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ESSAYS ON RETAIL OPERATIONS

Ismail Kirci, PhD
The University of Texas at Dallas, 2018

Supervising Professors: Dorothée Honhon, Co-Chair

Alp Muharremoglu, Co-Chair

This dissertation consists of two essays, each focusing on an important topic in retail oper-

ations. These topics are each summarized below.

In the first essay, we investigate the optimal pricing and package size decisions of a retailer

selling a perishable product either in packages or in bulk. Bulk sale is defined as selling the

product in a container (instead of packages) that allows customers to buy as much or as

many as they want. We analyze how adding a bulk sale option affects the optimal decisions,

when it is optimal to offer the product in package/bulk and when it is optimal to offer both

at the same time. We also investigate implications of the pricing and package size decisions

as well as the bulk sale option on the food waste at the consumer level. According to our

results, when the market is homogeneous, selling the product in packages instead of bulk

gives twice more profit to the retailer but it also gives twice more relative waste. When

the market is heterogeneous with two consumer segments, adding a bulk sale option could

increase expected profit up to 12 percent and could decrease relative waste up to 8 percent.

In the second essay, we work on the multi-period assortment problem for a retailer with

variety-seeking/avoiding consumers. If consumers are variety-seeker, they are not likely

to buy the same product in two subsequent periods. If customers are variety-avoidant,

their probability of repeat purchase is high. We assume that each consumer‘s variety seek-
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ing/avoiding tendency is characterized by a parameter V ∈ [−1, 1]. In our analysis, we

consider two different firm types which we call the Dynamic and the Static firms. The

Dynamic firm optimizes the profit over the entire horizon by changing (if necessary) the

assortment offered in each period dynamically, whereas the static firm has to decide one

assortment to offer throughout the horizon. We provide some structural results for the finite

and infinite horizon versions of the problem. We show that the existence of variety seek-

ing/avoiding behavior decreases the retailer‘s profit. For the infinite horizon problem, we

show that the static firm’s optimal assortment is a popular-eccentric set and for some cases

repeating to cycle between two assortment yields more profit than offering the same in each

period.
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CHAPTER 1

INTRODUCTION

This dissertation consists of two essays, each focusing on an important topic in retail oper-

ations. These topics are each summarized below.

In the first essay, we investigate the optimal pricing and package size decisions of a retailer

selling a perishable product either in packages or in bulk. Bulk sale is defined as selling the

product in a container (instead of packages) that allows customers as much or as many as

they want. We analyze how adding a bulk sale option effects the optimal decisions and when

it is optimal to offer the product in package/bulk and when it is optimal to offer both at

the same time. Our second objective is to find out implications of the pricing and package

size decisions as well as the bulk sale option on the customer food waste. Food waste is

a very important problem of the modern world. According to the United Nations Food

and Agriculture Organization (UNFAO, 2017), about one third of all food produced in the

world ends up as waste. According to a recent report by ReFED (ReFED, 2017), which

is a non-profit organization dedicated to reduce food waste in the United States, adjusting

packaging size and design alone could result in 208,000 tons of diverted food waste. We

investigated three versions of the problem: homogeneous market, heterogeneous market

with two customers and infinitely heterogeneous market. According to our results, when

the market is homogeneous, selling the product in packages instead of bulk gives twice more

profit to the retailer but it also gives twice more relative waste at the consumer level. When

the market is heterogeneous with two consumer segments, it is never optimal to sell the

product only in bulk and depending on the proportion of consumers in the market and their

relative consumption amounts it could be optimal to introduce bulk sale besides package

sale. When bulk and package sale co-exist expected profit could increase up to 12 percent

and relative waste could decrease up to 8 percent.

1



In the second essay, we work on the multi-period assortment problem for a retailer with

variety-seeking/avoiding consumers. In product categories where consumers have large con-

sideration sets and make many choices over time, there may be some desire for more variety

because of satiation or curiosity. This is called variety-seeking behavior (Kahn et al. (1986)

and others). For example in the yogurt category, consumers tend to purchase some flavors

they like and some they just want to try. In other products categories such as paper products,

consumers tend to be loyal towards one brand and buy the same products constantly over

time. This is called variety-avoiding behavior. If customers are variety-seeking, they are not

likely to buy the same product in two subsequent periods. If customers are variety-avoidant,

their probability of repeat purchase is high. In order to capture variety seeking/avoidance

behavior we borrow the model from Givon (1984) and adopt it to the assortment planning

problem. As Givon (1984) does, we assume that each consumer is characterized by a pa-

rameter V ∈ [−1, 1] which measures the consumer’s attitude towards variety such that: (i)

V = 1 corresponds to the extreme search for variety case, (ii) V = 0 means consumer has no

utility (positive or negative) from active search of variety and (iii) V = −1 means consumer

tries to avoid variety at all costs. In our analysis, we consider two different firm types which

we call the Dynamic and the Static firms. The Dynamic firm optimizes the profit over the

entire horizon by changing (if necessary) the assortment offered in each period dynamically,

whereas the static firm has to decide one assortment to offer throughout the horizon. We

consider the assortment problem both under finite and infinite time horizons. According to

our results, the existence of variety seeking/avoiding behavior decreases the retailers profit

compared with non-existing case. For the infinite horizon problem, we show that the static

firm’s optimal assortment is a popular-eccentric set and for some cases repeating to cycle

between two assortment yields more profit than offering the same in each period.
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CHAPTER 2

PACKAGE SIZE AND PRICING DECISIONS WITH A

BULK SALE OPTION

2.1 Introduction

The very thin margins in today’s retail industry force retail companies to search for innovative

strategies to extract more profit from their customers. Packaging is one such strategy, which,

according to Kuvykaite et al. (2009) has an important role in marketing communications

and is one of the most important factors influencing consumers’ purchase decisions. Their

empirical research on purchase decisions of milk and washing powder shows that package

size and material are the most important visual determinants of a customer’s purchasing

decision.

In this study, we consider a perishable product, in the sense that it expires in the amount

of time between two customer shopping trips to the store. When doing their shopping,

customers often do not know precisely how much of a product they will consume until their

next visit to the store. Since the purchase decision is made before the consumption occurs,

there can be a mismatch between the two quantities: buying more than their consumption

needs will result in waste as the excess product perishes; buying less will result in a shortage

(and possibly a trip to the convenience store where the product is sold a higher price).

We assume that customers take into account the relative costs of waste and shortage when

deciding how much of the product to purchase. When the product is offered in packages of

a pre-set size, the customer’s purchase quantity is restricted to be a multiple of the package

size. For example, if the consumer predicts her consumption of the product to be 3 units

and the product is offered in packages of 2, she has to decide between buying less (1 package

of 2 units) or more (2 packages of 2 units) than her desired quantity.

Buying more than the desired purchase quantity will likely lead to some wastage as the

excess product will expire before the next shopping trip. In the grocery industry, large
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package sizes are known to contribute to food waste which is a very important problem,

worldwide. A number of recent studies estimate the scale of global food waste and show

how devastating it is. According to the United Nations Food and Agriculture Organization,

about one third of all food produced in the world ends up as waste and the value of this

waste is estimated at $750 billion, at producer prices. Buzby et al. (2014) estimated that,

in the United States, 31 percent of the 430 billion pounds of available food supply went

uneaten in 2011, with losses at the retail level representing 10 percent (43 billion pounds)

and losses at consumer level representing to 21 percent (90 billion pounds) of the available

food supply. The estimated total value of food loss at the retail and consumer levels in the

United States was $161.6 billion in 2010. Beyond these economic considerations, food waste

also has a important environmental cost as rotting food in landfills is the largest contributor

to methane emissions which cause global warming.

According to a recent report by ReFED, (ReFED, 2017), which is a non-profit organiza-

tion dedicated to reduce food waste in the United States, optimizing package size and design

to ensure complete consumption by consumers can help to reduce food waste. According

to their estimates, adjusting packaging size and design alone could result in 208,000 tons of

diverted food waste.

In recent years, some retailers have introduced a new way to sell products to consumers

called bulk sale. In practice, the term bulk sale has two different meanings: the more common

one refers to the selling of a product in large packages at a substantial price discount, typically

at big-box retailers such as Costco and Sam’s Club in the United States. The second meaning,

which is the one we use in our study, refers to the selling of a product in large bins from

which customers can help themselves to the exact quantity they wish to purchase. This

type of bulk sale is most commonly found in premium grocery stores such as Whole Foods

Market and is available for products such as flour, nuts or peanut butter. Other examples,

which also exist in many traditional supermarkets, include the selling of fruits such as kiwi

4



and apples individually, as opposed to in packs of 6 and the selling of eggs by the unit

instead of in cartons of a dozen or half a dozen units. From a consumer’s perspective, the

bulk sale option has the advantage of offering the flexibility to purchase exactly the desired

quantity, which should lead to a lower amount of product waste. For this reason, bulk sale

has been presented as a potential way to reduce the amount of food that is wasted due

to packaging. From a retailer’s perspective, selling the product in packages may have the

advantage of forcing consumers to buy more than their desired purchase quantity, leading to

more sales and more profit. However, we hope to show that offering the bulk sale option, at

the appropriate price, could be a profit-enhancing decision for the retailer. Hence, the bulk

sale option can be beneficial to both society and the retailer’s bottom line.

In this paper, we study a retailer’s optimal package size and price decisions when a

perishable product is sold in packages and/or in bulk and investigate the implications of

these decisions on waste. In doing so we answer questions such as: How does the existence

of a bulk sale option affect the optimal package size and price? How effective is a bulk sale

option at reducing consumption waste? How does customer heterogeneity affect the retailer‘s

optimal decisions?

Literature Review:

Finding the optimal package size and price without the bulk sale option is already a

difficult problem and there is only limited theoretical work on the topic. Gerstner and

Hess (1987) study a version of the problem where a monopolist tries to sort consumers in

the most profitable way by using different package sizes and prices for different Segment of

consumers. In their model, they assume that there are two segments of customers in the

market and the consumption rates of the customers are fixed. They show that, by offering

several package sizes at different unit prices, customers are automatically sorted into market

segments and this allows the seller to extract more consumer surplus and to earn higher

profits. Koenigsberg et al. (2010) focus on package size and price decision for a perishable

5



product assuming heterogeneity in the consumer usage rate and allowing consumers to buy

more than one package. They show that the size of the package should be as small as

possible when product cost increases as a linear or convex function of package size. Their

results also indicate that small package sizes reduce product waste by allowing consumers

to match the purchase quantity with their requirements. One important difference between

our study and these two studies is in the way we model the consumer purchase behavior: we

take into account the uncertainty in the consumption amount faced by the consumers using

a newsvendor model formulation.

There are also a number of empirical studies which investigate different behavioral issues

related to package size. Granger and Billson (1972) show that displaying the unit price of the

product to the consumers (as opposed to just the package price), leads to significant changes

in the chosen package size. Wansink (1996) studies the issue of whether larger package sizes

lead to more usage and shows that large packages of familiar, branded products encourage

more use than small packages. Allenby et al. (2004) investigate the effect of a price reduction

for a package size for a particular brand in terms of substitution of demand across brands.

Jain (2012) studies the impact of the package size of so-called vice goods (i.e., goods for which

a moderate consumption is not harmful but excessive consumption has long-term harmful

effects such as potato chips, cookies, ice cream, alcohol etc.) on consumers’ self-control

problems and investigate the conditions under which firms will offer small packages to help

consumers combat excessive consumption.

To the best of our knowledge, there is no study that considers package sale and bulk sale

simultaneously.

The paper is organized as follows. In §2.2, we develop our model. In §2.2.1 we present

how consumer choice change depending on package sale and bulk sale options. In §2.3, §2.4

and §2.5 we investigate optimal solutions when the market is homogeneous, heterogeneous

with two segments and full heterogeneous respectively. In §2.6 we discuss three extension to
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our model. In §2.7, we conclude and discuss further research directions. Unless otherwise

stated, all proofs are in the Appendix.

2.2 Model

A retailer is selling a unique perishable product to a population of heterogeneous customers.

We assume that the product’s expiration date coincides with the timing of the customers’

next shopping trip and refer to this length of time as a period ; in other words, we are

focusing on perishable products which are bought regularly (e.g., once a week) such as fruits,

vegetables, juices, eggs, dairy products, meat, etc. At the time of purchase, consumers do

not know precisely how much of the product they will wish to consume until the end of the

period.

There exist K different customer segments in the population; let αk denote the proportion

of customers from segment k in the population, for k = 1, ..., K such that
∑K

k=1 αk = 1.

Customers differ may in how much they value the product, how much they wish to consume

as well as in their cost of wasting excess product and running out of it. Let vk denote the

product valuation for customers in segment k = 1, ..., K. Let Dk be a random variable

denoting the quantity which consumers from segment k would like to consume over a period,

which we refer to as their consumption needs, and let Fk and µk denote its cdf and mean

respectively. Any quantity which has not been consumed by the end of the period has to

be discarded, for which the consumer incurs a cost. Running out of the product before

the end of the period also comes at a positive cost. Let wk and rk respectively denote the

waste cost and run-out cost for customers from segment k. In practice, the waste cost could

corresponds to the cost of composting the excess product or the mental anguish that some

waste-conscious consumers may incur when throwing away food which they can no longer

consume, while the run-out cost could correspond to the incremental cost of buying the extra

7



quantities at the corner store where products are typically sold at a higher price than at the

supermarket as well as the opportunity cost of such ”emergency” shopping trip.

Let Uk(Q) denote the expected gross utility a customer from segment k derives from

purchasing Q units of the product, which is calculated as:

Uk(Q) = vkE[min(Q,Dk)]− rkE[Dk −Q]+ − wkE[(Q−Dk]
+ (2.1)

where E[Dk−Q]+ is the expected shortage quantity and E[(Q−Dk]
+ is the expected waste.

If the distribution of consumers’ consumption needs Dk has a uniform distribution on

[0, Bk] for k = 1, ..., K. In this case, the expected gross utility of a consumer as a function

of purchase quantity Q is:

Uk(Q) =


vBk

2
− (v+r)(Bk−Q)2+wQ2

2Bk
for Q ≤ Bk

vBk
2
− w

(
Q− Bk

2

)
for Q ≥ Bk

(2.2)

Note that the second part of the equation corresponds to cases where the purchase amount is

larger than the maximum value of the customer segment’s consumption needs. As mentioned

earlier, the utility of buying nothing is negative and specifically equal to uk(0; s, P p) = −Bk
2
r.

Also we have u(Bk; s, P
p) = vk−wk−P p

2
. In what follows, we assume that c > vk+rk−wk

2
for

k = 1, ..., K. While all of our results hold when this condition does not hold, imposing

this lower bound on the unit variable cost greatly simplifies the exposition of our results as

it guarantees that no customer will buy more than their maximum possible consumption

needs Bk. This is because it implies that uk(0; s, P p) > u(Bk; s, P
p) for P p > c; therefore all

consumers prefer buying nothing to buying a quantity larger or equal to Bk.

The retailer can decide to sell the product in packages of a fixed size s or in bulk, which

means that customers can buy the exact quantity they wish. The product unit price is

P p when sold in package form (so that the price of one package is sP p) and P b when sold

in bulk. We assume that customers either buy a (discrete) number of packages or use the

8



bulk sale option. Let upk(i, s, P
p) denote the expected net utility a customer from segment k

derives from purchasing i packages of size s at a unit price of P p and let ubk(Q
b, P b) denote

the expected net utility a customer from segment k derives from purchasing Qb units of bulk

at a unit price of P b. We have:

upk(i; s, P
p) = Uk(is)− P pis for i ∈ N

ubk(Q
b;P b) = Uk(Q

b)− P bQb for Qb ∈ R+

Note that purchasing nothing from the retailer leads to a negative utility (equal to −rkµk).

We argue that this makes sense given our focus on products which are purchased regularly,

that is, that are staples of the consumers’ diet and therefore, for which an insufficient (or

zero) quantity purchased leads to an intolerable shortage - forcing the customer to make a

trip to the more expensive corner store to purchase the item after the her consumption needs

are revealed.

Customers are expected utility maximizers; they choose the quantity of packages i ∈ N

or the quantity of bulk Qb ∈ R+ so as to maximize their net utility given the package size

s and the unit price of package P p and bulk P b. As a result their expected net utility from

purchase is given by:

max

{
max
i∈N

upk(i, s, P
p), max

Qb∈R+
ubk(Q

b, P p)

}
Note that, when P p > P b, every consumer (weakly) prefers to buy in bulk since it is cheaper

and allows them to buy the exact quantity they desire. In case of a tie for the maximum

expected net utility, we assume that customers buy the largest number of packages which

gives them maximum utility.

Let ı̂k(s, P
p, P b) and Q̂b

k(s, P
p, P b) respectively denote the number of packages and bulk

quantity purchased by customers from segment k as a function of package size, package unit

price and bulk price. Because we assume that customers will either choose the package or

bulk sale option, at most one of these two quantities is positive.
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The retailer chooses the package size s, package price P p and bulk price P b so as to

maximize his profit denoted by π. Formally, we have:

max
s,P p,P b

π(s, P p, P b) =
K∑
k=1

αk

[
(P p − c)̂ık(s, P p, P b)s+ (P b − c)Q̂b

k(s, P
p, P b)

]
(2.3)

where c is the retailer’s unit variable cost of selling the product. Note that we focus our

analysis on prices which satisfy c < P p ≤ P b. The first condition guarantees that the

profit margin on the product is positive. The second condition comes from the fact that no

customer would buy a package if P p > P b, as argued above. Also note that the retailer does

not give out quantity discounts for buying large quantities in bulk or multiple packages.

Discussion of the modeling assumptions

In this section we discuss some of our modeling assumptions. First we make a number of

simplifying assumptions regarding the different parameters which are included in our model.

We assume that the retailer’s unit variable cost is the same for selling the product in packages

or in bulk. In practice there may be a difference, such as an extra cost from packaging the

units together. Also we assume that customers value the product equally whether it is sold

in packages or in bulk when, in real life, some customers may have a lower valuation for

the product when it is sold in bulk due to hygiene concerns; others may value the products

bought in bulk more because they were able to hand-pick them. Similarly we assume that

the waste and run-out costs are the same whether the product was bought in bulk or in

package at the start of the period, which we argue makes sense given on interpretation of

the run-out cost as the cost of buying extra units of the products at the more expensive

corner store and given that the waste cost captures only the un-consumed product itself, not

its packaging. We also do not include the inconvenience cost to the customer from buying

products in bulk, that is, grabbing them one by one or using a scoop, putting them into a

bag or container and possibly having to weigh them in order to generate a price label.
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Regarding our consumer choice model, we have assumed that consumers either buy the

product in bulk or in packages (or not at all), that is, we do not allow customers to purchase

a combination of packages and bulk. This assumption is motivated by practical concerns as

we observe that in practice, most customers choose between the two options.

Further, we assume there is a unique package size s. While the multi-package size prob-

lem is certainly interesting, our goal is to compare the bulk and package sale options and

specifically, we want to focus our analysis on the tradeoffs faced by the retailer when de-

signing a package size for multiple consumer segments. With multiple package sizes and

multiple consumer segments the problem at hand becomes one of allocating package sizes to

consumer segments and doing so involves carefully pricing the products so as to meet the

incentive-compatibility constraints. In practice, due to space and handling constraints, the

number of possible package sizes which can be offered in a store is generally limited and

typically significantly much smaller than the number distinct segments in the population.

Hence, we believe that the single-package size problem we consider constitutes a relevant

first step in understanding the impact of bulk on a retailer’s profit and on consumer waste.

We also note that a typical grocery store contains multiple examples of products which are

offered only in bulk and in a unique package size. For example, many stores propose one-size

bags of pre-cut cold meats and cheese which can also be purchased at the store’s deli counter.

Whole Foods Market sells its in-store-prepared peanut butter in a large jar from which con-

sumers can help themselves to fill up plastic containers as well as in pre-filled containers of

a unique size which are available for grab next to the jar. Target sells kiwis by the unit or

in pre-packaged boxes of eight and oranges in bulk next to bags of six.

Note that the bulk option can be viewed as a package of the smallest possible size: for

products which can be purchased in continuous quantities, such as flour or maple syrup, the

size of the package is an infinitesimal quantity; for products which are by nature discrete,

such as eggs or kiwis, the bulk option is a package of size one. Smaller packages are typically
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offered at higher prices, therefore this angle supports our assumption that the unit price of

the product in bulk is higher than the unit price of the product in packages.

In our model, the retailer has perfect knowledge of the consumers’ utility function pa-

rameters and consumption needs distribution and therefore can compute exact purchase

quantities for each segment given his decisions on package size and prices. As a result the

retailer does not hold any excess inventory and therefore does not incur any waste. Our

waste analysis is therefore focused solely on product waste at the consumer level. We argue

that this is relevant for many products such as dairy items for which studies report wastage

percentages of about 17% at the consumer level versus only 0.25% at the distribution and

retail level ((Gunders, 2012)).

Finally note that in our model, it is the retailer who makes the package size decision,

not the manufacturer. In practice this applies with products such as the above mentioned

peanut butter at Whole Foods Market and buns or cookies which are baked locally from the

retail store’s bakery section. In those instances the product is exactly the same when offered

in bulk or in package because it is either delivered in bulk form from the same supplier or

is prepared on site, then packaged right at the store. This situation further justifies our

assumption of equal valuation for the product when offered in bulk or in packages.

Our notation is summarized in Table 2.1.

In what follows, let bxc denote x rounded down to the nearest integer (floor) and dxe is

x rounded up to the nearest integer (ceiling). Also let bxe denote the number x rounded to

the nearest integer.

2.2.1 Consumer Choice

In this section we show how to compute the consumer purchase quantity. We consider three

settings: (i) only the bulk sale option, (ii) only the package sale option, (iii) the bulk and

package sale options coexist and consumers choose between the two.
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Table 2.1: Notation

Symbol Definition
Decision variables

P p : Package price (per unit)
P b : Bulk price (per unit)
s : Package size

Parameters
vk : Product valuation of customers from segment k (per unit)
rk : Run-out cost of customers from segment k (per unit)
wk : Waste cost of customers from segment k (per unit)
Fk : Cdf of consumption needs distribution for segment k
µk : Expected consumption needs for segment k
αk : Proportion of customers from segment k
c : Product variable cost (per unit)

Other variables
i : Number of packages purchased by customer

Qb : Quantity purchased in bulk
ı̂k(s, P

p, P b) : Ideal number of packages for customers from segment k
Uk(Q) : Expected Gross Utility of customers from segment k
upk(i) : Expected Net Utility of customers from segment k from i packages

ubk(Q
b) : Expected Net Utility of customers from segment k from bulk quantity Qb

Q∗bk : Utility maximizing quantity for bulk purchase for segment k
Q∗pk : Utility maximizing quantity for package purchase

if the package size was infinitesimally small for seg-
ment k

W abs
k (Q) : Expected absolute waste of customers from segment k

W rel
k (Q) : Expected relative waste of customers from segment k

π(s, P p, P b) : Expected Profit of the Retailer

Consumer choice with only bulk sale option

When the product is only offered in bulk, customers can buy the exact quantity which

maximizes their expected net utility ubk(Q
b;P b) = Uk(Q

b) − P bQb. This function is mathe-

matically equivalent to the expected profit function of a classical Newsvendor model and is

a concave function. Let Q∗bk = arg maxQb∈R+ ubk(Q
b) denote the quantity purchased in bulk

by customers from segment k, given a bulk unit price P ∗b which is given by the well-known
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newsvendor critical fractile:

Q∗bk =

 F−1
k

(
θbk
)

if P b ≤ vk + rk

0 otw.
(2.4)

where θbk = vk+rk−P b
vk+rk+wk

. We refer to this quantity as segment k’s ideal bulk purchase quantity

given a unit bulk price of P b. If Segment k consumer’s consumption needs follow a uniform

distribution assumption, we have Q∗bk = θbkBk.

Consumer choice with only package option

When the product is only offered in packages of size s, the customers’ purchase quantity is

restricted to be a multiple of the package size and the optimal number of packages is the one

which maximizes their expected net utility upk(i; s, P
p) = Uk(is)− P pis for i ∈ N.

Let Q∗pk be the quantity which maximizes Uk(Q)− P pQ, which is segment k customers’

net utility ignoring the integrality constraint on i (it also corresponds to the expected net

utility from buying bulk at a unit price P p). We have:

Q∗pk =

 F−1
k (θpk) if P p ≤ vk + rk

0 otw.

where θpk = vk+rk−P p
vk+rk+wk

. We refer to this quantity as segment k’s ideal package purchase

quantity given a unit package price of P p. If Segment k consumer’s consumption needs

follow a uniform distribution assumption, we have Q
∗p
k = θpkBk.

However, customers may not be able to purchase exactly Q∗pk because they can only buy

a discrete number of packages of size s. Because the function Uk(Q)− P pQ is concave in Q

and achieves a unique maximum at Q∗pk , the number of packages purchased by segment k

customers, i.e., îk(s, P
p), is either

⌊
Q∗pk
s

⌋
or
⌈
Q∗pk
s

⌉
. depending on which value achieves the

highest net utility. Note that
⌊
Q∗pk
s

⌋
= 0 when s > Q∗pk . We provide a simple numerical

example for illustration.
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Figure 2.1: An example of consumer decision in only package sale case

Example 2.2.1.1. Suppose Q∗pk = 18 and s = 5. The consumer can only buy quantities

which are multiple of 5 (5, 10, 15, 20 etc.) as shown in Figure 2.1. Among these alternatives

buying 3 and 4 packages (15 units or 20 units of product) gives the highest utility. Notice

that these points correspond to
⌊
Q∗pk
s

⌋
=
⌊

18
5

⌋
= 3 and

⌈
Q∗pk
s

⌉
=
⌈

18
5

⌉
= 4. Since buying 4

packages gives more utility, consumer prefers to buy iRk = 4 packages of the product (it could

be
⌊
Q∗pk
s

⌋
for some other values of s).

When P p is fixed, the number of packages purchased by customers, i.e., îk(s, P
p), is a

piecewise constant, non-increasing function of s, as customers buy fewer packages as they

get larger. As a result, the quantity purchased by customers, i.e., ŝik(s, P
p) is a piecewise

increasing function of s. Both functions are illustrated on Figure 2.2 for one customer

segment.

When the package size is very small, customers are able to purchase a quantity which

is very close to their ideal purchase quantity Q∗pk . Points which are above this quantity

corresponds to cases where the purchase quantity is rounded up, i.e., îk(s, P
p) =

⌈
Q∗pk
s

⌉
and

points which are below this quantity corresponds to cases where the purchase quantity is

15



rounded down, îk(s, P
p) =

⌊
Q∗pk
s

⌋
. The jump points on both curves are values at which the

customers receive the same expected utility from buying two successive numbers of packages.

More formally, let γnk denote the value of the package size s such that k-segment customers

receive the same expected utility from consuming n or n + 1 packages for n = 0, 1, ...,, that

is, such that

upk(n, s, P
p) = upk((n+ 1), s, P p) (2.5)

Remember that we have assumed that, in case of a tie in the maximum expected net util-

ity, customers buy the largest number of packages which gives them this maximum value.

Therefore k-customers buy n + 1 packages when the package size is γnk . In particular, they

buy one package if the package size is γ0
k as they receive the same expected net utility from

buying one package or buying nothing.

Also, let γ−1
k = +∞.

The γnk values can be used to express the number of packages bought by customers of

segment k, i.e., ı̂k as a function of the package size s, as shown in the following lemma.

Lemma 2.2.1.2. ı̂k(s, P
p) is a non-increasing piecewise constant function of s for fixed

P p with thresholds γnk such that ı̂k(s, P
p) = n for s ∈ [γnk , γ

n−1
k ), for n = 0, 1, 2, .... Also,

ı̂k(s, P
p)s is a piecewise increasing function of s for fixed P p with the same thresholds. Fi-

nally, îk(γ
n
k , P

p)γnk is decreasing in n.

The following lemma shows that, when the distribution of consumption needs is uniformly

distributed, the optimal number of packages purchased can be obtained by rounding
Q∗pk
s

to

the nearest integer.

Lemma 2.2.1.3. For every given package unit price P p and package size s, under a uniform

distribution for Segment k consumer needs on [0, Bk], we have îk(s, P
p) =

⌊
Q∗pk
s

⌉
.
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Figure 2.2: Number of packages bought and total purchase quantity as a function of package
size when unit package price is fixed

Consumer choice with both bulk and package sales options

We now assume that the retailer provides both bulk and package sale options and the con-

sumers choose between these two options (or nothing). As mentioned above, we assume that

prices are set such that c < P p ≤ P b, so that consumers face a tradeoff between price and

quantity.

Given the results from the previous two sections, customers from segment k who buy in

bulk buy Q∗bk units and customers who buy in packages buy either iLk or iRk packages. As a

result, their expected net utility is given by

max
{
ubk(Q

∗b
k ;P b), upk(i

L
k ; s, P p), upk(i

R
k ; s, P p)

}
In case of a tie between the utility from the bulk sale option and the maximum utility from

the package size option, we assume that consumers buy the product in packages.

The following Lemma provides a sufficient condition for customers of segment k to select

the package sale option.
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Figure 2.3: An example of change of consumer choice by package size

Lemma 2.2.1.4. Assume P p ≤ P b. If Q∗bk ≤ siLk then customers from segment k choose the

package sale option.

Example 2.2.1.5. Let K = 1, v = 5, r = 0.5, w = 1, BL = 15, P p = 2.4, P b = 2.5 and c = 1.

In Figure-2.3 we show a consumer’s purchase decision for two different package size options.

When the package size is 5 units, the utility of buying 6.9 units of product in bulk gives higher

utility than buying 1 or 2 packages of product (or buying 5 or 10 units). Hence, consumer

prefers to buy product in bulk. On the other hand, when package size is 6 units, consumer

prefers to buy 1 pack of product to buying in bulk (or buying 2 pack) since this gives more

utility.

The parameters that the retailer has control over are bulk/pack price and package size.

In the following example we show how consumers decision change depending on these pa-

rameters.

Example 2.2.1.6. Let K = 1, v = 5, r = 0.5, w = 1, BL = 15 and c = 1. In Figure-2.4 (a)

we show how consumer’s purchase decision change by P b and P p when s = 5. Due to the

selection of high (relatively) package size, consumer choose bulk purchase in the majority of
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(a) Change By P p and P b (s = 5) (b) Change By s and P b (P p = 2.4)

Figure 2.4: Change of consumer‘s choice by P b, P b and s (Example 2.2.1.6 )

the area. As can be inferred from Figure-2.4 (b), the area of bulk purchase is going to shrink

as s gets smaller because consumer is better off buying in small packages since it enables

consumer to better match her demand and purchase amount along with paying less per unit.

2.2.2 Retailer’s Optimal Decisions

In this section we investigate retailer‘s optimal decisions under the assumption that segment

k’s consumption needs Dk has a uniform distribution on [0, Bk] for k = 1, ..., K.

Besides reporting the retailer’s optimal decisions, we also investigate their impact on

the expected waste quantities at the consumer level. Let Qk be the total product quantity

purchased by Segment k consumers (either in bulk or in packages). We calculate both

expected absolute waste, calculated as W abs
k (Qk) = E[Qk − Dk]

+ and expected relative

waste, calculated as W rel
k (Qk) =

Wabs
k (Qk)

Qk
. In practice absolute waste measure the total

physical quantity of product which is thrown away (a relevant metric for estimating how

much is potentially sent to a landfill) and relative waste measure the percentage of product

purchased by the consumer which is wasted (a relative metric when comparing different
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settings such as with and without the bulk sale option). When Dk is uniformly distributed

on [0, Bk], the absolute waste from Segment k consumers is equal to:

W abs
k (Qk) =


Q2
k

2Bk
for Qk ≤ Bk

Qk − Bk
2

for Qk ≥ Bk

(2.6)

We also report total expected absolute and relative waste across allK segments asW abs(Qk) =∑K
k=1 αkW

abs
k (Qk) and W rel(Qk) =

∑K
k=1 αkW

abs
k (Qk)∑K

k=1 αkQk
.

In what follows we study the retailer’s optimal package size and pricing decisions in a

number of different settings. We first consider the case of an homogeneous market, that

is, when there is only one consumer segment. Next, we consider the heterogeneous market

case with two different consumer segments who differ in their maximum consumption needs

quantity Bk, but have the same the same product valuation, waste cost and run-out cost.

2.3 Homogeneous Market

In this section we consider the case of a unique customer segment. We let Bk = B, vk =

v, wk = w and rk = r and set θp = v+r−P p
v+r+w

. In this case, since all customers behave identically

and purchase either only in packages or in bulk, it is optimal for the retailer to offer only

one sale option, that is, either only packages or bulk.

2.3.1 Offering Only the Bulk Sale Option

The following lemma summarizes our results when the retailer offers only the bulk sale

option. Let η = v+r−c
v+r+w

and δ = (v+r−c)2
v+r+w

.

Lemma 2.3.1.1. If the retailer only offers the product in bulk to a homogeneous market, the

optimal bulk unit price is P ∗b = v+r+c
2

and the optimal retailer profit is δ
4
B. The customers’

purchase quantity is equal to η
2
B which gives them an expected net utility of

(
δ
8
− r

2

)
B.

Finally, absolute expected waste is equal to η2

8
B and relative expected waste is η

4
.
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Note that at the optimal solution, the consumers receive the maximum utility given the

the bulk price as they are able to purchase their ideal bulk purchase quantity Q∗b given

the unit bulk price P ∗b. Also, they generate a positive amount of expected waste both in

absolute and relative terms, which is due to the random nature of their consumption needs.

2.3.2 Offering Only the Package Sale Option

Next we consider the case where the retailer only offers the product in packages. In this

case, the retailer optimizes both the package size s and the product unit price P p such that

P p > c. Our first result provides a formula for the optimal package size as a function of a

fixed unit price P p.

Lemma 2.3.2.1. If the retailer only offers the product in packages to a homogeneous market,

and the product unit price is fixed at P p, then the optimal package size s∗(P p) = B
2

(
v+r+w
P p+w

)
=

B
2

1
1−θp for P p ≤ v+r−w

2
and s∗(P p) = 2B

(
v+r−P p
v+r+w

)
= 2Bθp for P p ≥ v+r−w

2
. Customers buy

one package and receive a negative expected net utility of − r
2
B, which is the expected net

utility of buying nothing.

Intuitively, the retailer offers the largest possible package size such that all consumers

buy one package. At this value the consumers receive a negative utility which matches the

utility they receive from buying nothing.

Next we provide the optimal value for the size and unit price of the package. As in the

previous section we let η = v+r−c
v+r+w

and δ = (v+r−c)2
v+r+w

.

Lemma 2.3.2.2. If the retailer only offers the product in packages to a homogeneous market,

the optimal package unit price is P ∗p = v+r+c
2

, the optimal package size is ηB and the optimal

retailer profit is δ
2
B. The customers purchase one package, therefore their purchase quantity

is equal to ηB, which gives them an expected net utility of − r
2
B. Finally, expected absolute

waste is equal to η2

2
B and relative expected waste is η

2
.
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2.3.3 Comparison Between Bulk Only and Package Only

By comparing the optimal values in Lemmas 2.3.1.1 and 2.3.2.2, we see that the optimal

product unit price is the same in both cases. It is interesting to note that this optimal price

does not depend on the waste cost w but depends on the run-out cost r. Interestingly, the

retailer makes twice as much profit when selling the product in packages versus in bulk. This

is because he forces the consumers to buy twice as much when selling in packages, up to

the point where they are indifferent between buying the product and buying nothing. As

a result the customers are expected to waste four times more in absolute terms and twice

more in relative terms when the product is sold in packages versus in bulk. We summarize

these findings in the following theorem (proof is omitted).

Theorem 2.3.3.1. If the retailer sells the product to a homogeneous market, it is optimal

to sell it in packages. However doing so leads to four (two) times the amount of absolute

(relative) waste compared to optimally selling in bulk.

2.4 Heterogeneous Market with Two Consumer Segments

In this section we assume there are two customer segments, i.e. K = 2, who differ only in their

maximum consumption needs quantity Bk. As in the previous section, we let vk = v, wk = w

and rk = r and set θp = v+r−P p
v+r+w

. Without lost of generality we let B1 > B2 so that Segment

1 consumers have higher consumption needs than Segment 2 consumers or in others words,

Segment 1 customers have low consumption needs and Segment 2 consumers have high

consumption needs. For the ease of readability we use BL instead of B1 and BH instead of

B2. Let α1 = α denote the proportion of segment 1 (low consumption needs) customers so

that 1− α is the proportion of segment 2 (high consumption needs) customers.
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2.4.1 Offering Only the Bulk Sale Option

First we analyze the case where the retailer offers only the bulk sale option. Lemma 2.4.1.1

summarizes the optimal price and the other results of interest. Note that the result applies

to any number of segments, that is, it holds for K ≥ 1.

Lemma 2.4.1.1. If the retailer only offers the product in bulk to two customer segments

who differ only in their maximum consumption needs quantity, the optimal bulk unit price is

P ∗b = v+r+c
2

and the optimal retailer profit is δ
4

∑K
k=1 αkBk. Segment k consumers’ purchase

quantity is equal to η
2
Bk which gives them an expected net utility of

(
δ
8
− r

2

)
Bk. Finally,

expected absolute waste from Segment k consumers is equal to η2

8
Bk and expected relative

waste is η
4
.

Notice that the optimal unit price is the same as in the homogeneous market case.

2.4.2 Offering Only the Package Sale Option

In this section we analyze the case where retailer offers only packages of a fixed size s. Under

the uniform distribution assumption for the consumption needs, we use (2.2) to obtain that

γnk = 2Bkθ
p

1+2n
for n = 0, 1, .... Note that, under our assumption that BL < BH , we have γn1 < γn2

for all n = 0, 1, ....

First we fix the unit prices P p and show that the optimal package size can only take one

of three possible values.

Theorem 2.4.2.1. For a fixed package price, the optimal package size is either γ0
1 , γ0

2 or γn̄2

where n̄ =
⌊
BH
2BL

⌉
.

where bxe denotes the rounding of x to the nearest integer value.

When the optimal package size is γ0
1 , Segment 1 customers are indifferent between buying

one package and buying nothing, hence, given our tie-breaking rule, they buy one package
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Figure 2.5: Possible optimal values for the package size in a 2-segment market when price is
fixed

and Segment 2 customers buy n̄ packages. When the optimal package size is γ0
2 , Segment 2

customers are indifferent between buying one package and buying nothing, hence they buy

one package, and Segment 2 customers buy nothing. When the optimal package size is γn̄2 ,

Segment 2 customers are indifferent between buying n̄ and n̄ + 1 packages, hence they buy

n̄ + 1 packages and segment-1 customers buy one package. Figure 2.5 represents the three

possible values for the optimal package size given a fixed P p. On this picture n̄ = 1.

We now provide the optimal solution, that is, the optimal package size and unit price.

Theorem 2.4.2.2. In a heterogeneous market with two consumer segments, the optimal

package unit price is P ∗p = v+r+c
2

. When n =
⌊
BH
2BL

⌉
< BH

2BL
, the optimal package size is:

s∗ =


ηBH for α ≤ n

1+n

η BH
1+2n

for n
1+n
≤ α ≤ BH+n(BH−BL−2BLn)

BL+n(BH+BL−2BLn)

ηBL for α ≥ BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)
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When n =
⌊
BH
2BL

⌉
> BH

2BL
, the optimal package size is:

s∗ =

 ηBH for α ≤ BH−nBL
BL+BH−nBL

ηBL for α ≥ BH−nBL
BL+BH−nBL

where η = v+r−c
v+r+w

.

We see that the optimal price is same as in the homogeneous market case and the bulk

sale case. The optimal package size can take three different values, which correspond to

three solutions which we refer to as the “Tailor to Segment 1”, “Tailor to Segment 2” and

“Compromise” solutions. We say that the retailer chooses to “tailor to Segment 1” when

the packages size is set equal to ηBL, which makes Segment 1 customers indifferent between

buying one package and buying nothing. As a result Segment 1 customers buy one package

and Segment 2 customers buy n packages where n =
⌊
BH
2BL

⌉
, which is equal to one or more.

We say the retailer chooses to “tailor to Segment 2” when the package size is set equal to

ηBH , which makes Segment 2 customers receive the same utility from buying one package

and buying nothing. As a result Segment 2 customers buy one package and Segment 1

customers buy nothing. We say the retailer chooses the “compromise” solution when the

package size is set equal to η BH
1+2n

, which is such that Segment 2 customers receive the same

net utility from buying n and n+ 1 packages. As a result customers from segment 1 buy one

package and customers from Segment 2 buy n+ 1 packages.

As expected, when the proportion of Segment 1 customers is low (high), it is optimal to

for the retailer to tailor to Segment 2 (Segment 1). For intermediate values of α it is possible

that the retailer needs to strike a compromise by choosing another value of the package size.

Table 2.2 provides the value of the retailer’s profit, consumers’ purchase quantity, utility and

waste for each possible solution.

Example 2.4.2.3. Let K = 2, v = 20, r = 4, w = 1, BL = 2, BH = 13, c = 16.
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Table 2.2: Retailer’s profit and consumers’ purchase quantity, utility and waste when the
retailer offers only packages.

Solution Tailor to Segment 1 Tailor to Segment 2 Compromise

Package size ηBL ηBH η BH

1+2n

Retailer’s profit δ
2 (n(1− α) + α)BL

δ
2 (1− α)BH

δ
2
n(1−α)+1

1+2n BH
Purchase quantity

Segment 1 ηBL (one pack) 0 η 1
1+2nBH (one pack)

Segment 2 nηBL (n packs) ηBH (one pack) η n+1
1+2nBH (n+ 1 packs)

Consumer utility

Segment 1 − r2BL − r2BL δBH(BL(1+2n)−BH)

2BL(1+2n)2
− r

2BL

Segment 2 δn
2

(
1− nBL

BH

)
BL − r

2BH − r2BH δBH

2
n(1+n)

(1+2n)2
− r

2BH

Absolute waste

Segment 1 η2

2 BL 0 η2

2
(BH)2

BL(1+2n)2

Segment 2 n2η2

2
B2

L

BH

η2

2 BH
η2

2
BH(1+n)2

(1+2n)2

Relative waste
Segment 1 η

2 0 η
2

BH

BL(1+2n)

Segment 2 nη
2
BL

BH

η
2

η
2

(1+n)
(1+2n)

where n =
⌊
BH
2BL

⌉
, η = v+r−c

v+r+w
and δ =

(v+r−c)2
v+r+w

.

The optimal product unit price is 20. For α ∈ [0, 0.75], the optimal package size is 4.16,

which is tailored to Segment 2 customers: Segment 1 customers do not buy anything and

Segment 2 customers buy one package. For α ∈ [0.75.0.91], the optimal packages size is

0.59; this is the compromise solution: Segment 1 customers buy one package and Segment 2

customers buy 4 packages. Finally for α ∈ [0.91, 1], the optimal packages size is 0.64, which

is tailored to Segment 1 customers: Segment 1 customers buy one package and Segment 2

customers buy 3 packages. Note that the optimal package size is not monotone in α as it is

smallest when the retailer chooses the comprise solution.

The conditions which determine which package size value is optimal only depend on the

values of α,BL and BH and not on the cost parameters. Figure 2.6 shows how the optimal

solution varies with the BL
2BH

ratio and the proportion of Segment 1 customers α when the

retailer offers only packages. Note that we see the Compromise region appear only for values

of BL
2BH

such that the decimal numbers are between 0 and 0.5, which is what the condition

n =
⌊
BH
2BL

⌉
< BH

2BL
directly implies.
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Figure 2.6: Optimal solution when the retailer offers only packages

2.4.3 Offering Both Bulk and Package Sale Options

In this section we analyze the case where retailer is able to offer the product both in bulk and

in packages. As profit maximizer the retailer is choosing between three options: offering the

product only in bulk, only in packages or at the same time in bulk and packages. Given that

there are two consumer segments, the last option implies that consumers from one segment

buy the product in bulk while consumers from the other segment buy packages.

Our first result eliminates one of the above options as a possible solution to the retailer’s

profit maximization problem.

Theorem 2.4.3.1. It is never optimal for the retailer to only offer the product in bulk.

Depending on the demand and cost parameters, it is either optimal to (i) offer the prod-

uct only in packages to both segments or (ii) offer the products in bulk to Segment 1 cus-

tomers and in packages to Segment 2 customers. In Case (i) the retailer chooses either the

tailor to Segment 1 or compromise solution. In Case (ii), the optimal bulk unit price is

P b∗=BH(v+r)(1−α)+αBL(v+r+c)
BH(1−α)+2αBL

, the optimal package unit price is v+r+c
2
− α2B2

L(v+r−c)
(BH(1−α)+2αBL)2

and

the optimal package size is s∗ = ηBH .
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Interestingly, when it is optimal for the retailer to offer bulk and packages selling options,

the package size is designed so that Segment 2 customers are indifferent between buying in

bulk or buying one package, which means they buy one package. Also Segment 1 buy in bulk,

choosing the quantity which maximizes their net utility given the bulk unit price. Table 2.3

provides the value of the retailer’s profit, consumers’ purchase quantity, utility and waste for

this case.

Table 2.3: Retailer’s profit and consumers’ purchase quantity, utility and waste when it is
optimal to offer both bulk and packages.

Solution Bulk & package
Package size ηBH

Retailer’s profit δ
2
(αBL+(1−α)BH)2

2αBL+(1−α)BH

Purchase quantity

Segment 1 η
B2

Lα
BH(1−α)+2BLα

(in bulk)

Segment 2 ηBH (one pack)
Consumer utility

Segment 1
BL((BLα)

2(δ−4r)−rBH(1−α)(BH(1−α)+4BLα))
2(BH(1−α)+2BL)2

Segment 2 BH

2

(
δ(BLα)

2

(BH(1−α)+2BLα)
2 − r

)
Absolute waste

Segment 1 η2

2
B3

Lα
2

(2BLα+BH(1−α))2

Segment 2 η2

2 BH
Relative waste

Segment 1 η
2

BLα
(2BLα+BH(1−α))

Segment 2 η
2

where n =
⌊
BH
2BL

⌉
, η = v+r−c

v+r+w
and δ =

(v+r−c)2
v+r+w

.

Table 2.4 in the Appendix provides the necessary and sufficient conditions for each pos-

sible solution to be optimal.

Figure 2.7 shows how the optimal solution varies with the BL
2BH

ratio and the proportion

of Segment 1 customers α when the retailer is able to offer both bulk and packages.

Figure 2.8 represents the percentage increase in the retailer’s profit from being able to

include a bulk sale option as a function of BL
2BH

ratio and the proportion of Segment 1

customers α, which are the only parameters which have an impact (i.e., the values v, r, w
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Figure 2.7: Optimal solution when the retailer can offer bulk and packages

Figure 2.8: Percentage increase in the retailer’s profit from the ability to offer bulk
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and c do not matter here). The white regions on Figure 2.8 corresponds to parameter values

for which the retailer optimally choose to offer only packages. The maximum value of the

percentage increase in profit is equal to 12.5%, which is also the theoretical upper bound

as stated in Theorem-2.4.3.2, and averages out to 1.66% across all values considered on the

graph (i.e,. BL
2BH
∈ [0, 5] and α ∈ [0, 1]).

Theorem 2.4.3.2. Consider a retailer who initially offers the product only in packages.

Having the ability to also offer the product in bulk increases the profit up to 12.5%.

Another scenario could be considering a retailer who is selling the product only in bulk.

We already know from Theorem-2.4.3.1 that selling only bulk is never optimal and the opti-

mal strategy is as shown in Figure-2.7. But percent increase in the profits as a consequence

of being able to include a package sale option will be different. In Figure-2.9 we show the

percentage increase in the retailer‘s profit in that case as a function of BL
2BH

ratio and the pro-

portion of Segment 1 customers α. The maximum value of the percentage increase in profit

is equal to 100%, which is also the theoretical upper bound as stated in Theorem-2.4.3.3,

and averages out to 75.45% across all values considered on the graph.

Theorem 2.4.3.3. Consider a retailer who initially offers the product only in bulk. Having

the ability to also offer the product in packages increases the profit up to 100%.

2.4.4 Impact on Waste

In this section we study the impact on waste at the consumer level from adding a new sale

option.

First we consider the case of a retailer who initially offers the product only in packages

then is able to add the bulk sale option. Figure 2.10 represents the change in absolute

and relative expected waste from the retailer being able to include a bulk sale option as a
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Figure 2.9: Percentage increase in the retailer’s profit from the ability to offer pack

function of BL
2BH

ratio and the proportion of Segment 1 customers α, which once again, are

the only parameters which have an impact (i.e., the values v, r, w and c do not matter here).

According to the numerical results the maximum change in relative expected waste is 54.45%

and the minimum change is 0% with an average of 1.95%. For the relative expected waste

we observe the maximum change as 37.4% and minimum change as -8.33% (decrease) with

an average of 0.26%.

Intuitively, the impact on absolute waste is an increase because, with the introduction of

bulk, the retailer increases the total quantity purchased by both customers segments, which

in turns leads to an increase in the amount of absolute waste. It is notable that adding bulk

has in many cases a negative impact on waste in our model. This is due to the fact that the

retailer is able to use the bulk sale to force Segment 2 customers to buy more products.

Second, we consider the case of a retailer who initially offers the product only in bulk

then is able to add the package sale option. Figure-2.11 shows the change in absolute and

relative expected waste from the retailer being able to include the package sale option as
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(a) Change in absolute expected waste (b) Change in relative expected waste

Figure 2.10: Change in consumers’ absolute and relative expected waste by adding bulk
option

a function of BL
2BH

ratio and the proportion of Segment 1 customers α. According to the

numerical results the maximum change in relative expected waste is 300% and the minimum

change is 100% with an average of 235%. For the relative expected waste we observe the

maximum change as 100% and minimum change as 40% with an average of 90.4%. In fact,

we have the following theorem:

Theorem 2.4.4.1. Consider a retailer who initially offers the product only in bulk. Having

the ability to also offer the product in packages will always increase absolute and relative

waste.

2.5 Full Heterogeneity

In this section we assume that consumers from Segment k follows a uniform distribution on

[0, B] where B follows a continuous distribution with cdf G and pdf g on support [0, B]. All

the other assumptions are the same. As we did before, we analyze the different strategies,

i.e., only bulk sale, only package sale and both, and determine the best strategy for the

retailer.

Let up(i, s, P p;B) denote the expected net utility a customer with maximum consumption

needs B derives from purchasing i packages of size s at a unit price of P p and let ub(Qb, P b)
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(a) Change in absolute expected waste (b) Change in relative expected waste

Figure 2.11: Change in consumers’ absolute and relative expected waste by adding package
option

denote the expected net utility a customer with maximum consumption needs B derives from

purchasing Qb units of bulk at a unit price of P b. Also let ı̂(s, P p, P b;B) and Q̂b(s, P p, P b;B)

respectively denote the number of packages and bulk quantity purchased by consumers with

maximum consumption needs B In this case the retailer’s profit can be written as:

max
s,P p,P b

π(s, P p, P b) =

∫ B

0

[
(P p − c)̂ı(s, P p, P b;B)s+ (P b − c)Q̂b(s, P p, P b;B)

]
g(B)dB

(2.7)

2.5.1 Offering Only the Bulk Sale Option

When the retailer offers only bulk for a unit price P b ≤ v + r, consumers with maximum

consumption needs B buy a quantity Q̂b(s, P p, P b;B) = B v+r−P b
v+r+w

. Therefore we have:

π(P b) =

∫ B

0

(P b − c)Bv + r − P b

v + r + w
g(B)dB = (P b − c)v + r − P b

v + r + w
E[B]

As before, let η = v+r−c
v+r+w

and δ = (v+r−c)2
v+r+w

.

Lemma 2.5.1.1. When the retailer offers only bulk, the optimal bulk unit price is v+r+c
2

,

optimal profit is δ
4
E[B]. Also, total absolute waste at consumer level is η2

8
E[B] and the total

relative waste is η
4
.
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Figure 2.12: Full heterogeneity case purchase structure for only package sale

Notice that the optimal price is the same as in the homogeneous case and heterogeneous

case with two consumer segments, when the retailer offers only bulk.

2.5.2 Offering Only the Package Sale Option

Next we consider the case when the retailer offers only the package sale option. We first

show that the number of packages purchased given a a price P p and a package size s is a

piecewise constant increasing function.

Theorem 2.5.2.1. Given a package unit price P pand package size s let βn(P p, s) = 1
2
v+r+w
v+r−P p (2n+

1)s and let β−1 = 0 . Customers with B ∈ (βn−1, βn] buy n packages for n = 0, 1, ...

The maximum number of packages bought by consumers for a given package unit price

P p and package size s is the smallest value of n such that βn > B, which is equal to

n̄ ≡
⌈
B v+r−P p
s(v+r+w)

⌋
. Hence, we can write the retailer’s profit function as:

π(P p, s) = (P p − c)
∫ B

0

ı̂(s, P p, P b;B) s g(B)dB

= (P p − c)
dB v+r−Pp

s(v+r+w)c∑
n=1

ns
[
G(βn(P p, s))−G(βn−1(P p, s))

]

= (P p − c)
dB v+r−Pp

s(v+r+w)c−1∑
n=1

ns
[
G(βn(P p, s))−G(βn−1(P p, s))

]
+

⌈
B

v + r + w

s(v + r − P p)

⌋
s
[
1−G(βdB

v+r−Pp
s(v+r+w)c−1(P p, s)

]
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Lemma 2.5.2.2. If G is uniformly distributed on [0, B̄], the optimal package unit price is

P p∗ = v+r+c
2

and the optimal package size is any value s∗ = η B̄
2N

for N ∈ {1, 2, ...}. The

optimal profit does not depend on N and is equal to π∗ = δ B̄
8

. Total absolute waste at

consumer level depends on N and is equal to

W abs = η2 B̄

8

[
N−1∑
n=1

n2

N2
ln

(
2n+ 1

2n− 1

)
+ ln

(
2N

2N − 1

)]
(2.8)

and the total relative waste is

W rel =
η

2

[
N−1∑
n=1

n2

N2
ln

(
2n+ 1

2n− 1

)
+ ln

(
2N

2N − 1

)]
(2.9)

We see that the package unit price and the retailer’s profit is the same as the bulk unit

price when it is the only available option. Also note that there is an infinite number of

optimal package sizes. The largest possible packages size is η B̄
2

(when N = 1); in this case

half the consumer population buys one package and the other half buys nothing. As N

gets larger, the packages size gets smaller which reduces consumer waste without affecting

the retailer’s profit. The term in brackets in the absolute waste expression in (2.8) and

(2.9) tends to 1/2 as N tends to infinity, so that, for infinitesimally small package size, the

absolute waste becomes equal to η2 B̄
16

and the relative waste becomes equal to η
4
, which are

the corresponding values under bulk sale option only. In contrast, the absolute (relative)

waste is maximized when N = 1, in which case it is equal to 2 ln(2) ≡ 138% of the absolute

(relative) waste under the bulk sale option only.

2.5.3 Offering Both Bulk and Package

When bulk and package are offered at the same time, depending on the prices and package

size, some consumers may prefer to buy package, some may prefer to buy in bulk and some

may not buy the product at all. As long as P b < v+ r consumers prefer to by some amount

of product to buying nothing and for P p ≥ P b consumers prefer to buy in bulk. So, for
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Figure 2.13: A feasible purchase structure for bulk and package coexist case (Full Hetero-
geneity)

P p ≤ P b < v+ r Figure-2.12 will change such that there will be regions with bulk purchase

and package purchase with different number of packages. But it is difficult to show how the

structure will be (Intuitively we expect no-purchase region to be replaced by bulk purchase).

For this reason, we try to find a lower bound for the optimal profit and the corresponding

optimal decisions.

In order to find a lower bound we assume a purchase structure illustrated in Figure-2.13

where β0 is the B value where consumer’s utility of buying in bulk is equal to utility of

buying 1 package. We assume that consumers can buy only one package.

Under this assumption, for a given P b, P p and s the aggregate sales from bulk sales is∫ β0

0
B v+r−P b

v+r+w
1
B̄
dB and the aggregate sales from package sales is

∫ B̄
β0 s

1
B̄
dB. Then the retailers

optimization problem is:

max
P b,P p,s

π = (P b − c)
∫ β0

0

B
v + r − P b

v + r + w

1

B̄
dB + (P p − c)

∫ B̄

β0

s
1

B̄
dB (2.10)

If we can show that the structure we assumed is a feasible case of the original problem then,

the solution of (2.10) is a lower bound for the original problem.

Lemma 2.5.3.1. When bulk and package coexist, limiting the maximum number of pack-

ages that consumers can buy to one gives a lower bound for optimal profit such that π∗ ≥
4B̄(v+r−c)2
27(v+r+w)

.

We show in the proof of Lemma-2.5.3.1 that the purchase structure we assumed holds

for the optimal values we get from (2.10).
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2.5.4 Best Strategy for the Retailer

When we compare the three results we get for only bulk sale, only package sale and co-

existence cases we get the following theorem:

Theorem 2.5.4.1. Selling package and bulk at the same time with P b∗ = 2v+2r+c
3

, P p∗ =

4v+4r+5c
9

and s∗ = 2B̄(v+r−c)
3(r+v+w)

yields at least 18% more profit than selling only bulk or selling

only package.

As a result, when the market is fully heterogeneous, It is always better to offer bulk and

package together in terms of profit.

2.6 Extensions

2.6.1 Different Cost for Bulk and Package Sale

In the previous analyses, we assumed that unit cost of a product is the same, independent

of being sold in a package or in bulk. In this section we investigate how the results change

if the cost differs.

The total packaging cost of a given product can simply be divided into two; packaging

material cost and packaging equipment cost. In our setting, at the retailer level the packaging

is a simple process and usually does not require packaging equipment. But of course there is

some labor cost associated with it. Since bulk sale also incurs some labor cost and compared

with the other activities, labor spend on packaging or bulk sale arrangement is very low, we

can ignore the labor cost and assume that the cost difference between package sale and bulk

sale comes from the packaging material cost. Let cb and cp be bulk and package unit cost

respectively. Based on the discussion above we assume cp = cb+ per unit packaging material

cost. The unit cost of packaging material depends on the amount of product in a package.

As package size gets larger, unit packaging cost decreases. It could be ignored when the
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Figure 2.14: Homogeneous market-change of optimal strategy by cp and cb (v = 10 and r = 2

package size is very big.

Homogeneous market:

As discussed earlier, when the market is homogeneous, it is never optimal to sell bulk and

package at the same time. Recall that when cb = cp retailer earns twice more by selling the

product in packages. If cb > cp we still have the package sale optimal but retailer earns more

than two times compared with bulk sale. However, if cb ≤ cp, it is possible to have bulk sale

to be optimal. Namely, package sale is optimal if cp < (
√

2−1)(v+r)√
2

+ cb√
2
. Figure-2.14 presents

the change of optimal strategy by cb and cp for v = 10 and r = 2. As v or r increases, the

area of package sale gets larger. That is because, as v or r increases, the consumer wants to

buy more product and the retailer exploits this by selling the product in package.

Heterogeneous Market with 2 consumers:

All the results for the only bulk sale and only package sale when the market is heterogeneous

with two consumer segments still holds with only change of c to eithercb or cp. For the
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Figure 2.15: Heterogeneous market-change of optimal strategy by cp and cb (v = 10 and
r = 2)

package sale, we still have 3 optimal package size candidates as stated in Theorem-2.4.2.1

.On the other hand, when package and bulk sale co-exist, it is still optimal to adjust pb, pp

and s such that the consumer segment with low expected consumption buys in bulk. The

optimal values becomes messier due to not having some cancellations but we still have closed

form solutions. The most drastic effect of different cost assumption is on the best strategy

of the retailer. Theorem-2.4.3.1 doesn’t hold anymore because now bulk sale also can be the

optimal strategy. We present an example in Figure-2.15 where we can observe three different

optimal strategies based on cp and cb. (The parameters are v = 10, r = 5, w = 2,B1=1 and

B2=10)

2.6.2 Normally Distributed Consumer Consumption

One of the most important assumptions in our study is assuming a uniform distribution for

consumer consumption in a period. Now we change this assumption and assume that con-

sumer consumption is normally distributed. Namely, we assume thatDk ∼ NORMAL(µk, σk).
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Figure 2.16: Change of purchase quantity by s when Dk ∼ NORMAL(µk, σk)

This assumption changes consumer utility function and unfortunately most of our results do

not hold in this case. Finding a closed form solution even for the simplest case of homo-

geneous market bulk sale setting becomes very tedious. Moreover, Theorem-2.4.2.1, which

enables us to find closed form solutions for the only package sale strategy doesn’t hold any

more. As shown Figure-2.16 for a given price, the optimal package size could be any γn1 such

that 0 < γnk ≤ γ0
k which makes the problem analytically intractable. In Figure we assumed

v = 7, c = 1, r = 0.5, w = 0.3, µk = 10 and σ1 = 1.

2.6.3 Consumers with Different v

Another way to differentiate consumers in our model is assuming that their product valuation

v is different. We investigated how does our results change when we allow each consumer

to have different v, say vk. In order to have consumer segments that can be ordered by

their purchase quantity (for a given price and package size), we assume that consumers

have same consumption rate, that is, Bk = B for all k. Hence, with the uniform distribution

assumption, the ideal purchase quantity of a consumer segment with higher vk will be higher.
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Under these assumptions, since consumer choice explained in §2.2.1 remains the same, the

optimal results for the homogeneous market also remains the same. For the heterogeneous

market with two consumer segments, when there is only bulk sale, the optimal bulk price

P ∗b changes depending on c/(2v1 + r) where v1 ≤ v2. If c/(2v1 + r) ≤ 1 the optimal price

is such that both consumer segments buy the product. Otherwise, the optimal price is such

that Segment-1 consumers buy nothing. On the other hand, when there is only package sale,

Theorem-2.4.2.1 still holds. We easily get the closed form solutions for the optimal package

size and price when θ2 ≤ 1/2 but otherwise it becomes tedious due to the calculation of γnk

values.

2.7 Conclusion

Package size decision problem has not taken enough interest from the operations management

researchers. There are limited numbers of studies focusing on the possible improvements

that can be achieved by adjusting package size according to the market variables. Besides,

motivated by the environmental concerns, an old sale strategy of selling the product without

packages is getting more attention nowadays. Called as bulk sale or package free sale, this

old way of retailing the product for sure has the potential to save from packaging materials

but it has one other potential benefit; it can reduce food waste, which is one of the most

important problems of modern life. Bulk sale allows the consumers to better adjust their

purchase amount with their expected consumption amount and thus reduces over purchases

due to the package size limitation. With this study we fill the gap in the literature by

proposing an appropriate model that takes into account the uncertainty of consumption at

the consumer level to find the optimal package size and price decision of a retailer selling

a perishable product. Moreover, we investigated the effect of introducing bulk sale to the

optimal pricing decisions and profits. We also showed how food waste at the consumer level

changes based on the retailers optimal pricing, package size and bulk sale decisions.
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We found that, when the market is homogeneous, the retailer adjusts the package size

and price such that consumers are indifferent between buying nothing and buying the whole

package. Selling product in package is an advantage for the retailer because; he can push

consumers to buy more by limiting their purchase option to a certain amount. When we

compare the optimal results of bulk sale with package sale, we see that retailer makes two

times more profit by using this advantage. But making consumers buy more product, result

in more waste; expected relative waste for the package sale case is twice more than bulk sale

case.

On the other hand, when the market is heterogeneous with two consumer segments, de-

pending on the ratio of the segment in the market and their average consumption amount,

it could be optimal to sell the product both in package and in bulk. If it is, the package

size and pricing dictions are designed such that the consumer segment with lower average

consumption buys in bulk and the other segment buys in package. According to our numer-

ical analysis, when product is sold in both bulk and package retailer can earn up to 12.5%

more profit. On the other hand, relative waste can be reduced by 8%. But on average,

coexisting of bulk and package increases profits by 1.66% and increase relative waste around

0.26%. When we extent the problem to infinite number of consumers, which is called full

heterogeneity, we see that offering bulk and package sale at the same time is always better

than offering only package sale with at least 18% more profit.

As a result, we can conclude that introducing bulk sale is not always beneficial to reduce the

food waste at the consumer level but depending on the market structure, it could be a good

strategy to create a win-win situation by making the retailers earn more and reducing the

waste. In our study, we do not consider the advantage of bulk sale in reduction of package

material. Taking into account that effect may result in a better solution with costs savings

from packaging and reduction of pollution by less packaging related contamination.
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2.8 Proof of Results

2.8.1 Proof of Lemma 2.2.1.2

We have ı̂k(s, P
p) = arg maxi∈N u

p
k(i, s, P

p) = max
{
upk
(
iLk , s, P

p
)
, upk

(
iRk , s, P

p
)}

where iLk =⌊
Q∗pk
s

⌋
and iRk =

⌈
Q∗pk
s

⌉
.

Suppose that for a given s, we have ı̂k(s, P
p) = iLk , which implies that uk(i

L
k , s, P

p) >

uk(i
R
k , s, P

p). As s increases, uk(i
L
k , s, P

p) increases and u(iRk , s, P
p) decreases so there is no

impact on îk(s, P
p). Eventually s reaches a value such that iLk = iRk = Q∗pk . After this value,

îk(s, P
p) still does not change but it is now equal to iRk . As s further increases, uk(i

L
k , s, P

p)

increases and uk(i
R
k , s, P

p) decreases but there is still no impact on îk(s, P
p), until the value

of s such that uk(i
R
k , s, P

p) = uk(i
R
k , s, P

p). At that value, the optimal number of packages

drops by one and becomes equal to iLk again.

The above argument also shows that ı̂k(s, P
p) only changes (drops by one) at values of s

such that upk(i
L
k , s, P

p) = upk(i
R
k , s, P

p). If we let n = iLk ,, this condition becomes upk(n, s, P
p) =

upk(n+ 1, s, P p), which is the definition of the threshold γnk . As a result ı̂k(s, P
p) is constant,

specifically ı̂k(s, P
p) = n, for s ∈ [γnk , γ

n−1
k ).

The total purchase quantity ı̂k(s, P
p)s is therefore equal to ns for s ∈ [γnk , γ

n−1
k ), so that

it is a piecewise increasing function of s.

Finally, we prove that ı̂k(γ
n
k , P

p)γnk is decreasing in n by showing that ı̂k(γ
n+1
k , P p)γn+1

k −

ı̂k(γ
n
k , P

p)γnk ≤ 0. Recall that we have ı̂k(γ
n
k , P

p) = n+ 1 at γnk and γnk = 2Bkθk
1+2n

.

ı̂k(γ
n+1
k , P p)γn+1

k − ı̂k(γnk , P p)γnk = (n+ 2)
2Bkθk

1 + 2(n+ 1)
− (n+ 1)

2Bkθk
1 + 2n

= 2Bkθk

(
−1

4n2 + 8n+ 3

)
≤ 0 ∀n ∈ N
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2.8.2 Proof of Lemma 2.2.1.3

We show that upk

(⌊
Q∗pk
s

⌋
, s, P p

)
≥ upk

(⌈
Q∗pk
s

⌉
, s, P p

)
if and only if

⌊
Q∗pk
s

⌉
≤ Q∗pk

s
. In what

follows, let n =
⌈
Q∗pk
s

⌉
.

v
Bk
2
− (v + r)(Bk − (n− 1)s)2 + w((n− 1)s)2

2Bk
− P p(n− 1)s ≥ v

Bk
2
− (v + r)(Bk − ns)2 + w(ns)2

2Bk
− P pns

(v + r)(Bk − (n− 1)s)2 + w((n− 1)s)2

2Bk
+ P p(n− 1)s ≤ (v + r)(Bk − ns)2 + w(ns)2

2Bk
+ P pns

(v + r)(Bk − (n− 1)s)2 + w((n− 1)s)2 ≤ (v + r)(Bk − ns)2 + w(ns)2 + 2P psBk

(v + r − P p)
s(v + r + w)

2Bk ≤ (2n− 1)

Q∗pk
s

+
1

2
≤ n

which is equivalent to
⌊
Q∗p

k

s

⌉
≤ Q∗p

k

s .

2.8.3 Proof of Lemma 2.2.1.4

When P b > P p, we have ubk(Q
∗b
k ) = Uk(Q

∗b
k ) − P bQ∗bk ≤ Uk(Q

∗b
k ) − P pQ∗bk ≤ Uk(si

L
k ) −

P psiLk = upk(si
L
k ) since by definition siLk = s

⌊
Q∗pk
s

⌋
≤ Q∗pk and Q∗pk is the maximum of the

concave function Uk(Q)−P pQ. Hence the bulk sales yields a lower expected net utility than

consuming iLk packages. Customers of segment k will therefore choose to purchase either iLk

or iRk packages.

2.8.4 Proof of Lemma 2.3.1.1

From §2.2.1, if the retailer offers the product only in bulk, the purchase quantity of a con-

sumer is B
(
v+r−P b
v+r+w

)
so that the optimization problem is:

max
P b

π(P b) = (P b − c)B
(
v + r − P b

v + r + w

)
(2.11)

which is maximized at P b = v+r+c
2

. The other values are obtained directly from substitution

in the appropriate equations.
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2.8.5 Proof of Lemma 2.3.2.1

Since there is only one customer segment we drop the subscript references k, e.g. we write

only î(s, P p) in what follows. We first prove that there exists an optimal package size for a

fixed price P p such that the customers buy only one package. Suppose not (contraction), that

is, the optimal package size s∗ is such that ı̂k(s
∗, P p) > 1. Now consider alternative package

size s̄ = s∗ı̂k(s
∗, P p). First we show that ı̂(s̄, P p) = 1. Based on the analysis in §2.2.1, there

are two cases: (i) ı̂(s∗, P p) =
⌊
Q∗p

s∗

⌋
or (ii) ı̂(s∗, P p) =

⌈
Q∗p

s∗

⌉
. In case (i), we have U(s̄) =

U (s∗ı̂(s∗, P p)) = U
(
s∗
⌊
Q∗p

s∗

⌋)
≥ U

(
s∗
⌈
Q∗p

s∗

⌉)
> U (2s̄) > U(3s̄) > ..., where the second

inequality is because 2s̄ = 2s∗ı̂(s∗, P p) = 2s∗
⌊
Q∗p

s∗

⌋
> s∗

⌈
Q∗p

s∗

⌉
= s∗

[⌊
Q∗p

s∗

⌋
+ 1
]
> Q∗p and

U(Q) is decreasing forQ > Q∗p. In case (ii), we have U(s̄) = U (s∗ı̂(s∗, P p)) = U
(
s∗
⌈
Q∗p

s∗

⌉)
>

U (2s̄) > U(3s̄) > ..., where the inequality is because 2s̄ > s̄ = s∗
⌈
Q∗p

s∗

⌉
> Q∗p and U(Q)

is decreasing for Q > Q∗p. Therefore, in both cases (i) and (ii), maxi∈N u
p(i, s̄, P p) =

U(is̄)− P pis̄ = U(s̄)− P ps̄ = up(1, s̄, P p) which implies that î(s̄, P p) = 1. Further we have

π(s̄, P p) = (P p − c)̂i(s̄, P p)s̄ = (P p − c)s̄ = (P p − c)̂i(s∗, P p)s∗ = π(s∗, P p), which proves

that package size s̄ is also optimal, hence we have a contradiction.

It follows that we can focus on the package size values such that customers buy only one

package, that is, the retailer solves maxs π(S, P p) = maxs:̂i(s,P p)=1 π(s, P p) = (P p− c)s. This

function is maximized when s is set such as the customers are just indifferent between buying

one package and buying nothing, that is, s∗ must be such that up(̂ı(s, P p)) = up(0) = −B
2
r.

Solving this equation yields:

s∗(P p) =


BL
2

(
v+r+w
P p+w

)
for P p ≤ v+r−w

2

2BL

(
v+r−P p
v+r+w

)
for P p ≥ v+r−w

2
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2.8.6 Proof of Lemma 2.3.2.2

Given Lemma 2.3.2.1,

max
s

π(P p) =

 (P p − c)B
2
v+r+w
P p+w

if P p ≤ v+r−w
2

(P p − c)2B v+r−P p
v+r+w

if P p > v+r−w
2

(2.12)

The first part of this expression is increasing in P p and the second part is concave in P p and

maximized at v+r+c
2

. Since v+r+c
2

> v+r−w
2

, it is optimal to set P p equal to v+r+c
2

. The other

values are obtained directly from substitution in the appropriate equations.

2.8.7 Proof of Lemma 2.4.1.1

From §2.2.1, if the retailer offers the product only in bulk, the purchase quantity of a con-

sumer from segment k is Bk

(
v+r−P b
v+r+w

)
so that the optimization problem is:

max
P b

π(P b) = (P b − c)
K∑
k=1

αkBk
v + r − P b

v + r + w

which is maximized at P b = v+r+c
2

. The other values are obtained directly from substitution

in the appropriate equations.

2.8.8 Proof of Theorem 2.4.2.1

Before proving Theorem 2.4.2.1, we prove four lemmas.

Lemma 2.8.8.1

Lemma 2.8.8.1. ∀ m ∈ N+ , n ∈ N+ and n ≥ m ≥ 2, ∃ i ∈ N+ satisfying:

n

2m− 1
≤ i ≤ n

m
(2.13)

Proof. It is clear that for n ≤ 2m − 1 we have at least one i ∈ N+ such as i = 1. For

n > 2m − 1 we define ε = n −m. Then we have ε > 2m − 1 −m ⇒ ε > m − 1 ⇒ ε ≥ m.
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Note that n
m
− n

2m−1
≥ 1 is sufficient to have an integer number satisfying (2.13). If we plug

in n = m+ ε in this expression, then we get ε ≥ m2

m−1
as a sufficient condition. Besides, we

have m2

m−1
= m2

m−1
m+2
m+2

= m2

m2+m−2
(m+2) and for m ≥ 2 since m2

m2+m−2
≤ 1 we get m2

m−1
≤ m+2.

Hence, ε ≥ (m + 2) is sufficient to satisfy (2.13). Since ε ≥ m and for ε ≥ m + 2 we can

find such an integer, it is enough to check for ε = m and ε = m + 1. For ε = m we have,

m+ε
2m−1

≤ i ≤ m+ε
m
⇒ 2m

2m−1
≤ i ≤ 2m

m
⇒ 2m

2m−1
≤ i ≤ 2 and i = 2 is a solution for this

inequality. For ε = m+ 1 we have m+ε
2m−1

≤ i ≤ m+ε
m
⇒ 2m+1

2m−1
≤ i ≤ 2m+1

m
⇒ 2m+1

2m−1
≤ i ≤ 2 + 1

m

where i = 2 is also a solution

Lemma 2.8.8.2

Lemma 2.8.8.2. γ0
k ≥ (2i+ 1)γik for all θk ∈ [0, 1].

Proof. γik has different expressions depending on θk. We need to consider three cases.

Case-1 θk <
1
2

: We have γik = 2Bkθk
1+2i

∀i ≥ 0. It is clear that γ0
k = (1 + 2i)γik

Case-2 1
2
≤ θk≤2i+1

2i+2
: We have γ0

k = Bk
2(1−θk)

and γik = 2Bkθk
1+2i

∀i ≥ 1. After a simple

algebra we get γ0
k = 2Bkθk

1+2i
1+2i

4(1−θk)θk
= γik

1+2i
4(1−θk)θk

. For θk ≥ 1
2

we have 4(1 − θk)θk ≤ 1 which

yields (1 + 2i)γik ≤ γik
1+2i

4(1−θk)θk
= γ0

k ∀i ≥ 1.

Case-3 2i+1
2i+2
≤ θk≤ 1: γ0

k = Bk
2θk

and γik = Bk
i2

(i+θk−
√
θk

2
+ 2iθk) ∀i ≥ 1. From i ≥ 1 we

get θk >
2i+1
2i+2
≥ 3

4
⇒ θk ≤ 1

4
. We try to show that 1

2θk
≥ (2i+ 1) 1

i2
(i+ θk−

√
θk

2
+ 2iθk).The

LHS is increasing in θk so we have 1
2θk
≥ 1

2(1/4)
= 2.On the other hand, the derivative of RHS

with respect to θk is (2i+ 1) 1
i2

1− (i+ θk)/

√
θk

2
+ 2iθk and it less than zero for all θk ≤ 1

4
,so

RHS is decreasing in θk. This yields

(2i+ 1)
1

i2
(i+ θk −

√
θk

2
+ 2iθk) ≤ (2i+ 1)

1

i2
(i+

1

4
−
√

1

4

2

+ 2i
1

4
)

=
(2i+ 1)(1 + 4i−

√
1 + 8i)

4i2
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As a result we get LHS−RHS ≥ 2− (2i+1)(1+4i−
√

1+8i)
4i2

= 2i
√

1+8i+
√

1+8i−(6i+1)
4i2

≥ 0 for ∀i ≥

1

2.8.9 Lemma 2.8.9.1

Lemma 2.8.9.1. For γ1
1 < s ≤ γ̄2 if the package price P p is fixed then arg max

s
π(s, P p) =

γ̄2.

Proof. Note that π(s, P p) =
∑2

k=1 αk(P
p − c)̂ık(s, P p)s and maximizing profit means maxi-

mizing total weighted sales. For γ1
1 < s ≤ γ̄2, since Type-1 customers buy only one package

it is clear that γ̄2 maximizes Type-1‘s purchase amount. On the other hand for Type-2,

since purchase amount is maximized at the points where ı̂2(s, P p) change, we need to con-

sider s = γn2 s.t. γ1
1 < γn2 ≤ γ̄2. For θ2 ≤ 2n+1

2n+2
Type-2 buys (n + 1)2BHθ2

1+2n
amounts of

product when s = γn2 . We have (n + 1)γn2 − (n + 2)γn+1
2 = 2BHθ2

3+8n+4n2 > 0, which shows as n

increases the amount of product the customer buys decreases. Since γ̄2 is the jump point

with the lowest n value, purchase amount of Type-2 is also maximum at γ̄2. Same logic also

applies for θ2 >
2n+1
2n+2

.

2.8.10 Lemma 2.8.10.1

Lemma 2.8.10.1. For a given package price P p, customer with lower Bk (Type-1 in our

setting) buys only one package or none at optimal solution.

Proof. Suppose Type-1 buys n1 packages and Type-2 buys n2 packages at an optimal solution

where n1 ≥ 2 and n2 ≥ n1. And suppose optimal package size is s∗. We will show that one

can always find a better solution s̄ where Type-1 buys one package and Type-2 buys n̄2

packages such that n2

(2n1−1)
≤ n̄2 ≤ n2

n1
. When Type-1 buys n1 packages and Type-2 buys n2

packages, weighted total sales with package size s∗ is equal to αn1s
∗+ (1−α)n2s

∗. We know
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that Type-1 buys the product as long as package size is less than γ0
1 . Thus, Type-1 will still

buy the product if we set package size as s̄ which satisfies:

n1s
∗ ≤ s̄ ≤ γ0

1 (2.14)

For such an s̄, Type-1 will buy at least as much as he buys when package size is s∗ but,

we don’t know how Type-2‘s decision will change. He may buy more or less depending on

utility he gets. But if we find an n̄2 value which satisfies (2.14) and n̄2s̄ = n2s
∗ then we can

guarantee that Type-2 will buy same amount of product when the package size is s̄. So we

need to find if such an n̄2 exists. From n̄2s̄ = n2s
∗ we have n̄2 = n2s∗

s̄
and by using (2.14) we

can write

n1s
∗ ≤ s̄ ≤ γ0

1 ⇒
n2s

∗

γ0
1

≤ n2s
∗

s̄
≤ n2s

∗

n1s∗

⇒ n2s
∗

γ0
1

≤ n̄2 ≤
n2

n1

(2.15)

Now we are looking for an integer value n̄2 which satisfies (2.15). At the beginning we

assumed Type-1 buys n1 packages with package size s∗ which implies s∗ ≤ γ
(n1−1)
1 and from

Lemma 2.8.9.1 we have γ0
k ≥ (2i+ 1)γik. By combining these two we get:

s∗ ≤ γ
(n1−1)
1 ⇒ (2n1 − 1)s∗ ≤ (2n1 − 1)γ

(n1−1)
1

⇒ (2n1 − 1)s∗ ≤ γ0
1 (2.16)

This allows us to write (2.14) as n1s
∗ ≤ s̄ ≤ (2n1 − 1)s∗ which this reduces (2.15) to

n2

(2n1 − 1)
≤ n̄2 ≤

n2

n1

(2.17)

As shown in Lemma 2.8.9.1 there always exists n̄2 which satisfies (2.17). In fact, n̄2 = ı̂2(s̄)

because:

Uk(n̄2s̄) = Uk(n2s
∗) > Uk((n2 + 1)s∗) = Uk(n2s

∗ + s∗) = Uk(n̄2s̄+ s∗)

⇒ Uk(n̄2s̄) > Uk(n̄2s̄+ s∗) (2.18)
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We know that Uk(Q) is concave and n̄2s̄ < n̄2s̄+ s∗ < n̄2s̄+ s̄. This with (2.18) implies:

Uk(n̄2s̄) > Uk(n̄2s̄+ s̄) = Uk((n̄2 + 1)s̄) (2.19)

With the same logic it can also be shown that Uk(n̄2s̄) > Uk((n̄2 − 1)s̄).

2.8.11 Back to the Proof of Theorem 2.4.2.1

First we establish that the optimal package size for a given price P p must be one of the

threshold values γnk for k = 1, 2 and n = 0, 1, .... If it was not the case, a marginal increase

in the package size would lead to customers from both segments buying more total quantity

since îk(s, P
p)s is strictly increasing in s between two γ thresholds. As a result the retailer’s

profit, which is equal to π(s, P p) = (P p − c)αî1(s, P P ) + (1 − α)̂i2(s, P P ), would increase.

Hence the optimal package size must be equal to one of the γ threshold values.

Next we show that n̄ is such that γn̄2 ≤ γ0
1 ≤ γn̄−1

2 . This condition is equivalent to:

2BHθ
p

1 + 2n̄
≤ 2BLθ

p ≤ 2BHθ
p

2n̄− 1

⇔ BH

2BL

− 1

2
≤ n̄ ≤ BH

2BL

+
1

2

⇔ n̄ =

⌊
BH

2BL

⌉
Depending on the parameters, it might be optimal for the retailer to sell only customer

Type-2 (since his expected demand is higher he buys more than Type-1). In this case retailer

sets package size as γ0
2 because it gives the highest weighted sales. Notice that Type-1 will

not buy any product when s = γ0
2 .On the other hand, it might be optimal to sell both

customer types. In this case from Lemma 2.8.10.1 we know that at optimal solution Type-1

customer will buy one package. So optimal package size is greater than γ1
1 . Besides, from

Lemma 2.8.9.1 we know that γ̄2 dominates all jump points between γ1
1 and γ̄2 . This leaves

us two jump points as a candidate of optimal solution γ̄2 and γ0
1 .

50



2.8.12 Proof of Theorem 2.4.2.2

We evaluate the expected profit of the retailer for each of the optimal package size candidates

points γ0
1 , γ

0
2 and γn̄2 given in Theorem 2.4.2.1.

When the package size is γ0
2 , Segment 2 customers buy one package and Segment 1

customers buy nothing. Hence the retailer’s profit as a function of P p is given by:

π(γ0
2 , P

p) = (P p − c)(1− α)2BH

(
v + r − P p

v + r + w

)
When the package size is γ0

1 , Segment 1 customers buy one package and Segment 2

customers buy n̄ =
⌊
BH
2BL

⌉
as defined in Lemma X. Hence the retailer’s profit as a function

of P p is given by:

π(γ0
1 , P

p) = (P p − c)2BL

(
v + r − P p

v + r + w

)(
α + (1− α)

⌊
BH

2BL

⌉)
. (2.20)

When package size is γn̄2 with n̄ =
⌊
BH
2BL

⌉
, Segment 1 customers buy only one package

and Segment 2 customers buy n̄+ 1 packages.

Hence, the retailer’s profit as a function of P p is given by:

π(γn̄2 , P
p) = (P p − c)2BH

(
v + r − P p

v + r + w

) (α + (1− α)
(⌊

BH
2BL

⌉
+ 1
))

2
⌊
BH
2BL

⌉
+ 1

.

First note that all three profit expressions are maximized at P p = v+r+c
2

.

The corresponding packages sizes are:

γ0
1 =

v + r − c
v + r + w

BL

γ0
2 =

v + r − c
v + r + w

BH

γn̄2 =
v + r − c
v + r + w

BH

2
⌊
BH
2BL

⌉
+ 1
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And the profit values simplify to

π(γ0
2 , P

p∗) =
(v + r − c)2

2(v + r + w)
BH(1− α), (2.21)

π(γ0
1 , P

p∗) =
(v + r − c)2

2(v + r + w)
BL

(
α + (1− α)

⌊
BH

2BL

⌉)
, (2.22)

π(γn̄2 , P
p∗) =

(v + r − c)2

2(v + r + w)
BH

(
α + (1− α)

(⌊
BH
2BL

⌉
+ 1
))

2
⌊
BH
2BL

⌉
+ 1

.

We have that π(γ0
2 , P

p∗) ≥ π(γ0
1 , P

p∗) if and only if α ≤
BH−

⌊
BH
2BL

⌉
BL

BL+BH−
⌊
BH
2BL

⌉
BL

= α̃1. Similarly, we

have π(γ0
2 , P

p∗) ≥ π(γn̄2 , P
p∗) if and only if α ≤

⌊
BH
2BL

⌉
1+
⌊
BH
2BL

⌉ . Finally, π(γn̄2 , P
p∗) ≥ π(γ0

1 , P
p∗) if

and only if α ≤
BH+

⌊
BH
2BL

⌉(
BH−BL−2BL

⌊
BH
2BL

⌉)
BL+

⌊
BH
2BL

⌉(
BH+BL−2BL

⌊
BH
2BL

⌉) .

If
⌊
BH
2BL

⌉
< BH

2BL
then

⌊
BH
2BL

⌉
1+
⌊
BH
2BL

⌉ ≤ BH+
⌊
BH
2BL

⌉(
BH−BL−2BL

⌊
BH
2BL

⌉)
BL+

⌊
BH
2BL

⌉(
BH+BL−2BL

⌊
BH
2BL

⌉) so that it is possible for the

highest value of profit to be obtained at π(γn̄2 , P
p∗).

2.8.13 Proof of Theorem 2.4.3.1

To prove this result we take the following five steps (i) we obtain the optimal prices and

packages size when the retailer offers bulk to Segment 1 customers and packages to Segment

2 customers, (ii) we show that it is never optimal for the retailer to offer only bulk, (iii) we

obtain an upper bound on the profit the retailer can obtain when she offers bulk to Segment

2 customers and packages to Segment 1 customers, (iv) we show that it is never optimal

for the retailer to offer bulk to Segment 2 customers and packages to segment 1 customers

and (v) we provide necessary and sufficient conditions under which each possible solution is

optimal and show that it is never optimal for the retailer to offer only packages which are

tailored to Segment 2 customers.

For use in the analysis below, we define V b
k (P b) as the utility received by k-segment

customers when buying the product in bulk in the quantity which maximizes their utility,
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that is, V b
k (P b) = Uk(Q

∗b
k )−P bQ∗bk where Q∗bk = Bk

v+r−P b
v+r+w

, for P b ≤ v+ r. Because only one

segment of customers buy the product in packages, the packages size can be designed such

that they buy only one package (i.e., if the optimal package size was such that the segment

which buys them buys n > 1 packages of size s, then the retailer could change the packages

to ns and earn the same profit as it would not impact the decision of the other customer

segment). So let V p
k (s, P p) denote the utility received by k-segment customers when buying

one package of the product, that is, V p
k (s, P p) = Uk (s) − P ps. Finally, let V 0

k denote the

utility segment-k customers get from buying nothing, that is V 0
k = −Bk

2
r.

Step (i)

We analyze the case where P b, P p and s are set such that Segment 1 customers, buy the

product in bulk and Segment 2 customers buy the product in packages. The problem can

be formulated as a mechanism design problem as follows:

max
c≤P p≤P b,s

π(P b, P p, s) = α(P b − c)BL

(
v + r − P b

v + r + w

)
+ (1− α)(P p − c)s (2.23)

s.t. V b
1 (P b) ≥ V p

1 (s, P p) (IC1)

V p
2 (s, P p) ≥ V b

2 (P b) (IC2)

V b
1 (Pb) ≥ V 0

1 (IR1)

V p
2 (s, P p) ≥ V 0

2 (IR2)

In this formulation the first two constraints correspond to the incentive compatibility

constraints and the last two are the individual rationality constraints. The (IR1) constraint

in (2.23) is equivalent to P b ≥ v + r which is also equivalent to V b
2 (P b) ≥ V 0

2 , which makes

(IR2) redundant given (IC2). We argue that (IC2) must be tight at optimality. Suppose it

is not and we increase P p∗ (keeping s∗ same) until (IC2) becomes binding. This increases the

retailer’s expected profit. At the same time (IC1) continues to be satisfied because V p
1 (s, P p)

decreases with P p. The same is true for (IR1) since it does not depend on P p. Therefore
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by increasing P p until (IC2) is binding, the retailer can increase expecting profits without

violating constraints, which is a contradiction. Next we use the fact that (IC2) is binding

to express P p as a function of P b and s and obtain:

P p(P b, s) = v + r − BH(v + r − P b)2

2s(v + r + w)
− s(v + r + w)

2BH

(2.24)

Plugging this expression into the objective function of 2.23, and solving for P b and s, we

obtain:

P b∗ =
(1− α)BH(v + r) + αBL(v + r + c)

(1− α)BH + 2αBL

s∗ = BHη

Plugging these values into (2.24), we get:

P p∗ =
v + r + c

2
− α2B12(v + r − c)

2(BH(1− α) + 2αB1)2

Since these values satisfy constraints (IC1) and (IR1), they must be solution for the con-

strained problem. By substituting these values into the profit expression we obtain a profit

value equal to δ
2

(αBL+(1−α)BH)2

2αBL+(1−α)BH

Step (ii)

We show that it is never optimal for the retailer to offer only bulk by showing that the profit

of offering bulk only, denoted π∗ONLY BULK , is dominated by the profit obtained when the

retailer offers bulk for Segment 1 customers and packages to Segment 2 customers, denoted

π∗BULK&PACK (as computed in Step (i)). We have:

π∗BULK&PACK − π∗ONLY BULK =
δ

2

(αBL + (1− α)BH)2

2αBL + (1− α)BH

− δ

2

(αBL + (1− α)BH)

2

=
δ

2

BH(1− α)(BH(1− α) +BLα))

2(BH(1− α) + 2BLα)
≥ 0

54



Step (iii)

We analyze the case where the retailer sets P b, P p and s such that Segment 1 consumers

buys packages and Segment 2 consumers buy bulk. The problem can be formulated as:

max
P b,P p,s

π(P b, P p, s) = α(P p − c)s+ (1− α)(P b − c)BH

(
v+r−P b
v+r+w

)
s.t.

V p
1 (s, P p) ≥ V b

1 (P b) (IC1)

V p
1 (s, P p) ≥ V 0

1 (IR1)

V b
2 (P b) ≥ V p

2 (ns, P p) ∀n ∈ N+ (IC2)

V b
2 (P b) ≥ V 0

2 (IR2)

Instead of solving this problem, we find an upper bound on the optimal profit by relaxing

IR1, IC2, and IR2. The relaxed problem is:

max
P b,P p,s

π(P b, P p, s) = α(P p − c)s+ (1− α)(P b − c)BH

(
v+r−P b
v+r+w

)

s.t.

V p
1 (s, P p) ≥ V b

1 (P b) (IC1)

(2.25)

We observe that the constraint must be binding in the optimal solution. This is because

otherwise one could increase P p∗ without violating constraints and get more profit. Hence,

we can write P p as a function of P b and s as:

P p(P b, s) = v + r − BL(v + r − P b)2

2s(v + r + w)
− s(v + r + w)

2BL

(2.26)

Note that, because we have assumed that c ≥ v+r−w
2

, it is enough to consider the case of

s ≤ BL. Plugging this into the profit function and solving for P b and s we obtain P b∗ =
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BH(c+r+v)(1−α)+BL(r+v)α
2BH(1−α)+BLα

and s = BL
(v+r−c)
(r+v+w)

and the optimal profit as: π∗R = δ
2

(BH(1−α)+BLα)2

(2BH(1−α)+BLα)
,

which the solution to the relaxed problem and therefore an upper bound on the profit the

retailer can obtain when offering bulk to Segment 2 customers and packages to Segment 1

customers.

Step (iv)

Next we show that this upper bound is dominated by the profit obtained from selling only

packages or by the profit obtained when offering bulk to Segment 1 customers and pack-

ages to Segment 2 customers. More precisely, we show that for BH ≥ BL
α

(1−α)
we have

π∗BULK&PACK ≥ π∗R and for BH ≤ BL
α

(1−α)
we have π∗ONLY PACK ≥ π∗R (The package size is

assumed to be γ0
1 for only package sale case). As a reminder we have:

π∗BULK&PACK =
δ

2

(BH(1− α) +BLα)2

BH(1− α) + 2BLα

π∗ONLY PACK =
δ

2
BL(n(1− α) + α)

where n =
⌊
BH
2BL

⌉

(i) BH ≥ BL
α

(1−α)
: We consider π∗BULK&PACK − π∗R :

π∗BULK&PACK − π∗R = (BH(1− α)−BLα)
(v + r − c)2

2(r + v + w)

(BH(1− α) +BLα)2

(2BH(1− α) +BLα)BH(1− α) + 2BLα

≥ 0 for BH(1− α)−BLα ≥ 0 or BH ≥ BL
α

(1− α)

(ii) BH ≤ BL
α

(1−α)
: We consider π∗ONLY PACK − π∗R :

π∗ONLY PACK−π∗R =
(
B2
Lnα + 2BLBHn(1− α)−B2

H(1− α)
) (v + r − c)2

2(r + v + w)

(1− α)

2BH(1− α) +BLα
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We want to show that B2
Lnα+ 2BLBHn(1− α)−B2

H(1− α) ≥ 0 for BH ≤ BL
α

(1−α)
. We

consider α ≥ 3
4

and α ≥ 3
4

cases separately.

For α ≥ 3
4

: Notice that n =
⌊
BH
2BL

⌉
≥ BH

2BL
− 1

2
and the function is increasing in n. So

we have:

B2
Lnα+ 2BLBHn(1− α)−B2

H(1− α) ≥ B2
L

(
BH
2BL

− 1

2

)
α+ 2BLBH

(
BH
2BL

− 1

2

)
(1− α)−B2

H(1− α)

=
BL
2

(BH(3α− 2)−BLα)

≥ BL
2

(BH(3α− 2)−BH
(1− α)

α
α)

=
BL
2
BH(4α− 3)

≥ 0 for α ≥ 3

4

For α ≤ 3
4

: Notice that α
(1−α)

≤ 3 and this implies BH ≤ BL
α

(1−α)
≤ 3BL.We have

n =
⌊
BH
2BL

⌉
= 1 for BL < BH ≤ 3BL. For n = 1 we get:

B2
Lnα+ 2BLBHn(1− α)−B2

H(1− α) = B2
Lα+ 2BLBH(1− α)−B2

H(1− α)

≥
(
BH

(1− α)

α

)2

α+ 2

(
BH

(1− α)

α

)
BH(1− α)−B2

H(1− α)

=
B2
H

α
(3− 7α+ 4α2)

≥ 0 for α ≤ 3

4

Step (iv)

From the above analysis there are four possible solutions to consider for the retailer: (a) offer

only packages and tailor to Segment 1 customers, earning a profit of δ
2
BL(n(1− α) + α);

(b) offer only packages and tailor to Segment 2 customers, earning a profit of δ
2
(1−α)BH ;

(c) offer only packages and compromise, earning a profit of δ
2
BH(n(1−α)+1)

(1+2n)
and (d) offer both

bulk and packages with bulk aimed at Segment 1 customers and packages at Segment 2

customers, earning a profit of δ
2

(αBL+(1−α)BH)2

2αBL+(1−α)BH
. By comparing the profit expressions in those
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four cases we obtain the following full characterization of the optimal solution for the retailer

who is able to offer both bulk and packages, which is given in Table below.

Table 2.2 provides the value of the retailer’s profit, consumers’ purchase quantity, utility

and waste for each possible solution.

Table 2.4: Retailer’s profit and consumers’ purchase quantity, utility and waste when the
retailer can offer bulk and packages.

Solution Tailor to Segment 1 Compromise Bulk&Pack

Conditions
K ≥ 1 or M ≥ 1 K ≥ 1 or M ≥ 1 K > 1 or M > 1

α >
BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

α ≤ BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

Bulk unit price NA NA
BH (v+r)(1−α)+αBL(v+r+c)

BH (1−α)+2αBL

Package unit price v+r+c
2

v+r+c
2

v+r+c
2
− α2B2

L(v+r−c)
(BH (1−α)+2αBL)2

Package size ηBL η BH
1+2n

ηBH

Retailer’s profit δ
2

(n(1− α) + α)BL
δ
2
n(1−α)+1

1+2n
BH

δ
2

(αBL+(1−α)BH )2

2αBL+(1−α)BH

Purchase quantity

Segment 1 ηBL (one pack) η 1
1+2n

BH (one pack) η
B2

Lα

(BH (1−α)+2BLα)
2 (in bulk)

Segment 2 nηBL (n packs) η n+1
1+2n

BH (n+ 1 packs) ηBH (one pack)

Consumer utility

Segment 1 − r
2
BL δ

BH (BL(1+2n)−BH )

2BL(1+2n)2
− r

2
BL

BL((BLα)
2(δ−4r)−rBH (1−α)(BH (1−α)+4BLα))

2(BH (1−α)+2BL)2

Segment 2 δn
2

(
1− nBL

BH

)
BL − r

2
BH δBH

2
n(1+n)

(1+2n)2
− r

2
BH

BH
2

(
δ(BLα)

2

(BH (1−α)+2BLα)
2 − r

)
Absolute waste

Segment 1 η2

2
BL

η2

2
(BH )2

BL(1+2n)2
η2

2

B3
Lα

2

(BH (1−α)+2BLα)
2

Segment 2 n2η2

2

B2
L

BH

η2

2
BH (1+n)2

(1+2n)2
η2

2
BH

Relative waste

Segment 1 η
2

η
2

BH
BL(1+2n)

η
2

BLα
(BH (1−α)+2BLα)

Segment 2 nη
2
BL
BH

η
2

(1+n)
(1+2n)

η
2

where n =
⌊
BH
2BL

⌉
, η = v+r−c

v+r+w
, δ =

(v+r−c)2
v+r+w

, K = BL(n(1 − α) + α)
(2BLα+BH (1−α))
(BLα+BH (1−α))2 and M =

BH
n(1−α)+1

1+2n
(2BLα+BH (1−α))
(BLα+BH (1−α))2 .

Note that it is never optimal to offer only packages tailored to Segment 2 customers when

the retailer is able to offer bulk. This is because δ
2
(1−α)BH ≤ δ

2
(αBL+(1−α)BH)2

2αBL+(1−α)BH
for all values

of the parameters. In other words, the retailer can always increase profits by offering bulk

to Segment 1 customers.

2.8.14 Proof of Theorem 2.4.3.2

In order to get the bound, we investigate profit increase where selling bulk and pack at the

same time becomes optimal. The percent increase in profit is calculated by
(
πBP−πP

πP

)
×100. It
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is enough to find a bound on πP
πB
. We have:

πBP
πP

=


(αBL+(1−α)BH)2

(n(1−α)+α)BL(2αBL+(1−α)BH)
, if Tailor To Segment-1

(αBL+(1−α)BH)2

(1−α)BH(2αBL+(1−α)BH)
, if Tailor To Segment-2

(αBL+(1−α)BH)2(1+2n)
BH(n(1−α)+1)(2αBL+(1−α)BH)

, if Compromise

We consider 3 cases separately.

CASE-1: Tailor to Segment-1: We want to find a bound on:

(αBL + (1− α)BH)2

(n(1− α) + α)BL (2αBL + (1− α)BH)
(2.27)

under the conditions stated in Table-2.4 and Theorem-2.4.2.2. For the first condition of

n < BH
2BL

and α ≥ BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

we have the first derivative of (2.27) with respect to α

is equal to
(BH+BLα−BHα)(B2

H(α−1)−3BLBHα+2B2
Lnα)

BL(BH+2BLα−BHα)2(n+α−nα)2
and it is negative for n ≤ BH

2BL
which means

(2.27) is decreasing in α for n ≤ BH
2BL

. We have α ≥ BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

so we plug in α =

BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

(2.27) and get
(B2
H+B2

L(1+2n)−BLBH(2+3n))2

BLBH(BLBH(3+4n)−B2
H−2B2

Ln(1+2n))
which is also increasing

in n. We plug in n = BH
2BL

and finally get (αBL+(1−α)BH)2

(n(1−α)+α)BL(2αBL+(1−α)BH)
≤ 9

8
.By similar analysis

we get the same upper bound for the second condition of n > BH
2BL

and α ≥ BH−nBL
BL+BH−nBL

CASE-2: Tailor to Segment-2: We want to find a bound on:

(αBL + (1− α)BH)2

(1− α)BH (2αBL + (1− α)BH)
(2.28)

under the conditions stated in Table-2.4 and Theorem-2.4.2.2. For the first condition

of n < BH
2BL

and α ≤ n
1+n

we have the first derivative of (2.28) with respect to α is equal to

2B2
Lα(BH+BLα−BHα)

BH(−1+α)2(BH(−1+α)−2BLα)2
and it is positive which means (2.28) is increasing in α. We have

α ≤ n
1+n

so we plug in α = n
1+n

(2.28) and get (BH+BLn)2

BH(BH+2BLn)
which is also increasing in n. We

plug in n = BH
2BL

and finally get (αBL+(1−α)BH)2

(1−α)BH(2αBL+(1−α)BH)
≤ 9

8
. By similar analysis we get the

same upper bound for the second condition of n > BH
2BL

and α ≤ BH−nBL
BL+BH−nBL

.

CASE-3: Compromise: We want to find a bound on:

(αBL + (1− α)BH)2 (1 + 2n)

BH (n(1− α) + 1) (2αBL + (1− α)BH)
(2.29)
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under the conditions n < BH
2BL

and n
1+n
≤ α ≤ BH+n(BH−BL−2BLn)

BL+n(BH+BL−2BLn)
.(2.29) is decreasing

in α. We have α ≥ n
1+n

so we plug in α = n
1+n

into (2.29) and get (BH+BLn)2

BH(BH+2BLn)
which is

increasing in n. We plug in n = BH
2BL

and finally get (αBL+(1−α)BH)2(1+2n)
BH(n(1−α)+1)(2αBL+(1−α)BH)

≤ 9
8
.

2.8.15 Proof of Theorem 2.4.3.3

In order to get bounds, we first investigate profit increase where only package sale is optimal.

Then, we investigate the profit difference where selling bulk and package at the same time

is optimal. Comparison of Only Bulk Sale and Only Pack Sale: The percent increase

in profit is calculated by
(
πP−πB
πB

)
× 100. It is enough to find a bound on πP

πB
. We have

πP
πB

=


2BL(n(1−α)+α)
αBL+(1−α)BH

, if Tailor To Segment-1

2BH(1−α)
αBL+(1−α)BH

, if Tailor To Segment-2

2BH(n(1−α)+1)
(αBL+(1−α)BH)(1+2n)

, if Compromise

We consider 3 cases separately.

CASE-1: Tailor to Segment-1: We want to find a bound on:

2BL (n(1− α) + α)

αBL + (1− α)BH

(2.30)

under the conditions stated in Table-2.4 and Theorem-2.4.2.2. For the first condition of

n < BH
2BL

and α ≥ BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

(2.30) is decreasing in α. We have BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

≤

α ≤ 1 so we plug in α = 1 into (2.30) and get 2BL(n(1−α)+α)
αBL+(1−α)BH

≤ 2. By similar analysis we get

the same upper bound for the second condition of n > BH
2BL

and α ≥ BH−nBL
BL+BH−nBL

CASE-2: Tailor to Segment-2: We want to find a bound on:

2BH(1− α)

αBL + (1− α)BH

(2.31)

under the conditions stated in Table-2.4 and Theorem-2.4.2.2. For the first condition of

n < BH
2BL

and α ≤ n
1+n

(2.31) is decreasing in α. We have 0 ≤ α ≤ n
1+n

so we plug in α = 0

60



(2.31) and get 2BH(1−α)
αBL+(1−α)BH

≤ 2. By similar analysis we get the same upper bound for the

second condition of n > BH
2BL

and α ≤ BH−nBL
BL+BH−nBL

.

CASE-3: Compromise: We want to find a bound on:

2BH (n(1− α) + 1)

(αBL + (1− α)BH) (1 + 2n)
(2.32)

under the conditions n < BH
2BL

and n
1+n
≤ α ≤ BH+n(BH−BL−2BLn)

BL+n(BH+BL−2BLn)
.(2.32) is increasing in

α. We plug in α = BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

in (2.32) ⇒ 2BH(n(1−α)+1)
(αBL+(1−α)BH)(1+2n)

≤ 2.

Comparison of Only Bulk Sale and Bulk-Pack Sale: We want to find a bound on

πBP
πB

= 2(αBL+(1−α)BH)
(2αBL+(1−α)BH)

which is is decreasing in α. We plug in α = 0 and get 2(αBL+(1−α)BH)
(2αBL+(1−α)BH)

≤

2.

2.8.16 Proof of Theorem 2.4.4.1

We first consider the absolute waste and then the relative waste.

Absolute Waste: We first compare Only Bulk Sale and Bulk-Pack sale and show that

WAbs
BP ≥ WAbs

B .Then we compare Only Bulk Sale and Only Package sale to show that WAbs
P ≥

WAbs
B .

Comparison of Only Bulk Sale and Bulk-Pack Sale: It is enough to show that
WAbs
BP

WAbs
B
≥ 1. We

have
WAbs
BP

WAbs
B

=
4(B2

H(1−α)2+3BLBH(1−α)α+B2
Lα

2)

(BH(−1+α)−2BLα)2
and it is decreasing in α.We plug in α = 1 and

get
WAbs
BP

WAbs
B
≥ 1

Comparison of Only Bulk Sale and Only Pack Sale: It is enough to show that
WAbs
P

WAbs
B
≥ 1. We

have

WAbs
P

WAbs
B

=


4BL(BLn

2(1−α)+BHα)
BH(BH(1−α)+BLα)

, if Tailor To Segment-1

4(B2
H(1−α)2+3BLBH(1−α)α+B2

Lα
2)

(BH(−1+α)−2BLα)2
, if Tailor To Segment-2

4BH(BL(1+n)2(1−α)+BHα)
BL(1+2n)2(BH+BLα−BHα)

, if Compromise

We consider 3 cases separately. For the first case of Tailor to Segment-1, we want to show

that 4BL(BLn
2(1−α)+BHα)

BH(BH(1−α)+BLα)
≥ 1 under the conditions stated in Theorem-2.4.2.2. For the first
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condition of n < BH
2BL

and α ≥ BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

the expression is increasing in α. We plug

in α = BH+n(BH−BL−2BLn)
BL+n(BH+BL−2BLn)

and get another expression which is increasing in n. We plug in

n = BH
2BL
− 1

2
and get

WAbs
P

WAbs
B
≥ 1.By similar analysis we get the same result for the second

condition of n > BH
2BL

and α ≥ BH−nBL
BL+BH−nBL

. For the second case of tailor to Segment-2 we

have Bulk-Pack sale optimal which we considered above. The third case of compromise is

similar to the first case.

Relative Waste: We first compare Only Bulk Sale and Bulk-Pack sale and show that

WRe l
BP ≥ WRe l

B .Then we compare Only Bulk Sale and Only Package sale to show that WRe l
P ≥

WRe l
B .

Comparison of Only Bulk Sale and Bulk-Pack Sale: It is enough to show that
WRe l
BP

WRe l
B
≥ 1. We

have
WRe l
BP

WRe l
B

=
2(B2

H(−1+α)2−3BLBH(−1+α)α+B2
Lα

2)

(BH(−1+α)−2BLα)(BH(−1+α)−BLα)
. It is decreasing in α.We plug in α =6 1 and get

WAbs
BP

WAbs
B
≥ 1

Comparison of Only Bulk Sale and Only Pack Sale: We have the same cases as shown for

the absolute waste case. For the first case of tailor to Segment-1, we want to show that

WAbs
P

WAbs
B

= 2(BLn
2(1−α)+BHα)

BH(n(1−α)+α)
/≥ 1 under the conditions stated in Theorem-2.4.2.2.For the first

condition of n < BH
2BL

we have
WAbs
P

WAbs
B

is increasing in α.We plug in α = 0 and get an expression

which is increasing in n. After plugging in n = BH
2BL
− 1

2
we get

WAbs
P

WAbs
B
≥ 1.By similar analysis

we get the same result for the second condition of n > BH
2BL

and α ≥ BH−nBL
BL+BH−nBL

. For the

second case of tailor to Segment-2, we have Bulk-Pack sale optimal which we considered

above. The third case of compromise is similar to the first case.

2.8.17 Proof of Theorem 2.5.2.1

The threshold corresponds to values ofB such that the customer is indifferent between buying

n − 1 and n packages, and can be obtained by solving up(n − 1, s, P p;B) = up(n, s, P P ;B)

for B.
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2.8.18 Proof of Lemma 2.5.2.2

If G has a uniform distribution on [0, B] we have:

π(P p, s) =
1

B
(P p − c)

dB v+r−Pp
s(v+r+w)c−1∑
n=1

ns

(
1

2

v + r + w

v + r − P p
(2n+ 1)s− 1

2

v + r + w

v + r − P p
(2n− 1)s

)
+(P p − c)

⌈
B

v + r − P p

s(v + r + w)

⌋
s

[
1− 1

B

1

2

v + r + w

v + r − P p

(
2

⌈
B

v + r − P p

s(v + r + w)

⌋
− 1

)
s

]
= (P p − c)

⌈
B

v + r − P p

s(v + r + w)

⌋
s− 1

2B
s2 v + r + w

v + r − P p
(P p − c)

⌈
B

v + r − P p

s(v + r + w)

⌋2

For a given P p it is to set s so that
⌈
B v+r−P p
s(v+r+w)

⌋
is a integer greater or equal to one. If it

was not the case, one can increase s until this value becomes an integer and it will increase

the retailer’s profit. So let N = B v+r−P p
s(v+r+w)

so that s = B v+r−P p
N(v+r+w)

where N =∈ {1, 2, ...}.

From this, we get:

π(P p, s) = (P p − c)B
2

v + r − P p

v + r + w

We see that the profit does not depend on s. The optimal package price is P p = v+r+c
2

. The

optimal package size is then equal to η B
2N

where N ∈ {1, 2, ...}.

Given the optimal price and packages size, we have: βn = (2n + 1) B̄
2N

. Note that βN > B.

Using (??), we calculate absolute waste as:

W abs =
1

B̄

N−1∑
n=1

∫ βn

βn−1

(ns)2

2B
dB +

1

B̄

∫ B

βN−1

(Ns)2

2B
dB

= η2 B̄

8

[
N−1∑
n=1

n2

N2
ln

(
2n+ 1

2n− 1

)
+ ln

(
2N

2N − 1

)]

W rel =
W abs

TotalPurchase
=
W abs

η B̄
4

=
η

2

[
N−1∑
n=1

n2

N2
ln

(
2n+ 1

2n− 1

)
+ ln

(
2N

2N − 1

)]
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2.8.19 Proof of Lemma 2.5.3.1

We will first solve (2.10) for a given β0 and then optimize over β0. We assume s ≤ β0 in

order to simplify the problem. (Otherwise we need to work with piecewise functions which

make the problem more complex. There could be other solutions with s > β0 but since

we are looking for a lower bound, working s ≤ β0 is fine as long as the the result satisfies

s ≤ β0). For a given β0 we need to have ubulk(Q∗bulk, β0) = upack(1, β0). From this equation

we derive package price as a function of bulk price and package size as:

P p(P b, s) = v + r − β0(v + r − P b)2

2s(v + r + w)
− s(v + r + w)

2β0
(2.33)

After plugging in (2.33) in (2.10) the problem becomes:

max
P b,s

π = (P b − c)(β0)2

2B̄

v + r − P b

v + r + w
+ (P p(P b, s)− c)sB̄ − β

0

B̄

which is a concave optimization problem for a given b and the first order conditions give

P b∗ = 2B̄(r+v)−β0(v+r−c)
2B̄

and s∗ = β0(v+r−c)
(r+v+w)

. From (2.33) we get P p∗ = 4B̄2(v+r+c)−(β0)2(v+r−c)
8B̄2 .

Now we plug in these values in the original problem (2.10) and optimize over b. The problem

(2.10) reduces to:

max
β0

π =
β0(2B − b1)2(v + r − c)2

8B̄2(r + v + w)

which is a simple optimization problem with (β0)∗ = 2B̄
3

with π∗ = 4B̄(v+r−c)2
27(v+r+w)

. Besides

we have P b∗ = 2v+2r+c
3

, s∗ = 2B̄(v+r−c)
3(r+v+w)

and P p∗ = 4v+4r+5c
9

. Notice that we have s∗ ≤ β0 as

we assumed.

Does the structure holds?

Since P b∗ < v + r all the consumers prefer to buy bulk to buying nothing. We need to

show that consumers with B ≥ β0 prefer to buy at least 1 package to buying bulk. Formally,
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we need to show that upack(1, B) ≥ ubulk(Q∗bulk, B) or ∆ = upack(1, B)−ubulk(Q∗bulk, B) ≥ 0

for B ≥ β0. With P p∗ , P b∗and s∗ found above we have ∆ = −3(6B2−25BB̄+24B̄2)(v+r−c)2
64B(r+v+w))

and

d∆
dB

= (36B̄2−9b2)(v+r−c)2
32B2(r+v+w)

> 0, hence ∆ is increasing in B. Recall that ∆ = 0 for B = β0 . Since

∆ is increasing in B we have ∆ ≥ 0 for B ≥ β0.

2.8.20 Proof of Theorem 2.5.4.1

The result follows from Lemma-2.5.3.1. Comparison of optimal profit from only bulk sale

(or only package sale since they are the same) with the lower bound for co-existence case

gives 18% difference.
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CHAPTER 3

ASSORTMENT PLANNING STRATEGIES FOR

VARIETY-SEEKING CONSUMERS

3.1 Introduction

Retail operations consist of several important decisions ranging from inventory management

to promotions. One of these important decisions is Assortment Planning, which is defined

by choosing which products to offer and how to stock them. Which products does a retailer

offer among alternatives affects the consumers’ purchase decision. When a retailer offers a

few alternative there is a risk that consumers will go to another store with more selection of

a specific type of product. Carrying a high variety of items thus increases the chance of a

purchase but it also brings together more cost and more problems like inventory management

of high variety of products, shelf space allocation, cannibalization of high margin products

etc. The purpose of assortment planning is finding the product combination that maximizes

the profit by considering the associated costs and problems.The assortment a retailer carries

has an enormous impact on sales and gross margin, and hence assortment planning has

received high priority from retailers, consultants and software providers.

Consumers’ purchase decision making process involves various external or internal guides.

One of the interval driver for a consumer that affects purchase decisions is the attitude

towards escaping from or searching variety in consumption. In product categories where

consumers have large consideration sets and make many choices over time, there may be

some desire for more variety because of satiation or curiosity. This is called variety-seeking

behavior. For example in the yogurt category, consumers tend to purchase some flavors they

like and some they just want to try. In other products categories such as paper products,

consumers tend to be loyal towards one brand and buy the same products constantly over

time. This is called variety-avoiding behavior. There is vast literature, especially in mar-

keting field, about the existence and causes of variety seeking/avoiding behavior. One of
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the earliest studies is by McAlister and Pessemier (1982) where they define variety as ”the

proverbial spice of life”. They make a conceptual analysis on the topic and offer a structural

taxonomy of causes of varied behavior which has been adopted by most of the proceeding

research on variety seeking related studies. According to their study, the explicable causes

of variety seeking can be divided into two. One is derived variation and the other one is

direct variation. Derived variation is a result of external or internal forces that have nothing

to do with the gain from change of preference itself. For example buying various brand or

type of product due to the different taste of the family members. On the other hand, a vari-

ation in purchase motivated by a utility gained by the change itself is called direct variation.

The reasons for direct variation could be desire for an unfamiliar alternative, desire for the

information and alternation among the familiar.

There are studies in the marketing literature, especially on brand loyalty, that incor-

porates variety seeking/avoiding behavior into the consumer choice models. Givon (1984)

proposes a dynamic stochastic choice model for the variety seeking/avoiding behavior mo-

tivated by switching among familiar brands. The main idea of this model is that consumer

choice behavior is determined not only by the mean inherent utility of the different brands,

but also by the utility (or disutility) derived by the consumer from switching brands from

one period to the next. An individual consumer’s utility (or disutility) from the switching

action depends on the change itself, irrespective of the brands she switches to and from.

The tendency of the consumer to seek/avoid variety is captured by a continuous variable

that extends from the extreme tendency to avoid variety to the extreme tendency to vary

consumption.

Although there is a substantial evidence about the existence of variety seeking/avoiding

behavior, the previous research on retailers assortment planning problem has not incorpo-

rated variety seeking behavior of customers into the choice models. In this essay, we work on

the multi-period assortment problem for a retailer with variety-seeking/ avoiding consumers.
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We extend the Givon (1984) consumer choice model to make it possible to study the effect

of customers’ attitude towards variety on the optimal assortments to offer in a multi-period

setting. We assume that each consumer is characterized by a parameter V ∈ [−1, 1] which

measures the consumer’s attitude towards variety such that: (i) V = 1 corresponds to the

extreme search for variety case, (ii) V = 0 means consumer has no utility (positive or neg-

ative) from active search of variety and (iii) V = −1 means consumer tries to avoid variety

at all costs. In our analysis, we consider two different firm types which we call the Dy-

namic and the Static firms. The Dynamic firm optimizes the profit over the entire horizon

by changing (if necessary) the assortment offered in each period dynamically, whereas, the

static firm has to decide one assortment to offer throughout the horizon. We consider the

assortment problem both under finite and infinite time horizons. We compare the retailer’s

profitability under each scenario. We show that the retailer profitability increases with the

dynamic assortment strategy. We also show that it is possible to generate a high level of

satisfaction at the customer level by having a mixed assortment strategy, e.g., assortment 1

(products 1,2,3,4,5) in some periods and assortment 2 (products 1,2,3,6,7) in other periods.

Under this strategy, customers are still exposed to a large number of products over time. At

the same time, the retailer gains economies of scale for the products it carries every period

because the product line is less fragmented. This assortment strategy can be achieved quite

easily by asking the vendors to change the product mix they ship according to some sched-

ule or a probabilistic structure. This is an example of joint value creation in the retail and

consumer-packaged goods industries. All three parties involved benefit from the application

of this dynamic assortment strategy: The retailers benefit from increased profitability, the

consumers from access to a higher level of variety over time, and the manufacturers from

increased consumption of their products. We also provide some structural properties of the

optimal assortments such as, when is it a popular set, when is it decreasing/increasing in size

over time, when does it have a cycling nature, etc. We also numerically investigate the profit
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loss from not varying the assortment or ignoring the consumers’ variety seeking/avoiding

behavior.

Literature Review:

We divide the related literature into three parts. The first part is about the existence

and causes of variety seeking/avoiding behavior. The second part includes the studies in

the marketing literature with consumer choice models based on variety seeking/avoiding

behavior. And the third part is (dynamic) assortment planning studies.

The existing studies form a rich literature about the existence and causes of variety

seeking behavior. One of the most important studies about of the causes of variety seeking

behavior is McAlister and Pessemier (1982). They define variety as the proverbial spice of

life. They propose a conceptual analysis and offer a structural taxonomy of causes of varied

behavior which has been adopted by most of the proceeding research on variety seeking

related studies. According to their study, the explicable causes of variety seeking can be

divided into two groups. One is derived variation and the other one is direct variation.

Direct variation is caused by satisfaction from the changing behavior itself whereas derived

variation is caused by the forces that are not related with a preference for change in and

of itself. van Trijp (1995) presents an extensive study on the theory on variety seeking

behavior especially in the food sector. They discuss the intrinsic and extrinsic motivations

for switching behavior. They also study the effect of variety seeking behavior on brand

loyalty, its effect on consumer choice and threats /opportunities to marketing management.

Ratner et al. (1999) studies the pleasure effect of varied behavior on consumers. That is,

the level of enjoyment from a switched product compared to a repeated purchase. Their

study is different from other studies in the sense that they try to analyze the enjoyment

from switch instead of utility. Their results show that people get less pleasure when they

switch from their favorite product. They propose two different explanations about what

is behind this behavior. Another study about the causes of variety seeking is Ju (2015).
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The paper investigates how the information presented to the customer about the product

affects the variety seeking behavior. They conducted experimental studies with university

students and show that if the information is low, degree of variety seeking is high. Besides,

they show that novice customers tend to seek variety more than expert customers when the

information is limited. Kahn (1995) provide a literature review on the subject and discuss

the motivating factors of variety seeking behavior among the consumers. Different from

McAlister and Pessemier (1982), they provide one other reason for variety seeking which

they call future preference uncertainty. It is defined as seeking variety in order to decrease

the risk from future uncertainties. They also provide literature review of the measurement

tools and predictive models.

Variety seeking behavior has received considerable attention in the marketing literature.

One of the earliest studies is Jeuland (1979) which study the variety avoiding behavior of

consumers to the brand loyalty. It is the first paper to integrate variety related behavior

to MNL choice model. They add a parameter to the MNL choice model to capture variety

avoidance of the consumers. They use a maximum likelihood estimation procedure and use

an individual data on cooking oil purchases in France. We also use MNL choice model in our

study. But the formulation of our consumer choice model is an extension of Givon (1984).

It is one of the fundamental papers in variety seeking brand loyalty area. He proposes a first

order markowian stochastic choice model based on variety seeking/avoiding behavior. He

assumes that there is utility/disutility for a consumer derived from the change of the last

purchased brand itself which is independent of the brands she switches to or from. The ten-

dency to seek or avoid variety is measured with a parameter called VS that varies from -1 to

+1 where -1 refers to extreme inertia and +1 refers to extreme variety seeking. Givon (1984)

and most other studies assume that an individual is either variety seeker or avoider but Bawa

(1990) considers the coexistence of variety seeking and avoiding behavior within the same

individual. They empirically estimate their proposed model parameters by a household level
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panel data. They show that according to the empirical results, half of the households reveal

hybrid behavior instead of pure inertia or pure variety seeking. There are also studies in

the marketing literature which investigate the effect of variety seeking/avoiding behavior on

marketing variables, such as price, promotions etc. Seetharaman and Chintagunta (1998)

works on the effects of price and promotions on variety avoiding and variety-seeking behavior.

They use the term habit-persistence instead of variety avoidance. They extend stochastic

model of Givon (1984) to include marketing variables such as price and promotions. They

empirically test their model with panel data from six different brands of canned tuna fish and

show that customers strongly avoid variety and are price sensitive for this specific product.

Kahn and Louie (1990) studies a stochastic variety seeking model where the uncertainty

comes from the unknown promotion times. They assume that at an arbitrary time there is

a probability of product being in promotion. They extend Kahn et al. (1986) model and

incorporate price promotions to the stochastic variety seeking model along with intrinsic

utility of switching itself. They derive steady state choice probabilities for different price

discount cases and show how variety seeking or avoiding customers react to the promotions.

Kahn and Louie (1990) also investigates price promotions with variety seeking customers

similar to Kahn and Raju (1991) but they focus on effects on market share. They show

how the brand choice probabilities change depending on the price promotions and number

of promoted products. They show that, if consumers are variety avoider, a promoted brands

share decreases after the removal of promotion if it is the only brand to be promoted. On

the other hand, if consumers are variety seeker, the brands share does not decrease after the

removal of promotions. Another study on market sharing is Feinberg et al. (1992). They

study the implications of variety seeking magnitude on market share. According to their

results, as variety seeking increases, the most unpopular brand gains market share and the

most popular product loses share. Chintagunta (1998) try to incorporate the variety avoid-

ing/seeking behavior into a brand purchase timing model. They claim that if a consumer
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is variety avoider, the next item she switches will be close to his last choice with some at-

tributes and vice versa for variety seekers. Hence, they propose a choice model where variety

seeking/avoiding behavior is captured at the attribute level of the brands. They propose a

failure time model and test their model with an empirical study. A relatively new study,

Sajeesh and Raju (2010), investigates variety seeking effect on competitive positioning and

pricing strategies. The variety seeking effect on consumer choice is captured by the decrease

of willingness to pay for the last purchased product. They show that product differentiation

reduces when there are variety seeking consumers in the market. They also show that, in

a two period problem, prices drop in the second period due to the incentive to prevent los-

ing variety seeking customers and that existence of variety seeking reduce the firm profits.

Zeithammer and Thomadsen (2013) studies the price and quality competition in a vertically

differentiated duopoly market. The consumers are variety seekers and variety seeking is mod-

eled as the diminishing marginal utility for repeated purchase of same product. They find

that when the qualities are similar, variety seeking increases both prices and profits. On the

other hand, if qualities are different, price competition is sharper and profits are lower. The

most recent study in the marketing literature is Xiong et al. (2017). Similar to Zeithammer

and Thomadsen (2013), this paper also studies price and quality competition in a duopoly

market but they also consider variety avoiders. They use the term habit formation instead

of variety avoiding. They assume that there are two consumers segments in the market, one

segment is the variety seekers and the other is variety avoiders. With a two period problem

of Hotelling type setting, they show how firms‘ optimal price and quality decisions change

when variety seeking and variety avoiding exists among consumers.

There is a growing body of literature that considers dynamic assortments. In these

papers, the rationale for changing the assortment through time is either (i) the need to learn

about consumer preferences (see for example Caro and Gallien (2007), Chen and Plambeck

(2008) and Ulu et al. (2012) ) or (ii) the need to adapt to changing customer preferences
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(see for example Caro and Martinez-de Albeniz (2009), Caldentey and Caro (2010) and

Saure and Zeevi (2009)). We refer the reader to Kök et al. (2015) and Mou et al. (2017)

for the detailed (dynamic) assortment planning literature. To the best of our knowledge, no

paper has incorporated the consumers’ attitude towards variety as a motivation for changing

assortments.

This essay is organized as follows. In §3.2, we develop our model. In §3.3 and §3.4

we work on the finite and infinite horizon problems respectively and show some structural

results. In §3.5 we show some numerical examples.

3.2 Model

We consider a product category where the set of potential products to offer isN = {0, 1, ..., n}

and 0 denotes the outside option. Let St ⊆ N denote the assortment offered by the retailer

in period t and S denote a generic assortment. We assume that 0 ∈ St for all t.1

We represent consumer choice using the model from Givon (1984). As discussed in the

introduction, the main idea of this model is that consumer choice behavior is determined

not only by the mean inherent utility of the different products, but also by the utility (or

disutility) derived by the consumer from switching products from one period to the next.2

Mean inherent utilities for the products are given by u = (u0, u1, ..., un) such that u1 ≥

u2 ≥ ... ≥ un. We define θj(St) =
uj∑

k∈St
uk

for j ∈ St (zero otherwise), which corresponds

to the probability of choosing product j from assortment St when consumer preferences

are only driven by the mean inherent utility of the products (as in the classic Multinomial

Logit (MNL) model. Also we define γ(S) = (γ0, γ1, ..., γn) such that γj(S) = 1
|S| for j ∈ S

1In what follows the outside option is, unless otherwise stated, treated like a product with zero selling
price and cost.

2While Givon (1984) assumes that all n products are available in each period, we have modified his model
to allow the firm to offer St ⊆ N in period t.
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(zero otherwise), which corresponds to the consumer making a random choice amongst the

products offered in the assortment, with each product being equally likely to be chosen. Let

θ = (θ0, θ1, ..., θn) and γ = (γ0, ..., γn).

As in Givon (1984), we let V ∈ [−1, 1] be a parameter which measures the consumer’s

attitude towards variety such that positive (negative) values correspond to the case of a

variety seeking (avoidance) behavior. Let Pij(St) be the probability that a consumer with

variety attitude parameter V who bought product i ∈ St−1 in period t buys product j in

period t:

Pij(St) =



|V |−V
2

+ (1− |V |)θj(St) , j ∈ St, j = i

|V |+V
2

γj(St\{i}) + (1− |V |)θj(St) , j ∈ St, i ∈ St, j 6= i

|V |γj(St) + (1− |V |)θj(St) , j ∈ St, i /∈ St, j 6= i

0 , j /∈ St

(3.1)

=



|V |−V
2

+ (1− |V |)θj(St) , j ∈ St, j = i

|V |+V
2|St|−1

+ (1− |V |)θj(St) , j ∈ St, i ∈ St, j 6= i

|V |
|St| + (1− |V |)θj(St) , j ∈ St, i /∈ St, j 6= i

0 , j /∈ St

(3.2)

In this expression, the first row corresponds to the probability of buying the same product

in periods t− 1 and t. The second row is the probability of switching to a different product,

even though the product purchased in period t− 1 is still available in period t. Finally the

third row is the probability of switching to a different product when the product chosen in

period t− 1 is no longer available in period t.

In particular, the extreme case of V = −1 corresponds to a behavior of extreme rejection

of variety with no regard for the mean inherent utility of products: the consumer is always

looking to buy the same product which he purchased in the previous period (referred to as
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perfect product inertia). In this case, (3.2) simplifies to

Pij(St) =



1 j ∈ St, j = i

0 j ∈ St, i ∈ St, j 6= i

1
|St| j ∈ St, i /∈ St, j 6= i

0 j /∈ St

(3.3)

We see that the consumer with V = −1 always chooses the same product as in the previous

period, unless it is no longer available, in which case he chooses randomly amongst all

products in the assortment (and the outside option).

The case of V = 1 corresponds to a behavior of extreme search for variety with no regard

for the mean inherent utility of products: the consumer is always looking to buy a different

product from the one he purchased in the previous period. In this case, (3.2) simplifies to:

Pij(St) =



0 j ∈ St, j = i

1
|St−1| j ∈ St, i ∈ St, j 6= i

1
|St| j ∈ St, i /∈ St, j 6= i

0 j /∈ St

(3.4)

We see that the consumer with V = 1 always buys a product which is different from the

one he purchased in the previous period, with all other products being equally likely to be

chosen.

Finally the case of V = 0 corresponds to the classical multinomial logit model behavior,

wherein the consumer’s choice only depends on the mean inherent utilities of the products.

In this case, (3.2) simplifies to Pij(St) = θj(St) for all j ∈ St and 0 otherwise, that is the

choice does not depend on the product purchased in period t− 1.

Let P(St) denote the consumer choice transition probability matrix (Pij(St))i,j=1,...,n from

period t− 1 to period t.3

3Note that the following formulas calculate Pij for i /∈ St−1 but these values will not be used.
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Model discussion

Inherent to Givon (1984)’s model are two key assumptions. First, it is assumed that

only the previous period’s purchase matters in the consumer’s choice decision. Second,

the probability of switching to brand j does not depend on the brand switched from, i.e.,

Pij(St) = Pkj(St) for all i, k 6= j. See Givon (1984) on page 4 for more detail about the

consumer choice model.

We write down P for V ∈ {−1, 0, 1} for a particular example below:

Example 3.2.0.1. Let n = 2 and S = {0, 1}. If V = 1, we have:

P =


0 1 0

1 0 0

1/2 1/2 0

 .

where the products are listed in the following order in rows and columns: 0, 1, 2.

If V = −1, we have:

P =


1 0 0

0 1 0

1/2 1/2 0

 .

If V = 0 and u0 = 1, u1 = 2, u2 = 1 then θ(S) = (1/3, 2/3, 0) and

P =


1/3 2/3 0

1/3 2/3 0

1/3 2/3 0

 .

As we see from the example, since product-2 is not in the assortment, probability to

switch to product-2 is zero in all cases. On the other hand, we see that in both V=1 and

V=-1 cases, the transition probability from product-2 to other products is allocated equally.

If an individual buys product-1 or buys from outside, then for V=1, the transition to the
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other product (extreme search for variety) is for certain , and for V=-1, purchasing the same

product (extreme avoidance from variety) is for certain. For V=0 case, since utility from

switching itself is zero, the transition probabilities are equal to θj(S)

In Table-3.1 and Table-3.2 we present the change of switching probabilities from product

i to j by θj and V where the assortment size is 5. The difference between the two tables is

in Table-3.1 we have i ∈ St and in Table-3.2 we have i /∈ St (in other words, product i is

dropped from the assortment). When we compare the two tables, we see that for V < 0,

the probability of switching increases when product i is dropped from the assortment and it

decreases for V > 0. The reason is: when V < 0 and i /∈ St, the avoiders not being able to

find product i will look for other options (including the outside option) and this will increase

the switching probabilities to the products that are in the assortment. For V > 0, when

the previously chosen product is in the assortment, the share from variety seekers will be

distributed among the other n-1 (which is 4 in the example) products. But when the product

is dropped from the assortment (and the assortment size is kept the same by adding another

product) it will be shared among n (which is 5 in the example) products. We also see from

Table-3.2 that when the product is dropped from the assortment the switching probabilities

are symmetric over V = 0.

In Table-3.3 we present the probability of purchasing the same product in a row when it

is offered in both periods. Note that probability of buying the same product is decreasing in

V for a given θj which is very straightforward because as V increases people become more

variety seeker and thus more inclined to change their choice. We should also emphasize that

these probabilities do not depend on the size of the assortment set.

Let λ denote the market size, which we assume is constant over the time horizon. We

assume that all consumers in the market have the same variety attitude parameter V for

the given product category. Let qt,j(St) be the probability that a customer buys product j

in period t given assortment St. We refer to qt = (qt,0, qt,1, ..., qt,n) as the demand probability
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Table 3.1: Probability of switching from product i to j where i ∈ St and |St| = 5

θj V = −1 V = −0.5 V = 0 V = 0.5 V = 1
0 0 0 0 0.125 0.25

0.2 0 0.1 0.2 0.225 0.25
0.25 0 0.125 0.25 0.25 0.25
0.5 0 0.25 0.5 0.375 0.25
0.75 0 0.375 0.75 0.5 0.25

1 0 0.5 1 0.625 0.25

Table 3.2: Probability of switching from product i to j where i /∈ St and |St| = 5

θj V = −1 V = −0.5 V = 0 V = 0.5 V = 1
0 0.2 0.1 0 0.1 0.2

0.2 0.2 0.2 0.2 0.2 0.2
0.25 0.2 0.225 0.25 0.225 0.2
0.5 0.2 0.35 0.5 0.35 0.2
0.75 0.2 0.475 0.75 0.475 0.2

1 0.2 0.6 1 0.6 0.2

Table 3.3: Probability of purchasing the same product i in a row where i ∈ St−1 and i ∈ St

θj V = −1 V = −0.5 V = 0 V = 0.5 V = 1
0 1 0.5 0 0 0

0.2 1 0.6 0.2 0.1 0
0.25 1 0.625 0.25 0.125 0
0.5 1 0.75 0.5 0.25 0
0.75 1 0.875 0.75 0.375 0

1 1 1 1 0.5 0

vector and qtλ as the demand volume in period t. In the very first period (t = 1), because the

product has has never been sold before, we assume that q1(S1) = |V |γ(S1) + (1−|V |)θ(S1),

that is, we assume that the consumer’s choice in period 1 is a weighted average of a choice

driven solely by the mean inherent utilities of the product (i.e., θ(S1)) and an equally likely

choice amongst all the offered products (i.e., γ(S1)), with the weight being the absolute value

of the consumer’s variety attitude parameter V .
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In subsequent periods, i.e., t = 2, 3, ..., we have qt = f(qt−1, St) where f is the demand

probability update function defined a

f(q, S) = qP (S) (3.5)

We have qt = qt−1P(St) = q1

∏t
τ=1 P(Sτ ).

The retailer receives a revenue of r per unit sold and incurs an inventory stocking cost

according to a concave function of the demand volume given by σxβ where σ ≥ 0, β ∈ [0, 1]

and x is the demand volume. This function is used by Ryzin and Mahajan (1999). Like

them, we assume that λ1−βq >> σqβ which implies that the probability of having negative

demand is small. (For a detailed informations refer to Ryzin and Mahajan (1999)). The

retailer’s profit in period t ≥ 1 is given by:

πt(St) =
n∑
j=1

{
rλqt,j(St)− σ [λqt,j(St)]

β
}

Let Π(S1, ..., ST ) =
∑T

t=1 πt(St) denote the total expected profit the retailer receives from

offering assortments S1, ..., ST in periods 1 to T .

We consider three versions of the retailer’s problem: the dynamic firm, the static firm

and the myopic firm.

The dynamic firm

The dynamic firm is able to select a different assortment in each period to maximize

its expected profit over the entire horizon. This problem can be formulated as a dynamic

program where the state space is the (1 × n + 1) demand probability vector at the end of

the previous period. Let Vt(qt−1) denote the optimal expected profits from periods t to T .

We have:

Vt(qt−1) = max
St⊆N

πt(St; qt−1) + Vt+1(f(qt−1, St)), for 1 ≤ t < T

and VT+1 = 0.

Let S∗t denote the optimal assortment in period t for the dynamic firm.
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The static firm

The static firm is unable to vary the assortment from period to period but chooses the

assortment which, under this constraint, maximizes expected profit over the entire horizon,

that is, the retailer solves maxS⊆N
∑T

t=1 πt(S).

Let Ss be the optimal assortment for the static firm.

The myopic firm

The myopic firm maximizes the one-period expected profit function in each period, with

no regard to the impact the assortment has on future profits. Let Smt (qt−1) be the assortment

chosen in period t, given the demand probability vector in period t− 1. We have:

Smt = arg max
S⊆N

πt(S; qt−1). (3.6)

We now define two important sets, namely Sθ and Sγ , which are important for the

later analyses. Let Sθ be the set that optimizes one period expected profit with demand

probability vector θ(S), that is,

πt(S) =
∑
j∈S
j 6=0

{
rλθj(S)− σλβ (θj(S))β

}
This is the classical assortment planning problem with the MNL model studied by Ryzin and

Mahajan (1999). The optimal assortment is known to be a popular set, that is, S∗ = {1, ..., k}

for k ∈ {1, ..., n} with u1 ≥ u2 ≥ ... ≥ uk ≥ ... ≥ un.

Let Sγ be the set that optimizes one period expected profit with demand probability

vector γ(S), that is,

πt(S) =
∑
j∈S
j 6=0

{
rλγj(S)− σλβ (γj(S))β

}

=
∑
j∈S
j 6=0

{
rλ

1

|S|
− σλβ

(
1

|S|

)β}
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Table 3.4: Notation

Symbol Definition
Decision variables

St : Assortment in period t

Parameters
N : Set of potential products N = {0, 1, ......, n}
u : Product mean inherent utilities u = (u0, u1, ....un) u1 ≥ u2.... ≥ un
θ : Variety attitude-neutral choice probabilities given assortment S θ =

(θ0, θ1, ..., θn)
V : Consumer variety attitude parameter −1 ≤ V ≤ 1

Pij(S) : Probability that a consumer who bought i buys product j in the next period
with assortment S

qt,j(S) : Probability that a customer buys product j in period t given assortment S.
q∞(S) : The stationary distribution for P (S)

Other variables
r : Selling price
λ : Market size i
σ : Cost function magnitude parameter
β : Cost function concavity parameter

S∗t Dynamic Firm Optimal Assortment
Smt Myopic Firm Optimal Assortment
Ss Static Firm Optimal Assortment
Sγ The set that optimizes one period expected profit with demand probability

vector γ(S)
Sθ The set that optimizes one period expected profit with demand probability

vector θ(S)
S0(V ) Optimal assortment with q1
S+
∞(V ) Optimal assortment with with q∞ for 0 ≤ V ≤ 1
S−∞(V ) Optimal assortment with with q∞ for −1 ≤ V < 0

Let m = |S|, we have:

πt(S) = rλ
m− 1

m
− σ(m− 1)λβ

(
1

m

)β
(3.7)

The second derivative of 3.7 with respect to m is less than zero. Thus, πt is concave in

m. Let m̂ denote the value which optimizes the FOC. The optimal value m∗ is obtained

by rounding this value either up or down, up to a maximum of n. In other words, Sγ is
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any set of of size m∗. In particular we can set Sγ = {1, ...,m∗}. This is summarized in

Lemma-3.2.0.2.

Lemma 3.2.0.2. Sγ is any set of of size m∗ where m∗ = arg max
m∈Z,m≤N

rλ 1
m2 − σλβ

(
1
m

)β −
σλββ(m− 1)

(
1
m

)β−1

3.3 Finite Horizon Problem

We first study the finite horizon problem where assortment decision is made for some T <∞.

We first investigate the optimal solution when the firm wants to maximize the revenue.

By our transition probability definition, the process is Markovian such that the current

period purchase decision only depends on the last purchased product. The demand prob-

ability of product j ∈ St in period t as a function of its value in period t − 1 is equal

to:

qt,j(St; qt−1) =



qt−1,j + 1
|St|
∑

i/∈St qt−1,i V = −1

(1 + V )θj(St)− V qt−1,j − V
|St|
∑

i/∈St qt−1,i −1 ≤ V ≤ 0

θj(St) V = 0

(1− V )θj(St) + V
|St−1|

∑
i∈St
i6=j

qt−1,i + V
|St|
∑

i/∈St qt−1,i 0 ≤ V ≤ 1

1
|St−1|

∑
i∈St
i 6=j

qt−1,i + 1
|St|
∑

i/∈S qt−1,i V = 1

(3.8)

and qt,j = 0 for j /∈ S.

In the special case of St−1 ⊆ St (i.e. no products are dropped from period t− 1 to period

t), 3.8 reduces to:

qt,j(St) =



qt−1,j V = −1

(1 + V )θj(St)− V qt−1,j −1 ≤ V ≤ 0

θj(St) V = 0

(1− V )θj(St) + V
|St−1|

∑
i∈St
i6=j

qt−1,i 0 ≤ V ≤ 1

1
|St−1|

∑
i∈St
i 6=j

qt−1,i V = 1

(3.9)
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3.3.1 Revenue Maximization Problem

Suppose objective of the firm is to maximize the revenue. It is mathematically equivalent

to assume that β = 1 in 3.6. The following lemma shows that offering all the products is

optimal when the firm‘s objective is maximizing the revenue.

Lemma 3.3.1.1. [Revenue maximization] If β = 1, then Sm(qt−1) = S∗t = Ss = N for all

q.

Proof. The retailer’s problem can be written as maxS⊆N rλ
∑n

j=1 qt,j(S) which is equivalent

to minS⊆N rλqt,0(S). Hence, the problem reduces to minimizing no-purchase probability.

When 0 ≤ V ≤ 1, we have:

qt,0(S) = (1− V )θ0(S) +
V

|S| − 1

∑
iεS
i 6=0

qt−1,i +
V

|S|
∑
i 6εS

qt−1,i

For k /∈ S let S ′ = S ∪ {k}. We have:

qt,0(S ′) = (1− V )θ0(S ′) +
V

|S|
∑
iεS
i 6=0

qt−1,i +
V

|S|
qt−1,k +

V

|S|+ 1

∑
i6εS
i 6=k

qt−1,i

And therefore:

qt,0(S)− qt,0(S ′) = (1− V ) (θ0(S)− θ0(S ′)) +

(
V

|S| − 1
− V

|S|

)∑
iεS
i 6=0

qt−1,i

+

(
V

|S|
− V

|S|+ 1

)∑
i 6εS
i 6=k

qt−1,i

> 0

since θ0(S) ≥ θ0(S ′) and V ≥ 0.
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When −1 ≤ V ≤ 0, we have:

qt,0(S) = −V + (1 + V )θ0(S) + V
∑
j∈S
j 6=0

qt−1,j + V
|S| − 1

|S|
∑
i/∈S

qt−1,i

qt,0(S ′) = −V + (1 + V )θ0(S ′) + V
∑
j∈S
j 6=0

qt−1,j + V qt−1,k + V
|S|
|S|+ 1

∑
i/∈S
i6=k

qt−1,i

qt,0(S)− qt,0(S ′) = (1 + V ) (θ0(S)− θ0(S ′))− V

|S|
qt−1,k −

V

|S|(|S|+ 1)

∑
i/∈S
i 6=k

qt−1,i > 0

since θ0(S) ≥ θ0(S ′) and V ≤ 0.

Since adding a product to S decreases the probability of outside option for all values of

qt−1, the myopically optimal assortment always includes all products.

In general, when the objective is revenue maximization, offering all the products is not

surprising for assortment planning problems. Because, when the revenue is maximized,

the problem reduces to minimizing the outside option (no purchase) probability and in a

classical setting, adding a product usually decreases that probability. But when there is

variety seeking behavior, it is not straightforward to see if adding a product will decrease

the outside option. In fact, we proved that adding a product to S decreases the probability

of outside option.

3.3.2 Structural Results

In this section we provide some structural results for the benchmark case of V = 0 and

extreme cases of V=1 and V=-1. We show the tradeoffs between myopic, static and dynamic

firm with a 2 period problem example. Besides, we show that the static firm

The benchmark case of V = 0

When there is no variety seeking behavior among the consumers, the inherent utilities from

the products determines the consumer purchase probabilities and there is no change in the

transition probability since the inherent utilities remain the same throughout the horizon.
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Lemma 3.3.2.1. If V = 0, then Sm(qt−1) = S∗t = Ss = Sθ for all qt−1

Proof. When V = 0, we have qt(St; qt−1) = θj(St) for all qt−1. Therefore πt(St) is maximized

at Sθ.

This result also means that the optimal assortment is a popular set as shown by Ryzin

and Mahajan (1999).

Extreme Inertia V = −1

Now assume that all the customers in the market extremely variety avoider. They want to

buy the same product in every period as long as the product is offered. Now we go back to

the original problem of profit maximizing and investigate what happens in the extreme case

of V = −1. When V = −1 we have

qt,j(St; qt−1) = qt−1,j +
1

|St|
∑
i/∈St

qt−1,j

Let the first period optimal be S∗1 , with q1,j = 1

|S∗1 |
for all j ∈ S∗1

Now consider the second period. Since V = −1, we know from 3.9 that adding a product

to S∗1 won‘t change q2,j and we will get q2,j = 1

|S∗1 |
for j ∈ S∗1 and q2,j = 0 for j /∈ S∗1 . Hence,

profit will be the same.

Now consider the case where we remove k products from S∗1 . Let the new assortment be

S̄. Notice that
∣∣S̄∣∣ = |S∗1 − k| . For all j ∈ S̄ we get:

q2,j(S̄; q1) =
1

|S∗1 |
+

1

|S∗1 − k|
k

|S∗1 |

=
|S∗1 − k|+ k

|S∗1 − k| |S∗1 |

=
1

|S∗1 − k|

Which is the same with q1,j(S) such that |S| = |S∗1 − k| . Since we know that π(S∗1 , q1,j(S
∗
1)) >

π(S; q1,j(S)) we get π(S∗1 , q1,j(S
∗
1)) > π(S̄; q2,j(S̄)) .

For t > 2, same logic applies and we get the following lemma for the static and dynamic

firm.
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Figure 3.1: An example of myopic firm optimal assortment for a given q when V = −1

Lemma 3.3.2.2. If V = −1, then S∗t = Ss = Sγ, for t = 1, ..., T .

Lemma 3.3.2.2 doesn’t apply for the myopic firm because the starting period is important

in order to get Sγ. By our definition, myopic firm solution is for any given qt−1 (even if it

is not reachable). In Figure-3.1 we present the optimal assortment for an example of 2

product case depending on qt−1 (V = −1, r = 2.1, σ = 2, λ = 20, β = 0.6 ). In the figure

x-axis represents q1,t−1 and y-axis represents q2,t−1. We see the optimal solution in period

t as a combination of this two values. Notice that, q1,t−1=0 corresponds to the case where

only product-2 is offered in the previous period and vice versa. We denote the assortments

as Assortment 1= {Product 1}, Assortment-2={Product 2} and Assortment-3={Product

1, Product 2}. For the given parameters we have Sγ={Product 1, Product 2} but we for

q1,t−1 = 0.5 and q2,t−1 = 0.1 the optimal assortment is offering Product 1. Which is a counter

example of Lemma 3.3.2.2 for the myopic firm (We have ties for some combinations which

is also shown in the figure by 13, 23 or 123).
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Extreme variety seeking V = 1

When the consumers are extremely variety seeker, they won‘t buy the same product they

purchased in the last period even if it is the only product offered. We have the following

lemma for static firm.

Lemma 3.3.2.3. When V = 1, we have S∗ = Sγ.

Proof. When V = 1 we have q1 = γ(S) and from 3.9, we can see that qt = γ(S) for all

t = 2, ..., T .

According to our numerical analysis, the optimal solution for myopic and dynamic firm

is not necessarily Sγ.

Two-period Dynamic Firm Problem

Finite horizon dynamic firm problem is the most challenging case in our study. As discussed

earlier, dynamic firm tries to optimize profit by changing the assortment in each period.

Because of the variety seeking/avoiding behavior, customer choice is changing in every period

and not taking into account this change will definitely hurt the retailer. For example, when

customers are highly variety seekers, offering a popular product in a two consecutive period

can decrease the profit from the popular product in the second period. Adding or removing

a product is going to change consumers purchase decisions and taking the advantage of this

change is possible by dynamically changing the assortment. The following example illustrates

the trade-offs for a 2-period 2-product problem.

Example 3.3.2.4. Let n = 2, T = 2 r = 10, λ = 100, σ = 9, β = 0.9 u = (1, 40, 8).

When V = 0.75 we have:

S1 q1(S1) π1(S1) S2 = Sm(q1) q2(S2) π2(S2) Π
{1} (0.38, 0.62, 0) 250.18 {2} (0.26, 0, 0.74) 307.00 557.18
{2} (0.40, 0, 0.60) 240.14 {1} (0.23, 0.77, 0) 321.14 561.28
{1, 2} (0.26, 0.45, 0.29) 279.01 {1, 2} (0.29, 0.41, 0.31) 265.65 544.66
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We see that it is optimal to offer {2} in the first period, followed by {1} in the second

period. However, notice that the myopically optimal assortment in period 1 is {1}. The

intuition is as follows: by offering only product 2 in the first period and only product 1 in

the second period, the retailer is able to maximize sales and save on inventory costs. This is

because of the surge in the purchase probabilities of the popular product in the second period

caused by the variety seeking customers who bought less popular product in period 1. By not

offering the popular product in the first period, retailer loses some demand but the increase

of demand of the popular product in the second period outweighs the loss in the first period.

When V = −0.4 we have:

S1 q1(S1) π1(S1) S2 = Sm(q1) q2(S2) π2(S2) Π
{1} (0.21, 0.79, 0) 328.48 {1} (0.10, 0.90, 0) 383.27 711.76
{2} (0.27, 0, 0.73) 303.78 {2} ((0.17, 0, 0.83) 348.21 653.00
{1, 2} (0.15, 0.62, 0.23) 331.38 {1} (0.12, 0.88, 0) 374.28 705.66

We see that it is optimal to offer {1} in the first and second periods. Again, notice that

the myopically optimal assortment in period 1 is {1, 2}, which is different from the optimal

assortment of the dynamic firm in period 1.

In general, as the previous example illustrates, it is not necessarily optimal for the dy-

namic firm to offer the myopically optimal assortment in each period.

3.4 Infinite Horizon Problem

For most of the products in food retail, there is a chain of recurring transactions over time.

Consider the yogurt example which has high variety seeking potential. It is a repeat purchase

product and retailer-consumer interaction goes on for a long time period. Thus, a steady

state analysis of the system could be more appropriate for this type of products. In this

section we consider the infinite horizon problem where T = +∞.
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3.4.1 Static Firm

In order to study the infinite horizon problem we need the steady state demand probability

distributions. Let q∞(S) denote the steady state probability, obtained by solving q = qP (S).

It is obvious that when j /∈ S we have q∞,j(S) = 0. For V ∈ {−1, 1} from Lemma-3.3.2.2

and Lemma-3.3.2.3 we have q∞,j(S) = γ(S). For V ∈ [0, 1) we solve the equation:

q∞,j(S) =
n∑
k=1

q∞,k(S)Pij(S)

= q∞,j(S)(1− V )θj(S) +
∑
k 6=j
k∈S

(
V

|S − 1|
+ (1− V )θj(S)

)
q∞,k(S)

Note that have
∑
k∈S

q∞,k(S) = 1 which implies
∑
k 6=j
k∈S

q∞,k(S) = 1 − q∞,j(S). After plugging

this expression in the above equation we get :

q∞,j(S) = q∞,j(S)(1− V )θi(S) +

(
V

|S − 1|
+ (1− V )θj(S)

)
(1− q∞,j(S))

which has a straightforward solution. For V ∈ (−1, 0) we use the similar approach and the

final result is:

q∞,j(S) =



γ(S) V = −1

θ(S) −1 < V ≤ 0

(1− V )θj(S) |S|−1
|S|−1+V

+ V
|S|−1+V

0 ≤ V ≤ 1

γ(S) V = 1

(3.10)

and q∞,j = 0 for j /∈ S.

Note that interestingly, the steady state distribution jumps from γ(S) when V = −1 to

θ(S) for V = −1 + ε. This is because even a very small chance of buying a different product

enables consumers preferences to converge to the popular products when the horizon is

infinitely long.

We have the following result as a direct consequence of 3.10.
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Lemma 3.4.1.1. When −1 < V ≤ 0 and T = ∞, S∗ = Sθ. When V ∈ {−1, 1}, then

S∗ = Sγ.

This is an interesting result, because we see that in the long run, except extreme va-

riety avoiders, having variety-avoiding consumers, do not have any affect on the optimal

assortment. The static firm is safe when he disregards the existing variety avoiding behavior

among the consumers because optimal solution in both cases are the same. The following

theorem summarizes this result.

Theorem 3.4.1.2. In the long-run, except extreme variety avoidance, ignoring existing

variety-avoiding behavior among the consumers does not hurt the static firm.

Lemma-3.4.1.1 also says that the optimal assortment is a popular set for variety avoiding

case V ∈ (−1, 0]. What about variety-seeking case? We define a type of assortment set

below, which also appears in Alptekinoğlu and Grasas (2014), to explain the structure of

optimal assortment in that case.

Definition 3.4.1.3. Suppose there are n different products with u1 ≥ u2 ≥ ........ ≥ un.

The set S is ”popular-eccentric” if, (i) the most popular product is in- b-* S and (ii) when

product k is in S then either products {1, 2, .., k − 1} or {k + 1, k + 2, .., n} are in S.

Notice that popular set is also a popular-eccentric set with only popular products being

in the set.

Lemma 3.4.1.4. For V ∈ [0, 1) the optimal assortment for the static firm infinite horizon

problem is a popular-eccentric Set.

We provide the proof in §3.6.1. The Proof is similar to Mahajan-van Ryzin (1999) popular

set proof. The difference comes from adding a product with uk = 0 to the assortment. In

Mahajan-van Ryzin,1999 if you add a product with uk = 0 to the assortment, the profit
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Figure 3.2: The explanation of proof for Lemma-3.4.1.4 - Ryzin and Mahajan (1999) vs our
model comparison

doesn’t change. But if you add a product with uk = 0 in our model, for V > 0, some

consumers will buy that product and this will change the profit (can be negative or positive)

The following is an example of an optimal assortment being popular-eccentric set.

Example 3.4.1.5. Let n = 3, r = 4.2, λ = 50, σ = 4, β = 0.8 u = (5, 250, 60, 10). In this

case the optimal assortment is {1, 3} and the retailer’s profit is 80.7265.

Up to now, we have shown the structure of the optimal assortment for different values

of V . Now we provide a result on the structure of the optimal profit. In order to prove our

next result, we use the following definition and result from Ryzin and Mahajan (1999).

Definition 3.4.1.6. We say vector ~x = (x1, ..., xm) majorizes vector ~y = (y1, ..., ym), denoted

by ~x �M ~y, if
∑m

i=1 xi =
∑m

i=1 y
′
i and

∑j
i=1 x[i] ≥

∑j
i=1 y

′
[i] for j = 1, ...,m − 1, where x[i]

denotes the i-th highest component of vector ~x.
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Example 3.4.1.7. Consider ~x = (3, 1, 5) and ~y = (3, 3, 3). We have ~x �M ~y because after

sorting each vector in decreasing order we have (5, 3, 1) and (3, 3, 3) and 5 > 3, 5 + 3 > 3 + 3

and 5 + 3 + 1 = 3 + 3 + 3.

Lemma 3.4.1.8. If g(·) is a convex function and ~x �M ~y then
∑m

j=1 g(xi) ≥
∑m

j=1 g(yi).

Proof. See Lemma 2 in (Ryzin and Mahajan, 1999)

Let π∞(S;V ) denote the per-period retailer’s profit in an infinite horizon problem with

static inventory S.

Theorem 3.4.1.9. For any S, π∞(S;V ) is decreasing in V for V ∈ [0, 1].

Proof. Without loss of generality let S = {1, 2, ..., n} and assume that u1 ≥ u2 ≥ ... ≥ un.

First note that q∞,1 ≥ q∞,2 ≥ ... ≥ q∞,n so that the i-th largest element of ~q∞ is the i-th

element. For j = 1, ..., n, we have:

j∑
i=1

q∞,i(S;V ) = (1− V )

∑j
i=1 ui∑n
k=1 uk

|S − 1|
|S − 1|+ V

+
jV

|S − 1|+ V

Taking the first derivative:

∂
∑j

i=1 q∞,i(S;V )

∂V
=

|S − 1|
(|S − 1|+ V )2

(
j −

∑j
i=1 ui∑n
k=1 uk

|S|

)

which is negative because we have
∑j
i=1 ui∑n
k=1 uk

≥ j
|S| given that u1 ≥ u2 ≥ ... ≥ un. Therefore it

follows that q∞,j(S;V ) �M q∞,j(S;V ′) for V ′ > V .

Let g(q) = mq−σ(λq)β. As Van Ryzin and Mahajan (1999) does, we assume λ1−βq >> σqβ.

This implies that g is convex. Also we have π∞(S;V ) =
∑n

j=1 g(q∞,j). Using Lemma 3.4.1.8,

we conclude that π∞(S;V ) ≥ π∞(S;V ′); therefore π∞ is decreasing in V for V ∈ [0, 1].
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3.4.2 Cycling Firm

In this section we consider a retailer which cycles through a series of assortment over the

infinite horizon. We refer to a k-cycle with sets S0, ..., Sk−1 as an assortment policy such that

St = S mod (t,k) for t = 1, ..., where mod (x, y) denotes the remainder when x is divided by

y.

For example a 2-cycle policy with S0 and S1 is such that St = S1 for t = 1, 3, 5, ... and

St = S0 for t = 2, 4, ....

As we have shown in the previous section, we need stationary distributions in order to

solve the assortment problem. Because of the dependency of the transition matrix on the

previously offered assortment, a general solution of stationary distribution for an arbitrary

k-cycle is intractable. To simplify the calculations we limit our study to 2-cycle assortments.

Steady State distribution for 2-cycle

Let q̊∞,j(S1|S2) be the infinite horizon purchase probability of product j when assortment S1

is offered and the preceding assortment was S2. We have the following formula (derivation

of the formula is in §3.6.2).

q̊∞,j(S1|S2) =


H2(h1−g1)−H1g1(h2−g2)+g1(1−g2−(1−V )θk(S2))+(1−V )θk(S1)

1−g2g1 j ∈ S1 and j ∈ S2

h1H2 + g1(1−H2) + (1− V )θk(S
1) j ∈ S1 and j /∈ S2

0 else

where

H1 = (m2D2D1−D1m2(m2−1)(m1−W2)−m1(m1−1)m2(m2−1)W1)
D2D1−m1(m1−1)m2(m2−1)

m1 = |S1|, D1 = V |S1\S2|, h1 = V
m1
, g1 = V

m1−1

W1 = (1− V )
∑
i∈S1
i/∈S2

θi(S1)

Notice that the expression reduces to 3.10
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Two-product analysis

Suppose there are only two products: product 1 and 2 with u1 > u2 > u0. The retailer has

three options. Let assortment A = {1}, assortment B = {2} and assortment C = {1, 2}.

We want to find out when it is optimal to have a 2-cycle solution. By using the notation for

cycling case (We drop∞ for the ease of reading) the 1-cycle (or non-cycle) probabilities can

be written as:

q̊1(A|A) = (1− V )θ1(A)
1

1 + V
+

V

1 + V
q̊2(B|B) = (1− V )θ2(B)

1

1 + V
+

V

1 + V

q̊1(C|C) = (1− V )θ1(C)
2

2 + V
+

V

2 + V
q̊2(C|C) = (1− V )θ2(C)

2

2 + V
+

V

2 + V

When there are only two products, the 2-cycle options are AB, AC and BC. When the

assortment is cycling between A and B we have q̊1(B|A) = 0, q̊2(A|B) = 0 and

q̊1(A|B) =
2V

(2 + V )
+

2(1− V )

4− V 2
(2θ1(A)− V θ2(B))

q̊2(B|A) =
2V

(2 + V )
+

2(1− V )

4− V 2
(2θ2(B)− V θ1(A))

When the assortment is cycling between A and C we have q̊1(A|C) = 0 and

q̊1(A|C) =
V (4− 3V )

2(2− V 2)
− 2(1− V )

2− V 2
V θ1(C) +

(1− V )

2− V 2
(2θ1(A)− V θ2(C))

q̊1(C|A) =
V (2− V )2

4(2− V 2)
+

2(1− V )

2− V 2
θ1(C)− (1− V )

2(2− V 2)
(2θ1(A)− V θ2(C))

q̊2(C|A) =
V

2
+ (1− V )θ2(C)

When the assortment is cycling between B and C we have q̊1(B|C) = 0 and

q̊2(B|C) =
V (4− 3V )

2(2− V 2)
− 2(1− V )

2− V 2
V θ2(C) +

(1− V )

2− V 2
(2θ2(B)− V θ1(C))

q̊2(C|B) =
V (2− V )2

4(2− V 2)
+

2(1− V )

2− V 2
θ2(C)− (1− V )

2(2− V 2)
(2θ2(B)− V θ1(C))

q̊1(C|B) =
V

2
+ (1− V )θ1(C)
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By using the above expressions for purchase probabilities in different cycle combinations,

we can compare non-cycle and 2-cycle profits. We compare profit in a period, for example

π(A|A) with π(A|C)+π(C|A)
2

. We have the following two lemma regarding the optimal solutions

for V = 0 and V = −1 cases.

Lemma 3.4.2.1. When V = 0, k-cycle, s.t. k ≥ 2 is never optimal.

Proof. It is a direct result from Lemma-3.3.2.1

Lemma 3.4.2.2. When V = 1;

(a) Offering only A or Only B yields the same profit. (which is also true for k > 2)

(b) For β < 1 cycling between assortments A and B always gives more profit than offering

only assortment C. For β = 1 cycling between assortment A and B and offering only

assortment C yields the same profit. (both are optimal)

(c) For m ≥ σλβ−1, the optimal assortment is cycling between assortment A and B.

Proof. (a) We have q̊1(A|A) = q̊2(B|B) = 1
2

which implies that it offering either products

yields the same profit.

(b) π(C|C) − π(A|B)+π(B|A)
2

= −σλβ

3β
(2 − 2β) < 0 for β < 1 which implies cycling between

assortment A and B always yields more profit than offering only assortment C.

(c) We compare offering only A with cycling between A and B.

π(A|A)− π(A|B)+π(B|A)
2

= 2−β
(
−1 + (4/3)β

)
σλβ − λm

6
.

We have 2−β
(
−1 + (4/3)β

)
≤ 1

6
which implies if m ≥ σλβ−1 (or we can say m ≥ σ) then

cycling between assortment A and B yields more profit than offering only assortment A.

Then we compare cycling A and B and cycling A and C.

π(A|C)+π(C|A)
2

− π(A|B)+π(B|A)
2

=
((

2
3

)
β − 1

2(1+2β) − 1
2β

)
σλβ − λm

24
. Which is negative for m ≥

σλβ−1 implying, cycling between assortment A and B yields more profit than cycling between

assortment A and C .

We have π(A|B)+π(B|A)
2

> π(A|C)+π(C|A)
2

and π(A|B)+π(B|A)
2

> π(A|A) = π(B|B) and from (b)
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π(A|B)+π(B|A)
2

> π(C|C).

3.4.3 Dynamic Firm

In this section we study the optimal policy in the infinite horizon for a dynamic firm, that

is a firm which is free to vary the assortment from period to period. In particular we study

in which case a static or k-cycle policy is optimal .

Lemma 3.4.3.1. A static (1-cycle) policy is optimal in the infinite horizon problem when

V = {−1, 0}. For V = −1, we have S∗t = Sγ for t = 1, ...,∞. For V = 0, we have S∗t = Sθ

for t = 1, ...,∞.

Proof. Follows directly from Lemmas 3.3.2.2 and 3.3.2.1.

3.5 Numerical Analysis

Our numerical study is divided into three parts. The objective of part I is to compare

the performance of the dynamic firm with that of the static firm. In the second part we

investigate the value of cycling the assortment for the infinite horizon problem. And in the

last part, we show numerical examples about the magnitude of profit loss when the retailer

ignores the variety seeking/avoiding behavior in the market.

3.5.1 Value of Dynamic Assortment

In this section we study the value of varying the assortment from period to period. We

numerically compare the retailer’s profit under (i) the optimal dynamic firm policy (ii) the

optimal static firm. We try to see how two different firm types differ in terms of profit

depending on V and T. We assume there are 3 products (Product 1 is the most popular

and product 3 is the eccentric product) that can be offered. We use the parameters r = 5,

σ = 4.8, β = 0.9 , λ = 50 and u = {10, 60, 20, 5}. In table 3.5 we present the profit
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Table 3.5: Static and Dynamic Firm profit comparison by T

Static Firm Dynamic Firm
T Assortment Total Profit Assortment Total Profit %Profit Difference
1 {1} 62.2236 {1} 62.2236 0
2 {1, 3} 119.6562 {1}-{1, 2} 121.1195 1.29
3 {1, 3} 178.5402 {1}-{2}-{1} 182.4124 2.17
4 {1, 3} 237.3652 {1}-{1, 3}-{2}-{1} 240.7544 1.43
5 {1, 3} 296.1990 {1}-{2}-{1}-{2}-{1} 301.6901 1.95

difference between dynamic and static firm by T when V = 0.3. For the one period problem

the optimal assortments for the two type of firms are the same and it is offering the most

popular product. When T = 2, the optimal assortment for the static firm becomes the most

popular product and the eccentric product. As we discussed before, having popular and

eccentric product at the same time in the assortment is a result of variety seeking behavior.

The Dynamic firm optimal assortment is offering the popular product in period-1 and offering

the most popular two products in period-2. We see that while static firm offers the eccentric

product, dynamic firm does not. The optimal assortment does not change for static firm as

T increases after T = 2. For the dynamic firm we observe the cyclic pattern when T = 5.

The average profit difference is around 2%.

In Table 3.6 we present the profit difference between dynamic and static firm by V when

T = 4. We observe that the difference between dynamic firm and static firm is very low

when consumer are variety avoiders (V < 0), whereas it is close to 9% when consumers are

highly variety seekers. We also see that optimal profit decreases as consumers become variety

seeker/avoider (as V deviates from zero). As seen when V = −0.9 case, in the last period,

dynamic firm drops product 3 from the assortment. As a general numerical observation we

observe that, when V is less than zero the dynamic firm never adds a product to the previous

period’s assortment.
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Table 3.6: Static and Dynamic Firm profit comparison by V

Static Firm Dynamic Firm %Profit Difference
V Assortment Total Profit Assortment Total Profit

(
Dynamic−Static

Static
× 100

)
−0.9 {1, 2, 3} 202.8351 {1, 2, 3}-{1, 2, 3}-{1, 2, 3}-{1, 2} 203.0012 0.08

−0.5 {1} 258.4016 {1}-{1}-{1}-{1} 258.4016 0

0 {1} 292.047 {1}-{1}-{1}-{1} 292.047 0

0.5 {1, 2} 217.9938 {2, 3}-{1}-{2}-{1} 227.1293 4.19

0.9 {1, 2, 3} 194.7385 {2, 3}-{1}-{2}-{1} 211.9995 8.86

3.5.2 Value of a Cyclic Assortment

As we discussed in section 3.4 , for infinite horizon problem when consumers are variety

seekers, it might be better to cycle between two assortments instead of offering 1 assortment.

In this section we provide some numerical examples about the magnitude of profit increase

when cycling is better, namely we compare infinite static and infinite cycling firms. We

assume there are 3 products and use the same parameters as section. Notice that 1 cycle

also can be a solution for cycling firm, which is a special case of cycling between the same

same assortment. The results are presented in Table 3.7 The profit values in the table are per

period. According to the results, for V ≤ 0 infinite static and infinite-cycling firms has the

same solution. But for V>0, the optimal assortment for the cycling firm is offering product

1 in one period and product 2 in the other period. Compared with infinite static firm, this

strategy yields 12.35% more profit when the consumers are highly variety seekers. In this

example the optimal assortments are different for the two firm types when V>0 but it is

not always the case. We may have infinite static and cycling firms have the same optimal

assortment when V>0, depending on the other parameters.

3.5.3 Value of Variety-Seeking Behavior

In this section we discuss the impact of the retailer ignoring the consumers’ attitude towards

variety. Specifically we assume that the retailer considers that V = 0 and optimizes the

assortment accordingly, offering S = Sθ in each period.
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Table 3.7: Infinite Static and Cycling Firm profit comparison by V

Infinite-Static Firm Infinite-Cycling Firm %Profit Difference

V Assortment Profit Assortment Profit
(
Cycling−Static

Static
× 100

)
−0.9 {1} 73.0118 {1} 73.0118 0
−0.5 {1} 73.0118 {1} 73.0118 0

0 {1} 73.0118 {1} 73.0118 0
0.5 {1, 2} 54.0666 {1} ←→ {2} 57.7791 6.87
0.9 {1, 2, 3} 48.6273 {1} ←→ {2} 54.6373 12.35

Table 3.8: Finite Horizon Ignorant Firm profit loss by V

Ignorant Firm % Profit Difference
V Assortment Total Profit Static Firm Dynamic Firm
−0.9 {1} 182.7487 10.99 11.08
−0.5 {1} 258.4016 0 0

0 {1} 292.047 0 0
0.5 {1} 201.0796 8.41 12.95
0.9 {1} 159.4545 22.13 32.95

Finite Horizon:

In Table 3.8 we compare the ignorant firm profit to the static and dynamic firm of finite

horizon with T = 4. We use the same parameters as before. The optimal assortment

when V=0 is offering only product 1 as seen in the table, the total profit corresponding

the Ignorant Firm is the profit from offering only product 1 with purchase probabilities

calculated by using the real V values. The results show that not taking into account the

variety seeking behavior can result in a profit loss of about 33% when there exist a significant

variety seeking tendency.

Infinite Horizon:

We do similar analysis with the same parameters for the infinite horizon case and compare

ignorant firm profit with infinite static and infinite cycling firms. The results are in Table 3.9

According to the results ignorant firm is losing about 37% percent profit when the variety
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Table 3.9: Infinite Horizon Ignorant Firm profit loss by V

Ignorant Firm % Profit Difference
V Assortment Total Profit Infinite-Static Firm Infinite-Cycling Firm
−0.9 {1} 73.0118 0 0
−0.5 {1} 73.0118 0 0

0 {1} 73.0118 0 0
0.5 {1} 49.3558 9.54 17.06
0.9 {1} 39.7884 22.21 37.31

seeking tendency is very high. Even when it is moderate, the loss is around 17% which is a

big amount especially in the retail market.

In the infinite horizon problem with static firm, for V ∈ (−1, 0], the optimal assortment

is to set S∗ = Sθ therefore the retailer who ignores consumers attitude towards variety will

not suffer any profit lost. However, if V ∈ (0, 1), he might. In particular if V = 1, the

optimal assortment is S∗ = Sγ but the retailer who ignores variety will set Sθ.

The profit difference in this case is given by:

π∞(Sγ)− π∞(Sθ) =
n∑
j=1

{
rλq∞,j(Sγ)− σ

[
λq∞,j(Sγ)

]β}
−

n∑
j=1

{
rλq∞,j(Sθ)− σ

[
λq∞,j(Sθ)

]β}
When V = 1 we have q∞(S) = γ(S) for all S. Therefore,

π∞(Sγ)− π∞(Sθ) =
∑
j∈Sγ

{
rλ

1

|Sγ |
− σ

[
λ

1

|Sγ |

]β}
−
∑
j∈Sθ

{
rλ

1

|Sθ|
− σ

[
λ

1

|Sθ|

]β}

= rλ

( |Sγ | − 1

|Sγ |
−
|Sθ| − 1

|Sθ|

)
− σ

 (|Sγ | − 1)

[
λ 1
|Sγ |

]β
−(|Sθ| − 1)

[
λ 1
|Sθ |

]β


As a result we see that the difference in profits only depends on the difference in size

of the two assortments. In table 3.10 we show the magnitude of this difference depending

on different parameters and product numbers. According to the results, when there are
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Table 3.10: Sγ and Sθ comparison when V = 1

Parameters u Sθ π(Sθ) Sγ π(Sγ) % Difference

r = 4.8, σ = 4

λ = 50, β = 0.8

(10, 50, 20, 9, 70

(60, 50, 20, 9, 7)

(600, 50, 20, 9, 7)

{1}

{1, 2, 3}

{1, 2, 3}

67.46

89.48

89.48

{1, 2, 3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4}

91.04

91.04

91.04

25.89

1.71

1.71

r = 4.8, σ = 4

λ = 50, β = 0.95

(5, 100, 60, 40,

30, 15, 10)
{1} 34.86 {1, 2, 3, 4, 5, 6} 50.33 30.73

r = 12, σ = 4

λ = 50, β = 0.9

(5, 100, 60, 50, 45, 44,

43, 42, 41, 40, 39)
{1} 227.52

{1, 2, 3, 4, 5,

6, 7, 8, 9, 10}
441.99 48.52

4 products the highest difference occurs when outside option is not very popular. As it

becomes more popular, the difference increases. When there are 6 and 10 products, we see

bigger differences. In those cases, while Sθ is only the most popular product, Sγ includes all

the products. For 10 product case, Sγ yields 48.52% more profit.

3.6 Proof of Some Results

3.6.1 Proof of Lemma 3.4.1.4

Proof: Proof is very similar to Ryzin and Mahajan (1999). We show that profit associated

with adding a product is quasi-convex and thus optimal can be achieved in extremes of the

function. In Ryzin and Mahajan (1999) adding a product with u=0 makes the profit same

with offering only S. But in our case, due to the variety seeking behavior, even a product

with u = 0 can increase the profit. Let |S|
|S|+V = ω and V

|S|+V = ϕ.When we add product k

to assortment S the purchase probability of product j becomes:

q∞,j(S ∪ {k}) =
uj(1− V )ω∑
jεS uj + uk

+ ϕ
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Then the profit becomes:

π(S ∪ {k}) =
∑

j∈S∪{k}

mλq∞,j(S ∪ {k})− σc(λq∞,j(S ∪ {k}))β

= mλ
∑

j∈S∪{k}

(
uj(1− V )ω∑
jεS uj + uk

+ ϕ

)
− σcλβ

∑
j∈S∪{k}

(
uj(1− V )ω∑
jεS uj + uk

+ ϕ

)β

=
mλ

(
|S + 1|ϕ+ (1− V )ω

[∑
j∈S uj + uk

])
∑

jεS uj + uk

− σcλβ(∑
jεS uj + uk

)β
 ∑j∈S

(
uj(1− V )ω + ϕ

∑
jεS uj + ϕuk

)β
+
(
uk ((1− V )ω + ϕ) + ϕ

∑
jεS uj

)β


Let 0 ≤ δ ≤ u1. and define the following functions:

f(δ) =

(∑
jεS

uj + δ

)
(3.11)

g(δ) = mλ

|S + 1|ϕ+ (1− V )ω

 ∑
j∈S∪{k}

uj + δ



− σcλβ
∑
j∈S

(
uj(1− V )ω + ϕ

∑
jεS

uj + ϕδ

)β

+

(
δ(1− V )ω + ϕ

(∑
jεS

uj + δ

))β
 f 1−β

We will show that h(δ) = g(δ)
f(δ)

is quasi-convex. We use the following result from Mangasarian

(1969): ”The function g(·)/f(·) is quasi-convex on X if (i) g(·) is convex and f(·) > 0 for

all v ∈ X and (ii) f(·) is linear on X.”

The function f(·) is linear in δ. We need to show that g(·) is convex in δ. Notice that xβ

is concave for β ≤ 1. Then,
∑

j∈S

(
uj(1− V )ω + ϕ

∑
jεS uj + ϕδ

)β
and(

δ(1− V )ω + ϕ
(∑

jεS uj + δ
))β

are increasing concave in δ and summation of two increas-

ing concave is also increasing concave. Besides, f 1−β is increasing concave and multiplication

of increasing concave functions is concave. And finally, linear minus concave is convex.
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The function h(δ) = g(δ)
f(δ)

represents the profit associated with adding a variant with

preference δ to the existing set S. In Ryzin and Mahajan (1999) when δ = 0 the function

reduces to π(S) but in our case it is not. But if you add a product with δ = 0 in our model,

for V > 0, some consumers will buy that product due to variety seeking behavior and this

will change the profit (can be negative or positive) Which means even adding a product with

preference δ = 0 will change the profit (can be negative of positive).

3.6.2 Derivation of Steady State Distribution for 2-Cycle

Suppose the retailer cycles between assortments Si and Sj. We try to find q̊∞,k(Si|Sj) which

is the stationary probability of purchasing product k in assortment Si given that previous

assortment was Sj. Assuming that stationary distribution exists, we should have:

q̊k(Si|Sj) =
∑
ξ∈Si

q̊ξ(Si|Sj)Pξk(Si|Sj)

=
∑
ξ∈Si

q̊ξ(Si|Sj)
∑
ω∈Sj

q̊ω(Si|Sj)Pωk(Si)

For 0 ≤ V ≤ 1 we get:

q̊k(Si|Sj) = (1− V )θk(Si) +
V

|Si|
∑
ξ∈Si
ξ /∈Sj
ξ 6=k

q̊ξ(Sj|Si) +
V

|Si − 1|
∑
ξ∈Si
ξ∈Sj
ξ 6=k

q̊ξ(Sj|Si)

Let |Si − Sj| = ∆i and |Si ∩ Sj| = Γ. Also define: H i =
∑
k∈Si
k/∈Sj

q̊k(Si|Sj) which is the sum of

stationary purchase probabilities of products that are in Si but not in Sj (Distinct products)

and Gi =
∑
k∈Si
k∈Sj

q̊k(Si|Sj) which is the sum of stationary purchase probabilities of products

that are in Si and in Sj (Common Products).

Notice that H i+Gi = 1 and we can write Gi = 1−H i. We first derive H i and then q̊k(Si|Sj).

Derivation of H i :
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(i) Consider product j where j ∈ Sj and j /∈ Si, We have:∑
k∈Si
k/∈Sj
k 6=j

q̊k(Si|Sj) =
∑
k∈Si
k/∈Sj

q̊k(Si|Sj) = H i and
∑
k∈Si
k∈Sj
k 6=j

q̊k(Si|Sj) =
∑
k∈Si
k∈Sj

q̊k(Si|Sj)− q̊j(Si|Sj)

Since j /∈ Si ⇒ q̊j(Si|Sj) = 0 and thus
∑
k∈Si
k∈Sj
k 6=j

q̊k(Si|Sj) = Gi. Define hi = V
|Si| and gi = V

|Si−1| .

For the product j with j ∈ Sj and j /∈ Si, we have:

q̊j(Sj|Si) = hj
∑
k∈Si
k/∈Sj
k 6=j

q̊k(Si|Sj) + gj
∑
k∈Si
k∈Sj
k 6=j

q̊k(Si|Sj) + (1− V )θj(Sj)

= hjH i + gjGi + (1− V )θj(Sj)

Then we can write:

Hj =
∑
j∈Sj
j /∈Si

q̊j(Sj|Si) =
∑
j∈Sj
j /∈Si

[
hjH i + gjGi + (1− V )θj(Sj)

]

= ∆2h
jH i + ∆2g

jGi + (1− V )
∑
j∈Sj
j /∈Si

θj(Sj)

As a result we get:

Hj = ∆2

[
hjH i + gjGi

]
+ (1− V )

∑
j∈Sj
j /∈Si

θj(Sj)

and by using similar calculations we can easily get:

H i = ∆1

[
hiHj + giGj

]
+ (1− V )

∑
J∈Si
J /∈Sj

θj(Si)
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(ii) Now consider product j such that j ∈ Sj and j ∈ Si. We have
∑
k∈Si
k/∈Sj
k 6=j

q̊k(Si|Sj) =

∑
k∈Si
k/∈Sj

q̊k(Si|Sj) = H i. So we can write q̊j(Sj|Si) as:

q̊j(Sj|Si) = hj
∑
k∈Si
k/∈Sj
k 6=j

q̊k(Si|Sj) + gj
∑
k∈Si
k∈Sj
k 6=j

q̊k(Si|Sj) + (1− V )θj(Sj)

= hjH i + gj
(
Gi − q̊j(Si|Sj)

)
+ (1− V )θj(Sj)

We use the same trick and sum q̊j(Sj|Si) for all j ∈ Sj and j ∈ Si to get Gj.

Gj =
∑
j∈Sj
j∈Si

q̊j(Sj|Si) =
∑
j∈Sj
j∈Si

[
hjH i + gj

(
Gi − q̊j(Si|Sj)

)
+ (1− V )θj(Sj)

]

=
∑
j∈Sj
j∈Si

hjH i +
∑
j∈Sj
j∈Si

gj
(
Gi − q̊j(Si|Sj)

)
+
∑
j∈Sj
j∈Si

(1− V )θj(Sj)

= Γ
[
hjH i + gj

(
Gi
)]
− gj

∑
j∈Sj
j∈Si

q̊j(Si|Sj) +
∑
j∈Sj
j∈Si

(1− V )θj(Sj)

= ΓhjH i + (Γ− 1)gjGi +
∑
j∈Sj
j∈Si

(1− V )θj(Sj)

As a result we have:

Gj = ΓhjH i + (Γ− 1)gjGi +
∑
j∈Sj
j∈Si

(1− V )θj(Sj)
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(iii) Now we go back and reconsider j ∈ Sj and j /∈ Si case.

q̊j(Sj|Si) = hjH i + gjGi + (1− V )θj(Sj)

= hj

∆1

[
hiHj + giGj

]
+ (1− V )

∑
J∈Si
J /∈Sj

θj(Si)



+ gj

ΓhiHj + (Γ− 1)giGj + (1− V )
∑
J∈Si
J∈Sj

θj(Si)

+ (1− V )θj(Sj)

= hj∆1h
iHj + hj∆1g

iGj + hj(1− V )
∑
J∈Si
J /∈Sj

θj(Si)

+ gjΓhiHj + gj(Γ− 1)giGj + (1− V )
∑
J∈Si
J∈Sj

θj(Si) + (1− V )θj(Sj)

= hiHj
[
hj∆1 + gjΓ

]
+ giGj

[
hj∆1 + gj(Γ− 1)

]
+K3 + (1− V )θj(Sj)

Define: K1 = hi [hj∆1 + gjΓ], K2 = gi [hj∆1 + gj(Γ− 1)]

and K3 = hj
∑
J∈Si
J /∈Sj

Mj(Si) + gj
∑
j∈Si
j∈Sj

Mj(Si)

Then we get:

q̊j(Sj|Si) = HjK1 +GjK2 +K3 + (1− V )θj(Sj)

= HjK1 + (1−Hj)K2 +K3 + (1− V )θj(Sj)

⇒
∑
j∈Sj
j /∈Si

q̊j(Sj|Si) = ∆2

[
HjK1 + (1−Hj)K2 +K3

]
+
∑
j∈Sj
j /∈Si

(1− V )θj(Sj)

⇒ Hj = ∆2

[
K2 +Hj(K1 −K2) +K3

]
+
∑
j∈Sj
j /∈Si

(1− V )θj(Sj)

⇒ Hj =

∆2 [K2 +K3] +
∑
j∈Sj
j /∈Si

(1− V )θj(Sj)

1−∆2(K1 −K2)
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After simplifications, for 0 ≤ V ≤ 1 we get:

H i =
(YiDiDj −DjȲi(Yj −Wi)− ȲjȲiWj)

DiDj − ȲjȲi

Where :

Yi = |Si|

Ȳi = Yi(Yi − 1)

Di = V |Si − Sj|

Wi = (1− V )
∑
J∈Si
J /∈Sj

θj(Si)

Now we are ready to derive q̊k(Si|Sj).

Derivation of q̊k(Si|Sj) :

Consider k ∈ Si and k /∈ Sj. We have:

q̊k(Si|Sj) = hiHj + gi(1−Hj) + (1− V )θk(Si)

q̊k(Sj|Si) = 0

Now consider k ∈ Sj and k ∈ Si. We have:

q̊k(Sj|Si) = hjH i + gj
(
1−H i − q̊j(Si|Sj)

)
+ (1− V )θj(Sj)

q̊k(Si|Sj) = hiHj + gi
(
1−Hj − q̊k(Sj|Si)

)
+ (1− V )θk(Si)

We plug in q̊k(Si|Sj) in q̊k(Sj|Si) and solve the equation. After some algebra we get:

q̊k(Sj|Si) =
H i(hj − gj)−Hjgj(hi − gi) + gj(1− gi − (1− V )θk(Si)) + (1− V )θk(Sj)

1− gigj
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