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ON 3D CONTENT MANIPULATION: SIMPLIFICATION,

MODIFICATION AND AUTHENTICATION

Kanchan Anil Bahirat, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Balakrishnan Prabhakaran, Chair

With the rapid development in the area of computer graphics and depth sensing technologies,

various tools have emerged for 3D content creation such as RGB-D cameras (e.g., Microsoft

Kinect, RealSense), LiDAR sensors, CAD tools etc. By employing these tools, creating and

re�ning the 3D data has become viable which in result has enabled numerous mixed-reality

applications in the domain of healthcare, virtual training, collaborative visualization, vehicle

automation and crime scene reconstruction. Although the 3D data �nds application in

diverse areas, deploying an immense 3D content across various platforms is still challenging.

Besides, due to applicability in sensitive areas, scrutinizing the vulnerability of 3D data

has also become crucial. Motivated by these challenges, this dissertation presents a set of

novel approaches for 3D content manipulation mainly focusing on making it e�ective across

di�erent platforms and reliable for various sensitive applications.

Speci�cally, I have considered three research tasks. The �rst task focuses on �3D content

simpli�cation for multi-platform rendering� that includes 1) designing a high-�delity mesh

simpli�cation algorithm QEM4V R enabling mobile virtual reality (VR) and 2) a real-time

curvature sensitive surface simpli�cation CS3 using depth images. Among these, QEM4V R

applies curvature based boundary preservation for generating a high-�delity, low-poly ver-

sion of 3D meshes in an o�ine manner. While CS3 provides a real-time, curvature adaptive
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surface simpli�cation from depth images for enabling mixed reality applications. We also

studied the utilization of objective perceptual quality metrics to evaluate 3D mesh simpli�ca-

tion algorithms that motivates us to formulate a Just Noticeable Di�erence based subjective

analysis.

The second task is aimed at �3D content modi�cation for virtual therapies� that explores

the applicability of 3D data in managing phantom pain as well as for a virtual enhancement

providing the positive reinforcement during virtual therapy. Mixed reality-based framework

developed for managing phantom pain (Mr.MAPP) creates a realistic and e�ective illusion of

a phantom limb in case of both upper and lower limb amputation. The system is evaluated

by subject matter experts (SMEs) and has been enhanced for conducting the patient trial.

The last task is �3D content authentication for secure usage� by performing thorough studies

on 3D data forensics for both long and short range sensors such as LiDAR and Microsoft

Kinect respectively. Keeping the application of 3D data in self-driving cars, we also propose

a framework, ALERT (Authentication, Localization, and Estimation of Risks and Threats),

as a secure layer in the decision support system in the navigation control of vehicles and

robots. Various experimental results demonstrate the e�ectiveness of the proposed ALERT

for ADAS (Advanced Driver Assistance System).
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With recent advances in the depth sensing technology, various depth sensors such as LiDAR,

RGB-D cameras (see Figure 1.1) are widely available in the market. LiDAR sensors have

long-range, millimeter precision and mostly employed in outdoor settings. While RGB-D

cameras such as Microsoft Kinect, RealSense are short range, low-cost, available o�-the-shelf

and usable in indoor environments. Using this wide-range of depth sensors, it has become

possible to quickly generate a complete 3D reconstruction of an object or an entire scene.

Besides using depth sensors, 3D content can also be generated by software such as Maya,

CAD. Equipped with the ability of a rapid 3D content generation, a numerous 3D data in

various formats is created, re�ned and utilized.

Simultaneously, due to the commercial introduction of mobile head-mounted displays

(HMDs) such as the Samsung Gear VR, Microsoft Hololens and Oculus Rift, various mixed-

reality based applications utilizing 3D data have emerged which �nd potential utility in the

domain of health care, virtual training, collaborative visualization and 3D Tele-immersion

(Kreylos, 2005; Arworks, 2015; Microsoft, 2016) (See Figure 1.2). These real-time appli-

cations need to balance visual quality, rendering latency, power consumption and battery

life to achieve an optimal immersive experience (Microsoft, 2015). However, accomplishing

these applications has two prime hurdles: 1] Generally, the 3D content is extensive in size

compared to their 2D counterpart. For example, typical RGB-D cameras such as Microsoft

(MS) Kinect generates a dense depth data consisting of maximum 300K vertices @30 fps. 2]

mobile HMDs are severely constrained by limited graphics processing units (GPUs), which

are over an order of magnitude slower than desktop-based GPUs (Boos et al., 2016). Fur-

ther, even if the input is a compressed depth stream obtained using transmission standards
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(a) Microsoft Kinect (b) Intel's RealSense (c) Velodyne LiDAR

Figure 1.1: Short (Microsoft Kinect, RealSense)and long range (LiDARs) 3D sensors.

(a) (b)

Figure 1.2: a) VR training developed by AiSolve (Metry, 2017) and b) Mixed-reality for
phantom pain from Multimedia lab of UT Dallas.

such as 3D-HEVC (Tech et al., 2012), the uncompressed stream still gives a dense sampling.

Hence, matching the limitation of handheld mobile VR devices and rendering engines while

maintaining a realistic, immersive experience is a challenging task. One possible approach

to mitigating the GPU limitations of mobile HMDs is to reduce the overall number of poly-

gons that the GPU must render in real-time. Typically, mesh simpli�cation algorithms can

be used to rapidly create low-poly versions of pre-existing, high-poly 3D models. However,

many existing mesh simpli�cation algorithms are not able to adequately handle manifold

meshes with boundaries and non-manifold meshes, which are common attributes of many

3D models.
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Although, various mixed and virtual reality applications are developed for virtual ther-

apies, di�erent challenges in deploying these systems for speci�c tasks such as managing

phantom pain, providing positive reinforcement are still not addressed. For example, among

a wide spectrum of treatments developed for alleviating phantom limb pain includes virtual

reality-based methods. Most of the virtual reality-based methods rely on 3D CAD models

of the virtual limb, animating them using the motion data acquired either from patient's

existing anatomical limb or myoelectric activity at patient's stump (of the amputated limb).

Since motion activity is typically captured using body sensors (Electromyography, EMG, or

inertial sensors), these methods are considered as invasive approaches. Further, in the case

of virtual reality-based methods, the dependency on the pre-built 3D models degrades the

immersive experience due to a mismatch in the skin color, clothes, arti�cial and rigid look

and misalignment of the phantom limb.

Along with health care, education and entertainment domain, the 3D content also �nd

applicability in various sensitive domains such as surveillance, crime scene reconstruction,

autonomous vehicle control etc. Many of the vehicle automation and robot navigation ap-

plications involve remote guidance - either for safety or for the task performance - of these

vehicles and robots. As described in the later section, the ability to manipulate 3D content,

although it is bene�cial for multi-platform rendering and virtual therapies, it exposes vul-

nerabilities of using 3D data. Considering the security risks associated with the improper

behavior of these applications, it has become crucial to authenticate the 3D data that highly

in�uence the decision making in such applications.

1.2 Questions Addressed

Keeping these challenges in mind, we are mainly addressing the following questions in this

dissertation:

1. How to handle limited processing of mobile HMDs?
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2. How to design a mesh simpli�cation algorithm that will generate high-�delity, low poly

meshes while preserving boundaries of 3D objects?

3. Are the existing perceptual distance metrics su�cient to capture the 3D mesh quality

perceived by humans?

4. How to develop a fast and real-time surface simpli�cation algorithm facilitating the

interactive, real-time mixed reality applications?

5. How to create a realistic illusion of a phantom limb by 3D content manipulation for

phantom limb pain management?

6. Is 3D data vulnerable to security threats?

7. Is it possible to detect any manipulation/attack on 3D data?

8. Is it possible to create a complete framework that acts as a secure layer for decision

support system in the remote navigation of vehicles/robots?

1.3 Dissertation Objectives

Figure 1.3 describes the overall �ow of the dissertation. The primary objectives of the

dissertation are to study and develop novel methods of the 3D content manipulation such

as:

• 3D content simpli�cation for multi-platform rendering

• 3D content modi�cation for virtual therapies

• 3D content authentication for secure usage
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Figure 1.3: The overall �ow of the dissertation.

1.3.1 Simpli�cation for multi-platform rendering

To make the 3D content e�ective across various platforms, we opt for an automated approach

of 3D mesh simpli�cation. We presentQEM4V R, a high-�delity mesh simpli�cation algorithm

speci�cally designed for VR. This algorithm addresses the de�ciencies of prior quadric error

metric (QEM) approaches by leveraging the insight that the most relevant boundary edges lie

along curvatures while linear boundary edges can be collapsed. Additionally, our algorithm

preserves key surface properties, such as normals, texture coordinates, colors, and materials,

as it pre-processes 3D models and generates their low-poly approximations o�ine.

Although QEM4V R generates high �delity, low-poly models, similar to traditional mesh

and point simpli�cation algorithms, it also needs a high execution time and is inadequate

for real-time applications. For examples, in typical real-time applications based on RGB-D

cameras, the 3D data consisting of approximately 300K vertices is generated @30 fps. In

these applications, all the data must be processed at least @10 fps for unnoticeable delay or

lag, i.e., the processing must be done in less than 100 ms (Wu et al., 2011). However, most

of the traditional mesh and point cloud simpli�cation algorithms take a couple of seconds to

process each frame.
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To alleviate this issue, we introduce a depth image-based approach to sparsely sample a

surface for real-time mesh generation and visualization. We propose a Curvature Sensitive

Surface Simpli�cation - CS3 operator that assigns an importance measure to each point in

the depth image, based on the local curvature. Further, it applies an importance-order based

restrictive sampling to generate a sparse representation that retains the overall shape as well

as the �ner features of the object. We also modify the 2D sweep-line based constrained

Delaunay triangulation to generate 3D meshes from the sparse point sampling obtained

using CS3. Additionally, the proposed approach preserves key surface properties, such as

texture coordinates and materials.

1.3.2 Modi�cation for virtual therapies

To address the limitation of existing traditional and virtual mirror therapy, we propose a

novel Mixed Reality based system for MAnaging Phantom Pain (Mr.MAPP), utilizing o�-

the-shelf RGB-D cameras such as Microsoft Kinect V2 to capture and generate a live 3D

model of the patient in real-time. An illusion of the virtual limb is crafted in real-time by

mirroring the patient's symmetric anatomical limb in the captured data with the help of

various computer vision and graphics techniques. Along with that, a phantom limb skeleton

is also generated in real-time to enable interaction with virtual objects.

1.3.3 Authentication for secure usage

At this end, we perform forensic studies for a 3D data captured using both (i) short-range

sensors such as Microsoft Kinect and (ii) long-range sensors such as LiDAR. For short range

sensor data, we examined in detail the possibility of creating malicious 3D data stream using

simple processing. We also presented a forgery detection method for exposing such malicious

data streams. For long-range sensors, (i) we identi�ed three possible approaches for attacks

on the LiDAR data that do not need additional commodity hardware, (ii) we also presented
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two novel algorithms for detecting such forgeries in LiDAR data in case of di�erent types of

attacks.

In the context of self-driving cars/robots and their remote navigation, we propose a

framework, ALERT (Authentication, Localization, and Estimation of Risks and Threats), as

a secure layer in the decision support system used in the navigation control. ALERT tamper-

proofs 3D LiDAR data by employing an innovative mechanism for creating and extracting

a dynamic watermark. Next, when tampering is detected (because of the inability to verify

the dynamic watermark), ALERT then carries out cross-modal authentication for localizing

the tampered region. Finally, ALERT estimates the level of risk and threat based on the

temporal and spatial nature of the attacks on LiDAR data. This estimation of risk and

threats can then be incorporated into the decision support system used by ADAS (Advanced

Driver Assistance System).

1.4 Contributions

The main scienti�c contributions of my research include:

• A novel mesh simpli�cation algorithm utilizing the QEM infrastructure that uses a

curvature-based boundary preservation approach to maintain key boundary edges with-

out sacri�cing necessary surface edges. This curvature-based approach avoids creating

gaps at boundaries and holes within surfaces. It yields more-accurate, low-poly meshes,

along with preserving key surface properties, such as texture, normals and material

properties.

• A details study on investigating an applicability of existing perceptual mesh quality

measurements for evaluating mesh simpli�cation algorithms designed for non-manifold

meshes with boundaries.
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• A real-time depth image based sparse sampling method for 3D surfaces, which is sensi-

tive to the underlying surface curvature. It maps the 3D surface simpli�cation problem

to the 2D domain by utilizing the depth image. The sampling method and modi�ed

triangulation inherently eliminate the sensor noise at object boundaries as a byproduct.

The proposed method can be easily extended to obtain distance-dependent simpli�ca-

tion of the complete scene. It allows a user-controlled sparseness that can potentially

mitigate the limitations of handheld VR devices and rendering engines.

• A novel mixed reality based system for MAnaging Phantom Pain (Mr.MAPP) which

creates a phantom limb using augmented virtuality. It provides a cost-e�ective solution

that is simple and easy to use for the relief from phantom limb pain. It is a non-invasive

approach that provides a more realistic and natural representation of the phantom limb

that matches the person's skin tone and clothing. It facilitates an interaction-enabled,

lifelike, and smooth movement of the phantom limb.

• Animation based virtual enhancement is developed as a key feature for immersive

exergames (exercise and gaming) that provides a positive reinforcement and motivation

to perform tasks in the AR space that are not possible in the real world.

• A 3D object stream manipulation framework to capture and manipulate live RGB-D

data streams to generate realistic images/videos showing individuals doing activities

they did not actually perform. A forensic approach for exposing the 3D data stream

manipulations is presented that employs a block-based depth noise evaluation approach

to detect manipulations in the depth stream.

• A detailed study of possible forgery attacks on LiDAR data is performed that outlines

two novel forensic approaches for LiDAR data (As per our knowledge, this is the �rst

attempt to address LiDAR forensics). The proposed forensic algorithms are e�ective for
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speci�c types of forgeries, a forensic approach handling the wide spectrum of forgeries

is necessitated. This work creates awareness about avoiding the blind usage of LiDAR

data in critical applications and motivates to explore forensic of LiDAR data as an

emerging research area.

• A novel framework, ALERT, that acts as a secure layer in the decision support system

used in remote vehicle/robot navigation. It utilizes dynamic watermarking scheme

for tamper-proo�ng 3D LiDAR data. An additional level of scrutiny is provided by

cross-modal authentication and risk factor assessment that analyze the 3D LiDAR data

thoroughly.

The corresponding set of publications are listed in curriculum vitae.

1.5 Dissertation Outline

This dissertation is logically divided into three parts. Part I includes Chapter 2 and Chapter

3. Chapter 2 describes various challenges in using same 3D content across various platforms

and proposed mesh simpli�cation algorithm for creating high-�delity, low-poly 3D meshes

o�ine. Chapter 3 outlines the requirement of real-time surface simpli�cation and details

of the proposed curvature sensitive surface simpli�cation processing depth images in the

real-time. Part II includes Chapter 4 describing the proposed Mr.MAPP framework and its

extension for Lower limb amputation. It also sketches the patient study details along with

the description of the virtual enhancement algorithm. Part III consists of Chapter 5, Chapter

6 and Chapter 7. Chapter 5 evaluates the e�cacy of RGB-D cameras, Chapter 6 presents a

study on LiDAR forensics. While Chapter 7 describes a complete framework adding a secure

layer in the decision-making system for reliable remote vehicle/robot navigation.
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PART I

SIMPLIFICATION FOR MULTI-PLATFORM RENDERING
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With the ever increasing range of available 3D sensors and the commercial introduction

of various virtual reality and augmented reality head mounted displays, diverse set of vir-

tual and mixed reality applications are emerging. However, these applications are severely

constrained with the magnitude of 3D content and limited processing power of VR/AR head

mounted displays. With this motivation, we suggest adaptively simplifying the 3D content

to cater across various platforms.

Chapter 2: Typically, the 3D content used in majority virtual realty application consists

of 3D meshes that are designed and built o�ine. To utilize the same 3D environemantthat

is deployed in the desktop environment in head mounted displays, the 3D meshes must be

artistically reduced to low-poly versions which can be a tedious task. Hence, we develop an

automated, iterative mesh simpli�cation algorithm that performs curvature based boundary

preservation to yield high �delity low-poly meshes.

Chapter 3: Although, the iterative mesh simpli�cation algorithms can be very e�ective,

they are not e�cient in reducing the live 3D data captured using depth sensors such as Mi-

crosoft Kinect in real-time. To address this issue, a curvature sensitive surface simpli�cation

provides an e�cient solution that simpli�es the live 3D depth data in real-time achieving

the desired frame rate of 10 fps for mixed reality applications.

11



CHAPTER 2

A BOUNDARY AND TEXTURE PRESERVING MESH SIMPLIFICATION

ALGORITHM FOR VIRTUAL REALITY
1

2.1 Introduction

Mobile virtual reality (VR) has garnered a lot of public attention during the past couple

years. The main reason for this attention has been the commercial introduction of mobile

head-mounted displays (HMDs) that run on smartphones �tted into head-based peripherals,

such as the Samsung Gear VR and Google Cardboard. These mobile HMDs have several

advantages over traditional desktop-based VR systems. First, because these systems are

self-contained and tetherless (Boos et al., 2016), mobile HMDs can be used nearly anywhere,

including outdoors and social gatherings (Pohl and de Tejada Quemada, 2016). Second,

these systems are relatively a�ordable for the general population, as they only require a

smartphone and a head-mounted peripheral (Gargantini et al., 2015). In turn, the low cost

of these commercial devices make them broadly accessible (Steed et al., 2016). Due to these

advantages, researchers have investigated mobile HMDs for treating amblyopia (Gargantini

et al., 2015), self-managing pain (Tong et al., 2015), and geometry education (Steed et al.,

2016).

However, mobile HMDs are severely limited for running VR applications compared to tra-

ditional VR systems. One of the biggest limitations for mobile HMDs is their limited graphics

processing units (GPUs), which are over an order of magnitude slower than desktop-based

GPUs (Boos et al., 2016). These mobile GPUs cannot handle the same virtual environments

and objects as desktop-based VR systems without rendering at lower framerates, which can

1 c©2018 ACM. Reprinted, with permission, from Kanchan Bahirat, Chengyuan Lai, Ryan P. Mcmahan,
and Balakrishnan Prabhakaran. 2018. Designing and Evaluating a Mesh Simpli�cation Algorithm for Virtual
Reality. ACM Trans. Multimedia Comput. Commun. Appl. 14, 3s, Article 63 (June 2018), 26 pages. DOI:
https://doi.org/10.1145/3209661
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induce simulator sickness (Zielinski et al., 2016). Additionally, mobile HMDs are also con-

strained with little processing power and onboard memory leading to an upper bound on

data size. For example, the Samsung Gear VR has a limit of 50K-100K polygons (Pruett,

2015) and the Microsoft HoloLens has a limit of 900 MB for memory (Microsoft, 2015).

There are approaches for addressing the GPU limitations of mobile HMDs. Boos et al.

(Boos et al., 2016) have presented the FlashBack system, which precomputes and caches

all possible images that a VR user might encounter instead of relying on real-time graphics

rendering. In an evaluation, Boos et al. (Boos et al., 2016) found that FlashBack delivered

better frame rates than a desktop-based VR system for both static and dynamic virtual

environments. However, they acknowledged that the FlashBack system cannot handle sev-

eral currently-visible dynamic objects or interactive lightning models, which are important

requirements for many VR applications.

Another approach to mitigating the GPU limitations of mobile HMDs is to reduce the

overall number of polygons that the GPU must render in real-time. One method to accom-

plish this is to artistically recreate 3D models by designing low-poly mesh versions. However,

this method is extremely intensive in terms of an artist's time commitments. Alternatively,

mesh simpli�cation algorithms can be used to rapidly create low-poly versions of pre-existing,

high-poly 3D models. However, many existing mesh simpli�cation algorithms are not able

to adequately handle manifold meshes with boundaries and non-manifold meshes. Many

models, especially those made using computer-aided design (CAD) tools, are non-manifold

meshes with boundaries (Luebke, 2001).

As most of the VR applications utilize CAD models, key requirements for designing a

mesh simpli�cation algorithm suitable for VR include the ability to handle: (a) very high-

poly, non-manifold meshes; (b) preserve mesh boundaries; and (c) preserve mesh properties

such as texture.

Most mesh simpli�cation algorithms require a manifold mesh (Guéziec et al., 1998) as

input (Luebke, 2001). As a result, only a few mesh simpli�cation algorithms can handle most
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(a) Original mesh
(20,544 faces)

(b) QEMBP

(3,236 faces)
(c) QEM4V R

(3,084 faces)

Figure 2.1: Example of the QEMBP approach's inability to preserve important surface edges.

3D models without failing. Of the simpli�cation algorithms that can handle non-manifold

meshes, the quadric error metric (QEM) approach is one of the most popular due to its

speed and accuracy (Hoppe, 1999). However, because the original algorithm (Garland and

Heckbert, 1997) allows for the collapse of boundary edges, it has the tendency to create large

gaps at boundaries (see Figure 2.3(b)). To address this, Garland and Heckbert (Garland

and Heckbert, 1998) provided a QEM modi�cation for boundary preservation (QEMBP ) by

weighting the boundaries when deciding which edges to keep. Unfortunately, this algorithm

tends to preserve unnecessary boundary edges and collapsing needed surface edges, resulting

in degraded surface approximations (see Figure 2.1(b)).

To address the requirements of VR applications and mobile HMDs, we have developed

a novel mesh simpli�cation algorithm utilizing the QEM infrastructure that eliminates the

de�ciencies of QEM and QEMBP . This new algorithm, called QEM4V R, uses a curvature-

based boundary preservation approach to maintain key boundary edges while not sacri�cing

necessary surface edges. This curvature-based approach avoids creating gaps at boundaries

and holes within surfaces (see Figure 2.6(d)). In addition to yielding more-accurate, low-

poly meshes, it also preserves key surface properties, such as normals and materials (see
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Figure 2.9(f)). In this paper, we present the details of our QEM4V R mesh simpli�cation

algorithm that pre-process 3D models and generate their low-poly version o�ine. We also

describe the conceptual di�erences between our approach and prior QEM variations. Ad-

ditionally, we have used six publicly available, high-poly models with and without textures

to compare the accuracy and �delity of our QEM4V R algorithm to previous QEM varia-

tions. Our results indicate that as meshes are simpli�ed to approximately 10% of their

original polygon totals, QEM4V R maintains a higher degree of accuracy with fewer errors

than the other algorithms. Additionally, the low-poly meshes generated by QEM4V R have

high-�delity appearances compared to the original high-poly models, especially those with

textures. Furthermore, the experimental results demonstrate that with QEM4V R, we can

achieve the frame rate of approximately 60 frames/second while retaining the high visual

quality. The time complexity of the QEM4V R is O(nlogn) which is same as original QEM.

QEM4V R also provides a scalability to simplify meshes with a polygon count of magnitude

greater than 1000K polygons. Hence, QEM4V R is a suitable algorithm for creating low-poly

meshes for most VR applications, including mobile HMDs.

2.2 Related Work

Numerous mesh simpli�cation algorithms have been previously proposed (see Cignoni et al.

(Cignoni et al., 1998) and Luebke (Luebke, 2001) for two excellent surveys). However, a key

requirement for designing an algorithm for VR is that the mesh simpli�cation approach must

be capable of handling non-manifold meshes, which are typical for models created by hand

using CAD tools (Luebke, 2001). Unfortunately, most of the previous mesh simpli�cation

algorithms can only handle manifold meshes and fail on non-manifold meshes. Hence, in

this section, we distinguish between manifold-only algorithms and non-manifold capable

algorithms. Only the non-manifold capable algorithms are broadly applicable for developing

VR applications.
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2.2.1 Manifold-Only Simpli�cation Algorithm

One approach to simplifying manifold meshes is to optimize the original one. Hoppe et al.

(Hoppe et al., 1993) presented a mesh optimization algorithm that produces a new mesh

of the same topological type as the original mesh, but with a smaller number of vertices.

To produce new meshes, Hoppe et al. (Hoppe et al., 1993) de�ned three types of mesh

transformations to apply to the original mesh: edge collapse, edge split, and edge swap.

Hoppe et al. (Hoppe et al., 1993) randomly uses these transformations to produce new

candidate manifold meshes, and then picks the candidate that minimizes an energy function

that represents the error of the mesh.

Hoppe (Hoppe, 1996) later de�ned the concept of a progressive mesh, which represents

a manifold mesh as a sequence of edge collapses. The original mesh can be retained by

applying a series of vertex splits to the simpli�ed mesh. Hoppe (Hoppe, 1996) also de�ned

a new energy function to use during simpli�cation to better represent mesh complexity and

maintain a higher degree of �delity.

Another approach to simplifying a manifold mesh is surface re-tiling, which involves

de�ning a new set of vertices projected onto the surface of the original mesh and then using

those vertices to form new surface faces. The surface re-tiling algorithm presented by Turk

(Turk, 1992) �rst projects a new set of vertices onto the surface of the mesh, usually in a

uniform pattern and spacing, though the curvature of a surface could be taken into account.

The �delity of this approach is highly dependent upon the method chosen to project the new

set of vertices upon the surface.

The voxel-based simpli�cation algorithm presented by He et al. (He et al., 1995) �rst

segments a mesh into a voxel-based grid, and then applies a low-pass �lter to eliminate

voxels with the least over-lapping volumes with the original mesh. The algorithm then uses

the marching cubes algorithm (Lorensen and Cline, 1987) to generate a new mesh based on
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the remaining voxels. Due to its volume-based �ltering approach, voxel-based simpli�cation

performs poorly on models with sharp edges and squared corners (Luebke, 2001).

Cohen et al. (Cohen et al., 1996) presented another approach to simplifying manifold

meshes by using two o�set copies of every mesh surface, called simpli�cation envelopes.

These o�sets were used to ensure that a simpli�ed surface would remain within the volume

formed by the envelopes. While simpli�cation envelopes can guarantee a high degree of

�delity given the o�set distance used for the envelopes, the distance also serves as a lower

bound for the algorithm and prevents drastic mesh simpli�cation.

Yet another approach to simplifying manifold meshes is to use multiresolution analysis to

decompose a function, representing the original high-poly mesh, into a simpler function, rep-

resenting a low-poly mesh (Lounsbery et al., 1997). Eck et al. (Eck et al., 1995) presented an

adaptive subdivision algorithm using multiresolution analysis to simplify arbitrary manifold

meshes. The key contribution of their work was the design of a continuous parametrization

of an arbitrary mesh over a simple domain mesh. The �delity of the algorithm presented

by Eck et al. (Eck et al., 1995) is relatively high for smooth organic forms (Luebke, 2001),

but it fails to capture sharp features unless those features correlate to divisions in the base

mesh (Hoppe, 1996). Hosseini et al. (Hosseini et al., 2012) presented an adaptive 3D texture

streaming approach for M3G based mobile games. As this method aims at solely reducing

transmission latency, it may not handle complex models for VR.

In summary, there have been many approaches to simplifying manifold meshes. Each

approach has its strengths and weaknesses, in terms of the �delity of the simpli�ed meshes,

the ability to de�ne the degree of error, time performance, and the complexity of their

implementations. However, these algorithms do not handle non-manifolds, and therefore,

are inadequate for most VR applications.
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2.2.2 Non-Manifold Simpli�cation Algorithms

One of the �rst mesh simpli�cation algorithms capable of handling non-manifold meshes

was the decimation algorithm presented by Schroeder et al. (Schroeder et al., 1992). The

decimation algorithm operates by making multiple passes over all the vertices of the model.

During each pass, for each vertex, the algorithm determines whether a vertex can be removed

without violating the topology of the local neighborhood of faces. If the resulting surface

would be within a user-de�ned distance of the original mesh, the algorithm removes the vertex

and all of its associated faces. The resulting hole is then re-triangulated. The decimation

algorithm presented is capable of handling non-manifold meshes, if it does not delete non-

manifold vertices during its removal passes (Luebke, 2001). However, this rule de�nes a

lower bound for the decimation algorithm, as it cannot produce a low-poly mesh with fewer

vertices than the number of non-manifold vertices. Additionally, the user-de�ned distance

has a major impact on both the lower bound and �delity of the algorithm (Garland and

Heckbert, 1997).

Another approach to simplifying non-manifold meshes is vertex clustering. The vertex

clustering algorithm presented by Rossignac and Borrel (Rossignac and Borrel, 1993) assigns

an importance value to each vertex based on the size of its adjacent faces and its curvature.

The algorithm then uses a 3D grid to segment the mesh and collapses all vertices within

any given grid cell to the single most important vertex within the cell. The resolution of the

grid determines the �delity of the resulting simpli�ed mesh. However, because the approach

does not guarantee the amount of error introduced by the simpli�cation, vertex clustering

algorithms are often visually less pleasing than other mesh simpli�cation algorithms (Luebke,

2001).

Another simpli�cation approach that relies on vertex clustering is the hierarchical dy-

namic simpli�cation (HDS) algorithm by Luebke and Erikson (Luebke and Erikson, 1997).
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The HDS algorithm represents the entire mesh as a vertex tree, which is a hierarchy con-

sisting of vertex clusters. The nodes of the tree can either be folded into their parent nodes

to reduce the overall number of faces, or unfolded with their children nodes to re-obtain the

original mesh. Because the vertex tree does not require vertex connectivity, the HDS algo-

rithm supports non-manifold meshes. However, its �delity tends to be less than the �delity

of other simpli�cation algorithms (Luebke, 2001).

Perhaps the most common approach to simplifying non-manifold meshes is to use a

quadric error metric (QEM), which was �rst presented by Garland and Heckbert (Garland

and Heckbert, 1997). The QEM of a vertex is a 4 x 4 matrix that represents the sum of

the squared distances from the vertex to the planes of adjacent faces. When a vertex is

merged with another vertex within a user-de�ned distance threshold, the error introduced

can be computed as the sum of the QEMs of the vertices being merged, which becomes the

QEM of the new vertex. When merging vertices, the QEM algorithm keeps a sorted priority

queue of all candidate vertex pairs based on their merged QEM. The algorithm removes the

vertex pair with the lowest error from the top of the queue, merges the vertices, and then

updates the errors of all vertex pairs involving the merged vertex. By using the QEM, this

approach yields simpli�ed meshes that are relatively high �delity, even at drastic levels of

simpli�cation (Luebke, 2001).

One of the limitations of the original QEM algorithm is that it has the tendency to

produce large deviations at boundary edges due to the decreased number of adjacent faces

(Garland and Heckbert, 1997). To address this issue, and a�ord boundary preservation, Gar-

land and Heckbert (Garland and Heckbert, 1997) also de�ned a boundary constraint plane

passing through each boundary edge. For each boundary constraint plane, they computed a

QEM that is multiplied by a high constant weight factor and added it to the initial QEMs of

the edge vertices. Various researchers (Lindstrom and Turk, 1998; Garland, 1999; Wu et al.,

2001) have also suggested weighing the boundary constraint plane by the square of the edge
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length. However, all of these approaches result in prioritizing all boundary edges more than

surface edges, which results in simpli�ed meshes with holes in their surfaces.

Another limitation of the original QEM algorithm is that it did not account for surface

properties, such as normals, colors, and texture coordinates. Garland and Heckbert (Gar-

land and Heckbert, 1998) generalized the original QEM to also handle surface properties. To

handle normals or colors, the original 4 x 4 error matrix can be extended to a 6 x 6 matrix

that contains the error of the vertex's normal (abc) or its color (rgb). Similarly, a 5 x 5

error matrix can be used to capture the error of the vertex's texture coordinates (st). Hoppe

(Hoppe, 1999) also presented a generalized QEM that required less storage space than that

of Garland and Heckbert (Garland and Heckbert, 1998) by using a wedge-based mesh data

structure. Along with his generalized QEM, Hoppe (Hoppe, 1999) also proposed a mem-

oryless simpli�cation algorithm and a volume-preserving algorithm. More recently, Ovreiu

(Ovreiu, 2012) presented two quadric error metrics capable of handling surface attributes.

Since the introduction of QEM, many researchers have explored how to use it for various

applications. For example, Pojar and Schmalstieg (Pojar and Schmalstieg, 2003) developed

a plugin tool for Autodesk Maya that allows the user to create multiresolution meshes,

including from non-manifold meshes. However, most variations of QEM are suitable for

speci�c types of meshes (e.g., no boundaries, lots of boundaries, textured, etc.), but produce

less-than-desirable results when used for other types of meshes. Because VR applications

are so diverse, and their 3D models can vary drastically (e.g., manifold with no boundaries,

manifold with boundaries, non-manifold), a single mesh simpli�cation approach was not

available. We address this issue with the presentation of our QEM4V R algorithm.

2.2.3 Quality of Experience Assessment

With the ever-increasing number of interactive multimedia systems, researchers have become

more concerned about the Quality of Experience (QoE) a�orded by those systems. The
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International Telecommunication Union has de�ned QoE as the �overall acceptability of an

application or service, as perceived subjectively by the end-user� (Ebrahimi, 2009). However,

as Timmerer et al. (Timmerer et al., 2015) have pointed out, a user might �accept� a

multimedia system �without necessarily being happy or satis�ed with it.� Hence, we consider

the de�nition of QoE proposed by Raake and Egger (Raake and Egger, 2014) to be more

appropriate: �QoE is the degree of delight or annoyance of a person whose experiencing

involves an application, service, or system. It results from the person's evaluation of the

ful�llment of his or her expectations and needs with respect to the utility and/or enjoyment

in the light of the person's context, personality and current state.�

Researchers have investigated various methods to assess overall QoE for immersive sys-

tems, such as VR. Many of these methods involve taking both objective and subjective

measurements to quantify various aspects of the user's experience. Puig et al. (Puig et al.,

2012) proposed a QoE method primarily focused on objective user performance metrics, par-

ticularly task completion times. They conducted a pilot study using the proposed method

and found that users became pro�cient at an object docking task much faster with a large

projection screen than a computer screen. Within the VR community, there have been many

studies that have investigated the e�ects of various interactive systems on user performance

metrics. For example, McMahan et al. (McMahan et al., 2012) evaluated the independent

e�ects of and interactions between display �delity and interaction �delity on user perfor-

mance in a �rst-person shooter VR game. A review of similar user-performance studies is

provided by Bowman and McMahan (Bowman and McMahan, 2007).

In addition to task performance, QoE researchers have investigated the use of heart

rate (HR) and electrodermal activity (EDA) as objective QoE measures. In an early study,

Meehan et al. (Meehan et al., 2002) found that HR signi�cantly correlated to self-reported

measures of presence (i.e., the sense of �being there�) in an immersive VR system simulating

walking above a pit, while EDA and skin temperature did not. More recently, Egan et al.
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(Egan et al., 2016) found that EDA was signi�cantly higher for viewing a city landscape

virtual environment with a conventional 2D monitor as opposed to an HMD, and that most

subjective QoE responses were better for the HMD condition than the 2D monitor condition.

Potential reasons for the di�erent EDA e�ects found by Meehan et al. (Meehan et al., 2002)

compared to Egan et al. (Egan et al., 2016) are the improvement of EDA measurement

devices and the contrasting nature of their virtual environments (i.e., acrophobia-oriented

pit vs. calm city landscape). In other work, Keighrey et al. (Keighrey et al., 2017) used HR

and EDA to compare a VR HMD to an Augmented Reality (AR) HMD for a speech and

language assessment application. They found that the VR HMD elicited greater levels of

HR and EDA, which indicate that the VR HMD yielded greater levels of arousal than the

AR HMD.

Another approach to assessing QoE is to investigate the Quality of Sensory Experience

(QoSE) (Timmerer et al., 2015). According to Raake and Egger (Raake and Egger, 2014),

perceiving sensory stimuli is the basis of quality and QoE. Hence, many researchers have

sought to establish Just Noticeable Di�erences (JNDs) for various sensory stimuli. A JND

is the minimum amount that a stimulus must be changed for the di�erence to be noticeable

to humans (Lecuyer et al., 2000). Many JND studies have focused on the visual qualities of

multimedia. Yang et al. (Yang et al., 2005) established a JND model for spatial masking

factors in video encodings. Using a similar model, Zhang et al. (Zhang et al., 2008) were able

to estimate JNDs for viewing images by summing the e�ects of the visual thresholds into

sub-bands. Beyond 2D multimedia, Zhao et al. (Zhao et al., 2011) conducted an experiment

to establish a binocular JND (BJND) model for viewing stereoscopic images. Using the

BJND model, Hachicha et al. (Hachicha et al., 2013) created the objective Stereo Image

Quality Assessment (SIQA). More recently, Wu et al. (Wu et al., 2011) conducted a JND

study to identify a new critical quality factor for 3D tele-immersive video called Color-plus-

Depth Level-of-Detail (CZLoD). In this paper, we discuss how the a JND methodology can

be used to better assess the visual quality of simpli�ed meshes.
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2.3 New Simpli�cation Algorithm

Considering the various properties of handmade 3D models used in VR applications, we

have designed and developed a new mesh simpli�cation algorithm that can e�ectively create

a low-poly version of nearly any 3D model. Our algorithm builds upon the original QEM

approach presented by Garland and Heckbert (Garland and Heckbert, 1997). Hence, we refer

to it as QEM4V R. Our algorithm overcomes the limitations of the original QEM algorithm

and other prior variations by employing a curvature-based boundary preservation approach

and considering a wide variety of surface properties, even within the same mesh, when

assigning error metrics. In section 3.1, we present the basics of the original QEM algorithm

for completeness and for those readers unfamiliar with the approach. In section 3.2, we

discuss the boundary-handling limitations of prior algorithms and how our curvature-based

approach overcomes those limitations to yield higher-�delity, low-poly meshes. In section

3.3, we discuss the surface-handling limitations of previous variations and how our new

simpli�cation algorithm accounts for the wide range of surface properties that are common

with handmade 3D models. Finally, in section 3.4, we present a summary of the QEM4V R

algorithm.

2.3.1 Basics of Quadric Error Metric

For completeness and those readers unfamiliar with the approach, we discuss the details of

the original QEM algorithm (Garland and Heckbert, 1997) here.

Pre-cleaning of Mesh

Handmade 3D models may consist of unreferenced, redundant vertices and redundant faces

that are generated during the modelling process. Unreferenced vertices may be created due

to inappropriate deletion of faces; while redundant vertices and faces are often created due
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Figure 2.2: Example of collapsing an edge to a single vertex through the contraction
(v1, v2)→ v̄.

to speci�c �le formats. Unreferenced, redundant vertices add unnecessary computational

overhead and can also limit the ability to achieve drastic simpli�cations. Hence, when using

any QEM approach, such redundant vertices and faces should be removed to accelerate

processing and improve e�ciency.

Mathematical Formulation

The original QEM method proposed by Garland and Heckbert (Garland and Heckbert,

1997) is based on the iterative contraction of vertex pairs. A pair contraction represented

as (v1, v2) → v̄ , moves vertices v1 and v2 to new position v̄, connects all incident edges on

v1 and v2 to v̄, and deletes both v1 and v2, along with any degenerate edges and faces (see

Figure 2.2).

At each step of the iteration, a valid vertex pair is chosen for contraction based on the

cost of contraction measured by the geometric error of approximation. It characterizes the

geometric error of an approximation using the quadric error metric. The QEM associates a

set of planes with every vertex of the model. The geometric error induced by the removal of

a particular vertex is de�ned to be the sum of the squared distance of the given vertex to all

the planes in the associated set. Each set is initialized with faces incident to the given vertex

in the original mesh. When the edge is contracted into a single vertex, the resulting set is

the union of the two sets associated with endpoints of the edge. Every face in the original

model is de�ned by a plane represented by the equation nTv+ d = 0, where n = [nx ny nz]
T
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is a unit normal and d is a constant. Given this representation of the plane, the squared

distance of the vertex v = [x y z]T to the plane in given by (Garland and Heckbert, 1998):

D2 = (nTv + d)2 = (vTn+ d)(nTv + d) = vT (nnT )v + 2dnTv + d2 (2.1)

Garland and Heckbert represent the D2 using a convenient representation in terms of a

quadric Q

Q = (A, b, c) = (nnT , dn, d2) (2.2)

and corresponding quadric error analogous to D2 is

Q(v) = vTAv + 2bTv + c (2.3)

The addition of two quadrics can be computed componentwise: Q1(v) + Q2(v) = (Q1 +

Q2)(v), where (Q1 +Q2) = (A1 +A2, b1 + b2, c1 + c2). Hence, the total quadric error at any

vertex can be computed by summing up the quadrics for each plane in the set associated with

that vertex. Furthermore, when the edge (v1, v2) is collapsed, the resulting quadric is merely

an addition of two quadrics given by: Q = Q1 + Q2 and cost of contraction (v1, v2) → v is

given by Q(v) = Q1(v) + Q2(v). Hence, associated set of planes with each vertex are just

conceptual with no need to maintain them explicitly.

The original quadric metric proposed in (Garland and Heckbert, 1997) is heavily in�u-

enced by the tessellation or the structure of mesh. As the shape of the surface is more

important than the way it is tessellated, the quadric error should be independent of the

structure of mesh. To achieve it, Garland suggested an area-weighted quadric [garlandthe-

sis].

Vertex Placement

While contracting edge (v1, v2), the selection of target position v should be made. In (Garland

and Heckbert, 1997), Garland and Heckbert suggested two primary choices based on required

space e�ciency and approximation quality as: 1) subset placement and 2) optimal placement.

25



With the subset placement strategy, one of the end points is selected as a target position.

The end point with smaller Q(v) is contracted into another end point. This strategy produces

an approximation using a subset of the original set of vertices with their original positions.

Another possibility is to use the mid-point of the edge (v1, v2) as a target position.

With the optimal placement strategy, for a given quadric, the target position v is com-

puted such that Q(v) is minimal. As Q(v) is quadratic, its minimum occurs at ∂Q
∂x

= ∂Q
∂y

=

∂Q
∂z

= 0. By solving this linear system, we can �nd the optimal target position and corre-

sponding error as: v = −A−1b and Q(v) = −bTA−1b + c. If the matrix A is not invertible,

we can use a subset placement.

Optimal placement results in the better approximation closely �tting to the original mesh.

Resultant meshes have more equilateral triangles with uniform areas. On the other hand,

subset placement results in inferior approximation, but needs signi�cantly less storage space.

With both optimal placement and mid-point placement, one needs to store all delta changes

for every contraction. This overhead can be avoided in subset placement. Hence, we have

chosen to use the subset placement policy in our QEM4V R method. However, QEM4V R can

be easily adapted to any of the above-mentioned policies.

2.4 Curvature-Based Boundary Preservation

The key insight that our QEM4V R algorithm leverages is the fact that boundary edges are

important for the perception of the shape of a mesh, but that not every boundary edge

needs to be kept to maintain that shape. In particular, we have used the curvature of a

boundary edge vertex to judge the importance of its boundary edges. Thus, our algorithm

better maintains both the boundaries and the surface edges of a mesh during simpli�cation,

which results in higher-�delity simpli�ed meshes.

26



(a) Original, open-ended cylinder mesh (36
faces)

(b) Original QEM result (28 faces)

(c) QEM with boundary constraints result
(28 faces)

Figure 2.3: Example of the original QEM algorithm's inability to preserve important bound-
ary edges.

2.4.1 Limitations of Original QEM Approach

Generally, sharp edges on the surface of a mesh and its boundaries characterize the object

and are considered the most signi�cant visual features (Luebke, 2001). Therefore, it becomes

critical to preserve these features for obtaining a better sparse approximation. The original

QEM algorithm (Garland and Heckbert, 1997) inherently handles surface shape disconti-

nuities and preserves sharp edges. For example, consider a sharp edge of a cube. For the

vertices on the edges of the cube, contributing faces come from the adjacent faces of the

cube, which are perpendicular to each other. Hence, the cost of moving the vertex along the

edge will be less than moving the vertex away from the edge. Therefore, the original QEM

algorithm is strongly biased against altering the sharp features of a mesh's surface. On the

other hand, the original QEM algorithm does not account for actual mesh boundaries (i.e.,

edges with only one adjacent face). Instead, it has the tendency of prioritizing sharp surface

edges over boundary edges. As a result, those boundary edges are removed, which in turn,

causes holes to form within the surfaces that the algorithm was trying to preserve (see Figure

2.3(b)).
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2.4.2 Limitations of Prior Boundary Constraints

Recognizing the original algorithm's inability to preserve important boundary edges, Gar-

land and Heckbert (Garland and Heckbert, 1997) suggested using a boundary preservation

approach by marking the boundary edges during the initialization process. For each bound-

ary edge, they computed a plane perpendicular to the edge's face that passed through the

edge. Similar to the regular plane, a quadric is computed for these boundary constraint

planes. A constant and large weight factor is applied to resultant quadric and added to the

initial quadrics for both of the boundary edge's vertices. For the area-weighted quadric, they

applied a squared length of the boundary edge as the weight factor. Figure 2.3 shows the

results before and after applying the boundary constraints described.

However, this boundary preservation approach is not without its own limitations. The

approach is highly biased towards not altering the boundary vertices and may result in

inferior results. It will remove most surface edges and their vertices before removing any

boundary vertices. For example, consider the mesh drastically simpli�ed with boundary

constraints in Figure 2.1.

2.4.3 Curvature-Based Boundary Preservation Approach

To achieve a better boundary constraint, it is important to consider the shape of the boundary

curve. For example, the vertices on a linear boundary may be removed in order to keep some

of the vertices on the inner surface to get a better approximation. Because the existing

boundary preservation approach applies a constant weight factor, it removes the vertices

from the inner surface instead of vertices on the linear boundary. Hence, it results in a

degraded mesh. Here, we describe our curvature-based boundary preservation approach.

We �rst identify the boundary edges during initialization. For manifold and non-manifold

surfaces, if the edge is shared by two or more triangles, it is considered interior. If the edge
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is shared by only one triangle, it is considered as a boundary edge and the corresponding

endpoints are considered as boundary vertices.

As the proposed approach is designed for both manifold and non-manifold meshes, bound-

ary preservation should also handle both types of meshes. First, we discuss the case of a

manifold mesh with boundaries. Every boundary vertex will have exactly two neighboring

boundary vertices. Consider the boundary vertex v2 and v3. We compute the curvature of

the boundary curve at vertex v1 as (Goldman, 2005):

x′ = v3.x− v2.x, x′′ = v3.x− 2 ∗ v1.x+ v2.x,

y′ = v3.y − v2.y, y′′ = v3.y − 2 ∗ v1.y + v2.y,

z′ = v3.z − v2.z, z′′ = v3.z − 2 ∗ v1.z + v2.z.

(2.4)

k =

√
(z′′y′ − y′′z′)2 + (x′′z′ − z′′x′)2 + (y′′x′ − x′′y′)2

(x′2 + y′2 + z′2)
3
2

(2.5)

where k is a curvature of boundary curve at v1, x′, y′ and z′ are �rst order derivatives and

x′′, y′′ and z′′ are second order derivatives of underlying surface in respective directions.

For non-manifold surfaces, the assumption of exactly two neighboring boundary vertices

may not hold true. Consequently, the curvature computed considering any random pair of

neighboring boundary vertices will result in an incorrect judgment about the vertex. To

handle such scenarios, we simply mark non-manifold boundary vertices as complex vertices

and do not simplify them by assigning them high weights. Inspired by the original QEM

mesh simpli�cation method (Garland and Heckbert, 1997), we compute a boundary con-

straint plane and corresponding quadric in a similar manner. Computation of a quadric for

boundary constraint planes allows incorporating boundary preservation without altering the

functionality of the original algorithm. Next, we add the boundary constraint plane's quadric

to both endpoints of the boundary edge. Instead of multiplying it with the constant high

weight factor, we multiply the quadric with the curvature at each endpoint independently,
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and then add it to initial quadrics of the respective vertices. Mathematically,

Q(v1) = Q(v1) +Wb ∗ k(v1) ∗Qbcp

Q(v2) = Q(v2) +Wb ∗ k(v2) ∗Qbcp

(2.6)

where, Q(v1), Q(v2) are quadrics associated with the vertex v1 and v2, Qbcp is a quadric of

boundary constraint plane at edge (v1, v2), Wb is the user de�ned weight factor and k(v1)

and k(v2) are curvature of boundary curve at the vertex v1 and v2, respectively.

This curvature-based weighing scheme for preserving the boundary assigns a higher

weight to boundary vertices with high curvature. The boundary vertices having less curva-

ture (e.g., a vertex on a linear boundary) are assigned smaller weight. It will avoid highly

biasing the algorithm toward boundary vertices. Our algorithm removes some of the vertices

on the linear boundary to achieve better approximation across the surface edges. See Figures

2.5-2.10 for results of our curvature-based approach.

2.4.4 Preserving Multiple Surface Properties

Another key contribution of our QEM4V R algorithm is its ability to handle multiple sur-

face properties. Prior QEM variations that preserve surface properties have been presented

(Hoppe, 1999; Garland and Heckbert, 1998). However, these approaches make several as-

sumptions regarding surface properties that are not typical for handmade 3D models. In

turn, these prior preservation approaches often fail for VR applications. To overcome these

limitations, we have identi�ed key cases that are common to handmade 3D models and must

be handled to preserve the surface properties of a mesh.

Limitations of Prior Surface Property Approaches

Nearly all 3D models used in VR applications possess surface properties, in addition to their

geometric properties. The most common properties are normals, texture coordinates, colors,
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and materials. The associated texture information has a high impact on the perceptual

quality. Hence, to obtain an approximation with high visual �delity, it is crucial to maintain

these surface properties.

In their later work, Garland and Heckbert (Garland and Heckbert, 1998) proposed a gen-

eralized error metric that is an extension of the basic quadric error metric. This generalized

metric incorporated the surface properties as vertex attributes to provide surface property-

based simpli�cation. They treated each vertex as a vector v ∈ Rn. Where, �rst three

components of v are spatial coordinates and remaining components represent property val-

ues. Hence, for any vertex with associated three color components, we have v = [x y z r g b]

and n = 6. For n-dimensional vertices, the modi�ed squared distance D2 of v from any

triangle T also has the structure of original quadric metric (Garland and Heckbert, 1998)

as: D2 = vTAv + 2bTv + c where,

A = I − e1e1T − e2(e2)T

b = (p.e1)e1 + (p.e2)e2 − p

c = p.p− (p.e1)
2 − (p.e2)

2

e1 =
q − p
||q − p||

e2 =
r − p− (e1.(r − p))e1
||r − p− (e1.(r − p))e1||

(2.7)

In this generalized quadric metric, (p, q, r) are vertices of triangle T , A is n× n matrix and

b is n× 1 vector. One can easily replace color values with texture coordinates to create a n

dimensional vector for each vertex. This approach is suitable if the entire model is mapped

to a single texture material such that there is a one-to-one mapping between vertices and

texture coordinates. But in practice, multiple texture materials can be associated with

a single 3D model. Furthermore, multiple values from a single texture map may also be

assigned to the given vertex. Hence, a model may consist of vertices with multiple values of

the associated texture coordinates. Hoppe (Hoppe, 1999) also suggested a QEM to handle
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surface attributes, but both surface property preservation methods assume that every vertex

will have at least one surface property de�ned, in addition to its geometric property. However,

that is not the case for many handmade 3D models.

Multiple Surface Properties Preservation Approach

To better handle and preserve the surface properties of handmade 3D meshes, we �rst must

identify the common cases that should be expected by our simpli�cation algorithm. We have

identi�ed the following common cases involving surface properties:

• A vertex may not have any surface properties.

• Multiple textures may be mapped to the mesh.

• A vertex may be associated with multiple coordinates within the same or di�erent

texture maps.

To handle these cases, we have created a new data structure for each vertex that maintains

its neighboring faces and corresponding texture coordinates associated with the given vertex.

We update these data structures during edge collapse with sub-optimal vertex placement for

adequate attribute transfer. We have also extended our boundary preservation approach

to preserve the edges that form boundaries between multiple textures. The edges that

are associated with multiple textures constitute material boundaries. This novel approach

consists of:

• Defaulting texture coordinates and material indices to zero for faces with no surface

properties.

• Identifying vertices that form material boundaries.

• Identifying critical vertices that are associated with multiple materials or textures.
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• Assigning the user-de�ned weight Wt to the metrics of material boundary vertices and

critical vertices.

• Transferring the attributes during each edge collapse.

If the model has a subset of faces that do not have surface property information, we set

corresponding properties such as texture coordinates and material indices to zero. Because

the vertices of these faces do not have surface properties, setting the surface property values

to zero will make sure that the order of associated edge collapses is based solely on the

geometric error and not surface properties that do not exist. Next, to identify the material

boundaries, we utilize a structure that maintains the list of faces in the neighborhood of

a vertex. If any two faces in this list have a di�erent material index, we can consider

that the given vertex has been assigned two di�erent materials. Hence, it can be identi�ed

as a material boundary vertex. Further, if any vertex is associated with multiple texture

values, then it is considered a critical vertex. Next, we apply a user-de�ned, weight factor

Wt to the quadric metrics associated with the vertices on the material boundary. This

way, we can make sure that the material boundaries remain unaltered and material indices

are properly preserved. Because we have adopted a subset placement policy, handling the

texture coordinates during the edge collapse is a trivial task for models with one-to-one

mapping between vertices and texture coordinates. But for models with multiple attributes

per vertex, extra care is needed. Consider the edge collapse (v1, v2), as shown in Figure 2.4.

Neighboring faces with the same color indicate that a vertex has the same texture coordinate

value for all of the faces. Hence, vertex v1 has two texture coordinate values associated with

it; one texture coordinate is common for faces 1, 2, and 3, while another texture coordinate

is shared by faces 4, 5, and 6. As we use a sub-optimal vertex placement, the vertex v1 is

moved to vertex v2 during edge collapse. Faces 3 and 4 are removed, while faces 1, 2, 5, and

6 form a set of a�ected faces. For the a�ected faces, the vertex v1 is replaced by vertex v2.
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Figure 2.4: Attribute transfer while collapsing the edge (v1, v2) to vertex v2 where each vertex
has multiple attribute values.

Because both the vertices v1 and v2 have multiple texture coordinates, when we replace v1

with v2, we must update the texture coordinate associated with the a�ected faces at vertex

v1 with the valid texture coordinate at the vertex v2. For example, when face 5 with the

gray color is updated, we should modify its texture coordinate associated with v1 with that

of v2 corresponding to gray color. To achieve this, we �nd the closest match for the texture

coordinate of v1 for the a�ected faces in the set of texture coordinates associated with the

vertex v2, with the additional constraint of matching material indices. Hence, for faces 1

and 2, the texture coordinate of v1 is replaced with the texture coordinate of v2 related to

purple; but it is replaced with the texture coordinate of v2 represented by the gray color

for faces 5 and 6. This strategy allows achieving an adequate attribute transfer during edge

collapses, as illustrated in Figure 2.4.

2.4.5 Summary of New QEM4V R Approach

To summarize, the QEM4V R algorithm employs the following steps to reduce any 3D model

(manifold or non-manifold) into a low-poly mesh with approximately N (which is user-

de�ned) faces that approximate the surface properties of the original mesh.

Step 1: Remove any redundant vertices and faces that were created during the handmade

construction of the 3D model.

Step 2: For each vertex v, create the data structures Tv and T(xv) representing the

neighboring faces of vertex v, and its texture coordinates, respectively.
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Step 3: For each vertex, determine if it is a complex vertex lying on the mesh boundary

or not. If it lies on the boundary, determine the boundary curvature at the vertex using

Equation 5. If it is a non-manifold vertex on the boundary, mark it as a complex vertex.

Also, determine if the vertex is on a material boundary, or not utilizing its data structures

Tv and T(xv).

Step 4: Compute quadric metric for each vertex. For vertices on the mesh boundary,

weigh the quadric metric by its corresponding curvature value and the user-de�ned weight

factorWb. Further, if the vertex lies on a material boundary, weigh the corresponding quadric

with a user-de�ned weight factor Wt. Note that edges involving non-manifold boundary

vertices (marked as complex vertex) are not collapsed.

Step 5: For each edge in the 3D model, compute a quadric cost that is the sum of the

cost associated with its two endpoints.

Step 6: Select the edge with the minimum quadric error. To collapse the selected edge

with vertices v1 and v2, we select the subset placement policy for determining the target

position. If v2 is selected as a target position, we merge the set of neighboring faces of v1

with that of v2, update the attributes for the merged faces using the described attribute

transfer strategy. Next, we update the quadric error associated with v2 and the list of edges.

Step 7: Repeat steps 2-7 until the poly count is less than N.

2.5 EXPERIMENTS

We have performed three sets of experiments to demonstrate the e�ectiveness and quality

of our proposed QEM4V R method.

• The �rst was designed to compare approximation quality when high-poly models are

drastically simpli�ed.

• In the second, we analyzed the error induced during progressive simpli�cation at dif-

ferent levels of sparseness.
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Table 2.1: Attributes of Datasets used for experiments.

Mesh Type Faces Vertices Boundary
Edges

Non-Textured Models
RockerArm Manifold 80,354 40,177 0
Car Manifold 268,630 202,890 120,227
Dragon Non-manifold 37,986 22,126 6,214

Textured Models
Head Manifold 17,684 8,844 0
Jet Manifold 35,095 18,849 2,341
Airplane Non-manifold 66,496 36,937 6,686

• The last experiment consisted of frame rate analysis to study the latency gain obtained

with low-poly models.

For the non-textured models, we compared our QEM4V R algorithm to the original QEM

algorithm (QEMORIG), which does not preserve boundaries, and the QEM algorithm with

boundary constraints (QEMBP ). For the textured models, we compared our QEM4V R al-

gorithm to a texture preservation QEM variation (QEMTP ) and a boundary and texture

preservation QEM variation (QEMBTP ), in addition to QEMORIG and QEMBP .

Setup. The QEM4V R algorithm was implemented in C++, and the experiments were

conducted on a computer with IntelrCoreTMi7-5820K with 3.30GHz speed and 32GB in-

ternal RAM. For other methods that are considered for comparison, we used their MeshLab

[34, 35] implementations. We used OpenGL for rendering the resultant low-poly meshes. To

handle 3D data, we have developed our own C++ data-structures and APIs.

Dataset. We evaluated the performance of our new QEM4V R algorithm with a dataset

consisting of a variety of 3D models. The dataset included manifold meshes without bound-

aries, manifold meshes with boundaries, and non-manifold meshes, all with and without

textures. See Table 2.1 for a summary of the 3D models.

Parameters. User-de�ned weight factors Wb and Wt help to prioritize surface and

material boundaries. Along with boundary curvature, above mentioned weight factors have
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Table 2.2: Mean approximation errors (lower is better) for simplifying non-textured models
to roughly 10% original size.

Non-Textured
Models

Number of Faces Metro 10−3

Original QEMORIG QEMBP QEM4V R QEMORIG QEMBP QEM4V R

RockerArm 80,354 8,174 8,174 8,174 0.181 0.181 0.180
Car 268,630 24,176 104, 461∗ 24,258 1.245 1.018 0.473
Dragon 37,986 3,566 6, 156∗ 3,567 1.397 1.657 0.341

a signi�cant impact on the order of edge collapse. Hence, these weights must be selected

carefully. We experimented with various values of Wb and Wt ranging from 1 to 1000. For

brevity, we have not included results with varying values of Wb and Wt. However, we found

that Wb being 5 and Wt being 1000 are most suitable for all the models in the experimental

dataset. For other variations of QEM, we set the quality threshold to the default 0.3 in

MeshLab. For the boundary preservation variations, we set the boundary weight to 1 for all

models, because lowering the boundary preserving weight does not have a drastic e�ect on

the �nal output.

Metrics. To quantify how well the low-poly meshes generated by the various QEM ap-

proaches approximate the original meshes, we used an approach similar to prior researchers

(Hoppe, 1999; Garland and Heckbert, 1997). We computed the distance between two meshes

by sampling a set of points from the original high-poly mesh and then measuring their dis-

tance to their closest point on each low-poly mesh. This provides a one-sided approximation

error. The average computed errors, called the mean approximation error or Metro (Cignoni

et al., 1996), is normalized with respect to the diagonal length of the original model's bound-

ing box and is used as the measurement for error.

To compare the quality of our new QEM4V R algorithm to other QEM variations, we

computed a texture error between the original model and each low-poly mesh as described

in (Hoppe, 1999). The texture error is estimated by measuring the deviation of the texture

coordinates of sampled points from values linearly interpolated at their projection on the

closest face of the low-poly model.
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(a) Original model (b) QEMORIG (c) QEMBP (d) QEM4V R

Figure 2.5: Simpli�cation of RockerArm (manifold with no boundaries) to approximately
10% its original number of faces.

(a) Original model (b) QEMORIG (c) QEMBP (d) QEM4V R

Figure 2.6: Simpli�cation of Car (manifold with boundaries) to approximately 10% its orig-
inal number of faces.

(a) Original model (b) QEMORIG (c) QEMBP (d) QEM4V R

Figure 2.7: Simpli�cation of Dragon (non-manifold) to approximately 10% its original num-
ber of faces.
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2.5.1 Drastic Simpli�cation

In the �rst experiment, we simpli�ed all the models to 10% of their original size using the

proposed QEM4V R and other variations of QEM. For each low-poly mesh, we computed

Metro and texture error as described previously.

Geometric Approximations. Tables 2.2 and 2.3 provide the quantitative results by

the di�erent methods for errors introduced during simpli�cation of the non-textured and

textured models, respectively. It can be clearly seen that our new QEM4V R algorithm results

in the least amount of error and well approximates the original models. Figures 2.5-2.7 and

2.8-2.10 show the simpli�ed non-textured and textured models, respectively.

Preservation of Multiple Textures. Various results, as shown in Figures 2.8-2.10,

demonstrate the ability of our QEM4V R algorithm to preserve surface properties, including

multiple textures. QEM4V R e�ciently handles the attribute transfer during simpli�cation

such that the resultant low-poly mesh well approximates the original model without intro-

ducing any visible degradation in the texture mapping. Table 2.4 provides the quantitative

texture error measures for the di�erent approaches. Our QEM4V R method induces less tex-

ture error than the other QEM variations. Also, it is important to point out that both

QEMTP and QEMBTP failed on the non-manifold Airplane mesh due to it containing ver-

tices without associated texture coordinates.
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(a) Original
model

(b) QEMORIG (c) QEMBP (d) QEMTP (e) QEMBTP (f) QEM4V R

Figure 2.8: Simpli�cation of Head (textured manifold with no boundaries) to approximately
10% its original number of faces.

(a) Original model (b) QEMORIG (c) QEMBP

(d) QEMTP (e) QEMBTP (f) QEM4V R

Figure 2.9: Simpli�cation of Jet (textured manifold with boundaries) to approximately 10%
its original number of faces.

2.5.2 Progressive Simpli�cation

To further evaluate the e�cacy of the proposed method to generate the high �delity sparse

models, we obtained various low-poly models with di�erent levels of sparseness (i.e., with

a di�erent number of faces) for Dragon and Jet model. For these low-poly models, we

computed the mean approximation error or Metro. Figure 2.11 illustrates the behavior of

Metro while reducing the number of faces for Dragon and Jet model. It can be seen that

QEM4V R introduces minimal error and consequently maintains high �delity even at a very

high level of sparseness. Further, QEM4V R causes minimum approximation error across

di�erent levels of sparseness compared to the other QEM variations. It is also important

to note that for both QEMBP and QEMBTP , the error curve terminates midway indicating

41



(a) Original model (b) QEMORIG (c) QEMBP (d) QEM4V R

Figure 2.10: Simpli�cation of Airplane (textured non-manifold with boundaries) down to
approximately 10% its original size. Note that QEMTP and QEMBTP failed to produce
results due to their inability to handle vertices with multiple texture coordinates.

Table 2.5: Frame rate analysis.

# of
Mod-
els

Original QEMORIG QEMBP QEM4V R

Polygon
Count

Frame
Rate

Polygon
Count

Frame
Rate

Polygon
Count

Frame
Rate

Polygon
Count

Frame
Rate

1 66,496 57.61 6,796 57.68 6,796 57.76 6,797 57.78
2 146,850 57.39 14,970 57.62 14,970 57.62 14,971 57.65
3 181,945 52.18 18,074 57.59 18,425 57.35 18,476 57.65
4 450,575 37.71 42,250 57.50 122,886 50.26 42,734 57.63
5 468,259 37.36 44,094 57.49 124,730 50.25 44,578 57.55
6 506,245 35.33 47,660 57.49 130,886 47.92 48,145 57.49

that no further poly count reduction can be achieved with the respective method due to the

lower bound on simpli�cation enforced by corresponding boundary constraints.

2.5.3 Frame Rate Analysis

To analyze the frame rate, we designed an experimental setup where four di�erent scenes

were generated using Unity3D game engine. The �rst scene was created utilizing the original

six dense models from our dataset (see Figure 2.12). Those models were added into the scene

and rendered in a sequential manner. We recorded the average frame rates every time a new

model was added to the scene. Similarly, the other three scenes were created by using

sparse models generated by QEMORIG, QEMBP , QEM4V R. Experiments were performed

on Samsung Gear VR with Samsung S6 edge as a mobile device. Table 2.5 shows the frame

rate performance while rendering the aforementioned scenes. It can be seen that as the

42



(a) For Dragon model

(b) For Jet model

Figure 2.11: Mean approximation error (Metro) with respect to the number of faces in
simpli�ed models.
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Figure 2.12: The scene consisting of low-poly models generated using QEM4V R for the frame
rate analysis experiment.

polygon count increases, the frame rate drops signi�cantly in the case of the scene generated

using dense models and sparse models obtained by QEMBP . On the contrary, the scenes

generated using sparse models obtained by QEMORIG, QEM4V R maintain the average frame

rate of approximately 58 frames per second.

2.5.4 Perceptual Quality Assessment

In VR applications, QoE is a crucial factor (Egan et al., 2016). Hence, it becomes essential

to quantitatively measure the visual quality of our simpli�ed meshes in correlation with the

human perception. Various perceptual quality measures have been investigated. A mesh

structural distortion measure (MSDM) proposed by Lavoué et al. (Lavoué et al., 2006) is

one of the earlier works on objective perceptual mesh quality. Lavoué et al. (Lavoué et al.,

2006) extended the well-known structural similarity index for 2D images (Wang et al., 2004)

to 3D triangular meshes. MSDM utilizes the changes in the local statistics (i.e., mean,

variance and covariance) of a surface curvature to quantify a visual degradation in the mesh

quality. Later, Lavoué et al. (Lavoué, 2011) proposed an improved version (MSDM2) that
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performs a vertex matching preprocessing step to allow the comparison of two meshes with

di�erent topologies.

Recently, Wang et al. (Wang et al., 2012) proposed the fast mesh perceptual distance

(FMPD) metric. FMPD measures the local surface roughness derived from the Gaussian

curvature of the mesh surface. It estimates the perceptual distance as the deviation of

a global roughness of the modi�ed mesh from a global roughness of the reference mesh.

Hence, it does not require a mesh registration pre-processing step. Consequently, it can

be applied to compare two meshes with di�erent connectivity. Furthermore, FMPD does

not need the full information about the original reference mesh, and can be considered as a

reduced-reference metric.

Torkhani et al. (Torkhani et al., 2014) proposed a curvature tensor-based perceptual

distance measure (TPDM) that utilizes tensor eigenvalues and eigenvectors to derive a per-

ceptually oriented distance metric. TPDM incorporates roughness-based weighting of the

local tensor distance in order to account for the visual masking e�ect of the human visual

system. TPDM also performs a vertex matching as a pre-processing similar to MSDM2.

Among the available perceptual quality metrics, MSDM requires that the meshes to

be compared share the same connectivity. Hence, it cannot be applied in simpli�cation

evaluation (Lavoué, 2011). Although, MSDM2 and TPDM perform vertex matching as a

pre-processing step to avoid the same connectivity constraint, these methods do not handle

non-manifold meshes. Hence, we utilized FMPD as a quantitative metric for assessing the

perceptual quality of our simpli�ed meshes.

Experimental setup: To perform a perceptual quality assessment of QEM4V R, we

utilized the open source implementation of FMPD available at (Wang, 2012). We simpli�ed

all the models in Table 2.1 to 10% of their original size using the proposed QEM4V R and

other variations of QEM. For each low-poly mesh, we computed its FMPD (see Table 2.6

and 2.7). Note, FMPD values are not clipped to the range (0, 1).
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Table 2.6: FMPD metric (lower is better) for simplifying non-textured models to roughly
10%.

Non-Textured
Models

FMPD
QEMORIG QEMBP QEM4V R

RockerArm 0.408 0.408 0.413
Car 1.039 1.921 1.744
Dragon 0.185 0.909 0.220

Table 2.7: FMPD metric (lower is better) for simplifying textured models to roughly 10%.

Textured Mod-
els

FMPD
QEMORIG QEMBP QEMTP QEMBTP QEM4V R

Head 0.312 0.312 0.516 0.516 0.523
Jet 1.470 2.946 0.122 0.096 1.999
Airplane 0.338 0.990 FAIL∗ FAIL∗ 1.423

(a) Original model (b) QEMORIG

(FMPD = 1.039)
(c) QEMBP

(FMPD = 1.921)
(d) QEM4V R

(FMPD = 1.744)

Figure 2.13: Simpli�cation of Car (manifold with boundaries) to approximately 10% its
original number of faces, along with corresponding FMPD measures.

For the �RockerArm� (manifold model), the reduced mesh obtained with QEM4V R and

other QEM variants are perceptually similar (see Figure 2.5) and consequently corresponding

FMPD measures are also similar (see Table 2.6). However, in the case of the �Car� model

(manifold with boundaries), even though the reduced mesh obtained using QEMORIG has

a lot of gaps near the windshield and side mirrors (See Figure 2.13), the corresponding

FMPD metric is 1.039 (lower than QEM4V R). Similarly, in case of the Dragon model (non-

manifold), the distorted and incomplete reduced mesh obtained with QEMORIG has a lower

FMPD metric.
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(a) Original model (b) QEMORIG

(FMPD = 0.185)
(c) QEMBP

(FMPD = 0.909)
(d) QEM4V R

(FMPD = 0.220)

Figure 2.14: Simpli�cation of Dragon (non-manifold) to approximately 10% its original
number of faces, along with corresponding FMPD measures.

(a) Original model (b) QEMORIG

(FMPD = 0.312)
(c) QEMTP

(FMPD = 0.516)
(d) QEM4V R

(FMPD = 0.523)

Figure 2.15: Simpli�cation of Head (textured manifold with no boundaries) to approximately
10% its original number of faces, along with corresponding FMPD measures. As QEMBP

and QEMBTP results are similar to QEMORIG and QEMTP respectively, they are excluded
for succinctness.

Furthermore, when the FMPD metric is applied to textured models, similar results are

observed. For the textured �Head� model, the FMPD measure for QEM4V R is higher than

for other QEM variants even when the reduced mesh obtained using QEM4V R has a better

perceptual quality (see Figure 2.15, various sharp features such as the nose and ears are

well maintained using QEM4V R). Moreover, the FMPD measures for the low-poly mod-

els obtained using QEMORIG and QEMBTP are lower than QEM4V R despite the presence

of a large number of gaps at boundaries and the corresponding visual quality not being

satisfactory (see Figure 2.16).

47



(a) Original model (b) QEMORIG(FMPD = 1.470) (c) QEMBP (FMPD = 2.946)

(d) QEMTP (FMPD = 0.122) (e) QEMBTP (FMPD = 0.0963) (f) QEM4V R(FMPD = 1.999)

Figure 2.16: Simpli�cation of Jet down to approximately 10% its original number of faces,
along with corresponding FMPD measures.

Progressive Simpli�cation: To further evaluate the e�ectiveness of the FMPD, we

obtained various low-poly models with di�erent levels of sparseness (i.e., with a di�erent

number of faces) for the Dragon and Jet models. For these low-poly models, we computed

the FMPD. Figure 2.17 illustrates the behavior of the FMPD while reducing the number

of faces for the Dragon and Jet models. Logically, as the number of faces reduces the

perceptual distance from the original model should monotonically increase. However, FMPD

has a contrasting behavior in di�erent cases. As shown in Figure 2.17, the FMPD curve for

various mesh simpli�cation methods has anomalous characteristics with both non-textured

and textured models.

To summarize, because the FMPD metric measures the di�erence in the global roughness

as a perceptual distance, it does not take boundary gaps into account. Due to the inability of

FMPD to incorporate boundary gaps and the completeness of the model while determining

perceptual quality, it does not accurately represent the subjective visual quality. Therefore,
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(a) For Dragon model

(b) For Jet model

Figure 2.17: FMPD with respect to the number of faces in simpli�ed models. Termination of
error curve indicates that no further poly count reduction can be achieved with the respective
method.
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for the low-poly mesh generated using QEMORIG, despite the presence of large boundary

gaps, the FMPD metric is lower than compared to QEM4V R. Although existing perceptual

quality metrics can accurately measure degradation due to noise addition (e.g., watermark-

ing), these methods are unable to accurately measure the subjective perceptual quality of

simpli�ed meshes.

2.6 Future JND Studies Evaluating Subjective Perceptual Quality

In section 4, we demonstrated that the objectively computed FMPD metric does not ac-

curately re�ect the subjective perceptual quality of our simpli�ed meshes. This is due to

the fact that the FMPD metric is based on the deviation in global surface roughness while

subjective perceptual quality is dependent upon the Human Visual System (HVS) (Yang

et al., 2005). Most objective perceptual quality metrics assume that visual quality increases

as the number of vertices increase, but user studies have shown that not every set of vertices

has a signi�cant impact on visual quality (Cheng et al., 2006). More recently, Wang et al.

(Wang et al., 2017) clearly demonstrated that traditional quality measures, which are linear

in nature, do not account for the nonlinear aspects of human perception. Hence, in order to

truly evaluate the perceptual quality of the QEM4V R algorithm, we must rely on the HVS

and conduct user studies on subjective perceptual quality.

As discussed in section 2.3, a JND methodology can be used to evaluate the visual

qualities of multimedia (e.g., (Yang et al., 2005; Zhao et al., 2011; Hachicha et al., 2013; Wu

et al., 2011)). However, there are three JND methodologies commonly used in the �eld of

psychophysics: 1) the method of constant stimuli, 2) the method of limits, and 3) the method

of adjustment (Qin et al., 2009). With the method of constant stimuli, a predetermined series

of repeating stimuli are shown to the user, and the user is asked to respond if a di�erence is

noticed (Watson and Fitzhugh, 1990). While highly accurate due to keeping subjects from

anticipating changes in the stimulus, the method is considered ine�cient (Qin et al., 2009;
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Watson and Fitzhugh, 1990). With the method of limits, a stimulus is continuously increased

or decreased until it is perceivable by the user (Qin et al., 2009). A common implementation

of the method of limits is the staircase or up-down method, in which the stimulus is increased

when it is not perceived and decreased when it is perceived (Watson and Fitzhugh, 1990).

Finally, with the method of adjustment, the user can freely adjust the di�erence until it is

not perceived (Qin et al., 2009).

Recent research by Qin et al. (Qin et al., 2009) has demonstrated that a one-up-two-

down staircase method yields smaller JNDs than an adapted method of adjustment. Hence,

we plan to employ the same method for evaluating the subjective perceptual quality of our

QEM4V R algorithm. In our future studies, participants will not be asked whether they see a

di�erence between two meshes, but instead will be asked to indicate which mesh is visually

higher quality. For each side-by-side comparison, both meshes will be simultaneously rotated

one full cycle in a view-independent manner to allow all silhouettes to be examined, similar

to the JND study conducted by Cheng and Boulanger (Cheng and Boulanger, 2005) on the

e�ects of viewing distance on level of detail.

For each comparison, if the participant selects the incorrect mesh (i.e., the lower-poly

mesh), the simpli�cation di�erence (i.e., di�erence in polygon counts) will be increased by 5%

of the original model's polygon count. This is the �one-up� aspect of the staircase method.

When the participant selects the correct mesh (i.e., the higher-poly mesh), both meshes will

be redisplayed in a random order. If the participant again correctly selects the higher-poly

mesh, the simpli�cation di�erence will be decreased by 5% for the next pair of meshes. This

is the �two-down� aspect.

We have planned for conducting two JND studies to evaluate the subjective perceptual

quality of our QEM4V R algorithm. The �rst JND study will focus on non-textured models

and will have participants complete the one-up-two-down staircase method for QEMORIG,

QEMBP , and QEM4V R. The second JND study will focus on textured models and will have
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participants complete the method for QEMTP , QEMBTP , and QEM4V R. For both studies,

we have prepared simpli�ed meshes for six models (two manifolds with no boundaries, two

manifolds with boundaries, and two non-manifolds). We hypothesize that the results of these

studies will demonstrate that QEM4V R yields a larger JND than the other algorithms for

both non-textured and textured models, which would indicate that QEM4V R a�ords better

subjective perceptual quality. We are currently awaiting Institutional Review Board (IRB)

approval to begin conducting our JND studies.
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CHAPTER 3

REAL-TIME, CURVATURE-SENSITIVE SURFACE SIMPLIFICATION

USING DEPTH IMAGES
1

3.1 Introduction

In recent times, handheld mobile Virtual Reality (VR) devices such as Samsung Gear VR,

Occulus Rift, Microsoft HoloLens are becoming increasingly popular due to the great im-

mersive VR experience they provide. These devices coupled with game engines such as

Unity3D and Unreal Engine provide a feasible and a�ordable VR experience for applications

in diverse areas. In combination with these devices, the availability of low-cost, o�-the-shelf

RGB-D cameras, such as Microsoft(MS) Kinect, has enabled numerous real-time applica-

tions in the domain of virtual training for various tasks, collabrative visualization and 3D

Tele-immersion (3DTI) (Kreylos, 2005; Arworks, 2015; Microsoft, 2016), etc. These real-

time applications need to balance visual quality, rendering latency, power consumption and

battery life to achieve an optimal immersive experience (Microsoft, 2015). Mobile VR de-

vices are also constrained with low processing power and onboard memory leading to an

upper bound on the data size. For example, Samsung Gear VR has a working limit of

50K-100K polygons (Pruett, 2015) and Microsoft HoloLens has essential performance limit

of < 900 MB for memory. Moreover, for Samsung Gear VR, it is recommended to keep

the 50k polygon count per frame for the interactive and immersive experience. Each frame

can have several models leading to reduced vertex count per model. Further, game engines

such as Unity3D can handle at max 65536 vertices per model due to lack of 32-bit indexing

support (Unity3D, 2012). Though, Unity3D handles the vertex limit by splitting the mesh

into subparts, the frame rate reduces signi�cantly with increasing polycount resulting in the

1 c©2018 IEEE. Reprinted, with permission, from K. Bahirat, S. Raghuraman and B. Prabhakaran, �Real-
Time, Curvature-Sensitive Surface Simpli�cation Using Depth Images,� in IEEE Transactions on Multimedia,
vol. 20, no. 6, pp. 1489-1498, June 2018. DOI: 10.1109/TMM.2017.2769447
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(a) (b)

Figure 3.1: For a person scanned using Kinect, a) Original dense textured mesh with 52885
vertices, and b) sparsely approximated textured mesh with 5768 vertices obtained using our
method.

degraded immersive experience. On the other hand, typical RGB-D cameras such as Mi-

crosoft (MS) Kinect generates a dense depth data consisting of maximum 300K vertices @30

fps. Even if the input is a compressed depth stream obtained using transmission standards

such as 3D-HEVC (Tech et al., 2012), the uncompressed stream still gives a dense sampling.

Hence, matching the limitation of handheld mobile VR devices and rendering engines while

maintaining a realistic, immersive experience is a challenging task.

One possible solution is to reduce the overall data size by obtaining a sparser approxi-

mation of the 3D scenes or objects. While getting such a sparser approximation, it is also

important to keep in mind that the �ner details of the scene/object should be retained to

maintain high �delity of the system, as shown in Figure 3.1. Surface simpli�cation is the

notion of reducing the data size which is achieved by removing some vertices/points repre-

senting the object/scene. Traditional mesh and point cloud simpli�cation methods used for

surface simpli�cation need high execution time and are inadequate for real-time applications.

Problem Statement: Given a raw depth map R which describes the scanned surface

S using a dense set of points X, �nd XReduced ⊂ X such that surface SReduced reconstructed
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from XReduced by triangulation approximates S i.e., |S − SReduced| < ε while maintaining

|XReduced| < n where n is required number of samples in a sparse representation of surface

and ε is very small. Characteristics of the points in XReduced should be such that SReduced

preserves the overall object shape maintaining its integrity while preserving �ner details.

3.1.1 Proposed Approach

In this paper, we introduce a depth image based approach to sparsely sample a surface for

real-time mesh generation and visualization. A Curvature Sensitive Surface Simpli�cation

- CS3 operator is proposed, which: (i) utilizes the grid structure of depth image to obtain

neighborhood information as a pre-processing step; (ii) assigns the importance to each point

based on surface variation; (iii) and uses these importance values for selecting a detail-

preserving sparse sampling of a surface. For each of the later two steps, we explore various

possible vision techniques. Based on a comparative study of these techniques, we design the

CS3 operator that will create a area-weighted normal map of the depth image. Using this

map, CS3 then computes the curvature-based importance of each point in the depth image

and performs a restrictive sampling based on the order of importance of the points. We

also modify the 2D sweep-line constrained Delaunay triangulation to generate 3D meshes

from the sparsely sampled surfaces given by the CS3 operator. Formulation of the 3D

surface simpli�cation problem in 2D domain makes the proposed method computationally

very e�cient. The performed experimental study demonstrates that the proposed method

can achieve a high reduction in the data size without signi�cant degradation in visual quality,

in real-time.

Principal Contributions of this paper are:

• Mapping the 3D surface simpli�cation problem to 2D domain by utilizing the depth

image.
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Figure 3.2: Classi�cation of various surface simpli�cation methods.

• A real-time depth image based sparse sampling method for 3D surfaces, which is sen-

sitive to the underlying surface curvature.

• A modi�ed 3D constrained Delaunay triangulation that allows discontinuities and self-

occlusion in the entire real world scene data.

• Elimination of sensor noise at object boundaries as a byproduct of the sampling method

and modi�ed triangulation.

• User-controlled sparseness is allowed which can potentially mitigate the limitations of

handheld VR devices and rendering engines.

• Implicit preservation of surface properties such as texture coordinates by keeping the

point position unaltered.

• Distance-dependent simpli�cation of the complete scene
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3.2 Related Work

Various simpli�cation algorithms have been previously proposed to achieve a sparser surface

approximation (please refer to Cignoni et al. (Cignoni et al., 1998) and Luebke (Luebke,

2001) for two excellent surveys). Most of the methods are designed to work o�ine to generate

high quality low-poly meshes. Very few methods are developed for real-time performance.

Figure 3.2 illustrates the various categories for simpli�cation algorithms. A key requirement

for real-time VR application is that the simpli�cation algorithm must perform in real-time

while maintaining the acceptable visual quality. Hence, in this section, we distinguish be-

tween algorithms designed to work o�ine and online algorithms.

3.2.1 Non Real-time Methods

Mesh Simpli�cation:

One of the earliest mesh simpli�cation algorithms was the decimation algorithm presented

by Schroeder et al. (Schroeder et al., 1992). For each vertex of the model, the decimation

algorithm determines whether a vertex can be removed without violating the topology of the

local neighborhood of faces. If the resulting surface would be within a user-de�ned distance

of the original mesh, the algorithm removes the vertex and all of its neighboring faces.

The resulting hole is then re-triangulated. The decimation algorithm makes multiple passes

over the vertices of the model until it cannot remove any more vertices without violating

the pre-de�ned distance criterion. The user-de�ned distance has a major impact on both

the lower bound and �delity of the algorithm as well as the execution time (Garland and

Heckbert, 1997). Hoppe et al. (Hoppe et al., 1993) presented a mesh optimization algorithm

that generates a topologically similar sparse mesh of the original mesh. To produce sparse

meshes, Hoppe et al. (Hoppe et al., 1993) suggested three types of mesh transformations to

apply to the original mesh: edge collapse, edge split, and edge swap. The mesh optimization

algorithm randomly uses these transformations to produce new candidate manifold meshes,
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and then picks the candidate that minimizes an energy function that represents the error

of the mesh. Hoppe (Hoppe, 1996) later de�ned the concept of a progressive mesh, which

represents a manifold mesh as a sequence of edge collapses. The original mesh can be retained

by applying a series of vertex splits to the simpli�ed mesh. Hoppe (Hoppe, 1996) also de�ned

a new energy function to better represent mesh complexity and maintain a higher degree of

�delity.

Cohen et al. (Cohen et al., 1996) presented another approach to simplifying manifold

meshes by using two o�set copies of every mesh surface, called simpli�cation envelopes.

These o�sets were used to ensure that a simpli�ed surface would remain within the volume

formed by the envelopes. Cohen et al. (Cohen et al., 1996) presented two approaches for

iteratively removing triangles or vertices from the original mesh and re-triangulating any

resulting holes.

Perhaps, the most common approach to simplifying non-manifold meshes is to use a

quadric error metric (QEM) (also referred as QSlim), which was �rst presented by Garland

and Heckbert (Garland and Heckbert, 1997). The QEM of a vertex is a 4 x 4 matrix that

represents the sum of the squared distances from the vertex to the planes of adjacent faces.

When a vertex is merged with another vertex within a user-de�ned distance threshold, the

error introduced can be computed as the sum of the QEMs of the vertices being merged,

which becomes the QEM of the new vertex. When merging vertices, the QEM algorithm

keeps a sorted priority queue of all candidate vertex pairs based on their merged QEM. The

algorithm removes the vertex pair with the lowest error from the top of the queue, merges

the vertices, and then updates the errors of all vertex pairs involving the merged vertex.

By using the QEM, this approach yields simpli�ed meshes that are relatively high �delity,

even at drastic levels of simpli�cation (Luebke, 2001). Garland and Heckbert (Garland

and Heckbert, 1997) also extended their approach to preserve boundaries by de�ning a

boundary constraint plane passing through each boundary edge. In their later work, Garland
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and Heckbert (Garland and Heckbert, 1998) generalized the original QEM to also handle

surface properties. To handle normals or colors, the original 4 x 4 error matrix can be

extended to a 6 x 6 matrix that contains the error of the vertexâ��s normal (abc) or its

color (rgb). Hoppe (Hoppe, 1999) also presented a generalized QEM that required less

storage space than that of Garland and Heckbert (Garland and Heckbert, 1998) by using a

wedge-based mesh data structure. Along with his generalized QEM, Hoppe (Hoppe, 1999)

also proposed a memoryless simpli�cation algorithm and a volume-preserving algorithm.

Lindstorm and Turk (Lindstrom and Turk, 1998) proposed a fast, memory e�cient polygonal

simpli�cation (FMEPS) that solely utillizes the current approximation to make decision. The

selection of the edge for contraction and resultant vertex position are determined by linear

constraint preserving the volume of the tetrahedron formed between the estimated vertex

and neighboring faces. More recently, Ovreiu (Ovreiu, 2012) presented two quadric error

metrics capable of handling surface attributes.

Point Cloud Reduction: Boissonnt et al. (Boissonnat and Cazals, 2001) proposed one

of the initial point cloud simpli�cation algorithm that selects a random initial subset of the

point cloud and uses it's 3D Delaunay triangulation to de�ne a signed distance function over

the selected set. If this implicit function does not satisfy the user-de�ned approximation

tolerance, then additional points are selected to enlarge the initial set. Linsen et al.(Linsen,

2001) measured an information content associated with every point in terms of a local curva-

ture and RGB color changes and subsequently removes points featuring the lowest entropy.

Pauly et al. (Pauly et al., 2002) suggested the adaptation of various widely used mesh simpli-

�cation methods for the point cloud simpli�cation scenario. Alexa et al. (Alexa et al., 2003)

proposed a method that uniformly reduce point cloud by removing points contributing least

to the moving least square (MLS) representation of the surface. Moenning et al. (Moenning

and Dodgson, 2003) suggested a farthest sampling that places the next sampled point in the

middle of the least known area.
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3.2.2 Real-time Methods

The vertex clustering algorithm presented by Rossignac and Borrel (Rossignac and Borrel,

1993) is one of the computationally e�cient method providing a real-time performance.

Vertex clustering algorithm creates a three-dimensional grid enveloping the original mesh.

For each cell in the grid, it computes a representative vertex and collapse all the vertices in

the cell to the representative vertex. The resolution of the grid determines the �delity of the

resulting simpli�ed mesh. However, because the approach does not guarantee the amount

of error introduced by the simpli�cation, vertex clustering algorithms are often visually less

pleasing than other mesh simpli�cation algorithms (Luebke, 2001).

Various approaches are designed for the 3D data transmission over the network (Wu

et al., 2011; Cheng and Boulanger, 2006). Wu et al. (Wu et al., 2011) designed a 3D tele-

immersive system that uses a bisection triangulation algorithm for creating the di�erent levels

of sparseness termed as �CZLod�. Starting with the �rst four triangles between center and

corners, it splits each triangle into two smaller triangles until the depth variation in a triangle

is less than a prede�ned threshold. Due to the depth variation criterion, if the planar object

is at an angle to the viewing direction then it creates the nonoptimal dense sampling. Cheng

et al. (Cheng and Boulanger, 2006) presented a single pass surface simpli�cation algorithm

using a scale-space analysis (SSA) and zero-crossing detection. The algorithm (referred as

SSA) �rst transform the object's surface to a 2D cylindrical coordinate system by determining

the medial axis of the object. Next, it applies Laplacian of Gaussian (LoG) operator followed

by a zero-crossing detection to select points. Di�erent levels of the sparseness are obtained

by varying the standard deviation of Gaussian Filter. The scale-space analysis based method

considers only the local neighborhood of point during selection and does not distribute the

point density over the entire surface resulting in the loss of the overall surface shape. Further,

the requirement of medial axis determination makes it unsuitable for simplifying the complete

scene. Hou et al. (Hou et al., 2015) suggested a surface reconstruction algorithm that
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randomly selects a subset of original set of points using the Poisson disk sampling. Based

on existing selection, the algorithm selects a next point atleast some prede�ned distance

(called as a Poisson disk's radius) away from existing points. Next, the algorithm generates

an approximate Voronoi diagram for the sampled points to obtain a surface reconstruction.

As the selection method does not consider local surface characteristics, this method may not

preserve �ner details.

Figure 3.3: Block diagram illustrating the pipeline of the proposed curvature-sensitive surface
simpli�cation.

3D Video Compression: 3D video transmission standards such as 3D-HEVC e�ec-

tively reduce transmission latency (Tech et al., 2012). Various depth map coding methods

(Mehrotra et al., 2011; Kim and Ho, 2007; Oh et al., 2011; Gautier et al., 2012) are pro-

posed utilizing the fact that depth maps are more homogeneous compare to texture and

depth of a given pixel can be predicted from neighboring pixels. However, decompressing

the compressed streams would still yield a densely sampled data.

3.2.3 Drawbacks of Existing Methods

• Most of the mesh simpli�cation methods are iterative and computationally expensive.

• To apply mesh simpli�cation methods, �rst a dense triangulation need to be computed

from the depth image that further increases the complexity.
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• Point cloud reduction approaches can not avail connectivity information. Hence, most

of these methods need to apply the k-nearest neighborhood for knowing local surface

properties making them computationally ine�cient.

• Vertex clustering methods are computationally e�cient, but they cannot adapt to

non-uniformities in the sampling distribution.

• Methods such as CZLod and scale-space analysis based surface simpli�cation provide

a real-time performance but they do not preserve the �ner details of a surface resulting

in the degradation in a visual quality.

• A 3D compressed stream, after decompression, still provides a dense data at rendering

side.

Above-mentioned drawbacks motivate the design of a single-pass method that will achieve

a trade-o� between execution time and visual quality.

3.3 Curvature Sensitive Surface Simpli�cation

To achieve the trade-o� between visual quality and execution time, we propose a single-pass

simpli�cation approach that works as follows:

• As a pre-processing step, we �rst get a grid-based surface representation using area-

weighted normal maps.

• Next, we apply a curvature-sensitive surface simpli�cation operator (CS3) to select

the reduced set of points representing the surface. Selected points are triangulated to

obtain a sparser surface approximation.

Figure 3.3 illustrates the pipeline of the proposed method. The input can be a raw depth

image and registered texture from RGB-D cameras or an uncompressed data from any 3D

compressed stream such as the 3D-HEVC streams.
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3.3.1 Grid-based Surface Representation

As a pre-processing step, we obtain a 2D representation of the given surface where the

connectivity information can be obtained implicitly through the image grid structure. To

achieve this goal, we �rst compute the normal map from the depth image and intrinsic

camera parameters. Next, we compute the area-based normalization of the normal map.

Normal Map Computation: The proposed simpli�cation algorithm takes a raw depth

map R and camera calibration matrix K obtained by Kinect-like RGB-D cameras as an

input. A raw depth map R provides the depth measurement R(u) ∈ < at each image

pixel u = (u, v)T in the image domain u ∈ <2 such that p = R(u)K−1u̇ is a metric point

measurement in the sensorâ��s frame of reference (Izadi et al., 2011). Similarly, all the

points are projected back in the sensor's frame of reference to obtain a vertex map V. The

vertex map provides the surface measurement on a regular grid. The regular grid structure of

the vertex map provides the local connectivity information without actually performing the

triangulation of the entire set of points. Hence, using the cross product between neighboring

vertices; we compute corresponding normal vectors,

N(u) = (V(u + 1, v)− V(u, v))× (V(u, v + 1)− V(u, v)) (3.1)

In order to reduce the problem to 2D for e�cient computation, we compute L2-norm of each

value in the normal map and normalize it by dividing with the product of squared lengths

of two edges formed between the current point and its neighboring points on the map, as

follows:

V12(u) = (V(u + 1, v)− V(u, v))

V13(u) = (V(u, v + 1)− V(u, v))

A(u) =
|N(u)|

|V12(u)|2 ∗ |V13(u)|2

(3.2)

Here, the denominator in (2) incorporates the weighing of values based on the area of a

triangle formed by these three points. Figure 3.4(a), 3.4(b) and 3.4(c) show the depth map,
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(a) (b) (c)

Figure 3.4: For Stanford dragon model, a) Depth Image R(u), b) Colored rendering of
normal map N(u), and c) Area-weighted normal Map A(u).

normal map N and area-weighted normal map A for the dragon model from Stanford range

dataset. It can be seen that the surface variation is very well captured in A as compared

to the original depth map R itself. De�nition of A provides us a surface representation in

terms of function A(u, v): <2 → <.

3.3.2 Curvature-Sensitive Surface Simpli�cation (CS3) Operator

Given a grid-based 2D surface representation, next we sparsely sample the object surface.

We propose a CS3 operator for a single-pass surface simpli�cation approach that operates

in two steps: (i) compute the curvature sensitivity by determining the importance of each

point in representing the underlying surface; (ii) select points as a candidate vertices based

on their importance.

Curvature-Sensitivity Computation

It can be observed that the points on a boundary, on ridges and at corners aptly represent

the curvature variations of the underlying surface. In order to preserve �ner details, these

curvature-sensitive points should be included in the reduced set of points. For identifying

such key feature points of the surface, let us consider that the given surface is approximated
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by a polygonal mesh. If the normals of faces incident on a vertex are in the same direction,

then we can consider that a given vertex is lying on a planar surface patch. Hence, it

can be approximated by its projection on a plane passing through its neighboring vertices

without introducing any signi�cant error. On the other hand, if the normal direction is

changing signi�cantly for faces that are incident on a vertex then that vertex is important

to approximate the surface with the less error. Hence, variation in normal directions in a

local surface patch characterizes the surface curvature in that region. This local surface

curvature is well captured by Hessian operator (Besl and Jain, 1986) on a normalized map,

which computes a second order partial derivative of the area-weighted normal map A(u,v)

such as ∂2A
∂u2

, ∂
2A
∂v2

and ∂2A
∂u∂v

at each point u. Using these second order partial derivatives, a

Hessian matrix M is computed at each point u as follows:

M(u) =

 ∂2A
∂u2

∂2A
∂u∂v

∂2A
∂v∂u

∂2A
∂v2

 (3.3)

Importance Score Computation

We de�ne the importance of a point as a score, Ω(u), which will represent the contribution

of that point to the overall shape or �ner details of the object. The importance of a point

should be based on the associated local surface curvature. Ω(u) can be computed in few

di�erent ways. In this paper, we explore two possibilities for computing Ω(u).

(a) Laplacian-based Importance: Given a Hessian matrix M , one possible option for

the importance measure can be the average variation in the local surface patch. The average

variation in the local surface patch can be easily computed using a Laplacian operator which

is described as follows:

∆A = ∇2A =
∂2A

∂u2
+
∂2A

∂v2
(3.4)
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Corresponding importance measure can be given as:

Ω(u) = ∆A(u) (3.5)

(b) Minimum Curvature-based Importance: Another possibility is to utilize the prin-

cipal curvature as an importance measure. Eigenvalues of Hessian matrix play a very crucial

role in determining characteristics of the underlying surface and consequently the surface

curvature. Let λ1(u) and λ2(u) be the Eigenvalues of M(u). If both Eigenvalues are too

small, then the region is planar. If one Eigenvalue is higher than the other one, then the

curvature in the direction of the Eigenvector corresponding to the higher Eigenvalue is max-

imum. In this case, a point can be assumed to be on the ridge or the edge. If both the

Eigenvalues are high and positive, it represents the local maximum, and the corresponding

point can be considered as a corner point. We can observe that the points with a higher

minimum Eigenvalue can be considered to be lying in the high curvature region. It should

be noted that if a point lies on the part of the surface which is locally concave, then the

minimum Eigenvalue will be negative. Hence, to nullify the e�ect of direction of surface

variation, we consider the absolute of the minimum Eigenvalue. Therefore, we de�ne the

importance measure as:

Ω(u) = |min(λ1(u), λ2(u))| (3.6)

Importance Score based Sampling:

We propose a sampling mechanism adaptive to local curvature of the underlying surface. This

sampling mechanism will traverse through the entire list of points just once and select the

set of points that are important to represent the surface at the required level of sparseness.

Surfaces with high variation requires more points and low variation can be represented

by lesser points. Hence, high curvature regions require more dense sampling for proper
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representation; whereas, sparse sampling is adequate for the planar region. We propose two

deterministic time coherent sampling methods:

(a) Sampling by Non-Maximum Suppression: It is well known that, in Canny Edge de-

tector (Canny, 1986), non-maximum suppression is achieved by comparing the edge gradient

magnitude at the current pixel with two immediate neighbors in the positive and negative

edge directions. Deriving inspiration from the Canny Edge detector, we propose to utilize the

principal curvature directions for non-maximum suppression. Note that, principal curvature

directions can be easily obtained in terms of Eigenvectors of a Hessian Matrix. Suppose,

vmin and vmax are Eigenvectors of a Hessian matrix M corresponding to Eigenvalues λmin

and λmax respectively. Then, for each pixel p, we compare those Eigenvalues with those of

its neighboring pixels in the positive and negative principal curvature directions. We re-

fer to the set of these neighboring pixels as a curvature neighborhood. If the importance

score Ω(u) at the current pixel is maximum compared to all the points in the curvature

neighborhood, then it is preserved else its value is suppressed to zero. The scope of the

curvature neighborhood is selected as wmax number of points in vmax direction and wmin

number of points in vmin direction. To determine the values of wmax and wmin, we utilize

the fact proven in the approximation theory (Simpson, 1994)(Heckbert and Garland, 1999)

that the L2 optimal approximation to the smooth surface have asymptotic stretching ratio

proportional to
√
|λmax|
|λmin| . Hence, given a 2D sampling interval s =

√
(w ∗ h)/n where w and

h are the width and height of bounding box enclosing the object and n be the user-speci�ed

size of reduced set of points, we compute wmax and wmin as follows:

wmax = s, wmin =

√
|λmax|
|λmin|

∗ wmax (3.7)

Note that, the values of wmax and wmin change according to principal curvature value at

that point resulting in a curvature adaptive sampling.
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(a) (b)

Figure 3.5: For Stanford dragon model, 4% sampled data a) using uniform sampling and b)
proposed surface sampling.

(b) Importance Order-based Sampling: Another possible approach is to preserve the

�ner details of the surface by deciding the order of point selection based on the importance

values. It will result in the selection of high importance points �rst and consequently favors

the high curvature features. While favoring the high curvature points, the care should be

taken to maintain the integrity of the object such that the sampling mechanism does not

pick up only high curvature points. Otherwise, it may result in the loss of overall object

shape at a very high level of sparseness. To achieve this objective,

• We restrict how sparsely one can sample based on the user-requested size of the reduced

point set.

• We change the density of sampling adaptive to the surface by introducing the notion

of repulsive force exerted by the selected point.

All the points are sorted in decreasing order of importance measure. We pick the point

with the highest importance �rst. The selected point exerts a repulsive force on its sur-

rounding points that will block further sampling in the vicinity of the selected point. The
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size of the region a�ected by the repulsive force is determined by the importance value of the

selected point, required level of reduction and the overall extent of the object in the depth

map. Let w and h be the width and height of bounding box enclosing the object in depth

map and n be the user-speci�ed size of reduced set of points. Then the maximum possible

length of radius of squared window representing the region a�ected by repulsive force will

be given by Rdmax =
√

(w ∗ h)/n. For any selected point, the radius of the a�ected region

is given as:

Rd(u) =

(
1− Ω(u)− Ωmin

Ωmax − Ωmin

)
∗Rdmax (3.8)

This de�nition of a window size allows to adapt itself dynamically to the curvature of

the underlying surface. If the selected point has a high importance, then the a�ected region

due to the repulsive force exerted by the point will have a smaller area. On the other

hand, if the selected point has low importance then the a�ected region of corresponding

repulsive force will be larger. This facilitates the dense sampling in high curvature region

and sparse sampling in a planar region. The dependency of Rdmax on n and application

of repulsive force by selected points guarantee that points are selected from all over the

surface without concentrating sampling density in high curvature region even though overall

sampling strategy favors the high importance points more. Figure 3.5(a) and 3.5(b) show

the reduced set of points obtained by the uniform sampling and by the proposed surface

sampling approach on the backdrop of the depth image.

3.4 Triangulation

For the visualization, the set of reduced points needs to be triangulated to obtain a mesh

and to render along with the texture information. Generating a mesh in real-time is in itself

a challenging task. The problem becomes further complicated due to sparse data points

with no neighborhood information. The majority of the techniques used for generating

69



(a) (b) (c)

Figure 3.6: For a person scanned using Kinect, a) triangulation proposed in (Domiter and
Zalik, 2008), and b) our modi�ed triangulation; c) A sparse mesh (10% of original size) for
the desk model from CoRBS dataset obtained using our method.

a mesh in 3DTI, such as (Raghuraman et al., 2013a) work on a dense 2D image having

neighborhood information in the form of the grid structure. Due to sparse sampling for

surface simpli�cation, the connectivity information is lost, making these fast 2D meshing

techniques unsuitable. Other approaches such as Poisson surface reconstruction, marching

cube algorithm assume closed nature of sampled points, making them unsuitable for open

surfaces scanned by RGB-D cameras such as Kinect.

Modi�ed Delaunay Triangulation: We base our triangulation on fast sweep-line

constrained Delaunay triangulation (CDT) (Domiter and Zalik, 2008). CDT meshes sparse

data irrespective of point distribution very quickly. As this method does not have any

neighborhood information incorporated during triangulation, it may end up formulating

unwanted triangles between di�erent parts of the object resulting in a situation as shown in

Figure 3.6(a). To resolve this issue, we modify the approach proposed in (Domiter and Zalik,

2008) by incorporating the information about original depth map to validate the generated

triangles. To check the validity of a triangle, we compute the centroid of triangle and project

it on the depth map followed by checking the availability of valid depth measurement at a

projected point. If there is no valid depth measurement at the projected point corresponding

70



to the centroid, then the triangle is considered to be invalid. It adds a little overhead in

execution time needed for meshing.

Triangulation of a Scene: When the proposed simpli�cation is applied to the entire

scene, the sweep-line constrained Delaunay triangulation has to be further modi�ed. The

scene might consist of di�erent objects situated at di�erent distances from the camera. One

possible heuristic is to assume that the points belonging to di�erent objects will be at a

larger distance compared to points belonging to the same object. Using this fact, we modify

the above triangulation algorithm to check the validity of a triangle based on the maximum

possible distance between points. If the distance between any pair of points in a given

triangle is greater than a certain threshold (determined empirically), then the triangle is

declared as an invalid triangle. As this is a heuristic approach, objects which are in a close

vicinity might get meshed together. For example, a book on a desk gets meshed together

with the desk as shown in Figure 3.6(c).

3.5 Evaluation of CS3

We performed detailed analysis of proposed methods with the goal of deciding a suitable

method for real-time surface simpli�cation. All the algorithms are implemented in C++ and

experiments are run on a CPU with Intel(R) Core(TM)i7-5820K with 3.30GHz speed and

32GB internal RAM.

Datasets: We evaluated the performance of proposed methods across a variety of

datasets scanned using multiple scanners to con�rm the generality and the robustness of

methods. The datasets used are as follows:

• D1: Stanford Range Dataset scanned using Cyberware 3030 MS (Levoy et al., 2005)

• D2: CoRBS Dataset scanned by MS Kinect (Wasenmüller et al., 2016)

• D3: Human models dataset scanned by MS Kinect
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(a) (b)

(c)

Figure 3.7: For the Stanford Buddha, a sparser mesh (10% size) obtained using a) LIOS ,
and b) CIOS ; c) METRO versus number of vertices for various sparser meshes of Stanford
Buddha obtained using LIOS (yellow) and CIOS (blue).
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The datasets include scanned scenes, scanned human models and other objects, both with

and without texture. See Table 3.1 for a summary of the 3D models.

Table 3.1: Attributes of Datasets used for experiments.

Dataset Model Faces Vertices Type

Stanford
Datsset

Dragon 82649 42641 Non-textured Model
Bunny 79312 40256 Non-textured Model
Buddha 151838 78056 Non-textured Model

CoRBS Dataset
Desk 3042969 155275 Textured Scene
Human 296459 150753 Textured Scene
Cabinet 331223 166943 Textured Scene

Human models
Person 1 88294 44931 Textured Model
Person 2 69892 35822 Textured Model
Person 3 66704 33898 Textured Model

We �rst compared the di�erent possible options for importance score Ω(u) computation

and the Ω(u)-based sampling. Possible options are:

1. LNMS : Laplacian based importance, sampling by non-maximum suppression.

2. LIOS : Laplacian based importance, importance order-based sampling.

3. CNMS : Minimum curvature-based importance, sampling by non-maximum suppres-

sion.

4. CIOS : Minimum curvature-based importance, importance order-based sampling.

We analyzed the performance of above options in terms of how well they approximate

the original surface using the one-sided approximation error. We utilized a METRO tool

(Cignoni et al., 1996), which searches for each point on the original mesh, its closest point on

the simpli�ed triangular mesh and computes a Hausdor� distance between them as an error.

The average of computed errors, called mean approximation error (henceforth referred as

METRO) which is normalized with respect to the diagonal length of the original model's
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Table 3.2: Statistics of execution time taken by di�erent methods for Dragon, Bunny and
Buddha model.

Model # Input
Points

# Output
Points

LNMS

Time
(ms)

LIOS

Time
(ms)

CNMS

Time
(ms)

CIOS

Time
(ms)

Dragon 42641 4264 100 38 94 35
Bunny 40256 4026 91 40 88 35
Buddha 78056 7806 161 54 154 51

bounding box and is used as a �nal error measurement. We further analyzed their computa-

tion time and suitability for real-time applications. Table 3.2 enlists the execution time for

all methods. It can be observed that the methods utilizing the sampling by non-maximum

suppression require signi�cantly higher execution time because of additional curvature di-

rection computation based on Eigenvectors of a Hessian matrix. LIOS and CIOS meet

the requirement of low execution time for real-time applications. Hence, we further compare

them in terms of mean approximation error.

Figure 3.7(a) and 3.7(b) show sparser approximations for a Buddha model obtained

using LIOS and CIOS . It can be seen that the details such as the nose, mouth are well

approximated with CIOS . It is additionally veri�ed by a quantitative measure METRO as

shown in Figure 3.7(c). LIOS utilizes Laplacian as an importance measure which is the sum

of two Eigenvalues of a Hessian matrix. Due to additive nature of this importance measure,

the critical point lying on the locally concave part of the surface might be considered as less

important. Hence, LIOS results in the sparse surface with high approximation error.

De�nition of CS3: The performance analysis of various options leads to the conclusion

that, CIOS is the most suitable for real-time applications. To summarize, CS3 will include

following steps: a pre-processing step of computation of a area-weighted normal map, mini-

mum curvature-based importance computation, sampling based on importance-order which

is followed by modi�ed CDT triangulation for the visualization.
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3.6 Performance Comparison

We compare the performance of CS3 with Uniform Sampling (UNI), Poisson Disk Sam-

pling (PDS) (Hou et al., 2015), Scale-Space Analysis (SSA) (Cheng and Boulanger, 2006),

Quadratic Error Metric (QEM) (Garland and Heckbert, 1997) based meshing and Fast and

memory e�cient polygonal simpli�cation (FMEPS) (Lindstrom and Turk, 1998). We used a

C++ implementation for both UNI and SSA. To apply QEM mesh simpli�cation to the range

data, �rst we compute a dense triangulation on the depth image as proposed in (Raghuraman

et al., 2013a). On this dense mesh, QEM mesh simpli�cation is applied using the open-source

re-meshing tool provided by MeshLabv1.3.4 (Cignoni et al., 2008), which combines the state-

of-art QEM method (Garland and Heckbert, 1997) with some post-simpli�cation cleaning

and re�nement. Further, we used a quality threshold of 0.3 with boundary preserving weight

set to a 1 so that faces with quality < 0.3 are penalized and the object boundary remains

intact. PDS simpli�ed surfaces are obtained by performing Poisson disk sampling using

Meshlab tool followed by a constrained-Delaunay triangulation. For FMEPS, we utilized

the implementation of polygonal simpli�cation suggested by Lindstorm et al. (Lindstrom

and Turk, 1998) in the open source computational geometry algorithms library (CGAL)

(Cacciola, 2016). We assume that input depth and texture maps are pre-registered and

pre-processed to remove the sensor noise.

Execution Time: Table 3.3 lists the execution time required by di�erent methods. Uni-

form sampling needs minimum execution time whereas execution time for FEMPS and QEM

mesh simpli�cation is higher compared to other methods used for comparison. The proposed

method can achieve much faster execution time compared to FEMPS and approximately 20

times faster than QEM mesh simpli�cation. The time required for simpli�cation of the com-

plete 3D-scene data provided in CoRBS Dataset is slightly higher as the original dense

models have more than 150K vertices. For visualization, the 3D data is rendered using tools

such as OpenGL, Unity3D. The simpli�ed data needs to be converted into data structure
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(a) (b)

(c) (d)

Figure 3.8: For the CoRBS desk model (Wasenmüller et al., 2016), a) Original dense set of
points, Sampled at 10% of original size using b) uniform sampling, c) importance ordered
based sampling and distance-dependent sampling.

compatible with such visualization tools. Experiments show that the time needed for such

conversion is always less than 5 miliseconds across di�erent data. It can be observed that

the proposed method introduces very minimal latency that is not visually perceivable.

Note that the current implementation of the algorithm is on CPU. The execution time will

be further accelerated on GPU-based implementation, especially because the computation

of normal map and importance per point can be parallelized.

For applications such as 3D Tele-Immersion, user study done in (Wu et al., 2011) has

shown that a frame rate of at least 10 fps is required for good immersive experience. As the

average execution time for the proposed method is less than 100 ms, it is very much suitable

for immersive applications.
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Approximation to Surface: To test the ability of di�erent methods to approximate

the surface, we compute mean approximation error (METRO), fast mesh perceptual distance

(FMPD) (Wang et al., 2012) and mean square error (MSE) for sparser representation of a

surface obtained using the di�erent methods. These quality metrics are widely used by prior

researchers to quantify how well the sparse model approximates original surface (Garland

and Heckbert, 1997; Hoppe, 1999; Wasenmüller et al., 2016). FMPD (Wang et al., 2012)

computes the di�erence between the normalized surface integral of the local roughness (Wang

et al., 2012). Mean square error is computed by computing the di�erence between original

range image and the approximate range image obtained from a sparse mesh. Please refer

to (Romanoni et al., 2016) and (Wang et al., 2012) for further details. Table 3.4 enlists

the error induced by di�erent methods for di�erent models. It can be clearly seen that the

proposed method provides an approximation error closest to the state-of-the-art QEM mesh

simpli�cation method. Figure 3.10 shows the visualization of METRO for the Stanford

Dragon model. The approximation error is evaluated at every vertex of a dense mesh.

Error distributions for di�erent methods demonstrate that the proposed method induced

less approximation error. Due to restrictive sampling, the proposed method generates sparse

meshes with triangles which are more equilateral. Hence, it performs superior in terms of

FMPD measure in most of the cases (see Table 3.4).

Preservation of Fine Details: As shown in Figure 3.9 and 3.12, the proposed approach

can preserve �ner details of surface even at very sparse levels. Facial features such as eyes,

nose as well as wrinkles on cloth are well maintained. The proposed method is also able to

maintain the integrity of the object shape unlike SSA as seen in Figure 3.11 f.

Preservation of Surface Attributes: Generally, the depth data captured using RGB-

D cameras is accompanied with the color information that can be used to generate the

textured 3D model. As the proposed method does not alter the position of points or do

not add any additional points, it is possible to preserve the texture mapping. Generally, the
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basic mesh simpli�cation approach is modi�ed to account for surface properties resulting

into additional computation overhead and increased execution time. For example, Garland

et al. extended the classic QEM mesh simpl�cation method (Garland and Heckbert, 1997)

utilizing 4 x 4 quadric error to generalized QEM with 6 x 6 quadric error in order to handle

surface properties in (Garland and Heckbert, 1998). For textured models, we also compare

the proposed method with texture preserving QEM (Garland and Heckbert, 1998) and classic

QEM (Garland and Heckbert, 1997) in terms of execution time and texture error as described

in (Hoppe, 1999). The texture error is estimated by measuring the deviation of the texture

coordinates of sampled points from the values linearly interpolated at their projection on the

closest face on the sparse model. Figure 3.1, 3.13 and 3.14 illustrate that the method outlined

in this paper does not show visible degradation in the textured rendering of the sparse surface

approximation and achieves results similar to texture preserving QEM in signi�cantly less

execution time.

Elimination of Sensor Noise: Though, we assume that the input data is pre-processed

to remove the sensor noise, the complete noise removal is a strenuous task. The proposed

importance-order based restrictive sampling implicitly suppresses noisy points by virtue of

repulsive force exerted by selected points. Additionally, the distance based triangle validation

in the modi�ed triangulation helps to further eliminate sensor noise as shown in Figure 3.12

and 3.13.

3.7 Extension for Distance-Dependent Simpli�cation of the Complete Scene

Next, we consider a scenario where the entire scene is scanned using an RGB-D camera. In

such a scenario, it is apparent that nearby objects grab most of the viewer's attention. Hence,

it is crucial to approximate nearer objects more accurately compare to objects located at a

distance. It motivates to design a distance-dependent sampling strategy that will densely

sample the closer object while sparsely sampling far-away objects.
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To capture this idea, we extend the importance-order based sampling proposed in Section

3.3.2 to inherently change the sampling density adaptive to object's distance from the viewer

(i.e., the distance from an RGB-D camera). Using the depth measurement R(u) at the

sampled point and the maximum depth measurement Rmax, we modify the de�nition of the

corresponding radius of the a�ected region as:

Rd(u) =

(
1− Ω(u)− Ωmin

Ωmax − Ωmin

)
∗
(
R(u)

Rmax

)
Rdmax (3.9)

The modi�ed de�nition of the a�ected region, allow the size of the a�ected region to be

smaller for the sampled points of an object at a small distance. As the object's distance from

the camera increases the area of the a�ected region due to selected points increases leading

to more sparse sampling. Figure 3.8 illustrates the reduced set of points obtained by the

uniform sampling, importance order-based sampling de�ning the a�ected region area as per

equation and the proposed distance-dependent sampling strategy. The distance-dependent

sampling outlined in this section helps to obtain the distance-dependent CS3 (Curvature

Sensitive Surface Simpli�cation) keeping the framework of the original CS3 unaltered.

Traditional quality metrics, such as METRO, MSE etc. measure the global error and do

not account for the user's focus or proximity. Hence, the error analysis in terms of these

quality metrics may not be appropriate for evaluating the distance-dependent approxima-

tion. The execution time analysis of the distance-dependent CS3 shows that the time taken

by distance-dependent CS3 is similar to that of the original CS3 indicating very minimal

increased overhead.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.9: For the Dragon model from the Stanford Datset (Levoy et al., 2005), a) Original
model, a sparser mesh with size 5% of the original model obtained using b) QEM (Qslim),
c) FMEPS, d) UNI, e) PDS, f) SSA, and g) CS3.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.10: The visualization of METRO computed for a sparser mesh of Dragon from
Stanford Dataset (Levoy et al., 2005) with size 5% of the original model obtained using a)
QEM (Qslim), b) FMEPS, c) UNI, d) PDS, e) SSA, f) CS3, and g) the scale for METRO.
Red indicates the high approximation error.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.11: For the Person 1 model, a) Original model, a sparser mesh with size 5% of the
original model obtained using b) QEM (Qslim), c) FMEPS, d) UNI, e) PDS, f) SSA, and g)
CS3. Textured rendering is provided in the supplementary material.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.12: For the Person 3 model, a) Original model, a sparser mesh with size 10% of
the original model obtained using b) QEM (Qslim), c) FMEPS, d) UNI, e) PDS, f) SSA,
and g) CS3.
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(a) (b) (c) (d)

Figure 3.13: For the Person 3 model, Textured rendering of a) the original model, a sparse
mesh with size 10% of the original model obtained using b) texture-preserving QEM (texture
error = 1.895∗10−6, execution time = 736ms), c) QEM (Qslim) (texture error = 66.05∗10−6,
execution time = 671 ms), and d) CS3 (texture error = 3.584 ∗ 10−6, execution time = 19
ms).

(a) (b) (c) (d)

Figure 3.14: For the CoRBS Cabinet model (Wasenmüller et al., 2016), Textured rendering
of a) the original model, a sparse mesh with size 5% of the original model obtained using b)
texture-preserving QEM (texture error = 9.566 ∗ 10−6, execution time = 4775 ms), c) QEM
(Qslim) (texture error = 205.160 ∗ 10−6, execution time = 4473 ms), and d) CS3 (texture
error = 12.562 ∗ 10−6, execution time = 69 ms).
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PART II

MODIFICATION FOR VIRTUAL THERAPIES
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Virtual and Mixed reality have been successfully utilized for various virtual therapies.

In this part, we explore the 3D content modi�cation for creating an illusion of a phantom

limb to alleviate phantom pain and also for providing positive reinforcement during virtual

therapies.

Chapter 4: Mixed Reality for Managing Phantom Pain (Mr.MAPP) framework provides

a virtual mirror therapy without the constraints of limited spcae, restricted movement and

wavering illusion. It identi�es and mirrors the intact limb in real-time to create the illusion

of the phantom limb. Such an illusion provides a visual feedback for the phantom limb

movement and aids in alleviating the phantom pain.

We also developed a virtual enhancement method that skeletal animation technique to

enhance the movement of patient's live 3D avatar. Such virtual enhancement provides a

positive reinforcement and assists in a rapid recovery in stroke patients.
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CHAPTER 4

MR.MAPP: MIXED REALITY FOR MANAGING PHANTOM PAIN
1

4.1 Introduction

Subsequent to amputation, a patient commonly experiences the residual sensation of the

limb creating the illusion that their missing limb is still intact. This residual sensation of the

missing limb is often referred as a phantom limb. Along with the phantom limb, patients

commonly develop a painful sensation that is perceived as stemming from the missing limb

(i.e., phantom limb pain). The Phantom Limb Pain (PLP) is a chronic pain which is con-

sidered as one of the most traumatic consequences of amputation. Research has shown that

the phantom limb pain is a serious cause of severe distress and physical limitations in 85%

of amputees (Sherman et al., 1984; Murray et al., 2009). Restriction in normal activities

and higher levels of depression often severely a�ects patient's social and work life. Although

various surgical, psychological and pharmaceutical methods are employed to treat PLP, the

e�ectiveness of these methods is often limited and short-term (Katz, 1992).

Flor et al. (Flor et al., 1995) showed that phantom limb pain is closely related to neu-

roplastic changes in at least the primary somatosensory cortex. Based on neuroplasticity,

Ramachandran et al. (Ramachandran and Rogers-Ramachandran, 1996) designed a classic

method of mirror therapy for the relief of the phantom limb pain. In mirror therapy, a vertical

mirror is placed inside a cardboard box with the top removed. The patient is asked to place

his/her intact limb in the box such that its re�ection in the mirror gets superimposed on the

felt position of the phantom limb. Various studies have shown that the visual clue provided

by the mirror therapy can induce the vivid sensation of the movement stemming from the

muscles and joints of the patient's limb. Blakemore et al. (Blakemore et al., 2002) have aptly

1 c©2017 ACM. Reprinted, with permission, from Kanchan Bahirat, Thiru Annaswamy, Balakrishnan
Prabhakaran. Mr.MAPP: Mixed Reality for MAnaging Phantom Pain. In Proceedings of MM'17, October
23-27, 2017, Mountain View, CA, USA., 9 pages. DOI: https://doi.org/10.1145/3123266.3123419
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(a) (b)

Figure 4.1: a) Real scene with healthy user keeping her right hand behind and b) Virtual
scene with phantom limb.

explained the fundamental principle of mirror box therapy in terms of the internal forward

model of the central nervous system. Whenever any movements are performed, the forward

model predicts the sensory consequences of motor commands. Hence, the experience of the

limb movement is generally based on the predicted rather than the actual state. But when

the limb is missing, motor commands are still issued and the movement is predicted by the

forward model simulating the experience of the movement of the phantom limb. However,

as the limb is not actually moving, there is a discrepancy between the predicted movement

and the visual feedback of the actual state. The mirror box therapy allows to complete this

brain circuitry by providing the visual clue for the phantom limb movement and can restore

the movement of the phantom limb voluntary.

However, the mirror box therapy is highly constrained by the limited spatial movement,

requirement of a patient to remain in the �xed posture. Furthermore, the illusion obtained
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is wavering in nature and requires the patient to pay continual attention only to the re�ected

image that can be tedious and stressful. To overcome the challenges presented by the mirror

box therapy, various virtual reality-based methods are suggested in the literature. Most of

these methods utilize a pre-built 3D model of the phantom limb generated using graphics

tools. The movement of amputee's intact limb is captured using various body sensors and

transposed to the 3D model of the phantom limb. Virtual reality-based methods provide

the similar illusion to the mirror box therapy while providing the higher �exibility in the

movement and without the space constraints. However, these methods are highly susceptible

to degraded immersive experience due to a mismatch in the skin color, clothes, arti�cial and

rigid look and misalignment of the phantom limb. Further, most of the virtual reality-based

methods proposed in the literature rely on external devices or sensors to be worn by a person

to capture the motion. Wearing such sensors can inhibit the natural user movement and can

also cause skin irritations and discomfort (Brütsch et al., 2010; Chen et al., 2011, 2010; Du�

et al., 2010; Vieira et al., 2015). Due to the usage of such body sensors, these methods can

be considered as invasive and presents di�culties in employing them in pain relief sessions.

4.1.1 Proposed framework for Managing Phantom Pain

Motivation: With the recent advances in the depth sensing technology and wide availability

of low-cost depth sensors, it has become feasible to capture a live 3D model and motion data

of the person that facilitates the user to interact with virtual objects with complete immersive

experience. Using the powerful tool of active depth sensing, a live 3D model of the phantom

limb can be generated in the real-time instead of using the rigid and arti�cial looking pre-

built models of the limb. Also, the motion data provided by depth sensors allows designing

a non-invasive approach that does not require additional body sensors for capturing the

motion data.
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To address the issues mentioned in the section 4.1, we propose a novel Mixed Reality based

system for MAnaging Phantom Pain (Mr.MAPP). The proposed framework employs o�-the-

shelf RGB-D cameras such as Microsoft Kinect V2 (Zhang, 2012) to capture and generate a

3D model of the person in real-time. An illusion of the virtual limb is crafted by mirroring the

patient's symmetric anatomical limb in the captured data using various computer vision and

graphics techniques. The major challenges in developing the Mr.MAPP framework are: a)

capturing the live 3D models of the human, b) generating the 3D model for the phantom limb

in the real-time, c) generating corresponding movement in the real-time, and d) rendering

the 3D model of the person along with phantom limb for the immersive and interactive

experience. Also, to make the therapy sessions more engaging, fun and non-monotonous,

it is also required to design an attractive virtual environment and game with the engaging

task. Figure 4.1 shows the virtual environment developed for Mr.MAPP framework.

In this paper, we also present a comparative study to analyze the e�ect of various ren-

dering displays such as 3D Television, and Head mounted displays (Oculus Rift, Samsung

Gear VR) in the overall quality of experience. To determine the e�ectiveness of the pro-

posed system, Mr.MAPP framework is evaluated in terms of its usability and acceptability

by clinicians and rehabilitation physicians.

4.1.2 Principal Contributions

The proposed Mr.MAPP framework was tested and evaluated by total of 27 users broadly

categorized into two classes: a) 11 Subject-Matter Experts that includes 5 Physical Medicine

and Rehab (PM&R) experts, 3 Amputee Occupational Therapist and 3 Doctors of Chiro-

practic, and b) 16 people with no known disabilities. The principal contributions of this

paper include:

• A real-time identi�cation and removal of points belonging to the missing limb if there

are any.
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• A real-time phantom limb generation by mirroring the intact limb.

• A real-time skeleton generation for the phantom limb to allow interactions with the

phantom limb in the virtual world.

• A study to evaluate the e�ectiveness of the various display methods in creating an

immersive experience and consequently in pain management.

• A detailed evaluation of the system from Physical medicine and rehab physicians and

psychology experts for validating the e�cacy of the proposed Mr.MAPP framework

and its ability to provide interactive, engaging, motivating and enjoyable system for

managing the phantom limb pain.

The work described in this paper has following impacts:

• A novel Mixed Reality based system for MAnaging Phantom Pain (Mr.MAPP) which

creates a phantom limb using augmented virtuality. It provides a cost-e�ective solution

that is simple and easy to use for the relief from phantom limb pain.

• More realistic and natural representation of the phantom limb that matches with the

person's skin tone and clothing.

• A non-invasive approach to obtain the virtual movement of the phantom limb.

• Interaction-enabled, lifelike, and smooth movement of the phantom limb.

4.2 Related Work

Generally, di�erent surgical, pharmaceutical and psychological interventions are used for

treating the phantom limb pain. However, these methods have very limited and short term

success (Katz, 1992).
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One of the promising methods, a mirror-box therapy was proposed by Ramachandran

et al. (Ramachandran and Rogers-Ramachandran, 1996) that completes the brain circuitry

in the forward model of the central nervous system. It provides the visual feedback of the

phantom limb movement using the mirror-box and can provide the relief from a phantom

limb pain. Research studies done by Brodies et al. (Brodie et al., 2003) and MacLachlan

et al. (MacLachlan et al., 2004) demonstrate that the mirror box therapy can successfully

reduce PLP in a lower-limb amputee as well.

Recently, researchers have developed virtual reality-based methods that provide the sim-

ilar illusion to the mirror box for treating phantom limb pain. O'Neil et al. (O'Neill et al.,

2003) have designed a virtual mirror box that uses a graphical 3-D representation of the

arm. The virtual 3-D arm is controlled by a wireless glove and visualized on the �at com-

puter screen. The participant is asked to wear a wireless glove on their intact arm. Using

the sensor embedded in gloves, the movement of the intact arm is applied on the phantom

arm to move it in unison. Using the same virtual mirror box, Desmond et al. (Desmond

et al., 2006) have presented three case studies indicating it's potential to treat phantom

pain. Cole and colleagues(Cole, 2008)(Cole et al., 2009) have developed a virtual system

that utilizes the remaining portion of an amputated limb to control the phantom limb. The

controlling movement is obtained by placing the motion capture device on the remaining

part of the amputated limb. As the motion capture device provided the overall movement,

�ne movements such as �nger movement are pre-animated and not acquired in real-time. In

contrast to these two approaches, Murray and colleagues have developed a system where a

head-mounted display is used to visualize the virtual environment instead of a �at screen.

The body sensors are attached to shoulder, elbow and wrist joint and thigh, knee and ankle

joint for upper and lower limb amputees respectively. Motion obtained via body sensors is

then applied to the pre-built 3D model of the phantom limb. Ortiz-Catalan et al. (Ortiz-

Catalan et al., 2014)(Ortiz-Catalan et al., 2016) proposed a myoelectrically controlled AR
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(a) (b)

Figure 4.2: a) Textured mesh and b) skeleton obtained from the data captured using Mi-
crosoft Kinect V2.

environment (MCARE) where a webcam is used to capture the whole environment around

the person which is augmented with the 3D model of the phantom limb. Eight bipolar elec-

trodes and markers are placed around the stump to obtain EMG signals. Using the recorded

EMG signals, Linear Discriminant Analysis in a one-vs-one topology and multi-layer per-

ceptron are trained for developing a myoelectric pattern recognition that predicts intended

motion.

All of these methods rely on the pre-built 3D model of the phantom limb. The usage

of such pre-built 3D model signi�cantly degrades the quality of immersive experience due

to a mismatch in skin tone, clothes, misalignment and arti�cial and rigid look of the phan-

tom limb. Further, the pre-built model needs to be modi�ed such that its dimension are in

proportion with the current participant's anatomy. Most of these methods require the par-

ticipant to wear data gloves, body sensors or electrodes to capture the motion data. Wearing

such sensors not only hinders the natural movement but can also cause skin irritations and

discomfort. We address these issues with the presentation of Mr.MAPP framework.
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4.3 Mixed Reality for MAnaging Phantom Pain (Mr.MAPP)

Visual feedback can potentially induce the illusion of the restored limb and allow to perform

phantom movements. To provide such realistic visual cues, we propose a novel mixed reality

based system. It entails capturing and generating a 3D mesh model of the participant in

real-time and placing it in the virtual world. It is also required to estimate the human

skeleton to facilitate the natural interaction with the virtual objects.

A real-time 3D model of the participant is generated using o�-the-shelf, RGB-D sensors

such as Microsoft Kinect V2. Microsoft Kinect V2 provides two raw data streams: depth

data and color data. The raw depth data is processed to �lter out the human from the entire

scanned scene by applying a depth �lter that masks the background and generates depth

bounds for the foreground (i.e., Human in this case) (Raghuraman et al., 2015a). Using

the segmented depth data and camera intrinsic parameters, a 3D point cloud corresponding

to the human is obtained by back-projecting each depth point into a real world. A 3D

point cloud and the raw color data are combined together to generate a textured mesh

corresponding to the human using a dense mesh strategy described in (Pajarola et al., 2003).

This method considers a 2x2 neighborhood around each depth pixels and checks the validity

of each possible triangle between these four pixels. The validity of a triangle is determined

based on the depth variation in the points forming the triangle. The segmented depth streams

are further processed to extract features that along with random decision forest algorithm

are used to estimate human pose, as described in (Shotton et al., 2013). A human pose is

represented as a skeletal model with 25 joint position and corresponding orientations. Figure

4.2 shows the example of the textured mesh and corresponding skeleton.
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4.3.1 Real-time Phantom Limb generation

Though the above-described procedure provides a real-time 3D model of the participant, the

3D model corresponding to a�ected limb is still missing. To create a visual and interactive

representation of the phantom limb, we need to generate:

• 3D mesh corresponding to phantom limb for visualization.

• 3D skeleton corresponding to phantom limb for performing interactions with the virtual

objects.

Real-time Phantom 3D Mesh Generation

Getting inspired from the classical mirror-box therapy, we propose a phantom 3D mesh

generation scheme that exploits the inherent symmetry in the human anatomy. It generates

the 3D model for the a�ected limb by mirroring the 3D mesh of participant's intact limb.

The proposed 3D mesh generation scheme has following steps:

• Point cloud segmentation

• Removal of points belonging to the a�ected limb

• Mirroring the intact limb

Point cloud segmentation: To identify the points corresponding to the intact limb, we

establish the correspondence between the scanned point cloud and each skeletal segment. The

correspondence is established by performing the skeletal segmentation of the scanned point

cloud as described in the (Raghuraman et al., 2013b). The entire point cloud is segmented

into a various segmented region based on the Euclidean distance between the point and the

skeletal segment. Each skeletal segment consists of a control point Pc = [xc, yc, zc]
T and a

reference point Pr = [xr, yr, zr]
T . Generally, the corresponding skeletal joint is considered as
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a control point, and the control point of the next skeletal segment is considered as a reference

point for the current segment. A Voronoi decomposition based approach (Aurenhammer,

1991) is used that estimates the distance between a point and the skeletal line segment

de�ned as (Pc, Pr). For a point P (x, y, z) and line segment (Pc, Pr), the distance d is given

as:

d =


|P − Pr| if t ≥ 1

|P − Pc| if t ≤ 0

|(P−Pc)×(P−Pr)|
|Pr−Pc| if 0 < t < 1

(4.1)

t =
(P − Pc)T .(Pr − Pc)

|Pr − Pc|2

where t represents the projection of the point P on the line segment (Pc, Pr). Figure 4.3 b

shows the segmented point cloud.

Removal of points belonging to the a�ected limb: To achieve a realistic illusion, the

points corresponding to the a�ected limb in the current scanned data needs to be removed.

To identify all the points belonging to the a�ected limb and to label them with a single unique

label, we modify the segmentation described above. For the a�ected limb, we collapse the

local bone hierarchy (such as shoulder → elbow → wrist → hand) to a single bone from

shoulder to hand. After identifying all the points corresponding to a�ected limb with a

unique label, we remove these points from the depth image by assigning the zero depth value

to corresponding pixels in the depth image. Figure 4.3 a and c show the original raw depth

map and shows the depth map after removing the points corresponding to the a�ected limb.

Mirroring the intact limb: A 3D virtual representation of the phantom limb is crafted

by mirroring the 3D model of the intact limb. Points corresponding to each skeletal bone

of the intact limb are identi�ed using the skeletal segmentation as described earlier. After

segmenting the data, it is easier to mirror each individual skeletal segmented region to obtain

its symmetric counterpart.
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(a) (b) (c) (d) (e)

Figure 4.3: a) Original depth image, b) segmented point cloud, c) modi�ed depth image
after removing points corresponding to the right arm, d) modi�ed depth image after adding
points belonging to the phantom limb obtain by mirroring the left arm, e)depth image after
applying the hole �lling.

The skeletal segmented regions are mirrored by aligning the axis of symmetry with the

medial axis of the participant. To achieve this, in the case of the upper limb amputee, we

de�ne a local coordinate system of participant's skeleton with the origin de�ned at the spine

joint Psp as:

xs =
Pls − Prs
|Pls − Prs|

, ys =
Psc − Psp
|Psc − Psp|

, zs =
xs × ys
|xs × ys|

, Os = Psp (4.2)

where Pls and Prs are left and right shoulder joint, Psp is spine joint, Psc is a shoulder center

joint.

For mirroring the points, each point Pw of the intact limb is �rst transformed to the local

coordinate system of the skeleton, re�ected about the symmetric axis and then again trans-

formed back to the real world coordinate system to obtain the mirrored point representing
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the phantom limb. It is mathematically described as:

Pt1 = Pw −Os (4.3)

Ps = M ∗ Pt1 (4.4)

Pr.x = −Ps.x, Pr.y = Ps.y, Pr.z = Ps.z (4.5)

Pt2 = M−1 ∗ Pr (4.6)

Prw = Pt2 +Os (4.7)

where M = [xs
Tys

T zs
T ] de�nes the rotation between skeleton local coordinate system CSsk

and real world coordinate system CSrw, Ps is transformed point in the CSsk, Pr and Prw are

re�ected points in the CSsk and CSrw, Pt1 and Pt2 are intermediate results. We add mirrored

points to the depth image by assigning it's z coordinate value to the corresponding pixel in

the depth image. Figure 4.3 d shows the depth map after adding the points corresponding

to the phantom limb.

For the newly added points, the traditional approach of generating textured mesh using

the calibration parameters between depth and color camera will generate the incorrectly

textured mesh. In Figure 4.4,the left model shows the example of such a textured mesh

generated with the traditional texture mapping. To alleviate this issue, for each mirrored

point Prw in the depth image, we maintain the index of the corresponding original point

Pw. The index idx of any point p(i, j) in the depth image with width wh is de�ned as:

idx = i∗wh+j. Maintaining the index in this manner allows to easily trace back the original

point. Hence, for the mirrored points, instead of computing the texture mapping directly

from the calibration parameters, the original point can be referred using the associated index

and corresponding texture mapping can be extracted. In Figure 4.4, the right model shows

the textured mesh generated for the added phantom limb using the index based texture

mapping approach.
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Figure 4.4: Textured mesh generated from Point cloud data using traditional texture map-
ping (left) and textured mesh generated from the same point cloud with our proposed ap-
proach.

Successive projection and back projection of points induce numerical round-o� errors that

lead to loss of few points and results into holes in the depth image as shown in Figure 4.3 d.

To �ll these holes, for each pixel with zero depth, we apply a conventional average �lter to

its 4-connected neighborhood. Further, the reference index for zero depth pixel is obtained

by interpolating indices of it's immediate two horizontal neighbors or vertical neighbors with

non-zero depth values. Figure 4.3 e shows the depth image obtained after the proposed hole

�lling step.

Real-time Phantom Skeleton Generation

For the immersive and interactive experience, it is important to provide the full body inter-

action using physics colliders. In the proposed framework, as the new mesh is created every

frame, estimating the mesh collider every frame adds a signi�cant latency to the system

performance. Hence, physics colliders are estimated using the skeleton. Each skeletal bone

100



Figure 4.5: Layout for Bubble generation.

segment is associated with either a box or a capsule collider to cover the complete mesh

volume.

Microsoft Kinect V2 provides an estimated skeleton per frame. Although it provides

an overall good skeleton estimate, it can not estimate skeletal information for the missing

limb. We obtain the skeletal information for the missing limb by mirroring the skeleton

information of the intact limb obtained from Microsoft Kinect V2. We apply equations 3-9

to each skeletal joint of the intact limb to obtain the mirrored joint representing the phantom

limb. Further, the local bone hierarchy for the phantom limb is maintained similar to that

of the intact limb.

4.4 Immersive Game using Mr.MAPP Framework

To make the training session more attractive and engaging, we have designed an interactive

game Bubble Burst. In Bubble Burst, the bubbles �lled with di�erent color paints are popped

from the generators located on the �oor and are �oating towards the ceiling in straight lines.

The participant is supposed to pop the bubbles in order to save the ceiling from getting

stained with the paint. The game is designed while keeping in mind, the requirement of

the symmetric and synchronized movement of a person's both arms. For realistic illusion
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and accurate visual cues, it is important that the movement of the phantom limb should be

in accord with the targeted movement, i.e., if bubbles from both sides are popping up in

synchronization then the symmetric movement of the intact limb and phantom limb will be

more realistic and conceivable. Hence, to enforce the synchronized movement of both limbs,

we pop the bubble from left and right side in synchronized manner.

In this game, the person is surrounded by bubble generators. It has three di�erent levels

for the position of bubble generation. At any point in time, bubbles are popped out from

two bubble generators at the same level in a synchronized manner. Figure 4.5 shows the top

view of the virtual scene in the game describing the layout for bubble generation. Hence, the

bubble generators at level 1 pops out bubbles at the same time. Bubble Burst has multiple

levels of di�culty. The di�culty levels are controlled by changing the speed and location of

popping bubbles.

4.5 Experimental Setup

The entire experimental setup involves only a single desktop with su�cient processing power,

a single Microsoft Kinect V2 (Zhang, 2012) for capturing the 3D mesh data, and one render-

ing display for visualization. In our experiments, we have used a computer with a GTX 970

graphics card, Intel i7 2.4 GHz processor and 32 GB RAM. We employed a single Microsoft

Kinect V2 connected to the computer using a USB 3.0 to capture and extract the person

present inside the scene. Using the captured data, a textured 3D model is generated as

described in the section 4.3.1. The generated textured mesh is immersed in a virtual game

environment for interactive experience. The entire motion capture and Mr.MAPP frame-

work is written in C++, and the game development is done in the Unity3D game engine

with C# platform using OpenGL rendering and PhysX for physics. TCP sockets were used

to communicate between the Mr.MAPP framework and the Bubble Burst game in Unity3D.
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For visualization, the virtual game and the immersed 3D model of person are rendered on

various 3D displays.

To analyze the e�ect of various 3D display technologies on the immersive experience

provided by Mr.MAPP framework, we have experimented with three di�erent displays such

as: A Samsung 3D TV, Oculus Rift, and Samsung Gear VR. A Samsung 3D TV provides

a partial 3D immersive experience without constraining the user movement. On the other

hand, head mounted display HMD such as Oculus Rift, and Samsung Gear VR provides a

complete 3D immersive experience. Among these two HMDs, the Oculus Rift is connected

to the desktop, whereas Samsung Gear VR relies on a mobile device to provide portability

and ease of operation. Due to their unique features, these three displays are considered

for experiments. In case of 3D TV and Oculus Rift, both these devices are connected the

desktop that runs the Mr.MAPP and game application. Whereas in case of Gear VR, the

game application is run on the mobile device and the 3D model of person is transmitted from

the desktop to the mobile device via a WiFi adapter. For Gear VR, we have used Samsung

S6 edge plus as a mobile device.

4.5.1 Evaluation of the Mr.MAPP framework

We evaluated the Mr.MAPP framework in terms of three key factors: a) visual quality, b)

real-time performance and c) user experience.

Visual Analysis:

We demonstrate the e�cacy of the proposed Mr.MAPP framework by providing the visual

rendering of the Phantom Limb created using it. Figure 4.4 and 4.6 show the examples of the

phantom limb generation in case of the upper limb and lower limb amputation respectively.

For simulating the lower limb amputee, the participant was asked to sit on the chair with

folding one of his/her leg as shown in Figure 4.6 a. Figure 4.6 c shows the textured model
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(a) (b) (c)

Figure 4.6: a) Real scene with the black box in front of the person, b) textured mesh captured
from Kinect, and c) textured mesh after adding phantom lower limb.

with phantom lower limb. Additional videos showcasing the upper and lower phantom limb

generation are provided in the supplementary material .

Real-time Performance Analysis:

To demonstrate the real-time performance of the Mr.MAPP framework, we carried out

various experiments. Due to perspective projection based depth sensing, the number of

points representing the 3D model of a person varies based on its distance from the sensor.

Consequently, the execution time is highly in�uenced by the distance of the person from the

sensor. Hence, to account for this distance dependency, we carried out a distance based time

performance analysis.

During di�erent stages of the experiment, a person was asked to stand at the distance

of 8, 10 and 12 feet from the sensor in the same pose. For each stage, the time taken

by each step of the Mr.MAPP framework is measured and logged. Table 4.1 shows the

time measurements for di�erent steps involved in Mr.MAPP at various distances. It can be
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Table 4.1: Execution time.

Process Time Taken (in milliseconds)
at 8
feet

at 10
feet

at 12
feet

Point cloud segmentation 4.76 3.1543 2.2169
Removal of points 0.3357 0.2857 0.240
Mirroring the intact limb 0.882 0.833 0.783
hole �lling 0.0004 0.0004 0.0003
Phantom skeleton genera-
tion

0.0001 0.0009 0.0009

Point cloud generation 1.425 1.278 1.1863
Textured mesh generation 3.6348 2.7742 2.2981
Total Time 11.033 8.32569 6.72469

seen that the process of phantom limb generation approximately adds only 6 milliseconds

of overload. The overall execution time of the Mr.MAPP framework is always less than 11

milliseconds at various distances. Thus, the Mr.MAPP framework guarantees the real-time

phantom limb generation.

User Study:

To perform a subjective analysis of the Mr. MAPP framework and to understand the e�ect

of various 3D display technologies on the immersive experience, we performed an user study

with total of 27 participants. It involved two classes of users: a) a group of 11 Subject-Matter

Experts in the area of amputee rehabilitation that includes 5 Physical Medicine and Rehab

(PM&R) experts, 3 Amputee Occupational Therapist and 3 Doctors of Chiropractic, and b)

16 healthy adults with no known disabilities. 18 of the participants were male, and 9 were

female. Age of the participating people was from 23 to 55.

At the beginning of the study, we explained the task require to be performed to each

participant by giving a brief demonstration of the game. Each participant is also asked to

move and explore the virtual game environment for a time duration of 3 minutes in order
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(a)

(b)

(c)

Figure 4.7: Histogram of scores for the Bubble Burst game in case of a) 3D TV, b) Oculus
Rift, and c) Gear VR.
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(a)

(b)

(c)

Figure 4.8: Histogram of scores for the phantom movement in case of a) 3D TV, b) Oculus
Rift, and c) Gear VR.
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(a)

(b)

(c)

Figure 4.9: Histogram of scores for the overall experience in case of a) 3D TV, b) Oculus
Rift, and c) Gear VR.
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(a) (b)

(c)

Figure 4.10: Questions and color coding scheme for a) Figure 4.7, b) Figure 4.8, and c)
Figure 4.9.

to get familiarized with the virtual game environment. The user study is performed only

with the phantom, right upper limb illusion. Initially, to simulate the amputee, we asked

the participant to fold their arm and tied it with a bungee cord. As tying the arm with a

bungee cord is uncomfortable, we asked the participant to keep their respective hand behind

their body to simulate the situation of an amputee. For e.g., if the right arm is selected as

a phantom limb, we asked the participant to keep their right hand behind their body. The

user study is carried out in three sessions. In the �rst session, the participant is asked to

play the game Bubble Burst where he/she can see their mirrored 3D model on the Samsung

3D TV. In the second and third session, the same game is played but with Oculus Rift and

Gear VR as a visualization tool respectively.

After each session, they were asked to �ll out a questionnaire consisting of total 13 ques-

tions that are described in Figure 4.10. The questionnaire was designed to mainly evaluate

various factors in the game, overall visual quality, immersive experience, e�ectiveness of the

illusion, realism of the movement and any experience of the latency. As the questionnaire

consists of all objective questions, it provides an overall quantitative analysis. The set of

questions is broadly divided into three parts: Bubble Burst Game, Phantom movement,
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(a) (b)

(c) (d)

Figure 4.11: a) Using 2D Mirroring, b) using 3D mirroring, c) segmentation Error, and d)
e�ect of occlusion.

and the overall experience. The range of answers is de�ned by a 7-point Likert-type scale,

ranging from 1 being strongly agree to 7 being strongly disagree. The participants were also

asked to provide a subjective criticism, both positive and negative to obtain a qualitative

analysis. Figure 4.7, 4.8 and 4.9 illustrate the histogram of the scores in di�erent cases. It

can be seen from Figure 4.7 that, the majority participants felt the Buuble Burst game was

easy to play, and they could locate and burst the bubbles accurately. Due to rich, immersive

experience in Oculus Rift, a great portion of the participants felt that �nding the bubbles

were easy with Oculus Rift (100%) compare to 3D TV (92.59%). As illustrated in the Figure
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4.8, all the participant agreed that the illusion of the phantom right-hand movement was

realistic in the case of 3D TV and Oculus Rift, whereas 92.6% of the participant agreed in

the case of Gear VR. As the Mr.MAPP framework needs a participant to move their intact

limb throughout the game, it is important to test the stress on the intact limb. We found

that the majority participants did not report any pain in their left hand after all the sessions.

Figure 4.9 illustrates the rating for the overall experience of Mr.MAPP framework. Most

of the participant felt that the overall experience was e�ective, interesting and engaging.

88.89%, 92.59 % and 74.07% of the participant felt that there was no noticeable delay in

case of 3D TV, Oculus Rift and Gear VR respectively. This observation veri�es the fact

that the limited processing power in Gear VR introduces a signi�cant system latency. Some

of the participants also noted that in the case of head-mounted displays one needs to wear

the device and hence, it is invasive to some extent. On the other hand, 3DTV provides a

complete non-invasive phantom limb illusion.

Subject-Matter Expert Evaluation: To evaluate the usability and e�ectiveness of

the system, we asked 11 Subject-Matter Experts (SME) to participate in the user study and

to provide their analysis based on their experience with the real patient with limb amputees.

SMEs reported that the Mr.MAPP framework would surely provide a unique experience to

the patient with limb amputees. They felt the advantage of the Mr.MAPP framework over

the traditional mirror box therapy is the unconstrained smooth movement and the realistic

illusion of the phantom limb. Some of the SMEs suggested that the bubble generation in

the Bubble Burst game can be modi�ed in the case of lower limb amputee keeping in mind

the natural instability during leg movement. Given that the phantom limb pain is closely

related to neuroplastic changes, it is di�cult to infer the result from this user study with

non-disabled participants and map it to a patient with limb amputees. However, SMEs think

that innovative and interdisciplinary Mr.MAPP framework with customizable Bubble Burst

game is suitable for further analysis with limb amputee patients. With the encouraging
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feedback from SMEs, we are currently in the process of writing experimental protocols for

institutional review board (IRB) approval. After IRB approval, we also plan to study the

e�cacy of Mr.MAPP framework for patients with both lower and upper limb amputees.

4.6 Discussion

In this section, we discuss various observations made during the course of experiments and

based on user study feedbacks.

Correctness of phantom limb movement: As the Mr.MAPP framework performs

the mirroring using the local 3D coordinate system of the skeleton, a correct phantom limb

representation can be generated. On the other hand, if mirroring is simply performed on

2D depth image, the phantom limb may not be generated accurately when the person has

rotated or moved. Figure 4.11 a and b show the phantom limb generated using 2D mirroring

and 3D mirroring respectively, when the person has turned sideways.

Dependency on the Skeleton: The procedure of phantom limb generation in Mr.MAPP

framework highly relies on the skeleton estimation. Along with the skeletal-based segmenta-

tion of the point cloud data, the mirroring of the point is also dependent on the medial axis

computed using the skeletal information. Hence, any error in the estimation of the skeletal

joints results in artifacts in the resultant phantom limb generation as shown in Figure 4.11

c. Real-time pose estimation methods such as (Shotton et al., 2013; Siddiqui and Medioni,

2010) may fail and provide inaccurate skeleton. On the other hand, accurate skeleton esti-

mation methods such as (Shuai et al., 2017) do not run in real-time. Hence, it is important

to design a real-time, accurate skeleton estimation methods that provides a direction for the

future work.

Occlusion: If due to occlusion, the intact limb is not visible to the depth sensor, the

phantom limb can not be generated because of the lack of data for mirroring. Figure 4.11 d

shows the e�ect of occlusion in phantom limb generation.
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First Person View: Two participants with the previous experience of the virtual reality

based games commented that the �rst person view would be bene�cial. However, as the 3D

data and skeleton of the person are captured from the front side, during the �rst-person view

of the game, when a person moves the hand, the part of the hand may not be visible to the

sensor, and consequently, no data is rendered for the occluded part of the arm. As this may

result in the degraded experience of the phantom limb, we utilized the third-person view for

the Bubble Burst game.

4.7 Extending Mr.MAPP for Lower Limb Amputation

Various studies (Demet et al., 2003; Ziegler-Graham et al., 2008) estimating the statistics

of di�erent types limb amputations indicate that the majority percentage of the patients

are a�ected with the lower limb amputation. For example, the study described in (Ziegler-

Graham et al., 2008) shows that a total of 62% of persons experience an amputation with

lower extremity. Subject-matter Expert study performed in (Bahirat et al., 2017) also in-

dicates the large population of the amputee patients in VA su�ers from phantom pain due

to lower limb amputation. This motivates to extend the existing Mr.MAPP framework to

create the illusion of lower limb phantom movement.

Although the majority portion of the Mr.MAPP framework can be directly used, a minor

modi�cations are needed to create a realistic illusion of the lower phantom limb. Firstly, the

local skeletal coordinate system should be de�ned appropriately. Because with the skeletal

coordinate system de�ned at spine joint Psp, the shoulder movement may result in the

unnatural lower phantom limb generation. Hence, we de�ne a skeletal coordinate system of

participant's skeleton with the origin de�ned at the hip center joint Phc (see Figure 4.12) as:

xs =
Plh − Prh
|Plh − Prh|

, ys =
Psp − Phc
|Psc − Phc|

, zs =
xs × ys
|xs × ys|

, Os = Phc (4.8)

where Plh and Prh are left and right hip joint, Psp is spine joint, Phc is a hip center joint.
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Figure 4.12: The skeletal coordinate system for the lower phantom limb generation.

4.7.1 Issues

However, extending Mr.MAPP framework for the lower phantom limb generation is con-

strained with several issues such as:

• Jittery skeleton

• Unsymmetrical segmentation

• Small movements remain undetected

• Varying placement in the virtual environment for patients with di�erent physique

• Other person may get detected interrupting the illusion

Jittery skeleton: Although, the Microsoft Kinect provides a reasonable skeleton esti-

mate for a person facing the camera and standing upright, the lower part of the detected skele-

ton is unstable and jittery for the person in a sitting posture. However, patients with lower

limb amputation must participate in virtual games maintaining the sitting posture. Hence,

unstable and jittery skeleton becomes a critical issue while extending Mr.MAPP framework
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: a) Original depth image, b) segmented Point cloud, c) modi�ed depth image
after removing points corresponding to the right leg, d) modi�ed depth image after adding
points belonging to the phantom limb obtain by mirroring the left leg, e)septh image after
applying the hole �lling and f) result after applying the second hole �lling.

for lower limb amputation. To handle the above mentioned instability, we smoothed the

detected skeletal joints using an approach suggested in (Azimi, 2012).

Unsymmetrical segmentation: Due to inaccurate skeleton estimation in a sitting

posture, the anatomically symmetric joints are detected as unsymmetrical. This unsymmet-

rical joint estimation leads to unsymmetrical right and left lower limb region as shown in

Figure 4.13 b. Therefore, when a part of the a�ected limb is removed and replaced with the
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mirrored intact limb, there may be gaps created due to misaligned a�ected and intact limb

region (See Figure 4.13 d). Such misalignment causes undesirable visual degradation mainly

near the root of a limb skeleton hierarchy such as left or right hip joint. Hence, we identify

the root of a�ected limb and �ll the holes in the region of interest surrounding it with a

symmetrical region from the root of intact limb. Texture coordinates are also appropriately

transferred for correct visual rendering. This additional level of hole �lling aids in removing

the undesired gaps as shown in Figure 4.13 f.

Small movements remain undetected: It is well known that Microsoft Kinect can

not detect small movements of end joints such as small palm or foot movement. One of

the game designed for patient study (described in Section 4.8.2) requires patient to perform

�ankle dorsi�exion� movement. However, as Kinect can not detect such a small movement,

the corresponding virtual interaction can be realized. To overcome this issue, we asked

patients to wear a �blue color� shoe covers which are readily available. We identify all the

points with blue color and mark their centroid as a foot joint. Tracking the blue shoes cover

points helps us to track even a small movement of foot joint. Please note that, the care

should be taken to avoid having objects of same color as shoe cover in near by vicinity.

Varying placement in the virtual environment for patients with di�erent

physique: Unlike, patients with upper limb amputation, patients with lower limb am-

putation have restricted mobility. Hence, their live 3D avatar must be placed appropriately

in the virtual environment for smooth interactions with the virtual objects. If the placement

is o� by even minor distance, the patients may not be able to interact with virtual objects

leading to undesired user experience. However, a single placement strategy will not work

for patients with di�erent physique. Hence, we determine the placement of patient's live

3D avatar based on their approximate knee height estimated on the go. We identify the

ankle and knee joint of patient's intact limb and determine their reach based on estimated

knee height. Based on this estimated reach, the patient is placed in virtual environment
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such that the virtual objects are symmetric and at same distance from the hip center joint

of the patient and are also reachable with patients foot. Create �gure illustrating real-time

placement strategy

Other person may get detected interrupting the illusion: Due to limited mobility,

the patient with lower limb amputation may need assistance in carrying out the study or in

other tasks. Under such circumstances, it is highly likely that other person may enter in the

scene while patient is participating in the study. As Kinect randomly �lters out a person,

the other person may suddenly get detected. This can severely interrupt the phantom limb

illusion. Accounting for such possibilities, we identify the person at the center of the scene,

mark him/her as a �key person� and track that person based on their body index provided

by Kinect. So irrespective of any number of people in the scene, always the �key person� is

detected.

4.8 Patient Study

To evaluate the e�ectiveness and impact of Mr.MAPP framework for managing phantom

pain, it is important to test the system with real patients. Hence, we have setup a patient

study in collaboration with Veterans A�airs Hospital in Dallas, Texas. We are planning to

carry out the patient study involving atleast 10 patients with lower limb amputation.

4.8.1 Requirements

To carry out the patient study successfully and e�ectively, the system utilized must satisfy

following requirements:

Support for lower phantom limb: As larger number of patients su�er with the

lower limb amputation, we designed the patient study focusing mainly on managing lower

phantom limb pain. Mainly, Mr.MAPP framework is extended to support lower phantom

limb as described in Section 4.7. We also have developed three di�erent games involving
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movement with the lower limb for making the patient study engaging and fun to participate

in.

User-friendly interface: To avoid any impact of stress in system handling on the

patient study results, the interface should be easy and user-friendly to operate. We design a

simple and intuitive user-interface for navigating through and completing each game session.

User is provided with the option of starting the game once the user thinks he/she is ready.

There is also an option of exiting the game once the game is over that allows the user to

analyze their scores for the current session before exiting the game.

Track the performance: To track patients performance while participating in virtual

games, we provide an interface with the database that acts as a �digital diary�. With this

digital diary, we can track di�erent types of information through out the complete patient

study such as: number of sessions completed per day, number of days the user participated

in study, his/her performance during each session, session duration and anomalies occurring

during sessions. This allows us to check if patient has completed all the intended sessions for

complete duration. If patient has any di�culty in playing games and not able to score for

pre-de�ne duration then it is considered as �anomaly�. We record the duration of anomaly

and also video capturing the patient during anomaly that helps us to understand why patient

faced di�culties in scoring.

4.8.2 Extended set of games

We design three di�erent games focusing mainly on lower limb movement. Each game is

tailored for a speci�c movement such as:

• Knee �exion and extension

• Ankle dorsi�exion

• Tandem coordinated movement
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Knee Flexion and Extension

Posture and movement: In this game, the patient will be sitting on a non-moving chair

with a straight posture. The patient needs to perform knee �exion and extension movement

as shown in Figure 4.14 a.

Game setup: This is a modi�ed version of the �Bubble Burst� game described earlier

in Section 4.4. In this version, bubble generators on the �oor are moved closer to the user

so that they are reachable by foot. Figure 4.14 b shows the game layout. As only front

two channel are easily reachable with foot, we enable bubble generation only from these

two front channels. The goal here is to burst the bubbles while performing the knee �exion

and extension in order to save the roof from getting stained with paint. The score will be

counted in terms of number of bubbles burst and number of bubbles missed. If the number

of bubbles missed is higher that a pre-de�ned threshold or the time limit is exceeded, then

the game is terminated displaying the score of the current session.

Ankle Dorsi�exion

Posture and movement: The second game is called �Pedal� game that is designed to

perform ankle dorsi�exion exercise as shown in Figure 4.15 a where patient will be performing

a pedaling action. The patient will also required to maintain straight sitting posture. As

the pedaling movement is very small, the patient is asked to wear blue color shoe cover (see

Figure 4.15 b) and keep their leg on black box or step stool to elevate the foot making it

visible to the depth camera.

Game setup: In this game (see Figure 4.15), there are pedals in front of patients. As

patient presses and releases the pedals, the balls on both sides will start moving upward.

The patient needs to keep pressing and releasing the pedals until the balls reach to the top

disks. Once the balls hit the disks, it will create a sparkling e�ect indicating the game is

over.
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(a)

(b)

Figure 4.14: a) Knee �exion and extension exercise, b) layout of �Bubble Burst� game for
lower limb.
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(a)

(b)

Figure 4.15: a) Ankle Dorsi�exion exercise, b) layout of �Pedal� game for lower limb.
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(a)

Figure 4.16: Layout of �Piano� game for lower limb.

Tandem Coordinated Movement

In the third game (referred as �Piano� game), the patient is asked to perform a random

stomping movement while seated in the chair. There are di�erent piano keys popping up

randomly on the �oor and patient has to hit the popped key with stomping action. As

the correct key is hit, it will create a certain musical note and the key will disappear with

sparkles. The score will increase with every correctly hit key. If any key is missed, the score

remains unaltered. Once the time limit is exceeded, it is indicated by displaying the �Time

Over!� text. Figure 4.16 illustrates the user playing the �Piano� game.

4.8.3 Patient Study Design

Target population: We intend to carry out a study with atleast 10 patients with lower

limb amputation. The pool of participant will include diverse set of patients: male and

female, di�erent age group, patients with left or right limb amputation.
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Study Duration and Session Details: The patient will be participating in the study

for 4 weeks. During these 4 weeks, patient will play two sessions everyday where in each

session he/she will play three di�erent games. Two sessions are well separated in time, for

e.g., �rst session can be performed in the morning while second can be carried out in the

evening.

System Requirements: We use one Microsoft Kinect to capture person's live 3D

avatar along with Oculus Rift for immersive experience. The system is setup on a laptop

with su�cient processing power. Oculus Rift is also accompanied with corresponding sensors

and controllers.

Study Setup: Each patient is �rst shown the demo of the system during their visit

at Veterans A�airs (VA) Hospital, Dallax, Tx. They will be explained all the details about

using the system. They will be asked to participate in each game and analyze if they are

able to carry out all the tasks. After this session, if they are comfortable using the system

and willing to participate in the study, we will ask them to sign a consent form indicating

their willingness. If patient agrees to participate in the study, they will be asked to �ll out

McGill pain questionnaire (Melzack, 1975) to note down their current status of phantom

pain. Next, the system will be setup at their home, so that they can perform the intended

number of session everyday at their convenience. After completing one week, the patient

visits VA Hospital where they will be again asked to evaluate their pain by �lling out McGill

pain questionnaire (Melzack, 1975). Their digital diary of last one week will be analyzed

to �nd out if they had any di�culty using the system. They will be provided additional

guidance in using the system if needed. After completion of four weeks, the complete system

is recovered from patient's home and the patient is again asked to evaluate their pain and

overall experience during the study.

Current Status of Patient Study: The patient study is currently in progress. As

of now, there are two patients participating in the study. We anticipate to complete the
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study in a span of one year. The elongated study duration is required mainly because of the

following reasons:

• Each patient needs to participate in the study for a duration of 4 weeks. Based on the

progress, the patient may be asked to participate in a possible follow up after that.

• Recruiting patients for the study is challenging; mainly due to the lack of awareness

about technology and willingness.

• Patients may drop out during the study or can not participate due to other health

conditions.

• Patients may have other commitments or personal tasks that may not allow them to

participate continuously in the study.
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PART III

AUTHENTICATION FOR SECURE USAGE OF 3D DATA
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Along with various virtual and mixed reality applications, 3D content is also widely used

in pivotal areas such as crime scene reconstruction, self driving cars and 3D surveillance.

However, previous research task demonstrates that the 3D content can be easily manipu-

lated. Although, these manipulations are bene�cial for multi-platform rendering and virtual

therapies, they exposes vulnerability of 3D content. In backdrop of above mentioned sen-

sitive applications and vulnerability of 3D content, it becomes crucial to analyze the 3D

content before using it in decisive applications. Hence, in this work we explore the 3D

content authentication for secure usage of it.

Chapter 5: To evaluate the e�cacy of short range RGB-D cameras, we propose a novel

framework that attacks the live 3D depth data stream to manipulate the 3D surveillance

feed. We also develop a depth noise analysis based method to identify forgery attacks.

Chapter 6: For long range LiDAR sensors, we carried out a study that explores various

attacks on LiDAR data. We also developed two novel forensic algorithms to detect additive

attacks on LiDAR data based on inconsistency in point density and inconsistency in occlusion

e�ect.

Chapter 7: Focusing mainly on self-driving car application, we designed a ALERT

(Authentication, Localization and Estimation of Risks and Threats) that adds a secure layer

in the decision support used in Advanced Driver Assistance System (ADAS). It provides

e�cient and e�ective dynamic watermarking scheme for tamper-proo�ng 3D LiDAR data.

The enhanced security layer is facilitated with cross-modal authentication and risk factor

assessment.
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CHAPTER 5

EVALUATING THE EFFICACY OF RGB-D CAMERAS FOR

SURVEILLANCE
1

RGB-D cameras, such as Microsoft Kinect, have become very popular among computer vi-

sion researchers because of their ability to provide depth information, which reduces the

complexity of some key vision problems. Hence, these cameras are being used in numerous

applications, including surveillance, interactive advertising, etc. In particular, the depth

image data has been used to extract a human's signature in a scene and for re-identi�cation

of the human by signature matching (Barbosa et al., 2012; Vezzani et al., 2013). RGB-D

cameras produce the same depth images in a minimally illuminated scene or in the dark;

normal digital cameras can not be used in this scenario. This introduces a new area of

surveillance based on depth images. To the best of our knowledge, most research in using

RGB-D cameras for surveillance focus mainly on using the depth image for extracting infor-

mation on the human(s) present in the scene. Not much seems to have been done on the

vulnerabilities of the forensic tools. On this front of vulnerability analysis, previous research

(Milani et al., 2012) focuses mainly on many forensic and anti-forensics techniques for image

and video manipulation, with little explorations on depth or 3D stream manipulations.

In this paper, we start by presenting an anti-forensic 3D object stream manipulation

framework to capture and manipulate live RGB-D data streams to generate realistic im-

ages/videos showing individuals doing activities they did not actually perform. This anti-

forensic framework takes raw live or recorded RGB-D streams and a skeleton sequence as

input. The skeleton sequence can come from another live/recorded stream or one created

using animation software, like Autodesk Motionbuilder. The system then produces a real

1 c©2015 IEEE. Reprinted, with permission, from S. Raghuraman, K. Bahirat and B. Prabhakaran, �Eval-
uating the e�cacy of RGB-D cameras for surveillance,� 2015 IEEE International Conference on Multimedia
and Expo (ICME), Turin, 2015, pp. 1-6. DOI: 10.1109/ICME.2015.7177415
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Figure 5.1: The behavior manipulated rendering of a person.

time realistic sequence of 3D models, like a 3D reconstruction system would, but with the

actor in the live stream performing actions shown by the skeleton sequence. To produce

this stream with modi�ed behavior, the framework identi�es the actor and generates a 3D

reconstruction: it detects the skeleton pose in every frame, segments the depth image of

the actor, and then correspondingly deforms the 3D mesh in real time. The delivered result

gives the end user the impression that the actor on the screen is performing the activity (see

Figure 5.1). (This anti-forensic framework can also introduce human(s) into a scene where

there were no humans). We then conduct a user study to visually inspect the manipulated

depth, color and 3D video streams and check whether humans are able to identify/recognize

the manipulations, just as security personnel would do. This study, using vision and graphics

researchers, shows that it is indeed di�cult for humans to detect the manipulations.

Next, we investigate forensic approaches for their ability to detect the manipulations. We

particularly focus on depth image streams as various approaches suggest the use of RGB-
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D cameras for multi-attribute people in re-identi�cation in surveillance (Barbosa et al.,

2012; Vezzani et al., 2013). We use block-based depth noise evaluation approach to detect

manipulations in the depth stream. The results show that inter frame noise can be a key

factor in identifying certain types of depth image forgery.

Related Work: Our framework uses the depth and color stream, to produce manipu-

lated depth, color and 3D streams. Segmentation plays a vital role in the generation of these

streams. Segmentation is a widely researched topic in both computer vision and graphics.

3D methods for segmentation (Chen et al., 2009) that rely on distances, curvature, graph

based cuts etc. are slow and inaccurate for human body segmentation. Methods speci�c for

human body segmentation (Ladicky et al., 2013) rely on pixel wise classi�ers or pose �tting

(Huang et al., 2013) resulting in highly computational and non real time results. (Shotton

et al., 2013) uses a highly optimized region based random forest to provide highly accu-

rate skeletons using depth data. Region growing based segmentation methods are very fast

(Adams and Bischof, 1994) and accurate depending on the boundary condition. Our method

uses a combination of pose and region growing to achieve pixel wise real time human body

segmentation.

Many methods have been proposed for generating and detecting forgery in color im-

ages/videos.(Farid, 2009; Milani et al., 2012). While anti-forensic methods focus on fooling

a speci�c forensic algorithm, to the best of our knowledge no methods have been proposed

to generate such realistic forged videos(Milani et al., 2012). Since we use depth streams, the

focus is mainly on pixel based techniques that study noise and neighborhood information to

detect forgery (Fridrich et al., 2003; Popescu and Farid, 2004).

5.1 Anti-Forensic Framework

The anti-forensic framework generates two types of forgeries. Type I forged streams place

humans extracted from the real world with complex background and positions them in other
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Figure 5.2: The various aspects of anti-forensic framework to generate behavior manipulated
streams.

complex scenes. Type II streams, not only extract the person, but also manipulates the

behavior of the person before placing them in other scenes. Both of these forgeries are made

possible due to accurate segmentation of the person and skeletal animation.

To generate the forged information, color, depth and skeletal streams of the Kinect are

used. As shown in Figure 5.2, the raw values of the depth and skeleton are combined together

to get the segmented depth image, with each part of the body identi�ed. At this point the

depth image only contains the person. A 3D mesh is generated using this depth image and

the color image is used to add texture to this mesh. Since the depth image was already

segmented, the new mesh retains the segmentation information.

The segmented mesh is then deformed using a new skeleton from a di�erent activity.

The deformed mesh is rendered in 3D to generate the processed 3D stream. To generate

the color and depth streams, the vertices of the mesh are back projected from 3D to 2D

and combined with a background depth and color image. Each frame in the input stream

is processed using the same procedure generating a constant manipulated Type II stream.

Type I stream is generated by directly using the segmented mesh. The later sections discuss

the various steps in detail.
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Figure 5.3: The various stages in the segmentation process � (from left to right) the depth
image is �ltered to extract the person, then edges are estimated, skeleton is overlaid on
the edge image, segments are then identi�ed by growing from the seed points on the joint,
reaching the �nal result.

5.1.1 Real-time Segmentation

Accurately identifying and estimating the extent of various parts of the body is essential

in generating good quality animation. The goal of segmentation is to accurately tag each

vertex of the body to its corresponding bone, such that any motion of the bone would result

in a proportional change in the position of the vertex. A region growing based method is

used to segment the depth image accurately and quickly. Various steps involved are shown

in Figure 5.3 and described below:

Depth �lter is applied to extract the region where the person might be present. Depth

�lter performs similarly to a background mask and allows the generation of depth bounds

for the foreground. This method eliminates most of the background and unrelated objects

from the scene.

Contour detection uses a canny edge detector on the depth image to identify the

silhouette of the person. Depending on the noise levels of the depth image, some extra

contours outside the body can also be detected as shown in Figure 5.3.

Skeleton identi�cation is performed using a real time, highly accurate depth image

based approach (Shotton et al., 2013) and is available via the Kinect SDK. Since only a single

depth image is used for the skeleton identi�cation, occlusion is highly likely and results in
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Figure 5.4: The e�ect of number of seeds points on the segmentation, from left to right the
skeleton is misaligned a little, using a single seed point at the middle of the joint results in
bad segmentation and using the multiple seeds �x gives optimal segmentation.

faulty skeletons. The method uses a depth image descriptor based random forest to classify

and tag skeletal joints, sometimes leading to misaligned bones as shown in Figure 5.4.

Region growing is then used to perform pixel level segmentation of the image. Each

pixel falling on the line between the bone joints is used as the seed point. Using the largest

number of seed points ensures higher accuracy by ensuring a better coverage. The pixels

neighboring the seed point are assigned the same segment tag as the seed point. The prop-

agation of the tag is continued until either a contour pixel is reached or it reaches a pixel

that is already tagged to a bone segment with shorter distance. This procedure is continued

till all the outward paths from the seed points have been exhausted. The contour condition

is then relaxed and all the unsegmented inner pixels are then assigned a segment using the

shortest distance to the bone. After this procedure, all pixels not connected to the person

remain unsegmented and are eliminated. The region growing method not only segments the

person but also eliminates noisy pixels, leading to a clean extraction of the person.

5.1.2 Behavior Manipulation

Computer animation methods are used to manipulate the behavior of the person in the scene.

The color and depth image are converted into a point cloud using the extrinsic parameters
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Figure 5.5: Deformed meshes generated without using segmentation information are on the
left, and with segmentation information on the right.

of the cameras. To map the texture to the points, the mapping between the color and depth

image is also retained.

Mesh generation exploits the inherent structure in the depth image to quickly trian-

gulate and produce a mesh. Comparison methods proposed in (Pajarola et al., 2003) are

used to identify and connect neighboring vertices. Since the mesh needs to be transformed

for di�erent body poses, the direct application method may give bad results. Consequently,

the meshing method was modi�ed to not only consider depth and spatial neighborhood, but

also the segmentation information. Only those vertices from segments that are adjacent to

each other are allowed to be part of a triangle. Meshes generated using this method have

fewer overlapping triangles which leads to a clean skeletal animation, as shown in Figure 5.5.

Skeletal animation is performed on the segmented model using rigid body deformation.

The real time streaming deformation technique described in (Raghuraman et al., 2013b) is

used to deform the model. In this method, each joint is represented by a control point and

a representative point. Control point is the point around which the rotation of the joint

happens. Spherical representation is used for all the vertices in the segment centered around

the control point. The angular changes of the skeleton are �rst applied to the skeleton

corresponding to the segmented model. Since the skeleton is generated every time for each

frame using �tting, the size of the skeleton changes between frames. Due to this, all changes
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are executed on the same skeleton. The angles corresponding to each vertex, in the spherical

representation, are then transformed by the same angular deviation as the representative

point. This procedure is repeated for each new skeleton or mesh to generate the 3D object

stream.

Manipulated color and depth images are generated from the 3D mesh using a point

cloud representation. The 3D point cloud is generated by representing the vertices of the

mesh as 3D points. The original mesh that is constructed is dense, having a large number of

vertices thereby yielding a fairly dense point cloud. The images are generated by projecting

each point in the point cloud to a point on a 2D plane using the Intrinsic parameter matrix

of the camera. Simultaneously, a color image, of same resolution as that of depth image,

is generated by assigning color values of a 3D point in the colored point cloud to its corre-

sponding 2D point. Depth images and color images, generated in this manner, are generally

noisy as some points on the 3D point cloud may not have direct corresponding points in the

2D plane. As a result, there might be holes in the depth and color images. To overcome this

issue, we interpolate these values with its 4-connected neighbors, generating seamless depth

and color images. The majority of artifacts in both depth and color images are eliminated

using the interpolation as seen in Figure 5.6. Type I depth images are generated using the

original 3D mesh, and Type II are generated after applying the deformation using a new

skeletal pose.

5.2 Evaluation

To study the quality of forged streams generated by the framework, both automatic forensic

methods and user study were used. All the data was captured using the new Kinect V2

sensor and was processed using a 3.4GHz Intel CPU. The color images were captured at

1080p and depth images had a resolution of 512x424. The entire processing for generating a

Type II forged stream took about 20ms. The number of seed points does not play any role
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Figure 5.6: Altered color image generated without interpolation on top and with interpola-
tion on bottom.

in the time taken by the segmentation algorithm. The reduction in number of seed points

can have an adverse e�ect on the accuracy of the segmentation as shown in Figure 5.4.

Using standard distance based techniques, like Voronoi diagrams, for estimating segments

as described in (Raghuraman et al., 2013b), result in bad segmentation when the bones are

close to each other as shown in Figure 5.7.

Six di�erent people were captured performing di�erent activities such as waving, raising

left arm, raising right arm and raising both arms in three di�erent backgrounds. All actions

were performed with the subjects facing the camera and special care was taken to ensure

that the actions lie on the camera plane. Using this captured raw data, we created di�erent

sets of Type I and Type II forged depth, color and 3D rendering sequences. The automatic

method described below used all the depth samples, whereas a small percentage of samples

was selected for the user study.
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Figure 5.7: The segmentation done using Voronoi on the left and edge based method on the
right, notice the head region.

5.2.1 Forensic Evaluation

RGB-D cameras like Kinect generate noisy depth data. The noise levels are so high that

they can be easily noticed by looking at consecutive depth frames. If the forger uses a single

depth frame for the background, then the sequence generated will not exhibit this noise

characteristic. Unlike color images, insertions into depth images do not in�uence the pixel

neighborhood, but it reduces the distortion artifact present around the edges of the depth

images. Insertions into the background do not cause such noisy artifacts and can also be

detected. Based on these observations a noise analysis based method was developed to detect

forgery.

To analyze the noise variation in original and forged depth images, we de�ne two noise

measures: intra frame noise IFN and inter frame noise ÎFN . First a given frame It at

instance t is divided into a set of NR grid regions R. Then IFNt = |
∑NR

n=1 |(1−σ)It(n)|/NR|,

where It(n) is nth region of image grid and σ is a gaussian smoothing �lter of size 5X5. The

inter noise between the frames t and t + 1 is given by ÎFNt = 2|IFNt − IFNt+1|/(IFNt +

IFNt+1). Using ÎFNt, type I and type II depth image forgeries using a static background

can be detected as veri�ed by our experiments.

Experiments were performed on sequences of Type I and Type II forged images. We

computed intra frame noise for each frame and inter frame noise for each pair of consecutive
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Figure 5.8: Noise analysis for original depth images, Type I and Type II forged depth images
with single image and multiple images as background in all frames.

frames. Following plots assist in understanding the estimated noise ranges in all the cases.

Figure 5.8 shows the plot of variation of normalized inter frame noise across a number of

frames for three di�erent datasets. From the plots, it is very clear that normalized inter

frame noise in the original is very high compared to that in forged depth images; Hence

it can be used as a distinguishing factor between original depth images and forged depth

images.

In the second set of experiments, we generate a sequence of Type I and Type II forged

images by inserting the depth image region corresponding to a person into a sequence of

depth images of a background. We repeat the above experiments on the new dataset. From

the noise values obtained in this case, it is clear that the simple noise based depth image

forgery detection may fail to distinguish between the original depth image and the back-

projected depth image. As shown in Figure 5.8, the obtained noise plots illustrate that it is

di�cult to distinguish between the original and back-projected depth images based on inter
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frame noise as the noise level in both cases is similar. As future work, we will explore other

approaches for detecting forgeries in depth images.

5.2.2 User Study

A panel of 6 graduate student researchers in computer vision and graphics were used to

evaluate the results. Each student was given a set of images and video sequences of variable

lengths. They had to identify if the images/videos are real or manipulated or undecidable,

and also explain what identifying feature they used to make the distinction. In all, more

than 100 images and 20 videos were used to evaluate the system. A few similar images

and videos were provided to the participants to give them an idea of the quality. All the

participants were given the same set of images/videos for evaluation. The data consisted of

40 depth(10 real, 15 Type I, 15 Type II), color 40 depth (10 real, 20 Type I, 10 Type II) and

20 3D rendered images (10 real, 10 Type II). Two videos each of real, Type I and Type II of

depth, color and 3D were provided, along with 4 low resolution(240x160) color videos. The

low resolution videos were provided to check on the e�ect of video quality on identi�cation.

Live evaluations were carried out by switching between live camera and manipulated camera

feeds in real time.

The participants were able to identify both Type I and Type II forged high resolution

color videos. Some of the forged color images were also identi�ed correctly. The participants

mostly studied the edges of the person in the images to detect forgery in both the situations.

While evaluating the low resolution color videos, all the participants were unable to identify

the di�erence 76% of the time. The low resolution encoding of the videos introduces artifacts

in the videos, which was most often the confusing aspect to the participants. The higher

resolution data is easier to identify, mainly due to the noise from the depth information

getting propagated onto the color image segmentation of the person. With newer and better

capture technology, these artifacts will disappear and make it much harder to identify forgery

visually in color streams.
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Both depth and 3D rendering proved to be very challenging tasks for the participants.

With the noisy nature of the edges in the original data for both depth and 3D, there was no

easy visual way for the participants to identify forgery. Similar to the automated method for

identi�cation, when the participants were given depth video in a single background depth

frame, everyone could identify it as forged. However, with a sequence of background frames,

con�dence and accuracy of classi�cation dropped signi�cantly. 3D rendered Type II im-

ages/videos generated with no occlusion were always classi�ed as original. Some were able

to identify the forgeries after careful examination of the image for stretching and texture

artifacts, due to the striped clothing of the person in the video. Since the other videos

and images had plain clothed people with very little texture information, participants were

unable to detect the forgery with con�dence.

5.3 Discussion

The anti-forensic framework works very e�ectively while generating 3D renderings and depth

streams. If only depth streams are used to process and identify like in (Barbosa et al., 2012;

Vezzani et al., 2013), then it is easily possible to fool the systems, giving false results. Much

more robust methods based on the characteristics of the noise around the edges need to be

developed. As shown in the evaluation section, detection methods using just noise based

parameters can be easily overcome.

Color images/videos are easily identi�able mainly due to the crop/add nature of the

insertion into the background. Using image blending for insertion will avoid sharp edgy

additions, and may result in even lower detection rate as far as users are concerned. Forgery

in low resolution videos, similar to the ones generated in modern surveillance systems, is

already very hard to detect for users.

In the case of 3D renderings with the constraint of no occlusion, it is clear that streams

of information can be manipulated without the knowledge of the captured individual. It
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was possible to identify the altered stream in two scenarios � (a) when the motion induced

was on a di�erent plane, resulting in occluded or extended body parts, and (b) when the

skeleton was not identi�ed correctly for certain poses. Both the scenarios involve minor

issues that can be recti�ed by careful frame selection. Since this study deals with real time

stream manipulation, frame selection was not considered. Almost all user study participants

felt that the only way to identify the di�erence is to look at the overall shape of the body

and compare it to the actual person. Despite being intuitive, this method produced a lot

of true negatives. Some even tried to do shadow analysis, but were inconclusive since the

shadow is generated virtually. Many vision problems are easily solved by people, but the

problem of identifying counterfeit streams of 3D information is very hard to solve even for

humans. Observing anomalies of the framework remains the only way to identify manipulated

streams. As technology improves, artifacts will become fewer and sparser, resulting in an

indistinguishable stream.
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CHAPTER 6

A STUDY ON LIDAR DATA FORENSICS
1

6.1 Introduction

With recent advances in the depth sensing technology, it has become possible to quickly

generate a complete 3D reconstruction of an object or an entire scene. Various depth sensors

such as LiDAR are widely available in the market which can be used to scan indoor and

outdoor scenes. Due to low cost, millimeter precision and ease of operation, the 3D scanned

data obtained using the LiDAR sensors �nds application in diverse areas (B., 2014; Kashani

et al., 2014; Chen et al., 2013). Benedek (B., 2014) demonstrates the capability of rotating

multi-beam LiDAR as a future surveillance camera for a real-time 3D people surveillance.

Various studies performed (Kashani et al., 2014; Chen et al., 2013) encourage to use LiDAR

data for damage detection in case of large deformed structures such as bridges, roofs. 3D

laser scanning has become a powerful tool to collect the crime scene and civil accident data

and bring it to the courtroom for legal investigation or insurance settlement (W. et al.,

2013; Francis, 2006; Jones, 2011). This technology allows for a collection of 3D data of the

scene where the civil or criminal incident took place and to create the same scene graph-

ically in a courtroom. It also allows permanent 3D archive of a scene involved in judicial

proceedings which can be referred in future as well. Further, LiDAR has been successfully

employed in autonomous automated vehicles such as Google Driverless Car (Guizzo, 2011),

Stanford Shelley (Levinson et al., 2011), Annieway (Stiller and Ziegler, 2012) for detecting

the obstacles and re-planning the mission/path accordingly.

In this context, the genuineness of the 3D LiDAR data is a critical factor which further

motivates to determine the possibility of forgery attacks on it. Any attack that manipulates

1 c©2017 IEEE. Reprinted, with permission, from K. Bahirat and B. Prabhakaran, �A study on lidar data
forensics,� 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, 2017, pp.
679-684. DOI: 10.1109/ICME.2017.8019395
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Figure 6.1: Original LiDAR scan (left) and forged LiDAR scan (right).

the LiDAR data can be very harmful in the above applications. For example, in the case of

autonomous automated vehicles, a false indication of an obstacle can cause a wrong driving

decision and can potentially lead to an accident. Similarly, adding an object such as a fake

gun or weapon in crime scene may result in incorrect judgment. Hence, it is important to

address following two questions:

• Is the LiDAR data vulnerable to forgery attacks?

• Is it possible to detect such forgery attacks on the LiDAR data if there exists any?

In this paper, we address these questions as follows:

• We identify three possible approaches for attacks on the LiDAR data that do not need

additional commodity hardware. Experimental results show the successful blinding

due to proposed attacks. Figure 6.12 shows original and forged LiDAR data.

• We also present two novel algorithms for detecting such forgeries in LiDAR data and

provide a detailed performance analysis of the proposed algorithms in case of di�erent

types of attacks.

2Note, all the images in this paper are better visualized in color.
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Principal Contributions: This paper provides a detailed study of possible forgery

attacks on LiDAR data. It outlines two novel forensic approaches for LiDAR data (As per

our knowledge, this is the �rst attempt to address LiDAR forensics). Though the forensic

algorithms are e�ective for speci�c types of forgeries, a forensic approach handling the wide

spectrum of forgeries is necessitated. This work creates awareness about avoiding the blind

usage of LiDAR data in critical applications and motivates to explore forensic of LiDAR

data as an emerging research area.

6.2 Related Work

Forgery detection in images/videos has been a very well researched area. Two excellent

surveys (Farid, 2009; Milani et al., 2012) provide a list of current state-of-the-art methods

in image/video forensics and highlight their features. On the other hand, forensics for 3D

data is a relatively less explored area. As per our knowledge, no forensic method has been

proposed to detect forgery in 3D data except the method proposed in (Raghuraman et al.,

2015b). Raghuraman et al. (Raghuraman et al., 2015b) propose an anti-forensic framework

to capture and manipulate the live RGB-D data stream to create a realistic illusion of an

individual performing the activities which they did not actually do. Authors also suggest

a preliminary noise analysis based forgery detection for depth images which is incapable of

detecting forgeries in all cases and not suitable for LiDAR data.

In literature (Qi, Dong-qing, and Da-fang, Qi et al.; Medimegh et al., 2015), a verity

of methods based on digital watermarking are proposed for 3D models. Most of these

methods are designed for polygonal meshes that have two categories: robust and fragile

methods. Robust methods (Wang et al., 2012; Jing et al., 2014) are constructed with the aim

of providing ownership protection and distribution channel tracking. While fragile methods

(Yeo and Yeung, 1999a; Lin et al., 2005) are designed for authentication applications. As

these methods require the connectivity information, they are not suitable for LiDAR data.
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Most of the robust watermarking methods for 3D point cloud (Agarwal and Prabhakaran,

2009; Qi, Dong-qing, and Da-fang, Qi et al.) providing copyright protection involve expensive

clustering based techniques or need to �nd ordering in points which make them inapplicable

to authenticate LiDAR data quickly.

The resilience of a LiDAR against attacks has been studied with respect to the security

analysis of an automotive system (Petit et al., 2015; Petit and Shladover, 2015). Petit et.al.

suggest a use of a smart surface which is absorbent or re�ective in nature to manipulate the

data sensed by the LiDAR in (Petit and Shladover, 2015). Relaying and spoo�ng attacks on

LiDAR sensor with the aim of generating fake echoes and fake objects have been proposed in

(Petit et al., 2015). In �relaying� attack, the original signal sent from the LiDAR is relayed

from the other position to create fake echoes with additional two transceivers. A �spoo�ng�

attack is made by sending a counterfeit pulse during a listening interval of 1.44 microseconds

of LiDAR to create an illusion of point being further away. Most of the work aim at studying

possible attacks on the LiDAR sensor and hence require additional hardware.

We di�erentiate from the work mentioned above by developing attacks on the 3D LiDAR

data that do not require additional commodity hardware.

6.3 Background on LiDAR data

To analyze the possible threats to LiDAR data, we need to understand the structure of the

LiDAR data and the nature of applications employing it.

LiDAR Data: LiDAR is a depth-sensing technology that measures distance by project-

ing a laser beam on the target. Generally, LiDAR scanners use the time of �ight approach or

phase di�erence approach for computing the distance. These scanners typically have a larger

range, and the accuracy of the system varies between 3 to 8mm (W. et al., 2013). Typically

the data obtained using LiDAR scanner is stored in the form of the list of points repre-
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sented using their X, Y and Z coordinates (also termed as �unstructured 3D point cloud�).

Advanced sensors also provide a color information associated with each point.

Classi�cation of LiDAR applications: Applications using LiDAR data can be broadly

classi�ed into two categories.

• Visualization Applications consist of applications where data is directly consumed by

a human user through visualization; for example, crime scene reconstruction, damage

detection. In such applications, the LiDAR data is processed o�ine to generate a

surface reconstruction from the 3D point cloud data for visualization purpose.

• Automated Decision Systems include applications such as automotive vehicles where

the LiDAR data is processed by an algorithm instead of a human user. In this case,

the 3D point cloud data is used by an algorithm to determine a path or to make a

decision for navigating the vehicle.

Based on the applications, the possible attacks on the LiDAR data have di�erent levels of

complexity in terms of time taken and active involvement of attacker which is illustrated

later in Section 6.4.5.

6.4 Anti-forensic Framework

To evaluate the vulnerability of the LiDAR data, we propose a novel anti-forensic framework

that utilizes basic computer graphic techniques to create forged LiDAR data. Adopting the

attacker model used in (Petit et al., 2015), we assume that the attacker has limited resources

in terms of the type of LiDAR sensors and processing power and has the intention to disrupt

the data unnoticeably. The proposed anti-forensic framework is designed to create three

types of attacks on the 3D LiDAR data. Figure 6.2 shows the pipeline for di�erent types of

attacks on LiDAR data.
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Figure 6.2: Pipeline for di�erent types of attacks on 3D LiDAR data.

6.4.1 Additive attacks

In additive approaches, an object is inserted and placed in the original scene such that

the viewer or an automotive system perceives the object being actually present in the scene.

Acquiring the inspiration from the copy-paste forgery in digital images (Fridrich et al., 2003),

we design two additive approaches for attacking LiDAR data as follows:

Copy-Transform-Paste (CTP)

Similar to the copy-paste forgery attacks on the image, to add a hoax object in a scene,

one can copy the set of points corresponding to the object and add it to the list of points

corresponding to the scene. But this preliminary approach may not create an impactful

illusion due to following factors:
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• Due to the limited resource availability to the attacker, we can assume, without the

loss of generality, that the attacker may have a di�erent sensor than the one used for

scanning the scene. Two di�erent sensors may utilize di�erent metric for measurement.

Hence, a range of coordinate values of hoax object may be signi�cantly di�erent than

that of the scene.

• 3D coordinates of the points representing the object are de�ned with respect to it's

local coordinate system which may be di�erent from that of sensor used for scanning

the scene.

• The orientation of the local coordinate system of the object may di�er from its orien-

tation in target scene based on its placement.

To handle the issues as mentioned earlier, we incorporate an additional step of �Transform�

before pasting the points of a forged object into the scene. It consists of following transfor-

mations:

Scaling: Scaling helps to resolve the issue occurring due to a di�erence in metric used

by di�erent sensors for measurement. The scaling factor can be computed based on the

knowledge of the metric employed by each sensor or based on the range of values for the

coordinate of the set of points representing the scene and object.

Translation: The points representing the object are �rst required to be translated into

the local coordinate system of the scene followed by a translation needed to place it in

the correct position in the scene. The cumulative amount of required translation t can be

computed as t = Pobject − (oscene − oobject), where oscene and oobject are centroids of the scene

and the object respectively and Pobject is the position of the object in the scene.

Rotation: The object needs to be rotated as per the required orientation of the object

in the scene. It can be achieved by multiplying each point of the object with the rotation

matrix. Note that, rotation required is decided by the attacker based on how the object is

supposed to be placed.
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Copy-Re-sample-Transform-Paste (CRTP)

The second attack is designed based on the fact that two depth sensors may have di�erent

resolution based on underneath hardware. In Copy-Re-sample-Transform-Paste forgery, we

add one more step of �Re-sampling� before applying �Transform� step. In this step, the forged

object is �re-sampled� i.e., it is either downsampled or upsampled to match the resolution

of the sensor used to scan the scene. Downsampling can be achieved by employing any of

the point cloud sampling methods such as uniform sampling or Poisson disk sampling (Hou

et al., 2015). Upsampling can be accomplished by performing interpolation of the current

samples. Next, we de�ne the minimum inter-point distance (MID) which is Euclidean

distance between the point, and it's nearest neighboring point. The factor of re-sampling is

de�ned as:γ = MIDo

MIDs
, whereMIDo andMIDs areMID between points of object and points

of scene respectively. This de�nition of the re-sampling factor allows removing inconsistency

occurring in sampling density due to insertion of a new object.

6.4.2 Subtractive Approaches

In subtractive forgery, to conceal the presence of an object in the original scene, the set of

points representing the object are removed from the LiDAR data. Due to the unstructured

nature of LiDAR data, identifying the points belonging to an object is a nontrivial task.

Identi�cation of the objects can be made manually by selecting a bounding cube around it

with the help of visualization toolkit or by performing a point cloud segmentation using the

method described in (Zheng et al., 2013). Segmentation provides the labeling for each object

in the scene. Hence, points having the same label can be eliminated from the original scene

to perform subtractive forgeries. On the other hand, given the spread of a bounding cube,

an algorithm determines the set of points inside the bounding cube and removes them. It

should be noted that the segmentation will signi�cantly increase the complexity of attack in

terms of the time and e�orts needed.
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6.4.3 Deforming Approaches

In deforming approaches, the point representing the portion of the object are displaced from

their original position. This type of forgery can be used to create a fake dent on the surface

of the object. The identi�cation of the object to be deformed can be performed using either

manual selection of bounding cube or the point cloud segmentation. Points can be displaced

in a random fashion to achieve the deformation. As deforming attacks mainly target the

data used in the visualization based applications and complexity involved in identifying the

portion of an object to be deformed make this attack more complicated.

6.4.4 System Overview

The proposed system allows user to select the attack type. If the additive attack is selected,

the user needs to provide a 3D model of the hoax object, position and orientation of the

object in the scene. Based on the required position and orientation, the parameters needed

for �Transform� step such as rotation matrix and translation vectors are computed only

once. Further, if a user selects to re-sample the data, the factor of re-sampling is obtained as

suggested in the Section 6.4.1. To compute the re-sampling factor, the data in the vicinity

of the targeted location of the hoax object is obtained using the rotation and translation.

For subtractive and deforming attacks, the user needs to provide a bounding box indicating

the targeted area and deformation scale. For example, the user can decide to remove any

object at a distance of 10 meters in front of the car with length, width, and height of 2, 3

and 5 meters respectively. Using these input parameters the system can generate a selected

attack.

6.4.5 Complexity of Attacks

Above mentioned attacks di�er in complexity based on the type of application utilizing

LiDAR data. For example, additive attack on LiDAR data for the autonomous vehicle will
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Figure 6.3: Front view (left) and top view (right) of the forged scene illustrating variation
in sampling density based on distance from sensor.

be easier to implement compared to the additive attack on the LiDAR data used for crime

scene reconstruction. In the case of crime scene reconstruction, extra care must be taken

while placing the forged object in the scene as the �nal reconstruction is visualized by a

human user. To create an impactful forgery, orientation, and placement of the object should

maintain the law of physics such that scene appears to be natural. On the other hand, in the

case of an automotive vehicle, a mere presence of hoax object alters the decision of algorithm

and does not require intensive human intervention while performing an attack. In this paper,

we mainly consider attacks on the LiDAR data used for applications where data is used by

algorithms and not by the human user.

6.5 Forensic Evaluation

The detailed analysis of the possible attacks on LiDAR data motivates to design an algorithm

to validate LiDAR data. We now describe two preliminary forensic algorithms for additive

attacks. Due to the page limit, we restrict ourselves to forensic evaluation of additive attacks

only.
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Figure 6.4: Pipeline of IsOcclusionConsistent (forensic algorithm II). Input to the algorithm
IsOcclusionConsistent is the forged point cloud obtained by adding Stanford Bunny scan
into the one of the outdoor scene scanned using LiDAR.

6.5.1 Density Variation Based Forensic Algorithm I

LiDAR sensors provide a discretization of an object surface. As resolution varies across

sensors, the discrete point clouds of an object obtained using di�erent sensors will have

di�erent sampling densities. Further, due to perspective projection based design of depth

sensors, the sampling density of an object also depends on its distance from the sensor. For

example, objects near the sensor will have a higher sampling density compare to objects

away from the sensor. Moreover, the objects at the same distance from the sensors must

have approximately similar sampling density.

Assuming that the additive attacke is created using di�erent sensors with di�erent res-

olution, the forged object will have a di�erent sampling density compare to another object

in the scene at the same distance from a sensor as that of the forged object. Hence, if we

compute an MID (Minimum Inter-point Distance) at di�erent values of z (value of z repre-

sents the distance from the sensor), it will increase as we move away from the sensor if the

data is unaltered. On the other hand, if suddenly there is a continual rise or drop in MID

for the range of depth values, then we can consider it as forged data. Figure 6.3 illustrates

the sudden variation in the MID in the case of forged scene. It can be seen that inter-point

distance corresponding to bunny is very high compared to other parts of the scene. Based on

these observations, we formulate the algorithm IsDensityConsistent that checks the consis-
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tency of sampling density. Here, P is the point cloud of original scene, d(p, p′) is Euclidean

distance between p and p′ and z represents Z-coordinate of p.

Algorithm 1 IsDensityConsistent

1: for each point p ∈ P do
2: Compute nearest neighbor p′

3: Compute mind(p) = d(p, p′)
4: end for
5: Sort points in the increasing order of z values.
6: Quantize z values to set of discrete levels Z
7: for each discrete level z1 ∈ Z do
8: Consider set of point Q at distance z1
9: Compute MINipd(z1) = mean(mind(p)) for all p ∈ Q
10: end for
11: Compute Moving average of the signal MINipd(z)
12: if sudden rise or the fall in the averaged MINipd(z) then
13: Declare �Forgery Detected�
14: end if

6.5.2 Multi-projection Based Forensic Algorithm II

Generally, due to the occlusion e�ect, objects which are behind the object closer to the

LiDAR sensor may not be entirely or partially visible to the sensor. It can be observed from

Figure 6.4 that the portion of the taller building is occluded by the front building and no

points are measured by the LiDAR sensor in the occluded region. On the contrary, when the

hoax object is inserted into the scene with additive attacks, the forged data will not exhibit

such occlusion e�ect. Hence, points behind the hoax object still exist causing inconsistency

in the occlusion e�ect characterising the scanned data.

Inspired by this idea, we propose a multi-projection based forensic algorithm, IsOcclu-

sionConsistent (also referred as II) that determines the validity of the 3D LiDAR data by

checking congruity in the occlusion e�ect. Figure 6.4 illustrates the pipeline of the proposed

forensic algorithm II that includes following steps:
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Equi-rectangular Projection: For the unaltered LiDAR data, when all 3D points are

projected on the 2D image plane, each point will be mapped to a distinct image pixel based

on the selected image resolution. On the other hand, when a hoax object is inserted into the

scene, there might be multiple points getting mapped to a single image pixel. We leverage

this fact to determine if there is a point behind the current point i.e., to determine if there

is any inconsistency in the occlusion e�ect.

To obtain the projection of the scanned 3D data on a 2D image plane, we �rst convert

each 3D point (x, y, z) in the Cartesian co-ordinate system to the corresponding (r, θ, φ) in

the spherical co-ordinate system as follows:

r =
√
x2 + y2 + z2; θ = arctan(

y

x
);φ = arccos(

z

r
) (6.1)

where r, θ and φ are radial, azimuth and zenith coordinates.

Next, we apply a equirectangular projection (Houshiar et al., 2015) that relate the 2D

image coordinates (i, j) linearly to θ and φ i.e., i = θ and j = φ. This projection supports

360◦in the horizontal and 180◦in the vertical �eld of view. The resolution of the image is

determined by the vertical and horizontal angle resolution of the LiDAR sensor. Figure 6.4

shows the depth map generated using the equi-rectangular projection.

Multi-projection Detection: To determine if multiple points are getting mapped to

a single image pixel, we maintain a data structure, called as �Mask�. If the 2D projection

of the current point p is already occupied by another point q, we compute the distance

between these point along the projection line as |rp − rq| and accumulate it in the �Mask� at

their common 2D projection (i, j). The mask obtained using the proposed multi-projection

detection is shown in the Figure 6.4. It can be seen that the bunny shape region has higher

accumulation density. Therefore, there exist multiple points behind the bunny in the scanned

data evidences the forgery.

Forged Region Detection: Though, the �Mask� obtained during the multi-projection

detection captures the forgery, it also consists of few artifacts due to a slight mismatch
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between the image resolution and resolution of the LiDAR sensor used for scanning as well

as the resolution of the forged object. The top, right box in the mask shown in Figure 6.4

describes such noisy points. While, bottom-left box shows the sparse bunny image. If we

estimate connected components in the mask, the results may not accurately represent the

forged region.

To annihilate above mentioned issues, we apply post-processing to �Mask� that includes

morphological closing and median �ltering followed by connected component estimation.

The presence of a connected component with the area greater than the empirically de�ned

threshold Ath is considered as a forgery.

6.6 Experimental Results

In this section, we demonstrate the e�ectiveness and e�ciency of the proposed additive

attacks and the proposed forensic evaluation algorithm. All the attacks and algorithm are

implemented in MATLAB and experiments are run on a CPU with Intel (R) Core (TM)

i7-5820K with 3.30GHz speed and 32GB internal RAM.

We utilize LiDAR scans provided in the Robotic 3D repository (Nüchter and Lingemann,

2010) along with Bunny and Dragon models provided in the Stanford Dataset as hoax objects.

Robotic 3D repository consists of both indoor and outdoor scenes which are scanned using

Riegl VS-400 and an Optris PI IR camera. For our experiments, we consider indoor scenes

which are taken at a residential house in Germany and outdoor scenes which are taken at

downtown Bremen. From this dataset, we randomly select 44 scenes which consist of 27

outdoor scenes and 17 indoor scenes. We create 42 CTP type forgeries by adding Bunny

and Dragon models in 13 di�erent outdoor scenes and 8 indoor scenes each. Next, we

create 24 CRTP types of forgeries by inserting re-sampled Bunny and Dragon models in 7

outdoor scenes and 5 indoor scenes. We also create 10 subtractive and deforming forgeries

by identifying the object using MATLAB visualization tool. Figures 6.5 and 6.7 show the
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visualizations of CTP, CRTP type forgeries and subtractive, deforming forgeries respectively

for few indoor and outdoor scenes. This exercise demonstrates that the LiDAR data can be

easily manipulated to deceive algorithms.

Next, we apply forensic algorithms IsDensityConsistent (I) and IsOcclusionConsistent

(II) to 44 original scans and 66 forged scans. For algorithm IsOcclusionConsistent, we used

0.06 resolution factor for both θ and φ based on angle resolution of Riegl VS-400. As the

forensic algorithms are designed focusing on additive attacks, we evaluate their performance

on CTP and CRTP type forgeries only. Tables 6.1, 6.2 enlist the performance of the proposed

forensic algorithms on the above mentioned dataset. It can be seen that the algorithm

IsDensityConsistent works well for the CTP type forgeries, but most of the CRTP type of

forgeries remain undetected. It can be observed from Figure 6.6 that, the MID increases

as the distance from the sensor increases for original data. But the insertion of the high-

density hoax object in the scene causes a sudden, persistent drop in it. Whereas re-sampling

the hoax object to match the sampling density in the original scene before inserting it into

the scene does not alter the MID distance and hence, remains undetected. On the other

hand, the algorithm IsOcclusionConsistent performs well for both CTP and CRTP types of

forgeries. As the algorithm IsOcclusionConsistent does not depend on the density, it even

detects CRTP types forgeries with signi�cantly high accuracy.

6.7 Discussion

Some observations made during the study include:

Implementation Complexity: Additive attacks are easy to implement as they only

require the forged objects and their required orientation and placement in the scene. On the

other hand, subtractive and deforming attacks need an additional understanding of the scene.

Though point cloud segmentation can be used as a tool to understand the scene and identify

the object of interest, it increases the complexity of the attack signi�cantly. Further, given
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(a) (b) (c)

(d) (e)

Figure 6.5: For LiDAR scan of the indoor scene 1 a) Original, b) CTP forged data, and c)
CRTP forged data; Indoor scene 2 d) Original, and e) subtractive forgery.

(a) (b) (c)

Figure 6.6: a) MINipd(z), b) Moving average of signal MINipd(z), and c) Abnormali-
ties/sudden changes in signal MINipd(z).
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Table 6.1: Performance of IsDensityConsistent and IsOcclusionConsistent on the experi-
mental dataset.

Outdoor

Scenes

Number of

Scenes
Detected as Original Detected as Forged

I II I II

Original 27 25 25 1 1

CTP 26 1 0 25 26

CRTP 14 13 1 1 13

Indoor

Scenes

Number of

Scenes
Detected as Original Detected as Forged

I II I II

Original 17 16 16 1 1

CTP 16 0 0 16 16

CRTP 10 9 0 1 10

Table 6.2: Classi�cation accuracies of IsDensityConsistent and IsOcclusionConsistent on the
experimental dataset.

Original CTP CRTP Overall

I II I II I II I II

Accuracy

(in %)
93.18 95.45 97.62 100.00 8.33 95.83 76.36 97.27

the required parameters for forgery attack, all types of forgeries can be created approximately

in less than 50 milliseconds.

E�ectiveness of Attacks: Visualization based applications of LiDAR data involve the

surface reconstruction from the raw LiDAR data using various meshing techniques. Hence,

the visual e�ect of forgery will also depend on the meshing technique used. In that case, more

rigorous user study is needed to evaluate the e�ectiveness of the attack. As we only focus

on applications that utilize raw 3D LiDAR data, the e�ectiveness of attack is determined

solely based on the possibility to perform it.

Limitations of the Forensic Approach: The proposed algorithm IsDensityConsisten

is e�ective in the case of CTP type of forgeries whereas the algorithm IsOcclusionConsisten
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(a) (b) (c)

(d) (e)

Figure 6.7: For LiDAR scan of the outdoor scene 1 a) Original, b) CTP forged data, and c)
CRTP forged data; Side view of d) Original, and e) Deforming Forgery.

is e�cient for both CTP and CRTP types of forgeries in LiDAR data obtained using a single

scan. But, if the LiDAR data is obtained by fusing multiple scans, these approaches may not

be useful for detecting forgery in such cases. More sophisticated forensic methods need to

be investigated to detect the extensive set of forgeries including subtractive and deforming

forgeries.

Fragile Watermarking: As described in Section 6.2, most of the existing watermarking

methods are inappropriate to authenticate LiDAR data. One of the future approaches can

be to design a real time fragile watermarking for LiDAR data.
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CHAPTER 7

ALERT: ADDING A SECURE LAYER IN DECISION SUPPORT FOR

ADVANCED DRIVER ASSISTANCE SYSTEM (ADAS)
1

7.1 Introduction

3D LiDAR (Light Imaging Detection and Ranging) sensors aid in sensing the environment

where the distance is measured by projecting a laser beam on the target. Generally, LiDAR

sensors use the time of �ight approach for depth computation and the scanned data is stored

as the list of points representing X, Y and Z coordinates (also termed as �unstructured 3D

point cloud�). These sensors are typically accompanied with a pair of stereo cameras for

obtaining the color information of the scene. LiDAR sensors outperform conventional color

cameras due to their infrared signal based work�ow which makes them useful at night time as

well as in adverse environmental conditions. Therefore, most autonomous cars are equipped

with LiDAR sensors.

However, considering the fatal crashes involving autonomous cars (McFarland, 2016,

2018) that occurred over a last couple of years, most of the self-driving car companies are

adopting the concept of �teleoperation� to keep a human in the loop. Aligned with this

concept, California State has recently amended the regulation for testing autonomous vehi-

cles that require a human remote operator to continuously supervise vehicle's performance

(State of California, 2018b) using a two-way communication link between a vehicle and the

remote operator (State of California, 2018a). One of the self-driving companies, Drive.ai

suggests that starting with one operator per vehicle, one tele-choice operator will eventually

be able to monitor multiple vehicles at the same time (Ackerman, 2018). In such a scenario,

1 c©2018 IEEE. Reprinted, with permission, from Kanchan Bahirat, Umang Shah, Alvaro A. Cardenas
and Balakrishnan Prabhakaran. 2018. �ALERT: Adding a Secure Layer in Decision Support for Advanced
Driver Assistance System (ADAS)�. In 2018 ACM Multimedia Conference(MM'18), October 22-26, 2018,
Seoul, Republic of Korea. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3240508.3241912
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Figure 7.1: Overall work�ow of the proposed ALERT framework.
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it becomes di�cult for a single operator to identify a forgery based on data consistency. Sim-

ilarly, various mixed initiative remote robot control systems (Sauer, 2011; Heger and Singh,

2006) are introduced where a human can remotely guide a robot to complete a certain task

without error.

In this context, as the data from a self-driving car or robot is communicated to a remote

operator over a network, it is vulnerable to various forgery attacks. For example, the attacker

may remove a vehicle in front of the self-driving car to create an illusion that there is no risk

in increasing the speed and may result in a potential accident. Recently, (Petit et al., 2015;

Petit and Shladover, 2015) showed that it is easy to stall a self-driving car just using simple

commodity hardware. Thus, it becomes crucial to authenticate the data before utilizing it

for decision making.

7.1.1 ALERT for ADAS

With this motivation, we propose a novel framework ALERT (Authentication, Localization,

and Estimation of Risks and Threats) that adds a secure layer in the decision support

systems used in Advanced Driver Assistance System (ADAS). Figure 7.1 describes an outline

of the ALERT framework. As most autonomous cars use stereo RGB camera along with

LiDAR, ALERT creates a dynamic watermark based on the stereo RGB data and employs

fragile watermarking for tamper-proo�ng the 3D LiDAR data. The forgery detection in the

proposed framework is a 2-fold setup that consists of a dynamic watermarking along with

a cross-modal authentication and localization. It �rst identi�es the attack by verifying the

extracted watermark. If tampering is detected, the second step is triggered to localize the

tampered region. ALERT also identi�es the type of attacks and determines the risk factor

associated with the data. While risk factor associated with an attack can be de�ned in

di�erent ways, the proposed formulation of the risk factor provides a holistic de�nition of the

risk or threats based on various aspects of attacks including spatial and temporal consistency.
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ALERT provides a complete set of information to ADAS to make a more informed decision.

Additionally, it can notify the tele-choice operator about the possible risk which is bene�cial

when one tele-choice operator is monitoring multiple vehicles. Experimental results show

the e�ectiveness of the ALERT framework in terms of: a) imperceptibility and e�ciency of

the proposed dynamic watermarking; b) overall execution time taken by various steps in the

framework and c) accuracy of forgery detection based on the discrepancy in the watermark

and cross-modal authentication and localization.

Assumptions: As described in Figure 7.1, we assume that the stereo data is secured

with traditional watermarking techniques (Doerr and Dugelay, 2003; Liu and Zhao, 2010).

We focus on attacks targeting 3D LiDAR data.

Contributions: To summarize the principal contributions:

• E�cient and e�ective ordering scheme that overcomes the challenges posed by lack of

surface information and sparse nature of 3D LiDAR data for tamper-proo�ng it.

• Dynamic nature of watermark generation and embedding that enhances the security.

• Cross-modal authentication and risk factor assessment that analyze the 3D LiDAR data

thoroughly.

7.2 Related work

3D data authentication and veri�cation have been done in two ways: a) Forensic analysis of

the characteristics of the data to detect forgery attacks, and b) Embedding a secret data as

a watermark to verify the authenticity of the 3D data.

7.2.1 Forensics Analysis

Over the last decade, forgery detection for images and videos has been well-studied (Farid,

2009; Milani et al., 2012). Forensic analysis of 3D data, however, is relatively less explored
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Figure 7.2: Real-time 3D dynamic watermarking.

with the exception of a few methods (Raghuraman et al., 2015b; Bahirat and Prabhakaran,

2017). Raghuraman et al. (Raghuraman et al., 2015b) designed an anti-forensic framework

to capture and manipulate the live RGB-D data stream to create a realistic illusion of an

individual performing the activities which they did not actually do. Presenting one of the key

work in the area of 3D forensics, Bahirat et al. (Bahirat and Prabhakaran, 2017) identi�ed

various possible attacks on 3D LiDAR data as well as two forgery detection methods based on

consistency in the key characteristics of LiDAR data such as: sampling density and occlusion

e�ect.

7.2.2 3D Watermarking

Generally, watermarking methods can be broadly classi�ed into two categories: robust and

fragile methods. Robust methods (Wang et al., 2012; Jing et al., 2014; Yu et al., 2003;

Zafeiriou et al., 2005; Praun et al., 1999; Yin et al., 2001) are designed to reconstruct the

watermark even in case of malicious attacks for providing ownership protection. Whereas

fragile methods (Yeo and Yeung, 1999a; Lin et al., 2005) are designed to detect even a very

slight modi�cation in a data for authentication purpose. In this paper, we will mainly focus

on the 3D fragile watermarking.
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(a) (b) (c)

Figure 7.3: a) Cylinder enclosing the 3D space, b) Top view and the selected slice (highlighted
with yellow) along with the corresponding 1D vector, c) Blockwise layout of the watermark
and 1D vector corresponding to the selected block (marked in red).

Fragile 3D Watermarking

Fragile watermarking methods should possess two desired properties: 1) vulnerability to

even a slight modi�cation of data; 2) localizing any kind of attack.

Spatial domain: Fragile techniques in the spatial domain generally modify the individ-

ual vertex positions to achieve vulnerability against di�erent attacks. For example, methods

(Yeo and Yeung, 1999b; Lin et al., 2005; Chou and Tseng, 2006) utilize an approach that

identi�es a new position for each vertex where two prede�ned hash functions have an identi-

cal value, in order to make all vertices valid for authentication (Wang et al., 2008). However,

these approaches su�er from causality problem (please refer to (Wang et al., 2008)) and

need 1-ring neighbor information. Cayre and Macq (Cayre and Macq, 2003) proposed a

blind data-hiding algorithm for triangular meshes where the projection of a vertex on its

opposite edge of the triangle is selected as a primitive for watermarking.

Transform domain: To achieve imperceptibility, researchers often embed the water-

mark in a spectral domain based on the 3D mesh multiresolution analysis. Chao et al. (Cho

et al., 2004) proposed a fragile method that performs several decompositions of original tri-
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angular mesh and utilizes facets in the coarser mesh as authentication primitive. Wang et al

(Lounsbery et al., 1997) described another approach where after one wavelet decomposition,

the norm and orientation of each wavelet coe�cient vector are modi�ed independently.

Point cloud watermarking: Among the early work, Ohbuchi (Ohbuchi et al., 2004)

generated a non-manifold mesh from a point cloud and performed a mesh spectral analysis

for embedding watermark into spectral coe�cients. Cotting (Cotting et al., 2004) designed

a technique that: (a) partitions a point cloud data into patches; (b) transforms them into

discrete frequency bands; (c) embeds a watermark into the low-frequency components. Ag-

garwal et al. (Agarwal and Prabhakaran, 2007) proposed a blind watermarking that uses a

quantization index of bit encoding to embed watermark bits into ordered points.

Limitations and Challenges: Most of the algorithms described are designed for 3D

polygonal meshes using topological information, connectivity, and surface parameterization.

Since LiDAR data do not have surface and connectivity information associated with it, we can

not use most of the 3D mesh watermarking methods. Unlike existing fragile watermarking

methods, the proposed watermarking is robust against re-ordering of points that is likely to

occur during network transmission.

7.3 ALERT: Authentication, Localization, and Estimation of Risks and Threats

Most autonomous vehicles (and robots) are equipped with a LiDAR sensor as well as a pair

of stereo color cameras. We propose a novel framework ALERT (Figure 7.1) that adds a

secure layer for a navigation system that uses both LiDAR and stereo RGB data. It consists

of three building blocks:

• A dynamic watermark based on stereo RGB data and embed it in 3D LiDAR data using

fragile watermarking techniques.

• Cross-modal authentication and localization

• Risk factor computation
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Figure 7.4: Watermark extraction and validation.

7.3.1 Dynamic 3D Watermarking

For achieving the desired tamper proo�ng of 3D LiDAR data, the proposed watermarking

scheme (Figure 7.2) must possess the following key characteristics: a) Dynamic water-

mark is obtained by creating a depth map from the stereo data. However, to correctly

embed a 2D watermark into a list of 3D points, each 3D point must be mapped to a unique

pixel in the 2D watermark. Such mapping is achieved by ordering 3D points as described

later in this section. The additional bene�t of the ordering strategy is the robustness against

shu�ing the points. Such a robustness against shu�ing is advisable as merely re-ordering

the 3D points does not a�ect the scene understanding and consequently the navigational

decisions; b) Imperceptibility in embedding is attained by restricting the e�ect of embed-

ding the watermark to the least signi�cant bits (LSBs) of each 3D point; c) Fragility of

the watermarking is very important to realize tamper-proo�ng of the data which is achieved

by spreading the watermark across all 3D points. Such that any kind of tampering is easily

re�ected in the extracted watermark.

Watermark Generation:

For increased security, instead of using a static watermark, we suggest utilizing a dynamic

watermark that changes for every frame. We obtain the dynamic watermark by extracting

the binarized depth map from the stereo data. To construct a depth map, �rst a disparity
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map from stereo data can be obtained using traditional stereo correspondence (Olofsson,

2010), followed by depth computation using a pin-hole camera model.

Watermark Embedding:

The complete watermark embedding process consists of various steps:

Ordering 3D points: helps to create a mapping such that each 3D point is mapped to

a unique pixel in a 2D watermark image. First, all the points are mapped to a Cylindrical

coordinate system with the origin located at the position of the LiDAR sensor and z-axis

aligned with the z-axis of the LiDAR (see Figure 7.3 a). Mathematically, the corresponding

mapping for a 3D point (x, y, z) in the Cartesian coordinate system to the corresponding

(r, θ, z) in the Cylindrical coordinate system is given by:r =
√
x2 + y2 + z2, θ = arctan( y

x
),

z = z; where r, θ and z are radial, azimuth and height coordinates.

All the points represented in the Cylindrical coordinate system are then sorted based on

the θ value and divided into di�erent slices with angular width δ as shown in Figure 7.3 b.

Hence, the total number of slices will be, Nslice =
360

δ
. For each slice, all the corresponding

points are �rst sorted with respect to z followed by r in the ascending order. This will form

a 1D vector of all the 3D points in that slice (see Figure 7.3 b). The generated watermark

is then divided into Nslice vertical blocks (see Figure 7.3 c).

Slice and Block Selection: As there are Nslice number of 3D data slices as well as

watermark blocks, there is a one to one mapping possible between them. However, this

correspondence between slices and blocks is randomized for enhanced security. Based on

the predetermined key (key2), slice and the blocks are randomly chosen for embedding the

watermark information.

Embedding: the watermark block into the corresponding slice depends on two factors:

a) Watermark image size and b) Number of points in the slice, K. The size of the cropped

watermarked image is selected based on the statistical analysis of the experimental dataset
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that determines the minimum number of points M in any slice. In the current experimental

setup, the watermark image size is empirically determined to beM ×Nslice. Based on values

of M and K various conditions are possible. When M = K, each watermark bit is simply

embedded in the corresponding 3D point. If M < K, then a K points are divided into

groups where each group contains M points except the last group. M bit watermark is

replicated randomly across all groups. However, the last group with < M number of points

will contain only partial watermark information. If M > K for any slice, it is merged with

the next smallest slice. This process is repeated until the smallest slice has K > M . The

information about slice merging is provided as a metadata at the receiver side. Please note

that Nslice will also be updated based on merging operations.

Embedding Strategies:

For embedding watermarking information in 3D points, one can use any traditional embed-

ding strategies such as:

Low Bit Modulation (LBM): Due to simplicity, Low bit modulation is widely used

in various watermarking techniques. In this strategy, the watermarked data is simply stored

in the LSB (Least Signi�cant Bit) of each 3D point which makes it imperceptible with least

perturbation. To make sure the LSB only represents the watermark data, we �rst set the LSB

of each 3D point to zero followed by replacing the LSB of each point with the corresponding

watermark bit. Similarly on the receiver side, �rst the information stored in the LSB of the

point cloud data is extracted. This LSB bit is then set to zero followed by the proposed

ordering scheme. The mapping between 3D points and 2D pixels is then utilized to construct

the extracted watermark image.

Quantization Index Modulation (QIM): QIM is a popular embedding strategy as it

provides a good trade-o� between imperceptibility, watermark capacity and robustness (Chen

and Wornell, 2001). We adopt the basic QIM strategy proposed in (Chen and Wornell, 2001)
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Figure 7.5: Quantization index modulation. Each point is quantized to nearest reconstruc-
tion point for �0� or �1� bit.

with slightly modi�ed quantizers with quantization step ∆. To embed the watermark bit �1�

in �z� coordinate of point p, we quantize it by

Q1(z) = ∆b z
∆

+
1

2
c. (7.1)

To embed the watermark bit �0�, we quantize the z coordinate by Q0

If z < Q1

Q0(z) = ∆b z
∆

+
1

2
c − ∆

2
. (7.2)

Else,

Q0(z) = ∆b z
∆

+
1

2
c+

∆

2
. (7.3)

Figure 7.5 illustrates the QIM in the case where one bit (0 or 1) is embedded per point.

Thus, there will be two quantizers and the corresponding set of construction points in < are

shown in Figure 7.5. So if we want to embed bit �1�, the point p1 will be quantized to n and

to embed �0� it will be quantized to (n+
∆

2
).

At the receiver side, for extracting the watermark bit wmextract embedded in point

p(x, y, z), we solve for following equation:

wmextract(p) = argmin
i=0,1

(Qi(p(z))− p(z)) (7.4)
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Figure 7.6: Cross-modal authentication and localization.

(a) (b)

Figure 7.7: Safety Region Illustration a) Side view, b) Top View (dsafe is the minimum
stopping distance at current speed).

(a)

(b)

Figure 7.8: Visualization for the temporal element of the Risk factor with Xn = 5 in case of
a) Pattern 1, b) Pattern 2.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.9: Illustration of di�erent types of attacks on frame 6 from Drive 1: a) Original
point cloud, b-g) With attack 1-6.

Meta data communication:

For a successful operation of the proposed watermarking method, a metadata consisting

of keys for slice and block selection, slice merging information and the size of watermark

must be communicated to the receiver end via a secured channel. We suggest embedding

this information in stereo data via a traditional image watermarking. To achieve this, the

image watermarked must have additional capacity to store the metadata while satisfying the

real-time constraints described later.

Watermark Extraction and Validation:

Figure 7.4 describes a watermark extraction and validation process carried out at the receiver

end of the system. First, the watermark information is extracted from the point cloud and

saved as wmextract. All the points in the received point cloud are mapped to a Cylindrical

coordinate system and ordered as described in Section 7.3.1. The ordered set of points are
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divided into slices with angular width δ each. Using the prede�ned key (key2) and metadata,

the desired slice and corresponding block is selected to create a 2D binary watermark image

from the extracted watermark data wmextract. Simultaneously, a dynamic watermark is re-

generated at the receiver end using stereo data. These two watermarks are then compared

pixelwise to determine if the data is real or forged. Please note that, for the slices where

M < N , the number of extracted bits are divided into groups of M bits and logical AND

operation is performed to compute the watermark information in the corresponding block.

7.3.2 Cross-modal Authentication and Localization

As the same scene is observed by two modalities: LiDAR sensor and stereo cameras, per-

forming a cross-modal authentication is a natural choice where the data captured using one

sensor can be validated using the data from another sensor. However, the data captured

using these two modalities are in di�erent domains. The stereo data is a set of 2D images

while the point cloud is a set of 3D points. To bring them to the same domain for com-

parison, we process them as described in Figure 7.6. First, we generate a depth map from

the stereo data and project it to 3D using the camera parameters. It will generate a corre-

sponding point cloud data. As the estimated depth maps from stereo images can be noisy,

we can not directly perform a point to point comparison between stereo and LiDAR point

cloud. Hence, we apply an equirectangular projection to get a 2D depth map as shown in

Figure 7.6. Similarly, we also apply equirectangular projection to the LiDAR point cloud.

Now, as both the modalities are in same domain, we can verify if the objects present in

one modality are also there in another modality. Due to the 2D representation of data, we

can easily identify the modi�ed region using connected component analysis. As mentioned

earlier, we assume that the stereo data has been authenticated using traditional video/image

watermarking techniques.
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7.3.3 Risk Factor Computation

The decision making in autonomous vehicles is a complex system and involves multiple sen-

sors. Such systems account for the fact that the performance of a sensor is highly dependent

on the environmental conditions and sensor's reliability and precision might be a�ected by

unfavorable conditions. Thus, for reliability, these systems need the self-assessment of each

sensor where each sensor notes its own limitations and signals this information to the con-

trol unit (Stiller et al., 2000). Being consistent with existing decision-making systems, we

design a �Risk Factor� associated with the LiDAR data that conveys the reliability and risk

associated with the data.

Needless to say, the risk factor can be de�ned in di�erent ways. In this paper, we propose

a risk factor Rf ranging between (0,1) where 0 indicates minimum risk while 1 indicates the

highest risk. We consider a region (referred to as �safety region�) in front of the car that is

more critical. The dimension of a safety region depends on the minimum stopping distance

at current speed dsafe, the height of the car and width of lanes. Figure 7.7 illustrates the

safety region and its coverage. To de�ne the risk factor Rf , we mainly consider the following

six key elements:

A distance of the attacked region from the vehicle, d. If the distance is dsafe, the

risk is lower as we can probably stop before the attacked region. Hence, the corresponding

factor is de�ned as fd = max(0,
(dsafe − d)

dsafe
).

The number of attacked points, n. Higher the density of attacked points, higher is

the risk. Thus, the corresponding factor is fn =
n

N
, where N is the total number of points

in the safety region.

The type of attack, α. Di�erent types of attack may pose di�erent amount of risk.

So, we de�ne the corresponding factor as fα = α, α can be between (0,1) based on the type

of attack.
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Angle of the attacked region with the forward direction of the vehicle, θ helps

to identify if the attacked region is in the current lane or side lanes. theta = 0 indicates

that the attack is in the current lane which introduces higher risk. Hence, we formulate the

corresponding factor as fθ = cos(θ)

Spatial correlation of the attack, s. If the same region is attacked in two consecutive

frames, the d and θ will be probably same across these frames. Hence to capture the spatial

correlation, the corresponding factor is de�ned as fs = averagei=0,Xn
(corr(si, si−1)), where

Xn is the total number of previous frames and si = [di, θi].

Temporal consistency of the attack, t. It includes two sub-factors: a) the percentage

of frames being attacked and b) history information signifying the steadiness of the attack.

The corresponding factor is ft =
xn
Xn

× cn
Xn

, where xn are the number of frames that are

attacked, cn holds the history information indicating the steadiness of attack. If the frame

is attacked, we set cn = Xn. But if there is no attack, it is updated as cn = cn − 1 until it

reaches to 0. Among these elements, the �rst six elements are based on information in the

current frame only, while spatial and temporal elements take a set of previous frames into

account.

De�nition: Based on the above parameters, risk factor Rf is de�ned as:

If the attack is detected, Rf = fd × fn × fθ × fα × fs × ft

If no attack is detected, Rf = fs × ft

For computing the temporal and spatial element of the risk factor, we considerXn number

of the previous frame. Xn is computed based on the current speed of the vehicle and time

it would take to cover the distance of 100 meters (the distance for which one would like to

observe the attack). Figure 7.8 illustrates the computation of cn and ft in various attacks.

This formulation helps to distinguish between the attack patterns with the same number of

attacked frames xn but di�erent attack distribution as shown in Figure 7.8.
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7.4 Attacks

To evaluate the vulnerability of 3D LiDAR data, we consider 6 di�erent possible attacks

(See Figure 7.9) by an attacker trying to deceive the decision-making module in autonomous

system.

Additive attacks (Attack 1): The attacker can introduce a new object to suddenly

stop the autonomous vehicle (Figure 7.9 b). To perform such attacks, the region of interest

in one point cloud is extracted and inserted into another by simply appending points to the

initial list.

Subtractive Attack (Attack 2): As the objects that are near and in front of the

LiDAR sensors are very important, we identify points in proximity of LiDAR sensor. These

points are then removed to perform a subtraction attack (see Figure 7.9 c).

Simultaneous Additive and Subtractive attack (Attack 3): To increase the com-

plexity of attack, we perform both additive attack and subtractive attack together (refer to

Figure 7.9 d).

Replacement attack (Attack 4): In this case, the forged object is added in the scene

to replace an existing object (Figure 7.9 e).

Translation (Attack 5): To trick the decision support module, the attacker may want

to move the object a little farther to change the decision (Figure 7.9 f). We achieve it by

identifying the nearest object and translate it away from the LiDAR sensor.

Rotation (Attack 6): The attacker may want to rotate the car parked on the one side

of the road to alter the decision (Figure 7.9 g). This is achieved by identifying the nearest

object, computing the center of mass and translate it to the origin, rotate it about y-axis by

a prede�ned angle and translate it back to its original position.

Attack Type Detection: All the attacks described earlier have di�erent levels of risk

associated with them. For example, the attack where the car in front is forgedly remove

with a subtractive attack is more dangerous than the additive attack. Thus, determining
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the type of attack is crucial for determining the risk factor described in the earlier section.

We broadly classi�ed all the above attack into three categories: additive, subtractive and

modi�cation attack. All the attack 4-6 are termed as modi�cation attack. To determine the

type of attack the depth map obtained from the LiDAR data is masked with the di�erence

image obtained using a cross-modal module. Finally, the type of the attack is determined

based on the depth values in the masked region and corresponding area. For additive attack,

the masked area will have non-zero depth values in the depth map. While, for subtractive

and modi�cation attack, the masked region will have a blob of pixels with zero depth values.

However, the area of the zero depth patch will signi�cantly di�er in the case of subtractive

and modi�cation attack.

7.5 Experimental Results

In this section, we demonstrate the e�ciency of the ALERT framework. Mainly, we carried

out 4 di�erent set of experiments that: a) Demonstrate the imperceptibility of the proposed

fragile watermarking method, b) Exhibit the e�ciency of the proposed watermarking ap-

proach by computing a recovery rate, c) Verify the real-time performance by enlisting the

execution time taken by various steps and d) Evaluate the accuracy of both the proposed

fragile watermarking as well as cross-modal module under various attacks described in Sec-

tion 7.4. All the attacks and algorithms are implemented in MATLAB and experiments are

run on a CPU with Intel (R) Core (TM) i7-5820K with 3.30GHz speed and 32GB internal

RAM. Various algorithm parameters used in the experiments are: a) With the statistical

analysis of the experimental dataset (described later), the minimum number of points in any

slice M is empirically determined as 1000; b) To get signi�cant number of slices, angular

width δ is set to 10; c) To keep the distortion level minimum due to watermark embedding,

we use step size ∆ = 0.0025.
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7.5.1 Dataset

We utilize LiDAR and stereo data provided by the KITTI Vision Benchmark Suite (Geiger

et al., 2013). It consists of a variety of environments such as City, Residential, Road etc

scanned using multiple sensors (please refer to (Geiger et al., 2013)). In our experiments, we

mainly considered the 3D point clouds scanned using Velodyne HDL-64E and stereo color

images captured using 1.4 Megapixels Point Grey Flea 2 cameras. Please note that the point

cloud data and stereo data are synchronized and recti�ed. We primarily focused on the drives

in the �Residential� area as there are multiple cars parked on both sides of the road that

allow us to create a signi�cant number of attacks of type 2-6. The experimental dataset

consists of three drives captured on 09-26-2011: drive 22, 39 and 64 (referred as Drive 1,

2 and 3, respectively) with 800, 395 and 570 frames each. Table 7.2 lists all the attacks

performed to create forged data as described in Section 7.4. The total number of attacks

created for Drive 1, Drive 2 and Drive 3 are 4135, 2130 and 2470 respectively. So overall in

this experimental setup, we evaluated 8735 di�erent types of attacks.

7.5.2 Evaluation

Imperceptibility. One of the key characteristics of the watermarking technique is the

imperceptibility that requires the watermark embedding to introduce the least amount of

distortion in the data. In the proposed approach, the desired imperceptibility is achieved

by restricting the e�ect of embedding to the least signi�cant bits of each point in the data.

Figure 7.10 demonstrates the imperceptibility achieved using the proposed watermarking

with QIM embedding. To quantitatively evaluate the imperceptibility, we compute a Haus-

dor� distance as described in (Cignoni et al., 1998) between the original point cloud and the

watermarked point cloud for all the frames in each drive. The average Hausdor� distance

across all drive is 0.001732 with LBM and 0.00125 using QIM.
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(a) (b)

Figure 7.10: Illustration of imperceptibility of the proposed watermarking: a) Original point
cloud, b) Watermarked point cloud (with QIM embedding).

E�ciency. To compute the e�ciency of the proposed fragile watermarking method,

we embed and extract the watermark with both the embedding strategies (LBM and QIM)

under no attack condition. The recovery rate is recorded for every frame in each drive. The

proposed method demonstrates 100% recovery rate in case of all the drives included in the

experimental dataset.

Execution time. In the KITTI Vision Benchmark Suite (Geiger et al., 2013), the

LiDAR data is typically scanned at 10 fps while the synchronized and recti�ed stereo data

is available only at 1 fps. Thus, we have 100 milliseconds (ms) to process each LiDAR frame

for watermark embedding and extraction. Similarly, we have approximately 1 second for

performing cross-modal authentication. The �real-time� aspect of performance is de�ned

based on the aforementioned time constraints. To evaluate the performance of the proposed

system in terms of execution time, we measure the average execution time taken by di�erent

steps of the proposed framework for each drive. As can be seen from Table 7.1, we can

process each frame for watermark embedding and extraction in approximately 100 ms each.

Similarly, the execution time taken by cross-modal authentication module is approximately

200 ms satisfying the required time constraints. Please note that the reported times do not

include watermark generation as it is considered as a pre-processing step.
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Table 7.1: Execution time taken by various steps of ALERT.

Average Execution time (in ms)

Drive 1 Drive 2 Drive 3

Ordering Points (a) 61.80 59.10 59.40

LBM Embedding (b) 38.00 35.80 36.80

QIM Embedding (c) 48.80 47.90 49.10

Execution time with LBM

at Tx (a+ b)
99.80 94.94 96.20

Execution time with QIM

at Tx (a+ c)
110.60 106.00 108.50

LBM Extraction (d) 47.50 45.40 47.20

QIM Extraction (e) 32.90 31.80 32.80

Watermark Comparison (f) 0.08 0.07 0.05

Execution time with LBM

at Rx (a+ d+ f)
109.38 104.57 106.65

Execution time with QIM

at Rx (a+ e+ f)
94.78 90.97 92.25

Depth From stereo (g) 172.98 174.12 173.24

Rectilinear projection (h) 12.35 12.21 12.45

Depth Comparison (i) 4.07 4.25 4.14

Execution time for cross-

modal (g + 2× h+ i)
201.75 202.79 202.28

Accuracy. The proposed framework is evaluated by analyzing the accuracy of: a) the

proposed fragile watermarking, and b) cross-modal authentication and localization. The orig-

inal point cloud data is watermarked using the proposed watermarking with both embedding

strategies (LBM and QIM). The data then undergoes various attacks listed in Section 7.4.

The attacked data is processed through the step of watermark extraction and cross-modal

module. Any discrepancy in the extracted watermark is detected as a forgery. Similarly,

any di�erence between the LiDAR data and the stereo data is captured as forged data by

a cross-modal module. Figure 7.12 illustrates the performance of the proposed cross-modal

module in localizing various types of attacks. Table 7.2 shows the statistics of the attack

detection for the proposed watermarking with LBM and QIM embedding strategy and for

the proposed cross-modal authentication and localization. Overall, the proposed dynamic
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(a) (b)

Figure 7.11: Failure case of cross-modal authentication: a) Depth map from LiDAR data,
b) Depth map from stereo data (noisy region marked with the red rectangle).

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.12: Performance of cross-modal authentication and localization in case of: a) Orig-
inal point cloud, b-g) With attack 1-6.

watermarking achieves 100.00% accuracy with both LBM and QIM embedding. The cross-

modal module achieves 97.56% of overall accuracy. The reduced accuracy with a cross-modal

module is mainly due to noisy depth estimation from stereo data as shown in Figure 7.11.

Additional results are provided in the supplementary material.
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7.6 Discussion

Dynamic watermark: As the algorithm is currently implemented on CPU in MATLAB,

without any optimization, the execution time needed for the depth map generation from the

stereo is approximately 170 milliseconds. GPU based implementation is very likely to reduce

this execution time signi�cantly. We can also consider generating a dynamic watermark for

a LiDAR frame at time t in two other ways: a) using the depth map obtained from stereo

data at time t− 1 and b) using a 2D random noise pattern.

A trade-o� between accuracy and time for depth from stereo: As described in

Table 7.1, generating the depth map from stereo image pair is computationally expensive. If

the depth map generation step needs to be expedited, it results in inaccurate depth estimates

which consequently results in increased false positives during cross-modal authentication

and localization. Thus, it becomes crucial to achieve a trade-o� between the accuracy and

execution time for depth map generation from stereo data.

Limited localization: The current dataset includes the stereo data capturing only the

frontal environment. Thus, based on the data availability, the current approach is limited to

localize attacks occurring in the frontal 180◦ only. However, the full 360◦ localization can be

obtained if multiple stereo camera pairs are installed for scanning the complete environment.

Risk factor assessment: Moral machine experiment described in (Awad et al., 2018)

demonstrates a substantial subjectivity and cultural variation associated with ethical judg-

ments made by humans. Thus, the problem of modelling the risk factor with global consensus

becomes more challenging. Hence, the risk factor can be customized by researchers in dif-

ferent ways as per the requirements.

Decision making: As mentioned earlier, the proposed framework assist in autonomous

navigation of self-driving cars and robots. It provides a complete set of information including

whether the data has been attacked or not, attacked region, type of attacks and risk factor

associated with the data. This complete set of information is provided to ADAS for making
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a more informed decision. For example, if the risk factor associated with the data is �1�

and the attacked region is localized in the front of the vehicle and the side lane is marked

as safe, then one can decide to pull over and stop. Although such decisions are subjected

to the controversial debate of �what is an ethical decision� (Gent, 2017), it is important to

provide some preliminary decision for a reliable navigational system. Also for cases where

one tele-choice operator is supervising multiple autonomous vehicles, ALERT can notify the

tele-choice operator regarding the potential risk.
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CHAPTER 8

CONCLUSION

With the current advances in depth sensing technologies, the 3D content can be easily gen-

erated and is widely available in di�erent formats. However, employing the 3D content e�ec-

tively and reliably has several challenges. This dissertation addresses three main challenges

by providing a set of novel algorithms. These algorithms assist in accelerating the e�ective

and reliable utilization of the 3D content in a diverse set of applications and demonstrate

future prospects of 3D technologies.

8.1 Challenges

Mainly we have addressed three challenges:

1. Limited processing power and resources in mobile HMDs: Mobile HMDs

are severely constrained with low-processing power and limited onboard memory. Therefore,

they can not handle the same virtual environments and objects as desktop-based VR systems

without rendering at lower framerates, which can potentially induce the simulator sickness

and degrades the user experience.

2. E�ective usage of 3D content in virtual therapies: Although mixed and virtual

reality techniques are increasingly employed in the healthcare domain, a detailed analysis of

deploying them in speci�c task needs to be addressed. Considering a speci�c task of using

mixed/virtual reality for managing phantom pain, existing virtual reality-based solutions

are invasive in nature and rely on pre-built 3D models of the phantom limb. Such pre-built

3D models degrade the immersive experience due to a mismatch in the skin color, clothes,

arti�cial and rigid look and misalignment.

3. A vulnerability of 3D content: Previous two challenges demonstrate the require-

ment of manipulating 3D content for useful tasks. However, the ability to easily manipulate
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the 3D content exposes its vulnerability to various security threats. The concerns regarding

the security risk associated with 3D data become more prominent in the background of its

applications in various sensitive areas such as surveillance, autonomous vehicle control etc.

8.2 Proposed methods

To address the above-mentioned challenges, we propose a set of novel methods for 3D content

manipulation with three di�erent perspectives:

1. Simpli�cation for multi-platform adaption: We opt for an automated mesh and

surface simpli�cation approaches to accommodate low processing power of mobile HMDs.

Such that the 3D data can be adaptively simpli�ed to make it deployable across various

platforms ranging for low-power mobile head-mounted displays to desktops equipped with

high power GPUs. We address the problem of multi-platform adaptation for di�erent types

of 3D content format independently:

O�ine approach for 3D mesh simpli�cation: We have described a new high-�delity

mesh simpli�cation method, QEM4V R, tailored for VR applications to yield low-poly meshes

for any 3D model (both manifolds and non-manifolds). QEM4V R method has two signi�cant

advantages:

• Its resulting meshes have a less geometric error than previous variations of the QEM

simpli�cation algorithm due to its curvature-based boundary preservation approach.

• Also, our QEM4V R method is more capable of preserving surface properties, such as

multiple texture coordinates for a single vertex, than previous approaches that attempt

to preserve such surface properties.

We validated both key contributions through a series of experiments that compared our

method to prior QEM variations.
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Our perceptual quality assessment experiment shows that state-of-the-art perceptual

quality metrics are incapable of adequately measuring the visual quality of simpli�ed non-

manifold meshes. It motivates the need to further explore and design a quality metric

correlated with the human perception to evaluate mesh simpli�cation methods. An ade-

quate perceptual measure should incorporate boundary gaps, completeness of the model,

and associated texture information while computing the error.

Real-time approach for surface simpli�cation from depth images: Deriving the

motivation from the challenges posed by the processing limitations of handheld VR devices

and rendering engines in real-time immersive applications, we have presented a novel depth

image based surface simpli�cation method that utilizes the underlying grid structure of the

depth image. The proposed CS3 (Curvature Sensitive Surface Simpli�cation) operator se-

lects points based on their importance of curvature and hence is capable of preserving �ner

details of the surface even at the high level of sparse sampling. Modi�ed constraint Delaunay

triangulation makes the proposed method suitable for standalone models as well as complete

scenes. Also, the proposed CS3 method is capable of preserving surface properties such as

texture coordinates. Fast execution time and a reasonable approximation to the underlying

surface, make the proposed method suitable for real-time immersive applications. The pro-

posed method generates a sparse mesh of a user-speci�ed vertex count to mitigate system

limitations. Various experimental results have demonstrated that the proposed approach

maintains an acceptable level of visual quality even after signi�cant data size reduction. The

proposed method can be easily extended to obtain distance-dependent simpli�cation. It can

be used in bandwidth adaptive tele-immersion, level-of-detail rendering, 3D data compres-

sion.

2. Modi�cation for virtual therapies: We have presented a novel Mixed Reality

based system for MAnaging Phantom Pain (Mr.MAPP) that creates a 3D model of the per-

son and immerse it in the interactive game environment. It identi�es and removes the 3D
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points corresponding to the missing limb in the real-time. It also provides a real-time phan-

tom limb generation with the skeleton modi�cation for accurate movement of the phantom

limb and its interaction with the gaming environment. The Mr.MAPP framework bestows

a cost-e�ective, simple and non-invasive solution for the relief from the phantom limb pain.

The quantitative and qualitative evaluation of the Mr.MAPP framework is performed by a

group of able-bodied participants and Subject-Matter Experts (SME). The results indicate

the e�ectiveness and usefulness of the Mr.MAPP framework. We also studied the e�ects of

display technologies on the immersive experience and portability of the Mr.MAPP frame-

work. The study indicates that the Oculus Rift provides a rich, immersive experience while

it requires a high-end graphics enabled system. 3D TV provides a comfortable experience

with partial immersion. Whereas, Samsung Gear VR provides an a�ordable, portable and

moderate immersive solution. To incorporate the suggestions provided by Subject-Matter

Experts, we plan to design a modi�ed game tailored for lower limb amputees. Based on

the encouraging preliminary �ndings about the usability and e�ectiveness of the Mr.MAPP

framework, we are continuing our investigation with the help of rehab expert to evaluate

the e�cacy and feasibility of the proposed system for patients with limb amputees. As per

SMEs, the Mr.MAPP framework has a great potential to improve traditional phantom limb

pain management therapies.

3. Authentication for secure usage: To analyze the authenticity of 3D data captured

using di�erent types of short and long-range sensors, we carried out two di�erent set of

experiments:

For short-range sensors such as RGB-D cameras, we present a real-time 3D con-

tent manipulation framework to capture and manipulate live RGB-D data streams to create

realistic images/videos showing individuals performing activities they did not actually do.

The framework utilizes various computer vision and graphics techniques to render a photo-

realistic animation of live 3D mesh models captured using RGB-D cameras. Subjective
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analysis of manipulated RGB-D streams indicates that it was signi�cantly di�cult to dis-

tinguish between real and manipulated RGB-D streams. We also investigated the e�cacy of

noise analysis based forensic approach for identifying such manipulations.

For long-range sensors such as LiDAR, we have carried out an experimental study that

opens up a new research area of forensic for LiDAR data. We have analyzed and identi�ed

possible attacks on the LiDAR data, which do not need additional hardware. Given the

parameters for the modi�cations, these attacks can be carried out in real-time. We have

also proposed two novel forensic approaches based on minimum inter-point distance and

occlusion consistency for detecting additive forgery attacks. The analysis raises awareness

to address possible threats to LiDAR data and to develop sophisticated forensic approaches

for LiDAR data. Proposed attacks and forensic algorithm are also applicable to 3D point

cloud data generated using other depth sensors as well.

Focusing on remote navigation in self-driving cars, we have proposed a novel framework,

ALERT, for assisting autonomous vehicles and robots. ALERT has 4 key features:

• Handles the sparse nature and lack of surface information in LiDAR data with the proposed

ordering scheme.

• Creates a real-time, dynamic watermark based on stereo RGB data and embeds it on 3D

LiDAR data using fragile 3D watermarking schemes.

• Localizes the attacked region using cross-modal authentication and localization along with

risk factor assessment.

• Bestows a possible, complete solution for a secure navigation of autonomous systems.

ALERT is evaluated in terms of imperceptibility and e�ciency of watermarking technique,

execution time performance and accuracy of both watermarking as well as a cross-modal

module. The experimental results demonstrate the e�ectiveness of ALERT and its possible

utilization in assisting autonomous vehicles and robots.
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8.3 Future Work

1. Just Noticeable Di�erence based quality assessment: Based on the perceptual

quality assessment performed in this work, we have identi�ed the following directions for

future work: a) Inability of existing perceptual quality metrics to adequately measure the

visual quality of non-manifold meshes motivates the need to design a quality metric that

correlates with the human perception. b) The future studies involving human responses

based upon the concept of Just Noticeable Di�erence (JNDs) can be performed to assess

and compare the subjective perceptual quality of various mesh simpli�cation algorithms.

Such analysis will assist in determining quality boundaries that will enable various adaptive

streaming and rendering applications.

2. Extension of surface simpli�cation for multiple RGB-D: The proposed curva-

ture sensitive surface simpli�cation method takes only a single RGB-D camera into account.

While many mixed reality applications may involve capturing a live 3D avatar from multiple

views to construct a watertight 3D model. Therefore it is important to extend the current

surface simpli�cation algorithm for incorporating multiple RGB-D cameras that can exploit

the correlation between multiple views for e�cient surface simpli�cation.

3. Mr.MAPP patient study analysis: We expect to complete the ongoing patient

study in the span of one year. The data gathered from this study can be utilized to under-

stand the e�ectiveness of Mr.MAPP framework, as well as the patient's feedback, can be

incorporated to improve the proposed system.

4. Extension of Mr.MAPP with visuo-tactile feedback: Perez-Marcos et al.

(Perez-Marcos et al., 2012) demonstrate that it is possible to induce ownership of a virtual

body with synchronous multisensory or sensorimotor correlations coherent with a fake body

part. Such illusion may help in managing phantom pain e�ectively. Hence, a synchronous

visuo-tactlie feedback can be incorporated in Mr.MAPP framework for enhanced illusion.
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5. Generic forensic algorithm: Under the assumption of unavailability of color data

for cross-modal veri�cation or watermarking, it becomes crucial to design a generic forensic

algorithm utilizing LiDAR data alone. The study on LiDAR forensics indicates that the

proposed forensic algorithm can be e�ective only in case of additive types of attacks on 3D

LiDAR data. Therefore, a more robust 3D forgery detection methods need to be developed

that can address di�erent types of attacks. Along with inconsistency in point density and

occlusion e�ect, one can explore intrinsic properties of 3D LiDAR data such as perspective

projection to build a generic forensic algorithm to validate LiDAR data.

6. Deep learning for 3D forensics: Instead of manual hand-crafted features, one

can use deep learning techniques to adaptively learn the forgery detection from the observed

situation. Mainly, deep learning approaches can be used in following ways:

• Deep learning based 3D object recognition and tracking can facilitate temporal forensic

analysis.

• Generative adversarial networks (GANs) can be used to automatically generate forged

3D data which can be used for training a machine learning based forensic approach.

• Based on 3D object detection results, one can design a new watermarking scheme that

will selectively embed the watermark in the 3D LiDAR data.
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