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ABSTRACT 
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Transcriptional regulation is a highly complicated and dynamic process established by regulatory 

pathways involving cascades, feedbacks and other sophisticated control mechanisms. Epigenetic 

mechanisms are key regulatory processes involving heritable modifications to the genome that 

do not require the substitution of constituent nucleotides in the DNA sequence but which may be 

suitably reprogrammed in germ cells. 5-Methylcytosine and 5-Hydroxymethylcytosine in DNA 

are major epigenetic modifications known to be implicated in mammalian gene regulation. The 

literature suggests that DNA methylation in a promoter or enhancer region causes transcription 

repression, while hydroxymethylation abundance in enhancers coincides with elevated 

expression of proximal genes. Accordingly, obtaining, analyzing, and interpreting Next 

Generation Sequencing methylation data could give us a deeper insight into the trancriptome, as 

well as modes of epigenetic gene regulation. However, performing whole-genome methylation 

assays is expensive and unfeasible to conduct for every physiological or perturbation condition, 

and often generates incomplete genome-wide methylation profile. For that purpose we created a 

novel, supervised, ensemble-learning classification framework to perform whole-genome 
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methylation and hydroxymethylation status predictions in CpG dinucleotides. Additionally, we 

developed a platform to perform in silico, high-throughput hypotheses testing based on such 

predictions. For the purpose of performing de novo methylome reconstruction, we adopted the 

concept of invariant methylation across mammalian reference methylomes, and incorporated it 

into our framework by creating the consensus reference methylome. Our toolkit performs fast 

and accurate prediction and imputation on large amounts (~Terabytes) of data in existing 

sequencing datasets. Since we do not use cell type specific features such as Transcription Factor 

Binding Sites, models trained on one cell type can be used to predict the epigenetic profile of a 

related cell type, thereby showing great promise for transfer learning scenarios. We test our 

approach on H1 human embryonic stem cells and H1-derived neural progenitor cells. Our 

predictive model is comparable in accuracy to other state-of-the-art DNA methylation prediction 

algorithms, and is the first in silico predictor of hydroxymethylation achieving high whole-

genome accuracy, paving the way for large-scale reconstruction of hydroxymethylation maps in 

mammalian model systems. We designed a novel, beam-search driven feature selection 

algorithm to identify the most discriminative predictor variables, and developed a platform for 

performing integrative analysis and reconstruction of the epigenome. Our toolkit DIRECTION 

provides predictions at single nucleotide resolution and identifies relevant features based on 

resource availability. This offers enhanced biological interpretability of results potentially 

leading to a better understanding of epigenetic gene regulation. Our tool is publicly available and 

can be downloaded from: utdallas.edu/~mxp114330/direction  
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1.1 Prior publication 

Milos Pavlovic (M.P.) and Pradipta Ray (P.R.) wrote the manuscript. Min Chen (M.C.) advised 

M.P. and Michael Zhang (M.Q.Z.) supervised the project. This chapter provides a broad 

introduction to the field of Epigenetics, primarily focusing on DNA methylation and 

computational methods for prediction and downstream analysis of this epigenetic modification. 

Per the policy of OUP Bioinformatics, the publication of material in a PhD thesis is permitted 

with the publication of a peer-reviewed manuscript in their journal. The original manuscript (1) 

“DIRECTION: A machine learning framework for predicting and charactering DNA methylation 

and hydroxymethylation in mammalian genomes” by Milos Pavlovic, Pradipta Ray, Kristina 

Pavlovic, Aaron Kotamarti, Min Chen and Michael Q. Zhang, published in 2017, is reproduced 

by permission of Oxford University Press and appears online at the following web address: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. 

Supplementary information is available online at: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. The 

main text is partially altered compared to the online version of the manuscript, and figures and 

tables do not chronologically correspond to the online manuscript numbering. 

1.2 Contribution 

Milos Pavlovic wrote and Pradipta Ray edited this chapter. This chapter provides a broad 

literature review of the field of Epigenetics, with special focus on DNA methylation and related 

computational methods, which have been developed for the purpose of predicting and 

characterizing this epigenetic modification. 
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1.3 Abstract 

Epigenetics is an emerging discipline which domain of study encompasses a set of stable and 

heritable traits that are unrelated to the underlying DNA sequence. Major epigenetic 

modifications involve DNA methylation and histone modifications, which role proved to be 

essential in gene regulation. Therefore, the undergoing research in the field of epigenetics has 

great promise for improving personalized medicine. The following literature review will mostly 

cover biological mechanisms behind establishing, maintaining and detecting DNA methylation 

in mammals, as well as assorted computational methods, which have been developed for 

prediction and functional analysis of DNA methylation. 

1.4 Epigenetics and epigenetic modifications 

Epigenetics is a rapidly evolving discipline of molecular biology whose domain of study 

involves a set of stable and heritable traits which are implicated in gene regulation, and which 

cannot be explained by the underlying DNA sequence (2). Epigenetic mechanisms are key 

regulatory processes involving heritable modifications to the genome that do not require the 

substitution of constituent nucleotides in the DNA sequence but which may be suitably 

reprogrammed in germ cells (3). In mammalian model systems, the assembly including DNA, 

histone proteins and certain RNAs gives rise to a complex structure called chromatin, whose 

primary role is to package the genome in a space efficient manner and control vital cellular 

processes such as cell division and DNA replication. The top-level chromatin structure largely 

depends on the underlying DNA methylation and histone modifications, which predominantly 

determine epigenetic and gene expression profiles of a cell (4). The published literature strongly 
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indicates that aberrant epigenetic patterns are hallmarks of many diseases such as cancer and 

various brain disorders. Additionally, epigenetic marks play an important role in various 

developmental processes; can be faithfully transmitted from parents to progeny, and therefore 

give rise to various distinct phenotypes (epi-phenotypes) where the underlying genotype remains 

the same.  Consequently, deep understanding of the fundamental epigenetic mechanisms and its 

role in gene regulation have been subject to extensive biomedical research as they hold a great 

promise for improving personalized medicine (3, 5-8).  

The next chapter will cover the main biological mechanisms that are responsible for 

establishment and maintenance of DNA methylation in mammals, as well as its role in gene 

regulation.  

1.5 DNA methylation and its role in gene regulation 

DNA methylation represents a sequence of processes in which methyl groups are added onto the 

DNA molecule by enzymatic activity. The most prevalent form of DNA methylation in 

mammals is 5-mC, in which a methyl group from S-adenosylmethionine is transferred onto the 

5th position of the carbon ring in the Cytosine base, and is frequently associated with gene 

silencing in mammals (9, 10). 5-mC presence has also been evidenced in plants, fungi and 

bacteria, involving processes such as bacterial immune response (restriction-modification 

system) to phage infection (11). In mammalian genomes the vast majority (approximately 98%) 

of methylated cytosines are present in a form of a CpG dinucleotide, with non-CpG methylation 

being significantly more common in plants (12). 

The enzymes that are involved in initial establishment of 5-mC modification (DNMT3A, 

DNMT3B) belong to the group of de novo methyl transferases (13). Subsequently, methylation 
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patterns are faithfully maintained throughout the course of cell divisions as a result of the hemi-

methylation mechanism, governed by the DNMT1 enzyme which recognizes a methyl group on 

the mother DNA strand and copies it onto the daughter strand (14). In cancer, these processes are 

often altered, leading to the aberrant methylation landscape (15), suggesting an important 

functional role of DNA methylation in disease vs. healthy state.  

Depending on its localization in the genome, 5-mC can have different effects on gene expression. 

In the gene promoters, enhancer regions, or in the proximity to the transcription start sites (TSS), 

5-mC is known to cause gene silencing, whereas its presence in the gene body can boost 

transcription elongation. Other functions of 5-mC include centromere stability and recruitment of 

the enzymes involved in chromatin remodeling and formation of the transcription initiation 

complex (15). 

It is noteworthy that in the demethylation process, 5-mC is oxidized by Ten-eleven Translocation 

(TET) enzymes, thereby giving rise to its oxidative derivatives 5-hydroxymethylcytosine (5-

hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) (10).  

The mostly studied and characterized oxidative derivative of 5-mC is 5-hmC, which presence 

was first discovered in bacteriophages in 1952 (16). However, the elucidation of the role of 5-

hmC in methylation dynamics, gene regulation and cell development has only recently been 

characterized (17-19). 

5-hmC is generated in TET1 and TET2 mediated oxidation reaction of 5-mC, and represents an 

intermediate step in the cascade of events that ultimately lead to passive demethylation of 

cytosine in mouse primordial germ cells (20). The proposed mechanism suggests spontaneous 

replication dilution of 5-hmC, since there is no described mechanism for 5-hmC maintenance in 
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mammalian genomes. However, in the recent study Bachman et al. (21) found that 5-hmC levels 

do not significantly change during mammalian cell cycle progression, implying that 5-hmC is a 

predominantly stable epigenetic modification whose functional role is tightly coupled with cell 

proliferation. From previous work it is known that 5-hmC closely associates with enhancers (22), 

exon-intron boundaries (23), elevated C-to-G conversion rates (24), labile nucleosomes and 

CTCF binding. Additionally, latest literature suggests that 5-hmC abundance across different 

tissues varies significantly, with brain tissue being 5-hmC enriched and certain cancer tissues 

(breast, blood) exhibiting 5-hmC depletion, suggesting an important role of 5-hmC in 

determining healthy vs. disease state (25, 26). 

1.6 Detection and high-throughput quantification of DNA methylation 

Methylation detection techniques can be broadly divided into following categories: 

a) Methylation-specific enzyme digestion: Technologies like HELP (HpaII tiny fragment 

Enrichment by Ligation-mediated PCR) (27, 28) relies on restriction enzymes HALPII and its 

isoschizomer MSPL to selectively cut the unmethylated cytosines, followed by PCR 

amplification and sequencing. The biggest shortcoming of such approach is that only 4 out of 

100 off all non-repeat CpG dinucleotides are being recognized and subsequently cleaved by 

HPAII, leaving out a huge portion of CpG sites undetected (29). 

b) Antibody based: Technologies like MEDIP (Methylated DNA Immunoprecipitation) involve 

the treatment of DNA with the anti-5mC monoclonal antibody, followed by PCR amplification 

of the pulled down DNA fragments. The amplified PCR products containing input DNA and 

methylated DNA can be differentially labeled by cyanine dyes Cy5 and Cy3 and further 

cohybridized on oligonucleotide arrays or high-throughput sequenced by MEDIP (29). Such 
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methods are overly dependent on the quality and cross reactivity of anti 5-mC antibody, and are 

additionally biased in their immunoprecipitation step since DNA methylation is not uniformly 

distributed across the genome. For this purpose, additional statistical modeling is required, 

performed by tolls like BATMAN (30). 

c) Whole genome or reduced representation amplification: Methylation-specific PCR (14) 

has been used to selectively amplify methylated regions, followed by sequencing of amplified 

fragments. However, the most comprehensive and the de facto standard technique for whole 

genome methylation quantification is Sodium Bisulfite treatment of DNA (31), which causes 

methylated cytosines to remain intact while unmethylated cytosines are deaminated to uracils (C-

to-U conversion) (32). Traditionally, PCR amplification is the next step followed by sequencing. 

However, other options involve restriction enzyme digestion using Combined Bisulfite 

Restriction Analysis (COBRA) or Methylation-sensitive Single Nucleotide Primer Extension 

(Ms-SNuPE) followed by sequencing (33). Variations on this theme are used by employing 

methylation-specific primers (34). Whole-genome shotgun Bisulfite Sequencing (BS-seq or 

WGBS) involves all PCR fragments genome-wide, while the Reduced Representation Bisulfite-

sequencing (RRBS-seq) protocol leads to a small fraction of the fragments being selected (35). 

RRBS-seq involves digestion by a restriction enzyme constraining DNA fragments to have CpG 

sites at both ends, in the process leading to approximately 1% sampling of the whole genome 

(36). 

BS-seq experiments allow us estimate C-to-U conversion rate (CCR) or methylation level for 

each cytosine in the genome, which serves as an estimator of the degree of methylation. This is 

widely regarded to be the most faithful quantification of DNA methylation levels, but sources of 
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noise that need to be modeled in BS-seq data include low CCRs (~1%) which can lead to false 

positive methylation calls (37), DNA depurination due to bisulfite treatment which can cause 

breaks among DNA strands (38), and imputation of missing data in RRBS sequencing (39). 

However, the biggest confounding factor is that BS-seq cannot distinguish between 5-mC and 5-

hmC, hence the estimated methylation level is due to both 5-mC and 5-hmC. 

In order to quantify the degree of hydroxymethylation, alternate protocols like TET-Assisted BS-

seq (TAB-seq) (22) and Oxidative BS-seq (oxBS-seq) (40) were developed.  

TAB-seq is a bisulfite-based technique that distinguishes between 5-mC and 5-hmC. DNA is 

first treated with an enzyme 5-hmC glucosyltransferase, which will selectively attach a glucose 

molecule onto 5-hmC modified cytosines only. Next step involves treating already glycosylated 

DNA with TET1 and TET2 enzymes, which will induce oxidation of 5-mC and its subsequent 

conversion to unmethylated cytosine, whereas already glycosylated 5-hmC modified cytosines 

will remain intact since TET cannot oxidize glycosylated 5-hmC (22). The following steps 

include bisulfite treatment and sequencing. Consequently, every cytosine “coming out of the 

sequencing machine” is a 5-hmC site. In addition to BS-seq based, hydroxymethylation 

identification and quantification assays can be also be restriction enzyme (41) and antibody (42) 

based.  

In this dissertation, detectable modifications from BS-seq experiments (yielding summation of 5-

mC and 5-hmC levels) are referred to as methylation, and genome-wide characterization of 

methylation as methylome. Detectable modifications from TAB-seq (yielding solely 5-hmC 

driven CCRs or 5-hmC levels) are referred to as hydroxymethylation, and corresponding 

genome-wide maps as hydroxymethylome. 
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1.7 Computational approaches to modeling of BS-seq and TAB-seq data and functional      

analysis of DNA methylation 

Traditionally, Next Generation Sequencing (NGS) techniques require either a de novo assembly 

of the sequenced reads or mapping the reads to a known reference genome. For BS-seq and 

TAB-seq data, C-to-U conversion represents a challenge, since uracils are recognized by 

sequencing machines as thymidines, which causes a prevalence of single nucleotide variations, 

leading to complications in indexing-based mapping schemes. Typically, indices of bisulfite-

treated genomes are generated in silico to aid the mapping process (43). Various tools like 

BSMAP, RMAP, BS-Seeker and BISMARK (43-46) perform end-to-end mapping analysis or 

build wrappers around state-of-the-art generic NGS read mapping tolls like Bowtie (47). 

Based on variant calling at every cytosine, individual cytosines or CpG dinucleotides can be 

called “methylated” or “unmethylated”, or categorized as one of 5-mC, 5-hmC or unmethylated 

based on BS-seq and TAB-seq data. Typically, most such methylation calling strategies use a 

filtering scheme to count with high quality sequencing and alignment scores, followed by a 

simple binomial probability test (22). However, it is noteworthy that in the population of cells 

BS-seq and TAB-seq protocols provide CCRs for cytosines ranging from 0 (unmethylated) to 1 

(fully methylated). Additionally, BS-seq and TAB-seq datasets often disagree for the portion of 

the data, due to experimental or sampling error. Model based approaches like MLML (31) are 

routinely used to ensure consistency between the datasets in question, by systematically 

discarding overshoot indices in which the sum of 5-mC and 5-hmC levels is greater than 1.   

Multiple primary sources of methylation data have been integratively modeled to derive a single 

methylation level consistent with all data sources: MethylCRF (48) uses MEDIP-seq and 
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restriction enzyme based methylation data to reconstruct the whole methylome using Conditional 

Random Fields (CRF). 

Based on quantification of methylation levels at individual cytosines or CpG sites, various 

downstream functional analyses of methylomes have been successfully performed in the last 

decade. Markov chain based models have been developed for contrasting different methylomes 

to identify Differentially Methylated Regions (DMRs), as well as identification and 

characterization of contiguous domains of Fully Methylated, Lowly Methylated and 

Unmethylated Regions (FMRs, LMRs, and UMRs respectively) in the genome (49). 

Methylation data has been successfully used to build models for predicting active regulatory 

regions (MethylSeekR (50)) and for predicting cancer drug sensitivities (51). 

Recently, multiple association studies largely predicated upon classical Genome-Wide 

Association Studies (GWAS) (52) and Expression Quantitative Trait Loci (eQTL) models (53) 

have found that alterations in certain CpG sites methylation levels strongly correlate with 

proximal genetic variation and expression of a proximal gene (54-56). Such CpG sites known as 

meQTLs often occur in contiguous genomic regions, exhibit significant correlation with local 

chromatin and Transcription Factor (TF) binding profiles (54) suggesting that changes in DNA 

methylation levels occur in harmony with other major gene regulatory processes in healthy cells. 

However, no such study has considered confounding factors in DNA methylation signal coming 

from 5-hmC modification, which is known to be correlated with enhancer-like histone 

modifications (H3K27ac, H3K4me1) and which overabundance in the gene bodies often 

coincides with elevated expression levels of a proximal gene in question (1). Therefore, when in 

possession of both BS-seq and TAB-seq data, individual eQTL models corresponding to 5-mC 
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and 5-hmC would provide a solution to deconvoluting inevitably mixed DNA methylation 

signals and would help decrease discovery of potentially false associations. 

1.8 DNA methylation prediction: Context in literature 

Over the past decade, high-throughput assays and corresponding computational models have 

been actively pursued to annotate and predict the epigenome (57, 58) including several 

approaches for predicting methylation as either a binary or continuous variable in CpG 

dinucleotides. The earliest methods for DNA methylation prediction used sequence-based and 

structure-based information to train Support Vector Machines (SVMs) and decision tree 

classification models. All of these algorithms predict binary DNA methylation status (discrete 

approximation of a methylation level, using CCR of 0.5 as a threshold) of entire CpG islands 

(CGI) or contiguous genomic fragments of approximately 100bp size, and achieve accuracy in 

the range between 85% and 94% (59-63). Concretely, HDMFinder (61) exclusively uses DNA 

sequence derived features, such as TF Binding Sites (TFBS) and Alu repeats, to predict 

methylation status of 800bp long CpG-centered regions across the genome, and achieves 86% 

accuracy. Analysis of discriminative DNA sequence-based features for methylation prediction 

was performed which lead to identification of DNA motifs corresponding to aberrant 

methylation patterns in cancer (64). Semi-supervised learning approaches for methylation 

prediction (harnessing clustering of unlabeled data) have been used for predicting hyper-

methylated genes in cancer (65). The underlying structure based on the density of the input 

features has been utilized for predicting DNA methylation in CGIs using k nearest neighbor (k-

NN) algorithm (66). More generic tools have been developed to use DNA sequence derived 

features to predict both histone modification and DNA methylation states across the genome, as 
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in EPIGRAM, which uses Random Forest (RF) and achieves 91% accuracy (67). In their study 

Flores et al. were the first to use evolutionary data such as genome-wide CG depletion signatures 

to predict methylation status (68). However, sequence-based prediction of methylation is limited 

in its ability to identify cell type, tissue, or condition-specific methylation patterns across 

datasets as underlying sequence features remain unchanged. Since such methylation patterns are 

of specific interest to biologists, several studies analyzed correlation between methylation and 

various assays profiling TF ChIP-seq, DNAse-seq or chromatin landscape. CPGIMethPred (69) 

uses epigenomic and sequence derived features, while McCabe et al. (70) uses polycomb binding 

and genomic composition features to predict methylation states of CGIs. Wrzodek et al. (71), 

Kondo et al. (72), and Luu at al. (73) analyzed correlational patterns between methylation states 

and various epigenome and ChIP-seq derived input features. However, these are all correlative 

studies or predictive algorithms which predict genome-wide methylation levels of CpG islands 

only, which count for a small fraction of all CpG sites in the genome (74). 

Such knowledge has been leveraged to build explicit predictive models of DNA methylation 

based on histone modification, nucleosome positioning, chromatin accessibility and TFBS, 

including several at single nucleotide and dinucleotide resolution. Whitaker et al. (67) uses 

discriminative sequence motifs for individual datasets to predict CpG methylation. Ma et al. (75) 

uses SVM regression to predict methylation as a continuous-valued response variable in CpG 

sites across tissues, and Zhang et al. (76) uses RF on genome, epigenome and ChIP-seq derived 

traits and neighboring CpG methylation levels for imputing methylation arrays. Yan et al. (77) 

uses RFs on sequence and epigenome-derived features by training on BS-seq data, while Wang 

et al. (78) uses SVMs and deep neural networks on topological domains and other features by 
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training in RRBS-seq data. Fan et al. (79) predict stem cell CpG methylation for methylation 

arrays and BS-seq data, while Angermueller et al. (80) are the first to predict methylation status 

of CpG sites in single cells, across five tissues, for single cell BS-seq (sc-BS-seq) and single cell 

RRBS-seq data. Finally, Pavlovic et al. used SVMs and RF trained models for methylation status 

prediction, were the first to predict hydroxymethylation status using TAB-seq data to achieve 

82% genome-wide accuracy, and implemented the concept of invariant methylation in 

methylation status prediction to obtain 97% genome-wide accuracy  (1) (Table 1.1 for 

comprehensive survey updated from (76)). 

1.9 Evaluation of prediction quality 

In machine learning assorted evaluation metrics are routinely employed for evaluating 

performance of various predictive models. In this dissertation, for evaluating predictions the 

following metrics were used to evaluate prediction quality on the whole-genome scale and 

balanced sets (same number of examples from positive and negative class used for evaluation): 

1. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"!!"

 

2. 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = !"
!"!!"

 

3. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑜𝑟 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = !"
!"!!"

 

4. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"!!"
!"!!"!!"!!"

 

5. 𝐹 − 𝑠𝑐𝑜𝑟𝑒 𝑜𝑟 𝐹1− 𝑠𝑐𝑜𝑟𝑒 = !∗!"#$%&%'%&(∗!"#$%&%$%'(
!"#$%&%'%&(!!"#$%&%$'(

 
6. AUC: Which is created by plotting the False Positive Rate (1-True Negative Rate) on the 

x-axis and the True Positive Rate on the y-axis, and the resulting area under the curve is 
calculated. 

 

Where TP=number of true positives, TN=number of true negatives, FP=number of false 

positives, and FN=number of false negatives. 
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Table 1.1: Literature survey of methylation prediction (Methods: NB: Naive Bayes, LR: Logistic Regression, k-NN: k Nearest 
Neighbor, RF: Random Forest, SVM Support Vector Machine, LDA: Linear Discriminant Analysis, ANN: Artificial Neural 
Network) (Metrics: ACC: Accuracy, MCC: Matthews Correlation Coefficient, CC: Correlation Coefficient, R: Regression 

Coefficient, RMSE: Root Mean Square Error) 1(81) 2(82) 3(83) 4(84) 5(85) 
 

Citations	 Samples	 Model	 Features	 Response	variable	 Performance	metric	
	(86)	 Restriction	Landmark	Genome	Scanning	for	control	

fibroblast	and	DNMT1-overexpressed	fibroblast	cell	lines	
LDA	 k-mer	and	consensus	motifs	in	CGI	 Methylation	prone	CGIs	vs	

Methylation	resistant	CGIs	for	
DNMT1	overexpression	among	
unmethylated	CGIs	in	controls	

ACC:	0.82	

	(59)	 MethDB	(curated	database	of	~5,000	experimentally	
determined	methylation	of	DNA	fragments	in	species	from	

plants	to	humans)1	

SVM	(best),	ANN,	
NB,	LR,	k-NN,	
decision	tree	

Genomic	features	(binary	sparse	encoding	of	
sequence)	

Methylation	status	of	DNA	
fragments	of	39bp	

SVM	(polynomial	kernel	
degree	6)	metrics:	ACC:	
0.7506,	MCC:	0.504,	AUC:	

0.82	
	(64)	 Restriction	Landmark	Genome	Scanning	for	control	

fibroblast	and	DNMT1-overexpressed	fibroblast	cell	lines	
LDA	 Discriminative	motifs	in	CGI	obtained	using	

MAST	
Methylation	prone	CGIs	vs	

Methylation	resistant	CGIs	for	
DNMT1	overexpression	among	
unmethylated	CGIs	in	controls	

ACC:	0.84	

	(60)	 Methylation	status	of	CGI	in	the	non-repetitive	parts	of	
human	Chromosome	21	(HpaII-McrBC	PCR	method)-	149	

CGIs2	

SVM	linear	kernel	
(best),	RBF	SVM,	
Decision	tree,	
AdaBoost	

k-mer	and	nucleotide	content,	predicted	DNA	
structure,	repeat	regions,	TFBS,	evolutionary	

conservation,	SNP	frequency	

CGI	methylation	status	for	whole	
CGI	

Linear	SVM	metrics:	
CC:0.74,	ACC:0.915	

	(61)	 Human	brain	data3	with	methylation	status	of	~5,500	
genomic	domains	

SVM	RBF	kernel	
(best),	K-means,	

LDA,	LR	

k-mer	content	and	repeat	regions	 Methylation	status	of	800bp	
regions	

RBF	SVM	metrics:	ACC:	
Overall:	0.86,	CGIs:	0.965,	

non-CGIs:	0.84	
	(62)	 Human	brain	data3	with	methylation	status	of	~5,500	

genomic	domains	
SVM	(linear	kernel)	 Nucleotide	and	dinucleotide	content,	Alu	

element,	TFBSs	
Methylation	status	of	CpG-rich	

200-500bp	regions	(CGI	fragments)	
ACC:	0.8303-0.8499,	CC:	

0.567-0.686	
	(25)	 Bisulfite	treated	tumor	and	normal	human	samples	

followed	by	targeted	454	sequencing	of	25	gene-related	
CGIs	

NB	(best),	SVM	
(SMO),	ANN,	kNN	

(k=3)	

30bp	flanking	sequence	of	each	CpG	site	 Methylation	status	of	randomly	
selected	41	CpG	sites	from	

sequenced	dataset	(methylation	
level	≥0.5	or	≤	0.01)	

NB	metrics:	ACC:>0.75	

	(87)	 Methylation	status	of	CGI	in	the	non-repetitive	parts	of	
human	Chromosome	21	(HpaII-McrBC	PCR	method)2	

SVM	(linear	kernel)	 DNA	sequence	patterns,	repeat	distribution,	
predicted	DNA	helix	structure,	predicted	TFBS,	

genetic	variation,	and	CGI	attributes	

Methylation	status	of	CGI	 CC:	0.698,	ACC:	0.868	

	(88)	 Human	Epigenome	Project4	data	for	chromosomes	6,	20,	
and	22,	using	methylation	status	in	human	CD4+	T	

lymphocytes	

SVM	(linear	kernel)	 Nucleotide	content,	Alu	annotation,	TFBS,	and	
histone	methylation	(H3K4me1,	H3K4me2,	

H3K4me3,	and	H3K9me1)	

CGI	methylation	status	 ACC:	0.8994	

	(63)	 Methylation	status	of	CGI	in	the	non-repetitive	parts	of	
human	Chromosome	21	(HpaII-McrBC	PCR	method)2	

Alternative	
decision	tree	
(best),	decision	
tree,	AdaBoost,	

SVM	

4-mer	frequencies	in	CGI	 Methylation	status	of	CGIs	on	
chromosome	21	

Alternating	decision	tree	
metrics:	ACC:	0.9063,	

AUC:	0.8906,	MCC:	0.742	

	(85)	 Various	vertebrate	epigenomic	datasets5	 AdaStump,	
Decision	Tree,	RF,	

NB,	LR,	SVM	
(linear,	RBF	
kernels)	

DNA	sequence	content,	predicted	DNA	
structure,	evolutionary	history	and	population	

variation,	annotation	of	repeats,	genes,	
regulatory	regions,	chromosomal	bands	and	

isochores,	histone	modification	

Prediction	of	various	epigenetic	
features	(including	DNA	

methylation)	

AdaStump	metrics:	for	all	
epigenome	predictions:	
CC:	0.498,	ACC:	0.749	
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	(89)	 Human	Epigenome	Project4	data	for	chromosomes	6,	20,	
and	22,	using	methylation	status	for	all	samples,	and	

Epigraph	datasets5	

Decision	tree	
(best),	SVM	

Nucleotide	content,	evolutionary	conservation,	
DNA	structure	prediction	

CGI	methylation	status	(2-way:	
methylated/unmethylated,	or	4-
way:	methylation	patterns	across	

tissues)	

Decision	tree	metrics:	2-
way:	CC:0.775,	ACC:	

0.9167;	4-way:	CC:	0.707,	
ACC:	0.8939	

	(90)	 Human	Epigenome	Project4	data	for	chromosomes	6,	20,	
and	22,	using	methylation	status	in	human	CD4+	T	

lymphocytes	

k-NN	 5-mer	frequency	in	499bp	upstream	and	
downstream	of	CpG	site	

Methylation	status	of	CpG	sites	 ACC:	0.7745	

	(91)	 Human	Epigenome	Project4	data	for	chromosomes	6,	20,	
and	22	across	1.9	million	CpG	sites,	using	methylation	

status	in	human	CD4+	T	lymphocytes	

SVM	(linear	kernel)	 DNA	sequence	derived	features:	GC	content,	
GC	observed/expected	ratio,	Alu	repeats,	and	

repeat	masker.	214	TFBS	and	38	histone	
marks.	

CGI	methylation	status	in	
chromosomes	6,	20,	and	22	

ACC:	0.94,	CC:	0.81	

	(92)	 Human	Epigenome	Project4	data	for	chromosomes	6,	20,	
and	22,	using	methylation	status	in	human	CD4+	T	

lymphocytes	

SVM	 Sequence	length,	nucleotide	and	dinucleotide	
content,	promoter	and	TFBS	annotation,	

nucleosome	positioning	

Methylation	status	of	CGI	in	
chromosome	22	

ACC:	0.9059,	CC:	0.65	

	(93)	 MethDB	(curated	database	of	~5,000	experimentally	
determined	methylation	of	DNA	fragments	in	species	from	

plants	to	humans)1	

SVM	(RBF	kernel)	 3-mer	composition	of	DNA	fragments	 Methylation	status	and	level	for	
400	human	DNA	fragments	in	

MethDB	

Methylation	status	
prediction:	ACC:	0.8207,	
MCC:	0.6411	Methylation	

level	prediction:	R:	
0.8223,	RMSE:	0.2042	

	(69)	 Human	Epigenome	Project4	data	for	chromosomes	6,	20,	
and	22,	using	methylation	status	in	several	human	tissue	

or	cell	types	

SVM	 Gardiner-Garden	criteria,	4-mer	composition,	
conserved	TFBSs	and	conserved	elements,	

predicted	DNA	structure,	functional	annotation	
of	proximal	genes,	nucleosome	positioning,	

histone	methylation	and	acetylation	

Methylation	status	of	CGI	 Metric	in	human	CD4+	
lymphocyte:	ACC:	0.9313,	

CC:	0.8302	

	(94)	 BS-seq	for	H1	and	IMR90	cell	lines	 Linear	regression	 Dinucleotide	sequence	derived	features	
created	using	the	sequence	environment	of	

78bp.	Each	nucleotide	interpreted	as	a	
categorical	variable	with	16	states.	

DNA	methylation	levels	at	CpG	
nucleotides	within	partially	

methylated	domains	

R=0.86	(for	the	sequence	
context	of	140bp)	

					(75)																					Methylation	array	data	of	multiple	human	tissues	 Support	vector	
regression	(RBF	
kernel)	(best),	

linear	regression	

Methylation	beta	values	in	surrogate	tissue	 Methylation	beta	values	for	
different	tissues	

Methylation	level	
prediction:	For	probes	in	
beta-value	range	0.2	to	

0.8:		R2:	0.89-0.98	
(77)	 BS-seq	for	H1,	NPC,	IMR90	cell	lines	 RF	(best),	SVM	

(RBF	kernel),	LR,	
Decision	Tree,	NB	

Nucleotide	composition,	16	histone	marks,	
RNA-seq	

Methylation	status	of	genomic	
segments	(based	on	CpG_MPs	

tool)	

RF	metrics:	H1:	AUC:	
0.99,	NPC:	AUC:	0.99,	
IMR90:	AUC:	0.92	

	(76)	 100	blood	samples	for	450K	arrays	 RF	 Sequence	composition,	evolutionary	rate,	copy	
number	variation,	haplotype	score,	

recombination	rate,	SNP	presence,	annotation	
of	gene	body,	promoters,	CGIs,	repeats,	

DNase,	Pol2	and	TF	ChIP-seq,	histone	marks,	
neighboring	CpG	site	methylation	level	and	

distance,	chromatin	states	

Methylation	status	and	levels	at	
single	CpG	sites	

Classification:	CGI:	ACC:	
0.98,	Whole	genome:	
ACC:	0.92,	Regression:	
R=0.9,	RMSE=0.19	

(78)	 GM12878	and	K562	cell	lines	(RRBS-seq)	 Deep	Nets	(ANN)	
and	SVM	

Genomic	features,	neighboring	CpG	sites,	and	
Hi-C	

Methylation	status	at	CpG	
dinucleotides	across	1kb	windows	

ACC:	0.721-0.897	

	(79)	 BS-seq	and	methylation	arrays	for	H1	and	H9	cell	lines	 RF	(best),	LR,	SVM	 Nucleotide,	dinucleotide	frequencies	and	NpN	
ratios	for	500bp	flanks,	methylation	data	for	
1000bp	flanks,	histone	marks,	chromosome	

organization,	chromatin	structure,	
evolutionary	features,	repeats,	TFBS	

Methylation	status	and	levels	at	
CpG	sites	

Metrics	for	RF:	
Classification:	ACC:	0.93,	
MCC:	0.86,	Regression:	
Spearman	correlation	
coefficient:	0.7602	
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1.10 Importance of predicting DNA methylation and hydroxymethylation 

Prediction of DNA methylation and hydroxymethylation remains important for several reasons. 

Despite the availability of high-throughput assays for querying DNA hydroxymethylation, there 

only exists a handful of publicly available TAB-seq and oxBS-seq datasets, and performing 

whole-genome BS-seq, TAB-seq, and oxBS-seq requires significant expenditure and skilled 

labor. Sequencing (or hybridization) based assays are also invasive and destructive procedures 

that may be unfeasible in certain experimental setups. It is also impossible to set up high-

throughput assays for all cell or tissue types and every developmental stage, physiological 

condition or perturbation, necessitating in silico prediction. In such situations, reconstruction of 

the whole epigenome predicated upon available data for correlated traits and a predictive model 

trained on a similar cell type is a practical, economical and efficient way to query methylation or 

hydroxymethylation. Additionally, DNA sequencing based protocols have amplification and 

fragment selection steps, effectively creating a biased sampling procedure that nay cause a 

fraction of cytosines in the genome to be unrepresented or underrepresented in the survey. This is 

especially evident for protocols like RRBS-seq where only a small fraction of cytosines have 

reliable coverage for querying methylation (35). Such missing or low quality data can be 

imputed using predictive models, which can be trained using available high quality data. Also, 

inherent stochasticity of the sampling process makes it inevitable that some estimations of 

methylation levels using high coverage sequencing data can be potentially erroneous. However, 

in silico predictive models, trained using high-quality data with multiple input predictor 

variables, would be able to robustly predict DNA methylation status.  
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Aberrant genome-wide methylation patterns (not restricted to promoters or gene bodies) serve as 

early detection markers of multiple pathological disorders including cancer (95). Such studies 

cannot be successfully completed in missing data scenarios, suggesting an immense importance 

of in silico predictive models. Finally, the advent of new single cell sequencing technologies lead 

to a development of protocols such as single cell BS-seq (sc-BS-seq) (96), which are often 

unable to provide complete and sufficient genome-wide CpG coverage, therefore necessitating in 

silico prediction. Model based predictors remain relevant to date, as neural networks were 

recently used to successfully predict CpG methylation status of the 3000 bp windows in single 

cells (80), by employing epigenetic and sequence-derived features. 
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2.1 Prior Publication 

Milos Pavlovic (M.P.) performed the majority of experiments, and Pradipta Ray (P.R.) designed 

the majority of experiments. M.P. and P.R. wrote the manuscript. Min Chen (M.C.) advised M.P. 

and Michael Zhang (M.Q.Z.) supervised the project. This chapter introduces the concept of inter-

methylome similarities and relates it to methylation prediction. Per the policy of OUP 

Bioinformatics, the publication of material in a PhD thesis is permitted with the publication of a 

peer-reviewed manuscript in their journal. The original manuscript (1) “DIRECTION: A 

machine learning framework for predicting and charactering DNA methylation and 

hydroxymethylation in mammalian genomes” by Milos Pavlovic, Pradipta Ray, Kristina 

Pavlovic, Aaron Kotamarti, Min Chen and Michael Q. Zhang, published in 2017, is reproduced 

by permission of Oxford University Press and appears online at the following web address: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. 

Supplementary information is available online at: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. The 

main text is partially altered compared to the online version of the manuscript, and figures and 

tables do not chronologically correspond to the online manuscript numbering. 

2.2 Abstract 

Here we analyzed 25 reference methylomes from the NIH Roadmap Epigenome consortium, and 

discovered a portion of CpG sites whose methylation status was invariant across all analyzed 

methylomes. We utilized this information to perform methylation status prediction in H1 human 

embryonic stem cells (H1) and H1 derived neural progenitor cells (NPC) across CpG sites that 



 

20 

exhibited an invariant methylation status in the reference. We implemented an optional 

dictionary-based approach to perform such predictions, and further improved overall model-

based prediction accuracy by creating an additional feature, which partitions a target methylome 

into its invariant and variant portion.  

2.3 Introduction  

Binding of DNMT1 to DNA is extremely selective and requires a linker DNA sequence of a 

minimum 20 bp in length (97), whereas the underlying sequence composition of a genomic 

region has been documented to shape DNA methylation patterns locally (22). The binding of 

DNMT1 to DNA results in a 6000 bp random walk of an enzyme and subsequent methylation of 

50 CpG sites on average, resulting in spatially contiguous stretches of hypermethylated CpG 

sites, which are seldom interrupted by unmethylated CpGs. Accordingly, the accurate methylome 

predictions using sequence composition-derived features were performed in its own right (64). 

This suggests that a proportion of CpG sites have invariant methylation status across cell or 

tissue types and conditions, and therefore hold a great potential for the imputation of missing 

data, and provide potentially valuable insights into underlying aberrant methylation patterns. 

2.4 Methods  

The high predictive ability of DNA methylation predictive models which use only sequence 

derived features (in multiple datasets) suggests that a portion of DNA methylation status in CpG 

sites is governed by the underlying sequence, and should be unchanged across cell and tissue 

types and conditions. Therefore, we obtained 25 publicly available WGBS (Table 2.1) from the 

NIH Roadmap Epigenome consortium (98) excluding H1 and H1-derived cells, and estimated  
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its methylation status by thresholding the CCR at 0.5 for each cytosine, and compared the 

respective binary methylation statuses (high and low methylation) across all the CpG sites with 

coverage ≥ 5 across the 25 datasets. We identified a portion of CpG sites, which exhibited 

invariant methylation statuses across all analyzed methylomes, and we optionally used their 

methylation as an additional feature for performing whole methylome reconstruction or 

imputation in other datasets (Fig. 2.1).  

Based on 25 high-quality reference human methylomes from the NIH Roadmap Epigenome 

consortium (98), we identified the majority methylation status for each CpG site with reliable 

sequencing depth across the 25 datasets.  

 
  

Fig. 2.1: DNA methylation reconstruction framework: Decision Tree for partitioning 
methylome based on different prediction paradigms such as model based predictions and 

dictionary-based driven predictions using invariant methylation readout. 
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We refer to the set of cytosines and their corresponding majority methylation status as the 

consensus reference methylome. We systematically decrease the set of cytosines by additionally 

constraining that no more than 8, 4, or none out of the 25 reference methylomes could be 

different from the methylation status of the majority of methylomes, referring to these variations 

as “consensus reference methylome with disagreement threshold n”. While determining 

methylation status in NPC using such consensus-based predictors, we identified a trade-off 

between accuracy and applicability. As we increase stringency of the disagreement criterion 

 
Fig. 2.2: DNA methylation predictions harnessing intra- and inter-methylome similarities A) 

Balanced sets predictions on methylation-invariant CpG sites using consensus reference 
methylome and SVM. B) Consensus Reference Methylome size as fraction of total 

methylome for disagreement thresholds 0, 4, 8, and 12. 
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from 12 to 0, the prediction accuracy improves from 0.85 to 0.99 (on balanced sets) (Fig. 2.2 

(A)), while the fraction of CpG sites in the genome that can be used to perform this prediction  

drops from 75% to 44% (Fig. 2.2 (B), Table 2.2). Given high predictive ability of the consensus 

reference methylome with zero disagreement, we optionally use this dictionary driven approach 

as a predictor to reconstruct a portion of the methylome.  

2.5 Results  

Based on the 44% of CpG sites that are methylation invariant in our reference we compared our 

SVM prediction model (detailed explanation behind creation and evaluation of the SVM model 

Table 2.1: List of cell and tissue types that were used to create the reference methylome 
Cell	lines	and	tissues	used	to	create	reference	methylome 

H9	Cell	Line	 Gastric	 
HUES64	Cell	Line	 Left	Ventricle	 
iPS	DF	6.9	Cell	Line	 Lung	 

iPS	DF	19.11	Cell	Line	 Ovary	 
4star	 Pancreas	 

IMR90	Cell	Line	 Psoas	Muscle	 
Mobilzied	CD34	Primary	Cells	Female	 Right	Atrium	 

Neurosphere	Cultured	Cells	Cortex	Derived	 Right	Ventricle	 
Penis	Foreskin	Keratinocycte	Primary	Cells	skin03	 Sigmoid	Colon	 

Aorta	 Small	Intestine	 
Adult	Liver	 Thymus	 

Brain	Hippocampus	Middle	 Spleen	 
Esophagus	  

 
 
. 

 

Table 2.2: Relative size of the consensus reference methylome w.r.t to disagreement thresholds. 
Size of the consensus reference methylome with disagreement thresholds 0, 4, 8 and 12 as a 

fraction of the entire methylome (in terms of CpG cytosines). 

 
 
. 
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can be found in the Methods section Chapter 3) to the prediction based on the consensus 

reference methylome. Both predictors were highly accurate and comparable on the set of 

cytosines underlying the consensus reference methylome with zero mismatches, and on balanced 

subsets, the precision of the SVM was 0.87, compared to 0.99 of the most stringent consensus 

based predictor (Fig. 2.2 (A)). On whole genome datasets we noticed incremental improvement 

in NPC methylation prediction accuracy (0.97) as opposed to solely SVM or RF models that 

govern (0.96) accuracy (Table 3.9).  

In addition to using a dictionary-based approach to perform predictions on the invariant portion 

of the methylome, we also created an additional feature that splits a target methylome into its 

invariant and variant portion, and used it in our model-based methylation status prediction 

framework. Further details on the predictive ability of the aforementioned feature will be 

discussed in the chapter 3. 

2.6 Summary 

In this chapter we introduced the concept of invariant DNA methylation and for that purpose we 

created the consensus reference methylome using the set of 25 publicly available methylomes 

from Roadmap Epigenome consortium (98). In order to improve methylation prediction accuracy 

in NPC, we employed the consensus reference methylome as an optionally driven standalone 

predictor, as well as an additional feature in our model-based methylation prediction framework 

(details in the results section chapter 3). The primary purpose of creating the consensus reference 

methylome was to use it as an additional predictive variable, while its usage in a context of a 

standalone predictive model was performed mostly as a feasibility study. The use of this feature 

is optional, and can be removed when required, i.e., when the primary goal is to identify 
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differentially methylated regions for a cell type or tissue in question which is substantially 

different from the reference methylomes constituting the consensus reference methylome. The 

use of such predictor is probably most useful when only a limited number of input variables are 

present, such as resource-scarce scenarios. By creating the consensus reference methylome we 

paved the way for a new generation methylome reconstructions, which involve a synergy of 

model-based and dictionary-based prediction approaches to achieve high accuracy. Depending 

on the reconstructed methylome, the consensus reference methylome can be created using a 

different set of relevant reference methylomes, and can potentially provide insight into aberrant 

CpG methylation in perturbation or disease studies (such as cancer) known to affect DNA 

methylation (99).   
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3.1 Prior Publication 

Milos Pavlovic (M.P.) performed the majority of experiments, and Pradipta Ray (P.R.) designed 

the majority of experiments. M.P. and P.R. wrote the manuscript. Aaron Kotamarti (A.K.) 

performed feature engineering. Min Chen (M.C.) advised M.P and Michael Zhang (M.Q.Z.) 

supervised the project. This chapter covers various aspects of DNA methylation prediction such 

as the choice of machine learning methods to perform such predictions, the rationale behind 

choosing the predictive methods and ultimately describes results generated employing such 

predictive methods. Per the policy of OUP Bioinformatics, the publication of material in a PhD 

thesis is permitted with the publication of a peer-reviewed manuscript in their journal. The 

original manuscript (1) “DIRECTION: A machine learning framework for predicting and 

charactering DNA methylation and hydroxymethylation in mammalian genomes” by Milos 

Pavlovic, Pradipta Ray, Kristina Pavlovic, Aaron Kotamarti, Min Chen and Michael Q. Zhang, 

published in 2017, is reproduced by permission of Oxford University Press and appears online at 

the following web address: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btx316. Supplementary information is available online at: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. The 

main text is partially altered compared to the online version of the manuscript, and figures and 

tables do not chronologically correspond to the online manuscript numbering. 

3.2 Abstract 

Here we performed DNA methylation status predictions at single nucleotide resolution in H1 and 

NPC cell lines on the whole-genome scale and balanced sets using supervised machine learning 
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methods to achieve high accuracy. For that purpose we devised model-based learning algorithms, 

predicated upon SVMs and RFs. We implemented a sophisticated feature selection procedure to 

identify most important predictive variables. In addition to the model based approaches we 

utilize neighboring CpG site methylation information to predict methylation status of the nearby 

CpGs. Based on the consensus reference methylome we predicted DNA methylation at invariant 

CpG sites, and created an additional feature that splits the whole methylome into its invariant and 

variant portion to improve predictions on balanced sets. We extensively describe the overall 

architecture of our prediction framework; we justify the importance of conducting DNA 

methylation predictions and relate our findings to the published literature. Finally, we 

demonstrate significant biological interpretability of results generated by our prediction 

framework. The consensus reference methylome prediction and transfer learning DNA 

methylation status prediction are covered in chapter 2 and chapter 5 of this dissertation 

respectively. 

3.3 Introduction 

High-throughput assays to detect DNA methylation are expensive, unfeasible in certain contexts 

and often leave a portion of the methylome unqueried. For that purpose we developed a novel, 

supervised integrative learning framework to predict whole-genome methylation predictions in 

CpG dinucleotides. Our machine learning framework yields high-accuracy single nucleotide 

resolution predictions of DNA methylation (either 5-mC or 5-hmC) and solely 5-hmC 

modifications in mammalian model systems. Our publicly available tool DIRECTION 

(Discriminative Integrative whole Epigenome Classification at single nucleotide resoluTION) 

can be trained on shotgun sequencing-based mammalian methylation and hydroxymethylation 
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datasets, by identifying and using available, correlated, high-throughput assays and genomic 

sequence-based traits as predictor variables. DIRECTION can be downloaded from: 

http://www.utdallas.edu/~prr105020/direction  http://www.utdallas.edu/~mxp114330/direction  

 

3.4 Methods 

Even though DNA methylation is innately heritable (maintained through cell divisions) (15), a 

portion of it will be reprogrammed due to factors like genomic imprinting, progression of 

developmental stage or may be altered by “external noise” resulting from various environmental 

factors. We have built a supervised machine learning framework for methylation prediction 

using 3 basic assumptions: a) Homogeneity of the methylation states across all cells in the cell-

type or tissue-type under question. b) Temporal stability of the 5-mC modification in a particular 

cell type. c) Imprinting loci are ignored: loci with one methylated and one unmethylated cytosine 

due to imprinting have so far been identified in approximately 100 mammalian genes (100), and 

are being ignored for the purposes of our model.  

Bisulfite treatment protocols followed by short-read sequencing (BS-seq or TAB-seq) provide 

CCRs at single nucleotide resolution for cytosines ranging form 0 (unmethylated) to 1 (fully 

 
 

Fig. 3.1: Whole methylome empirical distributions of BS-seq CCRs in NPC (A) and liver 
tissue (B). Both cell types exhibiting bimodal genome-wide CCR distributions 
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methylated). Typically, prediction of an epigenetic mark can be appropriately performed using 

either classification or regression models depending on whether one is predicting a discrete or 

continuous-valued epigenetic trait. We formulate prediction of DNA methylation as a binary 

classification problem due to the bimodal nature of the distribution of CCRs in BS-seq 

experiments. Genome-wide empirical distributions of CCRs in mammalian reference 

methylomes (98) from inbred cell lines and sourced whole tissue (with low and high cellular 

heterogeneity respectively) show clear evidence of a bimodal distribution of CCRs (Fig. 3.1), 

with peaks close near CCRs of 0 and 1. Accordingly, we used a well-established CCR of 0.5 to 

distinguish between low and high methylation classes (76).  

3.4.1 Tradeoffs underlying classification frameworks for methylation prediction 

DNA methylation is essentially a discrete phenomenon at the level of individual alleles as there 

are only 3 possible methylation states that are distinguishable by bisulfite treatment followed by 

NGS: both alleles unmethylated (CCR of 0), one allele methylated one unmethylated (CCR of 

0.5), and both alleles methylated (CCR of 1). Our premise of a two state methylation level is a 

simpler model, which captures the basic nature of DNA methylation (Fig. 3.1) while retaining 

relative simplicity over regression models. These evidences lend weight to the tractability of 

predicting 5-mC modifications. Therefore methylation prediction lends itself naturally to a 

classification framework. We aim to learn a function that will map a set of input features 

𝑥1, 𝑥2,… 𝑥!  to binary class labels 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ  for the purpose of reconstructing a discretized 

approximation of the BS-seq CCRs at individual cytosines, by using a CCR of 0.5 to threshold 

between low and high methylation classes. However, bisulfite based sequencing assays typically 

agglomerate signal form both alleles across millions of cells, thereby giving rise to CCRs that 
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may be closer to 0.5 (intermediate methylation) than 0 or 1. Classification algorithms excel at 

predicting methylation status in cytosines with CCRs that have extremal values, where CCRs are 

near 0 or 1. However, their performance degrades when predicting methylation status in 

cytosines with CCRs commensurate with intermediate methylation levels due to the near-

arbitrariness of class label assignments for such intermediate CCRs. DIRECTION is designed for 

predicting methylation at CpG cytosines in mammalian model systems, which are well known to 

exhibit a bimodal distribution of CCRs even in highly divergent and heterogeneous mammalian 

tissues such as muscle (101) and brain (102). Despite the fact that the majority of mammalian 

methylomes exhibit bimodal distribution, certain mammalian datasets can posses significant 

amount of intermediate methylation (103, 104). Cancer datasets, with their underlying mixture of 

cell-types and genome heterogeneity, can be a source of such abundant intermediate methylation 

in mammalian genomes (105). It is noteworthy that in invertebrates, the degree of intermediate 

methylation is known to be higher (103). In such situations, a regression-based approach is 

possibly more suitable (76). Given the flexibility of our prediction framework, such regression-

based models can be conveniently incorporated when needed. 

3.4.2 Direction toolkit and its uniqueness 

Firstly, DIRECTION is able to deconfound effects of 5-mC and 5-hmC modifications, as it can 

be separately trained on BS-seq and TAB-seq datasets for a given cell type. This is the first time 

5-hmC modifications have been predicted in silico (with a whole genome accuracy of 0.82), 

allowing us to systematically reconstruct 5-hmC modifications maps in different cell and tissue 

types. Secondly, DIRECTION provides different usage modes (Table 3.1) including imputation 

and whole methylome reconstruction (based on training a model in a related cell or tissue type).  
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This is possible because we do not use predictor variables likely to be relevant only in specific 

cell-types such as DNA-binding motifs of cell type restricted TFs, enabling transfer learning. 

Thirdly, DIRECTION is equipped with a sophisticated feature selection algorithm and is able to 

heuristically identify an optimal feature set (OFS) for predictions based on the set of available 

predictor variables (optionally using regional methylation patterns and methylation information 

from other cell types), allowing use in resource-poor scenarios and providing biologically 

interpretable results. DIRECTION performs methylation predictions at single nucleotide 

resolution, allowing us to collate predictions to any biologically relevant resolution such as CpG 

dinucleotide, CGI, or gene for purposes of downstream functional analysis. Direction 

implementation is based upon a novel decision tree based topology (Fig. 2.1), in which different 

classifiers correspond to each leaf of the tree. This tree partitions the methylome by selecting the 

most appropriate classifier given the availability of predictor variables and their efficacy on the 

basis of biologically relevant methylation paradigms. Additionally, we identified CpG sites with 

invariant methylation (see methods section chapter 2) by contrasting available reference 

methylomes, and implemented it as an optional feature for methylation prediction (see Results). 

Table 3.1: Summary on different modes of our methylation analysis toolkit  
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3.4.3 DIRECTION architecture 

DIRECTION offers three primary modes of usage: for existing datasets, it can identify an OFS 

for predicting methylation or hydroxymethylation status based on available input feature sets, or 

impute low quality or missing data. Additionally, our toolkit allows us to perform whole 

methylome and hydroxymethylome reconstruction based on a user-provided feature set and 

SVM or RF model trained on a similar cell or tissue type. For other modes see (Table 3.1). 

Machine learning based approaches, most prominently SVM and RF models have been 

successfully used to predict DNA methylation in the past (61, 76). Since we aim to perform 

genome-wide prediction, we chose not to use a single predictive model, but instead designed a 

scalable ensemble-learning framework that would be able to deconvolve multiple methylation 

paradigms that are at work in in different regions of the genome. For this purpose, a decision tree 

with a biologically motivated topology is used (Fig. 2.1) which partitions the methylome for 

methylation status prediction, based on available predictor variables and methylation paradigms. 

At each partition, we train separate predictive models predicated upon an SVM and RF, which 

exhibit comparable predictive accuracy. We also identified CpG sites with invariant methylation 

status across a set of high-quality reference methylomes, which can optionally be used as an 

additional feature to predict methylation status. With research on 5-hmC functionality still 

underway, and due to a lack of reference hydroxymethylomes, we used a single predictive model 

(SVM or RF) to perform 5-hmC status prediction.    

3.4.4 Model-based classification: SVM and RF 

 As previously mentioned, we approach DNA methylation prediction as a binary classification 
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problem, and for that purpose we devised an ensemble supervised learning framework predicated 

upon SVM and RF. The classification problem can be broken up into separate stages: the 

estimation or training stage: in which we use training data to learn a model, and the subsequent 

inference or testing stage: in which we use a trained model to make optimal class assignments 

(106). Thus we aim to learn a function 𝑓 𝑥 :𝑅!  ⟹ 0,1  that will map a set of input features 

𝑥1, 𝑥2… 𝑥!  to the binary class labels 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ . While some previous works have performed 

dimensionality reduction (69) we have decided to perform iterative feature selection in order to 

identify the OFS for methylation and hydroxymethylation prediction. 

SVM classification: The SVM framework seeks to maximize the distance of training instances 

from the decision boundary in input space. It trains a hyperplane (or a set of hyperplanes for 

multi-class classification) based on the support vectors (a subset of data points closest to the 

decision boundary) of the training data. SVMs are a non-probabilistic, maximum margin 

classifiers. The optimization problem is thus to maximize the distance between the support 

vectors and the decision boundary (known as functional margin). Since a linear hyperplane may 

not necessarily suffice for good classification performance, most SVMs map input data to a 

higher dimensional space for separation by hyperplane, and use the kernel trick for calculating 

necessary pairwise inner products rather than performing all computations in the higher 

dimensional space. We chose to use the popular Radial Basis Function (RBF) kernel (106), 

previously used to predict methylation status (61). The RBF kernel between two input feature 

vectors 𝑥 and 𝑥′ is defined as: 𝑓 𝑥, 𝑥! = exp (−𝜆 𝑥 − 𝑥! !
, and is proven to be robust with 

respect to other kernels such as linear and polynomial for classification purposes (106). 
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RF classification: RF is an ensemble-learning algorithm comprised of numerous decision trees 

(weak learners), well known for its high classification performance and resistance to overfitting. 

It averages predictions and feature weights across multiple decision trees and randomly samples 

subsets of features, subsequently separating class labels by splitting input features to optimize 

Gini Impurity or entropy (107). 

We include both models into our framework since they have differing strengths: for example 

SVMs work well even with small training sets, while RFs are naturally resistant to outliers, 

thereby letting the user choose the model depending on the dataset and training data availability. 

It is noteworthy that these two models with comparable efficacy for our data. 

3.4.5 Training and testing strategies for SVM and RF and prediction quality evaluation 

Training and test set sizes were decided based on evaluation metric stability (Fig. 3.2). In order 

to evaluate the performance of our SVM and RF based predictive models we perform 5 fold 

cross-validation using balanced sets having 10,000 data points. The balanced sets are comprised 

of 5,000 positive and 5,000 negative examples, where 4,000 of each class are used for training 

and the remaining 1,000 of each class for testing. We discovered that the aforementioned design 

decisions govern the best trade-off between stably and accurately estimating prediction metrics 

versus computational time (Fig. 3.2). We thus chose k=5 for k-fold cross-validation on 10,000 

sampled training examples (5,000 of each class) to balance out the trade-off between the training 

and testing set size. Namely, if k is too large the testing set size will be too small, and conversely 

if k is too small the training set size is too small and the number of experiments may not be 

enough to estimate the prediction performance. 
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It is worth noting that using more than 20,000 data points to train the SVM may cause the 

MATLAB built-in function svmtrain to be very slow, which may effectively result in non-

convergence from a practical point of view.  

Increasing label fidelity for training and testing samples: We identified the sequencing depth 

required for cytosines used for training (inclusion in the training set) and evaluating (inclusion in 

the testing set) our models based on the minimum sequencing depth that would always 

distinguish unmethylated (or non-hydroxymethylated) cytosine from marginally methylated or 

 
 

Fig. 3.2: Dependence of the performance metric based (F-score) based on: A) Training set 
size B) Test set size 
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hydroxymethylated (CCR of 0.5 or 0.09 for BS- seq and TAB-seq respectively) given 

representative sampling. Due to sampling variance at low sample sizes causing small sample 

sizes to often not be representative, we performed a non-parametric categorical test (Fisher’s 

Exact Test) between categorical distributions where for one sample the CCR is zero, versus 

another sample where CCR of the marginally methylated or hydroxymethylated sample is 

faithfully represented in the sample. We perform this over a range of sequencing depths fixed for 

both samples to identify when Fisher’s Exact Test is able to identity a statistically significant 

difference between the two samples. This was performed to ensure label fidelity of training and 

testing samples. For BS-seq datasets, we need to minimally differentiate between completely 

unmethylated cytosines with a CCR of 0 with respect to marginally methylated cytosines with a 

CCR of 0.5. Given representative sampling, the minimum sequencing depth at a cytosine 

required to differentiate between the cases is two. However, we find that for the Fisher’s Exact 

Test, we get a statistically significant p-value (p ≤ 0.05) when sequencing depth for both samples 

is 10. In practice, for the SVM and RF models, both balanced set predictions and whole genome 

predictions were performed with cytosines where coverage ≥ 20. We find that out of 56,434,896 

annotated CpG cytosines, 50,379,832 have coverage ≥ 20 in H1, and 49,134,499 have coverage 

≥ 20 in NPC, suggesting that even in datasets with high sequencing depth, between 11% and 

13% of cytosines do not have satisfactory coverage depth and can be imputed using 

DIRECTION. For the Reference Methylome predictor variable based predictions, and SVM 

model is compared with the Reference Methylome predictor, since sequencing depth ≥ 20 across 

all reference methylomes causes a large drop in the number of cytosines eligible for training and 

testing, a more modest sequencing depth constraint of ≥ 5 was used. Similarly, when Nearest 
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Neighbor evaluations were performed, the more modest sequencing depth constraint of ≥ 5 was 

used in order to capture more cytosines in the evaluation process. Additionally, Consensus 

Reference Methylome and Nearest Neighbor were introduced as input predictor variables into 

our toolkit, and cytosines with sequencing depth ≥ 5 were chosen for this purpose.  

For TAB-seq datasets, we need to minimally differentiate between completely non-

hydroxymethylated cytosines with a CCR of 0 with respect to marginally hydroxymethylated 

cytosines with a CCR of 0.09. Given representative sampling, the minimum sequencing depth at 

a cytosine required to differentiate between these cases is 20. We find that for the Fisher’s Exact 

Test, we get a statistically significant p-value (p< or ~0.05) when sequencing depth for both 

samples is 60. In practice, for the SVM model, both balanced set predictions and whole genome 

predictions were performed with cytosines where coverage ≥ 60. See Table 3.2 for p-values 

obtained by Fisher exact test.  

 
Table 3.2: Fisher’s Exact Test p-values for various  BS-seq and TAB-seq sequencing depths. 

Fisher’s Exact Test shows statistical significance (p-value < or ~0.05) for distinguishing 
between a sample that is unmethylated (or non-hydroxymethylated) versus a sample that is 
marginally methylated (or hydroxymethylated) at sequencing depths of 10 for BS-seq data 

and 60 for TAB-seq data. 
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SVM model decisions: The parameters used to train the SVM are as follows: kkt violation 

fraction =0.05, maximum number of sampled training sets used for training in order to achieve 

SVM convergence=3, maximum number of iterations in each training for SVM convergence 

=107. The average number of support vectors per 8000 training examples within different BS-

seq optimal feature sets varied between 1200-1300, suggesting an upper bound of the 

experimental error rate range of 0.15-0.1625.  

RF model decisions: When training the RF, we randomly sample one third of all available 

features in the training set, and perform sampling of training data-points with replacement. 

Splitting on input features is performed in a way that minimizes Gini Impurity score. Depending 

on the prediction paradigm we grow between 50 and 150 decision trees in the forest (for example 

CGI methylation status predictions can be successfully performed using 50 decision trees: when 

classification error reaches its minimum). Additional information about different modes 

implemented in our toolkit can be found in Table 3.1. 

For evaluating predictions on balanced sets, we used Precision and Recall, F-score, and Area 

Under Curve (AUC). True Positive and True Negative Rates were used to evaluate whole 

genome predictions (see chapter 1.9 for details about evaluation metrics used in this 

dissertation). The metrics commonly used to assess the performance of a supervised learning 

algorithm belong to one of the following three categories: threshold metrics, rank metrics, or 

probability metrics (108). Since we perform classification using non-likelihood based approaches 

(SVM and RF), we use appropriate metrics in the “threshold- based” metrics category. The 

decision of which one to chose mostly depends on the nature of the problem that needs to be 
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addressed. For prediction of skewed classes, special care needs to be taken such that the metric 

does not get inflated by simply predicting one class more often than the other. Concretely, we 

perform both methylation and 5-hmC predictions using balanced sets (avoiding skewed classes) 

and report the performance using Precision, Recall, F-Score (harmonic mean of Precision and 

Recall), and AUC while whole-genome prediction performance (where the frequency of the two 

classes are skewed for both methylation and 5-hmC status prediction) is evaluated using True 

Positive Rate (Sensitivity or Recall), True Negative Rate (Specificity) and Accuracy.  

3.4.6 Feature engineering and feature selection 

Feature engineering: We use a variety of genomic and epigenomic traits as input to train our 

classifier (Table 3.3). Features we do not model include gene annotation because histone 

modification data implicitly contain this information and enable us to discern between active, 

poised, and repressed cis-regulatory (57) and transcribed regions. Such annotation-based features 

may be incorporated when histone modification datasets are not available. Additionally, we do 

not model spatial contiguity explicitly into our predictive model. Since DNA methylation 

response variable (thresholded BS-seq CCRs) and various input features (e.g. histone 

modifications) are very well correlated spatially, our predictions are able to identify stretches of 

similar methylation without a need for explicit spatial auto-correlative models like Hidden 

Markov Model (HMM) or explicit spatial input features. TAB-seq CCRs are not spatially auto-

correlated as well as BS-seq CCRs, but 5-hmC enriched regions and large stretches of 5-hmC 

depletion can be identified. Finally, features such as discriminative k-mers and motifs or ChIP-

seq datasets of TF binding that can predict the methylation status were not used since the 

expression of such TFs are likely to be cell-type specific and accordingly not suitable for transfer 
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learning purposes in the context of whole methylome reconstruction. Only the near ubiquitously 

expressed CTCF and p300 TF ChIP-seq data were used in the Initial Feature Set for predicting 

H1 methylation status, and these features were not used for NPC methylation status prediction, 

transfer learning for methylation status prediction, or 5-hmC status prediction.  

All genomic features (tracks) such as Alu repeats, CGI as well as the genomic positions of CpG 

sites in the human genome (hg19 assembly) were obtained from the UCSC genome browser 

(109), or calculated based on the downloaded sequence and annotation. Histone mark ChIP-seq, 

DNase-seq and Transcription Factor binding ChIP-seq data (CTCF, p300) were obtained from 

the Roadmap Epigenome consortium (98) under the NCBI GEO GSE16256 accession 

(http://egg2.wustl.edu/roadmap/web_portal/processed_data.html). Genome-wide signal coverage 

tracks (negative log10 transform of the p-value) based on the uniformly processed Roadmap 

Epigenome Consortium datasets were used for ChIP-seq and DNase-seq features (98). All the 

raw features were matched against the list of available CpG sites using the IntersectBed tool 

from the Bedtools toolkit (110). After initial processing all the features were stored into a single 

matrix. The features were normalized to zero mean and variance one before training the model. 

BS-seq and TAB-seq data sourcing and processing: BS-seq and TAB-seq datasets from the NIH 

Roadmap Epigenome consortium (98) were used for training and testing our predictive model. 

Read counts for estimating CCRs in H1 human embryonic stem cell (ESC) line and H1-derived 

NPC neural progenitor BS-seq datasets (GEO GSE16256) were obtained from the uniformly 

processed data published by the Roadmap Epigenome consortium (98) while the BISMARK tool  

(43) was used for mapping and obtaining the CCRs for H1 (GEO GSE36173) and NPC (GEO 
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GSM882245, GSM1463129) TAB-seq datasets. These cell types were chosen due to availability 

of BS-seq and TAB-seq data, and since previous studies performing functional enrichment and 

analysis of 5-hmC in human and mouse ESCs  (17, 114, 116, 117) and neural progenitors (118-

120), especially in neural development.  

We have devised the pipeline for end-to-end mapping and variant calling of raw BS-seq and 

TAB-seq reads using the BISMARK BS-seq read mapper (43). Scripts that were used to 

calculate the reads sequencing depth and hydroxymethylation levels were coverage2cytosine and 

bismark methylation extractor. The final output to the .bed format was performed by the 

bismark2bedGraph. This was performed to generate H1 and NPC TAB-seq CCRs. H1, NPC, 

MSC, and IMR90 BS-seq CCRs were obtained from the uniformly processed datasets of the NIH 

Roadmap Consortium (http://egg2.wustl.edu/roadmap/web_portal/processed_data.html) 

processed from GEO series GSE16256 datasets by the Consortium as fractional methylation 

value and read coverage for each CpG cytosine.  

For 5-hmC status prediction, BS-seq CCR (and not the predicted methylated status) was used as 

an input feature. An additional feature was created for methylation status imputation based on 

the methylation status of the CpG cytosine nearest to the cytosine in question (nearest neighbor 

feature, see section 3.4.7).  

However, a similar feature was not used for 5-hmC status imputation since 5-hmC modifications 

do not occur in long stretches even though they can be somewhat locally enriched (chapter 4). 

Finally, based on the invariance of methylation statuses across reference methylome datasets 
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Table 3.2: List of features used for predicting DNA methylation and hydroxymethylation. All features for methylation 
prediction were used for 5-hmC predictions as well, since 5-hmC is on the demethylation pathway. 1(111), 2(112), 3(57) 
Feature	 Type	 Description	 Motivation	

Genome-derived	features	(processed	from	UCSC	Genome	Browser	datasets	(113))	
CpG	island	(CGI)	 Binary	 Presence/absence	of	CGI	annotation	at	CpG	site	 CGIs	tend	to	be	significantly	unmethylated	in	

comparison	to	non-CGI	regions	of	the	genome	
Distance	to	nearest	
CGI	(in	bps)	

Non-negative	
integer	

Helps	distinguish	CpGs	in	CGI,	CGI	“shores”	and	non-CGI	 Cytosines	on	the	CGI	shores	(near	CGIs)	tend	to	be	
highly	methylated	and	govern	most	of	methylation	
within	non-CGI	regions)	

Distance	to	nearest	
CGI	(in	CpGs)	

Non-negative	
integer	

Alternative	feature	for	distance	to	CGI,	measured	in	number	of	
intervening	CpGs,	rather	than	genomic	coordinates	

As	above	

GC	content	 Continuous	
∈ 0,1 	

Percentage	of	nucleotides	which	are	G/Cs	in	centered	window	around	
CpG	site	(window	sizes:	50,	100,	200,	400,	800bp	used)	

Higher	GC	content	empirically	shows	lower	
methylation	levels:	fact	corroborated	in	CGIs	

CpG	density	 Continuous	
∈ 0,1 	

Percentage	of	dinucleotides	which	are	CpGs	in	centered	window	around	
CpG	site	(window	sizes:	50,	100,	200,	400,	800bp	used)	

As	above	

Strand-specific	
guanine	density	

Continuous	
∈ 0,1 	

Percentage	of	guanines	in	centered	window	around	CpG	site	(window	
sizes:	50,	100,	200,	400,	800bp	used)	

5-hmC	levels	can	be	asymmetrically	distributed	in	a	
CpG	site	between	strands	(114)	

Repeats	(SINEs,	LTRs)	 Binary	 Presence/absence	of	SINE	or	LTR	annotation	at	the	CpG	site	 Higher	methylation	suppresses	transcription	in	
repeat	regions	(115)	

Alu	 Binary	 Presence/absence	of	Alu	annotation	at	the	CpG	site	 As	above	
Epigenome-derived	features	

Enhancers	 Binary	 Created	using	a	cutoff	value	of	the	ChIP-seq	H3K27ac	and	H3K4me3	
signal	generated	using	MACS	tool1	

5-hmC	is	known	to	be	overrepresented	in	
enhancers		(49)		

Core	histone	
modification	ChIP-seq	
signal	

Continuous	 -log10	transformed	ChIP-seq	p-values	based	on	ChIP	binding	and	input	
control,	as	calculated	by	the	MACS	tool1.	(H3K9me3,	H3K4me3,	
H3K4me1,	H3K36me3,	H3K27me3,	H3K27ac:	available	for	109	
epigenomes)2	

Repressive	marks	like	H3K9me3	and	H3K27me3	are	
often	mutually	exclusive	with	DNA	methylation	

Auxiliary	histone	
modification	ChIP-seq	
signal	

Continuous	 Similarly	processed	data	for	additional	histone	modifications	available	for	
a	limited	number	of	epigenomes	(H2AK5ac,	H2AZ,	H2BK120ac,	H2BK12ac,	
H2BK15ac,	H2BK20ac,	H2BK5ac,	H3K14ac,	H3K18ac,	H3K23ac,	
H3K23me2,	H3K4ac,	H3K4me1,	H3K4me2,	H3K56ac,	H3K79me1,	
H3K79me2,	H4K20me1,	H4K5ac,	H4K8ac,	H4K91ac)2	

As	above	

Histone	states	 Discrete:	1-15	 Using	core	histone	modification	signal	for	core	marks	to	segment	data	
into	posterior	decoded	15-state	HMM	annotation	tool	ChromHMM3,	
based	on	(Chadwick,	2012)	

Histone	states	have	been	shown	to	be	well	
correlated	with	DNA	methylation	(98)	

BS-seq	CCR	 Continuous	
∈ 0,1 	

Percentage	of	cytosines	remaining	unchanged	based	on	the	Roadmap	
Epigenome	consortium	datasets2	

Used	only	for	predicting	5-hmC	status,	since	5-hmC	
modifications	show	up	as	part	of	the	BS-seq	CCRs	

ChIP-seq	TF	binding-derived	features	
DNase-seq	signal	 Continuous	 Regions	of	open	chromatin	characterized	by	DNase	digestion	and	

sequencing:	coverage	signal	contrasted	with	uniformly	distributed	read	
set	simulation,	and	-log10	transform	of	p-value	used2	

DNase	hypersensitive	regions	positively	correlated	
to	active	regulatory	regions,	negatively	correlated	
to	5-mC	

CTCF	ChIP-seq	signal	 Continuous	 -log10	transformed	ChIP-seq	p-values	based	on	ChIP	binding	and	input	
control	for	CTCF	binding2	

Well-known	insulator.	Used	only	for	H1	
methylation	and	5-hmC	status	prediction.	

p300	ChIP-seq	signal	 Continuous	 -log10	transformed	ChIP-seq	p-values	based	on	ChIP	binding	and	input	
control	for	p300	binding2	

p300	marks	active	transcription	sites.	Used	only	for	
H1	methylation	and	5-hmC	status	prediction	
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we created an additional feature that splits the methylome into its invariant and variant portion, 

in order to improve balanced sets predictions in NPC (see results). 

Initial feature elimination: We identified and eliminated redundant features based on feature 

clustering and reduced the size of the full feature set (listed in Table 3.3), and ultimately created 

Table 3.3: Initial feature sets for NPC and H1 methylation status predictions 
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the “Initial Feature Sets” (IFS) (Table 3.4). We identify clusters of highly correlated features and 

keep only one representative feature for each cluster and eliminate the others.  

The total set of predictor variables include several features that were engineered at multiple 

genomic resolutions (in bins of 50bp, 100bp, 200bp, 400bp, and 800bp) to predict DNA 

methylation and hydroxymethylation in genomic regions of corresponding size, and these 

naturally cluster in redundant groups. Since DIRECTION is trained to classify methylation and 

5-hmC status at single nucleotide resolution, engineered features at the smallest resolution 

(50bp) were kept for the IFS, and the lower resolution features were discarded. These decisions 

 

Fig. 3.3: Schema of our prediction framework outlining beam search 
(feature selection), training, testing, and cross-validation modes 
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resulted in saving a reasonable amount of computational time, and significantly reduced the 

possibility of overfitting our model.  

Feature selection (beam search algorithm): Typically, machine learning models with more 

input parameters tend to fit the response variable better, occasionally resulting in overfitting 

(121). This leads to a trade-off between predictive power and feature sparsity. Some previous 

approaches to perform optimal feature selection include dimensionality reduction (69) and 

removal of individual features from the full feature set to create the Gini index (76, 77), which 

will rank the features according to their contributions to the prediction metric. In order to gain 

additional insight about features and their additive effects we implemented a modified version of 

the recursive feature elimination algorithm that provides information about the discriminative 

nature of individual features and features subsets (Fig. 3.3).  

Recursive feature elimination is a well-established strategy that was successfully used to 

determine the most predictive features and feature sets for methylation prediction (61). However, 

performing a top-down exhaustive search given a high number of input features (N) can be 

 

Fig. 3.4: An example path traversed by beam search through Precision-Recall space, while 
optimizing F-score (in parentheses) for H1 non-CGI SVM model. 
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extremely time consuming and computationally demanding since the number of explored feature 

sets may reach 2! − 1, leading us to consider heuristic approaches in determining the OFS.  

All input features (listed in Table 3.3) were first preprocessed for use in our predictive 

framework. Identifying OFSs for classification is computationally intractable for a large number 

of input features (122) due to the curse of dimensionality. The problem is additionally 

complicated by the presence of noise in input features, label infidelity in the response variable, 

missing or low quality data for certain features, and high inter-feature correlation. While OFS 

selection and model training can be jointly performed (123) we heuristically identified an OFS 

using a recursive feature elimination strategy (Fig. 3.3) not limited to a specific learning 

algorithm, providing flexibility to choose a predictive model. Recursive feature elimination 

allows us to pick feature sets with fewer features that fit the data better in an iterative fashion, 

Table 3.4:  Underlying data for Figure 3.4, showing the F-score (for H1 non-CGI methylation 
status prediction) trajectory as the beam search algorithm searches through feature space. (A) 
For incrementally improved F-scores, the feature sets are shown. (B) For each improved F-
score, the corresponding precision and recall values are shown.  
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implicitly enforcing sparsity. We performed an initial feature elimination step based on inter-

feature correlational redundancies (see Initial Feature Elimination). 

We then conducted recursive feature elimination on the remaining features (Table 3.3) by 

implementing the beam search algorithm (Fig. 3.3): a classical artificial intelligence search 

procedure, utilizing heuristic pruning rules to explore a graph with nodes corresponding to all 

possible feature sets (124). Nodes (feature sets) are sorted in a queue according to classification 

evaluation metrics evaluated by 5-fold cross-validation, and the queued node having the highest 

metric is explored further by the algorithm until all nodes are evaluated or a maximum number of 

iterations are reached while simultaneously recoding the feature set with the optimum metric 

(Fig. 3.4, Table 3.4).  

 

The beam width parameter controls the number of nodes subject to further exploration and 

subsequent evaluation (Fig. 3.5). Across different beam width values, we find that beam search 

exhibits stability since it generates similar results (Table 3.5). 

 

Fig. 3.5: Beam search algorithm feature set exploration shown for beam width = 2, for 
two levels of the search tree 
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The algorithm for identifying optimal feature sets is shown as pseudocode (Table 3.6 and a 

flowchart Fig. 3.6).  While OFSs can be optimized for multiple classification evaluation metrics 

(i.e., precision, recall) in our framework, in this paper “OFS” typically refers to the feature set 

corresponding to highest F-score metric, unless otherwise mentioned explicitly.  

OFSs for NPC methylation status prediction that were obtained by optimizing different 

evaluation metrics are discussed in the results section. Finally, we examined contributions of 

individual features to the predictive ability of the OFS (see results Fig. 3.11). 

 

 

 

 

 

 

 

 

 

Fig. 3.6: Schematic representation of optimal feature set 
finding algorithm embedded within DIRECTION 
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Table 3.5: Similarity of OFSs across different beam width values for beam search using 
SVM model for methylation status prediction in NPC CGI dataset 

 
 
 

 

Table 3.6: Beam search algorithm shown as a pseudocode 
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3.4.7 Exploiting correlation between datasets 

We engineered several predictor variables based on methylation status of neighboring CpG sites, 

previously used to impute methylation data (76). Cytosines in CpG sites were divided into “high-

coverage” and “low-coverage” sets (sequencing depth at CpG site in the dataset was ≥ or < 5) in 

NPC. To predict methylation status at each low-coverage cytosine, we compared predictive 

abilities of the methylation status of the three nearest high-coverage CpG sites to the CpG site in 

question. We additionally contrasted another predictor constructed by using the most common 

methylation status (performing a majority vote) across the three nearest high-coverage sites.  

We find that the precision of prediction drops from the nearest to furthest neighbor, and 

methylation status of the nearest neighbor’s predictive performance is comparable to the majority 

methylation status of the three nearest neighbors (Fig. 3.7). 

We analyzed the predictive quality of the nearest neighbor based on distance between the 

predicted CpG site and the nearest neighbor. As distance increases from contiguous up to 

 

Fig. 3.7: Precision/Recall plot for balanced sets prediction of DNA methylation 
status using the methylation status of the first, second and third nearest neighbor, 

and a vote amongst all three. 
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2500bp, both precision and recall decrease (Fig. 3.8), with a significant drop after 500bp. Thus, 

methylation status of the nearest neighboring high-coverage CpG site within 500bp was used as a 

discriminative predictor variable.  

Since the predictive power of neighboring CpG sites drops with distance, we wanted to 

determine what fraction of CpG sites with low coverage (<5) have high coverage (≥5) 

neighboring CpG sites within 500bp, making them a good candidate for imputation. Therefore 

we computed the Cumulative Distributive Function (CDF) of the fraction of low coverage sites 

with respect to distance to the nearest high coverage neighboring site (Fig. 3.9), in high coverage 

 

Fig. 3.8: Precision/Recall plot for balanced sets methylation status imputation using methylation 
status of nearest neighboring CpG site as function of distance to nearest neighbor (Table 3.9 for 

results) 

 

Fig 3.9: Cumulative Distribution Function of the fraction of low coverage CpG sites w.r.t 
distance to the nearest high coverage site in a typical high-coverage and low-coverage BS-seq 

dataset (NPC and fetal small intestine respectively) 
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(NPC) and low coverage (Fetal Small Intestine) Roadmap Epigenome consortium datasets. 

Even in a low coverage methylome such as Fetal Small Intestine (Fig. 3.10), more than 60% of 

low coverage CpG sites had a corresponding high coverage neighbor within 500bp, suggesting 

high probability of them being correctly imputed (Fig. 3.8). Since a large fraction of CpG sites 

have a high coverage neighbor within 500bp even for moderately sized BS-seq datasets (Fig. 

3.9), this feature was added to the beam search-identified OFS and the model was retrained for 

imputation.   

3.5 Results 

BS-seq datasets from the NIH Roadmap Epigenome consortium were used for training and 

testing our predictive model. Read counts for estimating CCRs in H1 human embryonic stem cell 

line and H1-derived NPC neural progenitor BS-seq datasets (GEO GSE16256) were obtained 

 

Fig. 3.10: Empirical distributions of high coverage methylome such as NPC (yellow) 
and low coverage methylome such as Fetal Small Intestine (blue) 
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from the uniformly processed data published by the Roadmap Epigenome consortium (98). 

3.5.1 DNA methylation prediction 

Since there is no precedent for in silico prediction of the 5-hmC modification, we first built a 

framework for conventional two-state classification of DNA methylation in CpG sites, 

supervised using BS-seq data. Since distributions and spatial contiguity patterns of highly and 

lowly methylated CpG sites vary between CGI and non-CGI regions, we trained two classifiers 

with separately inferred OFSs (Fig. 2.1, Model 1, Model 2). Significant differences in prediction 

quality were observed among different feature sets (agreeing with previous studies (61, 76) 

suggesting the importance of feature set selection. 

We performed optimal feature selection using our beam search algorithm, and identified feature 

sets with the best precision, recall, and harmonic mean of the two (F-score) for training and 

testing balanced sets of both classes in H1 and NPC with minor performance differences (NPC: 

Fig. 3.11, H1: Fig. 3.12 (A, B)).  Whole genome predictions (Table 3.7) were performed 

 

Fig. 3.11: CGI and non-CGI SVM model DNA methylation status predictions using 
balanced sets in NPC: GF (Genomic Features), CH (Chromatin Features), HR (Highest 

Recall Features), HP (Highest Precision Features), OFS (Highest F-Score Features), 
OFS+N (OFS+nearest neighbor), OFS+N+C (OFS+N+consensus reference methylome) 
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subsequently (Table 3.9 for detailed results). The whole genome predictions were also used to 

assess the performance of DIRECTION across varying values of BS-seq CCRs (see next 

section).  

DIRECTION more accurately predicts positive than negative methylation class (Table 3.8). This 

can be attributed to the fact the majority of mammalian methylomes are highly methylated (Fig. 

3.1), and that highly methylated CpGs often occur in long stretches that are seldom interrupted 

by lowly methylated CpGs. Since we use histone marks (which often occur in large domains) as 

input, our model will inevitably misclassify some of aforementioned lowly methylated CpGs. 

 

 

 

 

 
Fig. 3.12: Prediction metrics for DNA methylation balanced sets status prediction in H1 cells 

CGI (A) and non-CGI (B) regions. 
 

 

 

 

 

Table 3.7: Whole genome BS-seq status prediction 
evaluation in NPC dataset using SVM 
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Table 3.8: Balanced set evaluations for DNA methylation prediction 

 
 
 

Evaluation on genomic loci subsets by sampling balanced sets

Comparison of different predictive models in NPC dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.96 0.95 0.95
BS-seq )SFO FR(FRsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.95 0.96 0.95
BS-seq )SFO MVS(eerT noitacifissalCsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.94 0.95 0.94

BS-seq CGI cytosines
Ensemble model 
with SVM and 

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines SVM (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.91 0.72 0.80
BS-seq non-CGI cytosines RF (RF OFS) NPC (depth >= 20) NPC (depth >= 20) 0.89 0.74 0.81
BS-seq non-CGI cytosines Classification Tree (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.71 0.71 0.71

BS-seq non-CGI cytosines
with SVM and 
consensus 

SVM OFS + nearest neighbor 
feature) + Consensus NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparison of predictive abilities for different feature sets in NPC dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.96 0.95 0.95
BS-seq FGMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.75 0.61 0.67
BS-seq HCMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.95 0.85 0.90
BS-seq PHMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.97 0.88 0.92
BS-seq RHMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.78 0.97 0.86

BS-seq MVSsenisotyc IGC

SVM + N  = (SVM features: 
SVM OFS + nearest neighbor 
feature) NPC (depth >= 20) NPC (depth >= 20) 0.97 0.95 0.96

BS-seq CGI cytosines

with SVM and 
consensus 
reference 
methylome based 

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines SVM (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.91 0.72 0.80
BS-seq non-CGI cytosines SVM GF NPC (depth >= 20) NPC (depth >= 20) 0.70 0.67 0.68
BS-seq non-CGI cytosines SVM CH NPC (depth >= 20) NPC (depth >= 20) 0.88 0.65 0.75
BS-seq non-CGI cytosines SVM HP NPC (depth >= 20) NPC (depth >= 20) 0.94 0.60 0.73
BS-seq non-CGI cytosines SVM HR NPC (depth >= 20) NPC (depth >= 20) 0.87 0.72 0.79

BS-seq non-CGI cytosines SVM

SVM + N  = (SVM features: 
SVM OFS + nearest neighbor 
feature) NPC (depth >= 20) NPC (depth >= 20) 0.93 0.77 0.84

BS-seq non-CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparison of predictive abilities for different feature sets in H1 dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq SFOMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.96 0.96 0.96
BS-seq FGMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.72 0.65 0.68
BS-seq HCMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.95 0.91 0.93
BS-seq PHMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.96 0.96 0.96
BS-seq RHMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.76 0.99 0.86
BS-seq non-CGI cytosines SVM OFS H1 (depth >=20) H1 (depth >=20) 0.96 0.69 0.80
BS-seq non-CGI cytosines SVM GF H1 (depth >=20) H1 (depth >=20) 0.56 0.62 0.59
BS-seq non-CGI cytosines SVM CH H1 (depth >=20) H1 (depth >=20) 0.93 0.65 0.77
BS-seq non-CGI cytosines SVM HP H1 (depth >=20) H1 (depth >=20) 0.98 0.62 0.76
BS-seq non-CGI cytosines SVM HR H1 (depth >=20) H1 (depth >=20) 0.61 0.70 0.65
Comparisons of predictions involving the Consensus Reference Methylome

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq
Cytosines with disagreement 

)SFO MVS(MVS0 = dlohserht NPC (depth >= 20) NPC (depth >= 5) 0.87 0.99 0.93

BS-seq
Cytosines with disagreement 
threshold = 0

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.98 0.99 0.98

BS-seq
Cytosines with disagreement 
threshold <= 4

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.93 0.99 0.96

BS-seq
Cytosines with disagreement 
threshold <= 8

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.88 0.98 0.93

BS-seq
Cytosines with disagreement 
threshold <= 12

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.85 0.97 0.91

BS-seq CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq
All cytosines with nearest neighbor 
distance within 2 - 20 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.96 0.98 0.97

BS-seq
All cytosines with nearest neighbor 
within distance 20 - 50 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.96 0.98 0.97

BS-seq
All cytosines with  nearest neighbor 
within distance 50 - 100 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.95 0.97 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 100 - 200 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.95 0.97 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 200 - 500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.91 0.95 0.93

BS-seq
All cytosines with  nearest neighbor 
within distance 500 - 1000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.81 0.92 0.86

BS-seq
All cytosines with nearest neighbor 
within distance 1000 - 1500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.70 0.89 0.78

BS-seq
All cytosines with nearest neighbor 
within distance 1500 - 2000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.62 0.89 0.73

BS-seq
All cytosines with nearest neighbor 
within distance 2000 - 2500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.59 0.88 0.71

Prediction metrics with intermediate methylation removed

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC

H1 (depth >= 20, no 
intermediate 

methylation sites)

H1 (depth >= 20, no 
intermediate 

methylation sites) 0.97 0.97 0.97

BS-seq non-CGI cytosines SVM (SVM OFS)

H1 (depth >= 20, no 
intermediate 

methylation sites)

H1 (depth >= 20, no 
intermediate 

methylation sites) 0.96 0.72 0.82

BS-seq )SFO MVS(MVSsenisotyc IGC

NPC (depth >= 20, no 
intermediate 

methylation sites)

NPC (depth >= 20, no 
intermediate 

methylation sites) 0.97 0.97 0.97

BS-seq non-CGI cytosines SVM (SVM OFS)

NPC (depth >= 20, no 
intermediate 

methylation sites)

NPC (depth >= 20, no 
intermediate 

methylation sites) 0.94 0.77 0.85
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Evaluation on genomic loci subsets by sampling balanced sets

Comparison of different predictive models in NPC dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.96 0.95 0.95
BS-seq )SFO FR(FRsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.95 0.96 0.95
BS-seq )SFO MVS(eerT noitacifissalCsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.94 0.95 0.94

BS-seq CGI cytosines
Ensemble model 
with SVM and 

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines SVM (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.91 0.72 0.80
BS-seq non-CGI cytosines RF (RF OFS) NPC (depth >= 20) NPC (depth >= 20) 0.89 0.74 0.81
BS-seq non-CGI cytosines Classification Tree (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.71 0.71 0.71

BS-seq non-CGI cytosines
with SVM and 
consensus 

SVM OFS + nearest neighbor 
feature) + Consensus NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparison of predictive abilities for different feature sets in NPC dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.96 0.95 0.95
BS-seq FGMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.75 0.61 0.67
BS-seq HCMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.95 0.85 0.90
BS-seq PHMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.97 0.88 0.92
BS-seq RHMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.78 0.97 0.86

BS-seq MVSsenisotyc IGC

SVM + N  = (SVM features: 
SVM OFS + nearest neighbor 
feature) NPC (depth >= 20) NPC (depth >= 20) 0.97 0.95 0.96

BS-seq CGI cytosines

with SVM and 
consensus 
reference 
methylome based 

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines SVM (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.91 0.72 0.80
BS-seq non-CGI cytosines SVM GF NPC (depth >= 20) NPC (depth >= 20) 0.70 0.67 0.68
BS-seq non-CGI cytosines SVM CH NPC (depth >= 20) NPC (depth >= 20) 0.88 0.65 0.75
BS-seq non-CGI cytosines SVM HP NPC (depth >= 20) NPC (depth >= 20) 0.94 0.60 0.73
BS-seq non-CGI cytosines SVM HR NPC (depth >= 20) NPC (depth >= 20) 0.87 0.72 0.79

BS-seq non-CGI cytosines SVM

SVM + N  = (SVM features: 
SVM OFS + nearest neighbor 
feature) NPC (depth >= 20) NPC (depth >= 20) 0.93 0.77 0.84

BS-seq non-CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparison of predictive abilities for different feature sets in H1 dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq SFOMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.96 0.96 0.96
BS-seq FGMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.72 0.65 0.68
BS-seq HCMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.95 0.91 0.93
BS-seq PHMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.96 0.96 0.96
BS-seq RHMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.76 0.99 0.86
BS-seq non-CGI cytosines SVM OFS H1 (depth >=20) H1 (depth >=20) 0.96 0.69 0.80
BS-seq non-CGI cytosines SVM GF H1 (depth >=20) H1 (depth >=20) 0.56 0.62 0.59
BS-seq non-CGI cytosines SVM CH H1 (depth >=20) H1 (depth >=20) 0.93 0.65 0.77
BS-seq non-CGI cytosines SVM HP H1 (depth >=20) H1 (depth >=20) 0.98 0.62 0.76
BS-seq non-CGI cytosines SVM HR H1 (depth >=20) H1 (depth >=20) 0.61 0.70 0.65
Comparisons of predictions involving the Consensus Reference Methylome

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq
Cytosines with disagreement 

)SFO MVS(MVS0 = dlohserht NPC (depth >= 20) NPC (depth >= 5) 0.87 0.99 0.93

BS-seq
Cytosines with disagreement 
threshold = 0

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.98 0.99 0.98

BS-seq
Cytosines with disagreement 
threshold <= 4

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.93 0.99 0.96

BS-seq
Cytosines with disagreement 
threshold <= 8

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.88 0.98 0.93

BS-seq
Cytosines with disagreement 
threshold <= 12

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.85 0.97 0.91

BS-seq CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq
All cytosines with nearest neighbor 
distance within 2 - 20 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.96 0.98 0.97

BS-seq
All cytosines with nearest neighbor 
within distance 20 - 50 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.96 0.98 0.97

BS-seq
All cytosines with  nearest neighbor 
within distance 50 - 100 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.95 0.97 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 100 - 200 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.95 0.97 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 200 - 500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.91 0.95 0.93

BS-seq
All cytosines with  nearest neighbor 
within distance 500 - 1000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.81 0.92 0.86

BS-seq
All cytosines with nearest neighbor 
within distance 1000 - 1500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.70 0.89 0.78

BS-seq
All cytosines with nearest neighbor 
within distance 1500 - 2000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.62 0.89 0.73

BS-seq
All cytosines with nearest neighbor 
within distance 2000 - 2500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.59 0.88 0.71

Prediction metrics with intermediate methylation removed

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC

H1 (depth >= 20, no 
intermediate 

methylation sites)

H1 (depth >= 20, no 
intermediate 

methylation sites) 0.97 0.97 0.97

BS-seq non-CGI cytosines SVM (SVM OFS)

H1 (depth >= 20, no 
intermediate 

methylation sites)

H1 (depth >= 20, no 
intermediate 

methylation sites) 0.96 0.72 0.82

BS-seq )SFO MVS(MVSsenisotyc IGC

NPC (depth >= 20, no 
intermediate 

methylation sites)

NPC (depth >= 20, no 
intermediate 

methylation sites) 0.97 0.97 0.97

BS-seq non-CGI cytosines SVM (SVM OFS)

NPC (depth >= 20, no 
intermediate 

methylation sites)

NPC (depth >= 20, no 
intermediate 

methylation sites) 0.94 0.77 0.85
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Table 3.9: Whole genome evaluations for DNA methylation prediction 

 
 

Evaluation on genomic loci subsets

Comparison of SVM predictive model in NPC and H1 datasets

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO MVS(MVSsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43477143 3808315 1628764 220277 0.99 0.70 0.96
BS-seq A )SFO MVS(MVSsenisotyc ll H1 (depth >=20) H1 (depth >=20) 43625145 3253354 1440859 2060474 0.95 0.69 0.93
Transfer learning between datasets using SVM predictive model scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO CPN MVS(MVSsenisotyc ll NPC (depth >= 20) H1 (depth >=20) 41317737 3727930 966283 4367882 0.90 0.79 0.89
BS-seq A )SFO 1H MVS(MVSsenisotyc ll H1 (depth >=20) NPC (depth >= 20) 42286042 2999939 2437140 1411378 0.97 0.55 0.92
BS-seq A )SFO CPN MVS(MVSsenisotyc ll NPC (depth >= 20) MSC (depth >=20) 23703248 2779019 1132119 3528772 0.87 0.71 0.85

BS-seq )SFO CPN MVS(MVSsenisotyc llA NPC (depth >= 20)
IMR90 (depth >=20, no 
sex chromosomes) 24457244 2292688 7853852 3990412 0.86 0.23 0.69

Comparison of different predictive models in NPC dataset scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO MVS(MVSsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43477143 3808315 1628764 220277 0.99 0.70 0.96
BS-seq  susnesnoC + )SFO MVS dna MVS htiwsenisotyc llA NPC (depth >= 20) NPC (depth >= 20) 43516018 4072279 1364800 181402 0.99 0.75 0.97
BS-seq A )SFO FR(FRsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43409038 3928194 1508885 288382 0.99 0.72 0.96
Comparisons of predictions involving the Consensus Reference Methylome scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq
Cytosines with disagreement 

)SFO MVS(MVS0 = dlohserht NPC (depth >= 20) NPC (depth >= 5) 22892862 1724692 298403 48224 0.99 0.85 0.99

BS-seq
Cytosines with disagreement 
threshold = 0

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 22931737 1988656 34439 9349 0.99 0.98 0.99

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq
All cytosines with nearest neighbor 
distance within 2 - 20 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 29550709 14763379 564837 564881 0.98 0.96 0.98

BS-seq
All cytosines with nearest neighbor 
within distance 20 - 50 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 49875774 24255756 1059991 1063485 0.98 0.96 0.97

BS-seq
All cytosines with  nearest neighbor 
within distance 50 - 100 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 74673162 38853553 1929159 1939160 0.97 0.95 0.97

BS-seq
All cytosines with nearest neighbor 
within distance 100 - 200 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 134860662 72343025 4301602 4328057 0.97 0.94 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 200 - 500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 343604957 178749445 18992938 19013419 0.95 0.90 0.93

BS-seq
All cytosines with  nearest neighbor 
within distance 500 - 1000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 535404825 184117716 49462992 49353293 0.92 0.79 0.88

BS-seq
All cytosines with nearest neighbor 
within distance 1000 - 1500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 516462743 97126961 61567274 61614285 0.89 0.61 0.83

BS-seq
All cytosines with nearest neighbor 
within distance 1500 - 2000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 506944740 57313501 65247592 64967145 0.89 0.47 0.81

BS-seq
All cytosines with nearest neighbor 
within distance 2000 - 2500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 502844979 40255457 65773735 65603667 0.88 0.38 0.81

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq All cytosines
Nearest neighbor 
status (N1) Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92474170 9903311 2108509 2075216 0.98 0.82 0.96

BS-seq All cytosines

2nd Nearest 
neighbor status 
(N2) 2nd Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92279738 9765000 2246820 2269648 0.98 0.81 0.96

BS-seq All cytosines

3rd Nearest 
neighbor status 
(N3) 3rd Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92127642 9647770 2364050 2421744 0.97 0.80 0.96

BS-seq All cytosines

Vote among 3 
Nearest neighbor 
status (V)

Vote among 3 Nearest 
neighbor status NPC (depth >= 5) NPC (depth >= 5) 46819091 4897408 1108502 455602 0.99 0.82 0.97

Comparisons of predictions in H1 and NPC for different ranges of BS-seq CCRs scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on Accuracy

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0,0.2)

NPC (depth >= 20, 
methylation CCR 
range [0,0.2) 0.81

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.2,0.4)

NPC (depth >= 20, 
methylation CCR 
range [0.2,0.4) 0.61

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.4,0.6)

NPC (depth >= 20, 
methylation CCR 
range [0.4,0.6) 0.54

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.6,0.8)

NPC (depth >= 20, 
methylation CCR 
range [0.6,0.8) 0.92

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.8,1.0]

NPC (depth >= 20, 
methylation CCR 
range [0.8,1.0] 0.99

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0,0.2)

H1 (depth >= 20, 
methylation CCR 
range [0,0.2) 0.72

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.2,0.4)

H1 (depth >= 20, 
methylation CCR 
range [0.2,0.4) 0.69

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.4,0.6)

H1 (depth >= 20, 
methylation CCR 
range [0.4,0.6) 0.57

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.6,0.8)

H1 (depth >= 20, 
methylation CCR 
range [0.6,0.8) 0.96

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.8,1.0]

H1 (depth >= 20, 
methylation CCR 
range [0.8,1.0] 0.97
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Evaluation on genomic loci subsets

Comparison of SVM predictive model in NPC and H1 datasets

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO MVS(MVSsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43477143 3808315 1628764 220277 0.99 0.70 0.96
BS-seq A )SFO MVS(MVSsenisotyc ll H1 (depth >=20) H1 (depth >=20) 43625145 3253354 1440859 2060474 0.95 0.69 0.93
Transfer learning between datasets using SVM predictive model scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO CPN MVS(MVSsenisotyc ll NPC (depth >= 20) H1 (depth >=20) 41317737 3727930 966283 4367882 0.90 0.79 0.89
BS-seq A )SFO 1H MVS(MVSsenisotyc ll H1 (depth >=20) NPC (depth >= 20) 42286042 2999939 2437140 1411378 0.97 0.55 0.92
BS-seq A )SFO CPN MVS(MVSsenisotyc ll NPC (depth >= 20) MSC (depth >=20) 23703248 2779019 1132119 3528772 0.87 0.71 0.85

BS-seq )SFO CPN MVS(MVSsenisotyc llA NPC (depth >= 20)
IMR90 (depth >=20, no 
sex chromosomes) 24457244 2292688 7853852 3990412 0.86 0.23 0.69

Comparison of different predictive models in NPC dataset scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO MVS(MVSsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43477143 3808315 1628764 220277 0.99 0.70 0.96
BS-seq  susnesnoC + )SFO MVS dna MVS htiwsenisotyc llA NPC (depth >= 20) NPC (depth >= 20) 43516018 4072279 1364800 181402 0.99 0.75 0.97
BS-seq A )SFO FR(FRsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43409038 3928194 1508885 288382 0.99 0.72 0.96
Comparisons of predictions involving the Consensus Reference Methylome scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq
Cytosines with disagreement 

)SFO MVS(MVS0 = dlohserht NPC (depth >= 20) NPC (depth >= 5) 22892862 1724692 298403 48224 0.99 0.85 0.99

BS-seq
Cytosines with disagreement 
threshold = 0

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 22931737 1988656 34439 9349 0.99 0.98 0.99

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq
All cytosines with nearest neighbor 
distance within 2 - 20 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 29550709 14763379 564837 564881 0.98 0.96 0.98

BS-seq
All cytosines with nearest neighbor 
within distance 20 - 50 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 49875774 24255756 1059991 1063485 0.98 0.96 0.97

BS-seq
All cytosines with  nearest neighbor 
within distance 50 - 100 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 74673162 38853553 1929159 1939160 0.97 0.95 0.97

BS-seq
All cytosines with nearest neighbor 
within distance 100 - 200 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 134860662 72343025 4301602 4328057 0.97 0.94 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 200 - 500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 343604957 178749445 18992938 19013419 0.95 0.90 0.93

BS-seq
All cytosines with  nearest neighbor 
within distance 500 - 1000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 535404825 184117716 49462992 49353293 0.92 0.79 0.88

BS-seq
All cytosines with nearest neighbor 
within distance 1000 - 1500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 516462743 97126961 61567274 61614285 0.89 0.61 0.83

BS-seq
All cytosines with nearest neighbor 
within distance 1500 - 2000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 506944740 57313501 65247592 64967145 0.89 0.47 0.81

BS-seq
All cytosines with nearest neighbor 
within distance 2000 - 2500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 502844979 40255457 65773735 65603667 0.88 0.38 0.81

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq All cytosines
Nearest neighbor 
status (N1) Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92474170 9903311 2108509 2075216 0.98 0.82 0.96

BS-seq All cytosines

2nd Nearest 
neighbor status 
(N2) 2nd Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92279738 9765000 2246820 2269648 0.98 0.81 0.96

BS-seq All cytosines

3rd Nearest 
neighbor status 
(N3) 3rd Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92127642 9647770 2364050 2421744 0.97 0.80 0.96

BS-seq All cytosines

Vote among 3 
Nearest neighbor 
status (V)

Vote among 3 Nearest 
neighbor status NPC (depth >= 5) NPC (depth >= 5) 46819091 4897408 1108502 455602 0.99 0.82 0.97

Comparisons of predictions in H1 and NPC for different ranges of BS-seq CCRs scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on Accuracy

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0,0.2)

NPC (depth >= 20, 
methylation CCR 
range [0,0.2) 0.81

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.2,0.4)

NPC (depth >= 20, 
methylation CCR 
range [0.2,0.4) 0.61

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.4,0.6)

NPC (depth >= 20, 
methylation CCR 
range [0.4,0.6) 0.54

BS-seq )SFO FR(FRsenisotyc llA
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Performance of Direction for different BS-seq CCR values: We analyzed the results for whole 

methylome predictions in H1 and NPC by binning all high-coverage cytosines (sequencing depth 

≥20) in the BS-seq datasets based on their CCRs. We created 5 bins, based on intervals of 0.2 

from 0 (completely unmethylated) to 1 (completely methylated) based on the CCR. We find that 

for the SVM model (tested on the H1 dataset) and the RF model (tested on the NPC dataset), our 

accuracy for the extremal values of BS-seq CCRs are accurate (Fig. 3.13 (A, B) respectively, 

Table 3.9), while the performance is limited in the interval [0.4, 0.6) corresponding to 

intermediate methylation. This suggests that cytosines in these regions correspond to data points 

near the classification boundary, and are prone to be misclassified due to their proximity to the 

boundary. 

 

 However, intermediate methylation is relatively uncommon in in vitro cell lines due to their 

homogeneity, and in mammalian systems (H1 and NPC: <3%, (102)). Thus, we find that the 

lower predictive ability of DIRECTION in cytosines with intermediate methylation only has a 

modest effect on the overall prediction metric by contrasting precision and recall in balanced sets 

 
 

Fig. 3.13: Whole genome methylation status prediction accuracy obtained by binning the whole 
genome based on the BS-seq level in H1 (A), and NPC (B) 
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sampled from the methylome by including or withholding cytosines with intermediate 

methylation (Fig. 3.14 (A, B)). It is important to note that such intermediate methylation is 

scarce in mammalian model systems (125), even in heterogeneous tissues like brain (101). For 

datasets with significantly higher amounts of intermediate methylation, we recommend using 

regression-based approaches (76). 

 

3.5.2 Comparison with other DNA methylation prediction tools 

Different methylation prediction algorithms work at differing genomic resolutions, on different 

datasets, using different predictor variables, to predict different response variables; making it 

challenging to set up unbiased comparisons between models. However, based on reported 

performances, DIRECTION is comparable to state-of-the-art high-resolution methylation 

prediction algorithms (Whole-genome accuracy: DIRECTION: 0.96 versus (76): 0.91, Table 

1.1). Also, under the constraint of the same predictor variable set, DIRECTION outperformed 

the well-established inbuilt MATLAB classification tree function (Fig. 3.15). 

 
 

Fig. 3.14: Balanced sets predictions in H1 and NPC based on exclusion and inclusion of 
intermediate methylation [0.4,0.6) in CGI (A), and non-CGI (B). 
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3.5.3 OFS for DNA methylation prediction 

The most discriminative features, contributing to high recall and precision, in DNA methylation 

predictions in NPC CGI regions were chromatin “states” inferred by the ChromHMM model 

(57) and H2AK5ac histone modification (Fig. 3.16 and Table 3.10). The underlying biological 

interpretation of our findings is supported by published literature as H2AK5ac histone 

modification was shown to be enriched in regions of euchromatin and low methylation (126). 

Also, the OFS for predicting DNA methylation in NPC CGI regions has only 5 features (Fig. 

3.16), including transcription activation (H3K4me3, H2AK5ac) and repression (H3K9me3) 

associated histone marks, and DNase hypersensitivity which is known to be discriminative with 

respect to the underlying DNA methylation (127).  

 
 

Fig. 3.15: Comparison of DIRECTION and classification tree for NPC methylation 
prediction. 
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Contrasting CGI to non-CGI OFSs, we find several histone features (H3K27ac, H3K27me3, 

H3K36me3, and H3K4me1) in the non-CGI, as opposed to H3K9me3 in the CGI. The non-CGI 

OFS also contains the Repeat feature, which is expected since repeat-containing retrotransposons 

in the human genome are silenced by methylation (128). The major changes in predictive ability 

are depicted by significantly different recall (Fig. 3.11) and AUC (Fig. 3.17 (A, B). 

 
 

Fig. 3.16: Assorted feature sets generated by beam search by using 
various priority evaluation metrics (default F-score for OFS) for DNA 

methylation status prediction in NPC 

 
 

Fig. 3.17: AUC curves for methylation status prediction in NPC CGI (A) and non-CGI 
(B). 
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We discovered that DNase and histone state features impacted the recall in CGI regions 

significantly, whereas high precision values were predominantly governed by H2AK5ac histone 

modification, known to be associated with regions of active chromatin and insulator region 

shores (120). Similarly, if any of the aforementioned features or the clusters they belong to are 

removed, the DNA methylation prediction in non-CGI regions drops (Fig. 3.18 (A, B)), 

suggesting similar informational content of predictors in CGI and non-CGI OFSs. In summary, a 

small set of features (H3K4me3; either DNase or Histone states; and H2AK5ac, along with 

Repeats for Non-CGI regions) can near optimally predict methylation status at single nucleotide 

resolution. Many aspects of our learned models are consistent with previous findings: a 

significant gain in prediction accuracy when highly discriminative epigenomic features are 

included (Fig. 3.17 and Table 3.10) (77), and significantly improved prediction performance in 

CGI regions with respect to non-CGI regions in both NPC and H1 cell line. 

 
 

Fig. 3.18: Hierarchical clustering of features in OFS for predicting methylation status in NPC 
CGI (A) and non-CGI (B) regions, and corresponding changes in precision and recall with 

respect to OFS. 
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Table 3.10: Feature sets for methylation status prediction. (A) Feature sets for 
methylation status prediction using SVM in H1 CGI and non-CGI datasets. (B) OFS for 

methylation status prediction using RF in NPC CGI and non-CGI datasets. 
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Characterization of feature subset contributions to predictive ability of the OFS: While creating 

the IFSs eliminated highly correlated features, OFSs identified by the beam search algorithm can 

still contain somewhat correlated, partially redundant features. For performance issues, we want 

to have some degree of redundancy in the OFS to make the prediction robust, but on the other 

hand we want to also assess the contribution to the predictive ability by subsets of features in the 

OFS. We thus performed the following assessment. We performed a standardization (Z-

transformation (121)) across all features and hierarchically clustered them to identify similarity 

across features. Based on the feature clustering in the OFS, we left out individual features and 

feature subsets according to the nodes of the dendrogram, and retrained our classifier. The 

difference in performance metrics with respect to the OFS provides a clear indication of both 

feature redundancy and contributions of subsets of features to the OFS prediction metric.  

While max-margin models do not explicitly posses a likelihood-based inferential framework to 

directly apply information theoretic approaches to sparse model selection like the Aikake 

Information Criterion (121), our approach provides an intuitive platform to identify smaller 

subsets of the OFS having comparable predictive power, and also identifies subsets of features 

that have major contributions to the precision and recall (Fig. 3.18).  

The notion behind identifying a “minimal” feature set was based on the notion of several 

correlated input features potentially being part of the OFS, each only contributing a limited 

amount of predictive power to the overall OFS. By clustering the individual features in the OFS 

and eliminating them one at a time, we identified the effect each (or a subset) possesses on the 

predictive power, in a manner agnostic to the classification algorithm. The tradeoff between 
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obtaining a smaller feature set versus improving classification performance metrics can thus be 

clearly identified, allowing the user to decide on a choice of the input feature set for related 

experiments.  

3.5.4 Using neighboring CpG sites as predictor variables 

For improving imputation, the methylation status of the nearest neighboring CpG site within 

500bp was used to create an input feature. Our feature engineering analyses (See Methods 

section, Fig. 3.8) suggests that the predictive quality of the feature significantly decreases after 

500bp (a distance corresponding to the average size of CGIs (129)), in agreement with findings 

that CGIs are typically consistently methylated or demethylated. We tested the ability of this 

feature to contribute to predictions in CGI and non-CGI SVM models by adding it to the beam 

search-identified OFS, followed by retraining the SVMs on balanced sets. It makes insignificant 

impact on the CGI SVM (where precision and recall are > 0.95) but strikingly improves recall of 

the non-CGI SVM from 0.72 to 0.77 (Fig 3.11), suggesting that even in non CpG-rich regions, 

spatial contiguity of methylation status is commonplace.  

3.5.5 Summary and Discussion 

Here we introduced DIRECTION, a state-of-the-art machine learning toolkit that performs DNA 

methylation and hydroxymethylation predictions at single nucleotide resolution in mammalian 

genomes. DIRECTION implementation is predicated upon 2 learning algorithms: SVM and RF, 

which characteristics are detailed in the methods section of this chapter. We provided an 

extensive discussion why classification based predictive models are better suited than regression 

based models to perform such predictions. We introduced all input variables we used to perform 
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such predictions, as well as the beam search: a stochastic feature selection procedure that 

identifies most important predictor variables. We created an additional predictor variable based 

on the methylation status of neighboring CpG sites, and demonstrated how its addition to the 

input feature space affects prediction rate. Also, we utilized the consensus reference methylome 

to predict DNA methylation status of invariant CpGs (see chapter 2). Based on the consensus 

reference methylome we created an additional feature that splits the methylome into its invariant 

and variant portion to improve predictions on balanced sets in NPC. Finally, in order to show 

that obtained feature sets are somewhat conserved across different cell lines, we performed 

transfer learning between H1, NPC and mesenchymal stem cells (MSC) (See chapter 5 Transfer 

learning between H1 and NPC cell lines). 

Both BS-seq (36) and TAB-seq (130) protocols have reduced representation versions where 

assays query a limited set of CpGs. DIRECTION is ideally suited to impute methylation or 

hydroxymethylation status in such reduced representation datasets (as well as existing low 

coverage whole genome datasets), being able to make use of relevant genome-wide traits (based 

on genomic annotation, DNA sequence and relevant publicly available genome-wide assays) to 

create whole-genome scale datasets.  

Widespread use of epigenome-querying assays like BS-seq naturally leads to a discussion of 

relevance of in silico epigenome prediction. However, for an in vivo sourced sample with a 

limited DNA yield (like clinical samples), only a few assays can be performed, necessitating the 

in silico prediction of some assays based on the outcome of others. Secondly, paralleling the rise 

of whole genome assays, are reduced representation BS-seq (36) and TAB-seq (130) assays, for 
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which in silico prediction is especially relevant. Recent developments in single cell technologies 

allow BS-seq assays to be performed on individual cells (131) with some studies contemplating 

single-cell TAB-seq as future work (132). Given the destructive nature of next generation 

sequencing, in silico prediction tools can be potentially useful for using single-cell methylation 

data and underlying genomic sequence for imputing methylation status or to make a model-based 

prediction for 5-hmC status (for 5-hmC status prediction see Chapter 4).  
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4.1 Prior Publication 

Milos Pavlovic (M.P.) performed the majority of experiments, and Pradipta Ray (P.R.) designed 

the majority of experiments. M.P. and P.R. wrote the manuscript. Min Chen (M.C.) advised M.P. 

and Michael Zhang (M.Q.Z.) supervised the project. This chapter covers various aspects of 5-

hmC status prediction, such as tractability of 5-hmC modifications in mammalian genomes, 

whole-genome 5-hmC status imputation, whole-genome and balanced set model-based 

prediction results in NPC and H1 cell lines, as well as the OFS selection using DIRECTION. Per 

the policy of OUP Bioinformatics, the publication of material in a PhD thesis is permitted with 

the publication of a peer-reviewed manuscript in their journal. The original manuscript (1) 

“DIRECTION: A machine learning framework for predicting and charactering DNA methylation 

and hydroxymethylation in mammalian genomes” by Milos Pavlovic, Pradipta Ray, Kristina 

Pavlovic, Aaron Kotamarti, Min Chen and Michael Q. Zhang, published in 2017, is reproduced 

by permission of Oxford University Press and appears online at the following web address: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. 

Supplementary information is available online at: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. The 

main text is partially altered compared to the online version of the manuscript, and figures and 

tables do not chronologically correspond to the online manuscript numbering. 

4.2 Abstract 

Here we performed a pioneering work of predicting 5-hmC modification status in silico using 

DIRECTION. We obtained high whole-genome accuracy, identified most important predictor 
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variables, and paved the way for large-scale reconstruction of hydroxymethylation maps in 

mammalian model systems. We found that the OFS harboring accurate 5-hmC predictions is 

comprised of enhancer-like features, most notably H3K27ac and H3K4me1 histone 

modifications, and therefore 5-hmC in enhancer regions was considered as a separate prediction 

paradigm. Based on such accurate predictions we identified enhancer regions, which exhibit 

differential hydroxymethylation and potentially serve as cis-regulatory regions of proximal 

protein coding genes. We performed whole hydroxymethylome reconstruction in small TAB-seq 

datasets and built an in silico platform for high-throughput hypothesis testing based on such 

predictions. Finally, we predicted 5-hmC status in the regions containing high BS-seq coverage, 

to show that 5-hmC status can be accurately de novo predicted based on BS-seq data and a few 

other available features. 

4.3 Introduction 

BS-seq is not able to differentiate between 5-mC and 5-hmC modifications, and therefore the 

overall degree of methylation represents the summation of the two. Despite the availability of 

high-throughput assays for querying DNA hydroxymethylation, there only exists a handful of 

publicly available TAB-seq or oxBS-seq datasets, and performing whole-genome BS-seq, oxBS-

seq or TAB-seq requires significant expenditure and skilled labor. These arguments lend weight 

to predicting genome-wide 5-hmC modification in silico. Additionally, CpG dinucleotides may 

be asymmetrically modified for 5-hmC (114), therefore we used DIRECTION to solely predict 

5-hmC status at single nucleotide resolution, as opposed to CpG dinucleotide.  

Since 5-hmC is known to closely associate with enhancers and thereby affect gene expression of 
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proximal genes (116), we considered 5-hmC status predictions in enhancer regions of the 

genome as a separate prediction paradigm (see Results).  

4.4 Methods 

5-hmC is an intermediate molecular state in the demethylation pathway, and TAB-seq CCRs 

tend to be significantly lower than BS-seq CCRs (see Chapter 3 Methods for BS-seq CCR). For 

analyzing 5-hmC levels, a naive analysis yields a distribution with maximal frequency at the 

CCR of 0, and no other observable secondary modes in the distribution (Fig. 4.1). However, it is 

well characterized that while most CpG sites have a CCR of 0, statistically significant 

hydroxymethylated CpG sites have a CCR frequency distribution with a mode of 0.18 (Fig. 4.2) 

(114). 

 
 
Fig. 4.1: Empirical distributions of 5-hmC levels in NPC (A) and H1 (B) cell lines. 
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 Hence, given the unimodal distribution of CCRs generated by TAB-seq, in order to label 

individual cytosines into significantly hydroxymethylated versus non-hydroxymethylated 

classes, we choose a threshold of 0.09, equidistant from 0 and 0.18. Accordingly, as with 5-mC 

we also model 5-hmC prediction as a binary classification problem. 

 

4.4.1 Tractability of 5-hmC modification and feasibility of 5-hmC status prediction 

Strong preference of 5-hmC for open chromatin regions, as well as its positive correlation with 

gene expression and bias towards exon inclusion were previously documented in literature (133, 

134), suggesting a functional role and consistency of 5-hmC modifications across biological 

replicates. 5-hmC modifications have also been shown to be temporally stable (21) further 

suggesting a strong signal to noise ratio in hydroxymethylation assays.  

 
Fig. 4.2: Distribution of 5-hmC levels in the set of CpG sites identified as 

significantly hydroxymethylated in Yu et al. 2012 (114) 
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However, since there is no in silico precedent performing 5-hmC predictions we first needed to 

verify that 5-hmC is sufficiently tractable in mammalian genomes for the purpose of performing 

such predictions. Therefore, at the outset, we performed pairwise comparison of 

hydroxymethylation levels across biological replicates in NPC, using binary discretization of 

hydroxymethylation levels. TAB-seq CCR correlation across biological replicates is less faithful 

than BS-seq by exhibiting some stochasticity in the signal. However, we obtain a concordance 

rate (fraction of cytosines where 5-hmC status between replicates agree) of 82% (in CpG sites 

with coverage >60) for 5-hmC status between biological replicates in NPC (Fig. 4.3).  

For practical purposes, this may be considered as an approximate upper bound of possible 

predictive accuracy when evaluating 5-hmC status predictions. Thus, we approach 

hydroxymethylation prediction as a binary classification problem for the purpose of 

reconstructing a discretized approximation of TAB-seq CCRs at individual cytosines. 

 
Fig. 4.3: Concordance rate between TAB-seq NPC replicates as a function of minimum 

sequencing depth of mapping at either replicate 
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Further we looked at consistency of our BS-seq and TAB-seq datasets in NPC. MLML (31) is a 

method that uses read counts from data obtained by TAB-seq (or oxBS- seq), and BS-seq to 

estimate CCRs for the 5-mC and 5-hmC modifications jointly. It identifies indices exhibiting 

“overshoot” where the sum of estimated CCRs for 5-mC and 5-hmC sum to greater than 1. Upon 

running MLML on our BS-seq and TAB-seq datasets in NPC we obtained the maximum 

likelihood distribution of 5-mC levels (Fig. 4.4) that strongly resembled the one of BS-seq levels 

(Fig. 3.1). Additionally, out of the 52,531,101 CpG sites being analyzed (sites without coverage 

in either of the experiments are discarded) the number of overshoot indices was only 3,186 or 

0.006% in NPC, suggesting that our BS-seq and TAB-seq datasets show good consistency 

between experiments. Most of the overshoot indices contained very low coverage (2,654 CpG 

sites) in both BS-seq and TAB- seq experiments and were systematically discarded prior to 

training our model. These evidences lend weight to the tractability of predicting 5-hmC 

modifications. 

 
 

Fig. 4.4: Inferred 5-mC level distribution in NPC by the tool MLML  (31) by 
jointly analyzing BS-seq and TAB- seq CCRs in NPC. 
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4.4.2 Feature engineering and feature selection 

The same set of features that was used to predict DNA methylation status in H1 and NPC cell 

lines (listed in Table 3.3) was employed to predict 5-hmC status, including the following 

exceptions: a) Bisulfite level feature was added for the purpose of training and testing the 

predictive model. b) CpG island feature was ignored (5-hmC does not exhibit preference 

between CpG and non-CpG island regions). c) Enhancer feature (binary feature) was added to 

the model, as 5-hmC is known to closely associate with enhancers (116). The feature selection 

procedure to identify OFS for 5-hmC status predictions was conducted in the same fashion as 

with DNA methylation status predictions (see Methods Chapter 3). 

Due to a scarcity of publicly available TAB-seq datasets we were not in position to collect a 

sufficiently large set of reference hydroxymethylomes. Conversely, we obtained a plethora of 

publicly available BS–seq datasets from Roadmap Epigenome Consortium (98), which we used 

to create the consensus reference methylome (for consensus reference methylome see Chapter 2). 

Therefore, this dictionary lookup based feature was not optionally used for 5-hmC status 

prediction. 

Analogous to using neighboring CpG sites methylation status as predictor variables (see Chapter 

3 Methods) neighboring 5-hmC status information was used to predict 5-hmC status of a CpG 

site in question. The default hydroxymethylation level value of 0.09 was used as threshold for 

separating classes of highly and lowly hydroxymethylated CpGs (for details see Results). 
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4.5 Results  

Tab-seq datasets for H1 and NPC cell lines were obtained under the following accession 

numbers: H1: (GEO GSE36173) and NPC (GEO GSM882245, GSM1463129), while the 

BISMARK (43) was used for mapping and obtaining the CCRs. Scripts that were used to 

calculate the reads sequencing depth and hydroxymethylation levels were coverage2cytosine and 

bismark methylation extractor. The final output to the .bed format was performed by the 

bismark2bedGraph. This was performed to generate H1 and NPC TAB-seq CCRs. These cell 

types were chosen due to availability of BS-seq and TAB-seq data, and since previous studies 

performing functional enrichment and analysis of 5-hmC in human and mouse ESCs  (17, 114, 

116, 117) and neural progenitors (118-120) especially in neural development.  

4.5.1 5-hmC status prediction 

We performed 5-hmC status prediction using features from the initial feature set for methylation 

status prediction model, using methylation level as an additional feature (Table 4.3). In order to 

identify the most discriminative features for 5-hmC status prediction, we ran our beam search 

algorithm and obtained discriminative feature sets.  

 
 

Fig. 4.5: 5-hmC status prediction on balanced sets using SVM in NPC (A) and H1 (B) 
(Table 4.3 for results). 
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Based on the experimental design previously outlined, the performance of the OFS was 

compared against other biologically and statistically meaningful feature sets (NPC: Fig. 4.5 (A), 

F- score 0.78; H1: Fig. 4.5 (B), F-score 0.7). The most distinguishing characteristic of assorted 5-

hmC feature sets in both cell types was the profound presence of active enhancer histone 

modifications H3K4me1 and H3K27ac (135) DNase and other genomic derived features 

including CpG content, and Alu repeats (Table 4.1).  

Insightfully, a single addition to the OFS when our predictor was constrained to the enhancer 

regions was H3K27ac, suggesting biological interpretability of our results. The absence of 

H3K27ac from the 5-hmC OFS (when the predictor is not constrained to enhancer regions) can 

be explained by the presence of another enhancer chromatin mark (H3K4me1) in the OFS, and  

Table 4.1: Feature sets for 5-hmC status prediction in NPC, NPC enhancers, and H1 using 
SVMmodel (A) and in NPC dataset using RF model (B). 

 

(A) Biologically	meaningful	feature	sets	for	5-hmC	ƐƚaƚƵƐ
ƉƌĞĚŝĐƚŝŽŶ on	balanced	sets	using	SVM	

NPC	enhancers	 NPC	 H1	
OFS	 HR	 HP	 CH	 GF	 OFS	 HR	 HP	 CH	 GF	 OFS	 HR	 HP	 CH	 GF	

Alu_repeat	 ü ü ü ü ü ü ü ü 
BS-seq_CCR	 ü ü ü ü ü ü ü 

Bp_to_CGI	 ü ü ü 
CG_sat_50bp	 ü ü ü ü ü ü ü ü ü 

CpG_sat_50bp	 ü ü ü ü 
CpG_to_CGI	 ü ü ü ü 

DNase	 ü ü ü ü 

G_sat_50bp	 ü ü ü ü ü 
H2AK5ac	
H3K27ac	 ü ü ü ü 
H3K27me3	 ü ü ü 
H3K36me3	 ü ü ü ü ü 

H3K4me1	 ü ü ü ü ü ü ü ü 
H3K4me3	 ü ü ü 

H3K79me1	
H3K9ac	
H3K9me3	 ü ü ü ü 

Histone_states	 ü ü ü 
Repeats	 ü ü ü ü ü ü ü 

CpG_Island	 ü 

CTCF	 ü ü ü

(B) Random Forest
2)6 IRU NPC ��KP&

VWDWXV SUHGLFWLRQ

Features
Alu_repeat	
Bp_to_CGI	

CG_sat_50bp	 ü 

CpG_sat_50bp	 ü 
CpG_to_CGI	 ü 

DNase	 ü 

G_sat_50bp	
H2AK5ac	
H3K27ac	 ü 
H3K27me3	 ü 
H3K36me3	
H3K4me1	 ü 
H3K4me3	 ü 

H3K79me1	 ü 
H3K9ac	
H3K9me3	 ü 

Histone_states	 ü 
Repeats	

BS-seq_CCR	 ü 
CpG_Island	
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the relatively small size of enhancer regions compared to the non-enhancer portion of the 

genome.  

Unsurprisingly, we find the H3K4me1 enhancer mark being one of the most promising 

predictive features due to its presence in both the high recall and optimal feature sets. Significant 

depletion of 5-hmC in H3K9me3 rich heterochromatin regions, and its positive correlation with 

H3K4me3 active histone modification (136), clearly designates these chromatin marks as 

suitable candidates for the OFS. 

In order to show that the obtained OFS is discriminative towards 5-hmC signal, we predicted 5-

hmC status across various TAB-seq level thresholds and noticed that the prediction metric grows 

slowly with the increase in threshold value (Fig. 4.6), and shows consistent AUC for a range of 

thresholds (Fig. 4.7 (A, B)).  

 

 
Fig. 4.6: Precision/Recall plot for 5-hmC status predictions in NPC using various 5-hmC level 
thresholds for SVMs. Threshold of 0.09 is marked red to symbolize the default value that was 

used in this paper. 
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We performed whole-genome 5-hmC predictions in NPC and H1 and obtained 0.82 and 0.75 

accuracy respectively (NPC: Table 4.2 (A); H1: Table 4.2 (B)). These results together suggest 

that 5-hmC status can be fairly accurately reconstructed in our datasets. Lower prediction 

accuracy in H1 can putatively be attributed to a lower coverage depth in the training data.  

Table 4.2: Whole genome 5-hmC status prediction evaluation metrics in NPC (A) and H1 (B). 
 

 
 
 

 
 

Fig. 4.7: ROC curves for 5-hmC status predictions in NPC RF model. (A) ROC curve for 5-hmC 
status predictions in NPC RF model. (B) ROC curve for 5-hmC status predictions using threshold 

of 0.25 in NPC RF model. 
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We performed 5-hmC predictions restricted to cytosines with high BS-seq CCRs, yielding 

comparable results to our previous analyses, implying that the numerous public BS-seq datasets 

together with additional input features can be used to predict 5-hmC maps (see BS-seq driven 5-

hmC status identification). For 5-hmC transfer learning in H1 and NPC see Chapter 5. 

BS-seq driven 5-hmC status identification: There is a vast number of BS-seq datasets which are 

publicly accessible, and only a handful of these have an accompanying TAB-seq counterpart. We 

used the NPC BS-seq and TAB-seq datasets to train and test a 5-hmC status prediction classifier 

using only CpG sites where BS-seq CCR could be reliably estimated (coverage ≥ 20). We trained 

our model using the 5-hmC OFS, where the BS-seq level feature was excluded. Such a classifier 

performs comparably to our previously reported classifiers, achieving a precision of 0.74, recall 

of 0.8 and an F-score of 0.77 (Table 4.3). Hence, we show that our method has the capability of 

performing de novo 5-hmC modifications map reconstruction based on the BS-seq dataset and a 

handful of other features. Such an approach trades off the size and diversity of the training data 

for a smaller, higher quality training set, and can likely be useful in reconstructing 5-hmC maps 

of experimental conditions with published BS-seq data.  
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Table 4.3: Balanced set and whole genome evaluations for 5-hmC status predictions. 
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4.5.2 OFS feature contributions: We constructed a dendrogram (Fig. 4.8 for the 5-hmC status 

prediction OFS, and eliminated subsets of features (see Methods Chapter 3)). 

The most notable changes to recall were observed upon elimination of the BS-seq CCR feature, 

while precision was affected by H3K4me1 and GC saturation removal, signifying the importance 

of these features to the prediction rate. Only four features (BS-seq CCR, GC saturation, DNase, 

and Alu) are sufficient to capture the majority of TAB-seq signal by garnering 0.75 F-score in 

NPC (Fig. 4.8). Several of these were identified in the literature to be enriched in regions of high 

hydroxymethylation (114). We show our 5-hmC prediction at work in two genomic regions 

proximal to PCDH17 and MEIS2 genes (Fig. 4.9, Fig. 4.10), previously implicated in synapse 

formation and interneuron development (137, 138). 

 

 

Fig. 4.8: OFS feature clustering. At each node, leaves (features) under it were removed 
from OFS to create new feature sets. For these, feature inclusion (starred) and resultant 
change in precision/recall w.r.t. OFS (by reclassifying dataset) characterize features’ 

contribution to classification quality 
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Fig. 4.9: Visualization of 5-hmC status prediction and discriminative input features in PCDH17 
 
 
 
 
 
 
 

 
 

Fig. 4.10: Visualization of 5-hmC status prediction and discriminative input features in MEIS2 
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4.5.3 Overall 5-hmC prediction in enhancer regions  

H3K27ac raw SRA file (accession GSM818031) was used for the purpose of identifying 

enhancers in NPC. Raw SRA files were mapped to the reference human hg19 genome using 

Bowtie2 to create the bam file. The obtained bam file was used as an input to the enhancer-

calling tool ROSE (139). Thus, since 5-hmC is differentially enriched in functionally important 

enhancers (116), we trained and tested our model by restricting it only to NPC enhancers, 

obtaining 0.77 precision, 0.82 recall (Fig. 4.11 (A)) and a high AUC (Fig. 4.11 (B)).  

The active enhancer mark H3K27ac was present in the OFS (Table 4.1) suggesting a correlation 

of 5-hmC with enhancer activation. A significant improvement in the maximum precision feature 

set (HP) was found in models constrained to enhancers (Fig. 4.12), due to 5-hmC overabundance 

in enhancers. 

 

Fig. 4.11: 5-hmC status prediction in enhancer regions using SVM and RF 
models. (A) 5-hmC status prediction in NPC enhancers using SVM model. 

(B) ROC curve for 5-hmC predictions in enhancer regions in NPC RF model. 
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4.5.4 5-hmC prediction in small TAB-seq datasets 

BS-seq and TAB-seq datasets require high sequencing depth to reliably determine CpG 

methylation and 5-hmC status across the genome, but as coverage decreases in smaller datasets, 

the ability to do so is diminished. The feasibility of training a model (like SVM) does not 

decrease proportionally to dataset size, as we can train SVMs with as few as 2000-2500 training 

 

Fig. 4.12: Precision/Recall plot for 5-hmC status predictions in NPC in 
enhancer regions using balanced sets for SVM. 

 

 

 

Fig. 4.13: Sequencing depth in NPC enhancers. (A) Sequencing depth across cytosines in 
enhancers after downsampling. B) Log-log linear regression fit (mapped read count vs. 
sequencing depth) in NPC enhancers 
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examples (Fig. 3.2). We downsampled one of our NPC datasets to 12% (commensurate with 

RRBS-seq dataset sizes (35)) of the original number of reads, and predicted the corresponding 

sequencing depth in enhancer CpG cytosines (Fig. 4.13 (A), 4.13 (B)). Finally, we find sufficient 

training examples (>2000) at resolutions of both whole enhancers and individual cytosines with 

sequencing depths suited for reliable CCR estimation in training SVMs, suggesting feasibility of 

robustly training 5-hmC status prediction models in enhancers for reduced representation TAB-

seq data (see 5-hmC prediction feasibility in enhancers for reduced representation datasets).  

5-hmC prediction feasibility in enhancers for reduced representation datasets: Simulations were 

performed in enhancer regions to create downsampled TAB-seq datasets. The overall number of 

TAB-seq reads (approx. 84,000,000) were downsampled to different downsampling levels (75, 

50, 25, 12, 5, 1 percentage of original-not all shown) (Fig. 4.13 (A)). A linear regression was 

used to fit the number of reads mapping to the enhancer to the sum of sequencing depth (Fig. 

4.13 (B)) across all cytosines in it. 25 downsampling operations for each downsampling level 

were performed, and the obtained variance was low as shown in the box plot (Fig. 4.13 (A)). The 

histogram was divided into 3 categories: low, medium and high sequencing depth. Enhancers 

with the sum of cytosine sequencing depths > 60 were regarded as high, based on the Fisher test 

obtained p-value < 0.05 for discriminating against high and low hydroxymethylation coverage 

(Table 3.2).  

As shown in Fig. 4.13 (A), downsampling to 5% of the total number of reads still leaves more 

than 10,000 enhancer regions with the sum of cytosine sequencing depths (≥ 60) and over 2,000 

cytosines with individual sequencing depths ≥ 20 (corresponding to our sequencing depth levels 
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required for assigning class labels: details on filtering training data based on sequencing depth in 

Methods section Chapter 3) which suffices for the purpose of training our classifier at the 

resolution of individual enhancers. The downsampling size of 12% contains ~10 million reads, 

which corresponds to the amount of RRBS-seq reads obtained in previous studies (140, 141). 

This suggests that even for RRBS-seq datasets, it is possible to train a model to successfully 

reconstruct the hydroxymethylome in enhancer regions, especially if the underlying 

implementation of a predictive model is predicated upon SVMs, which can be adequately trained 

and tested with as low as 1000-2000 training examples (Fig. 3.2).  

4.5.5 In silico framework for high-throughput hypothesis testing 

Hypothesis testing using TAB-seq data to identify 5-hmC rich regions or differential 5-hmC 

enrichment across conditions, naturally leads to a feasibility study of performing such tests on in 

silico predictions. 5-hmC is an intermediate in the demethylation pathway and low DNA 

methylation levels are the hallmark of active enhancers (114). Thus, we hypothesized that 

increase in an enhancer’s 5-hmC enrichment (quantified as 5-hmC enrichment ratio, see 5-hmC 

ratio calculation) from H1 to NPC differentiation corresponded to changes in proximal gene 

expression, putatively indicative of functional differences between H1 and NPC. We identified 

enhancers with the largest changes in 5-hmC enrichment ratio using both experimental TAB-seq 

data and our 5-hmC predictions. Gene set enrichment analysis (see Gene ontology analysis) on 

proximal genes to the identified enhancers reveal similar results for the two gene sets, enriched 

in neurodevelopmental processes. We find differential expression between H1 and NPC in the 

prediction-based gene set, suggesting our prediction-based functional study yields biologically 
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relevant findings (Fig. 4.14, and Supp Data 1, Supp Data 2, Supp Data 3 which can be 

downloaded under the following URL: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btx316#supplementary-data ).  

5-hmC ratio calculation: Unlike DNA methylation status, hydroxymethylation status cannot be 

successfully imputed using neighboring CpG site information (Table 4.4), suggesting that CpG 

sites of similar hydroxymethylation status do not occur in as frequent and long stretches as 

similarly DNA methylated CpG sites. Hence, we devised a metric for identifying 5-hmC 

enrichment in a given genomic region. We used this to identify 5-hmC enrichment in enhancers.  

GTF hg19 files were obtained from UCSC Genome Browser (109), and further intersected with 

an available list of annotated enhancers (Supp Data 1). The regions that contained less than 10 

CpG sites upon intersecting with enhancer and gene annotations were discarded from analyses. 

We define the ratio of the number of 5-hmC modified cytosines to the sum of 5-hmC and 5-mC 

 

Fig. 4.14: Enhancers with high 5-hmC enrichment and their proximal genes. Heatmap of 
predicted 5-hmC enrichment ratio and proximal gene expression for enhancers with highest 
predicted gain in 5-hmC enrichment ratio (NPC vs. H1). GO term enrichment for genes with 

highest 5-hmC enrichment ratio (NPC vs. H1) using predictions and TAB-seq data. 
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modified cytosines in an enhancer as the 5-hmC enrichment ratio. We performed calculation of 

5-hmC enrichment ratio in the intragenic enhancer regions, using 5,000 bp sliding windows 

spanning intragenic enhancers. 5-hmC enrichment ratio in a given region is defined as the ratio 

of the number of cytosines with 5-hmC modification to the number of cytosines with 5-hmC or 

5-mC modification. This may be estimated using BS-seq data, or based on SVM predictions. 

Genes depicted in Fig. 4.14 were sorted based on the gain of 5-hmC enrichment ratio in 

intragenic enhancers in NPC versus H1 (Supp Data 2, Supp Data 3).  

Table 4.4: Prediction metric: TP, TN, FP, FN (A) and Precision and Recall (B) for 5-hmC status 
prediction based on nearest neighbor’s 5-hmC status, showing that such an approach is not 

feasible for 5-hmC status imputation. 
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4.5.6 Summary and Discussion 

Here we performed a pioneering work by using DIRECTION to predict 5-hmC status in NPC 

and H1 cell lines to obtain high whole-genome accuracy (0.82 in NPC, Table 4.3). Upon 

performing optimal feature selection we discovered that most predictive features for 5-hmC 

status prediction involve enhancer-like histone modifications such as H3K27ac and H3K4me1. 

These findings naturally lead to predicting 5-hmC status in enhancer regions and collating our 

predictions in analyzed cell types for the purpose of identifying and characterizing differentially 

hydroxymethylated regions in analyzed cell types. We noticed that regions of differential 5-hmC 

(calculated using 5-hmC enrichment, see 5-hmC ratio calculation) exhibit high correlation with 

expression profiles of proximal genes, and that our predictions in these regions are highly 

congruent with the ground truth obtained by TAB-seq experiments (Fig. 4.14).    

Our work opens up new directions in DNA methylation and hydroxymethylation studies. 

Discriminative feature sets for predicting 5-hmC status include features engineered to leverage 

idiosyncrasies of hydroxymethylation, like strand asymmetry, G-rich sequence bias, and 

enrichment in open chromatin and gene bodies. Such correlative descriptions of 5-hmC 

modification with respect to genomic and epigenomic features can help create fine-grained 

“epigenome states” by integrating 5-mC and 5-hmC modifications with histone mark based 

chromatin states (57) in the future.  

DIRECTION is the first in-silico, whole-epigenome predictor of DNA methylation and 5-hmC 

status at single nucleotide resolution, with results comparable to state-of-the-art DNA 

methylation prediction tools. One of the key differences that sets DIRECTION apart from other 
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predictors is the ability to predict 5-hmC modifications. Our tool allows us to identify candidate 

genomic regions for differential hydroxymethylation as a first step in functional studies. 5-hmC 

modifications are known to be cell-type or developmental stage specific (120), and hence in 

silico detection of differentially hydroxymethylated regions can be performed by integrating 

reduced representation datasets and available genomic and epigenomic traits using DIRECTION. 

In silico prediction of epigenetic biomarkers is currently not performed in the field. However, 

cell-type specific methylation or 5-hmC regions can be predicted by collating predictions in 

contiguous genomic regions. The key to such predictions is that one or more of the input features 

need to contain signal for enabling such predictions. Here, similar analysis was performed based 

on the predicted 5-hmC ratio changes between H1 and NPC. Consequently, in silico prediction 

of epigenetic marks (i.e. 5-mC and 5-hmC) can be potentially considered as the first high-

throughput step in discovering molecular mechanisms that are specific to a certain cell or tissue 

type, and such predictive analyses can be key to identifying starting “molecular targets” for in 

depth functional analyses. 

5-hmC status prediction and correlative studies: The molecular mechanisms underlying 5-hmC 

creation and potential maintenance in the genome, its stability and regulatory potential, are 

presently all subject to a lot of scientific debate (142, 143). As we have shown, DIRECTION is 

capable of testing predictive powers of different sets of genomic and epigenomic features with 

respect to 5-hmC status prediction. Such correlative studies, in conjunction with perturbation 

models, can lead to a better understanding of 5-hmC.  
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Potential for use in oxBS-seq datasets: The oxBS-seq protocol (40) allows for positive readouts 

of 5-mC modifications (as opposed to 5-hmC modifications in TAB-seq experiments). As future 

work, we will consider additional experiments to train a model for directly predicting 5-mC 

modifications. However, likelihood based models like MLML (31) can integrate datasets from 

any two of BS-seq, oxBS-seq and TAB-seq datasets, to estimate CCRs for the third. Estimated 

CCRs for TAB-seq or BS-seq datasets generated in this fashion can then be used for analysis in 

DIRECTION.  
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5.1 Prior Publication 

Milos Pavlovic (M.P.) performed the majority of experiments, and Pradipta Ray (P.R.) designed 

the majority of experiments. M.P. and P.R. wrote the manuscript. Kristina Pavlovic (K.P.) 

performed methylome clustering. Min Chen (M.C.) advised M.P. and Michael Zhang (M.Q.Z.) 

supervised the project. This chapter covers various aspects of DNA methylation and 

hydroxymethylation transfer learning predictions across various cell types, such as de novo 

methylome and hydroxymethylome reconstruction, feasibility of performing such predictions 

and the limit of such approach. Per the policy of OUP Bioinformatics, the publication of material 

in a PhD thesis is permitted with the publication of a peer-reviewed manuscript in their journal. 

The original manuscript (1) “DIRECTION: A machine learning framework for predicting and 

charactering DNA methylation and hydroxymethylation in mammalian genomes” by Milos 

Pavlovic, Pradipta Ray, Kristina Pavlovic, Aaron Kotamarti, Min Chen and Michael Q. Zhang, 

published in 2017, is reproduced by permission of Oxford University Press and appears online at 

the following web address: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btx316. Supplementary information is available online at: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. The 

main text is partially altered compared to the online version of the manuscript, and figures and 

tables do not chronologically correspond to the online manuscript numbering. 

5.2 Abstract 

Successful transfer learning between two cell or tissue types requires that a set of discriminative 

input features and its associated model decision boundary in one cell type, also have comparable 
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predictive power in the other. In order to demonstrate feasibility and applicability of such 

approach we performed a supervised version of transfer learning in H1 and NPC cell lines using 

DNA methylation and hydroxymethylation as response variables, and beam search identified 

OFSs as predictor variables. For DNA methylation prediction we successfully transferred 

learning between NPC and H1, and from NPC to MSC, while NPC to IMR90 transfer learning 

accuracy was modest. For 5-hmC status prediction, we successfully performed transfer learning 

between H1 and NPC since the whole-genome accuracy dropped by only a few percentage 

points. Our results show that transfer learning of epigenomic characteristics in developmentally 

non-divergent cell types is accurate and feasible, allowing de novo methylome and 

hydroxymethylome reconstruction, suggesting a significant degree of conservation among the 

epigenomes in question. 

5.3 Introduction 

Transfer learning is a machine learning technique in which a set of input features which was used 

to predict a certain response variable is reused to predict another response variable (106). Such 

learning can be performed in unsupervised and supervised fashion using both classification and 

regression based predictive models. Unsupervised learning classification is a procedure in which 

a set of input features that was used to predict status of one response variable is used to predict 

the missing class labels of another response variable. Unlike unsupervised transfer learning 

classification algorithms which major goal is an assignment of the missing class labels, 

supervised transfer learning algorithms aim to discover if such learning is feasible, assign class 

labels for the missing data, and determine what predictor variables are contributing the most to 

the predictive power. We performed a supervised version of transfer learning in cell lines (which 
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genomic sequence is the same unless otherwise stated) using DNA methylation and 

hydroxymethylation status as response variables and beam search identified OFSs (see Methods 

Chapter 3) as predictor variables. The aforementioned experimental setup was primarily used as 

a feasibility study of performing transfer learning among assorted cell lines for the purpose of de 

novo methylome and hydroxymethylome reconstruction, and to discover what epigenetic traits 

are most predictive and thereby “likely conserved ” among the analyzed cell types. 

5.4 DNA methylation transfer learning 

Successful transfer learning between two cell types requires that a set of discriminative features 

and its associated model decision boundary in one cell type, also have comparable predictive 

power in the other. Given that one of our goals is to perform whole-methylome reconstructions, 

we trained our classifier on H1 cells and tested its performance on NPC and vice versa. The 

results of the testing are only a few percentage points worse than the corresponding results in the 

same cell type (Table 3.9), due to the fact that our approach relies on a minimal set of 

discriminative features (OFS) which are similar in H1 and NPC, and therefore has great promise 

for “transfer learning” scenarios like de novo reconstruction of the methylome.  

Since H1 and NPC cell lines are not significantly divergent in their developmental stages, their 

respective epigenomes do not differ much. In order to identify methylomes that are significantly 

dissimilar with respect to H1 and NPC, we performed clustering for all reference methylomes in 

the Roadmap Epigenome Consortium datasets (top eight principal components accounting for 

81% of variation in the data, Euclidean distance measure and average linkage were used, Fig. 

5.1).  
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In order to test the limits of such transfer learning, we used the NPC-trained SVM to perform 

whole methylome predictions in the totipotent MSC cell line and in the terminally differentiated 

fetal fibroblast cell line IMR90. We chose to use the methylomes for Mesenchymal Stem Cells 

(MSC), and fetal fibroblast cell line IMR90, which show distinct divergence from the H1 and 

NPC methylomes. We analyzed the predictive performance for the NPC-trained predictive model 

on H1, MSC, and IMR90 methylomes. Since loss of pluripotency is associated with epigenome 

 
 

Fig. 5.1: Hierarchical clustering of reference methylomes from the Roadmap Epigenome Consortium 
depicting distinctive methylation profile of IMR90 with respect to H1 and NPC cell lines. 
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reprogramming involving DNA methylation, we find that the NPC-trained SVM performs well 

on the MSC dataset, but performs only modestly in IMR90 (Table 3.9). 

We find that H1 predictions using the NPC-trained model are comparable to the NPC whole 

methylome predictions. The metrics for the MSC cell line (totipotent, but nearly terminally 

differentiated) are still fairly accurate (TPR: 0.87, TNR: 0.71, Accuracy: 0.85) (Table 3.9). 

However, we find that for the terminally differentiated IMR90, the metrics for the predictions are 

very modest (TPR: 0.86, TNR: 0.23, Accuracy: 0.69) (Table 3.9). This suggests that transfer 

learning only works within similar methylation paradigms, where the relationship between 

methylation and discriminative input features are similar. Given that the methylation profile and 

prevalence in stem cells and terminally differentiated cells are very distinct, we find that such 

transfer learning is not feasible. It is noteworthy that for evaluating IMR90, the sex 

chromosomes were left out during evaluation, as IMR90 is a female cell line, as opposed to H1, 

NPC, and MSC. 

5.5 5-hmC transfer learning  

In analogous fashion to our methylation data, we trained our classifier on H1 cells and tested its 

performance on NPC and vice versa. The results of the testing suggest that transfer learning 

across H1 and NPC is feasible (Table 4.3).  We find that accuracies of 0.74 (H1 to NPC) and 

0.68 (NPC to H1) as opposed to 0.82 and 0.75 by training and testing on the same cell type in 

NPC and H1 respectively. These results firmly suggest that 5-hmC transfer learning between 

developmentally non-divergent cell types such as H1 and NPC is feasible. 
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5.6 Limits of transfer learning using DIRECTION 

Transfer learning for the purposes of prediction requires that the set of input features used for 

prediction in the source dataset, are discriminative in the target dataset and have similar 

correlational structure (144). While an in-depth analysis of transfer learning for methylation 

prediction is beyond the scope of this dissertation, we used the NPC-trained methylation 

prediction SVM to predict the methylome in H1, MSC and IMR90. Based on our NPC-trained 

SVM’s performance in the whole genome NPC dataset, we find drops in accuracy in the 

pluripotent H1 (7% decrease) and near-differentiated, totipotent MSC cell lines (11% decrease). 

However, the accuracy for the NPC-trained SVM in the terminally differentiated IMR90 cell line 

drops by over 25%, suggesting that the OFS and SVM decision boundary for NPC is not suited 

for predicting the IMR90 methylome. Such results are in agreement with studies showing large-

scale epigenetic reprogramming during differentiation (145) that likely causes a change in the 

correlational structure between the input features and the response variable (DNA methylation 

status). The limited number of input features in the OFS used by DIRECTION, while practical, 

does not lend itself to transfer learning in such scenarios. However, transfer learning is 

potentially feasible in closely related cell types or conditions where methylation paradigms 

remain unchanged.  
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6.1 Prior Publication 

Milos Pavlovic (M.P) wrote this chapter. This chapter represents a comprehensive summary of 

the previous chapters, and relates this work to the previous work in the field of DNA methylation 

prediction. Future studies, as well as the relevance of this work in the future are discussed as 

well. Per the policy of OUP Bioinformatics, the publication of material in a PhD thesis is 

permitted with the publication of a peer-reviewed manuscript in their journal. The original 

manuscript (1) “DIRECTION: A machine learning framework for predicting and charactering 

DNA methylation and hydroxymethylation in mammalian genomes” by Milos Pavlovic, Pradipta 

Ray, Kristina Pavlovic, Aaron Kotamarti, Min Chen and Michael Q. Zhang, published in 2017, is 

reproduced by permission of Oxford University Press and appears online at the following web 

address: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btx316. Supplementary information is available online at: 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx316. The 

main text is partially altered compared to the online version of the manuscript. 

Summary: This work opens several new directions in mammalian DNA methylation studies, 

offering novel and incremental improvements. Here we introduced DIRECTION, the first in-

silico whole-epigenome predictor of DNA methylation and 5-hmC status at single nucleotide 

resolution, with results comparable to state-of-the-art DNA methylation prediction tools.  

For the purpose of performing whole methylome reconstructions we identified a portion of CpG 

sites which respective methylation statuses were invariant across a set of reference methylomes 

(Chapter 2) to create the consensus reference methylome, which we optionally use as a 
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dictionary-based lookup to make methylation prediction (Fig. 2.1). Therefore, in order to achieve 

highly accurate de novo whole-methylome reconstruction we propose a novel framework, which 

combines the consensus reference methylome predictions and model-based predictions on the 

invariant and variant portions of the methylome respectively (achieving incremental 

improvement: 0.97 accuracy in NPC), and splits methylation prediction into separate paradigms 

(CGI vs. non-CGI) based on the underlying biology of DNA methylation. However, the use of 

the consensus reference methylome is likely most useful in resource-scarce scenarios (lack of 

available input features), and in the studies that aim to identify differentially methylated regions 

in a reconstructed methylome. It is noteworthy that the consensus reference methylome was not 

envisioned to be a fixed entity but rather a flexible one, which can be built using a different set of 

reference methylomes depending on the reconstructed methylome in question. Such approach 

can potentially provide insights into aberrant CpG methylation patterns in disease and 

perturbation studies which are known to affect DNA methylation. 

The advent and subsequent improvement of NGS has lead to a development of experimental 

techniques such as sc-BS-seq, which has allowed us to quantify DNA methylation in single cells, 

where DNA methylation is essentially a discrete phenomenon, thereby lending itself naturally 

into a classification framework. The most recent work (80) successfully predicted DNA 

methylation status in single cells. Given the flexibility of DIRECTION, single cell derived 

features can be readily incorporated, and such predictions can be performed, making 

DIRECTION agnostic to the underlying input data (single cell vs. bulk of cells). 

Discriminative feature sets for predicting 5-hmC status include features engineered to leverage 
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idiosyncrasies of hydroxymethylation, like strand asymmetry, G-rich sequence bias, and 

enrichment in open chromatin and gene bodies. Such correlative descriptions of 5-hmC 

modification with respect to genomic and epigenomic features can help create fine-grained 

“epigenome states” by integrating 5-mC and 5-hmC modifications with histone mark based 

chromatin states (57) in the future. Often, the major goal of assorted whole-genome methylation 

studies is to detect differentially methylated regions either as putative biomarkers or for 

functional downstream studies. We demonstrated that DIRECTION is capable of identifying 

candidate genomic regions for differential hydroxymethylation, which serve as putative cis-

regulatory elements of proximal protein coding genes (Fig. 4.14). In addition to this, the in silico 

detection of these regions can potentially lead to a development of less labor intensive protocols 

for the quantification of 5-hmC modification (reduced representation sequencing or potentially 

arrays), analogous to RRBS-seq which is routinely used for the quantification of DNA 

methylation. 

Unlike previous feature-intensive approaches for predicting DNA methylation, DIRECTION 

uses a sophisticated feature selection technique adopted from artificial intelligence and identifies 

a small subset of non-redundant, discriminative, predictive features. This allows for greater 

biological interpretability of generated results, superior performance in resource-scarce 

scenarios, making the model sparse without explicit regularization. DIRECTION is an open-

source, agile, scalable ensemble predictor using biologically and practically motivated genome 

partitioning and training a predictive model per partition, allowing us to deconvolute inevitably 

mixed biological signals in whole-epigenome studies (Fig. 2.1). 



 

106 

 In the future, we aim to extend DIRECTION by predicting DNA methylation and 5-hmC status 

in additional genomic contexts (like non-CpG cytosines), other methylation paradigms (like 

epigenetic reprogramming in gametes), and in non-mammalian species where methylation plays 

distinct functional roles. Finally, we aim to expand a set of consensus reference methylomes, in 

which each individual consensus reference methylome would correspond to a particular 

phenotype of interest, such as disease (cancer, non-cancer) or a developmental stage 

(differentiated, non-differentiated). Such biologically motivated database of consensus reference 

methylomes would provide an instant insight into potential aberrant patterns involving DNA 

methylation, and would significantly facilitate a de novo methylome reconstruction process of a 

cell or tissue type in question.
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