained by substituting the 2D wave

solution Eq. (8.39) into Eq. (8.48) and enforcing zero determinant of the coefficient matrix.

However, the general expression is very complicated. Here we made simplifications by letting

∆X = 1, ν = 1/4, and α = 0, which leads to

ω =
2√
15π

∣∣∣sin κ
2

∣∣∣

√

8π (1 + cosκ) + 30G (1− cosκ)√
(3π (1 + cosκ) + 30G (1− cosκ))

 (8.51)
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It can be seen that Eq. (8.51) reduces to Eq. (8.46) when G = 0.

8.3.3 Larger horizons

By following the same procedure and with the same simplification parameters, 2D NOPD

(G = 0) and SNOPD (G > 0) dispersion relations for larger horizons (n = 2, 3, 4) are given

by the following equations:

ωδ=2∆X =
c

7
√

30π

∣∣∣sin κ
2

∣∣∣



√√√√√√ 64π (29 + 45 cosκ+ 20 cos 2κ+ 4 cos 3κ)

+5G (203− 77 cosκ− 56 cos 2κ− 70 cos 3κ)√√√√√√ 24π (29 + 45 cosκ+ 20 cos 2κ+ 4 cos 3κ)

+5G (203− 77 cosκ− 56 cos 2κ− 70 cos 3κ)


(8.52)

ωδ=3∆X =
c

153
√

35π

∣∣∣sin κ
2

∣∣∣



√√√√√√√√√√√√√
1512π

502 + 870 cosκ+ 576 cos 2κ

+277 cos 3κ+ 78 cos 4κ+ 9 cos 5κ


+340G

502 + 122 cosκ− 240 cos 2κ

−267 cos 3κ− 58 cos 4κ− 59 cos 5κ


√√√√√√√√√√√√√

567π

502 + 870 cosκ+ 576 cos 2κ

+277 cos 3κ+ 78 cos 4κ+ 9 cos 5κ


+340G

502 + 122 cosκ− 240 cos 2κ

−267 cos 3κ− 58 cos 4κ− 59 cos 5κ





(8.53)
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ωδ=4∆X =
c

384
√

15π



√√√√√√√√√√√√√√√√√√√√√

128π


486 + 736 cosκ+ 273 cos 2κ

−140 cos 3κ− 406 cos 4κ− 476 cos 5κ

−337 cos 6κ− 120 cos 7κ− 16 cos 8κ



+15G


4326− 1952 cosκ− 1071 cos 2κ

−2060 cos 3κ+ 554 cos 4κ− 476 cos 5κ

+623 cos 6κ− 120 cos 7κ+ 176 cos 8κ



2
∣∣sin κ

2

∣∣

√√√√√√√√√√√√√√√√√√√√√

16π


3066 + 5646 cosκ+ 4424 cos 2κ

+2929 cos 3κ+ 1574 cos 4κ+ 625 cos 5κ

+152 cos 6κ+ 16 cos 7κ



+5G


3066 + 1806 cosκ− 568 cos 2κ

−1871 cos 3κ− 1114 cos 4κ− 911 cos 5κ

−232 cos 6κ− 176 cos 7κ





(8.54)

Finally, with Eqs. (8.51) to (8.54), we plot the 2D wave dispersion relations by letting

c = 1 and G = 0 ∼ 0.5, as shown in Figure 8.4. Similar to the 1D cases, nonzero G values

of order 1 effectively eliminated the zero-energy modes in 2D cases as well. Note that the

larger dispersion relation from the two positive roots is shown in Figure 8.4 for each horizon

radius.

8.4 Summary

In this chapter, the wave dispersion analysis is conducted for discretized PD in both 1D

and 2D cases. The dispersion relations for 3D case can also be derived analytically. The

intrinsic nonlocality in PD leads to highly nonlinear dispersion relations and dispersive wave

propagation behavior at higher wavenumbers. This dispersion analysis paves the way for
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Figure 8.4. Wave dispersion relation for SNOPD in 2D: (a) n = 1, (b) n = 2, (c) n = 3
and (d) n = 4

developing a coupling scheme between PD and CCM, which will be discussed in the next

chapter.
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CHAPTER 9

CONCURRENT MULTISCALE COUPLING METHOD

9.1 Introduction

In this chapter, we establish a concurrent multiscale framework by coupling Peridynamics

(PD) with the classical continuum mechanics, e.g. finite element method (FEM). We start

from a bridging-scale additive decomposition of the total displacement field. The coarse and

fine scale components of the total displacement are represented by FEM and PD, respectively.

Then multiscale Lagrangian and equations of motion are established to provide the basis of

the proposed computational framework. Since we are interested in simulating the fine scale

explicitly only in a small region of the entire domain, numerical boundaries of the PD region

are handled by a class of nonlocal matching boundary conditions (NMBC) to eliminate the

fine-scale DOFs in the coarse-scale subdomain. The coarse-scale DOFs in the fine-scale

region is obtained from a bridging-scale projection of the fine-scale solution onto the coarse-

scale basis. Finally, an adaptive scheme is established to dynamically prescribe the local PD

region to track the crack propagation.

9.2 Concurrent multiscale framework

9.2.1 Bridging-scale decomposition

First, we decompose the total displacement field u into coarse and fine scales, given by

u = ū+ u′ (9.1)

where ū and u′ represent the coarse-scale and the fine-scale components, respectively. Note

that such an additive bridging-scale decomposition has been previously used for coupling

Molecular Dynamics (MD) with continuum mechanics simulations (Wagner and Liu, 2003;
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Qian et al., 2004; Qian and Chirputkar, 2014). In current work, the MD part in the original

bridging-scale approach is replaced by PD simulation.

The coarse scale is represented everywhere in the domain using FE interpolation with

larger discretizations in both space and time. Therefore, the coarse-scale displacement field

is approximated by

ū = Nd (9.2)

where N is the FE shape function and d is the nodal displacement vector.

The PD region is limited to subdomain where the physics cannot be captured by the

coarse scale. In such subdomain, the PD displacement field q is equivalent to the total

displacement field u. The fine-scale displacement field u′ can be obtained by subtracting

the coarse-scale component from q, i.e.

u′ = q − Pq (9.3)

where P is a projection operator defined by

P = N
(
NTMpN

)−1
NTMp (9.4)

in which Mp is the diagonal mass matrix in PD region.

Also, we define the complimentary projector Q as

Q = I − P (9.5)

where I is the identity matrix with the appropriate size.

Eq. (9.3) can be equivalently represented by

u′ = Qq (9.6)

Substituting Eqs. (9.2) and (9.6) into (9.1), the final two-scale decomposition is given by

u = Nd+Qq (9.7)

Remarks on some properties of P and Q:
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a) PP = P as required for a projection operation, which can be shown by

PP = N
(
NTMpN

)−1
NTMpN

(
NTMpN

)−1
NTMp

= N
(
NTMpN

)−1 (
NTMpN

) (
NTMpN

)−1
NTMp

= N
(
NTMpN

)−1
NTMp

= P

(9.8)

Similarly, QQ = (I − P )(I − P ) = I − 2P + PP = Q.

b) Pu′ = P (q−Pq) = 0 which shows that the projection of fine-scale displacement field

onto coarse-scale basis is zero.

c) Last, we can show that

NTMpQ = NTMp

(
I −N

(
NTMpN

)−1
NTMp

)
= NTMp −NTMpN

(
NTMpN

)−1
NTMp

= 0

(9.9)

which can be used to decouple the kinetic energy in the Lagrangian equation.

9.2.2 Multiscale Lagrangian and equations of motion

In the concurrent multiscale framework, PD represents the fine scale. Therefore, derivation

of multiscale equations of motion starts from the PD Lagrangian (Madenci and Oterkus,

2014). Note that we have q = u if PD is applied to the entire domain.

First, the total kinetic energy T in the discretized form is given by

T =
∞∑
i=1

1

2
ρ(i)u̇(i) · u̇(i)V(i) (9.10)

where ρ(i) and V(i) are mass density and volume of the i-th node, respectively.

In the absence of external force for simplicity, the total potential energy U is given by

U =
∞∑
i=1

W(i)V(i) (9.11)
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where the strain energy density, W, is given by

W(k) =
1

2

∞∑
j=1

1

2

(
w(k)(j) + w(j)(k)

)
V(j) (9.12)

in which the scalar-valued micro-potentials are given by

w(k)(j) = w(k)(j)

(
y(1k) − y(k),y(2k) − y(k), . . .

)
(9.13)

and

w(j)(k) = w(j)(k)

(
y(1j) − y(j),y(2j) − y(j), . . .

)
(9.14)

where y(k) is the position vector of point x(k) in the deformed configuration and y(1k) is the

position vector of the 1st material point that interacts with point x(k).

Using Eqs. (9.12) to (9.14), the potential energy Eq. (9.11) can be rewritten as

U =
∞∑
i=1

[
1

2

∞∑
j=1

1

2

(
w(i)(j) + w(j)(i)

)
V(j)

]
V(i) (9.15)

The total Lagrangian L can now be written as

L = T − U =
∞∑
i=1

1

2
ρ(i)u̇(i) · u̇(i)V(i) −

∞∑
i=1

[
1

2

∞∑
j=1

1

2

(
w(i)(j) + w(j)(i)

)
V(j)

]
V(i) (9.16)

or using matrix expression, it can be simplified as

L =
1

2
u̇TMpu̇− U (u) (9.17)

where Mp is the diagonal mass matrix defined by

Mp =


ρ(1)V(1)I

ρ(2)V(2)I

. . .

 (9.18)

Using the multiscale decomposition introduced in Eq. (9.7), the total Lagrangian can be

rewritten as

L =
1

2
ḋTNTMpNḋ+

1

2
q̇TQTMpQq̇ − U (Nd+Qq) (9.19)
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Note that we used Eq. (9.9) to decouple the kinetic energy, i.e. the cross-terms are vanished.

Now, we define

M = NTMpN (9.20)

and

M = QTMpQ = MpQ = QTMp (9.21)

in which

QTMp =
(
I −MpNM

−1NT
)
Mp = Mp

(
I −NM−1NTMp

)
= MpQ (9.22)

and

QTMpQ = QTQTMp = MpQQ = MpQ (9.23)

Finally, the multiscale Lagrangian is given by

L
(
ḋ,d; q̇, q

)
=

1

2
ḋTMḋ+

1

2
q̇TMq̇ − U (Nd+Qq) (9.24)

The multiscale equations of motion are derived from the multiscale Lagrangian according

to the Euler-Lagrange equations:

d

dt

(
∂L

∂ḋ

)
− ∂L

∂d
= 0 (9.25)

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (9.26)

Therefore, we have

Md̈ = −∂U
∂d

(9.27)

Mq̈ = −∂U
∂q

(9.28)
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Using chain rule, we obtain the following multiscale equations of motion

Md̈ = −
(
∂u

∂d

)T
∂U

∂u
= NTf (9.29)

Mq̈ = −
(
∂u

∂q

)T
∂U

∂u
= QTf (9.30)

in which

f := −∂U
∂u

(9.31)

Using Eq. (9.21), Eq. (9.30) can also be rewritten as

Mpq̈ = f (9.32)

which is exactly the PD equation of motion.

From the original Lagrangian Eq. (9.17), the total displacement field u satisfies

Mpü = f (9.33)

which, again, shows that the PD displacement field q is equivalent to the total displacement

field u. It also indicates that Eq. (9.29) is redundant in the subdomain where PD and FEM

coexist since the coarse-scale solution is the projection of fine scale, i.e. Nd = Pq.

9.2.3 Computational domain partition

As we mentioned before, the computational domain is partitioned into two non-overlapping

parts: (1) the subdomain where FEM and PD coexists and (2) the rest where only FEM

presents, as shown in Figure 9.1. Based on this partition, we can rewrite the total displace-

ment field u as

u =

u1 = ū1 + u′1 in the overlapping region

u2 = ū2 + u′2 otherwise
(9.34)
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Figure 9.1. Schematic illustration of the concurrent multiscale framework in 1D

where the subscript 1 refers to the subdomain where PD and FEM coexists and subscript 2

refers to the FEM (coarse scale) only subdomain.

In Eq. (9.34), the coarse-scale components ū1 and ū2 can be obtained by solving the

FE equation of motion Eq. (9.29) and note that the former can also be obtained by the

projection of PD solution of Eq. (9.2.2), i.e. ū1 = Pq1 = Pu1. The fine-scale component

u′1 can be obtained from PD solution using projection u′1 = Qq1. The fine-scale component

in FE only region, u′2, cannot be obtained from solving either FE or PD equation of motion

thus must be approximated.
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We assumed that in the FE-only region the unknown field is smooth enough to be cap-

tured by the coarse-scale shape functions, i.e. u2 ≈ ū2 = Nd2. Thus, we implicitly indicated

that u′2 = 0. However, at the PD boundaries (PD/FE interfaces) the effect of u′2 cannot be

ignored. According to (Wagner and Liu, 2003), one possible method to account for u′2 at

the numerical interfaces is a Langevin type of time history kernel (THK) approach, which

is briefly introduced in Appendix E. However, computational implementation of THK-based

interfacial boundary condition is not an easy task for general cases. In this work, we employ

a simple but yet effective method to eliminate the fine-scale PD nodes in the FE-only region,

as shown in Figure 9.1. This method is referred to as the matching boundary conditions

(MBCs), which is originally proposed as the so-called absorbing or non-reflective bound-

ary conditions for lattice dynamics in MD (Wang and Tang, 2013). The MBCs for PD is

developed in the next section.

9.3 Matching Boundary Conditions

9.3.1 MBCs for Molecular Dynamics

MBCs are first proposed by Tang (Tang, 2008) and Wang and Tang (Wang and Tang, 2010,

2013) as linear constraints of displacement and velocity at the boundary atoms to suppress

wave reflections. MBCs is conceptually illustrated in 1D as shown in Figure 9.2. Here we

consider an infinitely long 1D chain of atoms and we are only interested in explicit MD

simulation of the nodes represented by solid circles. For the rest of the infinite number of

atoms, their motions are collectively mimicked by a small number of MBC nodes such that

computational cost is saved.

Motions of these boundary nodes in the reduced MD simulation are governed by the

following MBC:
N∑
j=0

cju̇j −
N∑
j=0

bjuj = 0 (9.35)
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Regular nodes Nodes to be eliminated MBC nodes

Figure 9.2. Conceptual illustration of matching boundary conditions in 1D

0 1 2 3 …

Figure 9.3. Numbering of atoms in 1D MBC

where c and b are unknown coefficients to be solved by matching dispersion relation near the

boundary with a minimal number of atoms. N is the order of the MBC and the numbering

of atoms are shown in Figure 9.3. The N -th order MBC is simply denoted as MBCN.

9.3.2 MBC for Peridynamics

The same idea of MBCs can be borrowed in PD for the purpose of developing concurrent

multiscale simulation. The corresponding MBCs for PD is recently developed by Nicely

and co-workers (Nicely et al., 2018; Nicely, 2018). Similar work for 1D wave propagation

problems has been done by Wang et al. (Wang et al., 2017) and termed as the Peridynamic

transmiting boundary conditions (PTBCs). Here we follow the former to derive the MBCs

for PD.

A monochromatic harmonic wave solution in 1D for the I -th node is given by

uI = ūei(ωt+κI∆X) (9.36)

where ū is the wave amplitude, i =
√
−1, ω is the angular frequency and κ is the wavenumber.
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Substituting Eq. (9.36) into Eq. (9.35) yields

∆ (κ) ≡ iω (κ)
N∑
j=0

cje
i(κj∆X) −

N∑
j=0

bje
i(κj∆X), κ ∈ [0, π] (9.37)

Note that the wave dispersion relation ω(κ) for PD is derived in Chapter 8.

The residual, ∆ (κ) as defined in Eq. (9.37), measures the deviation of MBCs for the exact

outgoing wave solution given by Eq. (9.36). A zero residual ∆ (κ) = 0 indicates a perfectly

matching dispersion relation at the wavenumber of κ near the boundary and automatically

leads to a non-reflective numerical interface. However, in general, ∆ (κ) 6= 0 for all κ. The

condition can be relaxed by enforcing it and its derivatives at particular wavenumbers. This

leads to two types of MBCs. The first one is called the Taylor type MBC, which focuses on

the long wave limit, i.e. κ → 0+ , that dominates the energy in many cases. The second

type is termed as the Taylor-Newton type MBC to deal additional wavenumbers.

In this work, we focus on the Taylor type MBC, in which the unknown coefficients are

solved by enforcing

dn∆ (κ)

dκn

∣∣∣∣
κ=0

= 0, ∀ n = 0, 1, 2, 3, . . . , 2N (9.38)

Taylor expansion around κ = 0 for the terms in Eq. (9.37) are

iω (κ) =
∞∑
n=0

an(iκ)n, with a2m = 0, a2m+1 =
ω(2m+1) (κ)

(2m+ 1)!
, m = 0, 1, 2, . . . (9.39)

and

ej∆X(iκ) =
∞∑
n=0

hnj(iκ)n, with hnj =
(j∆X)n

n!
(9.40)

Substituting these terms into Eq. (9.38) leads to the following linear algebraic system of

order 2N + 2:  eT1 zT

AH −H


 C

B

 =

 eT1

zT

 (9.41)
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where

e1 =



1

0

...

0


, z =



0

0

...

0


,C =



c0

c1

...

cN


,B =



b0

b1

...

bN


(9.42)

A =



a0 0 · · · 0

a1 a0
. . .

...

...
...

. . . 0

a2N a2N−1 · · · a0


, H =



h00 h01 · · · h0N

h10 h11
. . . h1N

...
...

. . .
...

h2N 0 h2N 1 · · · h2N N


(9.43)

The unknown coefficients in MBCs are solved from Eq. (9.41).

As an example, we let N = 1 and Eq. (9.43) is simplified as

A =


0 0 0

a1 0 0

0 a1 0

 , H =


1 1

0 ∆X

0 (∆X)2/2

 (9.44)

Substituting Eq. (9.44) into Eq. (9.41) yields

1 0 0 0

0 0 −1 −1

a1 a1 0 −∆X

0 a1∆X 0 −(∆X)2/2





c0

c1

b0

b1


=



1

0

0

0


(9.45)

from which we find the solution to be

c0 = c1 = 1, b0 = −b1 = − 2a1

∆X
(9.46)

It is shown in (Nicely, 2018) that a1 = c =
√
E/ρ for all the PD formulations introduced

in Chapter 7 with an arbitrary horizon radius. Therefore, the MBC1 for PD is given by

u̇0 + u̇1 =
2c

∆X
(−u0 + u1) (9.47)
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Table 9.1. MBCN coefficients for N = 1 ∼ 3

N c0 c1 c2 c3 b0 b1 b2 b3

1 1 1 I0 −I0

2 1 I1 1 I2 0 −I2

3 1 I3 I3 1 I4 I5 −I5 −I4

which is a very simple boundary condition compared to the time history kernel approach.

For higher-order MBCs, the coefficients are solved in (Nicely, 2018) and summarized here

in Table 9.1. The constants in Table 9.1 are given by

I0 = − 2a1

∆X
(9.48)

I1 =
4
(
a1(∆X)2 + 3a3

)
a1(∆X)2 − 6a3

(9.49)

I2 = − 3a2
1∆X

a1(∆X)2 − 6a3

(9.50)

I3 =
3
(
3a1(∆X)4 + 40

(
a3(∆X)2 + a5

))
a1(∆X)4 − 120a5

(9.51)

I4 =
720 (a3

2 − a1a5) + 120a1a3(∆X)2 + 11a2
1(∆X)4

360a5∆X − 3a1(∆X)5 (9.52)

I5 =
3
(
−240a2

3 + 240a1a5 + 40a1a3(∆X)2 + 3a1
2(∆X)4)

∆X
(
120a5 − a1(∆X)4) (9.53)

In the above constants, the Taylor coefficients (Eq. (9.39)) of bond-based PD (BBPD)

dispersion relation are given in Table 9.2 for horizon radius δ = 1∆X, 2∆X, 3∆X.

For non-ordinary state-based PD (NOPD) with correspondence material, the Taylor co-

efficients for an arbitrary horizon radius δ = n∆X are given by

a1 = c

a3 =
c

30
(∆X)2 (−1 + 3n+ 3n2

)
a5 =

c

840
(∆X)4 (1− 3n+ 6n3 + 3n4

) (9.54)
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Table 9.2. Coefficients of Taylor series expansion of bond-based PD dispersion relation

δ a1 a3 a5

1∆X c c (∆X)2

24
c (∆X)4

1920

2∆X c c5(∆X)2

48
c49(∆X)4

7680

3∆X c c5(∆X)2

24
c449(∆X)2

17280

For the stabilized NOPD (SNOPD), we have

a1 = c

a3 = −c (−1 + 3n (1 + n)) ∆X (G (1 + n) (1 + 2n)− 4n3∆X)

120n3

a5 =

c(∆X)2


−7G2

(
−1 + 10n2 + 15n3 + 6n4

)2

−8G (−1 + n)n3 (1 + n) (2 + n) (−1 + 2n) (1 + 2n) (3 + 2n) ∆X

+240n6
(
1 + 3n (1 + n)

(
−1 + n+ n2

))
(∆X)2


201600n6

(9.55)

where G is the stabilization parameter.

Remarks on MBCs with N > 1:

It is shown that the MBC coefficients for non-ordinary state-based PD are singular when

N > 2n (Nicely, 2018). Therefore, all higher-order MBC coefficients are singular for the

case of nearest neighborhood (n = 1). For larger neighborhoods (1 < n < 2N), solutions of

Eq. (9.41) do exist but not stable due to negative coefficient ci. An exception is the stabilized

version. Proper choice of the stabilization parameter G can lead to stable higher-order MBCs

with arbitrary horizon radius. The stable range of G is constrained by two conditions: (1)

coefficient ci must be positive and (2) reflection coefficient should be less than one (Nicely,

2018). These constraints lead to the fact that the applicable range of G depends on both

the order of MBC as well as the horizon radius, which could be problematic in practical

applications. Therefore, we employ only MBC1 in this work.
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0 1 2 3 …-1-2

Figure 9.4. Nodes numbering for nonlocal MBCs in 1D

9.3.3 Nonlocal MBC for Peridynamics

The MBCs developed above was shown to be ineffective in terms eliminating artificial wave

reflections at the boundaries, which is attributed to the so-called edge effect (Nicely et al.,

2018; Nicely, 2018).

To eliminate the edge effect, the MBCs is recast in a nonlocal form given by

N∑
j=0

cju̇j−M −
N∑
j=0

bjuj−M = 0 for M = 0, ..., 2n− 2, 2n− 1 (9.56)

which is termed as the NMBCs. In NMBCs, an extra index is introduced to expand the

boundary domain to be twice the size of the horizon radius as illustrated in Figure 9.4. It is

also shown that the coefficients in Eq. (9.56) are independent of M and are the same with

the MBCs.

In this work, the revised NMBCs are employed for the concurrent multiscale framework.

For 2D cases, the NMBCs are constructed by using the products of the 1D NMBCs at

selected directions of incident waves (Wang and Tang, 2013). It is shown in (Nicely et al.,

2018; Nicely, 2018) that for both unidirectional and multidirectional waves, the coefficients

for 2D NMBC1 are given by

C0 =

 1 0

0 1

 , C1 =

 1 0

0 1

 (9.57)

and

B0 = − 8c√
15∆X

 1 0

0 1

 , B1 =
8c√

15∆X

 1 0

0 1

 (9.58)
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0, 3-1, 3 1, 3 2, 3 3, 3

0, 2-1, 2 1, 2 2, 2 3, 2

0, 1-1, 1 1, 1 2, 1 3, 1

0, 0-1, 0 1, 0 2, 0 3, 0

0, -1-1, -1 1, -1 2, -1 3, -1

Figure 9.5. Nodes numbering for NMBCs in 2D

which lead to the following 2D NMBC1 for different PD formulations with an arbitrary

horizon radius:

u̇i−M,j =

 u̇i−M,j

v̇i−M,j

 =

 −u̇i−M+1,j + c
∆X

8√
15

(−ui−M,j + ui−M+1,j)

−v̇i−M+1,j + c
∆X

8√
15

(−vi−M,j + vi−M+1,j)

 (9.59)

Note that the above equation is for the left boundary domain in PD.

An example of the NMBC nodes numbering in 2D is illustrated in Figure 9.5, where the

bottom left corner of a PD boundary domain is shown. In this figure, solid circles represent

internal PD nodes while as the empty ones indicate NMBC nodes.

9.3.4 Two-way NMBC

The above developed NMBCs provided an effective mechanism to eliminate artificial wave

reflections at the numerical interface. The waves originated form PD region, which are

referred to as the outgoing waves, are transmitted at the boundaries by the above one-

way NMBCs. For the concurrent multiscale framework, a two-way transmitting numerical

interface is required, i.e., the incoming waves, or equivalently the waves originated from the
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coarse-scale FE-only region need to be transmitted into the fine-scale PD region as well. A

two-way NMBC is developed based on the recent work by (Wang et al., 2017).

In 1D cases, displacement and velocity are decomposed by

u = uIn + uOut, u̇ = u̇In + u̇Out (9.60)

and the outgoing components are treated by one-way NMBCs.

Substituting Eq. (9.60) into Eq. (9.56) yields

N∑
j=0

cj
(
u̇j−M − u̇In

j−M
)
−

N∑
j=0

bj
(
uj−M − uIn

j−M
)

= 0 (9.61)

The two-way NMBC is rewritten by

c0u̇−M = −
N∑
j=1

cju̇j−M +
N∑
j=0

bjuj−M +

(
N∑
j=0

cju̇
In
j−M −

N∑
j=0

bju
In
j−M

)
(9.62)

where the incoming displacement and velocity are obtained from interpolations of the coarse-

scale solution.

9.4 Bridging scale projection

In the second section of this chapter, we showed that the FE equations in the overlapping

region is redundant and the coarse-scale solutions can be obtained from the projection of

the fine-scale PD solutions. Although the projection operator is already given in Eq. (9.4),

here we briefly show its derivation.

In the overlapping region, the PD nodal values can also be interpolated using the FE

nodal values and the shape functions, which is given by

q̂ =
∑
I

NIdI (9.63)

We can further define a scalar error between the PD solution and the above interpolated

values in a quadratic form:

e = (q − q̂)TMp (q − q̂) (9.64)
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where we choose the fine-scale diagonal mass matrix as the weight matrix.

The projection operator is obtained by minimizing the error defined in Eq. (9.64), which

leads to

Nd = N
(
NTMpN

)−1
NTMpq = Pq (9.65)

Therefore, the bridging-scale projection (BSP) gives the coarse-scale nodal values in the

overlapping region using fine-scale solution as follows

d =
(
NTMpN

)−1
NTMpq (9.66)

which essentially serves as a homogenization mechanism from fine scale to coarse scale.

9.5 Adaptivity algorithms

In dynamic fracture simulations, the fine-scale PD region is initially placed at the vicinity of

the pre-existing crack tip. As the crack propagates under loading, the local PD region needs

to be adaptively relocated to the vicinity of the new crack tip and all variables involved

in the coupling scheme should be updated appropriately. In this section, we propose such

adaptivity algorithms for concurrent multiscale dynamic fracture simulation. For simplicity,

we consider only one initial crack in this section, however, the proposed algorithms are

applicable for general cases where no or multiple initial cracks exist.

9.5.1 Crack tracking algorithm

First, we need to identify the crack tip in the PD region and keep tracking of the crack

path during the entire simulation. The crack tip location is used to activate the trigger for

the PD region relocation and the crack path is employed to enrich the coarse-scale finite

element. In PD, the crack occurs autonomously in the form of bond breaking without any

crack initiation/propagation criteria. Hence, there is no variable in PD to keep tracking of

the crack path. Two simple algorithms are proposed here to identify the location of the

crack tip.
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9.5.1.1 Algorithm 1: nearest neighbor bond

The first crack tip tracking algorithm determines the location of the crack tip based on the

broken bonds and the associated nodal damage variables. Note that the damage variable in

PD is introduced in Section 7.3.4 and defined as the percentage of broken bonds associated

with a node.

Instead of pinpointing the exact location of the crack tip, which is not an easy task

by itself, we employ an approximated crack tip location in this multiscale framework. In

this algorithm, we define the bond between immediately adjacent nodes (where bond length

= ∆X) as the nearest neighbor bond (NNB). The potential locations for the approximated

crack tip are the geometrical centers of these NNBs. Once a NNB is broken and the associated

two nodal damage variables are both greater than a threshold value, e.g. Dthreshold = 0.3, the

NNB is considered as a crack tip candidate. There might be multiple crack tip candidates at

a simulation time step, but most of them are fictitious. In order to determine the physically

reasonable new crack tip, two criteria are considered here. First, the distance between the

new and previous crack tips is limited to an upper bound threshold value, e.g. the horizon

radius δ, to avoid sudden jumping of crack tip and to enforce continuity of the crack path.

Second, the angle between the new crack path increment directional vector and the previous

crack path directional vector is limited to a specified range, e.g. ±π/2, to avoid sharp change

in crack propagation direction.

The above algorithm is schematically illustrated in Figure 9.6. In this figure, PD nodes are

represented by solid circles while the centers of NNBs, i.e. the potential crack tip locations,

are indicated by empty squares. Point a represents the previous crack tip and points b to

d represent the broken NNBs with nodal damage values greater than Dthreshold, i.e. the new

crack tip candidates. Among these candidate points, b violates the first criterion where the

valid distance to previous crack tip is indicated by the shaded circle centered at point a as
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PD nodes Potential crack points

Exiting crack points and path

Valid new crack tip and path

Invalid new crack tip and path

a

c

b

d

Figure 9.6. Schematic illustration of the crack tip tracking algorithm 1

Figure 9.7. Potential crack tip locations in algorithm 1

shown in Figure 9.6. Point c is also invalid as it violates the second criterion. Therefore,

only the point d is valid and determined as the new crack tip.

This algorithm essentially limits the new crack tips to be located within a circular sector

centered at the previous crack tip and prevents non-physical crack path. This also makes

the numerical implementation very simple and efficient. The shape of the circular sector is

controlled by the specified radial and circumferential ranges in the two criteria. For example,

the shaded semicircles in Figure 9.7 show the potential crack tip locations at two different
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69 degree

(a) (b)

Figure 9.8. Example of crack tip tracking: (a) contour of the nodal damage variables and
(b) the identified crack path

time steps. Note that in cases where multiple valid new crack tips coexist at the same time

step, it usually indicates the event of crack branching and must be handled properly.

Figure 9.8 shows an example of the above crack tip tracking algorithm. In this example,

a half model of the Kalthoff-Winkler experiment studied in Section 7.4.3 is considered with

the symmetry boundary condition applied at the bottom edge (y = 0). The initial crack is

placed at (0, 25) to (50, 25). The constant velocity in the x direction is applied at nodes

where x = 0 and y < 25. Figure 9.8 (a) plots the contour of the nodal damage field at the

final configuration, which shows the crack path clearly. The identified crack path is plotted

in Figure 9.8 (b) and colored by the step time of when the crack tip is identified. The initial

crack prescribed at t = 0 is indicated by the dashed line. It can be seen that the crack path

is accurately identified using the proposed algorithm. By curve fitting the identified crack

path, we find the angle between the initial crack and the crack propagation is 69◦, which

matches the experiment observation (around 70◦) very well.
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Potential new crack tip and path

Bonds intersect with the potential 
new crack path

Inverse visibility criterion

Figure 9.9. Inverse visibility criterion for crack tip tracking

9.5.1.2 Algorithm 2: inverse visibility criterion

The second crack tip tracking algorithm is based on the visibility criterion in meshfree

methods (Belytschko and Tabbara, 1996; Rabczuk and Belytschko, 2004), which simply

indicates that nodes on one side of the crack surface cannot see the nodes on the opposite

side. This method was applied for modeling the initial cracks in PD simulation: all bonds

intersecting with a given initial crack are set to broken prior to time integration. The inverse

process can be employed to identify new crack path.

The crack tip tracking algorithm based on the inverse visibility criterion is illustrated

in Figure 9.9. For a given potential crack path, the status of all the bonds intersecting

with it needs to be checked. If all these bonds are broken, then the potential crack path is

determined as the new crack path. This algorithm is also simple and free of any parameters

compared to the previous one. However, an efficient numerical implementation is required

to reduce the total number of intersection checking and the computational cost.

Finally, it is worth noting that in (Giannakeas et al., 2020b) the authors proposed a

crack tip tracking algorithm based on nodal damage variables. In their approach, the crack

tip is determined as the local minimum of the discrete Laplacian of the damage field. This

algorithm can also be incorporated in the current work.
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Figure 9.10. Shifting of the PD region due to crack propagation

9.5.2 PD region shifting algorithm

In (Giannakeas et al., 2020b), a two-step expansion/contraction process is proposed for PD

region relocation in coupled PD/XFEM simulation. In (Wada, 2017), the author developed

a PD region shifting algorithm based on the crack tip location and the coarse-scale FE mesh.

In this work, we propose a simple PD region shifting approach which is similar to the latter

(Wada, 2017).

First, we partition the fine-scale PD region using a coarser background grid, e.g. a 3× 3

uniform grid in 2D cases. For the purpose of illustration, here we employ the overlapping

coarse-scale finite elements for partitioning the PD nodes. Figure 9.10 illustrates the shifting

scheme. In this figure, PD nodes are represented by solid dots while the grid is the FE mesh.

Enriched FE nodes are indicated by solid squares. The PD region is initially placed in such

a way that the crack tip is located at the center element in the background grid (i.e. the

overlapping elements) as indicated by the tip of the black arrow. During the simulation we

keep track of the location of the crack tip as well as its relative position to the background

grid (e.g. parent element index). A shifting vector (the red arrow in Figure 9.10) is obtained
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Shifted
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Mapping InterpolatingDiscarding
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Figure 9.11. Updating state variables in the shifted PD region

once the crack tip propagates outside the original element into a new element. Subsequently,

the PD region is shifted by using the shifting vector as shown in Figure 9.10.

By shifting the PD region, the PD nodal coordinates are updated by adding the shifting

vector. Since the region is simply shifted, there is no need to search for neighbor nodes again

and thus saves computational effort. However, we still need to determine the state variables

such as displacement, velocity, damage, bond status (the influence function), etc., for the

shifted PD region. Here, a simple mapping/interpolating scheme is established to update the

PD state variables. As illustrated in Figure 9.11 (a), the unshifted PD region is divided into

two sub-regions: one bounded by the green box, which is far away from crack tip and will be

discarded in the shifted PD region; the other one bounded by the blue box which is mapped

onto the shifted PD region. Similarly, the shifted PD region can also be partitioned into two

sub-regions: one region bounded by the blue box which is overlapping with the unshifted PD

region; and the other one bounded by the red box needs approximated state variables. In the

overlapping sub-region (the blue boxes), the nodal state variables are directly mapped from

215



the unshifted PD region to the shifted one. In the red box of the shifted PD region, the nodal

values are interpolated from the coarse scale nodal values using the FE shape functions. For

bond status, it is mapped if both nodes associated with the bond are located in the blue

box, otherwise it is set to be an intact bond. The nodal damage value is re-evaluated after

updating the bond status. Figure 9.11 (b) shows an example of the mapping/interpolating

algorithm. In this example, a model configuration similar to Figure 9.10 is subjected to the

Mode I fracture load. The PD region is colored by velocity magnitude field and the waves

generated by debonding are clearly visualized. The two frames illustrated in this figure are

captured before and after the PD region shift. It can be seen that the mapping/interpolating

algorithm works very well in this example.

9.5.3 Updating the concurrent coupling scheme

Along with the PD region shifting, other components in the concurrent coupling scheme also

need to be updated. First of all, to account for the strong discontinuity due the new crack

path obtained from the PD region, the corresponding coarse-scale elements are enriched by

Heaviside function. Secondly, the FE shape functions associated with the NMBC nodes are

updated for calculating the incoming waves to the shifted PD region. Finally, the bridging-

scale projection is updated using the shifted PD nodal positions and the updated FE shape

functions.

As a brief summary, the proposed adaptivity algorithm relocates the PD region in the

following three steps:

1. Tracking the crack tip using broken bonds and nodal damage variables;

2. Shifting the PD region and updating state variables when the shifting trigger is acti-

vated; and

3. Updating XFEM, NMBC, and BSP after PD region shifting.
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9.6 Numerical implementation

Numerical implementation of the proposed concurrent multiscale framework by coupling PD

with FEM is summarized below:

1. Preprocess for FE and PD regions

2. Setup two-way NMBC PD nodes, coefficients and the associated FE DOFs

3. Setup bridging-scale projection operators and the associated FE and PD DOFs

4. Initialization for time integration

5. Start the time stepping

(a) Solve the FE equation of motion over the entire spatial domain to update the FE

nodal acceleration, velocity and displacement vectors

(b) Solve the PD equation of motion in the local region of interest to update the PD

nodal acceleration and velocity vectors

(c) Apply two-way NMBC to PD region to update PD nodal velocity vectors

(d) Update PD nodal displacement vectors

(e) Apply the bridging-scale projection to update FE nodal displacement vectors in

the overlapping region

(f) Apply essential boundary conditions to FE domain

(g) Check the crack tip location and shift the PD region when necessary

(h) Proceed to next time step

6. Postprocess

In the above implementation, we assumed that FE and PD simulations have the same

time step size. However, FE simulation can generally employ a much bigger time step

size due to its coarser spatial discretization. In this case, a multi-time-stepping algorithm

can be employed (Qian and Chirputkar, 2014). In the multi-time-stepping algorithm, we

217



first advance the coarse-scale FE simulation by one large time step. The fine-scale PD

simulation is then advanced by several smaller time steps. During the sub-incremental steps,

the incoming waves for the two-way NMBC are interpolated from the FE solutions. At the

end of sub-incremental steps, the FE nodal values in the overlapping region are updated by

the bridging-scale projection with the fine-scale solution.

9.7 Summary

In this chapter, we have developed a concurrent multiscale framework based on PD and FEM.

In this framework, coarse-scale FE model is applied to the entire domain while fine-scale PD

model is limited to a local region of interest. Coupling between the FEM and PD models

are realized with two components. First, a class of two-way nonlocal matching boundary

conditions is established to absorb the outgoing waves in PD model and transmits incoming

waves from FE model to PD model through the numerical interface. Second, a bridging-scale

projection operator is introduced to project the fine-scale solution onto the coarse-scale basis

in the PD/FE overlapping region. Finally, we established an adaptive scheme to track crack

growth in PD region and mapping back the crack path to FE model using enrichment shape

function and extra DOFs. The PD region shifts along with the crack tip to capture crack

propagation in dynamic fracture simulations.
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CHAPTER 10

APPLICATIONS ON ELASTODYNAMICS AND FRACTURE

10.1 Introduction

In this chapter, we first present several numerical experiments for wave propagation prob-

lems to systematically demonstrate the efficiency and accuracy of the proposed concurrent

coupling scheme in Chapter 9. To further demonstrate the robustness and computational

performance of the developed concurrent multiscale framework, dynamic fracture problems

are studied and the results are validated against full PD simulations as well as experiment

observations.

10.2 Longitudinal wave propagation in an infinitely long 1D bar

In the first example we consider the longitudinal wave propagation in an infinitely long 1D

bar with a uniform cross-sectional area A = 1. We only explicitly model the bar with a finite

length of L = 500. Both ends of the finite-length bar are treated by either MBC or NMBC

to transmit outgoing waves into the regions that are not explicitly modeled to achieve the

non-reflective or absorbing boundary conditions. To generate the outgoing wave, a harmonic

wave profile is imposed at the middle of the model, which is given by

u (x, t) = u0 (1− cos (ωt)) for x ∈ [L/2− 2δ, L/2 + 2δ] , t ∈ [0, 2π] (10.1)

where the amplitude u0 = 0.0025, angular frequency ω = 1.

Material properties of the bar are given as Young’s modulus E = 57.1464 and density

ρ = 1. This 1D model is discretized with evenly distributed nodes with spacing ∆X = 1. A

time step size ∆t = 0.02 is employed and the total simulation time is T = 80.
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10.2.1 NMBC with BBPD

First, we simulate this problem with the bond-based PD (BBPD) and study the performance

of MBC and NMBC. Figure 10.1 shows a frame-to-frame comparison of wave profiles between

the solutions obtained by MBC and NMBC. Note that the nearest neighborhood, i.e. δ =

1∆X, is employed here. It shows that both MBC and NMBC transmit the outgoing wave

at the artificial boundaries. In the case of MBC, the majority part of the outgoing waves

is transmitted. However, due to the so-called edge effect in MBC, a small portion of the

outgoing wave has been reflected at both ends of the model, which is apparent in Figure 10.1

(a) at the last two timeframes. In contrast, the wave reflections in the NMBC case are almost

indiscernible as shown in Figure 10.1 (b), which shows superior performance of NMBC in

terms of absorbing outgoing waves. Figure 10.2 illustrates a more detailed comparison of the

residual waves by the end of the simulation. Note that the reference result is obtained by

extending the modeled bar length to the extent such that the outgoing waves cannot reach

the artificial boundaries by the end of the simulation and monitoring nodal solutions only

within the range of the original modeled bar length, i.e. x ∈ [0, 500].

To quantitatively study the wave absorption efficiencies of MBC and NMBC, we compare

their total energies in the system as a function of time. Figure 10.3 illustrates a comparison

between total energy histories obtained from the cases with MBC and NMBC. Note that

both energy and time are normalized. Also, a reference total energy history is provided as an

ideal case for the purpose of comparison. The reference result is obtained in the same way as

explained earlier. Figure 10.3 (a) shows that the normalized total energies remain constant

of 1 before the outgoing waves reach the artificial boundaries, then reduces as the outgoing

waves are transmitting through the boundaries. After that, the remaining energy essentially

provides a good measurement for the efficiency of the absorbing boundary conditions. As

shown in Figure 10.3 (a), the final normalized remaining energy for the MBC case is around

1.39 × 10−3, which is the highest among all the cases and is caused by the edge effect in
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Figure 10.1. Timeframes of wave propagation in the 1D bar obtained by BBPD with n = 1
and boundaries are treated by (a) MBC and (b) NMBC
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Figure 10.2. Residual waves in the 1D bar by BBPD by the end of the simulation: (a) the
comparison, (b) reference solution, (c) MBC and (d) NMBC cases

MBC. Nevertheless, 99.86% of the energy associated with the outgoing waves are transmitted

through the MBC implementation. The NMBC case shows a normalized remaining energy

around 3.64×10−5 by the end of the simulation, which is more than 38 times lower compared

to the MBC case. In other words, the wave absorption efficiency of NMBC is greater than

99.996%. Lastly, the normalized remaining energy in the reference solution at the final time

step is around 3.60× 10−6, which is an order of magnitude lower than the NMBC case and

again confirms the superior wave absorption efficiency of the NMBC.

It is worth noting that remaining energies of both the MBC and NMBC cases reach

plateau after outgoing waves passed through the artificial boundaries as shown in Figure 10.3

(a), which is due to the fact that the reflected waves cannot reach the absorbing boundaries
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Figure 10.3. Total energy histories for wave propagation in the 1D bar by BBPD with
n = 1: (a) the original simulation with T = 80 and (b) the extended simulation with

T = 400

by the end of the simulation. To validate this explanation, we extend the total simulation

time by five times to allow the reflected waves passing through the artificial boundaries a

couple of times. As illustrated in Figure 10.3 (b), the energies of both MBC and NMBC

cases drop a few more times and eventually converged to a value that is only slightly higher

than the reference case.

Next, we study the NMBC wave absorption efficiency in BBPD by varying the horizon

radius from δ = 1∆X to δ = 4∆X. Solution of the nearest neighborhood case is employed as

a baseline for the purpose of comparison since it already demonstrated an excellent efficiency.

The normalized total energies are plotted in Figure 10.4 for cases n = 1 ∼ 4. At the final

time step, the cases with larger n yield higher remaining energies in the system. It indicates

that the NMBC becomes less efficient with an increasing horizon radius, which could be

possibly attributed to the increased nonlocality in PD with larger horizons. However, the

normalized remaining energy is still less than 0.03% in the worst-case scenario with n = 4,

which shows a remarkable wave absorption efficiency of NMBC regardless the size of horizon

radius in BBPD.
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Figure 10.4. Total energy histories for wave propagation in the 1D bar by BBPD with
NMBC and various horizons: n = 1 ∼ 4

To further understand why the NMBC efficiency decreases with growing neighborhood

sizes, we captured the wave propagations at different timeframes for the cases of n = 2

and n = 3, as shown in Figure 10.5. From the first two timeframes, waves with shorter

wavelengths in the wake of the main outgoing long waves are clearly observed. These short

trailing waves are induced by the increased wave dispersions of PD due to its nonlocality

with larger horizons. Recall that the NMBC employed here is the Taylor-type that mainly

aims at eliminating the wave reflections in the limit of long wave (κ→ 0 or λ→∞). There-

fore, it is less efficient in terms of absorbing these trailing waves with shorter wavelengths.

Nevertheless, the reflected waves are barely visible as shown in the last timeframe in Fig-

ure 10.5, which illustrates a good overall efficiency of NMBC on absorbing all these waves.

In cases that the current NMBC no longer efficient due to the presence of short waves, the

Taylor-Newton-type NMBC can be introduced.

The efficiency of NMBC in BBPD is tested by imposing initial wave profiles with different

wavelengths, as shown in Figure 10.6. Three distinct wavelengths range from 50 to 200 are

considered here. Similarly, the normalized total energy histories for these cases are plotted in

Figure 10.7. Since long wave travels faster than short wave, the wave with λ = 200 reaches
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(a) (b)

Figure 10.5. Timeframes of wave propagation in the 1D bar obtained by BBPD with
NMBC and various horizons: (a) n = 2 and (b) n = 3

the artificial boundaries first and its total energy drops earlier than the other cases. As

expected, the NMBC absorbs the long wave better compared to the shorter ones. But in all

cases the normalized remaining energy is less than 0.01% by the end of the simulation.

10.2.2 NMBC with NOPD

A similar study on MBC and NMBC is conducted with non-ordinary state-based PD with

correspondence materials (NOPD). Figure 10.8 shows the frame-to-frame comparisons of
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(a)
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(c)

Figure 10.6. Initially imposed wave profiles with different wavelengths: (a) λ = 50, (b)
λ = 100, and (c) λ = 200

wave propagation between MBC and NMBC cases obtained by NOPD with n = 1. Similar

to the results in the BBPD, the MBC case shows reflected waves with much larger amplitude

compared to the NMBC case. However, in contrast to the BBPD cases, the wave reflections

are more evident in NOPD with both MBC and NMBC.

Quantitative measurements of the wave absorption efficiency are illustrated in Figure 10.9.

It shows that the normalized remaining energies are 0.12 and 0.009 for MBC and NMBC,

respectively, which are orders of magnitude higher compared to the BBPD cases. In fact,

even the remaining energy in the reference solution increases to 2.3× 10−5, which is around

10 times greater than the reference result in the BBPD case. This significantly deteriorated
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Figure 10.7. Total energy histories for wave propagation in the 1D bar by BBPD (n = 3)
with NMBC and various initial wavelengths: λ = 50 ∼ 200

performance is attributed to the zero-energy modes due to the inherent material instability

in NOPD formulation.

The spurious zero-energy modes are more apparent for larger neighborhood sizes in

NOPD, which are clearly illustrated in Figure 10.10. A large number of high frequency

waves are generated by these spurious modes spontaneously along with the outgoing wave.

NMBC cannot efficiently absorb these waves due to their very short wavelengths. Therefore,

large wave reflections are expected and also observed in Figure 10.10. Furthermore, ampli-

tudes of the reflected waves are higher with the increasing horizon radius by comparing the

results obtained by the cases of n = 2 and n = 3.

Similarly, we collected the total energy histories for cases with larger horizon radius

(n = 2 ∼ 4) and plotted them against the local case (n = 1) in Figure 10.11. As expected,

the efficiency of NMBC decreases as increasing horizon size. However, unlike the BBPD

cases, the cases with larger neighborhood in NOPD show escalating remaining energies even

after the outgoing waves passed through the absorbing boundaries, which is due to the zero-

energy modes. The NOPD formulation is excluded in the proposed concurrent multiscale

framework because of its instability and the resulting poor performance.
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Figure 10.8. Timeframes of wave propagation in the 1D bar obtained by NOPD with n = 1
and boundaries are treated by (a) MBC and (b) NMBC
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Figure 10.9. Total energy histories for wave propagation in the 1D bar by NOPD with
n = 1 and boundaries are treated by MBC and NMBC

10.2.3 NMBC with SNOPD

We proceed to study the performance of MBC and NMBC in the stabilized non-ordinary

state-based PD with correspondence materials (SNOPD). The stabilization parameter of

G = 0.5 is employed here unless otherwise stated. Figure 10.12 illustrates a comparison

of wave propagation profiles between MBC and NMBC with the nearest neighborhood.

Figure 10.12 (a) shows that the MBC in SNOPD still leads to significant wave reflections

due to the edge effect. On the other hand, wave reflections observed in the NMBC with

NOPD case are substantially suppressed by virtue of the extra stabilization force introduced

in SNOPD. Figure 10.12 (b) shows that the performance of NMBC is fully restored as

compared to the BBPD case.

We also plotted the normalized energy histories in Figure 10.13. The remaining energy

in the MBC case is around 0.04, which is improved only 3 times compared to the NOPD

case. In the NMBC case the final remaining energy reduces to 3.1× 10−5, which is improved

roughly 290 times compared to the NOPD case and even slightly better than the BBPD

case. The remaining energy in the reference case is 1.8× 10−6.
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Figure 10.10. Timeframes of wave propagation in the 1D bar obtained by NOPD with
NMBC and various horizons: (a) n = 2 and (b) n = 3
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Figure 10.11. Total energy histories for wave propagation in the 1D bar by NOPD with
NMBC and various horizons: n = 1 ∼ 4

NMBC performance in SNOPD with larger neighborhood sizes are also investigated. The

wave propagation profiles captured at different timeframes for the cases of n = 2 and n = 3

are illustrated in Figure 10.14 (a) and (b), respectively. Compared to the NOPD cases, the

abundant wave reflections are almost eliminated by NMBC in SNOPD with larger horizon

radii. In addition, as already seen in the BBPD cases, we also observe from Figure 10.14

that larger horizon radii lead to more apparent trailing waves with short wavelengths, which

weaken the overall wave absorption efficiency of NMBC.

Normalized energy histories for different horizon radii in SNOPD are shown in Fig-

ure 10.15 to quantitatively study the NMBC performance. As we anticipated, the wave

absorption efficiency of NMBC drops as the horizon radius increases in virtue of nonlocality

in PD. For the widely employed n = 3 case, the final remaining energy is 0.0015. To further

improve the NMBC efficiency in this case, we tune the stabilization parameter G in SNOPD

as shown in Figure 10.16. It shows that the efficiency improves with larger G. With G = 2,

the remaining energy reduces to 0.0004, which is roughly 4 times lower than the previous

case.
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(a) (b)

Figure 10.12. Timeframes of wave propagation in the 1D bar obtained by SNOPD with
n = 1 and G = 0.5 and boundaries are treated by (a) MBC and (b) NMBC
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Figure 10.13. Total energy histories for wave propagation in the 1D bar by SNOPD with
n = 1 and G = 0.5 and boundaries are treated by MBC and NMBC

In this 1D example, we systematically studied the performance of MBC and NMBC in

various PD formulations. With the nonlocal extension to account for the edge effect, NMBC

always shows a better wave absorption efficiency compared to MBC cases. In addition,

NMBC works well for both BBPD and SNOPD. Its efficiency is inversely proportional to

the horizon radius and directly proportional to the stabilization parameter G in SNOPD.

Even with large neighborhood sizes or small G values, NMBC still yields satisfactory wave

absorption efficiency. Finally, neither MBC nor NMBC is efficient in NOPD due to the

spurious zero-energy modes.

10.3 Longitudinal wave propagation in a 1D bar with finite length

In this example, we consider a similar problem to the previous one except that the 1D bar

has a finite length l = 4, 000 in this case. The bar also has a unit cross-sectional area and

the material parameters are the same as in the previous example. The middle segment of

the bar with a length L = 1, 000 is simulated by the fine-scale PD with a uniform nodal

spacing ∆X = 1, while the entire bar is modeled by the coarse-scale FEM with 2-node

linear bar elements and a constant element length ∆l = 20. This multiscale configuration
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Figure 10.14. Timeframes of wave propagation in the 1D bar obtained by SNOPD with
G = 0.5 and NMBC and various horizons: (a) n = 2 and (b) n = 3
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Figure 10.15. Total energy histories for wave propagation in the 1D bar by SNOPD with
G = 0.5 and NMBC and various horizons: n = 1 ∼ 4
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Figure 10.16. Total energy histories for wave propagation in the 1D bar by SNOPD with
n = 1 and NMBC and G = 0.25 ∼ 2.0
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Figure 10.17. Schematic illustration of computational setup for concurrent multiscale
simulation on wave propagation in a 1D bar

is schematically sketched in Figure 10.17. A horizon radius δ = 3∆X is adopted for PD

simulations. For SNOPD, the stabilization parameter is G = 0.5. The explicit central

difference time integration algorithm with a constant time step size ∆t = 0.02 is employed

for both the PD and FE simulations. We investigate the performance of the proposed

concurrent multiscale framework with both BBPD and SNOPD formulations in this 1D

wave propagation example. Note that the coupling between these two scales are realized by

NMBC and bridging-scale projection (BSP) as introduced in previous sections.

10.3.1 Coupled BBPD/FEM in 1D

10.3.1.1 Performance of the two-way NMBC

First, we test the performance of the two-way NMBC, which transmits both incoming and

outgoing waves for the PD region. Note that outgoing waves are essentially absorbed by

NMBC at the PD/FE numerical interfaces. As illustrated in Figure 10.18 (a), a right-

traveling harmonic wave profile with a long wavelength λ = 1, 000 is imposed initially to the

left end of the FE domain. Since we are mainly focused on testing the two-way NMBC, the

coupling through BSP is disabled in this test. Therefore, the coarse-scale FE nodal values

in the overlapping region is obtained by solving FE equations of motion instead of BSP with
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Figure 10.18. Wave propagation in the 1D bar simulated by BBPD/FEM with two-way
NMBC and disabled BSPWave propagation in the 1D bar simulated by BBPD/FEM with

two-way NMBC and disabled BSP

fine-scale PD solutions. Figure 10.18 (b) shows that incoming wave from the FE region on

the left is successfully transmitted into the PD region through the left NMBC nodes. Then

the wave continues traveling towards the right direction and is fully absorbed at the right

NMBC nodes as shown in Figure 10.18 (c) ∼ (f). Therefore, the two-way NMBC in this

test has served its purpose of eliminating the outgoing wave and transmitting the incoming

wave. It is worth noting again that the coupling from PD to FE in the overlapping region

through BSP is disabled. However, the FE solution matches well with the PD solution in

this region such that the outgoing wave appears to be transmitted to the FE region on the
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Figure 10.19. Total energy histories in BBPD and FE regions for wave propagation in the
1D bar with two-way NMBC and disabled BSP

right. If the wave is initiated from the PD region, then the FE solution will remain zero due

to the disabled BSP.

To quantitatively investigate the efficiency of the two-way NMBC, we measured the

total energies in PD model and FE model as a function of time. Note that the FE energy

measurement excludes the overlapping region. The normalized total energy histories are

shown in Figure 10.19. The stages that wave passing through the numerical interfaces can

be clearly identified in this figure. It shows that the NMBC on the left interface transmitted

99.87% incoming wave energy into the PD region, while the remaining energy in PD reduced

to only 4.0×10−6 by the NMBC on the right artificial interface, which absorbed the outgoing

wave. Therefore, the two-way NMBC has demonstrated a remarkable efficiency in this

benchmark problem.

10.3.1.2 Performance of the bridging scale projection

Next, we study the performance of the fully coupled concurrent multiscale framework by

enabling the BSP, which projects the fine-scale PD solutions onto the coarse-scale FE nodes

in the overlapping region. To begin with, we impose a monochromatic long wave profile with
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Figure 10.20. Initially imposed long wave for the study on BSP: (a) a view in the PD/FE
overlapping region x ∈ [−500, 500] and (b) an enlarged view x ∈ [−140, 140]

λ = 1, 000 initially to the PD model, which is illustrated in Figure 10.20. The imposed wave

is also resolvable at the coarse scale since its wavelength is long enough compared to FE

element size. As shown in Figure 10.20 (a) and (b), BSP effectively projects the imposed PD

nodal displacements onto the coarse-scale FE elements within the overlapping region. The

simulated wave propagation in this case is shown in Figure 10.21 and note that the time in

this figure is normalized. It can be seen that the wave propagates smoothly in the bar as if

there is no numerical interface.

To check the efficiency of the coupling scheme, we plotted total energy histories in PD and

FE models as shown in Figure 10.22. Similarly, calculation of the FE total energy excludes
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Figure 10.21. Long wave propagation in the 1D bar simulated by BBPD/FEM with
two-way NMBC and BSP

the part in the overlapping region. It shows that the coupling scheme efficiently transmits

the wave between PD and FEM models. For example, around 99.74% of the initial wave

energy is transmitted to FE model through the BSP. In the meantime, NMBC reduces the

remaining energy in PD model to a negligible level of 5.0× 10−7 by absorbing the outgoing

waves.

Robustness of the proposed coupling scheme is further demonstrated by extending the

total simulation time such that waves can travel in the bar back and forth and pass through

the numerical interfaces a couple of times. The normalized energy histories in this case are

shown in Figure 10.23. It shows that the total energy transferred into the FE model reduces
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Figure 10.22. Total energy histories in BBPD and FE regions for long wave propagation in
the 1D bar with two-way NMBC and BSP
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Figure 10.23. Extended total energy histories in BBPD and FE regions for long wave
propagation in the 1D bar with two-way NMBC and BSP

by a tiny amount each time the waves passing through the artificial interfaces. Also, the

normalized remaining energy in PD model increases by an even smaller amount. Overall,

the exchange of energy between the PD and FE models remains stable and robust during

the entire extended simulation.
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10.3.1.3 Initial wave with both long and short wavelengths

To further demonstrate the capability of the coupled concurrent multiscale framework, we

impose an initial wave that contains two components: one with a long wavelength of λ =

1, 000 and the other with a short wavelength of λ = 20, which cannot be resolved by the

coarse-scale FE model but can be fully captured by the fine-scale PD model. Figure 10.24

illustrates this mixed long/short initial wave profile. Note that this initial wave profile is

imposed only on the PD model. Figure 10.24 (b) clearly shows that only the long wave

component is projected onto the FE model in the overlapping region. From another point

of view, the BSP acts effectively as a low-pass filter that only allows the wave components

that can be resolved at coarse scale to be projected onto the FE model while filtering out

the finer wave components.

Profiles of the mixed wave propagation simulation at different time step are illustrated

in Figure 10.25 (a) ∼ (f). It shows that only the long wave passes through the numerical

interfaces. The short waves are absorbed by the NMBC and therefore lost in the simulation.

A comparison between Figure 10.25 (f) and Figure 10.25 (a) clearly demonstrates this loss

of information. In this work, we mainly focus on long waves since they travel faster in

general and get reflected back earlier at the physical boundaries. Hence, it is adequate to

ignore reflections of short waves into the fine-scale region. However, for cases that short-wave

reflections cannot be ignored, we can enrich the coarse-scale FE formulation to implicitly

store the unresolvable information and transmit them back into the fine scale when it is

necessary. Such a scheme has been proposed in an atomistic to continuum coupling approach,

please refer to Chirputkar and Qian (Chirputkar and Qian, 2008) for details.

The normalized total energy histories with extended simulation time for the mixed wave

propagation case are plotted in Figure 10.26. It shows that the energy associated with

short wave components is lost in the system when the initial wave passing through the

numerical interfaces for the first time. In this work, we assume that these high-frequency
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Figure 10.24. Initially imposed mixed long/short waves for the study on BSP: (a) a view in
the PD/FE overlapping region x ∈ [−500, 500] and (b) an enlarged view x ∈ [−140, 140]

wave components are dissipated during propagation due to material damping. After that,

the total energy in the system, which is associated to the long wave component, as well as

its exchange between PD and FE models remain stable for the rest of the simulation.

10.3.2 Coupled SNOPD/FEM in 1D

Finally, we proceed to the concurrent multiscale framework by coupling SNOPD/FEM. As

a reminder, we set the SNOPD stabilization parameter G = 0.5 in this example. Since the

coupling scheme with BBPD formulation is already demonstrated extensively, we directly

study the fully coupled SNOPD/FEM in this case to avoid repetition.
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Figure 10.25. Mixed long/short waves propagation in the 1D bar simulated by
BBPD/FEM with two-way NMBC and BSP

As shown in Figure 10.27 (a), we imposed a right-traveling initial wave profile to the left

end of the FE model. The wavelength is λ = 1, 000. This initial condition is the exactly

same with the one shown in Figure 10.18. However, in this case the SNOPD and FEM are

fully coupled through the two-way NMBC and BSP. Figure 10.27 (b) ∼ (f) show that the

prescribed wave travels smoothly in the FE and PD models despite the presence of artificial

interfaces.

Efficiency of the numerical interfaces is illustrated in Figure 10.28. Note that we extended

the simulation time to test the stability of the coupling scheme with SNOPD and the FE

energy does not account for the overlapping region. The peak normalized total energies
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Figure 10.26. Extended total energy histories in BBPD and FE regions for mixed
long/short waves propagation in the 1D bar with two-way NMBC and BSP
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Figure 10.27. Wave propagation in the 1D bar simulated by the concurrent multiscale
framework with coupled SNOPD/FEM
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Figure 10.28. Extended total energy histories in SNOPD and FE regions for long wave
propagation in the 1D bar

in both FE model and PD model remain a constant very close to 1 during this extended

simulation. The remaining energy in PD model is below 1.0 × 10−5 when the wave is fully

transmitted into the non-overlapping region FE model.

With the results presented in this test, we have shown that the proposed concurrent mul-

tiscale framework performs well in the 1D wave propagation problems with both the BBPD

and SNOPD formulations. The developed coupling scheme based on the two-way NMBC

and BSP demonstrated a high efficiency as well as exceptional stability and robustness.

10.4 Plane wave propagation in a 2D plate

10.4.1 Unidirectional wave propagation

In this 2D example, we first study unidirectional plane wave propagation. The geometrical

dimensions and multiscale computational configuration are illustrated in Figure 10.29. The

plate has a dimension of 800 × 40 × 1 and is modeled by the 2D plane stress formulation.

The material properties are the same as the previous 1D examples except that the Poisson’s

ratio is ν = 1/3.
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Figure 10.29. Geometrical dimensions and multiscale computational configuration for the
unidirectional plane wave propagation example

In the coarse-scale FE model, the entire plate is discretized by uniform 4-node bilinear

quadrilateral (Q4) elements with an element edge length ∆l = 10 in both directions. As

shown in Figure 10.29, the region within x ∈ [−100, 100] and y ∈ [−20, 20] is modeled by the

fine-scale BBPD with a uniform nodal spacing ∆X = 1. The PD horizon radius is δ = 3∆X

in this case. For both FEM and PD simulations, we employ a constant time step size of

∆t = 0.02.

As illustrated in Figure 10.30 (a), we first prescribe a unidirectional right-traveling plane

wave profile with a wavelength of λ = 200 in the x direction to the left end of FE model.

For each timeframe shown in Figure 10.30, both contours of the x-component displacement

field and the x-displacement profile along the x-axis (y = 0) are plotted. In this simula-
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tion, the initial wave passes through the PD region twice. The smooth wave propagation

shown in Figure 10.30 (b) ∼ (e) indicates that both the two-way NMBC and the BSP work

properly. To validate the result obtained by the coupled simulation, we extracted FE nodal

displacement history at node x = 200, y = 0 and compared to the solution obtained by a

FE-only model with a finer mesh. The comparison is shown in Figure 10.31 and an excellent

agreement between the two solutions is observed.

Next, we impose a unidirectional plane wave profile with two wavelength components to

the PD model. The long and short wavelengths are λ = 200 and λ = 10, respectively. The

results are shown in Figure 10.32 (a) ∼ (e). Similar to the 1D case, only the long wave

passes through the numerical interfaces and transmits into the FE regions. The short-wave

components are absorbed by the two-way NMBC effectively.

10.4.2 Multidirectional wave propagation

Finally, we study the multidirectional plane wave propagation in 2D. The geometrical di-

mensions and computational configuration are illustrated in Figure 10.33. Dimensions of

the plate are 800× 800× 1. The same material parameters in the unidirectional wave case

are employed. In the coarse-scale model, 1,600 Q4 elements with an edge length ∆l = 20

is employed. The middle part of the plate within x ∈ [−100, 100] and y ∈ [−100, 100] is

discretized by around 45,000 evenly distributed nodes in the fine-scale SNOPD model. The

PD nodal spacing is ∆X = 1 and the horizon radius is δ = 3∆X. Figure 10.33 (b) ∼ (e)

provide enlarged views showing the corner NMBCs at the PD/FE numerical interface. The

stabilization parameter for SNOPD is G = 1. A constant time step size of ∆t = 0.02 is

employed for both FEM and PD simulations.

We impose an initial wave profile to the PD model, which is given by

u (rI , t = 0) =

 u0 (cos (πrI/rmax) + 1) rI 6 rmax

0 rI > rmax

(10.2)
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Figure 10.30. Timeframes for the unidirectional long plane wave propagation example
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The concurrent multiscale simulation results are shown in Figure 10.34. Displacement

fields in the x direction at different time steps are plotted. In Figure 10.34, the FE dis-

placement contours are plotted on the element edges while PD displacements are directly

plotted on nodes. The initially imposed long wave propagates from the center of the plate

towards the edges. Wave transmissions between the FE-only region and the PD/FE over-

lapping region are smooth. For the purpose of comparison, we also simulated this case by

a refined FE-only model with 6,400 Q4 elements. The reference solutions are presented in

Figure 10.35. The corresponding timeframes agree well with each other as shown in Fig-

ure 10.34 and Figure 10.35, which demonstrates a satisfactory performance of the coupling

scheme in 2D for plane wave propagation in arbitrary direction.

Lastly, we prescribe a mixed long/short multidirectional wave to the PD model. The long

wave component is the same as the previous. Both the wavelength and the amplitude of the

short wave is 10 times smaller than the long wave. Displacement solutions in the x direction

are illustrated in Figure 10.36 for different time steps. The short-wave components can be
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Figure 10.32. Timeframes for the unidirectional mixed long/short wave propagation
example
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Figure 10.33. Geometrical dimensions and multiscale computational configuration for the
multidirectional plane wave propagation example

clearly observed in Figure 10.36 (a) ∼ (c). After the waves passing through the numerical

interface, differences between the corresponding timeframes shown in Figure 10.36 (d) ∼ (i)

and Figure 10.34 (d) ∼ (i) are hardly noticeable, which indicates that the short waves are

fully absorbed by the numerical interface. For dynamic fracture applications, short waves

can be created by bond breaking. With the proposed concurrent multiscale framework, these

short waves will not be reflected at the artificial interface and therefore cannot contaminate

the fine-scale solution.

10.5 Dynamic fracture in a glass plate

To demonstrate the concurrent multiscale method in dynamic fracture applications, we first

consider a thin square glass plate fracture benchmark problem studied in (Wada, 2017). For

the purpose of comparison, this problem is simulated using both full BBPD and the coupled

BBPD/XFEM.
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Figure 10.34. Timeframes for multidirectional plane wave propagation simulation
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Figure 10.35. Timeframes for multidirectional plane wave propagation based on FEM
simulation
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Figure 10.36. Timeframes for multidirectional plane wave propagation with mixed
long/short wave components
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Figure 10.37. Thin glass plate fracture problem: (a) dimensions and (b) computational
configuration

10.5.1 Problem statement

Figure 10.37 (a) shows the dimensions of the glass plate considered in this example. The

plate is square-shaped with an edge length of 90 mm. Thickness of the plate is 1 mm

and the plane stress formulation is employed in simulations. As indicated by the red line

in Figure 10.37 (a), a horizontal initial crack with a length of 20 mm is placed at the

middle of the left edge. The material properties of the glass plate are: Young’s modulus

E = 74 GPa, mass density ρ = 2480 kg/m3, and critical strain sc = 0.0005. Two types of

loading conditions are considered in this example. In the Mode I fracture loading condition,

both the bottom and top edge plate are subjected to a constant uniform traction rate of

5,000 MPa/s in the y direction. In the Mode II loading condition, the bottom edge is fixed

while a constant velocity of 10 mm/s in −x direction is applied to the top edge.

The initial computational configuration is illustrated in Figure 10.37 (b). The entire

computational domain is discretized by a total of 81 four-node quadrilateral, fully integrated

elements (Q4) with an uniform element size of 10 mm at the coarse scale. The initial fine-
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scale PD region is placed at x ∈ [10, 40] and y ∈ [−15, 15] with an uniform nodal spacing of

∆X = 1 mm. The horizon radius for PD is δ = 3 mm. In Figure 10.37 (b), the red dots

indicate the NMBC nodes and the initial crack path is represented by the solid line in black

color. The initially enriched coarse-scale nodes and elements are mark by solid squares. For

both full PD and coupled PD/XFEM simulations, a constant time step of 1.0 × 10−8 s is

employed. The total numbers of steps are 150,000 and 426,000 for Mode I and Mode II cases,

respectively. Note that in full PD simulation, the entire computational domain is discretized

by evenly distributed PD nodes.

10.5.2 Mode I crack results

In the first loading condition, the expected crack path is a horizontal opening crack passing

through the middle of the plate, which is also know as the Mode I crack. Figure 10.38

shows the crack propagation process in full PD simulation and the coupled PD/XFEM

simulation. For each case, three images are captured at the beginning, the middle, and

the end of the simulation. In both Figure 10.38 (a) and (b), the PD nodes are colored by

the damage variable such that the crack path can be clearly observed. In addition to that,

the deformation is scaled up 100 times in visualization. The results presented in this figure

demonstrate a very good agreement between the coupled PD/XFEM simulation and the

reference full PD simulation.

Figure 10.39 plots the crack length histories obtained by the coupled PD/XFEM simu-

lation and the reference full PD simulation. In Figure 10.39 (a), the crack length is plotted

against the physical time. It shows that the crack propagation starts slightly earlier in the

coupled PD/XFEM simulation. However, the crack growth speeds in PD/XFEM and full

PD simulations are almost identical as shown in Figure 10.39 (b), where the crack length is

plotted against the normalized time. This quantitative comparison shows that the proposed

concurrent multiscale coupling method is accurate.
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(a) (b)

Figure 10.38. Mode I crack propagation in (a) full PD simulation and (b) coupled
PD/XFEM simulation
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(a) (b)

Figure 10.39. Mode I crack length vs. (a) physical time and (b) normalized time

10.5.3 Mode II crack results

Next, we study the second loading condition, which leads to the crack sliding mode or the

Mode II fracture. Because of the shear loading condition, the crack is expected to propagate

in a diagonal direction.

Similar to the Mode I case, the crack growth process in Mode II is illustrated in Fig-

ure 10.40. The full PD simulation results are shown in Figure 10.40 (a), in which a diagonal

crack path is observed. The PD region relocation process in the coupled PD/XFEM simu-

lation is demonstrated in Figure 10.40 (b).

A quantitative comparison for Mode II case is presented in Figure 10.41. First, the

crack paths are compared between the PD/XFEM and full PD simulations. Almost exactly

matched crack paths are shown in Figure 10.41 (a). Finally, the crack lengths are compared

in Figure 10.41 (b), which also demonstrated an excellent agreement.

10.5.4 Computational performance

So far we have demonstrated that the proposed concurrent multiscale approach is indeed

accurate in fracture simulations. In Table 10.1, the computational performances of both the
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Figure 10.40. Mode II crack propagation in (a) full PD simulation and (b) coupled
PD/XFEM simulation
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(a) (b)

Figure 10.41. Mode II fracture: (a) crack path and (b) crack length vs. time

Table 10.1. Computational performances of coupled PD/XFEM and full PD simulations

Method # nodes # DOFs Time
Coupled PD/XFEM 1,764 + 100 3,928 24.8s

Full PD 8,100 16,200 67.6s
Ratio 1 : 4 1 : 4 1 : 3

coupled PD/XFEM and full PD are presented and compared for the Mode I case. Note that

10 cores of the Intel Xeon CPU E5-2698 v4 2.20 GHz with OpenMP are employed in this

testing. It shows the total computing time is linearly proportional to the total number of

DOFs. In this particular case, the full PD simulation has 4 times DOFs compared to the

coupled PD/XFEM simulation. The computing time in the full PD case is 3 times longer

than the coupled PD/XFEM case. Therefore, the concurrent multiscale coupling method

also demonstrated a high computational efficiency.

261



(a) (b)

50 mm
25

 m
m

100 mm

10
0 

m
m

v0

Symmetry B.C.

Figure 10.42. Kalthoff-Winkler experiment: a half model (a) dimensions and B.C.s and (b)
computational configuration

10.6 Kalthoff-Winkler experiment: a half model

In the last example, we employ the concurrent multiscale method to simulate the Kalthoff-

Winkler experiment (Kalthoff and Winkler, 1988), which is also simulated by using full

BBPD in Section 7.4.3. Here we study only a half of the original model by considering

the symmetry of the problem. The problem statement and computational configuration are

illustrated in Figure 10.42. Detailed parameters of this problem can be found in Section 7.4.3.

In this example, we employ a structured mesh of 100 Q4 elements of size 10 × 10 mm2 in the

coarse-scale simulation. For the fine-sale simulation, a uniform nodal spacing ∆X = 0.83 mm

is employed and the PD horizon radius is δ = 3.001∆X. A time step size of 8.7 × 10−8 s

is used in this simulation. To apply the symmetry boundary condition, the bottom edge

(y = 0) as shown in Figure 10.42 (b) is constrained such that the vertical displacement is

zero. The impact loading is approximated by applying a constant velocity in the x direction

on the left edge where x = 0 and y ∈ [0, 25].
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Figure 10.43. Kalthoff-Winkler crack propagation in (a) full PD simulation and (b) coupled
PD/XFEM simulation
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Figure 10.44. Kalthoff-Winkler experiment: comparsion between crack paths

The simulation results are shown in Figure 10.43. For the purpose of comparison, a full

PD simulation of the half model is also performed. Figure 10.43 (a) shows the crack prop-

agation obtained by the full PD simulation at three time frames. The nodes are colored by

displacement magnitude and the crack path is clearly visible from the high contrast in color.

Simulation results from the concurrent multiscale simulation are shown in Figure 10.43 (b).

Similarly, snapshots at three different time steps are captured and both the coarse-scale ele-

ment edges and the fine-scale nodes are colored by displacement magnitude. It can be seen

that the fine-scale region is updated adaptively to track the crack propagation. Compared

to the full PD simulation, the multiscale simulation well captured the crack propagation in

Kalthoff-Winkler experiment but at a much reduced computational cost.

Finally, we present a quantitative comparison on the crack path, which is shown in

Figure 10.44. Note that the experimentally observed crack path is extracted from (Song

et al., 2008). The full PD simulation shows an excellent agreement with the experiment data.

The crack path obtained from the concurrent multiscale simulation is only slightly deviated

from the experiment path towards the very end but still matches well. The crack propagation

angles are 66◦ in the concurrent multiscale simulation, 69◦ in the full PD simulation, and
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70◦ in the experiment, respectively. The simulation results agree well with the experiment

and the accuracy of the concurrent multiscale method is demonstrated.

10.7 Summary

In this chapter, we first presented several elastodynamics wave propagation examples in both

1D and 2D to study the performance of the proposed concurrent multiscale framework. The

coupling scheme between coarse-scale FE model and fine-scale PD model is systematically

investigated and demonstrates a very good performance. Subsequently, dynamic fracture

simulations of a thin glass plate under Mode I and II loading cases as well as the Kalthoff-

Winkler experiment are carried out to further testing the robustness the coupling scheme

as well as the adaptive PD region relocation algorithms. The simulation results show that

the proposed concurrent multiscale approach is both accurate and efficient compared to

single scale methods. Therefore, we conclude that the main objective of this study (see

Section 1.3.4) is achieved.
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CHAPTER 11

CONCLUSION AND FUTURE WORK

In conclusion, two key contributions are made in this dissertation to the field of multiscale

material failure predictions. The first contribution is the development of a high performance

multiscale computational framework for direct numerical simulation on 3D high cycle fatigue

life predictions. The second is a concurrent multiscale approach based on coupled Peridy-

namics and Finite Element Method for dynamic fracture simulations. These two parts are

summarized and discussed in the following sections.

11.1 Multiscale high cycle fatigue life prediction

In the first part, a high performance multiscale computational framework is established for

direct numerical simulation on 3D HCF applications. The proposed framework is established

by integrating the Extended Space-time Finite Element Method with the Continuum Damage

Mechanics. The current work has been mainly focused on improving the numerical efficiency

of the framework for practical HCF applications. This objective is achieved by developing

a novel hybrid iterative/direct linear system solver and a high-performance hybrid parallel

computing framework. Benchmark examples show that the serial version of the hybrid

solver is at least 1 ∼ 2 orders of magnitude faster in computing time and cheaper in memory

consumption than the conventional solvers. The parallel hybrid solver efficiently handles

XTFEM stiffness matrix equations with over 100 million unknowns using 64 CPU cores.

Parallel implementations of the CDM-based two-scale damage model using CPUs and GPUs

both achieve optimal speedup. Series of HCF simulations demonstrated the capabilities

The following article was reused in this chapter with permission from the publisher:

1. Zhang, R., S. Naboulsi, T. Eason, and D. Qian (2019). A high-performance multiscale space-time
approach to high cycle fatigue simulation based on hybrid CPU/GPU computing. Finite Elements in
Analysis and Design 166, 103320. Reuse with permission from Elsevier.
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of the proposed framework on handling large 3D problems and complex fatigue loading

conditions. With significant improvement in the numerical efficiency that is enabled by the

proposed algorithms, the framework of XTFEM/CDM is ideal and efficient for predicting

HCF responses in many engineering structures and components. The proposed approach can

also serve as a robust tool for facilitating the experimental studies of HCF. Future efforts

are directed towards integrating multiphysics methods such as thermo-mechanical coupling,

analysis the effects of surface treatments induced residual stress on fatigue life, and fatigue

problems in broad engineering applications.

Furthermore, it is well known that HCF failures are sensitive to material microstruc-

tures. In this work, we conducted a preliminary study on data-driven microstructure-based

concurrent multiscale material modeling method. The proposed method is based on the

recently developed Self-consistent Clustering Analysis, which is a novel reduced-order mul-

tiscale material model derived from Machine Learning techniques. For HCF applications,

an efficient solution algorithm is developed to further accelerate the proposed method. Di-

rect concurrent multiscale modeling of complex material microstructures is enabled by the

proposed method for HCF simulations at a much reduced computational cost. For future

work, one direction is to further study efficient algorithms for both offline and online stages

of SCA regarding the computational performance. In addition, it is crucial to develop high

performance computing implementations using many core GPUs as well as other parallel

computing techniques. Another important direction is to employ the proposed method to

study HCF life and failure mechanisms with microstructures of various material systems

ranging from metals, ceramics, polymers to composites. It would be very helpful to provide

insights in designing high performance materials that can bear longer service life in many

applications.
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11.2 Current multiscale dynamic fracture prediction

Motivated by the limitations in single scale methods, we established a concurrent multiscale

approach to dynamic fracture failure predictions in the second part of this dissertation. The

major goal of this study is to preserve accuracy at critical regions while achieving a high

computational efficiency. The concurrent multiscale approach is developed based on coupled

Peridynamics and Finite Element Method. In the proposed method, coarse-scale FE simula-

tion is conducted over the entire domain of the problem, and coexists with a local fine-scale

PD region where crack pre-exists or is expected to initiate. The coupling scheme is ac-

complished by a bridging-scale projection of the fine-scale PD solution onto the overlapping

coarse-scale FE basis functions, and a class of two-way nonlocal matching boundary condi-

tions that transmits long waves from coarse-scale FE domain to fine-scale PD region and

eliminates spurious wave reflections at artificial numerical interfaces. NMBC is expressed in

a parameterized form that involves interfacial PD displacements and velocities. The non-

reflection and wave transmitting conditions are realized by minimizing the associated residual

and its higher order derivatives, which are functions of PD wave dispersion relation at the

wavelength of interest. To further accommodate the evolving nature of dynamic fracture, an

adaptive scheme is established so that PD region is dynamically prescribed to track prop-

agating crack. Accuracy and efficiency of the proposed concurrent multiscale approach are

systemically investigated by elastodynamic wave propagation examples. Effectiveness and

robustness are further demonstrated by brittle fracture benchmark examples.

For future work, several directions are recommended. First, it is beneficial to develop

more robust and versatile fine-scale PD region relocation strategies for dynamic fracture

applications. Second, the current work can be further extended to study more complex

problems such as crack branching and coalescence, interactions between multiple existing

cracks, and cracks initiation at multiple locations. Although we only studied 1D and 2D

cases here, the proposed coupling scheme can be extended to 3D problems. In that case, high
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performance computing implementations, e.g. using GPUs, are recommended to handle the

computational cost due to the extra dimension. Finally, coupling between PD and meshfree

particle methods can be established based on the proposed method to avoid generating

the mesh, which is difficult and expensive for many industrial applications. In addition,

many advantages of meshfree methods can be incorporated into this concurrent multiscale

approach.
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APPENDIX A

TWO-SCALE DAMAGE MODEL: THE EXACT SOLUTION

For uniaxial proportional fatigue loading condition, the above set of differential equations

can be integrated in a closed-form in two steps. The first step is to perform time integrations

over only one cycle under the assumption of constant damage to obtain both plastic strain

and damage increments per single cycle. Then perform the integration over the whole loading

cycles with the assumption that the microscale stress triaxiality is a constant and equals to

its maximum during loading. Detailed derivation of the closed-form solution can be found

in (Desmorat et al., 2007) and here we only summarize the results.

When the micro-defects closure parameter h = 1, the number of cycles to damage initi-

ation (D (N < ND) = 0) is given by

ND =
1

4
εpD

G2

Cy

σu − σ∞f(
∆σ/2− σ∞f

)2 (A.1)

where G = 3G(1 − b) with G the shear modulus and b the Eshelby parameter. ∆σ =

σmax − σmin is the stress amplitude at mesoscale.

The number of cycles to rupture (D = Dc) is given by

NR = ND +
(2ES)sGDc(

σ∞f
)2s (

∆σ − 2σ∞f
)

(Rs
vmin +Rs

vmax)
(A.2)

where the stress triaxiality functions are defined by

Rvmin =
2

3
(1 + ν) +

1

3
(1− 2ν)

(
σmin

σ∞f

)2

(A.3)

Rvmax =
2

3
(1 + ν) +

1

3
(1− 2ν)

(
σmax

σ∞f

)2

(A.4)

For a stress ratio of R = σmin /σmax = 1 and zero damage threshold εpD = 0, Eq. (A.2)

can be further simplified as

NR ≈
(2ES)sGDc

4
(
σ∞f
)2s (

σmax − 2σ∞f
)
Rs
vmax

(A.5)
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Similarly, for shear loading it can be shown that the damage initiation life and fatigue

life are

N shear
D =

1

4
εpD

G2

Cy

σu − σ∞f(√
3∆τ

/
2− σ∞f

)2 (A.6)

and

N shear
R = N shear

D +

[
3ES(

σ∞f
)2

(1 + ν)

]s
GDc

2
(√

3∆τ − 2σ∞f
) (A.7)
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APPENDIX B

TWO-SCALE DAMAGE MODEL: PARAMETER CALIBRATION

Material properties involved in the two-scale damage model are summarized in Table B.1. It

can be seen that most material parameters can be obtained directly from simple mechanical

tests. However, the damage strength S and damage exponent s need to be calibrated by

fitting S-N curves with the other material parameters in a two-steps scheme as follows.

In the first step, we let the micro-defects closure parameter h = 1.0 and fit the damage

strength S and damage exponent s with the experimental S-N curve under logarithmic scales

using the closed-form solution given in Appendix A. This step is referred to as the initial

estimation step and can be done in MATLAB using its nonlinear least-squares curve fitting

function lsqcurvefit1.

Once initial estimation step is completed, we let h = 0.2 and keep the damage exponent

s constant, then fit the experimental S-N curve by adjusting the damage strength S in the

numerical solution scheme presented in Section 4.3, which is programmed using C++ as a

standalone code. The second step is referred to as the numerical fitting step.

With the above two steps, a complete set of material parameters is determined for the

two-scale fatigue damage model.

An example for the two-step S-N curve fitting Here we illustrate the above two-step

S-N curve fitting process by an example. The uniaxial fatigue test data in this example is

extracted from Fig. 2 in the paper by Desmorat et al. (Desmorat et al., 2007). The fatigue

experiment is conducted under constant-amplitude, fully-reversed (R = −1) proportional

loading condition. Other material parameters are given by E = 197 GPa, ν = 0.3, Cy = 1740

MPa, εpD = 0, and σ∞f = 88 MPa. Note that the energetic damage threshold wD is zero

since εpD = 0. Therefore, ultimate tensile strength σu is not required in this example.

1See https://www.mathworks.com/help/optim/ug/lsqcurvefit.html
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Table B.1. Material parameters in the two-scale damage model

Parameter Physical meaning Source
E Young’s modulus Uniaxial tensile test
ν Poisson’s ratio Uniaxial tensile test
Cy Plastic modulus Uniaxial tensile test
σu Ultimate tensile strength Uniaxial tensile test
εpD Plastic strain at failure Uniaxial tensile test
h Micro-defects closure parameter ≈ 0.2 for metals a

Dc Crack initiation condition ≈ 0.3 for metals b

σ∞f Asymptotic (endurance) fatigue limit Uniaxial fatigue test
S Damage strength Uniaxial fatigue test
s Damage exponent Uniaxial fatigue test

Note: a,b See (Lemaitre, 1996; Lemaitre and Desmorat, 2005)
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Figure B.1. Initial estimation of the damage strength S and damage exponent s

The result of initial estimation step is shown in Figure B.1 and compared with the test

S-N data. The parameters are obtained as S = 0.5 and s = 3.34. For the purpose of

validation, we also plotted the S-N curve obtained by substituting these parameters with

h = 1.0 into the numerical standalone damage code and a good agreement among these

curves is observed from Figure B.1.
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Figure B.2. Numerical fitting of the damage strength S

Next, by letting h = 0.2 and directly substituting S = 0.5 and s = 3.34 together with

other material parameters into the numerical standalone damage code, we obtained a S-N

curve that is slightly deviated from the experimental data as shown in Figure B.2. A good

curve fitting is obtained by adjusting the damage strength S from 0.5 to 0.4.

Finally, we further integrated the standalone C++ code with the MATLAB curve fit-

ting function lsqcurvefit to replace the trial and error approach employed in the above

numerical fitting step. In this method, the MATLAB function lsqcurvefit directly calls

the C++ code to compute the fatigue life. Parameters adjusting and the convergence are

both controlled by the curve fitting algorithms in MATLAB. The fitting result is plotted in

Figure B.3. As it can be seen, a good fit is obtained and both the damage strength S and

the damage exponent s are fitted with the closure parameter h = 0.2. This method provides

a more accurate option to fit these parameters in the two-scale damage model. However,

its computational cost might be higher than the previous two-step method. Hence, it is

recommended to use the parameters obtained from the above initial estimation step as the

initial guess to achieve a faster convergence.
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Figure B.3. Nonlinear least-squares fitting with the standalone code
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APPENDIX C

CLUSTER-BASED LIPPMANN-SCHWINGER EQUATION: NEWTON’S

ITERATION METHOD

The system of the cluster-based Lippmann-Schwinger equations are given by

∆εI +
k∑

J=1

DIJ :
[
∆σJ −C0 : ∆εJ

]
−∆ε0 = 0 I = 1, 2, 3, .., k (C.1)

in which k is the number of clusters and ∆ε0 is the given macroscopic strain increment.

Eq. (C.1) is generally nonlinear and needs to be solved using the Newton’s iteration

method. The Newton’s solution algorithm is summarized as follows:

1. For each cluster, given the local incremental strain tensor ∆εI , evaluate the local

material constitutive model to find the local incremental stress tensor ∆σI and tangent

stiffness tensor CI
alg;

2. Calculate the residual r = {r1, r2, ..., rk} by

rI = ∆εI +
k∑

J=1

DIJ :
[
∆σJ −C0 : ∆εJ

]
−∆ε0 (C.2)

3. Calculate and assembly the system Jacobian matrix M by

M IJ =
∂rI

∂∆εJ
= δIJI4 +DIJ : (CJ

alg −C0) (C.3)

4. Solve the incremental strain tensor corrections δ∆ε = {δ∆ε1, δ∆ε2, ..., δ∆εk} by

δ∆ε = −M−1r and ∆ε← ∆ε+ δ∆ε (C.4)

5. Check the convergence criteria, e.g. |δ∆ε| < ε, in which ε is a threshold tolerance. If

not converged then go back to Step 1, otherwise stop the iteration.

Note that the above algorithm is for macro-strain constrained Lippmann-Schwinger equa-

tion. For far-field stress loading cases where the macroscopic incremental stress tensor ∆σ0
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is given, the macroscopic strain increment ∆ε0 is also unknown and needs to be solved for.

In that case, an extra term is added to the residual vector

rk+1 =
k∑
I=1

cI∆σI −∆σ0 (C.5)

and correspondingly the Jacobian matrix is expanded by

M I(k+1) = −I4, M (k+1)J = cJCJ
alg, M (k+1)(k+1) = 0 (C.6)

The effective macroscopic tangent stiffness tensor is computed by

C̄ =
∂∆σ0

∂∆ε0
=

k∑
I=1

cI
∂∆σI

∂∆ε0
=

k∑
I=1

cI
∂∆σI

∂∆εI
:
∂∆εI

∂∆ε0
=

k∑
I=1

cICI
alg : AI (C.7)

where the local tangent stiffness tensors are readily available from the converged Newton

iteration step.

To compute the strain concentration tensor AI = ∂∆εI

∂∆ε0 , we first substitute its definition

into Eq. (C.1), which yields

AI +
k∑

J=1

DIJ : (CJ
alg −C0) : AJ − I4 = 0 I = 1, 2, 3, .., k (C.8)

Then, by considering the system Jacobian in Eq. (C.3) we have

{M}{A} = {I} (C.9)

Let B = M−1 in which M is the system Jacobian at the last Newton iteration, we

can find the strain interaction tensors by AI =
∑k

J=1B
IJ . Subsequently, the effective

macroscopic tangent stiffness tensor can computed by Eq. (C.7).
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APPENDIX D

PERIDYNAMIC STATES

Peridynamic (PD) state is a mathematical object similar to tensor in classical continuum

mechanics (CCM). It is introduced to derive the state-based PD. A PD state is a function or

mapping defined on the bonds associated to a material point in a body. To better understand

its mathematical concepts, we briefly summary the following definitions and conventions on

PD states introduced by Silling et al. (Silling et al., 2007).

First, a state of order m is a mapping A 〈ξ〉 : H → Lm such that the image of ξ ∈ H

under the state is a tensor of order m in Lm, which is the set of all m-order tensors. For

example, a scalar state is a state of order 0 and a state of order 1 is called a vector state.

States are generally written in uppercase, bold font with an underscore. A special case is for

scalar states, which are denoted by lowercase, non-bold font with an underscore.

Second, the sum and subtraction of states of the same order are defined by

(A+B) 〈ξ〉 = A 〈ξ〉+B 〈ξ〉 ∀ξ ∈ H (D.1)

(A−B) 〈ξ〉 = A 〈ξ〉 −B 〈ξ〉 ∀ξ ∈ H (D.2)

Point product of a state A of order m+ p and a state B of order p is a state of order m

defined by

(AB)i1i2...im 〈ξ〉 = Ai1i2...imj1j2...jp 〈ξ〉Bj1j2...jp
〈ξ〉 ∀ξ ∈ H (D.3)

(BA)i1i2...im 〈ξ〉 = Bj1j2...jp
〈ξ〉Aj1j2...jpi1i2...im 〈ξ〉 ∀ξ ∈ H (D.4)

where summation occurs over repeated indices. The point product is commutative if any

of the states is a scalar state or the two states are the same order. For example, the point

product between scalar states a and b leads to

(ab) 〈ξ〉 = (ba) 〈ξ〉 = a 〈ξ〉 b 〈ξ〉 ∀ξ ∈ H (D.5)
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Similarly, for scalar state a and a vector state B, the product leads to

(aB) 〈ξ〉 = (Ba) 〈ξ〉 = a 〈ξ〉B 〈ξ〉 ∀ξ ∈ H (D.6)

Dot product of states A and B is defined by

A ·B =

∫
H

(AB) 〈ξ〉 dV (D.7)

By definition, the dot product is also commutative if any of the states is a scalar state or

the two states are the same order.

Magnitude state of A is a scalar state defined by

a 〈ξ〉 =
√

(AA) 〈ξ〉 ∀ξ ∈ H (D.8)

Norm of A is a scalar defined by

‖A‖ =
√
A ·A (D.9)

Finally, if bothA andB are vector states, tensor product of them leads to a second-order

tensor defined by

A⊗B =

∫
H
ω 〈ξ〉A 〈ξ〉 ⊗B 〈ξ〉 dV (D.10)

where ω is a scalar state termed as the influence function. If ω only depends on the mag-

nitude of bond vector, then it is said to be spherical and radially symmetric. The role of

influence function was studied by Seleson and Parks (Seleson and Parks, 2011) and numerical

experiments on the choice of influence functions were conducted by Queiruga and Moridis

(Queiruga and Moridis, 2017). In this work, we chose the influence function to be 1 for

simplicity.

279



APPENDIX E

A TIME HISTORY KERNEL APPROACH

Recall that our goal is to eliminate the fine-scale degrees of freedom (DOFs) in the coarse-

scale subdomain and that the Peridynamics (PD) equation of motion essentially describes

the total motion of the system such that

Mpq̈ = f (q)⇔Mpü = f (u) (E.1)

Now we introduce a partition that

u′ =

u
′
1

u′2

 (E.2)

Note that u′1 needs to be solved explicitly while u′2 can be approximated through lineariza-

tion.

Linearizing the force in u′2 yields

f (u)
.
= f ∗ (ū+ u′1)−K2u

′
2 (E.3)

in which f ∗ is the nonlinear internal force evaluated by setting u′2 = 0 , and stiffness matrix

K2 is given by

K2,αβ = − ∂fα
∂u′2,β

∣∣∣∣∣
u′2=0

(E.4)

Note that comma in subscripts of Eq. (E.4) does not indicate partial derivative. The subscript

α ranges over PD nodes in entire domain (assuming that PD nodes also exists in the coarse

scale and we are trying to eliminate their DOFs from the governing equations), and subscript

β ranges over the PD nodes in the coarse-scale subdomain.

Using a similar partition to Eq. (E.2), we can rewrite Eq. (E.1) as

Mp1q̈1 = f ∗1 (ū+ u′1)−K12u
′
2 (E.5)
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and

Mp2q̈2 = Mp2

(
¨̄u2 + ü′2

)
= f ∗2 (ū+ u′1)−K22u

′
2 (E.6)

Rearranging Eq. (E.6) leads to

ü′2 +M−1
p2 K22u

′
2 = M−1

p2 f
∗
2 (ū+ u′1)− ¨̄u2 (E.7)

Thus, the fine-scale displacement field in the coarse-scale domain, i.e. u′2, can be elimi-

nated by solving for them explicitly from Eq. (E.7) and substituting back to Eq. (E.5). The

Eq. (E.7) can be solved using Laplace transform and finally leads to

Mp1q̈1 = f ∗1 (ū+ u′1)−
∫ t

0

θ(t− τ)ã2dτ +R(t) (E.8)

in which

θ(t) = L −1
{
K12

(
s2I +M−1

p2 K22

)−1
}

(E.9)

ã2 = M−1
p2 f

∗
2 (ū(t) + u′1(t))− ¨̄u2(t) (E.10)

R(t) = θ̇(t)u′2(0) + θ(t)u̇′2(0) (E.11)

Note that L −1 in Eq. (E.9) indicates inverse Laplace transform.

The matrix θ(t), which accounts for the effects of the removed DOFs, is a time history

kernel (THK) and can be obtained analytically for simple cases or numerically for other

cases (Wagner and Liu, 2003). In general, computational implementation of THK-based

interfacial boundary condition is not an easy task.
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E. de Souza Neto, and M. Chiumenti (Eds.), Advances in Computational Plasticity: A
Book in Honour of D. Roger J. Owen, Cham, pp. 221–242. Springer International Pub-
lishing.

Luo, J. and V. Sundararaghavan (2018). Stress-point method for stabilizing zero-energy
modes in non-ordinary state-based peridynamics. International Journal of Solids and
Structures 150, 197–207.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Statistics, Berkeley, Calif., pp. 281–297. University of California
Press.

Madenci, E. and E. Oterkus (2014). Peridynamic Theory and Its Applications. New York,
NY: Springer.

Manson, S. S. (1965). Fatigue: A complex subject—some simple approximations. Experi-
mental Mechanics 5 (4), 193–226.
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